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Summary

Two prominent characteristics of marine coccolitho-
phores are their secretion of coccoliths and their sus-
ceptibility to infection by coccolithoviruses (EhVs),
both of which display variation among cells in culture
and in natural populations. We examined the impact
of calcification on infection by challenging a variety
of Emiliania huxleyi strains at different calcification
states with EhVs of different virulence. Reduced cel-
lular calcification was associated with increased
infection and EhV production, even though calcified
cells and associated coccoliths had significantly
higher adsorption coefficients than non-calcified
(naked) cells. Sialic acid glycosphingolipids, mole-
cules thought to mediate EhV infection, were gener-
ally more abundant in calcified cells and enriched in
purified, sorted coccoliths, suggesting a biochemical
link between calcification and adsorption rates. In
turn, viable EhVs impacted cellular calcification
absent of lysis by inducing dramatic shifts in optical
side scatter signals and a massive release of
detached coccoliths in a subpopulation of cells,
which could be triggered by resuspension of healthy,
calcified host cells in an EhV-free, ‘induced media’.
Our findings show that calcification is a key compo-
nent of the E. huxleyi-EhV arms race and an aspect
that is critical both to the modelling of these host–

virus interactions in the ocean and interpreting their
impact on the global carbon cycle.

Introduction

Globally distributed, unicellular coccolithophores have
existed in the oceans for at least 209–220 million years
(Falkowski et al., 2004; Monteiro et al., 2016), playing
prominent roles in the oceanic carbon cycle due to their
ability to both photosynthetically fix CO2 into particulate
organic carbon (POC) and biomineralize particulate
inorganic carbon (PIC) as calcium carbonate (CaCO3)
(Iglesias-Rodriguez et al., 2002). Coccolithophores pres-
ently account for at least half of the 80–120 Tmol of
annual PIC production in the pelagic ocean (Degens and
Ittekkot, 1986; Westbroek et al., 1993; Balch et al., 2007;
Berelson et al., 2007; Broecker and Clark, 2009).
Coccolith-associated calcite that is produced in the sur-
face waters is exported into the deep ocean, accounting
for ~ 83% of global, ballasted POC fluxes to the deep
sea in part because it is more dense and experiences
less water column dissolution than opal, and it is more
abundant than terrigenous material (Klaas and Archer,
2002). It accounts for up ~ 50% of calcite raining down
on marine sediments, with the other 50% derived from
foraminifera (Broecker and Clark, 2009).

Export of CaCO3 is facilitated by its high density
(2.7 g cm−3), inherent protective organic coatings
(Hassenkam et al., 2011), association with particulate
organic matter [marine snow, transparent exopolymeric
particles and faecal pellets (Pedrotti et al., 2012; Collins
et al., 2015)] and supersaturation in the upper water col-
umn (Westbroek et al., 1993; Balch et al., 2007; Berelson
et al., 2007; Broecker and Clark, 2009). While there are
no coccolith-specific estimates, the total PIC sinking-flux
below 2000 m may be as much as 50 Tmol C year−1

(Berelson et al., 2007), with associated CaCO3:POC
ratios (or ‘rain ratios’) having important implications for
POC transport to the deep ocean and biological pump
efficiency (Armstrong et al., 2002; Klaas and Archer,
2002; Ridgwell et al., 2009). Consequently, the interplay
between ecosystem processes and calcification is of
prominent importance to the fate of POC and PIC, by
influencing the relative balance between carbon export
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(via vertical sinking flux) and attenuation (through lysis
and microbial respiration) (Bidle, 2015; Collins et al.,
2015; Laber et al., 2018).

Given its aforementioned importance to the marine car-
bon cycle, cellular processes and environmental factors that
influence calcite formation and the degree of coccolitho-
phore calcification have received intensive focus (Raven
and Crawfurd, 2012), with impacts of ocean acidification
garnering more recent attention (Doney et al., 2009; Hurd
et al., 2009; Ridgwell et al., 2009; Kroeker et al., 2010;
Moolna and Rickaby, 2012). Decreases in both calcification
and CaCO3:POC ratios are generally observed when cells
are exposed to CO2 levels higher than ambient atmospheric
concentrations (390 ppm), while the opposite appears to be
true at low CO2 concentrations (~ 190 ppm), such as
occurred at the last glacial maximum [18,000 years ago;
(Riebesell et al., 2000; Zondervan et al., 2001; Casareto
et al., 2009)].

While the cellular roles of calcification remain specula-
tive, one hypothesized function is to protect coccolitho-
phores from grazers and virus infection (Nejstgaard et al.,
1994; Monteiro et al., 2016; Raven and Waite, 2004).
Experimental evidence with heterotrophic dinoflagellates
is mixed with both support for (Hansen et al., 1996) and
against differential grazing rates on calcified Emiliania
huxleyi cells, with demonstrated strain-specific differ-
ences in ingestion, independent of calcification. These
microzooplankton predators had slower growth rates and
gross growth efficiencies when feeding on calcified
strains relative to non-calcified (naked) strains, which
when applied to a growth rate model, resulted in the net
accumulation of E. huxleyi (Harvey et al., 2015). To date,
the impact of calcification on virus infection is largely
unexplored.

Globally distributed blooms of E. huxleyi, which span
~ 100,000 km2 (Brown and Yoder, 1994; Brown, 1995; Tyr-
ell and Merico, 2004), are often terminated by infection of
lytic, double-stranded DNA containing coccolithoviruses
(EhVs) (Bratbak et al., 1993; Schroeder et al., 2003; Vardi
et al., 2012). Infection triggers cell lysis and the release of
dissolved organic carbon (DOC) and PIC-laden coccoliths
in surface waters along with the production of transparent
expolymeric particles (TEP; Passow et al., 2001; Passow,
2002; Lehahn et al., 2014), which facilitate particle aggrega-
tion, high zooplankton grazing and greater downward verti-
cal fluxes of both POC and PIC from the upper mixed layer
(Laber et al., 2018; Sheyn et al., 2018; Nissimov et al.,
2018). Emiliania huxleyi–EhV interactions are mechanisti-
cally regulated by a lipid-based, chemical arms race, with
three structurally distinct membrane glycosphingolipids
(GSLs) – host GSLs (hGSLs), virus GSLs (vGSLs) and
sialic acid GSLs (sGSLs) – at the core of this interaction,
each serving a unique diagnostic indicator of different
aspects of the infection process (Fulton et al., 2014; Bidle,

2015). Present evidence suggests that hGSLs are unique
to E. huxleyi cells and specifically trace host dynamics
(Vardi et al., 2012); vGSLs regulate infection by inducing
PCD of host cells and are incorporated into EhV virions
(Vardi et al., 2009). Hence they serve as markers of active
infection and EhV production. sGSLs appear to be determi-
nants and promising biomarkers of infectivity and have a
proposed, yet unestablished, relationship to PIC (Fulton
et al., 2014; Hunter et al. 2015).

Surprisingly, little attention has been paid to the inter-
play of calcification and EhV infection. Successful infec-
tion requires adsorption of viruses onto host cells at the
cell membrane (Mackinder et al., 2009). While this pro-
cess is not yet resolved in the E. huxleyi–EhV system,
there is evidence that this initial interaction may take
place between specific protein receptors in host lipid rafts
[e.g. Toll interleukin 1 receptor (TIR) and leucine rich
repeat (LRR) domain proteins] and EhV membrane pro-
teins (i.e., C-type lectin containing proteins) (Rose et al.,
2014). Cellular properties and processes that interfere
with that interaction, such as enhanced TEP production
and/or calcification, may serve to reduce adsorption and
regulate infection. A rigorous comparison of adsorption
rates and infection dynamics of EhVs for naked and calci-
fied E. huxleyi cells has not been conducted.

We tested the relative susceptibility to infection of
several calcifying E. huxleyi strains, some of which
were isolated in 2008 from a mesocosm experiment off
the coast of Norway (Vardi et al., 2012), at different cal-
cification states. By acclimating strains to different
Ca2+ concentrations (Herfort et al., 2004; Trimborn
et al., 2007), we specifically tested whether reduced
cellular PIC content within the same host strain could
impact EhV infection and associated GSL dynamics.
This experimental set-up and approach allowed us to
explore E. huxleyi–EhV ecological dynamics across
alternate calcification states. Our results highlight a
component of the E. huxleyi–EhV arms race at the
interface of the biomineral (coccolith) and EhVs, that
can act as a first order control on successful adsorption
and infection. EhVs may ostensibly navigate this host
protection through the induced manipulation of host
calcification state, while the host coccosphere (and
associated coccoliths) acts as a potential mechanism
to sequester EhVs, both serving to impact ecosystem
dynamics and carbon biogeochemistry.

Results and discussion

Calcification state and infectivity of E. huxleyi strains

The E. huxleyi strains used in this study (see ‘Experimen-
tal procedures’ section) span a range of calcification
states, side-scatter and CaCO3:POC ratios relevant to

© 2018 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.,
Environmental Microbiology, 21, 1896–1915

Calcification and coccolithovirus infection 1897



carbon flux (Fig. 1). At 18.2 and 16.1 pg CaCO3 cell−1,
DHB607 and DHB624 possessed the highest cellular
PIC quotas in replete f/2-Si growth media of all strains
tested (Fig. 1A). Strains DHB611 and DHB659 were
also calcified but displayed more moderate cellular PIC
quotas, while both CCMP374 and CCMP1516 had
extremely low quotas (Fig 1A and Supporting Informa-
tion Fig. S10), consistent with previous reports that they
are naked strains (Bidle et al., 2007; Bidle and Kwityn,
2012). Naked and calcified cells differed in their equiva-
lent spherical diameters (ESDs), measuring �3.8 and
4.3 μm respectively. Cellular calcification states were
also verified visually using scanning electron micros-
copy (SEM; Supporting Information Fig. S2) and opti-
cally using flow cytometry-based side scatter (SSC;
Fig. 1B–D). All strains had similar chlorophyll fluores-
cence (Fig. 1C), but the SSC distributions of the calci-
fied strains were clearly distinct from the naked strains.
Cultures of calcified cells had a bimodal SSC distribu-
tion (Fig. 1D), indicative of a population substructure

among low and high SSC cells while the naked strains,
CCMP374 and CCMP1516, had single SSC popula-
tions. The correlation between SSC geometric means
and PIC cell quota across all strains was not significant
(Spearman rank order; P > 0.05), due in part to the
broad SSC distribution in calcified cells. In addition,
detached coccoliths would be captured and included in
PIC measurements, thereby over-estimating the cellular
PIC quota. In contrast, they are effectively excluded
from cellular SSC measurements, given SSC are taken
for a population of cells falling within a gated population
of chlorophyll containing cells. Despite the lack of clear
strain to strain correlation between cellular PIC quotas
and SSC signatures, the latter allowed for a rapid, in
situ interrogation of the changes in cellular calcification
in response to EhVs and Ca2+ concentrations for a sin-
gle strain (described below). Corresponding CaCO3:
POC ratios for these strains ranged from 0.04 to 0.55
(Fig. 1E), consistent with previous ratios reported for
E. huxleyi (Blanco-Ameijeiras et al., 2016).
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Emiliania huxleyi host strains displayed distinct differ-
ences in host–virus infection dynamics when challenged
with the coccolithovirus type strain EhV86 (Fig. 2). Both
naked strains, CCMP374 and CCMP1516, were highly
sensitive to EhV86 infection, consistent with previous
observations (Schroeder et al., 2002; Bidle et al., 2007;
Vardi et al., 2009; Bidle and Kwityn, 2012; Fulton et al.,
2014; Kendrick et al., 2014) with cell abundance declin-
ing within 48–72 h post infection (hpi) concomitant with
high levels of virus production (~ 9 × 108 viruses ml−1).
Consequently, these naked strains served as positive
controls for sensitivity to infection. Conversely, with the
exception of DHB611, all calcified strains displayed resis-
tance to EhV86 infection, with infected cultures largely
tracing the dynamics of uninfected control cells and lack-
ing measurable EhV production. While DHB611 dis-
played sensitivity to EhV86, as evidenced by virus
production and host cell lysis after ~ 72 hpi, infection was

less intense; only 7.32 × 106 viruses ml−1 were produced
at 48 hpi compared to considerably higher EhV produc-
tion (4.73 × 108 viruses ml−1) and more rapid cell lysis
observed for the highly sensitive, naked strain
CCMP374 (Fig. 2).

Manipulating calcification state and host–virus dynamics

We acclimated the aforementioned calcifying strains to
low calcium (0.1 mM Ca2+) and compared them to cells
grown in 10 mM Ca2+ (i.e., ambient concentration in sea-
water; Tyrrell and Zeebe, 2004) in a defined growth
media (ESAW; see ‘Experimental procedures’ section).
Measurements of cellular PIC quotas, SSC signatures
and CaCO3:POC ratios of acclimated cultures confirmed
dramatic reductions in calcification state for strains grown
at 0.1 mM Ca2+ (Fig. 3). This was especially evident for
DHB607, where PIC cell−1, SSC signatures and CaCO3:
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Fig. 2. Host–virus infection dynamics
for E. huxleyi strains grown in replete
f/2-Si media. Time course of host (cir-
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solid line) and EhV86-infected (open
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POC ratios dropped by 90%, 98% and 95%, respectively.
Flow cytometry confirmed that DHB607 cells grown at dif-
ferent Ca2+ concentrations had distinct SSC signatures
with those grown in 0.1 mM Ca2+ having similar SSC sig-
natures to that of naked CCMP374 cells (Fig. 3B). The
other calcified strains, especially DHB611 and DHB624,
also showed significant reductions in both PIC quotas
and SSC; DHB659 had similarly low cellular PIC quotas
at both Ca2+ concentrations. While no significant change
was detected in the PIC cell−1 for naked strain CCMP374
(Fig. 3A and C), it did show a ~ 20% increase in SSC
(Fig. 3B and C), which has been previously documented
and attributed to changes in the cell membrane during
acclimation to low calcium concentrations (Von Dassow
et al., 2012).
This method of acclimating cells to different calcium

concentrations was previously shown to effectively

lower cellular PIC, while allowing a similar growth phys-
iology (identical growth rates and culture dynamics;
Herfort et al., 2004; Trimborn et al., 2007). It also
allowed us to avoid the acute treatment of cells with
Ca2+ chelators such as EDTA, which have also been
used to remove coccoliths (de Jong et al., 1976; Lyon,
2014). Such treatment could artificially impact host
physiology and host–virus interactions over the 96 h
infection period. Individual strains maintained similar
levels of cellular fluorescence, as assessed by flow
cytometry. Across biological replicates, strains
DHB607, DHB624 and DHB659 (P < 0.05, n = 3) had
statistically indistinguishable specific growth rates
under both Ca2+ concentrations (Supporting Informa-
tion Fig. S1). DHB611 was replicated twice and
showed similar specific growth rates in both conditions.
While statistically significant differences were observed
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among triplicate measurements
for one experiment; host–virus dynamics shown were representative of experiments (n = 3) performed on different dates. (B) Representative flow
cytometry plot showing the SSC and chlorophyll (692 nm) signals for DHB607 grown in 10 mM or 0.1 mM Ca2+ compared to canonical naked
strain CCMP374 grown in 10 mM Ca2+. Note the prominent shift to a lower SSC for DHB607 cells grown in 0.1 mM, matching that of the low
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Ca2+ did generally lower the total calcification state for all DHB strains compared to cells grown in f/2-Si media (Figs 1A and 3A), likely due to the
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coccoliths (Supporting Information Fig. S2).
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for CCMP374 (P < 0.05, n = 3), specific growth rates
were very similar (μ of 0.70 vs 0.65 day−1; Supporting
Information Fig. S1).

Calcium concentrations also had a pronounced effect
on infection dynamics in three calcified strains:
CCMP374, DHB607 and DHB611 (Fig. 4 and Support-
ing Information Fig. S3). Earlier and more pronounced
reductions in host cell abundance (Fig. 4), concomitant
with more rapid EhV production (Supporting Informa-
tion Fig. S3) for CCMP374 and DHB607 cells accli-
mated to lower Ca2+ levels, demonstrated an elevated
sensitivity to EhV infection in these strains. Notably,
control incubations at both Ca2+ concentrations

paralleled each other for all strains so these differ-
ences were not due to differential growth rates under
these conditions.

Both DHB607 and DHB611 cells grown in 0.1 mM Ca2+

were characterized by prominent host cell lysis and steady
declines in cell abundance after 48 and 24 hpi respectively.
These strains both showed evidence of infectivity at both
0.1 and 10 mM Ca2+, with EhV replication and production
dynamics being generally more muted in the latter (Fig. 4
and Supporting Information Fig. S3). Lower Ca2+ concentra-
tions consistently yielded higher virus production in these
strains (six-fold for DHB611; 10-fold for DHB607; Support-
ing Information Fig. S3). The timing of EhV production also
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differed between these host strains, with the majority of
increase occurring at either 48 or 72 hpi for DHB607 or
DHB611, respectively. Unlike DHB611, which displayed
steady decreases in host cell abundance upon EhV addi-
tion, DHB607 cells grown in 10 mM Ca2+ did not experi-
ence substantial lysis. Rather, their cell abundance
plateaued and only marginally declined after 48 hpi. While
CCMP374 was confirmed to be naked at both Ca2+ con-
centrations (Figs 1 and 3 and Supporting Information
Fig. S2), the dynamics of host cell lysis and EhV production
dynamics were both enhanced under low Ca2+.
DHB624 and DHB659 remained resistant to EhV86

infection at both 10 and 0.1 mM Ca2+ concentrations,
indicating that they contain mechanisms of resistance
independent of calcification. While the cellular mecha-
nisms of resistance remain unknown in the E. huxleyi–
EhV system, several naked strains display persistent
resistance (Schroeder et al., 2002; Bidle et al., 2007;
Bidle and Kwityn, 2012).
We examined the response of the most heavily calci-

fied strain DHB607 at different calcification states to two
different EhV strains, EhV86 and EhV207, the latter virus
representing a more aggressive lytic strain with a shorter
latency period (Nissimov et al., 2016). This allowed us to
test whether the differential impact of calcification state
on infectivity was specific to EhV strains or applies more
broadly to E. huxleyi–EhV infection dynamics. Moderate
resistance of calcified DHB607 cells grown at 10 mM Ca2
+ through a 96 h infection period was observed when
challenged with EhV86 (Fig. 4 and Supporting Informa-
tion Fig. S5). Decreased growth rates compared to the
uninfected control were observed with very little lytic burst
and consistently low EhV production 96 hpi. Similar rela-
tive trends were observed when DHB607 cells were chal-
lenged with EhV207 (Supporting Information Fig. S4),
with calcified cells grown at 10 mM Ca2+ displaying
delayed infection dynamics, compared to the rapid lysis
of DHB607 at 0.1 mM Ca2+. Unlike EhV86, notable lysis
and reduction in host cell abundance were observed at
48 hpi, which was reflected in the enhanced production
of EhV207 virus particles. Overall, EhV production was
consistently lower in calcified DHB607 for both viruses
(Supporting Information Figs S3 and S5).

Linking sialic acid glycosphingolipids and calcification

sGSLs are an important lipid biomarkers of EhV sensi-
tivity (Fulton et al., 2014; Hunter et al., 2015) and are
enriched in isolated lipid rafts from early-infected(�2
hpi) E. huxleyi cells (Rose et al., 2014). Fulton and col-
leagues (2014) proposed a biochemical relationship
between sGSL and calcification, due to the specific
binding properties of sialic acids for Ca2+ (Jaques
et al., 1977). Our experimental approach of

manipulating calcification state and sensitivity of distinct
host strains allowed us to interrogate this proposed rela-
tionship. Alterations in Ca2+ concentration induced statisti-
cally significant (P < 0.05; n = 3) differences in the sGSL
quota and sGSL:hGSL ratios, with 10 mM Ca2+, having
generally elevated values (Fig. 5). Similar (within standard
error of replicate measurements) cellular hGSL quotas
were observed under both culture conditions, so Ca2+ con-
centration appeared to specifically impact the sGSL pro-
duction. Intriguingly, naked strain CCMP374 had the most
dramatic reduction in sGSL and sGSL:hGSL ratios when
grown at 0.1 mM Ca2+, showing an additional impact of
calcium availability on its production.

In order to establish a more direct link between sGSLs
and calcification, we analysed the respective lipidomes of
sorted coccoliths and sorted calcified cells from DHB607
and DHB624 (obtained via analytical flow cytometry and
high-speed cell sorting; see ‘Experimental procedures’
section; Supporting Information Fig. S6). These strains
were the most heavily calcified and showed statistical dif-
ferences in both PIC and sGSL quotas for cells grown at
different Ca2+ concentrations (Figs 3 and 5). sGSLs were
clearly detectable in sorted coccoliths of both host strains
(Table 1) and were present at similar sGSL:hGSL ratios
to that of sorted cells (Table 1). However, normalization
of cell and coccolith sGSL quotas to their respective vol-
umes (see ‘Experimental procedures’ section) showed a
3.9- and 3.4-fold enrichment in the local sGSL concentra-
tion for coccoliths isolated from DHB607 and DHB624,
respectively, compared to that for sorted cells, which
could conceivably provide an enhanced adsorptive sur-
face environment for EhVs.

To the best of our knowledge, this is the first time lipi-
domics that have been performed on calcified cells and
detached coccoliths. These lipid species are likely
acquired during formation within the coccolith vesicle
(CV), an intracellular compartment derived from the
Golgi body (Young et al., 1999). These vesicles, which
have been well-characterized in the coccolithophore
species Coccolithus pelagicus, are closely associated
to the nucleus, with the reticular and Golgi bodies
flanking the opposite side (Taylor et al., 2007). Mature
coccoliths dissociate from the nucleus and are exuded
out onto the cell surface through the outer membrane
in a single exocytotic event (Brownlee et al., 2015), a
process that involves a fusion of the CV with the
plasma membrane, before interlocking with other coc-
coliths forming the coccosphere (Taylor et al. 2007). It
has been proposed that sGSLs could accompany coc-
coliths to the cell surface during the fusion event and
may provide a scaffold for coccolith assembly
(Westbroek et al., 1984; Fulton et al., 2014). While the
proposed role of sGSL in the placement process is still
speculative (Fulton et al. 2014), our data further link
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sGSLs and calcification. The specific roles of sGSLs
on calcification and infectivity appear to be
multifaceted.

Mechanistic interplay between EhVs and calcification

Cellular calcification (and associated, detached cocco-
liths) would ostensibly provide a protective barrier to
host–virus contact. Indeed, contact frequencies exert a
first order control on host–virus interactions (Murray and
Jackson, 1993; Thyrhaug et al., 2003; Danovaro et al.,
2011; Short, 2012). At the same time, host–virus contact
could be potentially facilitated in part by specific pools of
GSLs (including sGSLs) and proteins that can bind to
EhV-specific moieties, like c-type lectin domain-
containing proteins (Rose et al., 2014). Given that calci-
fied phenotypes of DHB607, DHB624 and DHB659 had
higher sGSL quotas (Fig. 5) and that purified coccoliths
derived from DHB624 and DHB659 had elevated sGSLs
concentrations (Table 1), we posited that this might
enhance the successful adsorption of EhVs to host cells
and facilitate infection. Of the three E. huxleyi host types
tested, calcified DHB607 cells had the highest adsorption
coefficient (Cd) at 2.89 × 10−7 ml min−1 (Fig. 6A), followed
by naked DHB607 (2.20 × 10−7 ml min−1). CCMP374 had
the lowest Cd at 1.48 × 10−7 ml min−1 at an admittedly
high sGSL quota. We caution that sGSL quota is not the
only feature establishing adsorption coefficients. While
we postulate that sGSLs play a role in facilitating the
binding of EhVs, due to the presence of sGSLs in lipid
rafts (Rose et al. 2014), several cellular features likely
work in concert to determine adsorption coefficients,
including strain dependency and other compositional
properties of lipid rafts. Indeed, a unique class of GSLs,
termed raft GSLs (rGSLs), were also enriched in purified
lipid rafts (Rose et al., 2014) and are likely important for
determining adsorption coefficients.

Perhaps most striking was the statistically higher
(P < 0.001; n = 3) adsorption coefficients of purified,
detached coccoliths from DHB607 (6.77 × 10−7 ml min−1)
compared to calcified DHB607 cells (1.23 × 10−7 ml min−1;
Fig. 6B). Normalization of Cd values to surface area
showed the same comparative trend with free cocco liths
having values of 6.51 × 10−8 ml min−1 μm−2 compared to
2.45 × 10−9 ml min−1 μm−2 for calcified DHB607. Our
observations are consistent with coccoliths presenting a
highly adsorptive reservoir for free viruses. Given cocco-
liths can outnumber cells by factors of ~ 17–26 in the
environment (Balch et al., 1996), and viruses can out-
number hosts by a factor of 10 (Wommack and Colwell,
2000; Chibani-Chennoufi et al., 2004), it suggests that
coccoliths might effectively bind and sequester viable
EhVs in natural populations owing both to enhanced
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Fig. 5. Glycosphingolipid composition of various E. huxleyi strains
grown in defined ESAW media at different Ca2+ concentrations.The cell
quotas of (A) sialic acid GSL (sGSL), (B) host GSL (hGSL) and
(C) sGSL:hGSL ratio for host cells acclimated and grown under either
0.1 or 10 mM Ca2+ are shown. Both sGSLs and hGSLs represent dis-
tinct families of GSLs, with the former having a hypothesized connec-
tion to infectivity, Ca2+ and calcification (Fulton et al., 2014) and the
later serving as a more general lipid biomarker for E. huxleyi cells
(Vardi et al., 2012). Asterisks indicate statistical differences (P < 0.05;
n = 3) between low and high Ca2+ conditions. Error bars denote stan-
dard deviation among biological triplicates. Where error bars are not
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contact frequencies and absorptive surface properties,
thereby preventing contact with host cell membranes for
infection. This is further supported by calcified strains
having a higher frequency of collisions resulting in suc-
cessful adsorption.
We calculated theoretical adsorption coefficients

(Ctd, see ‘Experimental procedures’) using a value of
1 for frequency of collisions leading to adsorption
(Brown and Bidle, 2014). Our theoretical adsorption
coefficient (Ctd, 5.41 × 10−11 ml min−1) differed from
our empirically measured values discussed above. By
equating the theoretical value with our empirically
determined adsorption coefficient and solving for the
collision frequency, we found all treatments to have
considerably higher collision numbers leading to suc-
cessful adsorption. Calcified DHB607 had the highest
number of collisions at 5340, which was 31% higher
than naked DHB607 cells (4066) and ~ 95% higher
than naked CCMP374 cells (2742). The elevated fre-
quency of collisions afforded by detached coccoliths
combined with their highly adsorptive properties

presents a significant barrier to E. huxleyi host–virus
interactions, rendering them inefficient.

EhV-induced shedding of coccoliths

In light of the enhanced adsorptive properties of detached
coccoliths, we carefully monitored the dynamics of calcifi-
cation and coccolith shedding during EhV infection using
analytical flow cytometry and SSC. EhV207 infection of
calcified DHB607 (10 mM Ca2+) induced a prominent
shift in a subpopulation of resident cells to a lower SSC
after 48 hpi (Fig. 7A); the geometric mean of SSC at
72 hpi was reduced by 55.6% (dropping from 95.2 down
to 42.2) with the calcified populations represented 50.0%
and 42.1% of host cells at 48 and 72 hpi respectively. In
contrast, over ~ 95% of uninfected control cells retained
a high SSC signature indicating they remained calcified.
The lower SSC signature induced by EhV207 infection
was consistent with that observed for naked E. huxleyi
cells (Figs 1, 3 and 7) from CCMP374 and DHB607
(grown in 0.1 mM Ca2+), suggesting that this naked

Table 1. Lipid analysis of sorted cells and coccoliths.

Sample type Strain sGSL:hGSL
fmol sGSL μm−3

(normalized to cell volume)
fmol sGSL μm−3

(normalized to cocco lith volume)
Fold enrichment of
sGSLs in coccoliths

Sorted cells DHB607 1.17 5.53 – –

Sorted coccoliths DHB607 1.11 – 26.98 3.88
Sorted cells DHB624 1.29 4.76 – –

Sorted coccoliths DHB624 1.52 – 20.85 3.38

The sGSL:hGSL ratios and sGSL concentrations are shown for DHB607 and DHB624, which include sorted cells and coccoliths. sGSL quotas
have been normalized to cell and coccolith volume. Fold sGSL enrichment reflects the difference in concentration between cells and coccoliths.
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Fig. 7. Dynamics of E. huxleyi calcification during EhV infection. (A) Time course of chlorophyll fluorescence (692 nm) and side scatter (SSC) for
uninfected, control E. huxleyi cells (DHB607) and those challenged with EhV207. Cells were grown in ESAW with either 0.1 mM Ca2+ (naked
cells) or 10 mM Ca2+ (calcified) and followed via flow cytometry for 96 hpi. Note the prominent shift to a lower SSC in the 10 mM Ca2+ cells at
24–48 hpi, indicative that a significant population of cells (~ 23%–45%) had shifted to a non-calcified state. This is in contrast to cells grown in
0.1 mM Ca2+, which retain a very low SSC and are sensitive to infection (note decrease in cell number over the 96 h time period). Similar obser-
vations were seen when this same host was challenged with EhV86, with a somewhat delayed shift at 48–72 hpi (Supporting Information
Fig. S8). (B) Relationship between PFSC light and OFSC light for EhV207-infected cells at 72 hpi compared to controls. The former was charac-
terized by prominent increases in detached coccoliths and reductions in calcified cells (indicated by red text and arrows).
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subpopulation was also sensitive to successful infection.
This naked subpopulation eventually lysed ~ 96 hpi
(Fig. 7A). Host cell growth halted after 48 hpi, but it was
not accompanied by EhV production (data not shown).
The shift in SSC at 72 hpi of the host cells grown at

10 mM Ca2+ was accompanied by a 97% increase in
detached coccoliths for the EhV207-infected population
compared to control at 72 hpi (Fig. 7B). SEM images
visually confirmed the presence of detached coccoliths
during EhV207 infection (data not shown). This EhV-
induced shift towards a higher percentage of naked cells
at 72–96 hpi was consistent among replicates; statisti-
cally significant differences (P < 0.05, n = 3) were seen
as early as 48 hpi between control and infected cultures
(Supporting Information Fig. S7). Ultimately, the calcified
DHB607 cells showed evidence of infection and lysis at
72–96 hpi as indicated by the smear of cell debris with
lower chlorophyll content (692 nm). Importantly, similar
SSC shifts in E. huxleyi calcification were also observed
when DHB607 was challenged with EhV86, although
they were delayed until 72–96 hpi (Supporting Informa-
tion Fig. S8). This strongly suggested that the observed
impact of EhV infection on calcification dynamics was not
EhV strain specific.
Non-calcifying DHB607 cells grown in 0.1 mM Ca2+

had a low SSC signature and consistently succumbed to
infection, as is evidenced by the disappearance of
E. huxleyi cells in the low SSC gate and the presence of
a smear of low chlorophyll particles after 48 hpi (Fig. 7A)
concomitant with host cell lysis (Supporting Information
Fig. S4) and an increase in viral production after 48 hpi
(Supporting Information Fig. S5). In both cases, the geo-
metric mean of SSC remained in a reasonably tight clus-
ter of around 11–17. Similar results were observed for
EhV86-challenged cells (Supporting Information Figs S5
and S8).
Our results show that enhanced calcification in

DHB607 either prevents (in the case of EhV86) or delays
(in the case of EhV207) successful infection, even though
the presence of a coccosphere and detached coccoliths
enhances the adsorption of EhVs. At the same time, the
mere presence of EhVs themselves (absence of lysis)
impacted cellular calcification dynamics by inducing
~ 85% lower SSC in a subpopulation of host cells
(Fig. 7A and Supporting Information Fig. S7) to a level
consistent with naked cells (SSC ~ 10–15) and the
release of coccoliths into the water column during infec-
tion. The timing of this shift differed for EhV207 and
EhV86, with the former inducing lower SSC in 48% and
56% of host cells at 48 and 72 hpi, respectively (Fig. 7A).
Similar percentages of low SSC cell populations (27%
and 58%) were induced by EhV86 but at 72 and 96 hpi,
respectively (Supporting Information Fig. S8). We point
out that this transition to naked cells was not an induced

transition to 1 N haploid cells, as has been observed in
previous work (Frada et al., 2008; 2012). The low SSC
(naked) cells all have similar FSC (cell size) values which
would be smaller for 1 N haploid cells. Furthermore, the
coccolith shedding was observed for ~ 50% of the cell
populations and at ~ 48–72 h post infection. For compari-
son, the observed percentage of 1 N haploid cells in the
population was far lower (< 1%) and appeared a later
time stage of infection, when most diploid cells had been
lysed and removed.

Given the enhanced adsorption capacity of detached
coccoliths (Fig. 6A), we posit that the massive shedding
of coccoliths may be a cellular and mechanistic defence
response whereby the adsorptive surface area is signifi-
cantly increased, effectively sequestering viruses into an
inaccessible reservoir. We confirmed that viable EhVs
were necessary to induce the SSC shift response in cal-
cified DHB607, as incubation of cells with either heat-
denatured or 0.02 μm pore size-filtered virus lysates
yielded neither infection (Supporting Information Fig. S9)
nor a noticeable difference in SSC (data not shown).

EhV-induced elicitors manipulate calcification state

Given the SSC shift was observed upon infection of
DHB607 prior to notable cell lysis, we hypothesized that
a possible trigger of coccolith shedding might be host-
derived infochemicals produced upon interaction with
EhVs. Cell-signalling infochemicals have been shown to
be effective at inducing cellular responses in marine phy-
toplankton, including induction of programmed cell death
(PCD), upon sensing of a stress (Vardi et al., 2006; 2007;
2009). Isolated and purified vGSLs, the production of
which critically regulate successful EhV infection of
E. huxleyi, triggered PCD and mimicked successful infec-
tion when exogenously added to cell cultures at relevant
concentrations to those measured during infection (Vardi
et al., 2009). We reasoned that exposure of calcified
E. huxleyi cells to 0.02 μm filtered ‘induced media’ (IM;
derived from 72 hpi, EhV207-infected, calcified DHB607
cultures in which a notable SSC shift had been detected
via flow cytometry), would mimic the SSC shift and shed-
ding of coccoliths and, in essence, demonstrate that
EhV-induced infochemicals can impact cellular PIC
dynamics.

Exponentially growing DHB607 cells incubated in IM
displayed a dose-dependent response with both 50%
and 83% IM stimulating higher numbers of cells with a
‘naked-like’, low SSC signal at all time-points (Fig. 8A).
Comparisons between 83% IM-treated samples and
untreated controls at each respective time point revealed
that 122%–346% more cells possessed low SSC, in
response to dissolved elicitors in the IM. Both IM treat-
ments induced a shift in 19%–20% of cells at 72 hpi,
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Fig. 8. EhV-induced media shifts host calcification. (A) Time course of chlorophyll fluorescence (692 nm) and side scatter (SSC) for uninfected
E. huxleyi DHB607 cells that had been resuspended in different dilutions of ‘induced media’ (IM). IM was generated by infecting a calcifying cul-
ture (10 mM Ca2+) until a prominent shift in SSC was detected by flow cytometry (as per Fig. 7 at 72 hpi), at which point, all cells and viruses
were removed by sequential filtration through 0.22 and 0.02 μm pore size filters. Healthy calcified cells were then resuspended in IM, and both
chlorophyll and SSC dynamics were followed. Note that resuspension in 83% IM induced a similar shift in SSC by 72–96 h to that seen when
cells were challenged with EhVs alone (Fig. 7 and Supporting Information Fig. S8), with no change in chlorophyll fluorescence. Control cells were
resuspended in IM derived from uninfected control cells harvested at 72 h. (B) Time course of host abundance (measured by flow cytometry) for
each aforementioned treatment. Note that no treatments resulted in the death of the cultures, but instead resulted in net growth, albeit to different
levels and at different rates.
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followed by shifts in 24% and 45%, respectively, at
96 hpi (Fig. 8A). These differential inductions of cells into
a lower calcification state did not appear to be due to
stress and death, as IM-treated and control cultures dis-
played growth up through ~ 72 hpi into the incubation
(Fig. 8B). Furthermore, the reductions in cell abundance
in the control treatment at 96 h was not accompanied by
a concomitant increase in coccolith shedding and the
presence of naked cells (comprised 10.4% of the total);
much higher coccolith shedding and proportion of naked
cells was seen for the IM treatments. In fact, the 83%
incubation displayed signs of continued growth, albeit
slower, up through 96 hpi. This was also supported by
the fact that all cell populations had robust and similar
692 nm chlorophyll signatures up through the 96 h incu-
bation period and lacked low 692 nm debris indicative of
dying cells. These observed changes in calcification state
were likely not due to stress and death but rather point
towards unidentified, host-derived dissolved chemical
elicitors. Given vGSLs were not detected in the dissolved
(< 0.2 μm filtered) fraction (data not shown), they are
likely not the coccolith shedding compounds. Rather,
they are likely incorporated into the EhV virion, compris-
ing ~ 63% of its lipidome (Vardi et al., 2009; Fulton et al.,
2014). Purification and characterization of these chemical
compounds are underway and may provide a new class
of dissolved biomarkers for infection.

Verifying virus–calcite interplay using naked and
calcified phenotypes grown in the same media

We fortuitously generated a calcified phenotype of
CCMP374 by long-term culturing under P-limiting condi-
tions (see Experimental procedures). This strain has been
in culture for ~ 50 years and was thought to have possibly
lost this ability. The calcified phenotype was stable in
f/2-Si medium alongside the naked phenotype of
CCMP374 allowing us to confirm our observations
through side-by-side cellular measurements during infec-
tion experiments of the same strain in the same media.
Calcified CCMP374 had a higher PIC quota [5.6 pg cell−1

vs ‘none detected’ in the naked phenotype (Supporting
Information Fig. S10A)], CaCO3:POC ratio [0.35 vs < 0
(Supporting Information Fig. S10B)] and SSC geometric
means (Supporting Information Fig. S11C). Calcified
CCMP374 also had a slightly higher sGSL:hGSL ratio
[5.2 compared to 4.9 for naked CCMP374 (Supporting
Information Fig. S10C)], but they were not statistically sig-
nificant. We note that these similar sGSL:hGSL ratios dif-
fer from the aforementioned stark differences in sGSL:
hGSL ratios for CCMP374 grown in ESAW media with
high and low calcium availability. These findings hint at a
calcium-associated feedback on sGSL regulation and
production, which is consistent with their known

biochemical affiliation. It is likely that the different levels of
sGSL observed for cells grown in ESAW and f/2-Si media
reflect the differences in culturing conditions.

Calcified CCMP374 cells had significantly higher adsorp-
tion coefficients with EhV86 compared to their naked coun-
terparts (P < 0.05, n = 3; Supporting Information
Fig. S10D), with the respective Cd of 6.20 × 10−8 versus
3.81 × 10−8 ml−1 min−1, consistent with aforementioned
findings and the idea that coccoliths can sequester EhVs
and reduce successful encounters with the host. When
comparing naked and calcified CCMP374, the calcified
phenotype hade a ~ 63% higher collision frequency.

Calcification of CCMP374 also significantly impacted
infection dynamics. Naked CCMP374 has been shown in
the lab to be highly susceptible to infection with lysis
occurring with 48–72 hpi (Schroeder et al., 2002; Bidle
et al., 2007; Vardi et al., 2009; Bidle and Kwityn, 2012;
Fulton et al., 2014; Kendrick et al., 2014). Calcified
CCMP374 showed severely delayed infection dynamics
with cells continuing to grow through 96 hpi (Supporting
Information Fig. S11A), despite the production of EhVs
(Supporting Information Fig. S11B). We also observed
similar, massive shedding of detached coccoliths 72 hpi
(Supporting Information Fig. S11C), as previously
observed with calcified DHB607 (Fig. 7 and Supporting
Information Fig. S8). These observations further support
our conclusion that coccoliths provide temporal protection
against EhV infection and that the presence of EhVs con-
sistently induced the shedding of coccoliths across host
strains.

Conclusion

Our results demonstrate that calcification is another
important factor influencing the dynamic arms race
between E. huxleyi and coccolithoviruses. The fact that
coccoliths serve as a primary ballast mechanism for
associated POC in the oceans underscores the impor-
tance of this dynamic to carbon biogeochemistry. By
altering the cellular calcification state without impacting
cell growth physiology, we demonstrated that PIC content
can determine EhV adsorption coefficients and replica-
tion. Calcification does indeed appear to play a protective
role by serving as a physical barrier from, and adsorption
reservoir for, virus particles. The enhanced EhV adsorp-
tion characteristics of detached coccoliths combined with
their likely entrainment into TEP-derived marine particles
and aggregates (Laber et al., 2018; Nissimov et al.,
2018; Sheyn et al., 2018) suggest that this might be an
effective strategy to remove EhVs and function as an
effective loss term. In this way, differential calcification
states (coccolith morphologies and calcite content), aris-
ing from different genetic makeups, morphotype
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biogeographical patterns and nutrient availabilities, may
critically structure epicentres of EhV infection in the
ocean.

At the same time, the presence of EhVs themselves
can lower the calcification state of host cells, effectively
removing the protective barrier and facilitating infection.
In this way, EhVs can induce an altered cellular state dur-
ing active infection, whereby calcified cells are rendered
naked through massive shedding of coccoliths simply in
response to the presence of viable virus particles. Ulti-
mately, this profound cellular and morphological change
enhances host cell sensitivity to infection. Lastly, viable
EhVs appear to trigger this calcification shift by inducing
unidentified dissolved elicitors, consistent with the induc-
tion of infochemicals in resident populations. This sug-
gests that EhVs can impact the carbon cycle in the
absence of cell lysis. Given that EhVs are known to trig-
ger TEP production and the formation of large, sinking
aggregates during infection (Vardi et al., 2012; Nissimov
et al., 2018), our findings have important implications to
the carbon cycle by offering another caveat, whereby
EhVs can trigger PIC flux. Our results contribute to the
understanding of the impact of viruses in the marine envi-
ronment and highlight their potential roles in inducing
infochemical signalling and driving the biogeochemical
cycling of carbon.

Experimental procedures

Culture growth and maintenance

Emiliania huxleyi strains DHB607, DHB611, DHB624 and
DHB659 were obtained from the Plymouth Culture Col-
lection of Marine Microalgae (http://www.mba.ac.uk/
culture-collection/). These strains had been previously
isolated via flow cytometry and single cell sorting by D. J.
Hinz et al. (personal communication) during a 2008
mesocosm experiment conducted in Blomsterdalen, Nor-
way (Vardi et al., 2012; Kimmance et al., 2014).
CCMP374 and CCMP1516 were obtained from the
National Center for Marine Algae and Micobiota (https://
ncma.bigelow.org). All strains were grown in 250 ml plas-
tic culture flasks (CELLSTAR Cell Culture Flasks with Fil-
ter Cap, Greiner Bio One) at 18�C under a 14:10 light:
dark (L:D) cycle of 150 μmol photons m−2 s−1 in either
ESAW artificial seawater medium or f/2-Si seawater-
based medium (Guillard, 1975; Harrison et al., 1980;
Berges et al., 2001). Naked CCMP374 was grown and
acclimated to f/2-Si at N:P 243:1 in continuous culture
over a ~ 1 year period, during which time it maintained
consistent calcification (as verified by flow cytometry
SSC, PIC:POC measurements and SEM analysis). Calci-
fied CCMP374 cells were subsequently transferred and
maintained in replete f/2-Si media and maintained

calcification state for comparative analyses and infection
experiments with naked CCMP374.

The EhV strains used in this study (EhV86 and
EhV207) were previously isolated from E. huxleyi blooms
in the English Chanel in 1999 and 2001, respectively
(Wilson et al., 2002; Nissimov et al., 2012), and were
obtained from the Plymouth Marine Laboratory virus col-
lection in the UK. Virus strains were propagated in
respective exponentially growing E. huxleyi CCMP374,
DHB611 and DHB607 cultures, as previously described
(Bidle et al., 2007). Lysates were filtered with 0.45 μm
pore size syringe filters to remove debris and stored in
the dark at 4�C until used for subsequent infection
experiments.

Scanning electron microscopy

Samples (100–500 μl) were vacuum filtered onto 0.22 μm
pore size polyvinylidene fluoride (PVDF) filters
(Durapore; Millipore, Sigma, Burlington, MA) and rinsed
three to four times with an equal volume of MilliQ water
(pH ~ 8) to remove any salts. Filters were dried for ~ 24 h
and stored in a desiccator until imaged using a Phenom
ProX bench-top scanning electron microscope
(ThermoFisherScientific, Eindhoven, The Netherlands).
Image detection used the default, high-sensitivity back-
scatter electron detector setting.

Determination of PIC cellular quotas and CaCO3:POC
ratios

A total of 5 ml of exponentially growing host cells
(~ 5 × 105 cells ml−1) were vacuum filtered (× 6) onto
pre-combusted GF/F filters using baked glassware (tower
and stone filter base). The same volume of filtered sea-
water (0.45 μm pore size) was used to rinse the sides of
the tower for each sample and ensure all biomass was
collected. Additional filtered seawater was used to rinse
the tower of any excess cells in between samples. Each
GF/F filter was wrapped in pre-combusted foil, labelled
and stored in the dark at − 20�C until processing
(~ 1 week). Filters were placed into numbered, etched
glass petri dishes and baked at 60�C for drying. Triplicate
filters from each culture were placed into a glass desicca-
tor with concentrated HCl fumes for 24 h to dissolve PIC.
The other set of triplicate filters was untreated and repre-
sented total carbon (TC). Triplicate sets [acidified (× 3)
and non-acidified (× 3)] were trimmed, packed into tin
boats and combusted in a CNS Elemental Analyser
(Carlo Erba NA 1500). PIC was determined by taking the
difference between TC and POC acidified samples and
dividing by the number of cells filtered. CaCO3:POC
ratios were calculated dividing the cellular PIC quotas by
cellular POC quotas.
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Determination of ESD values

Exponentially growing calcified and naked CCMP374
cells (~ 5 × 105 cells ml−1) were diluted (1:50 in 0.45 μm-
filtered seawater and 0.5 ml were analysed using a Beck-
man Coulter Counter with a 70 μm orifice, using the
mean particle size peak to determine ESD.

Lipid analysis

Samples were filtered onto 25 mm diameter, 0.22 μm
pore size Durapore PVDF membrane filters (GVWP type;
Millipore), folded in pre-combusted aluminium foil, snap
frozen in liquid nitrogen and stored at − 80�C until pro-
cessed. Lipids were extracted and characterized as pre-
viously described by (Fulton et al., 2014).
Quotas of sGSL for sorted cells and coccoliths were

normalized to respective, post-sort cell and coccolith con-
centrations and volume filtered for analysis. Respective
cell and coccolith volumes were estimated to be
36.6 μm3 for cells and 0.3 μm3 for liths. Cell volume was
estimated using V = 4/3πr3, assuming a spherical shape
for each cell, where r is a radius of ~ 2 μm. Coccolith vol-
ume was estimated using the standard density equation
D = m/v, where m is the mass of a coccolith and D is the
density of calcite. The mass of coccoliths (pg) was calcu-
lated using the equation m = 2.7 × Ks × L3, where Ks is
the shape dependent constant derived for normally calci-
fied E. huxleyi cells (Ks = 0.02) and L is the coccolith
length (~ 2.5 μm) (Young and Ziveri, 2000; Young et al.,
2014). Mass was converted to volume using a density of
2.7 pg μm−3 for calcite (Young and Ziveri, 2000). These
values are within published estimates of both cell and
coccolith volume (Garde and Cailliau, 2000; Young and
Ziveri, 2000; Young et al., 2014).

Virus infection

All cultures were in exponential growth phase and grown
to an abundance of ~ 5 × 105 cells ml−1 prior to infection
with E. huxleyi viruses [EhV86 or EhV207 (Wilson et al.,
2005); (Nissimov et al., 2012)] at a virus:host ratio of
5. To verify the impact of viable EhVs on infection
dynamics, cells were also inoculated with heat-denatured
(100�C, 10 min) and 0.02 μm pore-size filtered (Anotop)
lysates. Once infected, cultures were re-sampled to
determine initial viral abundance at T0. Subsamples were
removed daily over the course of the experiment for host
and virus analyses via flow cytometry.

Flow cytometry analysis

Flow cytometry was conducted using an Influx Model
209S Mariner flow cytometer and high-speed cell sorter

equipped with a 488 nm 200 mW blue laser, 4-way sort
module, two scatter, two polarized and four fluorescence
detectors (BD Biosciences, San Jose, CA). Analysis of
cell abundance used chlorophyll fluorescence (692 nm,
40 nm band pass), forward scatter (FSC) and SSC with a
pressure differential between the sample fluid and sheath
fluid of 0.8–1 psi. SSC was analysed daily using a fixed
gate and saved configuration to control for natural varia-
tion of the Influx. Laser alignment and size calibration
were checked with 3 μm SPHERO Rainbow beads and
the coefficient of variation (CV) in the 530 nm signal and
FSC signals was always < 2%. Brewster angle optics
were also used to measure depolarization of FSC light by
cells and particles as previously described (Von Dassow
et al., 2012). Brewster windows were oriented so that
they either transmitted FSC light with polarization parallel
to the sample stream [parallel polarized FSC (PFSC)
light] and reflected FSC light polarized orthogonal to the
sample stream [orthogonally polarized FSC (OFSC) light]
or reflected FSC light with polarization parallel to the
sample stream (PFSC), both going to individual photo-
multiplier detectors. Flow cytometry analyses were per-
formed using the program FlowJo 8.8.7 (Ashland, OR).

Viral abundance was determined by staining with
SYBR Gold (Life Technologies,ThermoFisher Scientific,
Waltham, MA) and measurements of green fluorescence
(520 nm, 40 nm band pass) as previously described
(Brussaard, 2003). A total of 40 μl of sample were fixed
with glutaraldehyde (0.5% final concentration) and stored
for 15–30 min at 4�C, followed by flash freezing in liquid
nitrogen and storage at − 80�C until further processing.
Samples were then thawed, diluted 25-fold in 0.22 μm-
filtered Tris/EDTA (TE) buffer (pH 8), stained with SYBR
Gold (0.5–1× final concentration), incubated for 10 min at
80�C in the dark, cooled to RT for 5 min and mixed thor-
oughly prior to counting on the Influx. Viral abundance
was analysed using a pressure differential (between
sheath and sample fluid) of 0.7, resulting in a low flow
rate for higher event rates.

Adsorption assays

EhV adsorption to E. huxleyi host cells and detached coc-
coliths were determined empirically based on methods by
Brown and Bidle (2014) and using triplicate, infected cul-
tures at a virus:host ratio of 5 (data for EhV207 and
EhV86 are presented in Fig. 6 and Supporting Informa-
tion Fig. S10, respectively). Samples from each culture
were fixed with glutaraldehyde (0.5% final concentration)
at 0, 10, 30, 60, 120, 240 and 360 min post infection, and
free virus counts were determined (as above). Adsorption
coefficients (Cd) were determined by plotting the natural
logarithm of the fraction of free (i.e., unadsorbed) viruses
against elapsed time. Cd (ml min−1) was calculated as
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Cd = a/N, where a is the slope of the regression line
between the natural logarithm of the remaining fraction of
free viruses plotted over time and N is the cell concentra-
tion (Cottrell and Suttle, 1995). Our analysis included a
correction factor for virus adsorption to culture tubes in
cell-free controls (Bratbak et al., 1993; Murray and Jack-
son, 1993; Schroeder et al., 2002; Mann, 2003).

Cd values were also normalized to respective surface
areas of detached coccoliths and cells using SA = 4πr2

and using ~ 2 μm for the radius of cells. For coccoliths,
we used the surface area equation for an ellipsoid,

SA ≈ 4π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
abð Þp + acð Þp + bcð Þp

3
p
q

, where a is half the coccolith

length (~ 1 .25 μm), b is half the coccolith width (~ 1 μm)
and c is the coccolith thickness (~ 0.5 μm). We used a
value of 1.6 for (p), which is optimal for nearly spherical
ellipsoids. This yielded values of 50.3 μm2 for cells and
10.4 μm2 for coccoliths, respectively, which were used to
normalize calculated Cd values for free coccoliths and
cells.

To determine theoretical adsorption coefficients, we
first calculated the viral diffusion constant (Dv) using
kBT/3πμd, where kB is the Boltzmann constant, T is the
temperature (18�C) in Kelvin, μ is the viscosity and d is
the viral diameter (~ 180 nm). Dv (2.15 × 10−8 cm2 s−1)
was used to calculate the theoretical adsorption coeffi-
cient (Ctd) using Ctd = 4πRdf, where R is the cell radius
(~ 2 μm), d is the viral diameter and f is the frequency of
collisions resulting in adsorption. Ctd can be calculated
assuming an f value of 1 (Murray and Jackson, 1993;
Mann, 2003; Brown and Bidle, 2014). Using our empiri-
cally measured Cd, we can determine the frequency of
collisions resulting in adsorption for each assay.

IM incubations

Biological replicates (n = 2) of control and EhV86- or
Eh207-infected DHB607 cells (10 mM Ca2+) were incu-
bated until 72 hpi, when a substantial shift in SSC was
observed, at which point cultures were sequentially filtered
through 0.22 μm pore size (Sterivex) to remove cells and
any debris and 0.02 μm pore-size (Anotop) filters to
remove the virus particles. Calcified DHB607 cells
(~ 5 × 105 cells ml−1), which had been grown in ESAW
containing 10 mM Ca2+, were then re-suspended in 30 ml
of IM at 50% and 83% strength; control cultures were re-
suspended in IM derived from uninfected control cells har-
vested at 72 h. Samples were analysed every 24 h via
flow cytometry daily over a 96 h incubation period.
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Supporting Information

Additional Supporting Information may be found in the online
version of this article at the publisher’s web-site:

Fig. S1. Growth of E. huxleyi strains.
Specific growth rates (μ; day−1) of E. huxleyi strains during
exponential growth in ESAW with either 0.1 or 10 mM Ca2+

concentration (grey and white bars, respectively). Error bars
represent standard error (SD/

ffiffiffi
n

p
; n = 3) among biological

replicates grown on different dates. Statistical significance
was tested using Student’s t-test (P < 0.05, n = 3 for strains
CCMP374, DHB607, DHB624 and DHB659). DHB611 was
replicated twice; statistics are not provided but pattern is rep-
resentative of both observations.
Fig. S2. Visualization of calcification.
Scanning electron microscopy (SEM) images of various
strains of E. huxleyi cells grown in ESAW with either 0.1 or
10 mM Ca2+ concentration. Scale bars are indicated.
Fig. S3. EhV86 production dynamics for E. huxleyi cells
grown at different calcification states.
EhV abundance from infection experiments of three different
E. huxleyi host strains (CCMP374, DHB607 and DHB611)

grown in 0.1 or 10 mM Ca2+ concentration (circles and trian-
gles, respectively). Data correspond to host abundance
dynamics presented in Fig. 4. Standard error for technical
replicates (n = 3) was < 1%, which is smaller than
symbol size.
Fig. S4. Comparative host–virus infection dynamics of
E. huxleyi strain DHB607 at different calcification states
when challenged with different EhVs.
Time course of host abundance for uninfected (closed sym-
bols) and EhV infected (open symbols) E. huxleyi cells that
were grown in ESAW under either 0.1 or 10 mM Ca2+. Note
that two different EhV strains were used (EhV86 and
EhV207) for the infection of two different hosts. High sensi-
tivity to infection was displayed by those grown at low Ca2+,
both of which were naked. Also, note the increased potency
of EhV207, which can ultimately infect and begin to lyse cal-
cified DHB607 after 96 hpi (also seen in Supporting Informa-
tion Fig. S5). Error bars represent the standard deviation
among triplicate measurements for one experiment, but were
smaller than symbol size. Host virus dynamics shown were
representative of experiments (n = 3) performed on different
dates.
Fig. S5. EhV production dynamics for host cells grown at dif-
ferent calcification states.
Time course of EhV86 and EhV207 abundance for infected
E. huxleyi DHB607 cells that were grown in ESAW with
either 0.1 or 10 mM Ca2+.
Fig. S6. Visualization of sorted cells and free coccoliths.
SEM images of flow-sorted cells (top image) and flow-sorted
detached coccoliths (bottom image). Scale bars are shown
for reference.
Fig. S7. Dynamics of E. huxleyi calcification during infection
with EhV207.
Time course of the percentage of calcified (A) and naked
(B) E. huxleyi DHB607 cells, along with the abundance of
detached coccoliths (C) for uninfected, control cells (open
bars) and those challenged with EhV207 (closed bars). Cells
were grown in ESAW containing 10 mM Ca2+ and were fol-
lowed via flow cytometry for 96 hpi. Error bars represent the
standard deviation from triplicate biological experiments.
Asterisks indicate statistical significance based on Student’s
t-test (P < 0.05, n = 3).
Fig. S8. Dynamics of E. huxleyi calcification during EhV
infection.
Time course of chlorophyll fluorescence (692 nm) and side
scatter (SSC) for uninfected, control E. huxleyi cells
(DHB607) and those challenged with EhV86. Cells were
grown in ESAW with either 0.1 mM Ca2+ (naked cells) or
10 mM Ca2+ (calcified) and followed via flow cytometry for
96 hpi. Note the prominent shift to a lower SSC in the
10 mM Ca2+ cells at 72–96 h, indicative that a significant
population of cells (�25%–50%) had shifted to a non-
calcified state. This is in contrast to cells grown in 0.1 mM
Ca2+, which retain a very low SSC and are sensitive to infec-
tion (note decrease in cell number over the 96 h time period).
Similar observations were seen when this same host was
challenged with EhV207, with a somewhat earlier shift at
48–72 hpi (see Fig. 7).
Fig. S9. Host dynamics for EhV-infected E. huxleyi at differ-
ent calcification states.
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Time course of host abundance for uninfected (blue trian-
gles; solid line) and EhV207-additions (other symbols, trian-
gles; dotted lines) E. huxleyi cells that were grown under
either 0.1 or 10 mM Ca2+. Infection of DHB607 was deter-
mined for intact, viable EhV207 virions (open triangles) com-
pared to those that had been either heat-denatured (solid
green squares) or removed by 0.02 μm pore size filtration
(solid orange diamonds). Standard error for technical repli-
cates (n = 3) was < 1%, which is smaller than symbol size;
host–virus dynamics shown were representative of experi-
ments (n = 2) performed on different dates.
Fig. S10. Calcification state, glycosphingolipid composition,
and adsorption coefficient for naked and calcified pheno-
types of CCMP374.
(A) Cellular PIC quota, (B) CaCO3:POC and (C) sGSL:hGSL
ratios for naked and calcified CCMP374 phenotypes grown
in f/2-Si. Error bars represent the standard error (SD/

ffiffiffi
n

p
among triplicate measurements for one experiment.
(D) Measured adsorption coefficients for EhV86 to naked
and calcified CCMP374 phenotypes (P < 0.05, n = 3). Error

bars represent calculated standard error for triplicate mea-
surements in one experiment. The asterisk indicates statisti-
cal significance based on Student’s t-test.
Fig. S11. CCMP374-EhV86 infection dynamics at altered
calcification states.
(A) Time course of host abundance for uninfected (circles)
and EhV86-infected (triangles) naked (blue lines) and calci-
fied (red lines) CCMP374 phenotypes grown in f/2-Si. Error
bars represent the standard error (SD/

ffiffiffi
n

p
among triplicate

measurements for one experiment.
(B) Time course of viral abundance for infected naked (blue
lines) and calcified (red lines) shown in panel (A). Error bars
represent the standard error among triplicate measurements
for one experiment.
(C) Time course of chlorophyll fluorescence (692 nm) and
side scatter (SSC) for EhV86-infected naked and calcified
CCMP374 phenotypes. Two time points were chosen to
highlight the prominent shift from calcified to naked cells at
72 hpi, induced by the presence of EhV86 in calcified
CCMP374.

© 2018 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.,
Environmental Microbiology, 21, 1896–1915

Calcification and coccolithovirus infection 1915


	 The mutual interplay between calcification and coccolithovirus infection
	Introduction
	Results and discussion
	Calcification state and infectivity of E. huxleyi strains
	Manipulating calcification state and host-virus dynamics
	Linking sialic acid glycosphingolipids and calcification
	Mechanistic interplay between EhVs and calcification
	EhV-induced shedding of coccoliths
	EhV-induced elicitors manipulate calcification state
	Verifying virus-calcite interplay using naked and calcified phenotypes grown in the same media

	Conclusion
	Experimental procedures
	Culture growth and maintenance
	Scanning electron microscopy
	Determination of PIC cellular quotas and CaCO3:POC ratios
	Determination of ESD values
	Lipid analysis
	Virus infection
	Flow cytometry analysis
	Adsorption assays
	IM incubations

	Acknowledgements
	References


