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Abstract

In a complete graph Kn with edge weights drawn independently from a uniform distribution
U(0, 1) (or alternatively an exponential distribution Exp(1)), let T1 be the MST (the spanning
tree of minimum weight) and let Tk be the MST after deletion of the edges of all previous trees
Ti, i < k. We show that each tree’s weight w(Tk) converges in probability to a constant γk with
2k − 2

√
k < γk < 2k + 2

√
k, and we conjecture that γk = 2k − 1 + o(1). The problem is distinct from

that of Frieze and Johansson [6], finding k MSTs of combined minimum weight, and the combined
cost for two trees in their problem is, asymptotically, strictly smaller than our γ1 + γ2.

Our results also hold (and mostly are derived) in a multigraph model where edge weights for
each vertex pair follow a Poisson process; here we additionally have E(w(Tk)) → γk. Thinking of
an edge of weight w as arriving at time t = nw, Kruskal’s algorithm defines forests Fk(t), each
initially empty and eventually equal to Tk, with each arriving edge added to the first Fk(t) where it
does not create a cycle. Using tools of inhomogeneous random graphs we obtain structural results
including that C1(Fk(t))/n, the fraction of vertices in the largest component of Fk(t), converges in
probability to a function ρk(t), uniformly for all t, and that a giant component appears in Fk(t) at
a time t = σk. We conjecture that the functions ρk tend to time translations of a single function,
ρk(2k + x) → ρ∞(x) as k → ∞, uniformly in x ∈ R.

Simulations and numerical computations give estimated values of γk for small k, and support
the conjectures stated above.
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1 Introduction

1.1 Problem definition and main results

Consider the complete graph Kn with edge costs that are i.i.d. random variables, with a

uniform distribution U(0, 1) or, alternatively, an exponential distribution Exp(1). A well-

known problem is to find the minimum (cost) spanning tree T1, and its cost or “weight”

w(T1). A famous result by Frieze [7] shows that as n → ∞, w(T1) converges in probability

to ζ(3), in both the uniform and exponential cases.

Suppose now that we want a second spanning tree T2, edge-disjoint from the first, and

that we do this in a greedy fashion by first finding the minimum spanning tree T1, and then

the minimum spanning tree T2 using only the remaining edges. (I.e., T2 is the minimum

spanning tree in Kn \T1, meaning the graph with edge set E(Kn)\E(T1).) We then continue

and define T3 as the minimum spanning tree in Kn \ (T1 ∪ T2), and so on. The main purpose

of the present paper is to show that the costs w(T2), w(T3), . . . also converge in probability

to some constants.

◮ Theorem 1. For each k > 1, there exists a constant γk such that, as n → ∞, w(Tk)
p−→ γk

(for both uniform and exponential cost distributions).

The result extends easily to other distributions of the edge costs (see full version for

details), but we consider in this paper only the uniform and exponential cases.

A minor technical problem is that T2 and subsequent trees do not always exist; it may

happen that T1 is a star and then Kn \ T1 is disconnected. This happens only with a small

probability, and w.h.p. (with high probability, i.e., with probability 1 − o(1) as n → ∞) Tk is

defined for every fixed k; see the full version for details. However, in the main part of the

paper we avoid this problem completely by modifying the model: we assume that we have a

multigraph, which we denote by K∞

n , with an infinite number of copies of each edge in Kn,

and that each edge’s copies’ costs are given by the points in a Poisson process with intensity

1 on [0, ∞). (The Poisson processes for different edges are, of course, independent.) Note

that when finding T1, we only care about the cheapest copy of each edge, and its cost has an

Exp(1) distribution, so the problem for T1 is the same as the original one. However, on K∞

n

we never run out of edges and we can define Tk for all integers k = 1, 2, 3, . . . . Asymptotically,

the three models are equivalent (see full version for details), and Theorem 1 holds for any of

the models. In particular:

◮ Theorem 2. For each k > 1, as n → ∞, w(Tk)
p−→ γk also for the multigraph model with

Poisson process costs.

Frieze [7] also proved that the expectation Ew(T1) converges to ζ(3). For the multigraph

model just described, this too extends.

◮ Theorem 3. For the Poisson multigraph model, Ew(Tk) → γk for each k > 1 as n → ∞.

1.2 Motivations

Frieze and Johansson [6] recently considered a related problem, where instead of choosing

spanning trees T1, T2, . . . greedily one by one, they choose k edge-disjoint spanning trees

with minimum total cost. It is easy to see, by small examples, that selecting k spanning

trees greedily one by one does not always give a set of k edge-disjoint spanning trees with

minimum cost, so the problems are different.
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We show in Theorem 19 that, at least for k = 2, the two problems also asymptotically

have different answers, in the sense that the limiting values of the minimum cost – which

exist for both problems – are different. (Also, as discussed in Section 3.1, we improve on

the upper bound from [6, Section 3] on the cost of the net cheapest k trees, since our upper

bound (3.1) on the cost of the first k trees is smaller.)

Both our question and that of Frieze and Johansson [6] are natural, both seem generally

relevant to questions of robust network design, and both have mathematically interesting

answers.

Another reason for interest in T2 comes from the field of algorithmic mechanism design.

Imagine that each edge of G = Kn is owned by a different “agent”; the agent owning edge

e values it at w(e), an amount known only to them. We, an “auctioneer”, want to buy a

spanning tree, at low cost. One “mechanism” for doing so is a sealed-bid auction where each

agent posts a price w′(e) for their edge, and we buy the tree that is cheapest according to

these prices. Here, agents will naturally inflate their prices, posting prices w′(e) > w(e).

One alternative is a VCG (Vickrey–Clarke–Groves) auction, a generalization of a single-

item second-price auction. Here, we again buy the tree that is cheapest according to the

posted prices w′, but for each edge e purchased, we pay an amount that is a function of w′

−e,

i.e., of all posted prices except that of e; for details see for example [16, Chapter 9]. This

means that varying w′(e) affects only whether edge e is purchased, not how much is paid for

it if it is, and results in the mechanism being truthful: it is in each agent’s selfish interest to

set w′(e) = w(e). Thus, the tree purchased is simply T1, the tree cheapest according to the

values w. However, the amount paid for it is more than w(T1), as the mechanism ensures

the amount paid for each edge e purchased is at least w(e) and typically more. A central

question is the extent of this overpayment, measured by the “frugality ratio” of the VCG

cost V (or that of any mechanism) to some benchmark.

The question applies of course to problems other than MSTs, including the purchase of a

cheapest path between two given points in a graph, or of a basis in a bridgeless matroid. In any

of these contexts, let us continue to use T1 for the cheapest structure and T2 for the cheapest

structure disjoint from T1. The cost w(T1) is not a useful benchmark because V/w(T1) is

unbounded in even the simplest examples (such as buying one of two identical items).

Instead, Talwar [17] and Archer and Tardos [1] propose w(T2) as the benchmark. (An

often-equivalent benchmark, based on a Nash equilibrium, is given by [14] and [16, Chapter

13].) [17] shows that for any bridgeless matroid, V/w(T2) 6 1, and, focusing on the worst

case over all weights w, this bound is achieved by some weights (namely weights 0 on T1, 1 on

T2, and infinity elsewhere). By contrast, for paths the ratio is unbounded. The interpretation,

based on worst-case weights, is that this frugality ratio is 1 for amenable problems like MSTs

and other matroids, and larger for other problems.

In our setting of an MST in Kn with random weights, though, the frugality ratio is

naturally less than its maximum of 1. Specifically, [4] and [11] show that the VCG cost is

typically 2w(T1), which by [7] is 2ζ(3)
.
= 2.4041. We show here that w(T2) is typically γ2,

which by Remark 21 is at least 2.9683, making the frugality typically at most 0.8099. (We

estimate non-rigorously that γ2 is about 3.09 – see Table 1 – in which case the frugality ratio

is typically about 0.78.) Specifically, this holds w.h.p. for n large, and also holds for the ratio

between the expected VCG cost and the expected cost w(T2).

APPROX/RANDOM 2019
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1.3 Further results, structural properties, and conjectures

It is well known that the minimum spanning tree (with any given costs, obtained randomly

or deterministically) can be found by Kruskal’s algorithm [15], which processes the edges

in order of increasing cost and keeps those that join two different components in the forest

obtained so far. (I.e., it keeps each edge that does not form a cycle together with previously

chosen edges.) As in many other previous papers on the random minimum spanning tree

problem, from [7] on, our proofs are based on analyzing the behavior of this algorithm.

Rescale weight as time, thinking of an edge of weight w as arriving at time t = nw.

Kruskal’s algorithm allows us to construct all trees Tk simultaneously by growing forests

Fk(t), with Fk(0) empty and Fk(∞) = Tk: taking the edges of Kn (or K∞

n ) in order of time

arrival (increasing cost), an edge is added to the first forest Fk where it does not create a

cycle. We will also consider a sequence of graphs Gk(t) ⊇ Fk(t), where when we add an edge

to Fk we also add it to all the graphs G1, . . . , Gk; see Section 2.2 for details.

The proof of Theorem 1 is based on a detailed structural characterization of the graphs

Gk(t), given by Theorem 9 (too detailed to set forth in full here in the introduction),

relying heavily on the theory of inhomogeneous random graphs from [3] and related works.

Where C1(Gk(t)) denotes the number of vertices in the largest component of Gk(t) (or

equivalently of Fk(t), as by construction they have the same components), Theorem 9 shows

that C1(Gk(t))/n converges in probability to some function ρk(t), uniformly for all times t.

Moreover, each Gk has its own giant-component threshold: ρk(t) is 0 until some time σk,

and strictly positive thereafter.

The functions ρk(t) are of central interest. For one thing, an edge is rejected from Fk,

making it a candidate for Fk+1, precisely if its two endpoints are within the same component

of Fk, and we show that this is essentially equivalent to the two endpoints both being within

the largest component. This line of reasoning yields the constants γk explicitly, albeit not

in a form that is easily evaluated. We are able, at least, to re-prove that γ1 = ζ(3), as first

shown in [7].

The functions ρk also appear to have a beautiful structure, tending to time-translated

copies of a single universal function:

◮ Conjecture 4. There exists a continuous increasing function ρ∞(x) : (−∞, ∞) → [0, 1)

such that ρk(2k + x) → ρ∞(x) as k → ∞, uniformly in x ∈ R.

This suggests, though does not immediately imply, another conjecture.

◮ Conjecture 5. For some δ, as k → ∞, γk = 2k + δ + o(1).

If this conjecture holds, then necessarily δ ∈ [−1, 0], see Remark 17.

A variety of computational results are given in Section 5. They are supportive of

Conjecture 4 and a stronger version of Conjecture 5 where we take δ = −1:

◮ Conjecture 6. As k → ∞, γk = 2k − 1 + o(1).

Although we cannot prove these conjectures, some bounds on γk are obtained in Section 3

by a more elementary analysis of the sequence of forests Fk. In particular, Theorem 12 and

Corollary 13 lead to the following, implying that γk ∼ 2k as k → ∞.

◮ Corollary 7. For every k > 1,

2k − 2k1/2 < γk < 2k + 2k1/2. (1.1)
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◮ Remark 8. For the minimum spanning tree T1, various further results are known, including

refined estimates for the expectation of the cost w(T1) [5], a normal limit law [9], and

asymptotics for the variance [9, 13, 18]. It seems challenging to show corresponding results

for T2 or later trees. ◭

1.4 Notes on this extended abstract

A full version of this work can be found as [12]. The present extended abstract omits most

proofs as well as many further results. However, Sections 2 and 3 here are reasonably

complete. We will say a few words in Section 2.5 on the approach to proving Theorem 9, but

the technicalities are substantial.

2 Model and main structural results

2.1 Some notation

We use := as defining its left-hand side, and
def
= as a reminder that equality of the two sides

is by definition. We write
.
= for numerical approximate equality, and ≈ for approximate

equality in an asymptotic sense (details given where used).

If x and y are real numbers, then x ∨ y := max(x, y) and x ∧ y := min(x, y). Furthermore,

x+ := x ∨ 0. These operators bind most strongly, e.g., t − τ(i) ∨ τ(j) means t − (τ(i) ∨ τ(j)).

We use “increasing” and “decreasing” in their weak senses; for example, a function f is

increasing if f(x) 6 f(y) whenever x 6 y.

Unspecified limits are as n → ∞. As said above, w.h.p. means with probability 1 − o(1).

Convergence in probability is denoted
p−→. Furthermore, if Xn are random variables and an

are positive constants, Xn = op(an) means, as usual, Xn/an
p−→ 0; this is also equivalent to:

for every ε > 0, w.h.p. |Xn| < εan.

Graph means, in general, multigraph. (It is usually clear from the context whether we

consider a multigraph or simple graph.) If G is a multigraph, then Ġ denotes the simple

graph obtained by merging parallel edges and deleting loops. (Loops do not appear in the

present paper.) The number of vertices in a graph G is denoted by |G|, and the number of

edges by e(G).

For a graph G, let C1(G), C2(G), . . . be the largest component, the second largest

component, and so on, using any rule to break ties. (If there are less than k components,

we define Ck(G) = ∅.) Furthermore, let Ci(G) := |Ci(G)|; thus C1(G) is the the number of

vertices in the largest component, and so on. We generally regard components of a graph G

as sets of vertices.

2.2 Model

We elaborate the multigraph model in the introduction.

We consider (random) (multi)graphs on the vertex set [n] := {1, . . . , n}; we usually omit

n from the notation. The graphs will depend on time, and are denoted by Gk(t) and Fk(t),

where k = 1, 2, 3, . . . and t ∈ [0, ∞]; they all start as empty at time t = 0 and grow as time

increases. We will have Gk(t) ⊇ Gk+1(t) and Fk(t) ⊆ Gk(t) for all k and t. Furthermore,

Fk(t) will be a forest. As t → ∞, Fk(t) will eventually become a spanning tree, Fk(∞),

which is the kth spanning tree Tk produced by the greedy algorithm in the introduction,

operating on the multigraph G1(∞).

Since the vertex set is fixed, we may when convenient identify the multigraphs with sets

of edges. We begin by defining G1(t) by letting edges arrive as independent Poisson processes

with rate 1/n for each pair {i, j} of vertices; G1(t) consists of all edges that have arrived at

APPROX/RANDOM 2019
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or before time t. (This scaling of time turns out to be natural and useful. In essence this is

because what is relevant is the cheapest edges on each vertex, and these have expected cost

Θ(1/n) and thus appear at expected time Θ(1).) We define the cost of an edge arriving at

time t to be t/n, and note that in G1(∞), the costs of the edges joining two vertices form a

Poisson process with rate 1. Hence, G1(∞) is the multigraph model defined in Section 1.

Thus, for any fixed t > 0, G1(t) is a multigraph where the number of edges between

any two fixed vertices is Po(t/n), and these numbers are independent for different pairs

of vertices. This is a natural multigraph version of the Erdős–Rényi graph G(n, t). (The

process G1(t), t > 0, is a continuous-time version of the multigraph process in e.g. [2] and

[10, Section 1], ignoring loops.) Note that Ġ1(t), i.e., G1(t) with multiple edges merged, is

simply the random graph G(n, p) with p = 1 − e−t/n.

Next, we let F1(t) be the subgraph of G1(t) consisting of every edge that has arrived at

some time s 6 t and at that time joined two different components of G1(s). Thus, this is a

subforest of G1(t), as stated above, and it is precisely the forest constructed by Kruskal’s

algorithm (recalled in the introduction) operating on G1(∞), at the time all edges with cost

6 t/n have been considered. Hence, F1(∞) is the minimum spanning tree T1 of G1(∞).

Let G2(t) := G1(t) \ F1(t), i.e., the subgraph of G1(t) consisting of all edges rejected from

F1(t); in other words G2(t) consists of the edges that, when they arrive to G1(t), have their

endpoints in the same component.

We continue recursively. Fk(t) is the subforest of Gk(t) consisting of all edges in Gk(t)

that, when they arrived at some time s 6 t, joined two different components in Gk(s). And

Gk+1(t) := Gk(t) \ Fk(t), consisting of the edges rejected from Fk(t).

Hence, the kth spanning tree Tk produced by Kruskal’s algorithm equals Fk(∞), as

asserted above.

Note that Fk(t) is a spanning subforest of Gk(t), in other words, the components of

Fk(t) (regarded as vertex sets) are the same as the components of Gk(t); this will be used

frequently below. Moreover, each edge in Gk+1(t) has endpoints in the same component of

Gk(t); hence, each component of Gk+1(t) is a subset of a component of Gk(t). It follows

that an edge arriving to G1(t) will be passed through G2(t), . . . , Gk(t) and to Gk+1(t) (and

possibly further) if and only if its endpoints belong to the same component of Gk(t), and

thus if and only if its endpoints belong to the same component of Fk(t).

2.3 More notation

We say that a component C of a graph G is the unique giant of G if |C| > |C′| for every other

component C′; if there is no such component (i.e., if the maximum size is tied), then we

define the unique giant to be ∅.

We say that a component C of Fk(t) is the permanent giant of Fk(t) (or of Gk(t)) if it is

the unique giant of Fk(t) and, furthermore, it is a subset of the unique giant of Fk(u) for

every u > t; if there is no such component then the permanent giant is defined to be ∅.

Let Ck(t) denote the permanent giant of Fk(t). Note that the permanent giant either is

empty or the largest component; thus |Ck(t)| is either 0 or C1(Fk(t)) = C1(Gk(t)). Note

also that the permanent giant Ck(t) is an increasing function of t: Ck(t) ⊆ Ck(u) if t 6 u.

Furthermore, for sufficiently large t (viz. t such that Gk(t) is connected, and thus Fk(t) is

the spanning tree Tk), Ck(t) = Ck(∞) = [n].
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2.4 A structure theorem

The basis of our proof of Theorems 1 and 2 is the following theorem on the structure of the

components of Gk(t). Recall that Fk(t) has the same components as Gk(t), so the theorem

applies as well to Fk(t).

For k = 1, the theorem collects various known results for G(n, p). Our proof includes this

case too, making the proof more self-contained.

◮ Theorem 9. With the definitions above, the following hold for every fixed k > 1 as n → ∞.

(i) There exists a continuous increasing function ρk : [0, ∞) → [0, 1) such that

C1(Gk(t))/n
p−→ ρk(t), (2.1)

uniformly in t ∈ [0, ∞); in other words, for any ε > 0, w.h.p., for all t > 0,

ρk(t) − ε 6 C1(Gk(t))/n 6 ρk(t) + ε. (2.2)

(ii) supt>0 C2(Gk(t))/n
p−→ 0.

(iii) There exists a threshold σk > 0 such that ρk(t) = 0 for t 6 σk, but ρk(t) > 0 for t > σk.

Furthermore, ρk is strictly increasing on [σk, ∞).

(iv) There exist constants bk, Bk > 0 such that

ρk(t) > 1 − Bke−bkt, t > 0. (2.3)

In particular, ρk(t) → 1 as t → ∞.

(v) If t > σk, then w.h.p. Gk(t) has a non-empty permanent giant. Hence, for every t > 0,

|Ck(t)|/n
p−→ ρk(t). (2.4)

We note also a formula for the number of edges in Gk(t), and two simple inequalities

relating different k.

◮ Theorem 10. For each fixed k > 1 and uniformly for t in any finite interval [0, T ],

e(Gk(t))/n
p−→ 1

2

∫ t

0

ρk−1(s)2 ds. (2.5)

◮ Theorem 11. ρk(t) 6 ρk−1(t) for every t > 0, with strict inequality when ρk−1(t) > 0

(equivalently, when t > σk−1). Furthermore,

σk > σk−1 + 1. (2.6)

Inequality (2.6) is weak in that we conjecture that as k → ∞, σk = σk−1 + 2 + o(1).

2.5 The proof approach

Proofs of the results in this section are by induction on k, relying heavily on the theory

of inhomogeneous random graphs by Bollobás, Janson and Riordan in [3]. When an edge

is passed on by Gk this is almost always because it is contained in C1(Gk); it is only

rarely because it is contained in some other component, and this case is treatable as a

perturbation within the theory. Thus, vertices “appear” in Gk+1(t) as governed by ρk(t); this

is formalized as a “vertex space” in the theory. Once two vertices u and v are both present

in Gk+1(t), edges between them arrive at rate 1/n. So, if they arrive at times τu and τv, the

probability they are connected at time t is asymptotically 1
n (t − (τu ∨ τv))+ =: 1

n κt(τu, τv);

κt is the “kernel” in the inhomogeneous random graph framework. The framework then

shows that C1(Gk+1(t))/n converges in probability to a certain ρ(κt), the survival probability

of a related inhomogeneous branching process, and this ρ(κt) is precisely the desired next

function ρk+1(t).

APPROX/RANDOM 2019
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3 Bounds on the expected cost

3.1 Total cost of the first k trees

The following theorem gives lower and upper bounds on the total cost of the first k spanning

trees.

◮ Theorem 12. Letting Wk =
∑k

i=1 w(Ti) be the total cost of the first k spanning trees, for

every k > 1,

k2 n − 1

n
6 EWk 6 k(k + 1)

n − 1

n
< k2 + k. (3.1)

Comparing with Frieze and Johansson [6, Section 3], our upper bound is smaller than

their k2 + 3k5/3 despite the fact that they considered a more relaxed minimization problem

(see Section 4); as such ours is a strict improvement. In both cases the lower bound is simply

the expected total cost of the cheapest k(n − 1) edges in G, with (3.2) matching [6, (3.1)].

Proof. The minimum possible cost of the k spanning trees is the cost of the cheapest k(n−1)

edges. Since each edge’s costs (plural, in our model) are given by a Poisson process of rate 1,

the set of all edge costs is given by a Poisson process of rate
(

n
2

)

. Recall that in a Poisson

process of rate λ, the interarrival times are independent exponential random variables with

mean 1/λ, so that the ith arrival, at time Zi, has EZi = i/λ. It follows in this case that

Wk >
∑k(n−1)

i=1 Zi and

EWk >

k(n−1)
∑

i=1

i
(

n
2

) =
(k(n − 1))(k(n − 1) + 1)

n(n − 1)
> k2 n − 1

n
. (3.2)

We now prove the upper bound. An arriving edge is rejected from Fi iff both endpoints

lie within its “forbidden” set Bi of edges, namely those edges with both endpoints in one

component. The nesting property of the components means that B1 ⊇ B2 ⊇ · · · . An arriving

edge e joins Fk if it is rejected from all previous forests, i.e., e ∈ Bk−1 (in which case by the

nesting property, e also belongs to all earlier Bs) but can be accepted into Fk, i.e., e /∈ Bk.

The idea of the proof is to show that the first k forests fill reasonably quickly with n − 1

edges each, and we will do this by coupling the forest-creation process (Kruskal’s algorithm)

to a simpler, easily analyzable random process.

Let s(τ) = {sk(τ)}∞

k=0 denote the vector of the sizes (number of edges) of each forest after

arrival of the τ ’th edge; we may drop the argument τ when convenient. Let pk = |Bk|/
(

n
2

)

,

the rejection probability for Fk. For any τ , by the nesting property of the components and

in turn of the Bk,

s1 > s2 > · · · and p1 > p2 > · · · . (3.3)

The MST process can be simulated by using a sequence of i.i.d. random variables α(τ) ∼
U(0, 1), incrementing sk(τ) if both α(τ) 6 pk−1(τ) (so that e is rejected from Fk−1 and thus

from all previous forests too) and α(τ) > pk(τ) (so that e is accepted into Fk). We take

the convention that p0(τ) = 1 for all τ . For intuition, note that when sk = 0 an edge is

never rejected from Fk (pk = 0, so α ∼ U(0, 1) is never smaller); when sk = 1 it is rejected

with probability pk = 1/
(

n
2

)

; and when sk = n − 1 it is always rejected (|Bk| must be
(

n
2

)

,

so pk = 1).



S. Janson and G. B. Sorkin 60:9

Given the size sk =
∑

∞

i=1(Ci(Fk)−1) of the kth forest, |Bk| =
∑

∞

i=1

(

Ci(Fk)
2

)

is maximized

(thus so is pk) when all the edges are in one component, i.e.,

pk 6

(

sk + 1

2

) /(

n

2

)

(3.4)

6
sk

n − 1
=: p̄k. (3.5)

The size vector s(τ) thus determines the values p̄k(τ) for all k.

Let r(τ) denote a vector analogous to s(τ), but with rk(τ) incremented if p̂k(τ) < α(τ) 6

p̂k−1(τ), with

p̂k :=
rk

n − 1
. (3.6)

By construction,

r1 > r2 > · · · and p̂1 > p̂2 > · · · . (3.7)

For intuition, here note that when rk = 0 an arrival is never rejected from rk (p̄k = 0); when

sk = 1 it is rejected with probability p̄k = 1/(n − 1) > pk = 1/
(

n
2

)

; and when sk = n − 1 it is

always rejected (p̄k = 1).

Taking each Fi(0) to be an empty forest (n isolated vertices, no edges) and accordingly

s(0) to be an infinite-dimensional 0 vector, and taking r(0) to be the same 0 vector, we claim

that for all τ , s(τ) majorizes r(τ), which we will write as s(τ) � r(τ). That is, the prefix

sums of s dominate those of r: for all τ and k,
∑k

i=1 si(τ) >
∑k

i=1 ri(τ).

We first prove this; then use it to argue that edge arrivals to the first k forests, i.e., to s,

can only precede arrivals to the first k elements of r; and finally analyze the arrival times

of all k(n − 1) elements to the latter to arrive at an upper bound on the total cost of the

first k trees.

We prove s(τ) � r(τ) by induction on τ , the base case with τ = 0 being trivial. Figure

1 may be helpful in illustrating the structure of this inductive proof. Suppose the claim

holds for τ . The probabilities pk(τ) are used to determine the forests Fk(τ + 1) and in turn

the size vector s(τ + 1). Consider an intermediate object s
′(τ + 1), the size vector that

would be given by incrementing s(τ) using the upper-bound values p̄k(τ) taken from s(τ)

by (3.5). Then, si(τ + 1) receives the increment if pi−1 > α > pi, and s′

j(τ + 1) receives the

increment if p̄j−1 > α > p̄j ; hence, from p̄i−1 > pi−1 > α it is immediate that i 6 j and thus

s(τ + 1) � s
′(τ + 1).

It suffices then to show that s
′(τ+1) � r(τ+1). These two vectors are obtained respectively

from s(τ) and r(τ), with s(τ) � r(τ) by the inductive hypothesis, using probability thresholds

p̄k(τ) = f(sk(τ)) and p̂k(τ) = f(rk(τ)) respectively, applied to the common random variable

α, where f(s) = s/(n − 1) (but all that is important is that f is a monotone function of s).

Suppose that

f(si−1) > α > f(si) and f(rj−1) > α > f(rj), (3.8)

so that elements i in s and j in r are incremented. If i 6 j, we are done. (Prefix sums of s(τ)

dominated those of r(τ), and an earlier element is incremented in s
′(τ + 1) than r(τ + 1),

thus prefix sums of s
′(τ + 1) dominate those of r(τ + 1).) Consider then the case that i > j.
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F(τ) F(τ + 1)

s(τ) s(τ + 1)

s
′(τ + 1)

r(τ) r(τ + 1)

p

p̄

�

p

�

�
p̂

Figure 1 Coupling of the forests’ sizes s(τ) to a simply analyzable random process r(τ), showing
the structure of the inductive proof (on τ) that s(τ) majorizes r(τ).

In both processes the increment falls between indices j and i, so the k-prefix sum inequality

continues to hold for k < j and k > i. Thus, for j 6 k < i,

k
∑

ℓ=1

s′

ℓ(τ + 1) =

j−1
∑

ℓ=1

sℓ(τ) +

k
∑

ℓ=j

sℓ(τ)

k
∑

ℓ=1

rℓ(τ + 1) =

j−1
∑

ℓ=1

rℓ(τ) + 1 +

k
∑

ℓ=j

rℓ(τ).

(3.9)

From j < i, (3.8), and (3.3) and (3.7) we have that when j 6 ℓ 6 i − 1,

sℓ > si−1 > f−1(α) > rj > rℓ,

implying

sℓ > rℓ + 1. (3.10)

In (3.9), we have
∑i−1

ℓ=1 sℓ(τ) >
∑i−1

ℓ=1 rℓ(τ) from the inductive hypothesis that s(τ) � r(τ),

while using (3.10) gives

k
∑

ℓ=j

sℓ(τ) >

k
∑

ℓ=j

(1 + rℓ(τ)) > 1 +

k
∑

ℓ=j

rℓ(τ),

from which it follows that s
′(τ +1) � r(τ +1), completing the inductive proof that s(τ) � r(τ).

Having shown that the vector s(τ) of component sizes majorizes r(τ), it suffices to analyze

the latter. Until this point we could have used (3.4) rather than (3.5) to define p̄k, p̂k, and

the function f , but now we take advantage of the particularly simple nature of the process

governing r(τ). Recall that a new edge increments ri for the first i for which the U(0, 1) “coin

toss” α(τ) has α(τ) > p̂i
def
= ri/(n − 1). Equivalently, consider an array of cells n − 1 rows

high and infinitely many columns wide, generate an “arrival” at a random row or “height”

X(τ) uniform on 1, . . . , n − 1, and let this arrival occupy the first unoccupied cell i at this

height, thus incrementing the occupancy ri of column i. This is equivalent because if ri

of the n − 1 cells in column i are occupied, the chance that i is rejected – that X(τ) falls

into this set and thus the arrival moves along to test the next column i + 1 – is ri/(n − 1),

matching (3.6).

Recalling that the cost of an edge arriving at time t is t/n in the original graph problem,

the combined cost Wk of the first k spanning trees is 1/n times the sum of the arrival times of

their k(n − 1) edges. The majorization
∑k

i=1 si(τ) >
∑k

i=1 ri(τ) means that the ℓ’th arrival
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to the first k forests comes no later than the ℓ’th arrival to the first k columns of the cell

array. Thus, the cost Wk of the first k trees is at most 1/n times the sum of the times of the

k(n − 1) arrivals to the array’s first k columns.

The continuous-time edge arrivals are a Poisson process with intensity 1/n on each of the
(

n
2

)

edges, thus intensity (n − 1)/2 in all; it is at the Poisson arrival times that the discrete

time τ is incremented and X(τ) is generated. Subdivide the “X” process into the n − 1

possible values that X may take on, so that arrivals at each value (row in the cell array) are

a Poisson process of intensity λ = 1
2 . The sum of the first k arrival times in a row is the sum

of the first k arrival times in its Poisson process. The ith such arrival time is the sum of i

exponential random variables, and has expectation i/λ. The expected sum of k arrival times

of a line is thus
(

k+1
2

)

/λ = k(k + 1), and (remembering that cost is time divided by n), the

expected total cost of all n − 1 lines is

n − 1

n
k(k + 1),

yielding the upper bound in (3.1) and completing the proof of the theorem. ◭

◮ Corollary 13. Let Γk :=
∑k

i=1 γi. Then, for every k > 1,

k2
6 Γk =

k
∑

i=1

γi 6 k2 + k. (3.11)

Proof. Immediate from Theorems 12 and 3. ◭

◮ Example 14. In particular, Corollary 13 gives 1 6 γ1 6 2 and 4 6 γ1 + γ2 6 6. In fact, we

know that γ1 = ζ(3)
.
= 1.2021 [7] and γ1 + γ2 > 4.1704 by [6] and Section 4, see Corollary 20.

Numerical estimates suggest γ1 + γ2
.
= 4.30; see Section 5, including Table 1, for various

estimates of γ2. ◭

3.2 Corollaries and conjectures for the kth tree

Turning to individual γk instead of their sum Γk, we obtain Corollary 7, namely that

2k − 2k1/2 < γk < 2k + 2k1/2.

Proof of Corollary 7. For the upper bound, we note that obviously γ1 6 γ2 6 . . . , and thus,

for any ℓ > 1, using both the upper and lower bound in (3.11),

ℓ γk 6

k+ℓ−1
∑

i=k

γi = Γk+ℓ−1 − Γk−1 6 (k + ℓ − 1)(k + ℓ) − (k − 1)2

= ℓ2 + ℓ(2k − 1) + k − 1 (3.12)

and hence

γk 6 2k − 1 + ℓ +
k − 1

ℓ
. (3.13)

Choosing ℓ = ⌈
√

k⌉ gives the upper bound in (1.1).

For the lower bound we similarly have, for 1 6 ℓ 6 k,

ℓγk > Γk − Γk−ℓ > k2 − (k − ℓ)(k − ℓ + 1) = −ℓ2 − (2k + 1)ℓ − k (3.14)

and hence

γk > 2k + 1 − ℓ − k

ℓ
. (3.15)

Choosing, again, ℓ = ⌈
√

k⌉ gives the lower bound in (1.1). ◭
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◮ Remark 15. For a specific k, we can improve (1.1) somewhat by instead using (3.13) and

(3.15) with ℓ = ⌊
√

k⌋ or ℓ = ⌈
√

k⌉. For example, for k = 2, taking ℓ = 1 yields 2 6 γ2 6 5.

For k = 3, taking ℓ = 2 yields 3.5 6 γ3 6 8. ◭

Besides these rigorous results, taking increments of the left and right-hand sides of (3.11)

also suggests the following conjecture.

◮ Conjecture 16. For k > 1, 2k − 1 6 γk 6 2k.

◮ Remark 17. Moreover, if γk = 2k + δ + o(1) holds, as conjectured in Conjecture 5, then

Γk = k2 + k(δ + 1) + o(k), and thus necessarily δ ∈ [−1, 0] as a consequence of Corollary 13.

In fact, the numerical estimates described in Section 5, suggest that δ = −1; see Conjecture 6.

◭

3.3 Improved upper bounds

The upper bounds in Theorem 12 and Corollary 13 were proved using the bound (3.5). A

stronger, but less explicit, bound can be proved by using instead the sharper (3.4). That is,

we consider the random vectors r(τ) defined as above but with (3.6) replaced by

p̂k :=

(

rk + 1

2

)

/

(

n

2

)

. (3.16)

As remarked before (3.4), this approximation comes from imagining all edges in each Fk to

be in a single component; this overestimates the probability that an arriving edge is rejected

from Fk and, as developed in the previous subsection, gives s(τ) � r(τ) just as when p̂k was

defined by (3.5).

Using for consistency our usual time scaling in which edges arrive at rate (n − 1)/2, by a

standard martingale argument one can show that, for each k > 1,

1

n
rk(⌊ 1

2 nt⌋)
p−→ gk(t), uniformly for t > 0, (3.17)

for some continuously differentiable functions gk(t) satisfying the differential equations, with

g0(t) := 1,

g′

k(t) = 1
2

(

gk−1(t)2 − gk(t)2
)

, gk(0) = 0, k > 1. (3.18)

Moreover, using s(τ) � r(τ) and taking limits, it can be shown that

Γk :=

k
∑

i=1

γi 6
1

2

∫

∞

0

t
(

1 − gk(t)2
)

dt. (3.19)

We omit the details, but roughly, in time dt, 1
2 n dt edges arrive, all costing about t/n, and

a gk(t)2 fraction of them pass beyond the first k graphs (to the degree that we are now

modeling graphs).

For k = 1, (3.18) has the solution g1(t) = tanh(t/2), and (3.19) yields the bound

Γ1 = γ1 6 2 ln 2
.
= 1.3863. This is better than the bound 2 given by (3.11), but still far from

precise since γ1 = ζ(3)
.
= 1.2021.

For k > 2 we do not know any exact solution to (3.18), but numerical solution of (3.18)

and calculation of (3.19) (see Section 5) suggests that Γk < k2 + 1. We leave the proof of this

as an open problem. If proved, this would be a marked improvement on Γk 6 k2 + k, which

was the exact expectation of the random process given by (3.5) (that part of the analysis

was tight). In particular, it would establish that 2k − 2 6 γk 6 2k.
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For k = 2, the numerical calculations in Section 5 give γ1 + γ2 6 4.5542 . . . and thus

γ2 6 3.3521 . . .. The same value was also obtained using Maple’s numerical differential

equation solver, with Maple giving greater precision but the two methods agreeing in the

digits shown here.

4 A related problem by Frieze and Johansson

As said in the introduction, Frieze and Johansson [6] recently considered the problem of

finding the minimum total cost of k edge-disjoint spanning trees in Kn, for a fixed integer

k > 2. (They used random costs with the uniform model; we may consider all three models

described in Section 1.1.) We denote this minimum cost by mstk, following [6]. Trivially,

mstk 6

k
∑

i=1

w(Ti), (4.1)

and as said in the introduction, it is easy to see that strict inequality may hold when k > 2,

i.e., that our greedy procedure of choosing T1, T2, . . . successively does not yield the minimum

cost set of k disjoint spanning trees.

We assume in this section that n > 2k; then k edge-disjoint spanning trees exist and thus

mstk < ∞.

◮ Remark 18. As observed by Frieze and Johansson [6], the problem is equivalent to finding

the minimum cost of a basis in the matroid Mk, defined as the union matroid of k copies of

the cycle matroid of Kn. This means that the elements of Mk are the edges in Kn, and a set

of edges is independent in Mk if and only if it can be written as the union of k forests, see

e.g. [20, Chapter 8.3]. (Hence, the bases, i.e., the maximal independent sets, are precisely the

unions of k edge-disjoint spanning trees. For the multigraph version in the Poisson model, of

course we use instead the union matroid of k copies of the cycle matroid of K∞

n ; we use the

same notation Mk.) We write rk for rank in this matroid. ◭

For k = 2, Frieze and Johansson [6] show that

Emst2 → µ2
.
= 4.1704. (4.2)

This is strictly smaller than our numerical estimates from Table 1 for the total cost of two

edge-disjoint spanning trees chosen successively, γ1 + γ2
.
= 1.20 + 3.09 > 4.29; we show this

calculation to only two digits as we are confident of this level of precision. This would show

that choosing minimum spanning trees one by one is not optimal, even asymptotically, except

that our estimates are not rigorous. The following theorem is less precise but establishes

rigorously that the values are indeed different. (We rely only on σ2 < µ2, coming from the

estimate of µ2 above, and our estimate σ2
.
= 2.69521, obtained as the numerical solution to

a differential equation; see the full version for details.)

◮ Theorem 19. There exists δ > 0 such that, for any of the three models, w.h.p. w(T1) +

w(T2) > mst2 + δ.

This can be restated in the following equivalent form.

◮ Corollary 20. γ1 + γ2 > µ2.

Proof. The equivalence of the statements in Theorem 19 and Corollary 20 is immediate

since w(T1)
p−→ γ1 and w(T2)

p−→ γ2 by Theorem 1 or 2 (depending on the choice of

model), and mst2
p−→ µ2 by [6] and justification that this holds in all three models (see the

full version). ◭
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◮ Remark 21. Numerically, γ2 > 2.9683. This is immediate from Corollary 20, the value of

µ2 given by [6], and (by [7]) γ1 = ζ(3). ◭

The proof of Theorem 19 is based on the fact that many edges are rejected from T1 and

T2 after time σ2, but none is rejected from the union matroid until a later time c3, namely

the threshold for appearance of a 3-core in a random graph.

5 Computational results

A variety of computations were performed, all of which will be mentioned here but only one

presented in any detail; for the rest see [12].

1. We performed naive simulations, generating edge-weighted random graphs and finding

the successive trees.

2. We performed a similar simulation, but instead of introducing edges in order of increasing

weight, we simply generate random edges. The details are below.

3. We solved the differential equations (3.18) numerically up to k = 50, to get upper bounds

on Γk as in (3.19). The results suggest that Γk < k2 + 1 (perhaps Γk < k2 + 0.743).

If proved, this would be a marked improvement on Γk 6 k2 + k, which was the exact

expectation of the random process given by (3.5) (that part of the analysis was tight). In

particular, it would establish that 2k − 2 6 γk 6 2k.

4. Finally, the functions ρk(t) can be obtained, recursively on k, through the solution to

certain functional fixed-point equations. We solved these numerically, getting results

consistent with those in the set of simulations listed as (2) above.

We now detail the set of simulations listed as (2) above, done with reference to the

Poisson multigraph model introduced in Section 2.2 and used throughout. We begin with k

empty graphs of order n. At each step we introduce a random edge e and, in the first graph

Gi for which e does not lie within a component, we merge the two components given by its

endpoints. (If this does not occur within the k graphs under consideration, we do nothing,

just move on to the next edge.) For each graph we simulate only the components (i.e.,

the sets of vertices comprised by each component); there is no need for any more detailed

structure. The edge arrivals should be regarded as occurring as a Poisson process of intensity

(n − 1)/2 but instead we simply treat them as arriving at times 2/n, 4/n, etc.

Figure 2 depicts the result of a single such simulation with n = 1000000, showing for

each k from 1 to 5 the size of the largest component of Gk (as a fraction of n) against time.

Similar experiments with multiple simulations and larger values of n support Conjecture 6

that γk = 2k − 1 + o(1). The largest experiment’s results are shown in part in Table 1;

its support for the conjecture continues through k = 29, the last value for which it gives

good data.

Table 1 Estimates of γ1, . . . , γ9 from 10 simulations each with n = 10000000, through time
t = 40.

10 simulations each with n = 10000000

γ1 γ2 γ4 γ4 γ5 γ6 γ7 γ8 γ9

mean 1.2020 3.0921 5.0482 7.0253 9.0169 11.0091 13.0067 15.0035 17.0039
std err 0.0002 0.0003 0.0005 0.0008 0.0010 0.0012 0.0016 0.0010 0.0015
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Figure 2 Largest component sizes, as a fraction of n, for graphs G1, . . . , G5, based on a single
simulation with n = 1000000.

6 Open questions

We would be delighted to confirm the various conjectures above, in particular Conjectures

4–6, and to get a better understanding of (and ideally a closed form for) ρ∞ (provided it

exists).

It is also of natural interest to ask this kth-minimum question for structures other than

spanning trees. Subsequent to this work, the length Xk of the kth shortest s–t path in a

complete graph with random edge weights has been studied by Mezei, Gerke and Sorkin

[8]. They show that Xk/(2k/n + ln n/n)
p−→ 1 for all k from 1 to n − 1. In particular,

the first few paths all cost nearly identical amounts, quite different from the situation for

successive MSTs.

The “random assignment problem” is to determine the cost of a minimum-cost perfect

matching in a complete bipartite graph with random edge weights. A great deal is known

about it, by a variety of methods; for one relatively recent work, with references to others,

see Wästlund [19]. It would be interesting to understand the kth cheapest matching.

It could also be interesting to consider other variants of all these questions. Frieze and

Johansson [6] considered the k disjoint structures which together have the smallest possible

total cost, where we consider disjoint structures generated successively. In either case, instead

of asking for disjoint structures, we could require structures which are merely distinct, or

perhaps which differ in some adversarially specified elements.
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