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Plants are ubiquitously colonized by diverse communities of horizontally-

transmitted fungal endophytes, that can drastically alter plant physiology. Though many 

endophytes are mutualist, effects are context-dependent and can shift from pathogenic to 

mutualistic depending on abiotic and biotic factors. However, our understanding of 

endophyte effects comes almost exclusively from test of individual fungi, which may 

miss important community level processes that can alter fungal effects. Using Panicum 

grasses, I examined mechanisms underlying fungal interactions on plant physiology. I 

studied interactions in the context of plant drought responses, as climate models predict 

and increase in the intensity and frequency of drought. Scaling up from pairwise 

endophyte-plant studies will allow us to develop fungal applications that are more 

generalizable in real-world agricultural settings.  

Throughout my dissertation, I characterize the effects of altered precipitation and 

fungal interactions on plant physiology. To examine impacts of altered precipitation, I 

measured leaf-level and whole-plant carbon and water exchange in C4 grasses grown in 

extreme dry, extreme wet and mean levels of precipitation. Within this system, both 

extreme increases and decreases in precipitation inhibited plant gas fluxes, with all plants 

(Andropogon gerardii, Panicum virgtaum, and Sorghastrum nutans) responding 
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similarly. To understand how fungal interactions effect plant performance, I compared 

the physiology of P. virgatum grown with six fungal pairs, the corresponding 12 

individual fungi, and a no-fungus inoculum in low and high soil moisture. In most cases, 

plants responses to fungal pairs were non-additive (greater or less than expected) relative 

to effects of corresponding individual fungi. Furthermore, similarity of fungal stress 

tolerance and metabolic profiles predicted effects of fungal pairs in high and low soil 

moisture, respectively. To further understand mechanisms behind fungal interactive 

effects, I grew P. virgatum with 10 fungal pairs, in which each fungus was paired with 

one another, the five corresponding fungi, and a no-fungus inoculum in low and high soil 

moisture. Two of the five species dominated effects on the plants, such that outcomes of 

interactions could be predicted by the presence of these fungi within a pair. Furthermore, 

overall fungal effects on plant physiology could be predicted in the plant metabolome. 
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Introduction1 

Plant productivity is primarily limited by water availability in many ecosystems 

(Knapp and Smith 2001), with water limitations likely to be exacerbated, as climate 

models predict an increase in the intensity and severity of extreme drought events in 

many regions (IPCC 2014). Grasslands may be particularly vulnerable to extreme 

changes in precipitation as mean annual precipitation is a primary driver of grassland 

productivity (Knapp and Smith 2001).  Plants have developed many mechanisms in 

which to respond to drought, with strategies generally leading to plant escape, resistance, 

or tolerance of drought (Chaves et al. 2002, Chaves, Maroco and Pereira 2003, Juenger et 

al. 2005). Though often overlooked, fungal symbionts can also mediate plant stress 

responses and directly alter the above-mentioned strategies (Elmi and West 1955, 

Rodriguez et al. 2009, Worchel, Giauque and Kivlin 2013, Kivlin, Emery and Rudgers 

2013).  

Grasses predominantly associate with arbuscular mycorrhizal (AM) fungi 

belowground and endophytes aboveground (Leuchtmann 1992, Smith 1974). Endophytes 

are further divided into two broad classes based on host colonization, transmission, and 

function: vertically transmitted (VT) or horizontally transmitted (HT) endophytes 

(Rodriguez et al. 2009). The role of AM fungi and VT endophytes in mediating plant 

drought tolerance is fairly well characterized, but we know very little about mechanisms 

underlying symbioses among grasses and HT endophytes. Arbuscular mycorrhizal fungi 
                                                
1 Work presented in the introduction comes primarily from Worchel EW, Giauque HE and Kivlin SN. 
2013. Fungal symbionts alter plant drought responses. Microbial Ecology 65: 671-678  
Connor planned, executed and wrote up project. Giauque contributed to planning and executing. Kivlin 
supervised project 
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can promote drought avoidance by producing hyphae with access to small soil pores, 

expanding belowground water uptake surface area (Auge 2001). Endophytes can 

influence plant stomatal conductance and osmotic adjustment, with biochemical 

mechanisms generally underlying the effects of VT endophytes  (Clay and Schardl 2002).  

However, the direction of plant–fungal symbioses is often dependent on biotic 

and abiotic factors, with the same fungal taxa conferring different costs or benefits under 

different conditions. For instance, under drought conditions, the relative benefit from a 

fungal symbiont may be different depending on the photosynthetic pathway of the host 

plant. Plants with C4 physiology have greater water use efficiency and stomatal 

conductance than C3 species; therefore, they may rely less on fungal symbionts for water 

acquisition (Edwards et al. 2010). In addition to plant photosynthetic pathway, abiotic 

conditions can dictate the interaction between a plant host and its fungal symbionts. For 

example, a beneficial fungal symbiont can become parasitic when environments are not 

stressful (Johnson, Graham and Smith 1997). As such, both abiotic and biotic factors are 

likely to contribute significantly to the shift from mutualism to parasitism in regards to 

fungal effects on plant performance under drought. 

 For part of my graduate work, I quantified the relative strength and direction of 

plant biomass responses in grasses to both AM fungi and VT endophytes under a range of 

drought conditions using a meta-analysis of previously published studies (Worchel et al. 

2013). Through this approach, I also examined the influence of environmental conditions 

and plant host characteristics contributing to fungal effects on grasses. However, only 

AM fungi and VT endophytes were manipulated often enough to be compared 

quantitatively, thus this approach could not be used for HT endophytes. To fill this 
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knowledge gap, I experimentally manipulated soil moisture and HT endophytes 

colonization in C4 grasses, as outlined in Chapters 1-3.  

Specifically, using a dataset containing 86 comparisons from 51 different studies, 

I performed a factorial meta-analysis to determine how AM fungi and VT endophytic 

fungal symbionts affect growth of grasses under drought (Worchel et al. 2013). The 

meta-analysis also addressed (1) how the effect of fungal symbionts on plant growth was 

influenced by biotic (plant photosynthetic pathway) and abiotic (level of drought) factors, 

and (2) if there is a phylogenetic signal of fungal symbionts on grass growth under well-

watered and drought conditions. Based on this dataset, only AM fungi categorically 

influenced the growth of grasses under drought, although VT endophytes had a similar 

trend. Furthermore, the outcome of grass–fungal interactions under drought was context 

dependent, with three important factors contributing to outcomes. First, fungal symbionts 

increased plant biomass more as water limitation increased. Second, plant photosynthetic 

pathway affected the AM fungal–plant symbiosis, with C3 grasses receiving a greater 

benefit from associating with AM fungi than C4 grasses under both well-watered and 

drought conditions. Finally, while VT endophytes had little effect on plant biomass 

overall, there was a significant phylogenetic signal for biomass in response to VT 

endophyte presence, with grasses in the Elymus genus receiving the most benefit from 

their VT endophyte symbionts. As individual plant biomass is a large determinant of 

plant survival during a drought (Tilman and El Haddi 1992), identifying key drivers of 

symbioses between grasses, AM fungi and VT endophytes will improve our ability to 

harness the plant microbiome for managing plant drought responses. However, due to the 
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lack of data available on HT endophytes, patterns are yet to be generalizable this 

ecologically important symbioses.  

Thus, to address this knowledge gap, my dissertation work focuses exclusively on 

HT endophytes (hereafter ‘endophytes’).  Similar to VT endophytes, effects on host 

plants are context-dependent and can shift from pathogenic to mutualistic depending on 

abiotic and biotic factors (Saikkonen et al. 1998). However, these endophytes differ from 

VT endophytes in that they have broader host ranges, being isolated from all terrestrial 

plant species and biomes to date, and they are transmitted from plant-to-plant via the 

environment, allowing for both symbiotic and free-living lifestyles (Rodriguez et al. 

2009). Furthermore, colonization patterns differ widely: in contrast to colonization by a 

single dominant VT endophyte (Wille, Aeschbacher and Boller 1999), plants harbor a 

diverse community of endophytes with up to 20 different endophytes species within one 

plant (Arnold et al. 2003).  

However, our understanding of endophyte effects comes almost exclusively from 

test of individual fungi, which may miss important community level processes that can 

alter fungal effects. Specifically, competitive interactions among symbionts can result in 

antagonistic effects on host performance through limiting the productivity of competing 

species or reducing overall species diversity (Kennedy et al. 2007). Conversely, 

complementarity among symbionts can lead to synergistic effects when species have 

functionally distinct traits that provide complementary benefits (Thonar et al. 2014). As 

grasses are typically colonized by multiple symbionts, patterns observed in pairwise 

studies of endophyte colonization may not translate to the field.   
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Therefore, my chapters focus on the effects of altered precipitation and fungal 

interactions on plant physiology. In chapter 1, I identify the effects of extreme changes in 

precipitation on carbon and water fluxes in three native Texas, C4 grasses (Andropogon 

gerardii, Panicum virgatum, and Sorghastrum nutans). Currently, our understanding on 

the impact of altered precipitation comes primarily from studies that focus on persistent 

moderate changes in precipitation. These studies are likely to underestimate impacts on 

plant communities as moderate changes in precipitation may be too mild to affect 

population dynamics, or plants may have the opportunity to acclimatize (Watkinson et al. 

2003, Chaves et al. 2003). Specifically, extreme climatic events can push species to 

biological thresholds, inhibiting plant functions and shifting community composition. To 

identify the impacts of extreme changes in precipitation, I measured leaf-level and whole-

plant CO2 and H2O exchange in grasses grown in three precipitation treatments: extreme 

dry, mean, and extreme wet based on historical rainfall records.  

In chapter 2, I examine the effects of fungal interactions on plant physiology in 

drought and well-watered conditions. I then develop a framework to predict outcomes of 

fungal interactions on plant responses. Plants are colonized by multiple endophyte 

species that can drastically effect plant stress responses (Redman et al. 2011, Rodriguez 

et al. 2008). Fungal interactions may result in additive effects on the host plant, which 

could be predicted simply based on individual fungal behavior. Alternatively, interactions 

among fungi may result in non-additive synergistic or antagonistic effects on plant 

performance that are more challenging to predict. These outcomes are likely driven by 

the degree of niche overlap among species, with competition increasing in parallel with 

ecological similarity (Loreau and Hector 2001). To examine if effects of fungal 
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interactions on the plant host could be predicted from their niche overlap, I compared the 

effects of six pairs of fungi, with a wide range of niche-overlaps, to the corresponding 

individual fungal species on Panicum virgatum in water-stressed and well-watered 

conditions.  

Finally, in chapter 3, I identify fungal species that largely control outcomes of 

fungal interactions on plant responses, and link fungal effects to underlying changes in 

the plant metabolome. As mentioned above, effects of endophyte interactions on plant 

responses may be due to either facilitative or competitive processes among endophytes. 

Alternatively, an individual endophytic fungus may come to dominate overall function, 

such that effects are caused by a single species in the mixture. This can occur through 

selection effects in which competition leads to the dominance of the most productive 

species (Cardinale et al. 2006, Loreau and Hector 2001). To understand mechanisms 

underlying fungal interactive effects, I examined the effects of fungal interactions and 

drought on the performance and metabolomics profiles of Panicum hallii. Plants were 

grown with one of five individual fungi, a two-species fungal mixture, in which all 

individual fungi were paired with one another, or a fungus-free control inoculum in 

water-stressed and well-watered conditions.  

Understanding the mechanisms driving endophyte effects on plant drought 

responses is particularly timely given the predictions for more frequent droughts in the 

future (IPCC 2014). However, to translate endophytes benefits into the field, endophytes 

must be studied within a community context. The experiments described here represent 

the first steps to understanding plant-endophyte symbioses beyond pairwise associations.  
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Chapter 1:  Effects of extreme changes in precipitation on the 
physiology of C4 grasses2 

INTRODUCTION 

Climate models predict an increase in the intensity and severity of weather events, 

with warming temperatures and prolonged dry periods leading to more extreme drought 

and flooding in many regions (IPCC 2014). Extreme weather events are more intense 

relative to past historical climate and are expected to have large impacts on ecosystem 

function via their effects on plant growth, physiology and survival (Gutschick and 

BassiriRad 2003, Smith 2011). However, despite the significant impact of extreme events 

on natural systems (Jentsch, Kreyling and Beierkuhnlein 2007, Petterson et al. 2008, 

Smith 2011), most studies focus on persistent moderate changes in temperature or 

precipitation. When changes in climate are moderate, drought may be too mild to affect 

population dynamics, or plants can have the opportunity to acclimatize (Watkinson et al. 

2003, Chaves et al. 2003), resulting in little apparent impact on ecosystem function over 

time (França et al. 2000, Grime et al. 2000, Suttle, Thomsen and Power 2007, Zavaleta et 

al. 2003).  

Extreme weather events, in contrast, can push species to biological thresholds 

from which function cannot recover. For instance, severe water limitation can cause plant 

transpiration to exceed absorption, resulting in loss of cell turgor, relative water content, 

and cell volume to a point where cellular functions are irreversibly impaired (Lawlor and 
                                                
2We also examined the effects of extreme precipitation on fungal endophyte communities within these 
grasses. A brief introduction, methods and results of this study are in Appendix 1 ‘Effects of extreme 
changes in precipitation on fungal endophyte communities’. 
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Cornic 2002). Extreme flooding can cause hypoxia in the rhizosphere, which leads to 

inhibition of ATP synthesis and nutrient deficiency (Steffens et al. 2005). Adverse effects 

of extreme events can have long-term impacts on community dynamics and can affect 

ecosystem responses such as net ecosystem exchange of carbon (Reichstein et al. 2013).  

However, extreme events are not always detrimental; some studies report stable 

productivity despite extreme rainfall (Grant et al. 2014). Yet our understanding of the 

impacts of extreme events comes primarily from observational studies, with extreme 

manipulation experiments being rare, and the majority of both observational and 

manipulation experiments focused on changes in aboveground net primary productivity 

(Knapp et al. 2016). 

Grasslands may be particularly vulnerable to extreme drought and flooding 

because mean annual precipitation is a primary driver of grassland productivity (Knapp 

and Smith 2001). Despite the long-held assumption that the dominant grasses in tallgrass 

prairies of the United States are ecologically equivalent (Polley et al. 1992, Weaver 

1931), plant physiological responses to water can be species-specific, making ecosystem 

responses to changes in precipitation difficult to predict (Fay et al. 2003).  The concept of 

ecological equivalency is often rejected when climate variables are directly manipulated 

in prairie and grassland ecosystems (Knapp 1985, Connor, Sandy and Hawkes 2017, 

Silletti and Knapp 2002, Smith, Hoffman and Avolio 2016). For example, when exposed 

to increased rainfall variability, where intervals between rainfall was lengthened by 50%, 

the two most abundant and functionally similar grasses in a central Great Plains rainfall 

manipulation site exhibited contrasting responses to rainfall variability, with no change in 

productivity of Andropogon gerardii but reduced cover and flowering of Sorghastrum 
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nutans (Fay et al. 2003). Furthermore, differences in plant responses are complex, as 

plant species differ not only in function but also in the speed or lag-time in which they 

respond to stress.  

We propose that ecosystem responses to extreme weather events will depend on 

the severity of the event and how different plant species respond to those conditions over 

time. To address this issue, we examined the effects of extreme changes in precipitation 

on leaf-level and whole-plant CO2 and H2O exchange of three native C4 bunchgrasses 

over three years. The grasses were Andropogon gerardii, Panicum virgatum, and 

Sorghastrum nutans, which were historically dominant in tallgrass prairies (Shantz 1923) 

and have potential for use as low-input, non-irrigated biofuel sources (Adler et al. 2009). 

The grasses were grown in three precipitation treatments: extreme dry, mean, and 

extreme wet based on historical rainfall records. We measured leaf-level CO2 and H2O 

exchange and plant growth in all treatments at three time points across three years (July 

2012, July 2013 and July 2014) and whole-plant CO2 and H2O exchange across all 

precipitation treatments at one time point (July 2013).  

We hypothesized that extreme dry conditions impair leaf-level physiology, 

resulting in declining leaf-level fluxes over time. In contrast, we expected extreme wet 

conditions to have a saturating-effect, where additional precipitation does not translate 

into changes in plant physiology, such that differences are unlikely to be observed among 

the mean and extreme high rainfall treatments. We further predicted that plant responses 

to external climatic factors would depend on precipitation treatment, with ambient 

temperature affecting plants experiencing drought stress in the extreme low treatment 

more compared to unstressed plants in the mean or extreme wet rain treatments. At the 
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plant-level, expected leaf-level effects should translate to a net carbon loss in the low 

treatments and a net carbon gain in the mean and extreme wet treatment. Finally, 

consistent with other studies, all physiological responses to the treatments were expected 

to be species-specific.  

METHODS 

Study site  

The experiment was conducted in a rainout shelter facility located at the 

University of Texas Lady Bird Johnson Wildflower Center in Austin, Texas, USA. The 

rainout shelters were constructed from steel frames (18 m wide x 73 m long) that are 6.0 

m tall at the center with 1.8 m open sides. Shelter roofs were 6-mm thick polyethylene 

film with 91% light transmission (IGC Greenhouse Megastore, Danville, IL, USA). Mean 

maximum temperature at the site is 35.8 °C (August), mean minimum temperature is and 

3.7 °C (January) and in the year measurements were collected (2012, 2013 and 2014) the 

maximum temperature was 36.5, 36.8 and 36.5 °C (August, August and August) and the 

minimum temperature were 5.0, 3.1 and 1 °C (January, December and January).  The site 

is located on Speck stony clay loam soils (pH = 7.9); rocks greater than 5-cm in diameter 

were sieved out when the plots were constructed. 

Experimental design 

We used a randomized complete block design with three rainfall treatments 

replicated across four blocks and six grass species grown in the plots as a split-plot factor. 

The extreme low, mean, and extreme high rainfall treatments were designed to mimic the 

local historical precipitation record and were 349, 885, and 1331 mm yr-1. The extreme 

treatments are not symmetric around the mean because they are based on the respective 
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ten years surrounding the driest, mean, and highest rainfall in the 87-year historical 

record for Austin (National Centers for Environmental Information: 

https://www.ncei.noaa.gov/), with applications created using a stochastic weather 

generator, LAR-WG 5.5 (Semenov et al. 1998) calibrated to those ten years. Irrigation 

was applied using 90° sprinklers (Hunter HP2000, Hunter Industries Inc., San Marcos, 

CA, US) on 1-m risers placed in the four plot corners. All plots were instrumented to 

monitor soil moisture (ECH2O 10HS sensors, Decagon Devices, Pullman, WA, USA) 

and temperature (thermocouple wire, Omega Engineering Inc., Stamford, CT, USA) with 

data collected hourly (CR1000 datalogger, Campbell Scientific Inc., Logan, UT, USA). 

Note that the full design included two soil types; here we limited measurements to the 

native clay soils (Speck series; stony clay loam).  

Six native perennial C4 grasses were grown in 2.5 m x 2.5 m plots: Andropogon 

gerardii Vitman, Leptochloa dubia (Kunth) Nees, Panicum virgatum L., Schizachyrium 

scoparium (Michx.) Nash, Sporobolus compositus (Poir.) Merr., and Sorghastrum nutans 

(L.) Nash. Seeds of the six species were purchased from Native American Seed (Junction, 

TX) or provided by the Ladybird Johnson Wildflower Center Seed Bank. The seeds were 

germinated and grown in seedling trays on field soils under ambient greenhouse 

conditions for 12 weeks before transplanting into field plots on August 19, 2010. In the 

field plots, plants were arranged in a grid with 0.5-m spacing and three individuals per 

species in stratified random locations (18 total plants per plot). Plants were watered 2-3 

times per week at 1000 mm yr-1 to allow for establishment before rainfall treatments 

began on May 22, 2012. For all plant measurements, we focused on three species: 
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Andropogon, Panicum, and Sorghastrum. In each plot, a single individual of each plant 

species was randomly selected for measurement of physiology. 

Plant size measurements 

 In July 2012, 2013, and 2014, we measured plant canopy height (H), maximum 

basal diameter (w1), and the diameter perpendicular to the maximum (w2). We estimated 

cylindrical plant volume as 𝑉	 = 	 $	×	&'	×	&(	×	)
*

  . 

Leaf-level CO2 and H2O exchange measurements 

Photosynthesis (Amax) and stomatal conductance (gs) were measured on leaves of 

non-flowering tillers annually in July from 2012 to 2014 using a LI-6400 portable 

photosynthesis system (LI-COR Biosciences, Lincoln, NE, USA). All measurements 

were taken between 9 am and 12 pm using the LI-COR 6400 LED light source at ambient 

temperature, ambient humidity, and with CO2 reference levels maintained at 400 umol 

mol-1. Leaves were sealed in the LI-6400 chamber and measurements were recoded once 

gas exchange reached a steady state (~2 min). Air temperature was recorded by the LI-

6400 and soil volumetric water content by 10HS sensors (Decagon Devices Inc., 

Pullman, WA, USA).  

Plant-level CO2 and H2O exchange measurements  

We measured whole-plant CO2 exchange and H2O vapor fluxes in July 2013 using 

a custom transparent flux chamber with an infrared gas analyzer (IRGA; LI-COR 7500, 

LI-COR Biosciences, Lincoln, NE, USA). The cylindrical chamber (0.45 m diameter x 

0.9 m height) was constructed of 5-mm thick cast acrylic with 92% light transmission 

(Interstate Plastics, Sacramento, CA, USA). The IRGA and one mixing fan were attached 

to the chamber lid (3-mm thick cast acrylic); two additional fans were mounted on acrylic 
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down-poles attached to the lid. Chamber height could be doubled for taller plants by 

attaching a second chamber segment. The chamber was sealed to the soil with a clear 

vinyl skirt attached to the chamber bottom and overlain by a heavy steel chain (Huxman 

et al. 2004).  

Fluxes were measured during 40-60s intervals to estimate whole-plant net 

ecosystem CO2 exchange (NEE) and evapotranspiration (ET), following St. Claire et al. 

(2009). Ecosystem dark respiration (Re) was measured by wrapping the chamber in 

reflective polyethylene insulation and repeating the measurement. Fluxes of NEE (mmol 

CO2 m-2 s-1), ET (mmol H2O m-2 s-1), and Re (mmol CO2 m-2 s-1) were measured as (V x 

C)/(A x t) using the HMR package in R, which fits the best linear or curvi-linear model of 

changes in concentration over time (dC/dt) for each flux measurement (Hutchinson and 

Mosier 1981, Pedersen, Petersen and Schelde 2010, Pedersen 2015). Approximating the 

chamber as a right cylinder, headspace volume (V; m3) was calculated by subtracting 

plant volume from total chamber volume (Dossa et al. 2015); area (A; m2) was calculated 

as the cross-sectional area of the chamber; concentration (C) of CO2 and H2O were 

measured as mmol m-2; and time was measured in seconds.     

STATISTICS 

 Plant volume, Amax, and gs were analyzed using a split-split-plot ANOVA with 

precipitation (whole-plot treatment, fixed effect), grass species (subplot treatment, fixed 

effect), year (sub-subplot treatment, random effect), and block (random effect). 

Precipitation X block was used as the whole-plot error, precipitation X grass species X 

block was used as the subplot error, and the precipitation X grass species X year X block 

error was used as the sub-subplot error. Whole-plant gas fluxes (NEE, ET, Re) were 
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analyzed using a split-plot ANOVA as above, but without year. Factors were considered 

significant at P < 0.05. When main effects were significant, Tukey post-hoc tests were 

used to examine differences among precipitation levels, species, or dates; when 

interactions were significant, each treatment was analyzed across levels of the other 

treatment using one-way ANOVA with Tukey post-hocs. Statistical analyses were 

performed in R using the STATS package (R Core Team 2016). 

To examine how variation in leaf-level flux responses to precipitation treatment 

might be altered by environmental conditions at the point of sampling, we conducted 

stepwise multiple regressions. Separate regression models were run for Amax and gs 

against the independent variables temperature, soil moisture, precipitation treatment, and 

the interaction of each variable with precipitation treatment. The interaction terms 

identify if different treatments were affected differentially by seasonal variations. Air 

temperature and soil moisture at time of measurement were used to capture seasonal 

climate variation. Independent variables did not display multicollinearity based on 

variance inflation factors (VIF < 2) using the vif function in the car R package (Fox and 

Weisberg 2001). The best explanatory model was selected based on Akaike Information 

Criteria (Akaike 1974).  

RESULTS 

Plant size  

Plant size varied with the interaction of rain treatment and year, with plants in the 

low treatment shrinking over time, plants in the mean treatment getting larger over time, 

and no change for plants in the high treatment over time (Fig 1a). Plant volume also 

differed across species, with Andropogon generally being the smallest and Panicum the 
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largest of the three; Sorghastrum differed from both except in 2014 when it was the same 

as Andropogon (Table 1, Fig 1b).  Only Panicum changed significantly across years 

overall, with larger plants in 2014 compared to earlier years (Fig 1b). 

Leaf level gas exchange measurements  

Both Amax and gs were affected by precipitation treatment (Table 1), with ~55% 

less carbon fixation (Amax) and ~40% less water lost (gs) in the extreme dry condition 

compared to the mean and extreme wet treatments, which did not differ from each other 

(Figure 2). Differences among plant species in Amax and gs only occurred at the first date 

(July 2012), when Sorghastrum fixed 96% more carbon and lost 114% more water than 

both Andropogon and Panicum (Table 2; Figure 2b, 2d). Across years, Amax was 

significantly lower in 2012 compared to 2013 and 2014, which did not differ (Figure 2b), 

whereas gs was significantly lower in 2013 compared to 2012 and 2014, which did not 

differ (Figure 2d). There were no interactions of species x precipitation or year x species 

x precipitation for either Amax or gs. 

Based on regression analysis, Amax was best predicted by precipitation treatment 

(R2 = 0.126), with increasing rates as precipitation level increase. Both precipitation 

treatment and ambient temperature explained gs (R2 = 0.095) (Table 3), which increased 

with precipitation but decreased with increasing temperature (Figure 3). There were no 

interactions retained in the models. 

Plant level gas exchange measurements 

Only whole-plant ET was significantly affected by precipitation treatment, with 

more water loss in the mean compared to the extreme low and high treatments (Figure 

4b). Both NEE and Re exhibited the same patterns, but were not significantly different 
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(Figure 4a, c). There were no differences in whole-plant fluxes among the three plant 

species and no interaction of species by precipitation treatment.   

DISCUSSION 

We found that an extreme 2.5x decrease in precipitation was more important than 

an extreme 1.5x increase for leaf-level physiology of native Texas grasses, with 

reductions of 55% and 40% in Amax and gs. At the plant-level, however, plants were more 

active in the mean rainfall treatment: water fluxes were 74% higher on average, and 

carbon fluxes (though not significant) were 68% (NEE) and 100% (Re) higher on 

average, suggesting that both extreme rainfall treatments constrained overall physiology. 

By 2014, plants were also 46%-88% larger in the mean treatment, relative to the extreme 

high and low treatments; in contrast, plant sizes in the extreme high and extreme low 

treatments were stable and declined over time, respectively. The differences between 

moderate and extreme rainfall challenge our expectations for the future as inhibition of 

whole-plant fluxes did not depend on whether precipitation was increased or decreased.   

However, in contrast to our expectations, Andropogon gerardii, Panicum 

virgatum, and Sorghastrum nutans responded similarly to the precipitation treatments 

after the first year, despite consistent size differences among the three species. These 

findings differ from other studies, where Sorghastrum physiology was sensitive to both 

moderate increases and decreases in precipitation, but Andropogon was not (Fay et al. 

2003, Silletti and Knapp 2001). Furthermore, Andropogon and Sorghastrum also 

differentially responded to moderate temperature and water stress at the molecular level, 

suggesting distinct genetic pathways for coping with stress (Smith et al. 2016). The 

variation in species equivalence among studies may be explained by different local 
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ecotypes of these grasses across the central US, which represents a north-south 

temperature gradient and east-west rainfall gradient. For example, Panicum virgatum 

found in the southern Great Plains is more drought-tolerant than northern populations 

(Aspinwall et al. 2013). Furthermore, species differences may break down as stress 

increases and biological thresholds are reached.  

When ambient temperature and soil moisture were considered, precipitation 

treatment remained the primary controller of Amax. This is consistent with other studies, in 

which temperature showed no effect on Amax (meta-analysis across 85 studies: Wu et al. 

2011) even when coupled with increased rainfall variability (Fay et al. 2011). For gs, 

however, temperature was as important as precipitation treatment, suggesting that leaf-

level carbon and water fluxes will be decoupled with warmer and drier climates. This 

could lead to less efficient plant carbon fixation. Furthermore, the lack of interaction 

between precipitation treatment and ambient climate conditions runs counter to our 

hypothesis that plant responses would be more sensitive to temperature when already 

stressed by low rainfall. Grasses in this system have C4 photosynthesis, which is adapted 

to high temperatures, such that temperature differences between years were likely too 

limited to be a testable factor.  

The responses to extreme precipitation observed here differ from rainfall 

experiments that imposed only moderate shifts in precipitation, in that plant size, carbon, 

and water fluxes typically increase with increases in precipitation (Wu et al. 2011, Patrick 

et al. 2007). For instance, a meta-analysis of 85 studies by Wu et al. (2011) reported that 

moderate increases in precipitation resulted in a 56% increase in NEE, a 40% increase in 

photosynthesis and a 28% increase in aboveground production, whereas moderate 
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drought caused a 45% decrease in NEE, a 9% decrease in photosynthesis, and a 37% 

decrease in aboveground production. Extreme levels of precipitation, both increases and 

decreases, can have significant consequences on soil water and nutrient dynamics that are 

not captured when precipitation changes are moderate, thus underestimating plant 

responses to projected changes in climate (Knapp et al. 2008).  

Plant responses to extreme precipitation may also be less predictable than studies 

of moderate shifts in rainfall, given the equivocal findings from studies that manipulate 

extreme precipitation (Heisler-White et al. 2009). For instance, extreme precipitation 

treatments are not always detrimental; many studies report stable ANPP despite heavy 

rainfall (Grant et al. 2014, Kreyling et al. 2008, Mirzaei et al. 2008), prolonged drought 

(Grant et al. 2014, Jones et al. 2016, Kreyling et al. 2008, Jentsch et al. 2011), or extreme 

variability in precipitation patterns (Jones et al. 2016, Suttle et al. 2007); and in one case 

a positive effect on ANPP was reported (Dreesen et al. 2012). In contrast, drastic 

reductions in ANPP (Hoover, Knapp and Smith 2014, Knapp et al. 2002) and plant CO2 

fluxes (Ciais et al. 2005, Hoover et al. 2014, Bloor and Bardgett 2012, Knapp et al. 2002, 

Jentsch et al. 2011) have also been reported in response to extreme decreases in 

precipitation. Furthermore, a few studies report rapid recovery of grassland functions, 

with carbon fluxes recovering within weeks of a single extreme dry event (Bloor and 

Bardgett 2012) and productivity recovering as early as one year after a prolonged 

extreme drought (Hoover et al. 2014, Grant et al. 2014, Bloor and Bardgett 2012), 

suggesting that resilience rather than resistance may be buffering community responses to 

extreme events.     
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Multiple mechanisms may be responsible for the contrasting sensitivities 

observed across studies to extreme precipitation patterns; including past climatic history 

(mesic vs. arid ecosystems), community composition, and traits of the most dominant 

species (Heisler-White et al. 2009, Polley et al. 2014). Both extreme increases and 

decreases in precipitation may have disproportionately large effects in arid climates, 

where soil water holding capacity is low, soil carbon and nutrient reserves are limited, 

and plant communities are often less diverse (Wilcox et al. 2017, Levesque et al. 2013, 

Knapp et al. 2015). Alternatively, ecosystems that appear to be insensitive to changing 

rainfall may be moderated by biotic factors, such as complementarity in species 

responses and species interactions. For instance, functional diversity can buffer sites 

against stress through asynchrony of drought responses and higher likelihood of 

containing drought tolerant species (Diaz and Cabido 2001, Bloor and Bardgett 2012). 

Species interactions can further stabilize community responses via facilitation or 

complementary responses in competition intensities (Grant et al. 2014). Although biotic 

stabilizing mechanisms do not appear to play a large role when considering the three 

grasses in this study, local field communities include a mixture of functionally more 

diverse species.  

Our approach has limitations. First, the observed decoupling of leaf-level 

photosynthesis and whole-plant CO2 fixation may be methodological, indicating the 

inability of single-leaf based measurements to capture the variability of fluxes within a 

plant. The lack of correlation has been shown in other systems (Poni et al. 2014), with 

variability attributed to differences in light diffusion and leaf age (Escalona et al. 2016). 

Furthermore, leaf-level fluxes often overestimate carbon assimilation especially in 
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stressful conditions where photosynthetic rates are low (Pons and Welschen 2002). Our 

measurements of whole-plant CO2 and H2O were taken at one time point, in year two 

year of the precipitation manipulations, and thus we do not know the long-term impacts 

of extreme climatic changes (Jones et al. 2016). Furthermore, in a similar system, plant 

responses were more sensitive to rainfall interval than to an overall decrease in 

precipitation (Knapp et al. 2002)which was not tested here. Finally, we only measured 

aboveground plant responses, and belowground responses may be more important 

particularly under extreme stress (Wilcox et al. 2017). 

 Overall, our findings differ from experiments that only impose moderate 

changes in precipitation in two ecologically important ways. First, we observed that 

whole-plant physiology of three C4 grasses was constrained by both extreme increases 

and decreases in precipitation, causing large reductions in carbon fixation and 

evapotranspiration, which are generally not observed with moderate precipitation change. 

Second, differences in leaf and whole-plant level fluxes among the three grass species 

were not observed after the first year of the experiment. If the lack of species-specific 

responses is more common in the southern Great Plains where stressful conditions are 

more common, carbon losses from these grasslands may be disproportionately large 

because functional differences will not stabilize flux responses. Thus, accurate 

predictions of carbon fluxes depend on understanding the influence of extreme changes in 

precipitation on plant growth and physiology, as extreme events are more likely to occur 

in the future. 
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Chapter 2:  Stress-dependent non-additive symbiont interactions3 

INTRODUCTION 

Plants are colonized by diverse communities of horizontally transmitted fungal 

endophytes (Arnold and Lutzoni 2007) that actively affect the ability of the plant to 

tolerate environmental stressors, including salinity, heat, and drought (Rodriguez et al. 

2008). However, studies of plant-endophyte stress responses have focused exclusively on 

individual fungi, and thus may have missed important community processes that can 

influence the symbiosis. The effects of multiple fungi on a plant host can be additive in 

the absence of fungal interactions, as might occur if fungi are spatially segregated in the 

plant. However, when fungi interact, the outcomes can be non-additive and therefore 

difficult to predict. This is particularly relevant for fungal endophytes, which have 

recently been targeted for development as management tools in agriculture (Mei and 

Flinn 2010). 

Interspecific interactions among symbionts can affect the host plant via (1) 

facilitation or complementarity that synergistically increase symbiont benefits, and (2) 

competitive or antagonistic processes that limit species diversity and reduce symbiont 

benefits. Ecological theory predicts that these outcomes are driven by the degree of niche 

overlap among species, with competition increasing in parallel with ecological similarity 

(Loreau and Hector 2001) and positive interactions more likely when fungi have 

functionally distinct traits. For instance, endophyte taxa differ in their ability to affect 

plant drought responses (i.e., regulating stomatal conductance or cellular desiccation 
                                                
3Connor EW, Sandy M and Hawkes CV 2017.  Microbial tools in agriculture require and ecological 
context: stress-dependent non-additive symbiont interactions. Agron J. doi: 10.2134/agronj2016.10.0568 
Worchel planned, executed and wrote up project. Hawkes and Sandy supervised project 
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(Elmi and West 1955), such that combining endophytes with these traits may improve 

overall plant performance. Interspecific interactions have not been studied in leaf 

endophytes, but both complementarity and competition have been observed among 

fungal root symbionts (Kennedy et al. 2007, Jansa, Smith and Smith 2008, Thonar et al. 

2014). For example, competition prevented closely related and functionally similar 

arbuscular mycorrhizal fungi from co-occurring in roots of Plantago lanceolate 

(Maherali and Klironomos 2007) and niche differentiation allowed two root endophytes 

to coexist in Phragmites australis (Ernst et al. 2011).  

If niche overlap determines the strength of competition, fungal trait similarity may 

provide a framework for predicting interactive fungal effects on plants. Trait-based 

approaches to niche partitioning assume taxa with similar traits have similar ecological 

requirements and will therefore compete more intensely (MacArthur and Levins 1967). 

This approach is ideally suited to microbial organisms that are difficult to study in nature, 

because it requires no prior assumptions regarding mechanisms that link fitness to 

environmental conditions. Instead, trait-based approaches aim to predict when 

interspecific interactions will be competitive or complementary, and can point to 

potential mechanisms. Furthermore, if mechanisms driving both endophyte effects on 

plants and endophyte interactions are similar, traits could be directly linked to interactive 

fungal effects on plants. Given the chemical nature of both (via the production of 

bioactive secondary metabolites), this link could be established with fungal metabolites 

produced in culture (Schulz and B.Boyle 2002); however this would require similar 

fungal interactions in culture and in symbiosis. Alternatively, fungal traits such as stress 

tolerance that integrate metabolite production with other mechanisms may be more 
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predictive of plant responses. Despite there being a direct test of endophyte traits, fungal 

traits have been used in other systems to predict niche processes; such as trade-offs 

between competitiveness and tolerance to moisture stress regulating interactions in wood-

decay fungi (Crowther et al. 2014), as well as soil fungi (Lennon et al. 2012). 

The environment may also affect competition and shift fungal effects on the host 

plant from positive to negative (or vice versa). The context-dependency of endophyte 

effects is well documented in multiple plant-endophyte symbioses (Donoso et al. 2008, 

Giauque and Hawkes 2013) and is often attributed to a change in the level of 

environmental stress (Saikkonen et al. 1998). As the environment becomes more 

stressful, the benefits of harboring an endophyte are expected to increase relative to the 

costs. When scaling up to multiple fungal species, the environment may also influence 

their competitive interactions. The paradigm in plant communities, for example, is that 

facilitative interactions are more common with increasing stress across environmental 

gradients (Bertness and Callaway 1994). For endophytes, similar facilitative interactions 

can occur when species have different mechanisms of stress tolerance, use different 

approaches to detoxifying an environment, or mobilize different nutrients (Saunders, 

Glenn and Kohn 2010). Alternatively, stressful environments may simply limit species 

abundances and thus reduce the likelihood of competitive interactions (Chesson 2000). 

Thus, target fungal communities would ideally be beneficial under all conditions or 

beneficial under stress and otherwise neutral. 

Our objective was to understand how endophyte interactions affect plant stress 

responses and whether those outcomes could be predicted by similarity of fungal traits in 

culture. To this end, we grew the C4 grass, Panicum virgatum, with 12 individual 
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endophytic fungi, six mixtures of two of the individual fungi, and in fungus-free controls 

under low and high soil moisture. We examined the role of fungal niche overlap in plant 

responses based on a wide range of fungal traits in culture that are putatively related to 

behavior in symbiosis, including fungal stress tolerance, enzyme production, and 

substrate use, and metabolite production. We broadly hypothesized that the effects of 

fungal pairs on plant performance would be both non-additive and dependent on stress 

level, reflecting shifting niche overlap. Specifically, we expected (1) more super-additive 

effects when fungi were more dissimilar and under stress - conditions where competitive 

interactions should be weakened, (2) more sub-additive negative effects on the plant 

when fungal traits were more similar and in unstressed – conditions under which 

competition should be heightened, and (3) additive effects when fungi where dissimilar 

and unstressed – conditions where fungi might not interact. We further expected that 

fungal traits could qualitatively predict outcomes as positive, negative, or neutral for the 

plant, focusing on metabolites that might ultimately prove useful in application 

development. Finally, we hypothesized that the degree to which non-additive effects 

differed from expected additive effects could be predicted quantitatively, with greater 

deviations under the stress of low soil moisture, and deviations increasing linearly with 

increasing dissimilarity among fungal traits.  

METHODS 

Selecting endophyte pairs  

Endophyte pairs were selected from a pool of 33 taxa isolated from Panicum 

grasses in central Texas (Giauque and Hawkes 2013, Giauque 2016).  To select fungal 

pairs that would create a wide range of plant responses independent of phylogenetic 
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history, we selected taxa across a range of similarity in their effects on plants, while 

limiting their phylogenetic distance.  

Endophytes were previously screened by Giauque (2016) for their individual 

effects on five plant responses in Panicum virgatum under drought and well-watered 

conditions: plant biomass, relative growth rate, transpiration efficiency, days to first wilt, 

and survival. These data were used to calculate similarity of fungal effects on plants for 

every possible two-species endophyte combination using the Euclidean distance method 

(Griffith, Rayner and Wildman 1994, Walker, Kinzig and Langridge 1999) with the stats 

package in R (R Core Team 2016). To control for phylogenetic distance, we eliminated 

any combinations that had a cophentic distance of less than 1 and confirmed that there 

was no relationship between cophenetic distances and Euclidean distances with a linear 

regression analysis. The remaining two-species fungal combinations were grouped into 

two pools representing pairs with higher than average or lower than average similarity of 

effects on plants, with the average being 1.86. We then selected three pairs of endophyte 

taxa without replacement from each pool to generate a total of six pairs (Table 2.1; Figure 

2.1, additional details in Appendix 1 ‘Calculation of endophyte phylogenetic distances’). 

Similarity of fungal effects on plants was only used to select endophyte pairs and not 

used as an indicator of niche overlap because (1) data was obtained from an unrelated 

study and as such we did not expect values to completely align with our data, and (2) our 

primary goal was to identify links between fungal traits that can be easily studied in 

culture and possible mechanisms regulating fungal interactions in symbiosis.  

Characterizing endophyte culture traits  
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We screened the 12 selected fungi for traits in culture that putatively relate to 

behavior in symbiosis: osmotic stress tolerance, enzyme activities, resource use, and 

metabolite profiles. All traits were measured on individual fungi; in addition, metabolites 

were measured on co-cultures of the six target fungal pairs. We used standard methods: 

(1) osmotic stress assays used fungal growth at five levels of NaCl (Bell and Gonzalez 

2009) to measure osmotic sensitivity and tolerance; (2) enzyme assays fluorometrically 

measured activity of three carbon-degrading enzymes, a-1,4-glucosidase, b-1,4-

glucosidase, and cellobiohydrolase (Saiya-Cork, Sinsabaugh and Zak 2002); (3) resource 

use profiles were based on utilization of 95-substrates in Biolog FF microplates (Biolog, 

Hayward, California, USA) with average substrate use calculated for carbohydrates, 

amino acids, amines, polymers, carboxylic acids; and (4) metabolic profiles of fungal 

extracts were generated from reverse-phase liquid-chromatography coupled with 

ultraviolet spectroscopy and electrospray ionization mass spectrometry (LC-ESIMS) 

analysis. Metabolite compounds were identified by retention time and UV spectra, and 

compound abundance was calculated from absolute peak area. (A more detailed 

description of culture trait assays can be found in the appendix 1 ‘Fungal trait assays). 

Culture trait dissimilarity between paired fungi was calculated for each of the four 

trait groups. Trait values were scaled to a mean of 0 and SD of 1 (Lamanna et al. 2014) 

and dissimilarity was calculated using the Euclidean distance method in the stats package 

in R (R Core Team 2016). As such, dissimilarity among traits is represented as 

continuous values increasing from 0, with 0 representing two fungi that share the same 

traits and increasing values representing greater dissimilarity. We used the classical 

method of measuring trait dissimilarity in preference to other common measurements 
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(Petchey and Gaston 2002, Podani and Schmera 2006, Villéger, Mason and Mouillot 

2008) because our data included few fungal species and as such dendogram path-lengths 

are likely to underrepresent dissimilarity (Griffin et al. 2009). In addition we had no 

missing data, and all trait data was continuous (no mixed data types) thus negating 

limitations of Euclidean based measurements (Podani and Schmera 2006). 

Experimental test of plant responses to two-species endophyte mixtures  

To assess how interactions between endophytes affected plant performance, we 

grew P. virgatum plants inoculated with the six different pairs of endophyte species, the 

corresponding 12 individual endophytes, or without fungi. Plants were grown under 

either high (15%) or low (5%) gravimetric soil moisture, which we know from prior work 

represent unstressed and stressed conditions (Giauque and Hawkes 2013). Each treatment 

combination was replicated four times for a total of 152 plants.  

Panicum virgatum seeds (Native American Seed, Junction, TX) were surface 

sterilized in 0.5% sodium hypochlorite (4 min) followed by 70% ethanol (90 sec), rinsed 

in sterile water, and germinated on dampened sterile filter paper in petri dishes. After one 

week, germinated seeds showing no evidence of contamination were planted into sterile 

planting boxes consisting of a clear top chamber (8 x 8 x 45 cm) constructed of Propafilm 

(LI-COR Biosciences, Lincoln, NE) wrapped on a metal frame and attached to a 5-L pot 

(7 x 7 x 45 cm; Stuewe and Sons, Tangent, Oregon USA). Pot drainage holes were lined 

with 20-µm nylon mesh to reduce the probability of fungal contamination. Planting boxes 

were filled with autoclaved sand and nutrients were provided as 5 mL of filtered ¼ 

strength Hoagland’s solution (Hoagland and Arnon 1950). Pre-treatment plants were 

grown for two months in an isolated greenhouse at ambient light and temperature with 
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15% soil moisture. Immediately prior to fungal inoculation, plants were tested for fungal 

contamination by culturing leaf segments into 2% potato dextrose (PD) agar and 50 ppm 

ampicillin plates, and any plants showing fungal growth were discarded.   

One week before plant-endophyte trials commenced, the 12 fungal isolates were 

cultured into PD broth in 50 mL conical tubes at room temperature with constant shaking 

(110 rpm). To create consistent inoculations, fungal hyphae were concentrated via 

centrifugation (10 min at 14000 rpm), washed and re-suspended in sterile water to obtain 

105 hyphal fragments ml-1. Plants inoculated with single isolates received 2 mL of hyphal 

suspension directly pipetted onto plant shoots (Rodriguez et al. 2008), plants with an 

endophyte pair received a 2-mL mixture of 1 mL of hyphal suspension from each fungal 

isolate, and control plants were given a mock inoculum of 2 mL sterile water. One week 

after inoculation, the soil moisture treatment was imposed; use of one week was chosen 

based on previous work demonstrating that fungi become established during this time 

(Giauque and Hawkes 2013). Moisture treatments were maintained by weight, with all 

pots checked and adjusted every 4 days. Plant locations in the greenhouse were also 

randomized every 4 days to avoid spatial effects.  

To assess the effects of endophyte interactions and soil moisture on plant 

performance, we measured plant height, days to first wilt, and total number of tillers. Wilt 

was assessed daily while plant height and tiller number were measured every 7 days. 

Plant relative growth rate was calculated as the change in plant height over time (cm day-

1). Measurements were made in a laminar flow hood that was UV-sterilized between 

plants to prevent cross-contamination. On day 21, final plant measurements were made 

and target fungal inoculum was confirmed by placing 2-mm2 samples of surface-
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sterilized leaf tissue from each plant on petri dishes as above. All plants used for analyses 

were colonized by the appropriate individual or pair of fungi and had no contamination.  

Quantifying effects of fungal interactions  

We examined two metrics to identify the effects of fungal interactions on plant 

responses: (1) expected-additive effects of plant responses to fungal pairs compared to 

individual fungi, and (2) the deviation of the observed effect of fungal pairs on plant 

responses from the expected-additive effect. Each metric was calculated for each plant 

responses under low and high soil moisture.  If effects of fungal pairs are significantly 

different from additive, then interactions among fungi are important in shaping the 

outcomes of plant-endophyte symbioses. Following Wardle et al. (1997), we used the 

classic approach to testing additive vs. non-additive effects and compared fungal pair 

effects to the expected-additive effect of the component monocultures. Expected-additive 

effects 𝑌,  were calculated as the average of the mean effect of each component 

endophyte in monoculture. To quantify the magnitude of non-additive effects, we 

followed (Loreau and Hector 2001) and calculated deviations from expected-additive. 

Deviations were calculated as the difference of the mean observed effect of fungal pairs 

to the expected-additive effect.     

STATISTICS 

Plant treatment responses  

We first examined the overall treatment effects on plant responses using ANOVA. 

Specifically, we tested for the main effects of endophyte treatment (including all 

monocultures, mixtures and the control), soil moisture level (low and high), and their 

interaction. We tested the effect of fungal treatment, rather than the effect of fungal 
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richness, because we had only monocultures or pairs (Jansa et al. 2008); we also did not 

test composition because we did not use a complete replacement design (Schmid and 

B.Hector 2002). When significant interactions were found (P < 0.05), each treatment was 

analyzed across levels of the other treatment using one-way ANOVAs; in cases where 

fungal treatment was significant, we compared single and paired fungal treatments, under 

low and high soil moisture separately, to the respective fungus-free controls with 

Dunnett’s multiple comparison posthoc tests (Dunnett 1955). Fungi that were not 

significantly different from the fungus-free control were considered commensal and those 

that were significantly greater or less than the control were considered beneficial or 

detrimental, respectively. Post hocs were Bonferroni-corrected for multiple comparisons 

to maintain family-wide confidence limits at 90%; in our model with 38 individual 

contrasts the cutoff was P < 0.003.  

Additive and non-additive effects of fungal endophyte mixtures  

Observed mixture effects were considered significantly different from additive if 

the 95% CI did not overlap expected-additive effects	(𝑌,). We interpreted super-additive 

effects as those significantly greater than	𝑌,	and sub-additive effects as those significantly 

lower than	𝑌,. Note that unlike in studies of plant additivity, we were unable to partition 

sampling effects or species complementarity effects because plant responses to single 

endophyte species within mixtures could not be separated (Loreau and Hector 2001). 

Qualitative indicators of additive vs. non-additive fungal pairings  

To identify potentially useful indicators of qualitative fungal interaction effects, 

we focused on fungal metabolites. We examined whether metabolites produced by fungal 

pairs could indicate a pairing as super-additive, sub-additive or additive using the 
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Dufrene-Legendre indicator analysis (Dufrene and Legendre 1997) using the labdvs 

package in R (Roberts 2015). This analysis calculates an indicator value for each 

metabolic compound as the product of its relative frequency (presence-absence) and 

relative average abundance (peak area) in each group (super-additive, sub-additve or 

additive) and uses a random permutation test (n = 999) to calculate a significance value.  

Plant response deviations from additive 

For analyses of deviations, we focused only on plant responses that differed 

significantly from the expected-additive model (plant growth rate and days to first wilt). 

We used ANOVA to examine the deviation from additive as a function of endophyte-pair 

treatment (mixtures only), soil moisture level (low and high), and their interaction. When 

significant interactions existed (P < 0.05), each fungal treatment was analyzed across 

levels of soil moisture using one-way ANOVAs and we used the Bonferroni correction to 

maintain family-wide confidence intervals of 90%; with 12 contrasts the cutoff was P < 

0.008 

Quantitative predictors of plant response deviations from expected-additive effects 

To examine how the deviation of plant responses from additive depended on 

fungal trait dissimilarity, we conducted stepwise multiple regressions. Separate 

regression models were run for the deviations of plant growth rate and days to first wilt. 

In both models, the independent variables were soil moisture and the trait dissimilarities 

of fungal pairs in osmotic stress tolerance, enzyme activity, resource use, and metabolic 

profiles, as well as the interactions of moisture and each trait. Soil moisture treatment was 

coded as a dummy variable to capture the potential environmental dependence of these 

relationships. Trait groups did not display multicollinearity based on variance inflation 
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factors (VIF ≤ 4) using the vif function in the car R package (Fox and Weisberg 2001). 

The best explanatory model was selected based on Akaike Information Criteria (Akaike 

1974). When significant interactions existed, we used linear regressions to analyze the 

effect of dissimilarity between fungal pairs under low and high moisture separately.  

RESULTS 

Plant treatment responses  

Overall, plants grew faster under high vs. low soil moisture (Table 2.2), and 

growth rate and days to first wilt varied across fungal treatments (Table 2.2). However, 

both plant growth rate and days to first wilt were significantly affected by the interaction 

of fungal treatment and soil moisture (Table 2.2), reflecting shifting effects of fungal 

treatments between low and high moisture. The vast majority of fungal-plant 

combinations did not differ from fungus-free control plants and were thus considered 

commensal (Table 2.3). Only 13% of cases were beneficial compared to fungus-free 

controls and these occurred only in the low moisture treatment (equally distributed 

between individual fungi and mixtures); 5% of fungal inocula had negative effects 

relative to fungus-free controls and were found only for individual fungi in the high 

moisture treatment (Table 2.3). Plant tiller number was not affected by fungus, soil 

moisture, or their interaction; all plants had 1 to 3 tillers.  

Additive and non-additive effects of fungal endophyte mixtures 

For plants inoculated with mixtures of two fungal species, tiller number followed 

the expected-additive model based on plants inoculated with the corresponding individual 

fungi (Figure 2.2). However, there were non-additive growth and wilting responses, in 

which plants performed greater than or less than expected compared to an additive model 
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(Figure 2.2). Among non-additive responses 79% were super-additive and 11% were sub-

additive, but the specific responses depended on fungal pair and moisture treatment. In 

some cases, non-additive responses shifted the outcome of plant-endophyte symbioses 

along the parasite to mutualist continuum (Table 2.3). For instance, in low soil moisture 

the individual fungi comprising pair 4 were both beneficial for growth rate on their own, 

but commensal in mixture. Conversely pair 5 individual effects on plant growth were 

detrimental and commensal, but were beneficial in mixture. Furthermore, inoculation 

with some pairs of fungi reduced the moisture dependency of individual fungal effects on 

plants. Specifically, for pairs 1, 3, and 5 the moisture-dependent effects of individual 

fungi on plant growth rate and days to first wilt disappeared when the two fungi were 

grown in mixture (Table 2.3).  

Qualitative indicators of additive vs. non-additive fungal pairings 

On average, fungal pairs produced 8 metabolites (SD = 3), of which there were 

large variations in repression of compounds (between 4 and 10; SD = 2) and 

small variations in the production of new compounds (between 1 and 4; SD = 1) 

compared to the corresponding fungi in monoculture. There were six indicator 

metabolites for super-additive responses and three for sub-additive responses, but these 

indicator metabolites were only identified in low soil moisture. In contrast, the eight 

metabolites that were associated with additive effects occurred in both high and low 

moisture (Table 2.4; Figure 2.3). Some metabolites were unique to a single outcome 

whereas others were indicative of more than one condition. For example, two of the four 

metabolites associated with super-additive effects on days to first wilt under low moisture 

were also associated with additive effects on wilt under high moisture.  
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Plant response deviations from additive 

Fungal pairs affected the deviation of plant growth rate and days to first wilt from 

an expected-additive model, but the effect was dependent on soil moisture (Table 2.5, 

Figure 2.4). Plant growth deviated from additive more under low than under high soil 

moisture conditions for fungal pairs 3, 4, and 5 by +113%, -327%, and +238%, 

respectively. For fungal pairs 4 and 5, plant wilt also deviated more from additive in low 

than high moisture, by -905% and +331%. In contrast, for plant wilt with fungal pair 2, 

the deviation from additive was +306% greater in high compared to low moisture. 

Quantitative predictors of plant response deviations from expected-additive effects 

Based on regression models, moisture and fungal trait dissimilarity explained 51-

92% of the variation in how plant responses deviated from the expected additive model 

(Table 2.6, Figure 2.5). Deviations of plant growth rate and days to first wilt were best 

explained by dissimilarity of fungal metabolic profiles and dissimilarity of fungal stress 

tolerance, but these effects varied between high and low moisture (Figure 2.5). In low 

soil moisture conditions, super-additive effects on plant growth rate and days to first wilt 

occurred with increasing dissimilarity in fungal metabolic profiles (Figure 2.5a and 2.5c). 

Under high soil moisture, super-additive effects on plant growth rate and days to first wilt 

were more likely when fungi were more dissimilar in stress tolerance traits (Figure 2.5b 

and 2.5d).    

DISCUSSION 

Pairwise interactions between leaf endophytes resulted in both additive and non-

additive effects on plants. In cases where interactions were additive, prediction of fungal 

interaction effects on plants will be a simple function of the individual fungal effects. For 



 
 
 
 

35 

non-additive interactions, we found individual metabolites that were indicative of the 

direction of the effect, and the size of the deviation was largely predicted from fungal 

niche overlap, as defined by dissimilarity among fungal traits in culture. Consistent with 

our expectations, endophytes that were less similar in stress and metabolic traits 

increased plant growth rate and days to first wilt. These results provide support for niche 

complementarity as a driver of fungal interactions and demonstrate that fungal niche-

based processes at the leaf-level can scale up to the plant. However, the environmental 

dependence of some fungal combinations means that development of fungal consortia for 

real-world applications will need to consider the dynamics of these interactions.  

Facilitation and complementarity among dissimilar fungi may allow for the 

development of leaf endophyte communities with unique benefits, much like microbial 

root consortia have been employed in pathogen biocontrol (Dunne et al. 1998, Raupach 

and Kloepper 1998, Whipps 2001). We made inroads into methods for identifying 

appropriate mixtures of taxa via fungal secondary metabolites indicative of interaction 

outcomes. Across taxa, there were two metabolites uniquely associated with super-

additive increases of plant growth rate and two associated with super-additive increases 

in days to first wilt. We also found metabolites that indicated multiple conditions: 

suggesting effects may be quantitative; such dose-dependent effects have been observed 

for many microbial-derived metabolites that act as inhibitors (Duke et al. 2000). 

Ultimately, key positive metabolites may serve as direct pathways to mitigate plant stress 

in agricultural systems. Although substantial work is needed to translate initial patterns 

into useful tools, robust processes already exist for developing fungal metabolites into 

pesticides and fungicides (Demain and Fang 2000). Moreover, recent studies have linked 
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fungal metabolites to gene clusters, laying the foundation for large scale screening of 

fungal genomes for target compounds and for metabolic engineering for increased 

compound production (Pickens, Tang and Chooi 2011, Ballester et al. 2015).  

In addition to qualitative outcome prediction, fungal metabolic and stress trait 

dissimilarity predicted the magnitude of deviations from expected additive interactions 

for plant growth and wilting. Increasing super-additive effects between fungi with more 

dissimilar traits further supports a niche-based complementarity mechanism and suggests 

that fungal traits in culture can be used to identify benefits in the host. In some cases, 

metabolite production might also affect how endophytes cope with stress; for instance, 

endophytes can produce osmolytes that reduce cellular desiccation and phenolic 

antioxidants that can scavenge harmful superoxides and hydroxyl free radicals (Schulz 

and B.Boyle 2002, Malinowski and Dariusz P.Belesky 2006, Yuan, Chu-long and Fu-

cheng 2010). However, here these traits were not significantly correlated (R2 = 0.13, P = 

0.247), perhaps because our approach to metabolite characterization did not capture 

osmolytes or because stress tolerance mechanisms in fungi were not chemical in nature. 

Similarly, other traits we thought might reflect interaction mechanisms were poor 

predictors, such as those related to fungal growth and enzyme production. It is likely that 

many fungal traits in culture are not reflective of fungal behavior in symbiosis. In 

addition, predictive traits could change with conditions such as plant life stage or plant 

physiology and resulting carbon availability to symbionts. 

Fungal interactions, their effects on plants, and their predictive traits depended on 

whether plants were grown in water-stressed or well-watered conditions, which could 

limit applicability. Using different traits to predict outcomes in different environments 
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might be feasible in some circumstances, but ideally fungal consortia would have 

consistently beneficial effects and predictors. We only observed consistent commensal 

behavior for pairs 1, 2, and 4 in mixture. For stress management, fungi that are beneficial 

under stress and otherwise neutral could also be effective; we found pairs 5 and 6 in 

mixture shifted from commensal to beneficial for plants only under low soil moisture. 

Furthermore, several of the fungi used in our experiment are known to be plant pathogens 

in other systems, such as A. niger in maize (Zea mays) and peanuts (Arachis hypogaea) 

(Palencia, Hinton and Bacon 2010), and C. lunatus in sorghum (Sorghum bicolor) (Katilé 

et al. 2010). Because endophytes are known to shift along the mutualism-pathogen 

continuum under different environments and plant hosts (Saikkonen et al. 1998), 

exploiting the chemical mechanisms behind fungal-mediated benefits may be a more 

effective strategy in agriculture.  

Our approach has limitations. We tested only six pairs of fungi, which 

demonstrates the importance of interactions and identifies predictive traits, but does not 

allow for development of a broad predictive framework for the outcome of interactions. 

Focusing on fungal pairs is also unrealistic, since C4 grasses and crops are typically 

colonized by dozens of fungal taxa and these could change observed pairwise interactions 

(Kennedy et al. 2007). Furthermore, our experiment was short-term and focused on 

juvenile Panicum; although this is a critical life stage, juveniles invest more in tiller 

height and roots than in tiller production (Lowry et al. 2015) and thus limit our ability to 

detect other effects such as on reproduction. We also did not measure the effect of 

endophyte treatment on plant biomass because all plant tissue was used to confirm fungal 

inoculation success. In addition, metabolite data were based on ethyl acetate extractions, 
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which will target predominantly hydrophobic metabolites (Blanks and Prausnitz 1964) 

and thus will not extract water-soluble sugars that may be important osmolytes. 

Extractions were also taken from fungal cultures and do not necessarily represent activity 

in the leaf. Finally, at this point further structural data is needed (e.g. high resolution 

mass spectrometry and nuclear magnetic resonance spectroscopy) to accurately identify 

specific metabolites; however, this provides a starting point for future work which will 

isolate and identify metabolites with bioactivity towards plant stress responses. A more 

comprehensive approach that captures the full metabolite spectrum will be employed to 

identify the best initial targets, which can then be isolated, characterized, and tested 

directly on plants for drought stress amelioration Finally, extractions were run on a low-

resolution mass spectrometer meaning that we cannot accurately identify specific 

metabolites; however, this provides a starting point in which to isolate and identify 

metabolites with bioactivity towards plant stress responses. A more comprehensive 

approach that captures the full metabolite spectrum will be needed to identify the best 

initial targets, which can then be isolated, characterized, and tested directly on plants for 

drought stress amelioration.  

Overall, our study highlights key challenges to predicting fungal effects on plants 

and provides a future direction to employing endophytes for agricultural plant 

management. First, interactions among fungal symbionts can affect the outcome of plant-

fungal symbioses across a range of mutualistic to antagonistic. Second, effects of fungal 

interactions can shift due to changes in soil moisture. As such, identifying combinations 

of beneficial fungi will also require identifying communities that have either consistent 

effects as environment fluctuate or only for which the degree of shift is acceptable, i.e., 
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super-additive/synergistic when needed under drought and otherwise commensal. Third, 

we identified traits in culture that can be used to predict when endophyte interactions will 

be beneficial or harmful to the plant host. This knowledge can be used to create more 

complex combinations of beneficial endophytes. Taken together, these results support the 

need to move beyond single-inoculum studies of fungal effect on plants and instead study 

fungi in a community context.   
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Chapter 3:  Chemical mechanisms underlying plant-fungal interactions 

INTRODUCTION 

Symbiotic associations between plants and endophytic fungi are ubiquitous, with 

mutualistic to antagonistic interactions that directly affect plant fitness. Despite their 

ecological importance, the basic mechanisms governing plant-endophyte symbioses 

remain poorly understood, with the exception of vertically transmitted endophytes in 

cool-season grasses (Clay and Schardl 2002). Much less known is about horizontally 

transmitted fungal endophytes, which reside within tissue of nearly all studied plants 

(Rodriguez et al. 2009). Horizontally transmitted endophytes (hereafter “endophytes”) 

are typically defined as asymptomatic fungi living inside plant tissues (Rodriguez et al. 

2009), but can have a broad range of non-pathogenic effects on the host plant (Carroll 

1988). Here, we propose that individual endophyte effects on the host plant are altered by 

both the biotic and abiotic context, and we examine chemical mechanisms underlying 

those effects. 

Endophytes are well known for affecting plant stress responses (Redman et al. 

2011, Rodriguez et al. 2008, Giauque and Hawkes 2013, Arnold et al. 2003); however, 

the evidence for endophyte stress effects comes almost exclusively from tests of 

individual fungi. Yet most plants are colonized by a community of endophytic fungi that 

have the potential to interact, which can change how the symbiosis impacts the plant. For 

instance, both facilitative and competitive interactions among root-fungal symbionts can 

generate non-additive effects on plant hosts (Jansa et al. 2008, Thonar et al. 2014, 

Kennedy et al. 2007, Guske, Schulz and Boyle 2004, Connor et al. 2017). In an earlier 

study on Panicum plants, we found that fungal interactive effects on plant drought 
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responses were primarily non-additive, with effects dependent on the degree of trait 

similarity between the interacting fungi (Connor et al. 2017).  

 Alternatively, community effects can be caused by a single species in the 

mixture, as is common in diversity experiments (Cardinale et al. 2006, Loreau and Hector 

2001). Individual endophytic fungi may come to dominate overall function via selection 

effects in which competition leads to the dominance of the most productive species. Such 

species effects are only occur expected to occur if function and species abundance are 

tightly linked; however, recent studies have shown negative selection effects, where less 

abundant species can dominate function when function is not measured in terms of 

biomass or yield (Jiang 2007, Bruno et al. 2005). This may hold true for endophyte 

communities, where mutualisms are maintained by controlled fungal growth within 

plants (Christensen, Bennett and Schmid 2002) and many effects are driven by fungal 

produced compounds, such that endophytes with better chemical factories per unit hyphal 

length may exert greater control on the symbioses.  

  Effects of both individual and mixtures of endophytes are often plastic in 

their response to the environment (Saikkonen et al. 1998, Giauque and Hawkes 2013, 

Schulz and Boyle 2005, Connor et al. 2017). As such, plant-endophyte symbioses can 

switch from mutualistic to pathogenic as the environment changes (Giauque and Hawkes 

2013, Ren and Clayy 2009).  For individual endophytes, there is no strong link between 

the environment and direction of fungal effects, with both pathogenicity and mutualisms 

occurring when plants are stressed (Ren and Clayy 2009, Schulz and Boyle 2005, 

Andrews, Hecht and Bashirian 1982, Kannadan and Rudgers 2008, Donoso et al. 2008, 

Giauque and Hawkes 2013). However, when scaling up to multiple fungal species, the 
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influence of the environment on competitive processes may negate these individual-level 

processes. For instance, within plant communities, facilitative interactions are often more 

common with increasing stress across environmental gradients (Bertness and Callaway 

1994). Alternatively, in an earlier study with Panicum plants, we saw that inoculations 

with pairs of endophytes reduced the moisture dependency of individual fungal effects on 

plants (Connor et al. 2017).  

Understanding the underlying mechanisms governing fungal effects on plants 

would better explain the complex and often unpredictable outcomes of plant-endophyte 

interactions. In general, endophyte effects are expected to be driven by chemical 

mechanisms, with the fungi producing compounds that have bioactivity against plant 

stressors (Strobel and Daisy 2003, Hardoim et al. 2015, Waqas, Khan and Lee 2014). The 

most well-known example is the production of toxic alkaloids to reduce herbivory in the 

tightly co-evolved symbiosis between vertically transmitted Epichloe endophytes and C3 

grasses (Clay and Schardl 2002). Horizontally transmitted fungi also produce a plethora 

of bioactive secondary metabolites; although to date the functions in planta of only a few 

of these compounds have been characterized. In our own studies, we have linked fungal 

metabolites in culture to fungal interactive effects on plant moisture responses (Connor et 

al. 2017); however, these mechanisms must be tested in planta to be generalizable to the 

field.  

 To understand how biotic and abiotic context control the outcomes of plant-

endophyte symbioses, we examined the effects of fungal interactions and drought on the 

performance and metabolomics profiles of Panicum hallii Vasey (Hall’s Panicgrass). 

Panicum hallii is a short-lived, native, warm-season grass related to the biofuel species 
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Pancium virgatum. We tested the hypotheses that (1) plant responses to moisture depend 

on fungal treatment, (2) in some cases, effects of fungal treatment are controlled by a 

specific fungal species rather than the pair per se (species effects), (3) metabolomics 

profiles explain the effects of fungal treatment on plant responses to moisture.   

METHODS 

Experimental test of plant responses to two-species endophyte mixtures 

To assess how endophytes and moisture affect plant performance, we grew P. 

hallii plants inoculated singly with five different endophyte species and with every 

pairwise endophyte combination (10 pairs), or with mock inoculum to create fungus-free 

controls. Plants were grown under either high (15%) or low (5%) gravimetric soil 

moisture on sterile sand soils amended with X% Hoagland solution. We know from prior 

work on Panicum virgatum in the same soils that 5% moisture limits growth and survival, 

whereas 15% moisture supports high growth rates (Connor et al. 2017, Giauque and 

Hawkes 2013).  Each treatment combination was replicated five times for a total of 160 

plants.  

Panicum halii seeds were collected from wild populations at the Lady Bird 

Johnson Wildflower Center in Austin, Texas in May 2016. Seeds were surface sterilized 

in 0.5% sodium hypochlorite (4 min) followed by 70% ethanol (90 sec), rinsed in sterile 

water, and germinated on dampened sterile filter paper in petri dishes. After one week, 

germinated seeds showing no evidence of contamination were planted into sterile 

Magenta boxes (Magenta GA-7; Magenta Corporation, Chicago, IL) modified with 20-

µm nylon mesh windows to allow water loss while preventing cross contamination. Plant 
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and fungal pre-treatment growth, and fungal inoculations followed Connor et al 20017 

(Chapter 2).  

Briefly, plants were grown for 8 weeks in an isolated greenhouse at ambient light 

and temperature with 15% soil moisture; plants were kept sterile until they reached the 

adult stage. Immediately prior to fungal inoculation, plants were tested for fungal 

contamination by culturing leaf segments into 2% potato dextrose (PD) agar plates with 

50 ppm ampicillin, and any plants showing fungal growth were discarded. One week 

before plant-endophyte trials commenced, the five fungal isolates were cultured into PD 

broth in 50 mL conical tubes at room temperature with constant shaking (110 rpm). 

Fungal hyphae were concentrated via centrifugation (10 min at 14000 rpm), washed and 

re-suspended in sterile water to obtain 105 hyphal fragments mL-1. Plants inoculated with 

single isolates received 2 mL of hyphal suspension directly pipetted onto plant shoots, 

plants with an endophyte pair received a 2-mL mixture containing 1 mL of hyphal 

suspension from each fungal isolate, and control plants were mock inoculated with 2 mL 

sterile water.  

Plants were grown with fungal and moisture treatments in the greenhouse for 4 

weeks, until just before flowering. High and low water treatments were maintained 

weekly by weight. We measured plant growth rate as the change in height over time, 

plant size as fresh shoot biomass (rather than dry biomass because the tissue was needed 

for metabolomic extractions), whole-plant water loss by weight compared to plant-free 

controls, and survival as the percentage of tillers that did not wilt (tiller wilt). Plant height 

and water loss were assessed every three days, whereas tiller wilt and biomass were 

assessed at harvest. All measurements were made in a laminar flow hood that was UV-
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sterilized in between plants. The logit transformation were applied to tiller wilt because 

values were proportions (Warton and Hui 2011). Plants were harvested; aboveground 

plant material was clipped, weighed, immediately frozen in liquid nitrogen, and stored at 

-80 °C until metabolite extractions. 

Identifying effects of fungal inoculum on plant metabolomics profiles  

Plant metabolomics profiles were obtained from whole plant crude extracts using 

methanol:chloroform:water extractions on frozen leaf tissues with three replicates per 

treatment (Theodoridis et al. 2012, Maia et al. 2016). Briefly, frozen samples were 

ground in liquid N2 and approximately 40 mg of ground sample was immediately added 

to an ice cold methanol:chloroform:water solution (600:300:300 µL). Samples were 

vortexed for 15 s and placed in ice on a shaker for 30 min at 130 rpm, with samples 

vortexed every 5 min. To separate the organic and aqueous phases, samples were 

centrifuged (10,000g, 10 min, 4 °C) and the layers were transferred by syringe into glass 

vials. The organic phase was then stored at -80 °C until vacuum evaporation, after which 

the pellet was reconstituted in 500 µL of methanol. LC-MS chromatograms were 

obtained from liquid chromatography coupled to time of flight mass spectrometry 

(LC/TOF/MS) (Q-TOF Agilent Technologies 6530 Accurate-Mass Q-TOF LC/MS) using 

high resolution electrospray ionization in positive mode at the Department of Chemistry 

Mass Spectrometry facility at the University of Texas at Austin.  

Plant metabolomics profiles were created from chromatographically separated and 

single-spectra mass spectral data using the XCMS package in R (Smith et al. 2006, 

Tautenhahn, Bottcher and Neumann 2008, Benton, Want and Ebbels 2010). Data was 

preprocessed using the following steps: (1) peak identification and matching (full width 
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at half maximum (FWHM) of 30 s; extracted ion base peak chromatograms at 0.1 m/z), 

(2) retention time correction (least-squares method), (3) peak matching (FWHM of 10 s) 

and (4) filling in missing peaks. A matrix was then created for all detected compounds 

(identified by m/z and retention time) based on peak intensities. To obtain a matrix 

containing compounds associated with fungal colonization in plants, the average intensity 

of compounds from fungus-free control plants (separated by soil moisture) was 

subtracted from each compound and intensities were scaled to have a zero mean and a 

unit variance (Worley and Powers 2013).  

STATISTICS 

Effect of fungal treatment and soil moisture on plant performance  

We used MANOVA to analyze how plant physiological responses (growth rate, 

shoot biomass, water loss, and tiller wilt) varied with moisture treatment, fungal 

treatment, and their interaction. Significant factors were compared to the respective 

fungus-free controls with Dunnett’s multiple comparison post-hoc tests (Dunnett 1955). 

For significant interactions, fungal treatment was also analyzed across moisture levels 

using one-way ANOVA with Bonferroni-corrections to maintain family-wide confidence 

limits at 90% (in our model with 45 individual contrasts the cutoff was P < 0.002). We 

also tested for fungal species effects on plant performance by analyzing individual plant 

responses as a function of the presence of each fungal species, moisture treatment, and 

their interactions (Jacob, Hertel and Leuschner 2013). This analysis allows us to 

explicitly test species identity effects separate from fungal treatment effects, as each 

fungus is present in five different fungal treatments. We limited the species analyses to 

cases where there was a significant main effect of fungal treatment or fungal treatment x 
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moisture treatment interactions. Models were Bonferroni-corrected for multiple 

comparisons, such that significant effects occurred at P < 0.017.  

Chemical mechanisms underlying fungal effects 

We analyzed how the plant metabolome varied with moisture and fungal 

treatments, using PERMANOVA with Euclidean distances using adonis in the vegan 

package in R, with each term entered last in the model to obtain Type III sums of squares 

(Oksanen et al. 2017, Anderson and Walsh 2013). Because there were significant effects 

of fungus and fungus x moisture, we examined the role of individual fungal species in 

shaping the plant metabolome by running PERMANOVA with the presence of each 

fungus, moisture treatment, and their interaction.  

Linking metabolomics profiles to plant responses  

We used MANOVA to analyze how plant physiological responses (growth rate, 

shoot biomass, water loss, and tiller wilt) varied with moisture treatment, fungal 

treatment, and their interaction. Significant factors were compared to the respective 

fungus-free controls with Dunnett’s multiple comparison post-hoc tests (Dunnett 1955). 

For significant interactions, fungal treatment was also analyzed across moisture levels 

using one-way ANOVA with Bonferroni-corrections to maintain family-wide confidence 

limits at 90% (in our model with 45 individual contrasts the cutoff was P < 0.002). We 

also tested for fungal species effects on plant performance by analyzing individual plant 

responses as a function of the presence of each fungal species, moisture treatment, and 

their interactions (Jacob et al. 2013). This analysis allows us to explicitly test species 

identity effects separate from fungal treatment effects, as each fungus is present in five 

different fungal treatments. We limited the species analyses to cases where there was a 
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significant main effect of fungal treatment or fungal treatment x moisture treatment 

interactions. Models were Bonferroni-corrected for multiple comparisons, such that 

significant effects occurred at P < 0.017.  

Chemical mechanisms underlying fungal effects 

We analyzed how the plant metabolome varied with moisture and fungal 

treatments, using PERMANOVA with Euclidean distances using adonis in the vegan 

package in R, with each term entered last in the model to obtain Type III sums of squares 

(Oksanen et al. 2017, Anderson and Walsh 2013). Because there were significant effects 

of fungus and fungus x moisture, we examined the role of individual fungal species in 

shaping the plant metabolome by running PERMANOVA with the presence of each 

fungus, moisture treatment, and their interaction.  

Linking metabolomics profiles to plant responses  

To examine how plant physiological responses were related to their metabolomics 

profiles, we first reduced each multivariate dataset using nonmetric-multidimensional 

scaling (NMS) with Bray-Curtis distances in PC-ORD (McCune and Mefford 2011). All 

data were standardized to unit variance and only response variables from plants with a 

paired metabolomics profile (n=3) were included in the NMS. Thus, plant physiological 

responses to moisture and fungal treatments for each replicate plant, as well as their 

associated metabolomics profiles, were represented by single points in an ordination 

space where increasing distance in ordination space represents greater dissimilarity 

among samples (McCune and Mefford 2011). For the plant response NMS, we identified 

the combinations of plant responses represented by each NMS axis using multiple linear 

regressions with the stats package in R (R Core Team 2016).  
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We used multiple linear regression to examine how overall plant physiological 

responses to fungal treatments depended on plant metabolomics profiles, including their 

respective NMS axis 1 and 2 scores. Regressions were run separately for NMS scores in 

low and high soil moisture based on the significant interaction of moisture and fungal 

treatment on plant responses (above mentioned MANOVA).  Metabolome patterns 

associated with fungal treatments, fungal species, and moisture were visualized with 

dendograms and clustered image maps using the complete linkage method in the 

mixOmics package in R (Gonzalez et al. 2012, Cao et al. 2016). For significant factors, 

we further identified the compounds associated with those effects via bipartite networks. 

Because bipartite networks are inferred from pair-wise similarity matrices obtained from 

corresponding ordination analyses, we used partial least squares-discriminate analyses 

(PLS-DA) to reduce the overall model (Gonzalez et al. 2012, Cao et al. 2016). 

Specifically, to ensure PLS-DA models were not over-fit, we validated models using a 

‘leave-one-out’ cross validation scheme (Westerhuis et al. 2008). The optimal number of 

components and variables for the model was then determined based on the minimum 

error rate (Wopereis et al. 2009). Correlations among treatments (presence of a specific 

fungus or moisture level), were calculated from the components retained from the PLS-

DA and relevant compounds were obtained by setting the threshold to 0.60, indicating 

biological significance (Cao et al. 2016). Compounds were then identified using the 

Metlin database (Smith et al. 2005).   

RESULTS 

Effect of fungal treatment and soil moisture on plant performance  
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Plant responses to moisture depended heavily on fungal treatment, with 

significant interactions affecting growth rate, shoot biomass, and water loss (Table 3.2; 

Figure 3.1). Low moisture only minimally reduced plant growth rate (23%), shoot 

biomass (33%), and water loss (32%) compared to high moisture, whereas fungal 

treatment altered these same responses by 86%, 67% and 200% on average relative to 

fungus-free controls. Individual fungal treatments were also variable, ranging from 1.4 to 

47 fold differences between the treatments with the largest and smallest effects across 

plant responses (Figure 3.1). The interaction of fungal treatment and moisture also 

affected shoot biomass, water loss and tiller wilt; but significant differences of fungal 

treatment across moisture levels only occurred at Bonferroni corrected cutoff of P < 

0.002 for shoot biomass and tiller wilt (Table 3.2; Table 3.3). 

Fungal species effects occurred for Aspergillus and Nigrospora, which mattered 

more than the fungal pair identity for plant growth rate, shoot biomass, and water loss 

(Table 3.4). The presence of  Aspergillus reduced plant growth rates by 124% regardless 

of moisture (Figure 3.2). Other Aspergillus effects depended on moisture treatment: in 

high soil moisture shoot biomass decreased by 47% decrease and water loss increased by 

148%, whereas in low soil moisture water loss decreased by 200% and shoot biomass 

was unaffected. Plants inoculated with a treatment containing Nigrospora had a 29% 

decrease in growth rate and 36% decrease in shoot biomass relative to treatments without 

Nigrospora, and these effects were consisted across moisture treatments.   

Effect of fungal treatment and soil moisture on plant metabolomes 

Fungal treatment and the interaction of fungal and moisture treatments explained 

46% and 23% of the variation in plant metabolomics profiles, respectively (Table 3.5). 
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Fungal treatments partly reflected species effects of Aspergillus (R2 = 7.7%) and 

Nigrospora (R2 = 2.1%) on the plant metabolome, which were also moisture dependent 

(Table 3.7, Figure 3.3). In contrast, moisture on its own only explained 4% of plant 

metabolome variation.  

The presence of Aspergillus was linked to 33 and 38 different compounds in low 

and high soil moisture. The presence of Nigrospora was similarly correlated with 19 

different compounds in high soil moisture (Table 3.9); no compounds were associated 

with Nigrospora in low soil moisture. A large percentage of the compounds were 

unknown (Aspergillus: 64% and Nigropsora: 34%), meaning that they were not contained 

in the Metlin database. Of the identified compounds, only one is known to be exclusively 

produced by fungi (Aspergillus: Cytochalasin E); all others have been previously 

identified from either plants or both plants and fungi. Approximately half of the identified 

compounds associated with Aspergillus are involved in the oxylipin pathway, which 

regulates plant and microbial defense and development. In contrast, 63% of the identified 

compounds associated with the presence of Nigrospora were anthocyanin glycosides, 

which protect plants against a wide range of abiotic (e.g., UV damage, drought) and 

biotic (e.g., pathogen) stress. All of the compounds positively associated with Aspergillus 

or Nigrospora were negatively associated with plants colonized by other fungal 

treatments. 

Linking metabolomics profiles to plant responses  

Nonmetric-multidimensional scaling axes 1 and 2 cumulatively captured 94% of 

the variation in plant physiological profiles in both low and high soil moisture (Figure 

3.3). For plant physiology in low soil moisture, NMS axis 1 was inversely related to plant 
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growth rate (R2= 0.696, P < 0.001) and shoot biomass (R2= 0.781, P < 0.001; Table 3.9; 

Figure 3.3b). For plant physiology in high soil moisture, NMS axis 1 was positively 

correlated with plant growth rates (R2= 0.863, P < 0.001) and shoot biomass, (R2= 0.736, 

P < 0.001), but negatively correlated with water loss (R2= 0.678, P < 0.001; Table 3.9; 

Figure 3.3b). The NMS of plant metabolomics profiles described 74% and 83% of the 

variation in metabolomes in low and high soil moisture, respectively. When the plant 

metabolomics NMS axes 1 and 2 were used as independent variables to explain plant 

physiological NMS axes 1 and 2 in multiple regressions, the physiology NMS axis 1 was 

best predicted by the metabolomics NMS axis 1 under both low (R2 = 47%) and high (R2 

= 66%) soil moisture (P < 0.001; Table 3.8; Figure 3.3c, 3f).    

DISCUSSION 

The plant mycobiome is a critical component of plant drought responses and may 

matter more than drought itself. We found that fungal treatment affected plant physiology 

4-23X fold more than soil moisture, which was associated with underlying changes in the 

plant metabolome. Species effects further emphasize the role of biotic context in fungal 

effects on plants. Overall, these results are consistent with a strong role for biotic context, 

where outcomes of fungal interactions are dependent on the identities of the fungi within 

a community. Although soil microbial communities can also affect plant drought 

responses (Lau and Lennon 2012), this is the first demonstration that foliar endophytic 

fungal symbionts outweigh abiotic context in determining plant performance. 

In some cases, the effect of fungal treatment could be directly linked to the 

presence of specific fungal species. In the presence of Aspergillus or Nigrospora, plants 

grew slower (47%, 29%) and were smaller (124%, 38%); plants with Aspergillus also lost 
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more water (148%) in high soil moisture and less water (200%) in low soil moisture. 

Both of these species have previously been reported to have negative effects on plant 

growth, including antagonistic interactions with wheat, ryegrass, potato, wisteria and 

switchgrass (Dewan and Sivasithamparam 1988, Giauque and Hawkes 2013, Louis et al. 

2014, Soylu, Dervis and Soylu 2011, Wright et al. 2008).The dominance of the two most 

antagonistic fungi in our system on plant responses suggest that antagonisms may have 

stronger species effects that mutualist, however our study is limited by a small number of 

fungi.   

Aspergillus and Nigrospora effects on plant physiology were paralleled in their 

metabolomes, with compounds that were indicative of the presence of each of these 

species in the plant. The presence of Aspergillus had the strongest effect on the plant 

metabolome, with metabolomes dominated by only a few highly abundant compounds. 

Many of these compounds are involved in the oxylipin pathway; oxylipins are produced 

by both plants and fungi, and are important in regulating plant-fungal cross-talk 

(Christensen and Kolomiets 2011). Fungal oxylipins are important in fungal growth, 

sporulation, production of mycotoxins, and production of degradative enzymes 

(Brodhagen et al. 2008 2004, Endogenous lipogenic regulators of spore balance in 

Aspergillus nidulans, Fischer and Keller 2016). However, plant oxylipins, which 

accumulate in plants during stress as reactive oxygen byproducts, can interfere with these 

processes in fungi presumably by signal mimicry, and thus act to regulate fungal 

development and reduce mycotoxin production (Gao et al. 2009 2014, Lipids in 

Aspergillus flavus-maize interaction)}. However, the role of plant oxylipins in mediating 

fungal pathogenicity appears to be species-specific, with Fusarium and Cochliobolus 
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fungal species becoming more virulent in plants where the oxylipin enzyme LOX was 

knocked out (Gao et al. 2007). Nevertheless, the majority of metabolites linked to the 

presence of Aspergillus in this study were unknown, and will require structural 

characterization (via nuclear magnetic resonance spectroscopy) and in planta assays to 

identify and understand their potential roles in plant-endophyte interactions.  

The presence of Nigrospora was associated with an accumulation of anthocyanins 

in plant leaves. Anthocyanins are flavonoids that are primarily known for protecting 

plants against UV-damage and abiotic stressors, such as drought (Bolouri Moghaddam 

and Van den Ende 2012, Buer, Imin and Djordjevic 2010).Anthocyanins can also play a 

role in inducing plant immunity to pathogen infection (Tauzin and Giardina 2014, Kunz 

et al. 2008, Gutha et al. 2010, Abdel-Farid et al. 2009), but it is generally believed that 

plants elicit immune responses to pathogen infection at the expense of abiotic stress-

induced flavonoid accumulation (Serrano et al. 2012). For instance, microbial triggered 

immunity has been to shown to repress anthocyanin accumulation even in the presence of 

environmental stress in both Sorghastrum and Arabidopsis (Serrano et al. 2012, Lo and 

Nicholson 1998). However, because the presence of Nigrospora was generally 

antagonistic and anthocyanins were only upregulated in high water, our findings are 

better aligned with a role for anthocyanins in plant defense to microbial infection 

(Treutter 2006). 

Other fungal treatments generally had more positive effects on plant growth and 

biomass, and reduced water loss compared to Aspergillus and Nigrospora. These fungal 

treatments also had strong effects on the plant metabolome, but only in certain 

conditions. For example, in high moisture, Fusarium increased plant biomass by 111% 
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and generated unique metabolomic patterns relative to all other fungal treatments. 

Cochliobolus kusanoi and Cochliobolus kusanoi + Nigrospora also produced novel 

metabolomics patterns, but without corresponding unique effects on plant physiology, 

suggesting that many effects of the endophytes were likely missed by the measurements 

made in this study. Based on these results, there are multiple interaction pathways in the 

plant-endophyte symbioses.  

The distinct chemical pathways that we identified for P. hallii colonized by 

different fungal endophytes support a growing body of work on chemical mechanisms of 

interaction. For instance, pairing Oryza sativa with either a mutualistic or pathogenic 

fungus resulted in contrasting metabolomics profiles , including 11 unique compounds 

with the mutualist (Xu et al. 2015). Similarly, three ecologically similar bacteria caused 

an order of magnitude difference in the production of primary plant metabolites, such as 

sugars, in Arabidopsis (Ryffel et al. 2016). This diversity of chemical mediated pathways 

is reflected in fungal metabolic profiles, which genomic analyses have revealed can vary 

widely even among closely related species (Keller, Turner and Bennett 2005). Ultimately, 

more research will be needed to identify whether there are broadly shared pathways 

among fungi based on interaction types, mutualist vs. antagonist.    

Though plants may respond differently to infection by different fungal species, we 

have shown that single species can control the pathways in which plants respond to 

multiple fungi.  

Our approach has limitations. We tested interactions only for pairs of endophyte 

species, which demonstrates both the importance of interactions and the potential for a 

single species to exert a greater control on effects, but does not consider more realistic 
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multi-species interactions within plants. Furthermore, we identified dual plant and fungal 

metabolomics profiles, such that origin of metabolite could not be assigned. Fungal 

metabolite libraries are also far less complete than plant metabolite libraries, which might 

also explain why a majority of compounds were unknown. Furthermore, metabolite data 

were based only on chloroform:methanol:water extractions, which target predominantly 

hydrophobic metabolites (Blanks and Prausnitz 1964) and thus will not extract water-

soluble sugars that may be important osmolytes in drought conditions.  

Overall, our study reveals key mechanisms regulating plant-endophyte 

interactions. First, the strong species effects on both plant physiology and metabolomics 

indicates that a single species could be more important than a consortium. Species effects 

in mixtures could have profound implications for the development of endophytes as 

treatments in agriculture, if unintended consequences due to intraspecific interactions can 

be avoided. Furthermore, the link between plant physiology and metabolites provides a 

starting point for using fungal metabolites to regulate plant responses. Finally, the strong 

effect of fungal treatment relative to moisture supports the growing body of research 

suggesting plant responses to changes in climate must be studied in the context of 

symbioses.  

 

 

 

 

 

 



 
 
 
 

57 

Tables 

 

 

 

 

Table 1.1: Split-split-plot ANOVA for plant volume and leaf-level fluxes. Fluxes are 
photosynthesis (Amax) and conductance (gs).  Analyzed as a function of 
precipitation treatment (“Precip”) and plant species (“Spp”) with year and 
block as random factors. Bold type indicates significant effects at P < 0.05.  

 

 

  Plant Volume Amax gs 

Factor df MS F P MS F P MS F P 

Plot           
Block 3 0.012   12.840   0.001   
Precip 2 0.038 3.455 0.100 317.936 14.890 0.005 0.008 6.245 0.033 
Residual 6 0.011   21.352   0.001   

Split-plot           
Spp 2 0.154 12.833 <0.001 73.858 3.081 0.071 0.010 5.7854 0.012 
Spp X 
Precip 4 0.019 1.583 0.222 27.029 1.127 0.375 0.001 0.444 0.775 

Residual 18 0.012   23.973   0.002   
Sub-plot           

Year 2 0.013 3.250 0.046 306.752 18.069 <0.001 0.026 18.039 <0.001 
Year X 
Precip 4 0.025 6.250 0.000 17.537 1.0330 0.399 0.001 0.718 0.584 

Year X Spp 4 0.015 3.750 0.009 105.627 6.222 <0.001 0.005 3.171 0.021 
Year X 
Precip X 
Spp 

8 0.004 1.000 0.447 20.003 1.178 0.329 0.003 1.892 0.080 

Residual 54 0.004   16.976   0.001   
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 Amax gs 

 Est. SE t P R2 Est. SE t P R2 

Full           
Temp      -3.1e-3 1.4e-3 -2.173  0.032 0.050 
Precip 0.005 0.001 3.910 < 0.001 0.126 2.6e-5 1.1e-5 2.291 0.024 0.054 
Full model    < 0.001 0.126    0.005 0.095 

 

Table 1.2: Multiple regression for leaf-level photosynthesis (Amax) and conductance 
(gs). Analyzed as a function of seasonal variations in climate (“Temp” = air 
temperature, “Moist” = soil moisture), and precipitation treatment 
(“Precip”). R2 values are only reported for significant factors in each model.  

  

 
   NEE ET Re 

 Factor Df MS F P MS F P MS F P 

Plot  Block 3 0.018   336.218   0.007   
 Precip 2 0.070 2.595 0.154 6445.177 7.279 0.025 0.162 2.667 0.148 

 Resid 6 0.027   885.432   0.061   
Subplot Spp 2 0.016 0.608 0.555 1789.154 2.208 0.138 0.052 2.268 0.132 

 Precip 
X Spp 

4 0.019 0.746 0.573 219.776 0.273 0.892 0.041 1.791 0.175 

 Resid 18 0.026   806.192   0.023   

Table 1.3: Split-split-plot ANOVA for plant-level C02 and H20 exchange. Analyzed as 
a function of precipitation treatment (“Precip”) and plant species (“Spp”) 
with block as a random factor. 
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Pair 
 

Best BLAST match 
(Accession num.) 

Best BLAST match 
(Accession num.) 

Pair 
Dissimilarity 

Known 
Life 
History 
Strategies  

Accession 
nos.  

1 Cladosporium 
(AY251074) 

Pestalotiopsis 
(GU183121) 

5.02 E, S 
P 

KC582568 
KC582587  

2 Chaetomium 
(HM365261)  

Cochliobolus 
(HE792897) 

2.69 E, S 
E, P, S 

KC582567  
KP401907 

3 Nigrosopra 
(GQ221860)  

Penicillium 
(DQ339568) 

2.65 E, P, S 
P 

KC582580  
KC582586  

4 Alternaria 
(KJ541482) 

Penicillium 
(JN642222) 

1.61 P 
P, S 

KC582561  
KC582590  

5 Acremonium 
(KJ194115)  

Cercospora 
(GU214657) 

0.37 E, P 
P, S 

KP401945 
KP401903 

6 Aspergillus  
(FJ867942) 

Cochliobolus  
(KC311473) 

0.12 P, S 
E, P, S 

KC582564  
KC582570  

Table 2.1: Fungal pairs (1-6) selected for plant trials. Best BLAST match of the fungi 
comprising the fungal pairs, dissimilarities in their fungal effects on plants, 
prior reports of life history, and Genbank Accession numbers reported.  
Previously known life history strategies are based on published literature 
regardless of host plant (Giauque 2016); E= endophyte, P= pathogen and S 
= saprophyte. The top and bottom accession numbers refer to the LSU 
sequences deposited in NCBI Genbank for the first fungus and second 
fungus in the pairs, respectively. 
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 Df MS F P 
Growth Rate      
   Fungus  18 0.065 9.600 < 0.001 
   Moist 1 0.154 22.888 < 0.001 
   Fungus X Moist 18 0.071 10.502 < 0.001 
   Residual 114 0.007   
Tiller Number     
   Fungus 18 0.393 1.002 0.463 
   Moist 1 0.164 0.419 0.519 
   Fungus X Moist 18 0.456 1.162 0.304 
   Residual 114 0.393   
Days to First Wilt     
   Fungus 18 117.699 4.287 < 0.001 
   Moist 1 44.237 1.611 0.207 
   Fungus X Moist 18 182.181 6.635 < 0.001 
   Residual 114 27.456   

Table 2.2: ANOVA for plant responses. Analyzed as a function of fungal treatment, 
soil moisture and their interaction. Dependent variables are plant growth 
rate, tiller number, and days to first wilt. Abbreviations are fungal treatment 
= Fungus, soil moisture treatment = Moist. 
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  Growth Rate Days to First Wilt 
 Moisture Fungus 

A 
Fungus 
B 

Pair Fungus 
A 

Fungus 
B 

Pair 

Pair 1  High 
Low 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

Pair 2 High 
Low 

- 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

Pair 3 High 
Low 

0 
0 

- 
0 

0 
0 

0 
0 

0 
0 

0 
+ 

Pair 4 High 
Low 

0 
+ 

- 
+ 

0 
0 

0 
+ 

0 
+ 

0 
0 

Pair 5 High 
Low 

0 
- 

0 
0 

0 
+ 

0 
0 

0 
0 

0 
+ 

Pair 6 High 
Low 

0 
+ 

- 
0 

0 
+ 

0 
+ 

0 
0 

0 
+ 

Table 2.3: Fungal treatment effects on plant reponses. Fungi were considered 
beneficial (+), neutral/commensal (0) or detrimental (-) when plant 
responses were significantly greater than, equal to, or less than fungus-free 
control plants, respectively. 
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 Super-additive  Sub-additive  Additive 

 
 Num RT IV P  Num RT IV P  Num RT IV P 
Growth rate                
Low Moisture 1 5:42 0.75 0.001       10 5:13 1.00 0.001 
 2 6:95 0.58 0.035       5 2:97 0.69 0.003 
High Moisture           11 4:51 0.67 0.007 
Days to first 
wilt 

              

Low Moisture 3 5:78 0.75 0.007  7 3:08 0.57 0.021  12 4:65 0.70 0.010 
 4 6:29 0.75 0.005  8 4:27 0.57 0.018  10 5:13 0.60 0.009 
 5 2:87 0.69 0.001  9 4:78 0.57 0.018  13 6:63 0.40 0.048 
 6 2:71 0.65 0.003           
High Moisture           5 2:87 0.84 0.001 
           6 2:71 0.63 0.005 
           14 6:79 0.38 0.044 

Table 2.4: Metabolites indicative of a fungal pair’s effects. Num = number indicating 
unique metabolites; RT is the retention time (i.e., time of compound elution) 
on C18 100A HPLC column.; IV is the indicator value ranging from 0 to 1, 
with a value of 0 indicating that a compound is never observed within a 
group and a value of 1 indicating that a compound is only present in one 
particular grouping. P-values were obtained from a random permutation test 
(n = 999). 
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 df MS F P 
Growth Rate Deviation     
   Pair 5 0.073 10.741 < 0.001 
   Moist 1 0.008 1.172 0.286 
   Pair X Moist 5 0.120 17.741 < 0.001 
   Residual 36 0.007   
Days to First Wilt Deviation     
   Pair 5 130.343 3.383 0.013 
   Moist 1 78.797 2.045 0.161 
   Pair X Moist 5 482.359 12.518 < 0.001 
   Residual 36 38.535   

Table 2.5: ANOVA for plant deviations from additive. Analyzed as a function of 
fungal pairs, soil moisture and their interaction. Dependent variables are 
deviations of plant growth rate and days to first wilt from the expected 
additive response. Abbreviations are fungal pairs = Pair, soil moisture level 
= Moist. 
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 Deviation of Plant Growth Rate Deviation of Days to First Wilt 
 Est. SE t P R2 Est. SE t P R2 
High + Low           
Moist 0.305 0.138 2.210 0.069 0.008 16.959 7.981 2.125 0.077 0.025 
Stress -0.066 0.040 -1.667 0.146 0.079 -4.468 2.294 -1.948 0.099 0.089 
Metab 0.085 0.014 5.944 0.001 0.319 4.181 0.831 5.028 0.002 0.143 
Moist X Stress 0.164 0.056 2.921 0.026 0.117 12.761 3.245 3.933 0.007 0.220 
Moist X Metab -0.101 0.020 -4.957 0.003 0.691 -6.038 1.176 -5.135 0.002 0.509 
Full model    0.011 0.875    0.121 0.871 
High Moisture           
Stress 0.098 0.025 3.932 0.029 0.682 8.293 2.612 3.175 0.050 0.505 
Metab -0.015 0.009 -1.703 0.187 0.005 -1.857 0.947 -1.962 0.145 0.055 
Full model    0.065 0.838    0.101 0.783 
Low Moisture           
Stress -0.066 0.050 -1.315 0.280 0.007 -4.468 1.925 -2.322 0.103 0.001 
Metab 0.085 0.018 4.688 0.018 0.812 4.1805 0.698 5.994 0.009 0.785 
Full model    0.041 0.881    0.021 0.923 

Table 2.6: Estimated regression for plant response deviations. Analyzed as a function 
of moisture and fungal trait dissimilarity. Abbreviations: Stress = stress 
tolerance trait dissimilarity, Metab = metabolite profile trait dissimilarity.  
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Fungal taxa Code Sister 
Accessio
n 

LSU 
Accession 

ITS 
Accessio
n 

Known Life 
History 
Strategies 

Cochliobolus kusanoi Cok KC31147
3 

KC58257
0 

KP40187
5  

E, P, S 

Cochliobolus lunatus Col JN94341
0 

KC58257
1 

KP40188
4 

E, P 

Fusarium oxysporum Fus AY18891
9 

KC58257
5 

KP40186
3  

E, S 

Nigrospora sphaerica Nig GQ32885
5  

KP401947 KP40194
6  

E, P, S 

Aspergillus terreus Asp FJ867934
  

KC58256
5 

KP40187
3 

E, P 

Table 3.1: Fungi selected for plant trials. Fungal identities are based on phylogenetic 
analysis in Giauque and Hawkes (2016). We further indicate the code used 
in figures, accession of the closest (“sister”) taxon based on best BLAST 
match, Genbank Accession numbers for LSU and ITS rRNA sequences, and 
life history strategies reported in the published literature; E = endophyte, P = 
pathogen and S = saprophyte.  

	

 
  Growth Rate Shoot Biomass Water Loss Tiller Wilt 
 df MS F P MS F P MS F P MS F P 
Moist 1 0.0

41 
16.2
37 

<0.0
01 

3.8
e3 

26.0
25 

<0.0
01 

30.5
38 

63.8
29 

<0.0
01  

11.3
86 

3.5
15 

0.0
64 

Fungus 15 0.0
29 

11.4
18 

<0.0
01 

7.6
e2 

4.96
5 

<0.0
01 

2.49
0 

5.11
0 

<0.0
01 

4.42
6 

4.1
74 

0.1
77 

Moist 
X 
Fungus 

15 0.0
04 

1.49
9 

0.12
4 

4.5
e2 

3.12
0 

<0.0
01 

3.54
2 

7.67
0 

<0.0
01 

5.97
0 

1.9
66 

 
0.0
27 

Residu
als 

10
7 

0.0
03 

  1.5
e2 

  0.47
8 

  3.23
9 

  

Table 3.2: MANOVA on plant growth rate, shoot biomass, water loss and tiller wilt. 
Analyzed as a function of soil moisture (‘moist’), fungal treatment 
(‘Fungus’) and their interaction.  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  Growth Rate Shoot Biomass Water Loss 
 df MS F P MS F P MS F P 
Asp           
Moist 1 6.72 0.068 0.800 19.600 41.263 <0.001 0.015 0.004 0.951 
Residual 8 98.442   0.475   3.815   
CoK           
Moist 1 1.3e3 6.098 0.034 0.118 0.086 0.776 2.112 0.461 0.516 
Residual 8 219.857   0.136   4.578   
CoL           
Moist 1 736.939 5.883 0.046 0.275 4.476 0.067 3.614 1.571 0.245 
Residual 8 125.265   0.061   2.300   
Fus           
Moist 1 5.3e3 9.895 0.026 0.051 0.322 0.586 0.000 0.000 1.000 
Residual 8 538.052   0.158   5.555   
Nig           
Moist 1 0.1664 0.002 0.963 0.676 3.615 0.0948 8.446 1.786 0.218 
Residual 8 73.787   0.187   4.728   
Asp + CoK           
Moist 1 8.446 1.786 0.218 90.313 1.504 0.260 2.112 0.382 0.554 
Residual 8 4.728   60.029   5.530   
Asp + CoL           
Moist 1 87.120 0.819 0.400 20.306 14.668 0.005 0.015 0.005 0.948 
Residual 8 106.310   1.384   3.350   
Asp + Fus           
Moist 1 24.090 0.182 0.683 29.756 43.880 <0.001 4.992 1.026 0.341 
Residual 8 132.433   0.678   4.866   
           

Table 3.3: Post comparisons for significant moisture x fungal treatment interactions. 
Post hocs were corrected for multiple comparisons to maintain family-wide 
confidence limits at 90% using Bonferroni corrections; in our model with 45 
individual contrasts the cutoff was P < 0.002. 
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Asp + Nig           
Moist 1 20.851 0.275 0.614 15.500 8.035 0.022 59.497 790.877 <0.001 
Residual 8 4.866   1.929   0.0752   
CoK + CoL           
Moist 1 15.956 0.043 0.844 0.247 1.701 0.233 1.109 0.119 0.740 
Residual 8 373.610   0.145   9.319   
CoK + Fus           
Moist 1 270.529 1.558 0.252 0.077 0.842 0.389 1.468 0.736 0.419 
Residual 8 173.684   0.091   1.995   
CoK + Nig           
Moist 1 32.913 0.472 0.514 0.084 0.822 0.391 0.050 0.009 0.927 
Residual 8 69.792   0.102   5.555   
CoL + Fus           
Moist 1 782.239 3.705 0.103 7.396 0.816 0.393 0.311 0.043 0.841 
Residual 8 211.104   9.067   7.278   
CoL + Nig           
Moist 1 975.274 11.310 0.016 8.333 0.883 0.375 2.813 0.285 0.608 
Residual 8 86.228   9.437   9.869   
Fus + Nig           
Moist 1 311.813 4.3113 0.077 0.000 0.002 0.970 0.610 0.113 0.745 
Residual 8 72.324   0.215   5.404   

 

Table 3.3: Continued post comparisons 
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  Growth rate Shoot biomass Water loss 
Source df MS F P MS F P MS F P 
Moist 1 0.011 3.330 0.070 2.8e3  15.390 <0.00

1 
0.826 0.523 0.471 

Asp 1 0.177 55.001 <0.00
1 

4.0 e3 21.725 <0.00
1 

69.112 43.768 <0.00
1 

Cok 1 0.004 0.124 0.725 0.502 0.003 0.958 1.015 0.643 0.424 
Col 1 0.001 0.241 0.624 10.264 0.056 0.814 0.664 0.420 0.518 
Fus 1 0.000 0.056 0.814 826.27

4 
4.499 0.036 0.781 0.495 0.483 

Nig 1 0.019 5.986 0.016 2.5 e3 13.678 <0.00
1 

0.003 0.002 0.967 

Moist*
Asp 

1 0.007 2.310 0.131 2.6 e3 14.032 <0.00
1 

44.516 28.191 <0.00
1 

Moist*
Cok 

1 0.002 0.545 0.462 415.83
8 

2.264 0.135 0.566 0.358 0.550 

Moist*
Col 

1 0.000 0.071 0.790 372.26
2 

2.027 0.157 3.629 2.298 0.132 

Moist*
Fus 

1 0.000 0.020 0.889 40.747 0.222 0.638 0.281 0.178 0.674 

Moist*
Nig 

1 0.000 0.019 0.891 627.97
6 

3.419 0.067 1.455 0.922 0.339 

Residua
ls 

14
2 

0.003   174.64
5 

  1.579   

Table 3.4: ANOVA of plant responses. Analyzed as a function of soil moisture 
treatment, presence of each fungal species, and their interactions. For fungal 
species abbreviations see Table 3.1. 

 
Source df MS F R2 P 
Moist 1 2317.443 4.184 0.040 0.001 
Fungus 14 1240.928 2.240 0.301 0.001 
Moist X Fungus 14 962.076 1.737 0.233 0.001 
Residual 44 553.899  0.422  
Total 73   1.000  

Table 3.5: PERMANOVA for plant metabolomics profiles. Analyzed as a function of 
moisture treatment (Moist), fungal treatment (Fungus), and their interaction. 
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Source df MS F R2 P 
Moist 1 2441.671 3.818 0.042 0.001 
Asp 1 4471.251 6.992 0.077 0.001 
Cok 1 743.123 1.162 0.013 0.252 
Col 1 582.609 0.911 0.010 0.531 
Fus 1 729.309 1.140 0.013 0.299 
Nig 1 1237.823 1.936 0.021 0.023 
Moist*Asp 1 1705.864 2.667 0.030 0.006 
Moist*Cok 1 892.331 1.395 0.015 0.142 
Moist*Col 1 1013.998 1.586 0.018 0.075 
Moist*Fus 1 887.949 1.388 0.015 0.134 
Moist*Nig 1 2093.940 3.274 0.036 0.002 
Residuals 62 639.522    
Total 73     

Table 3.6: PERMANOVA for species effect on the plant metabolome. Analyzed as a 
function of soil moisture treatment, presence of each fungal species, and 
their interactions on the plant metabolome. For fungal species abbreviations 
see Table 3.1. 
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Source Est. SE T P R2 Est. SE T P R2 
 Plant responses Low Moisture (NMS 

1) 
Plant responses Low Moisture (NMS 
2) 

Low Moist           
Metab NMS 
1  

-
0.823 

0.14
1 

-
5.839 

<0.001 0.469 0.175 0.126 1.390 0.173  

Metab NMS 
2 

-
0.127 

0.16
9 

-
0.754 

0.456  0.240 0.150 1.596 0.119  

Full model    <0.001 0.462    0.121  
 Plant responses High Moisture (NMS 

1) 
Plant responses High Moisture (NMS 
2) 

High Moist           
Metab NMS 
1 

-
0.845 

0.09
7 

-
8.687 

<0.001 0.660 -
0.009 

0.012 0.083 0.934  

Metab NMS 
2 

-
0.357 

0.14
4 

-
2.488 

 0.018  0.007 0.166 0.040 0.968  

Full model    <0.001 0.707    0.996  

 

Table 3.7: Linear regression of each plant response NMS axis as a function of 
metabolomics NMS axes. Estimated regression parameters, standard errors, 
t-values, and P-values are indicated; factors were considered significant at 
the Bonferroni-corrected cutoff P < 0.013. 
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Source NMS 1    NMS 2    
 Est. SE T R Est. SE T R 
Low Moist         
Growth rate -5.134 0.766 -6.703 0.696  2.121 0.614 3.454 0.034 
Shoot 
Biomass 

-0.037 0.005 -8.060 0.781  -0.011 0.004 -3.146 0.013 

Tiller wilt     -2.262 0.157 -14.375 0.823 
Water loss         
Full model    0.911     0.874 
High Moist         
Growth rate 3.476 0.239 14.564 0.863 1.405 0.185 7.593 0.002 
Shoot 
Biomass 

0.015 0.001 18.830 0.736     

Tiller wilt -0.228 0.054 -4.210 0.012 2.365 0.042 56.371 0.960 
Water loss -0.204 0.010 -19.449 0.678 0.032 0.008 3.917 0.029 
Full model    0.994    0.991 

Table 3.8: Linear regression of plant responses to plant NMS axes in low and high soil 
moisture. Only factors that met the Bonferroni-corrected cutoff of P < 0.013 
are shown 
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 mz Retention 
time (s) 

Moist Identity Origin Function 

Presence 
Aspergillus 

      

 173.866 1316 Both Unknown   
 184.885 1304 Both Unknown   
 219.174 667 High Sesquiterpene B Signaling 
 282.279 695 Both Sphingolipids B Guard cell 

regulator; Plant 
immune response 

 322.272 695 Both Eicosadiynoic 
acid 

B Guard cell 
regulator; Plant 

immune response 
 325.236 722 Both Unknown   
 343.339 816 Both Oxylipin B Plant-fungal ‘cross-

talk’ 
 355.246 612 Both Eicosanoids B Guard cell 

regulator; Plant 
immune response 

 356.25 612 Both Unknown   
 371.211 612 Both Amine alkaloid P Plant defense 

 376.26 549 Both Sphingolipids B Guard cell 
regulator; Plant 

immune response 
 377.263 549 Both Unknown   
 381.298 779 Both Unknown   
 382.301 780 Low Eicosanoids B Guard cell 

regulator; Plant 
immune response 

       

Table 3.9:     Metabolites that are associated with species-effects. Only the 20 compounds 
with the strongest correlations (R2> 0.60) are listed by their M/z and 
retention time from LC-MS. “Moist” refers to the soil moisture treatment in 
which the compound was identified; “Identity” is the assignment from the 
Metlin database; “Origin” and “Function” are based on literature reports that 
indicate whether the compound is known to be generated by plants (‘P’), 
fungi (‘F’) or both (‘B’) and known functions. 
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398.24
2 

550 Both Unknown   

399.24
5 

549 Both Unknown   

400.24
8 

549 Both Unknown   

414.21
4 

549 Both Unknown   

431.17
9 

810 Both Alkaloid B Plant defense 

432.18
2 

810 Both Unknown   

460.21
2 

549 Both Cytochalasin E F Growth inhibitor 

773.49
3 

549 Both Eicosanoids B Guard cell regulator; 
Plant immune 

response 
885.36

6 
790 High Isoflavone   Plant immune 

response 
969.52

6 
832 Both Saponin B Plant immune 

response 
 
Presence  
Nigrospora 

     

758.2 901 High Anthocyanins P Antioxidant 
759.2 901 High Anthocyanins P Antioxidant 
760.2 901 High Phytosulfokine b P plant peptide growth 

factors 
763.2 901 High Anthocyanins P Antioxidant 
764.2 901 High Unknown   
833.2 938 High Anthocyanins P Antioxidant 
834.2 938 High  P Antioxidant 
837.2 938 High Flavonoid P  
838.2 938 High Unknown   
839.2 938 High Unknown   
908.3 974 High Glycoside P Anti-fungal 

 

Table 3.9:     Continued metabolites that are associated with species-effects 
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909.3 974 High Unknown   
911.2 974 High Anthocyanins P Antioxidant 
912.2 974 High Unknown   
913.2 974 High Unknown   
980.3 1020 High Anthocyanins P Antioxidant 
981.3 1020 High Saponin B  
982.3 1020 High Anthocyanins P Antioxidant 
987.2 1020 High Unknown   

Table 3.9:     Continued metabolites that are associated with species-effects 
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Figures 

 

Figure 1.1: Plant size (volume) over time as a function of (a) rain treatment and (b) 
plant species. Uppercase letters indicate significant differences among 
species in posthoc comparisons; lowercase letters indicate significant 
differences in posthoc tests across years either (a) within a rain treatment or 
(b) within a species. 
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Figure 1.2: Differences in photosynthesis (Amax) (a) among precipitation treatments and 
(b) across years among plant species and differences in conductance (gs) (c) 
among precipitation treatments and (d) across years among plant species. 
Upper case letters indicate significant difference across variables (P < 0.05) 
and lower case letters indicate significant differences within variables based 
on Tukey post hoc tests. Bars are means ± 1 SE (n= 36; n= 12; n= 36; n= 
12). 
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Figure 1.3: Relationship of plant photosynthesis (Amax) and (a) precipitation treatment, 
and relationship of conductance (gs) and (b) precipitation treatment and (c) 
temperature. Significance are based in a linear regression. 
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Figure 1.4: Differences in whole plant (a) CO2 fluxes (NEE), (b) H2O fluxes (ET) and 
(c) dark respiration (Re) among precipitation treatments. Letters indicate 
significant differences (P < 0.05) based on Tukey post hoc tests. Error bars 
are ± 1 SE (n = 12). 
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Figure 2.1: Relationship between pairwise dissimilarity of fungal effects on plant 
drought responses and phylogenetic distance. A total of 341 fungal pairs 
were considered in the pool (black circles); six pairs were chosen for the 
experiment (grey diamonds). The dotted line represents average trait 
similarity (1.85).  
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Figure 2.2: Effect of fungal endophyte treatments. For pairs, triangles represent plants 
inoculated with single endophyte species (white triangle up and black 
triangle down are the first and second fungus in each pair as indicated in 
Table 1) and gray diamonds represent plants inoculated with both 
endophytes. Non-additive fungal mixtures are indicated by ‘Super’ or ‘Sub’, 
for super-additive or sub-additive effects; all others were additive. Asterisks 
indicate fungal mixtures that differed between low and high soil moisture in 
posthoc comparisons with † indicating significance after Bonferroni 
corrections (P < 0.003) and * indicating a trend (P < 0.05). Error bars are ± 
1 SE (n=4). 
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Figure 2.3: UV spectra of metabolites from indicative of non-additive effects in low 
moisture. (a) Metabolites 1 and 2 had synergistic effects on plant growth 
rate in low soil moisture, (b) Metabolites 3-6 had synergistic effects on days 
to tiller wilt in low soil moisture, and (c) Metabolites 7-9 had antagonistic 
effect on days to tiller wilt in low soil moisture. Retention times, maximum 
mAU and compound number corresponding to Table 2.6 are indicated for 
each spectrum. UV spectra were identified via DAD, a diode-array detector, 
at 254 nm.   
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Figure 2.4: Deviations of plant growth rate and days to first tiller wilt. Deviations are 
the differences in the observed effects of plant responses inoculated with 
fungal pairs from the expected-additive effects of plant responses to the 
corresponding individual fungi. Asterisks indicate deviations that differed 
between low and high soil moisture in posthoc comparisons with † 
indicating significance after Bonferroni corrections (P < 0.008) and * 
indicating a trend (P < 0.05), as reported in supplemental table 5. Error bars 
are ± 1SE; n = 4. 
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Figure 2.5: Relationships between the deviation of plant responses to fungal trait 
dissimilarity. Based on linear regression results, the deviations from an 
expected-additive model in plant growth and days to first wilt are plotted as 
a function of (a, c) dissimilarity in fungal metabolic profile and (b, d) 
dissimilarity in fungal stress response, with only significant regressions 
shown. 
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Figure 3.1: Effect of fungal endophyte treatments. Effects on plant growth rate, shoot 
biomass, water loss and tiller wilt under high (a-d) and low (e-h) soil 
moisture. For pairs, dual line and bar colors correspond to the two fungi 
within the pair. Asterisks indicate significant difference from control 
(fungus-free) plants; crosses indicate fungal treatments that significantly 
differed in low vs. high soil moisture; letters indicate significant differences 
among fungal treatments. Error bars are ± 1 SE (n=5). 
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Figure 3.2: Species-effects on plant responses. Results shown for the presence of 
Aspergillus within treatment effected (a) plant growth rate (overall), (b) 
shoot biomass in high soil moisture and (d) water loss in high and low soil 
moisture; and the presence of Nigrospora within a treatment effected (a) 
plant growth rate (overall) and (b) shoot biomass (overall). Asterisks 
indicate significance at Bonferroni corrected levels of P < 0.013,  
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Figure 3.3: Dendograms and heatmap for plant metabolomics profiles. Rows are fungal 
treatments in high or low moisture and columns are metabolites.  
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Figure 3.4: Nonmetric-multidimensional scaling of plant responses and metabolomics 
profiles. Results shown for plant responses in (a) low soil moisture (axis 1 
R2= 0.453, axis 2 R2= 0.284; stress = 11.028) and (b) high soil moisture 
(axis 1 R2= 0.517, axis 2 R2= 0.298; stress = 9.790); plant metabolomics 
profiles in (c) low (axis 1 R2 = 0.723, axis 2 R2= 0.216; stress = 8.633) and 
(d) high soil moisture (axis 1 R2 = 0.773, axis 2 R2= 0.169; stress 11.578); 
and linear regressions between plant response NMS 1 and metabolomics 
profiles NMS 1 in (e) low and (f) high soil moisture.  
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Appendix 

Effects of extreme changes in precipitation on fungal endophyte communities 

Introduction: Extreme events can directly affect plant associated microbes, though 

imposing an environmental filter, or indirectly, though changes in their plant host. Here, 

we focus on horizontally-transmitted, Class 3, foliar fungal endophytes (hereafter, 

’endophytes’). These endophytic associations are vital to plant health and function, 

especially in stressful conditions, with endophytes enhancing plant stress tolerance to 

salinity, heat and water stress (Redman et al. 2011). Despite their ecological significance, 

little is known on factors shaping their distributions, with most evidence from 

observational studies in natural environments.  

For instance, endophyte distributions can vary across latitudinal gradients, with 

climatic variables often attributed to observed difference within communities (Giauque 

and Hawkes 2013, Arnold and Lutzoni 2007). In general, historical climatic variables are 

believed to be more important than short-term annual conditions in shaping endophyte 

distributions because endophytes have free-living and spore phases which allow them to 

temporarily escape harsh conditions. Furthermore, local fungal communities are usually 

impervious to colonization of new species, either through preempting resources and space 

or through niche modification (Werner and Kiers 2015). Despite this general notion, there 

are few studies which directly manipulate climatic variables, which would identify the 

effects of short-term annual conditions on endophyte community dynamics.  
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We propose that endophyte community responses to extreme weather events will 

depend on the severity of the event and how different plant species respond to those 

conditions over time. To address this issue, we examined the effects of extreme changes 

in precipitation on the community composition of fungal endophytes associated with 

three native C4 bunchgrasses over three years. The grasses were Andropogon gerardii, 

Panicum virgatum, and Sorghastrum nutans. The grasses were grown in three 

precipitation treatments: extreme dry, mean, and extreme wet based on historical rainfall 

records. We measured leaf-level CO2 and H2O exchange, plant growth and endophyte 

community composition in all treatments at three time points across three years (July 

2012, July 2013 and July 2014). We further measured endophyte community composition 

of plants grown in an ambient treatment, representing the local species pool.  At the 

fungal level, we hypothesized that precipitation will modify endophyte communities both 

directly and indirectly through changes in host plant physiology, such that changes in 

fungal community composition would be predicted by precipitation and host factors, 

including leaf-level fluxes.  However, changes in fungal community composition would 

not change instantaneously, such that community differences would be greatest as time 

progressed.  

Methods (Fungal culturing and identification): Three tillers were randomly 

selected from each plant. Following Arnold et al. (2000), tillers were surface sterilized in 

95% ethanol (15 sec), 0.5% sodium hypochlorite (2 min), 70% ethanol (2 min), and 

sterile water (30 sec). Surface sterilized tillers were then sectioned into three 2-mm 

fragments and placed in petri dishes containing 2% potato dextrose agar (PDA) and 50 

ppm ampicillin. Plates were incubated at room temperature and assessed daily for fungal 
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growth. Once hyphae emerged from a leaf fragment, the fungus was transferred to a new 

PDA plate to obtain pure cultures. Pure cultures were then used for subsequent DNA 

extractions.  

Isolates were initially assigned to morphotypes based on morphological 

characteristics. Morphotype identity was then confirmed by sequencing at least three 

representatives from each morphotype group. Standard phenol- chloroform-isoamyl 

procedure was used for DNA extraction (Griffiths et al. 2000). Each 25-μl PCR reaction 

contained approximately 10 ng of fungal DNA, 0.75 U Taq polymerase, 1x PCR buffer, 2 

mmol L-1 MgCl2, 200 μmol L-1 dNTPs, and 0.5 μmol L-1 each of primers. Thermal 

cycling reactions used the following conditions: 1 cycle of 95°C for 2 min; 30 cycles of 

95°C for 30 s, 55°C for 30 s, and 72°C for 2 min; 1 cycle of 72°C for 5 min.  We then 

sequenced the D1/D2 region of LSU of rDNA using the general fungal primers NL1 (5’ 

GCATATCAATAAGCGGAGGAAAAG 3’) AND NL4 (5’ 

GGTCCGTGTTTCAAGACGG3 3’) at the DNA Sequencing Facility at the University of 

Texas at Austin (O'Donnell 1993). Once trimmed and quality checked, sequences were 

aligned with SATé 2.24 and clustered into operational taxonomic units (OTUs) based on 

97% sequence similarity using UCLUST (Edgar 2010). Representative sequences of each 

OTU were then selected and re-aligned to an internal guide tree (More details of fungal 

identification in Appendix).  

Once trimmed and quality checked (Arnold and Lutzoni 2007), sequences were 

aligned using SATé v2.2.7 (Liu et al., 2011) and clustered into initial operational 

taxonomic units (OTUs) based on 97% sequence similarity using UCLUST (Edgar, 

2010). Representative sequences of each OTU were then aligned to an internal guide tree, 
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which was composed of 896 reference sequence of known Ascomycota fungi obtained 

from the SILVA database. All sequences were then aligned with SATé 2.24 using 

MAFFT for the initial alignment, MUSCLE for the merger, and FASTREE with a 

GTR+G20 model for tree estimation. Operational taxonomic units (OTUs) were again 

identified based on 97% sequence similarity using UCLUST. 

Statistics: To ensure sufficient sampling of endophyte communities, we estimated 

species richness based on sampling effort for every precipitation treatment, plant species 

and year using the Chao1 estimator in the vegan package in R (Oksanen et al. 2017). To 

examine variations in endophyte community composition among precipitation treatment, 

plant species, year and their interaction, we used a blocked PERMANOVA on Bray-

Curtis dissimilarities using the vegan package in R (Oksanen et al. 2017). Differences 

were visualized with nonmetric multidimensional scaling (NMDS) on Bray-Cutis 

distances.  When community composition differed among effects, we examined the 

relationship among community composition, host factors and climatic variables using a 

partial redundancy analysis and linear regressions, with NMS scores as the dependent 

variables and plant physiology (Amax and gs), temperature and soil moisture as the 

independent variables. To further examine differences in endophyte communities, we 

identified endophyte species that were indicators for communities that differed 

significantly using the Dufrene-Legendre indicator analysis (Dufrene and Legendre 1997) 

with the labdvs package in R (Roberts 2015). This analysis calculates an indicator value 

for each species as the product of its relative frequency (presence-absence) and relative 

average abundance in each community and uses a random permutation test (n = 999) to 

calculate a significance value.  
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Results: Across all years and treatments, 23 fungal species were identified, 

representing a diverse set of species from the Dothideomycete, Lecanoromycete and 

Sordariomycte clades. Our sampling effort was robust across plant species, capturing 

between 89%-92% of the estimated species, and years, capturing between 90%-99% of 

the estimated species (Table A1.1). However, sampling effort was moderate within the 

different precipitation treatments, capturing between 73%-87% estimated species (Table 

A1.1). Fungal community composition differed among plant species and year but was not 

affected by precipitation treatment (Table A1.2). Among plant species, Andropogon and 

Sorghastrum had similar fungal communities, which were different than those within 

Panicum (Figure A.1a). However, there was only one species, Alternaria sp., that had a 

higher probability of colonizing Panicum (Table A1.3).  Among years, fungal 

communities were similar in 2012 and 2013, which were different than those in 2014 

(Figure A1.1b). Again, there was only one species, Dothideomycetes sp., that had a 

higher probability of colonizing plants in 2014 (Table A1.3). Though communities 

differed among plant species and year, plant host factors and climatic variables only 

explained 9% of the variation in fungal community composition based on a partial 

redundancy analysis. Specifically, plant host factors (species, Amax and gs) explained 

4.1% of the variation and climatic variables (temperature and soil moisture) and year 

explained 5.0% of the variation. This weak relationship was confirmed with no 

significant relationship among community composition (NMS points) and plant host 

factors or climatic variables (Table A1.4). 

Calculation of endophyte phylogenetic distances 
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We generated a large subunit reference dataset of Ascomycota fungi from the 

LSURef alignment download from the SILVA database. We extracted all Ascomycota 

sequences that contained the D1/D2 region corresponding to the sequenced region of the 

32-tested endophyte species, resulting in 896 reference sequences. All sequences were 

aligned with SATé 2.24  using MAFFT for the initial alignment, MUSCLE for the 

merger, and FASTREE with a GTR+G20 model for tree estimation. Using the resulting 

tree, cophenetic genetic distances were calculated using the Picante package in R.   

Fungal trait assays 

Fungal osmotic stress tolerance and growth: Fungi were screened for osmotic 

sensitivity, osmotic threshold and growth. Fungal isolates were grown in liquid cultures 

of 1x M9 media supplemented with glucose (20%), 1 M MgSO4 (1 ml L-1), and 1 M 

CaCl2 (0.1 ml L-1). Osmotic stress was created by adding varying sodium chloride 

concentrations, which were chosen to mimic osmotic stress levels the fungal isolates 

were likely to have experienced in nature. Treatments included the addition of 0 g L-1, 40 

g L-1, 80 g L-1, 120 g L-1 and 160 g L-1 of sodium chloride, which represent -30 kPa, -

300 kPa, -600 kPa,1000 kPa and -1200 kPa.  

Prior to inoculation, fungal monocultures were grown on 2% potato dextrose agar 

plates. A 1-mm2 fungal plug was then inoculated into 10 ml tubes containing 8 ml of 

modified 1X M9 media. Fungi were grown at 30°C and shaken at 130 rpm. Isolates were 

harvested after 21 days, at which time the majority of isolates reached stationary growth. 

Isolates were harvested by centrifuging cultures at 15,000 rpm for 10 minutes, removing 

supernatant and rinsing plugs in 4 ml autoclaved water. This procedure was repeated once 

more to ensure all NaCl was removed from cultures and thus not included in fungal dry 
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weight measurements. Cultures were then re-suspended in 8 ml of autoclaved water and 

filtered through pre-weighed grade 1 filter paper. Filter paper was dried at 100°C for 24 

hours and then placed in a dessicator prior to weighing. In total, there were 4 replicates 

per treatment at 5 different stress levels. Fungal osmotic sensitivity was measured as the 

slope of fungal growth vs. stress; fungal osmotic tolerance was measured as the level of 

NaCl at which growth stopped; and fungal growth was measured as fungal dry weight at 

0 g L-1 NaCl.  

Fungal enzyme activities: Fungi were screened for the production of cellulose-

degrading enzymes (a-1,4-glucosidase (AG), b-1,4-glucosidase (BG), and 

cellulobiohydrolase (CBH). Prior to inoculation, fungal monocultures were grown on 1x 

M9 media supplemented with glucose (20%), 1 M MgSO4 (1 ml L-1), 1 M CaCl2 (0.1 

ml L-1) and agar (30 g L-1). Five 1-mm2 fungal plug were placed into 125 ml of 50 mM 

acetate buffer (pH 5.0). Fungal plugs were ground up and solution was homogenized for 

1 minute using an immersion blender. The resulting suspensions were stirred 

continuously while 200 µl aliquots were dispensed into 96 well-microplates. Two 

hundred microliters of acetate buffer and 50 µl of 200 µM substrate solution (AG = 4-

MUB-a-D-glucoside, BG = 4-MUB-b-glucoside, and CBH = 4-MUB-b-D-cellobioside) 

were added to each sample well. Quench standard wells received 50 µl of standard (10 

µM methylumbelliferone) and 200 µl of sample suspension. Reference standard wells 

received 50 µl of standard plus 200 µl acetate buffer. There were 16 replicate wells per 

sample per assay and eight replicate wells for each blank, negative control, and quench 

standard. Microplates were incubated in the dark at 20°C for 1 hour, after which time 

reactions were stopped by adding10 µl of 1 M NaOH to each well. Fluorescence was 
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measured using a microplate fluorometer with 365 nm and 450 nm emission filters. After 

correcting for negative controls and quenching, enzyme activities of each isolate were 

expressed in nmol-1 mm-2.   

Fungal resource use: Fungi were screened for substrate use of 95 substrates using 

Biolog FF microplates (Biolog, Hayward, California, USA). Prior to inoculation in 

mircoplates, fungal isolates were grown on 2% potato dextrose agar plates. Fungal 

mycelium was then scraped into a 2 ml microcentrifuge tube containing 1 ml of FF 

Inoculating Fluid (Biolog, Hayward, California, USA). Mycelium was ground up using a 

sterilized micropestle and the resulting suspensions were transferred to a 50 ml falcon 

tube containing 30 ml FF Inoculating Fluid. Suspensions were standardized to equal ~1.6 

x 108 cells/ml (or an absorbance of 0.2 nm when read at 600nm) by the addition of more 

FF Inoculating Fluid. Microplates were inoculated with 100 µl/well, with 3 replicates per 

isolate, and stored at 26°C. The plates were read on a SpectraMax M3 Microplate Reader 

(Molecular Devices, Sunnyvale, California, USA) for determination of absorbance at 490 

nm and 750. Location in incubator was randomized daily and absorbances were read 

every other day, starting on the third day following inoculation, for 25 days. Substrate use 

was based on absorbance values 9 days after inoculation, given that most isolates reached 

stationary growth within 1-2 days following that time point.  

 Fungal metabolic profiles: Co-cultures and pure cultures of endophytes were 

grown on PDA plates and incubated at room temperature with three replicates. All plates 

were inoculated with two 1-mm2 plugs of fungi spaced 5 cm apart; in co-cultures each 

plug was a different fungal species and in pure cultures the plugs were from the same 

isolate. Whole plates at stationary phase were extracted three times with ethyl acetate and 
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extracts were concentrated by vacuum. The dried extracts were re-dissolved in 500 μL 

methanol. Extracts were analyzed by liquid-chromatography mass spectrometry using an 

Agilent Series1200 LC with a diode-array detector coupled to an Agilent Technologies 

6130 single quadrupolemass spectrometer. A Phenomenex Gemini 5u C18 100A column 

(50 x 2 mm) with a linear gradient of 5-95% CH3CN (vol/vol) over 12 min in H2O with 

0.1% (vol/vol) formic acid at a flow rate of 0.5 mL/min was used for analysis. The 

elution was monitored by UV at 254 nm. 

Fungal metabolite profiles were created from LC-ESIMS chromatograms using 

the following steps to detect and quality filter unique metabolites: (1) the data were 

quality filtered so that only peaks accounting for at least 5% of total peak area were 

retained; (2) chromatogram peaks were aligned and binned by retention time (± .02 sec); 

(3) absorbance spectra of all peaks within a bin were then manually checked to ensure 

bins represented same compounds; and (4) absorbance spectra of peaks in bins with 

similar retention times (≤ 0.05 sec) were checked to ensure that bins truly represented 

separate compounds. For missing values, we manually checked chromatograms to 

determine if compounds were present below the 5% cut-off. Compounds found below the 

cut-off were binned by retention times and absorbance spectrums were checked to ensure 

same compounds. The remaining missing values were determined to be absent and 

assigned a zero. For profile analysis, a matrix was created for all peaks based on absolute 

peak area at each retention time for each replicate. Peak areas were then normalized by 

the amount of fungal tissue extracted (fungal area cover from the plate used for 

extraction) and log-transformation to account for the skewed distribution of metabolic 



 
 
 
 

97 

data. Note that peak area is proportional to compound concentration, where a change in 

peak area indicates a change in compound concentration.  

 
 
Appendix tables and figures 
 
Table A1.1: Fungal richness within treatments and sampling effort based on Chao1 
estimator. 
 Richness Sampling effort 
Precip   
   Low 16 73% 
   Mean 17 69% 
   High 22 79% 
   Ambient 18 87% 
Species   
   Andropogon 19 89% 
   Panicum 21 89% 
   Sorghastrum 18 92% 
Year   
  2012 21 99% 
  2013 17 98% 
  2014 13 90% 
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Table A1.2: Results of a blocked PERMANOVA for effects of precipitation (‘Precip’), 
plant species (‘Spp’) and year on fungal community composition. Significance and 
contribution to explained variation in fungal community composition was determined by 
adding sequentially adding terms in the model. 
  Fungal community composition  
Factor df MS F P R 

Precip 3 0.162 0.558 0.927  
Spp 2 0.793 2.731 0.004 0.040 

Year 2 2.007 6.907 0.001 0.102 
Residual 115 0.291    
Total 122 0.324    
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Table A1.3: Indicator species analysis for fungal species that are indicative of being 
within different plant species and within different years. Genbank Accession numbers are 
for LSU region. IV is the indicator value ranging from 0 to 1, with a value of 0 indicating 
that a compound is never observed within a group and a value of 1 indicating that a 
compound is only present in one particular grouping. P-values were obtained from a 
random permutation test (n = 999). 
Community Fungal Species        

(Best BLAST 
Match) 

Accession 
nos. 

IV P 

Plant species     

Andropogon Nigrospora KP401947 0.301 0.019 
Panicum Alternaria KC582560 0.246 0.004 
Sorghastrum     
Year     

2012 Cadosporium KC582572 0.360 0.002 

 Cochliobolus KP401907 0.297 0.001 

 Preussia KP401905 0.176 0.01 

2013 Sordariomycetes 
sp1 

KP401939 0.288 0.001 

 Alternaria KC582560 0.246 0.006 

 Sordariomycetes 
sp2 

KP401937 0.191 0.002 

 Sordariomycetes 
sp3 

KP401941 0.105 0.039 

2014 Dothideomycetes  0.365 0.001 
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Table A1.4 Results of multiple regression for fungal community composition as a 
function of plant host factors (Amax and gs), seasonal variations in climate (“Temp” = air 
temperature, “Moist” = soil moisture), and precipitation treatment (“Precip”). R2 values 
are only reported for significant factors in each model. 
  
 Community composition (NMS) 
 Est. SE t P R2 
Full      
Amax 0.042 0.021 2.000 0.048  
gs -3.576 1.779 -2.010 0.047  
Temp 0.030 0.017 1.764 0.080  
Full model    0.074  
     

 
 

 
 

 
 
Figure A1.1 Nonmetric multidimensional scaling of endophyte communities by (A) plant 
species and (B) year using Bray-Curtis dissimilarities. Asterisks indicates a fungal 
community is significantly different. Bars are ± 1 SE.  
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