
Abstract: Many agent-based integrated urban models have been de-
veloped to investigate urban issues, considering the dynamics and feed-
backs in complex urban systems. The lack of disaggregate data, however, 
has become one of the main barriers to the application of these models, 
though a number of data synthesis methods have been applied. To gen-
erate a complete dataset that contains full disaggregate input data for 
model initialization, this paper develops a virtual city creator as a key 
component of an agent-based land-use and transport model, SelfSim. 
The creator is a set of disaggregate data synthesis methods, including a 
genetic algorithm (GA)-based population synthesizer, a transport facil-
ity synthesizer, an activity facility synthesizer and a daily plan genera-
tor, which use the household travel survey data as the main input. Fi-
nally, the capital of China, Beijing, was used as a case study. The creator 
was applied to generate an agent- and Geographic Information System 
(GIS)-based virtual Beijing containing individuals, households, trans-
port and activity facilities, as well as their attributes and linkages.
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1	 Introduction

Agent-based modelling is a general approach to modelling dynamic and adaptive complex systems that 
contain autonomous agents and their interactions (Macal & North, 2010). Compared with equation-
based models that are another general approaches to modelling complex systems, agent-based modelling 
has several strengths below (Huang, Parker, Filatova, & Sun, 2014; Twomey & Cadman, 2002): (1) 
Natural representations. The model is much easier to understand, as it represents the target system more 
straightforwardly; (2) Heterogeneity. The model is able to deal with the heterogeneous attributes and 
actions of agents; (3) Bounded/Unbounded rationality. The agent-based model is able to consider the 
rationality to be either bounded or unbounded; (4) Communication and social networking. Agents can 
communicate and share information easily through the social network, which is difficult to incorporate 
into traditional approaches; (5) Maintenance and refinement. It is easy to add, remove or modify agent 
types, attributes and behavioral rules of agents. Therefore, many agent-based integrated urban models 
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(Zhuge, Shao, Gao, Meng, & Ji, 2014), such as UrbanSim (Waddell, 2002) and ILUTE (Salvini & 
Miller, 2005), have been developed to investigate urban issues at the micro scale, considering the dy-
namics and feedbacks in urban systems. However, such integrated urban models heavily rely on micro 
and disaggregate data in general, which is not available or accessible in some cases due to a high survey 
cost or privacy issues. The lack of disaggregate data has become one of the main barriers to the applica-
tion of these models. As a result, some of the agent-based urban models were only tested in numerical 
experiments, rather than in real-world scenarios (Ettema, 2011; Filatova, Parker, & Van der Veen, 2009, 
2007; Magliocca, Safirova, McConnell, & Walls, 2011; Parker & Filatova, 2008). In general, greater ac-
cess to such disaggregate data is expected to be helpful for more easily developing the models with fewer 
constraints on the data availability and also for better testing the models.

In response to this, a number of methods and algorithms have been developed to generate the 
disaggregate inputs for agent-based urban models, using a small portion of micro sample data and some 
relevant macro-level constraints (Müller & Axhausen, 2011; Ye, Konduri, Pendyala, Sana, & Waddell, 
2009) or even only using macro-level data (Barthelemy & Toint, 2013; Ge, Meng, Cao, Qiu, & Huang, 
2014). However, most of them were used to generate synthetic populations, paying significantly less 
attention to the disaggregate activity and transport facilities, which are another two key inputs for agent-
based urban models. Furthermore, disaggregate populations and facilities are highly correlated: on one 
hand, each household needs to be allocated with a residential facility (Li, Zhuge, Zhang, Gao, & Zhang, 
2014); on the other hand, individuals perform their daily activities (e.g., shopping and leisure) based at 
different facilities. Therefore, an integrated approach, which is called virtual city creator in this paper, is 
needed to in sequence generate a synthetic population and physical environment containing activity and 
transport facilities, and then to link individuals and households in the population to the facilities, result-
ing in an agent- and GIS-based virtual city. This could be viewed as a process of initializing the integrated 
urban models. In addition, the virtual city creator has been developed as a component of an agent-based 
integrated land use and transport model, SelfSim, which has been applied in a Chinese medium-sized 
city, Baoding (Zhuge, Shao, Gao, Dong, & Zhang, 2016). 

2	 Literature review

Many population synthesizers have been developed to generate synthetic populations comprising house-
holds and persons, as well as their attributes (e.g., car ownership and age). Iterative Proportional Fitting 
(IPF) (Beckman, Baggerly, & McKay, 1996) and Combinatorial Optimization (CO) method are two 
traditional approaches to population synthesis (Abraham, Stefan, & Hunt, 2012). In general, these two 
synthesizers use the household travel survey data as the key input, together with some macro-level con-
straints. Apart from the two traditional methods and their variants, the other synthesizers can be broadly 
categorized into the following four groups (Zhuge, Li, Ku, Gao, & Zhang, 2016): (1) Simulation-based 
models (Farooq, Bierlaire, Hurtubia, & Flötteröd, 2013) that, for example, used Markov Chain Monte 
Carlo method to generate a synthetic population; (2) Data Constriction models (Gargiulo, Ternes, 
Huet, & Deffuant, 2010) that were particularly for those cases where the general input data above was 
not available; (3) Entropy Optimization Models (Bar-Gera, Konduri, Sana, Ye, & Pendyala, 2009) that 
were capable of searching for a most-likely set of household weights for population synthesis; (4) Fitness-
based Models (Ma & Srinivasan, 2015) that “generate a list of households, directly matching several 
multilevel controls”. A detailed review on population synthesis can be found in the work of Müller and 
Axhausen (2010).

The physical environment in this paper refers to the GIS-based disaggregate data on activity facili-
ties and transport infrastructures. Open online sources, such as OpenStreetMap (See http://www.open-
streetmap.org/), are good datasets for preparing such disaggregate data, as they can provide relatively 
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fine-scale transport networks (Gao, Zhao, Zhuge, & Zhang, 2012), as well as the locations of activity 
and transport facilities (Liu & Long, 2016; Zilske, Neumann, & Nagel, 2011). However, the capacities 
and prices of the facilities, which could influence several forms of individual behavior (e.g., residential 
location choice), are difficult to access or may even not be available online. Furthermore, these open 
online sources generally can only provide the latest information, but have no historical data available 
which are needed in some studies investigating past issues. Compared with population synthesizers, the 
methods to create the physical environment have received significantly less attention. Ge et al. (2014) 
proposed an algorithm to generate the physical environment that was composed of six facility cat-
egories, “houses, educational institutions, workplaces, consumption locations, entertainment locations 
and medical institutions.” Given a synthetic population and physical environment, individuals in the 
population need to be further linked to activity facilities, such as houses, workplaces, and educational 
institutes, which can be viewed as the generation of initial travel demand, resulting in initial daily plans 
for each agent. This kind of generation can be done with activity-based models (Chu, Cheng, & Chen, 
2012; Horni, Nagel, & Axhausen, 2016; Pinjari & Bhat, 2011; Zhuge, Shao, Gao, Meng, & Xu, 2014; 
Zhuge, Shao, Wang, & Hu, 2017).

In summary, the synthesis methods for transport and activity facilities have received significantly 
less attention than population synthesizers. In response to this, both activity and transport facility syn-
thesizers will be developed to generate activity and transport facilities, respectively, which make up a 
GIS-based physical environment. Furthermore, this paper will develop a so-called virtual city creator 
by integrating several synthesis methods, including population and facility synthesizers, to generate and 
link individuals and the physical environment at the micro level, resulting in an agent- and GIS-based 
virtual city which can be used as the input for agent-based urban micro-simulations.

3	 Methodology

3.1	 An agent-based integrated urban model—SelfSim

As shown in Figure 1, the virtual city creator is developed as a key component of SelfSim, an agent-based 
integrated urban model, and is used to initialize the model prior to a simulation. SelfSim comprises 
several agent-based spatial sub-models, which make up an annual loop to simulate how urban systems 
evolve over time at the micro level. A brief introduction to each sub-model is given as follows (Zhuge & 
Shao, 2018a, 2018b; Zhuge, Shao, Gao, et al., 2016):

•	 Demographic Evolution Model: is used to simulate the demographic transitions, such as births 
and deaths, at the individual level (Zhuge & Shao, 2018b);

•	 Activity-based Travel Demand Model: is based on MATSim (Multi-Agent Transport Simula-
tion) and is used to simulate how agents perform their daily activities and travel from one activ-
ity location to the next throughout a whole day (Horni et al., 2016); 

•	 Micro-Simulation-based Accessibility Model: calculates the accessibility for different transport 
and activity facilities based on the activity-based simulation (or the MATSim simulation);

•	 Joint Model of Residential Location Choice & Real Estate Price: is used to simulate the de-
cision-making of household agents on their residential locations and to predict the real estate 
price of residential facilities (Zhuge & Shao, 2018b);

•	 Transport Facility Development Model: simulates the development of transport facilities, in-
cluding parking lots and refueling stations (Zhuge & Shao, 2018a);

•	 Activity Facility Location Model: is used to simulate the development of activity facilities, such 
as shops. Note that this sub-model has not been implemented yet. Therefore, the data on activ-
ity facilities needs to be input before the model is run.
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One may have found that such an agent-based urban model requires various disaggregate input data. 
A virtual city creator could be very useful here for preparing data to initialize the model prior to a 
simulation. 

Figure 1: Framework of SelfSim (Zhuge, Shao, Gao, et al., 2016)

Figure 2 shows the sketch of an agent- and GIS-based virtual city generated by the creator, which 
contains persons, households and facilities, as well as their attributes and linkages. SelfSim assumes that 
all individuals and facilities are centered on road nodes (or interactions) for the purpose of model simpli-
fication, meaning that transport and activity facilities are located on nodes, and individuals are resident 
and perform their daily activities in node-based facilities. It is worth noting that both individuals and 
facilities have their own attributes attached, such as sex, age and facility capacity.
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Figure 2: Sketch of an agent- and GIS-based virtual city

3.2	 Procedure of data synthesis for the creator

Figure 3 demonstrates how to create and link individuals and physical environment at the micro level, 
given the household travel survey data, macro-level constraints (e.g., total number of households) and 
a transport network. Among the inputs above, the household travel survey data, which contains rich 
spatial and temporal information on travel and activities of respondents, is the key input. The procedure 
of data synthesis is composed of three steps below: Steps 1 and 2 are to generate a synthetic popula-
tion and physical environment comprising activity and transport facilities, respectively. Step 3 is to link 
individuals in the population to the physical environment. As a result, an agent- and GIS-based virtual 
city containing persons, households and facilities, as well as their attributes and relationships can be 
obtained. The virtual city can be viewed as the base-year input of SelfSim. It is worth noting that Steps 
2 and 3 are interdependent, meaning that the outputs of one component are used as the inputs of the 
other. For instance, the transport facility synthesizer in Step 2 uses the daily plans generated in Step 3 as 
inputs to generate transport facilities, including parking lots and refueling stations. More details on the 
interdependency will be given below where relevant.

Figure 3: Procedure of data synthesis
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3.3	 Creating individuals: Genetic algorithm (GA)-based population synthesis

Population synthesis can be mathematically viewed as an optimization problem that tries to minimize 
the differences between the generated and target frequencies of control variables by searching for an 
optimal set of household weights, which can be formulated as Equation (1).

									         (1)

Where, i denotes a household category; j denotes a control variable; dij denotes the frequency of the 
control variable (household/person type) j in household category i ; wi denotes the weight of household 
category i ; cj denotes the constrain of the control variable j (Ye et al., 2009).

This paper develops a Genetic Algorithm (GA)-based population synthesizer (Zhuge, Shao, Li, 
Gao, & Zhang, 2016), which is able to deal with some particular cases in which the priority needs to 
be given to some more influential control variables, in order to make the resulting synthetic population 
better represent the real world in some particular aspects, for some specific research purposes. For ex-
ample, in the studies of vehicle purchase, the priority may need to be given to the vehicle ownerships of 
each household when the population is synthesized, because the number of vehicles in each household, 
as well as the total number of vehicles, could significantly influence the research outcomes. To this end, 
the fitness function for the GA-based synthesizer shown by Equation (2) incorporates the weights of 
each variable (Wj) into Equation (1). Here, the weights are used to quantify the relative importance of 
the variables. It is expected that the resulting differences between target and generated frequencies of the 
variables that are given the priority could be smaller. Therefore, the synthetic population could be more 
realistic in terms of these important variables. 

									         (2)

3.4	 Creating physical environment: Generating activity facilities and transport  
	 infrastructures

In SelfSim, a physical environment is composed of activity facilities and transport infrastructures, as well 
as the prices associated with the facilities, such as house prices. For activity facilities, they provide space 
for agents to perform their daily activities, primarily including shopping, leisure, studying (at school), 
resting (at home) and work. The transport infrastructures, including transport network, parking lots and 
refueling stations, are the basic facilities for agents to travel from one place to another. The prices associ-
ated with activity facilities particularly refer to the real estate prices, including selling prices and rents.

(1) Synthesis method for activity facilities
The activity facility synthesis is to create activity facilities mainly using the household travel survey data 
and relevant macro-level constraints, such as the total numbers of houses in the study area. The basic as-
sumption for the synthesizer is that the frequency of performing activities at a place that can be extracted 
from the household travel survey data is directly proportional to the number of activity facilities located 
in that place. Figure 4 shows the flowchart of generating GIS-based activity facilities with the capacity 
information attached. Taking shopping facility for example, the method to create and locate shopping 
facilities is introduced as follows:
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Step 1: Extract Activity Location Information from the Household Travel Survey Data. In general, 
the survey data contains detailed activity and travel information of each participant, including activity 
type and location. For shopping facilities, the locations where participants go shopping can be extracted 
and counted at the zone level. As a result, the frequencies of shopping (or the number of shopping activi-
ties, Fi ) for each zone (i) can be obtained.

Step 2: Calculate the Number of Activity Facilities at the Zone Level. According to the basic as-
sumption of the facility synthesizer, the number of facilities can be calculated by Equations (3) and (4). 
Specifically, given the total number of shopping facilities (AFtotal), Equation (3) is to calculate the ratio 
(RAF/F) of AFtotal to the sum frequency of performing shopping (Fsum) for the whole study area. Then 
Equation (4) is used to calculate the total number of shopping facilities for each zone (AFi ) by multiply-
ing the ratio RFA/F by the frequency of performing shopping at the zone i (Fi).

										          (3)

										          (4)

Step 3: Randomly Allocate the Facilities to Road Nodes. As all facilities in SelfSim are assumed to 
be centered on road nodes, the generated facilities for each zone need to be further allocated to a specific 
road node in the zone. For instance, given that the allocation is random, then each road node in a zone 
will have the same probability of being allocated with the activity facilities. After the allocation, the exact 
locations and capacities of each node-based facility can be obtained.
Likewise, the other activity facility types can be synthesized in the same way described above. As a result, 
a GIS-based layout of activity facilities with detailed information on locations and capacities can be 
obtained.
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Figure 4: Flowchart of generating GIS-based activity facilities
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those nodes whose demand (DNode) exceed the pre-defined threshold (TNode). The node-based transport 
facilities will be created based on these selected nodes, and the facility capacity will be determined by 
Equation (5). Note that the daily plans of each agent, which is the main input of the activity-based 
simulation, is generated using the method to be introduced in 3.5. 

									         (5)

Where, DNode denotes the demand at the node; ϕNode is a scaling factor; Both TNode and ϕNode need 
to be set before the facility capacity is calculated. These two parameters can be estimated, given the 
macro-level constraint on the total number of facilities. In principal, the estimation can be done with 
various methods, such as Genetic Algorithm-based parameter estimation method. This project uses a 
simple method that is briefly introduced as follows: either of the parameters can be firstly fixed by being 
arbitrarily set to an appropriate value, and then an enumeration method can be further used to try dif-
ferent values for the other parameter within a specific range until an optimal value is found to minimize 
the gap between generated and target total facility capacities (e.g., the total number of parking spaces).

(b) Link-based transport facility synthesis method: Activity-based flow-refueling model
The traditional flow-refueling model can be formulated as a mathematical problem that attempts 

to intercept as much specific flow as possible (Hodgson, 1990; Hodgson & Rosing, 1992). Similar to 
the activity-based P-media model, the activity-based flow-refueling model calculates the amount of 
intercepted flow based on an activity-based simulation, rather than the four-step method used in the 
traditional model (Zhuge & Shao, 2018a). Then the amount of the flow intercepted will be used to 
locate facilities in the following way:

Step1: the candidate node with highest amount of flow will be selected as a facility location and a 
specific capacity that is calculated by Equation (5) will be set.

Step2: those candidate nodes located within a specific radius (Rmin) to the selected node will be 
removed from the candidate lists, in order to avoid any competitions between the selected node and the 
other nodes close to it. 

The model will repeat Steps 1 and 2 until the target total number of transport facilities are reached. 
(3) Generating disaggregate prices for activity facilities

The prices here particularly refer to the real estate prices of residential facilities, including both 
rents and selling prices, as SelfSim currently only simulates the residential location choice behavior of 
household agents. Prices are important factors that can influence many forms of individual behavior in 
SelfSim, including residential relocation and travel behavior. However, such disaggregate data is difficult 
to access and even not available in some cases. In response to this, a price synthesis method is developed 
to generate the prices for each residential facility using both macro-level constraints and the household 
travel survey data. 

The synthesizer generates disaggregate prices for each residential (or “home”) facility, considering 
both spatial features and affordability. Specifically, it has been commonly recognized that the distance to 
city center is closely correlated with the housing price (Chen & Hao, 2008; McMillen, 2002; van Ber-
geijk, 2012), and thus it can be considered as a geographical factor in the price generation; Furthermore, 
the house price to income ratio is an important factor in the housing market and has been widely used 
to check the affordability (Lau & Li, 2006; Zhuge, Shao, Gao, et al., 2016). The procedure of generating 
the disaggregate prices here is composed of three steps: First, the household travel survey data and the 
house price to income ratio will be used to generate initial disaggregate selling prices without considering 
any spatial features, such as the distances between facilities and city centers; Second, some spatial features 
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will be used to adjust the initial prices in a specific way; Third, the price to rent ratio, which is another 
important indicator in the housing market, will be used to calculate the rents for each residential facility 
with a simple multiplication. The detailed introduction to each step is as follows:

Step 1: Generating initial selling prices for each residential facility
For a residential facility i, an initially estimated price (IEPi) will be calculated by multiplying the 

average income of people living in the facility (AIi) by the ratio of house price to income (RPrice2Income), 
which is formulated as Equation (6). The average income can be extracted from the household travel 
survey data, and the ratio is macro statistical data and is generally available in statistical yearbooks. In 
order to meet the macro-level constraint on the average house price of the study area (AP), the estimated 
price IEP needs to be scaled up or down by multiplying a scaling factor (𝛃PriceScaling). The scaling process 
is formulated as Equation (7), and the scaling factor can be computed with Equation (8). 

									         (6)

									         (7)

			   				    (8)

Step 2: Adjusting the initial selling prices with the consideration of facility locations
The initial selling prices generated in Step 1 may be biased due to the missing spatial constraint. For 

instance, some people with high income may prefer to live in rural districts where the real estate price is 
generally lower. Therefore, it may be problematic if only affordability (or household income) is used for 
the price generation. In order to deal with the bias, the distances between houses and city centers will be 
used to adjust the initial selling prices. The adjustment is described as follows: 

•	 Step 2-1: for each residential facility, the distances to the city centers (one city may have one or 
more centers or sub-centers) will be firstly calculated and then the weighted sum will be calcu-
lated as the final distance to the centers.

•	 Step 2-2: Clustering the final distances of all facilities into a specific number of groups (N) us-
ing a k-mean clustering algorithm (Hartigan & Wong, 1979). 

•	 Step 2-3: Accordingly, generating N sections of housing prices with equal interval using the 
maximum and minimum prices in the initial price database. 

•	 Step 2-4: Matching the clustered groups and the divided sections based on the group and sec-
tion indices (e.g., linking group 3 to section 3) and then assigning the distance-based prices to 
each facility. 

•	 Step 2-5: Averaging the distance- and income-based prices, resulting in an average price for 
each facility.

•	 Step 2-6: Scaling the average prices properly in the same way introduced in Step 1 using Equa-
tions (7) and (8), in order to meet the macro-level constraint on the target average house price 
of the study area, resulting in the final prices.

Step 3: Generating disaggregate rents for each facility based on the selling prices
The disaggregate rents can be generated with a much simpler method based on the generated 

disaggregate selling prices. Specifically, the method firstly calculates the initial rents for each facility by 
multiplying the selling price by the price to rent ratio of the study area, which is another important 
indicator in the housing market, and then scaling the initial rents in the same way the selling prices are 
scaled, in order to match the target and generated average rents of the study area, using Equations (7) 
and (8) as well.
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3.5	 Linking individuals to the physical environment: Generating initial daily plans

Individuals in a synthetic population can be linked to the GIS-based physical environment through the 
generation of initial daily plans. A daily plan contains the information on the activities that the agent 
plans to perform throughout a whole day, as well as the travel from one activity facility to the next. 
The generated initial daily plans could be further optimized through the execution of the daily plans. 
Specifically, the execution of daily plans can result in the traffic states, which can be in return used to 
adapt the plans to the dynamic traffic flow. For example, agents may want to reschedule their activities 
(e.g., change activity locations) in order to avoid traffic congestion, given the traffic states. MATSim 
(Multi-Agent Transport Simulation) is a typical platform for such optimization (Horni et al., 2016). The 
procedure of generating initial daily plans is composed of two steps below: Step 1 is to determine the 
home facility for each household with the constraint of facility capacity; Step 2 is to generate initial daily 
plans for each member in the household, given the residential location. Each household in the synthetic 
population can be processed in turn as follows: 

Step 1: Determine the residential facility for each household
Residential location could heavily influence many decisions of agents, for instance, on the choices of 
other activity facilities (e.g., workplaces) and transport modes. In the synthetic population, each house-
hold will be allocated with a residential facility according to the following rule: Since the synthetic 
population is generated by randomly selecting and duplicating the households in the household travel 
survey data according to the household weights, the original residential location of the selected house-
hold (generally available at the zone level) can be a good base for the synthetic household to search for 
a new residential location, as these two households are similar in attributes and therefore the synthetic 
household could be allocated to the same location or to another location close to the original one. 
However, due to the constraint of residential facility capacity, some households may not be able to find 
residential locations at or near to the original location. Alternatively, a home facility that is closest to the 
original location can be allocated. 

Step 2: Generate initial daily plans for each individual
The initial plan generator uses the original plan skeleton extracted from the household travel survey data 
as a base and then adds the missing information to the plan, including activity locations, resulting in an 
initial daily plan. To distinguish between the daily plan and plan skeleton, their definitions are given as 
follows:

(1) Daily Plan: Each person in a synthetic population, apart from those (e.g., babies) who are not 
able to perform activities independently, has a daily plan that is composed of activity and travel informa-
tion. The activity information includes activity type, activity duration, arrival time and departure time. 
The travel information is a set of links which connect one activity location to the next with the attached 
information on the transport modes used.

(2) Plan Skeleton: As shown by Figure 5, a plan skeleton is derived from the daily plan but lacks 
information on activity location and travel information.
The daily plan generator searches for an activity location for each plan skeleton with both time and 
capacity constraints. Specifically, the travel time between two adjacent activity locations in the original 
plan will be used as a time constraint, which means the new travel time between two new adjacent activ-
ity locations needs to be as close to the original one as possible. The capacity constraint means that the 
number of activities performed at a facility cannot exceed its capacity. It is worth noting that initial daily 
plans do not contain detailed information on travel (e.g., routes), but the information can be added, for 
example, in the MATSim simulation (Horni et al., 2016) when the plans are executed.
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Figure 5: An example of plan skeleton

4	 Case study: Beijing, China

4.1	 Scenario description

The capital of China, Beijing was used as a case study, and the virtual city creator was used to create a 
virtual Beijing in 2010 with a population scaling factor of 0.04, meaning that one synthetic individual 
or facility in the virtual city represents twenty-five individuals or facilities in reality. In 2010, Beijing was 
composed of 16 administrative districts with a population of 19.61million. Its land area was 16,410.54 
square kilometers (Dong, Shao, Ma, Zhuge, & Li, 2012; Zhang et al., 2018). The 16 administrative 
regions were Dongcheng, Xicheng, Chaoyang, Fengtai, Shijingshan, Haidian, Fangshan, Tongzhou, 
Shunyi, Chanpin, Daxing, Mentougou, Huairou, Pinggu, Miyun and Yanqing, which are numbered 
1-16 in Figure 6-(a). The input data for the creator mainly includes the 2010 Beijing household travel 
survey data, a road network (see Figure 6-(b)) and some macro-level constraints extracted from the 
Beijing Statistical Yearbook 2011 (which recorded the information in 2010) and 2010 Beijing's Sixth 
National Population Census Data Bulletin.
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		  (a) District IDs				    (b) Road Network in 2010

Figure 6: Maps of 16 administrative districts and the road network of Beijing in 2010

4.2	 Generating a synthetic population: GA-based population synthesis

The GA-based population synthesizer was applied to create a virtual population using both household 
travel survey data and macro-level constraints. Table 1 shows the variables of interest used for the popu-
lation synthesis, as well as the synthetic results. The variables are from both person and household levels. 
Specifically, variables of age and gender are person attributes, and the number of households and car 
ownership are household attributes. According to the small relative errors in Table 1, it can be concluded 
that the population synthesizer is capable of fitting both person- and household-level target frequencies 
very well.

Table 1: Variables of interest and their constraints and synthetic results

12
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Variables Target Frequency Synthetic Frequency Relative Error

Age: 0-19 2,758,000 2,765,765 0.28%

Age: 20-29 5,011,000 5,044,130 0.66%

Age: 30-39 3,546,000 3,569,809 0.67%

Age: 40-49 3,285,000 3,308,339 0.71%

Age: 50-64 3,303,000 3,318,602 0.47%

Age: >=65 1,709,000 1,712,413 0.20%

Male 10,126,000 10,198,819 0.72%

Female 9,486,000 9,520,239 0.36%

Number of Households 6,680,552 6,632,295 -0.72%

Number of Cars 3,743,814 3,728,613 -0.41%
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4.3	 Creating the physical environment: Generating activity facilities and transport  
	 infrastructures

This case study only considers five types of activity facilities, namely “home”, “work”, “education”, “lei-
sure” and “shopping” facilities. Since the data sources for these five facility types are only available at 
the district level, the facility synthesis method introduced in Section 3.4 was applied to generate these 
disaggregate facilities. 

(1) Initial number of activity opportunities in each traffic zone
The initial number of activity opportunities by activity type was extracted from the survey data by 
counting the number of activities performed at each zone. The spatial distributions of the opportunities 
by activity type are shown by Figure 7. It can be found that most of the activities took place at the central 
districts and the central areas of the outer districts.

      

		  (a) Home Opportunities			   (b) Work Opportunities
    

		  (c) Education Opportunities			   (d) Shopping Opportunities
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		  (e) Leisure Opportunities
Figure 7: Spatial distributions of activity opportunities

(2) Synthetic activity facilities with capacity information attached
Given the initial number of activity opportunities in each zone and the total number of opportu-

nities for each facility type, the synthetic activity facilities can be generated using the synthesis method 
introduced in Section 3.4. Figure 8 shows the spatial distribution of synthetic facilities by type. Figure 
9 shows the distributions of activity facility capacities. Note that those facilities that currently have no 
capacities were also mapped in Figure 8 (as capacities may be allocated in the subsequent simulations), 
but were not counted in Figure 9. Table 2 in Appendix illustrates how to estimate the total number of 
activity opportunities for the activity types of home, work, leisure and shop and also lists the data sources 
used for the estimation. In terms of the facilities for education, they were generated using the data on the 
locations of educational institutions available on the website of the Beijing Municipal Education Com-
mission, in addition to the macro-level constraints and initial number of activity opportunities. It can 
be found from the maps that the central districts and the central areas of the outer districts tend to have 
more activity opportunities, which is consistent with the information (or the initial number of activity 
opportunities) extracted from the household travel survey data. 
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		  (a) Home Facilities					     (b) Work Facilities

		  (c) Leisure Facilities					     (d) Shop Facilities

		  (e) Education Facilities
Figure 8: Spatial distributions of synthetic activity facilities by type in 2010
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		  (a) Home Facilities					     (b) Work Facilities

		  (c) Leisure Facilities					     (d) Shop Facilities

		  (e) Education Facilities

Figure 9: Distributions of synthetic activity facility capacities in 2010

In addition to the capacity, the real estate prices, including selling price and rent, are another 
important attributes to residential facilities, as the prices could influence the residential locations, for 
example. The synthesis method for facility prices described in Section 3.4 was applied to generate the 
2010 disaggregate selling prices and rents for each home facility, which are shown in Figure 10-(a) and 
-(b), respectively. It can be seen from the maps that the residential facilities with higher prices (either 
selling prices or rents) tended to be located at the central districts where more activity opportunities (e.g., 
shopping activities) were available, as shown by Figure 8.
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	 (a) Selling Price (Yuan/Square Meter)			   (b) Rent (Yuan/Square Meter)

Figure 10: Maps of synthetic real estate prices in 2010

(3) Synthetic transport facilities with capacity information attached
The node-based transport facility synthesizer introduced in Section 3.4 was employed to generate 

parking facilities, given the total number of parking spaces. For the private parking lots, it was assumed 
that all vehicle owners have dedicated parking spaces located at their home facilities. The synthetic pri-
vate and public parking spaces are shown in Figure 11-(a) and -(b), respectively. From the maps, it can 
be found that those parking lots located at the central districts tend to have higher capacities (or more 
parking spaces).

		  (a) Private Parking Spaces			   (b) Public Parking Spaces

Figure 11: Map of synthetic parking spaces by capacity in 2010
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The refueling stations in 2010 were synthesized using the activity-based flow-refueling model in-
troduced in Section 3.4 with a constraint on the total number of refueling posts at stations, which was 
estimated as 4296 based on the report of “Planning for the Development of Refueling Stations from 
2009 to 2015”(BMCCM, 2009). Figure 12 shows the map of the synthetic refueling stations. It can be 
found that the synthetic stations have tended to be located at the central areas of districts. The reasons are 
discussed as follows: on one hand, it should be noted that the capacity of one synthetic refueling station 
is 1 refueling post that represents 25 refueling posts in reality, as the population scaling rate is set to 0.04, 
which means all the facilities, including both transport and activity facilities, need to be scaled down 
accordingly in the simulation; on the other hand, although there were some refueling stations located in 
rural areas of each district in the real world, the number was relatively small. As a result, those stations in 
rural areas need to be aggregated to the stations located at the central areas of districts where the traffic 
flow tends to be much heavier (meaning that the refueling demand tends to be higher).

Figure 12: Map of synthetic refueling stations in 2010
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4.4	 Linking individuals to the physical environment: Generating initial daily Plans

As introduced in Section 3.5, the generation of initial daily plans for each agent in the synthetic popu-
lation can be viewed as a process of linking individuals to the physical environment that is composed 
of both activity and transport facilities. In this case study, only 4% of the whole population, which 
is around 788,000 agents, is generated, because it is computationally expensive to process the whole 
population. The number of generated initial daily plans for the synthetic population is around 598, 000 
(it should be noted that some agents do not have daily plans, especially children aged below 8), which 
comprises around 1,676,000 trips and 2,274,000 activities. Among the trips, about 19% of them are 
car-based. The number of trips per person is around 2.8. The activity locations in the resulting initial 
daily plans are further mapped and shown by Figure 13. Figure 14 shows the distribution of the num-
bers of activities performed.

		  (a) Home Activities				    (b) Work Activities

		  (c) Leisure Activities				    (d) Shopping Activities
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		  (e) Education Activities
	
Figure 13: Spatial distributions of activity locations by activity type in 2010

		  (a) Home Activities					     (b) Work Activities

		  (c) Leisure Activities				              (d) Shopping Activities
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	             (e) Education Activities	

Figure 14: Distributions of the number of activities by activity type in 2010

5	 Conclusions

This paper proposes a virtual city creator that is a set of disaggregate data synthesis methods, including 
a population synthesizer, an activity facility synthesizer, a transport facility synthesizer and a daily plan 
generator. These synthesis methods are run in a specific sequence to create a virtual city containing 
individuals, households, transport and activity facilities, as well as their attributes and linkages. The 
creator has been applied to Beijing, China to generate an agent- and GIS-based virtual Beijing in 2010 
mainly using the household travel survey data. Specifically, the GA-based population synthesizer in the 
creator was firstly used to generate a synthetic population comprising individuals and households, with 
the target frequencies well matched at both individual- and household- levels. Then the activity facility 
synthesizer was used to generate the GIS-based layouts of five typical activity facilities (namely “home”, 
“work”, “education”, “leisure” and “shopping” facilities) with the capacity information attached. Simi-
larly, the transport facility synthesizer was used to generate the GIS-based layouts of parking lots and 
refueling stations also with the capacity information attached. Finally, the daily plan generator was used 
to generate initial daily plans for each individual in the population by linking them to different activity 
facilities. The above individuals, households, activity facilities, transport facilities, and their attributes 
and linkages make up a virtual Beijing in 2010.  

In theory, the virtual city creator can be applied to any cases where the general input data is avail-
able, including household travel survey data, a road network and some relevant macro-level constraints. 
Among them, the household travel survey data is the most important, and the extent to which the 
resulting virtual city can represent the real world heavily depends on the data quality. Therefore, the 
quality of the household travel survey data needs to be checked before the data is used for creation. In 
addition, population scaling, which uses a small fraction of agents and facilities for a simulation and 
then scales up the simulation results accordingly, has been a commonly used approach to speeding up 
agent-based large-scale simulations that contain a large number of agents. For instance, the case study 
in this paper created a virtual Beijing with a population scaling factor of 0.04. However, it remains un-
known how such a population scaling method may influence the resulting virtual city and further the 
subsequent simulations. It is therefore suggested to choose an appropriate scaling factor when the virtual 
city creator is applied.

The future work on the virtual city creator will be focused on the following aspects: (1) Model Vali-
dation. Although some macro-level constrains (e.g., average real estate price) have been used to ensure 
that the resulting virtual city can well represent the real world at the macro level, the extent to which 
the virtual city can represent at the mesoscopic or microscopic levels still remains to be further explored. 
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For example, the distributions of activity facility capacities (Figure 9) and real estate prices (Figure 10) 
can be further compared to the real distributions, so as to better understand the model performance. 
However, such real data is generally difficult to access. (2) Supplementary Big Data. Big data, which is 
recently popular, generally contains rich disaggregate information and thus can potentially serve as a 
good dataset for the virtual city creation. Therefore, it should be possible and useful to further improve 
the proposed creator by extra using social media data for the synthesis of activity facilities, for example. 
In general, social media data is collected in an unorganized way and thus is very likely to be unrepresen-
tative. However, it could be a good supplement to the traditional household travel survey data which 
generally contains a limited number of samples, but is collected in a well-organized way. (3) Adding 
Social Networks. The creator is currently able to link individuals in the population to the physical envi-
ronment at the micro level. It can be further extended by incorporating an agent-based social network 
generator that is capable of linking individuals with social ties (or friendships), resulting in spatial social 
networks for the whole population.
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