- Significance of perylene for source allocation of terrigenous organic
 matter in aquatic sediments
- 5 Ulrich M. Hanke^{1,*}, Ana L. Lima-Braun^{1, ‡}, Timothy I. Eglinton^{1,2}, Jeffrey P. Donnelly³, Valier
- 6 Galy¹, Pascale Poussart^{1,†}, Konrad Hughen¹, Ann P. McNichol³, Li Xu³, Christopher M.

7 Reddy¹

4

- 8 ¹ Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution,
- 9 266 Woods Hole Road, Woods Hole, MA 02543, USA
- ² Geological Institute, ETH Zürich, Sonneggstrasse 5, 8092 Zurich, Switzerland
- ³ Department of Geology and Geophysics, Woods Hole Oceanographic Institution, 266 Woods
- 12 Hole Road, Woods Hole, MA 02543, USA
- 13 [‡]Current address: ExxonMobil Exploration Company, Spring, Texas, USA
- [†]Current address: Princeton University, 36 University Place, Princeton, New Jersey 08544
- 15 USA
- 16 *corresponding author: <u>uhanke@whoi.edu</u>
 17
 18
- 19
- 20 21 22

24

23 ABSTRACT

- 25 Perylene is a frequently abundant, and sometimes the only polycyclic aromatic hydrocarbon
- 26 (PAH) in aquatic sediments, but its origin has been subject of a longstanding debate in
- 27 geochemical research and pollutant forensics because its historical record differs markedly from
- 28 typical anthropogenic PAHs. Here we investigate whether perylene serves as a source-specific
- 29 molecular marker of fungal activity in forest soils. We use a well-characterized sedimentary

30 record (1735 to 1999) from the anoxic-bottom waters of the Pettaquamscutt River basin, RI, 31 USA to examine mass accumulation rates and isotope records of perylene, and compare them 32 with total organic carbon and the anthropogenic PAH fluoranthene. We support our arguments 33 with radiocarbon (^{14}C) data of higher plant leaf-wax *n*-alkanoic acids. Isotope-mass balancecalculations of perylene and *n*-alkanoic acids indicate that ~40 % of sedimentary organic matter 34 35 is of terrestrial origin. Further, both terrestrial markers are pre-aged on millennial time-scales prior to burial in sediments and insensitive to elevated ¹⁴C concentrations following nuclear 36 weapons testing in the mid-20th Century. Instead, changes coincide with enhanced erosional 37 38 flux during urban sprawl. These findings suggest that perylene is definitely a product of soil-39 derived fungi, and a powerful chemical tracer to study spatial and temporal connectivity 40 between terrestrial and aquatic environments.

41

42 43

44 **INTRODUCTION**

Perylene is found in marine $^{1-5}$ and lacustrine sediments $^{6-8}$, in soils 9,10 , and also in petroleum 45 ^{11,12} and fuel emissions ^{13,14} often associated with other distinctive anthropogenic combustion-46 derived polycyclic aromatic hydrocarbons (PAHs). However, most studies report that sediment 47 records of pervlene differ greatly from those of anthropogenic PAHs ^{15–19}. The latter are 48 49 typically most abundant in sediments post-dating the Industrial Revolution, particularly those deposited during the latter half of the 20th Century, whereas perylene abundances are lowest 50 51 near the sediment-water interface and tend to increase with depth, particularly in anoxic sedimentary settings ^{18,20}. This depth-related increase in concentration implies abiotic or 52 biologically mediated *in situ* production from precursor natural product(s)^{2,21} by either a first-53 or second-order reaction under anaerobic conditions ²⁰. 54

The origin of perylene has remained unclear for decades, during which has previously been 56 argued for terrestrial ^{1,2,22,23} and diagenetic ^{6,16,24}, as well as petrogenic ^{12,25} and pyrogenic ^{13,14} 57 sources. It was only recently that Itoh and collaborators ²³ determined that the fungal species 58 *Cenococcum geophillum* produces 4.9-dihydroxyperylene-3,10-quinone, confirming a 59 longstanding hypothesis ^{1,22} that there is a naturally produced precursor. This ectomycorrhizal 60 61 fungus appears almost ubiquitous in boreal, temperate and subtropical regions, and present in the rhizosphere of woody-plant roots and more generally in forest soils ²⁶. A fungal origin can 62 63 explain the widespread abundance of perylene in the environment even over geological timescales ²⁷, since mycorrhizal associations with vascular plants evolved about 400 million years 64 65 ago 28 .

66

67 Besides C. geophyllum, other mycorrhiza also produce similar perylene precursor compounds 29,30 as toxins involved in pathogenesis of their host plant ³¹. Prior stable carbon isotopic (δ^{13} C) 68 69 measurements of pervlene found values similar to those terrestrial sources (C₃-vegetation: δ^{13} C 70 \approx -27 ‰), supporting a wood-degrading origin from the rhizosphere ³². This is further 71 supported by dual-isotope analyses of perylene (δ^{13} C and δ D) in sediments showing similar δ D 72 values as methoxy groups in lignin while δ^{13} C values are consistent with the expected 73 fractionation range in saprophytic fungi²². In addition, natural abundance radiocarbon $({}^{14}C)$ analyses allows a comparison of the ¹⁴C age of perylene with that of other organic matter 74 75 constituents ²⁵, including total organic carbon (TOC) and specific markers of terrigenous 76 organic matter co-deposited in aquatic sediments. Such analyses shed light on the origin and 77 provide further evidence on the origin of pervlene and its use in environmental forensics.

79 Our motivation is to reconcile existing hypotheses on the source of perylene and assess the 80 potential of this marker compound as a biogeochemical tracer to follow the trajectories of 81 terrigenous organic matter mobilization and transport within watersheds. Specifically, we 82 investigate whether it serves as a molecular marker for rhizosphere carbon from catchment soils 83 and thus facilitates source approximation of terrigenous organic matter in sediments. Moreover, 84 while researchers currently tend to exclude perylene from forensic investigations involving the 85 apportionment of PAHs due to its incongruent behaviour, pervlene may have mutagenic effects on organisms ^{33,34}. Thus, an improved understanding of the provenance and dynamics of 86 pervlene may be pertinent to mapping inventories of natural and anthropogenic pollutants, 87 88 delineating transport pathways, and reconstructing historical land-use.

89

90 In this study, we construct historical records of perylene and TOC abundances and isotope 91 compositions from the anoxic sediments of the suburban Pettaquamscutt River basin, RI, USA. 92 We chose these sediments because they provide an exceptionally detailed chronological record 93 and a wealth of background information on the catchment area, including human influence on local to regional scales ^{15,35–38}. In addition, this sedimentary record extends over 260 years. 94 95 from the pre-industrial (~1735) until 1999, including an interval characterized by frequent 96 above-ground nuclear-bomb testing (resulting in elevated atmospheric ¹⁴C concentrations 97 peaking in 1963 when the testing ceased), thus offering the opportunity to study the rate at 98 which specific organic carbon species incorporate atmospheric CO₂ and are sequestered in 99 aquatic sediments. These characteristics of the study site, when coupled with down-core $\delta^{13}C$ 100 and ¹⁴C records, provide a novel perspective on pervlene biogeochemistry, yielding constraints 101 on its source and on the burial efficiency of terrigenous organic matter in aquatic sediments. 102 We compare mass accumulation rates (MAR) of perylene and TOC to the combustion-derived

103 PAH marker fluoranthene. While several non-alkylated PAHs could be used to trace past-104 combustion practices, we choose fluoranthene because its quantitative down-core profile 105 resembles the temporal evolution of the sum of 15 parent PAHs in this watershed¹⁵. We further 106 support our interpretation with down-core data of particle size and leaf wax (C₃₀₋₃₂; *n*-alkanoic 107 acids) ¹⁴C variations. We then carefully assess whether the rhizosphere of wooded land serves 108 as the direct source for perylene in the environment and discuss the process of pre-ageing of 109 terrestrial organic matter prior to delivery into the aquatic environment in the context of parallel 110 sedimentary records.

111

112 EXPERIMENTAL SECTION

113 A series of seven freeze cores were collected in the depocenter of the lower basin of the 114 Pettaquamscutt River basin, RI, USA (41.503100; -71.450500) in 1999. The catchment area covers 35 km² of forest, wetlands and open water of which today about 30 % is residential land 115 116 ³⁷. Ocean water flooded the basin about 1700 ± 300 years ago leading to a stratified water 117 column and sustained anoxic conditions in bottom waters and underlying sediments ³⁶. A 118 detailed description on the sediment chronology and sample processing is presented elsewhere ^{15,39}. Sediment chronology was obtained from varve counting of x-ray radiographs as well as 119 from ¹³⁷Cs and ²¹⁰Pb profiles using the model of constant rate of supply that yielded a sequence 120 of about 260 years (1735-1999 AD) and an average sedimentation rate of 0.44 ± 0.10 cm yr^{-1 39}. 121

Sections from the cores were combined after aligning x-radiograph images including hurricane layers in 1938 and 1954 to a reference chronology of varve counting, ²¹⁰Pb, and ¹³⁷Cs. This was necessary to obtain enough sediment for trace molecular isotopic-analyses ³⁵. Hence, we pooled

126	the samples in eight horizons for all isotopic analyses: H1 (1999–1982), H2 (1981–1962), H3
127	(1960–1931), H4 (1929–1898), and H5 (1896–1873), H6 (1871–1842), H7 (1840–1768), and
128	H8 (1764–1735) respectively, except <i>n</i> -alkanoic acids that were analyzed in four individual
129	samples: 1885±5, 1947±33, 1972±2, and 1991±1. Quantitative measurements for the
130	calculation of the mass accumulation rates as well as grain size analyses were performed on
131	individual samples as well.
132	
133	Grain size analyses
134	One freeze-core slab was sub-sectioned using a scalpel blade, transferred into 50-mL round
135	bottom flasks and treated with a 30% hydrogen peroxide solution at a ratio of 40 ml per 1 g
136	sediment, and heated in a water bath to 70 °C as a means to support mineralization of the
137	organic matter. Subsequently, samples were freeze dried, and a subsample of about 11 mg was
138	suspended in water and measured on a Beckmann Coulter LS13 320 Laser Diffraction Particle
139	Analyser (Indianapolis, USA) in triplicate.
140	
141	Total Organic Carbon and Nitrogen
142	A Fisons 1108 elemental analyzer was used to measure the TOC content of the samples. To
143	remove the inorganic carbon fraction, about 2 mg of dry sample was weighed into a silver
144	capsule and acidified with 20 μL of 2N HCl. TOC content was calculated in relation to the
145	whole sediment dry weight while organic carbon/organic nitrogen TOC/TN ratios were
146	calculated on an atomic basis. Samples were run in triplicate and all reported weight
147	percentages represent the mean \pm one standard deviation with an instrumental blank of 0.004

- 148 mg for C and smaller than 0.005 mg for N.

150	Isotope ratio monitoring mass spectrometry
151	The stable carbon isotopic composition of bulk sample TOC was determined in triplicate by
152	automated on-line solid combustion interfaced to a Finnigan Delta Plus isotope ratio mass
153	spectrometer. Isotope ratios were calculated relative to CO ₂ reference gas pulses, with standard
154	deviations for replicate measurements were always better than 0.6 ‰ and usually within 0.3 ‰.
155	
156	Extraction, purification and isotope analyses of perylene, fluoranthene and <i>n</i> -alkanoic
157	acids
158	Dry sediment samples (0.5-1.5 g) were extracted by pressurized fluid extraction (Dionex ASE
159	200) using a mixture of acetone and <i>n</i> -hexane (1:1) at 1000 psi at 100 °C. Molecular
160	identification and quantification was achieved using an Agilent 6890 Plus GC System
161	interfaced to a mass selective detector operating at 70 eV in SIM mode using a DB-XLB
162	capillary column (60 m × 0.25 mm × 0.25 μ m) ¹⁵ .
163	
164	Compound-specific radiocarbon analyses (CSRA) of perylene and fluoranthene were performed
165	on eight pooled horizons by first using high-pressure liquid-chromatography (HPLC) to
166	separate pure perylene (98% purity or greater) from the sample extracts. The HPLC procedure
167	isolated PAHs into 2-ring and the combined 3+4-ring and 5+6-ring PAHs. The resulting 16
168	HPLC fractions (8 horizons x 2 ring classes) were subjected to two-dimensional preparative
169	capillary gas chromatography for isolation and purification of individual PAHs via HP 7683
170	auto-injector and a multi-column switching system (Gerstel MCS 2) connected to a HP 6890
171	series gas chromatograph, and Gerstel preparative fraction collector (PFC; further details in SI).
172	Purified samples were transferred to pre-combusted quartz tubes (7 mm I.D. x 20 cm), dried
173	under nitrogen before adding copper oxide (50 mg). Each tube was then evacuated on a vacuum

174 line while samples were kept at -90°C to prevent sublimation, sealed, and combusted at 850°C 175 for five hours. About 95% of the purified carbon dioxide was reduced to graphite, pressed and 176 analyzed for ¹⁴C at NOSAMS, Woods Hole, U.S. and the remaining 5% was used for δ^{13} C 177 measurements.

178

179 The δ^{13} C values of perylene were determined in triplicate on a Finnigan Delta Plus isotope ratio 180 mass spectrometer with attached Finnigan GC combustion III interface and Hewlett-Packard 181 6890 GC (irm-GC/MS). Compounds were separated on a CP-Sil 5CB capillary column (50 m × 182 0.25 mm × 0.25 µm) and isotope ratios for PAH peaks were calculated relative to CO₂

reference gas pulses. The standard deviation for replicate measurements of perylene was better

184 than 0.6 % and mostly around 0.2 %.

185

186 The isotopic composition of leaf wax *n*-alkanoic acids (C_{30-32}) were determined for four

187 individual sediment samples deposited in 1885±5, 1947±33, 1972±2, and 1991±1 following the

188 analytical procedure described elsewhere 40 . In brief, *n*-alkanoic acids were extracted, isolated,

and purified using a preparative Hewlett Packard 5890 series II capillary gas chromatograph ⁴¹.

190 Following the chromatographic purification of individual compounds, samples were graphitized

and measured at NOSAMS, Woods Hole, U.S.

192

193 Evaluation of isotope data

194 Isotope mass-balance calculations provide quantitative estimates for source apportionment of

195 organic matter. To constrain the sources of TOC and perylene in Pettaquamscutt River

sediments, we calculated the relative contribution of possible organic carbon sources in the

197 sediments using the measured ¹⁴C and δ^{13} C values for TOC (Figure 2). We report the ¹⁴C data

as $F^{14}C$ which is the fraction modern independent from the year of measurement ⁴². We 198 199 assumed a simple mixing model to retrieve an average value for the lag-time of perylene and 200 leaf wax *n*-alkanoic acids; the details of which are published elsewhere 35 . In brief, these 201 source-specific molecular markers facilitate approximations of the contributions of terrigenous 202 organic matter in aquatic sediments (further details on the concept are included in SI). 203 To account for the potential variability under increasing human pressure on the coastal 204 environment, we determined average values of our terrestrial end-members for two time periods: the pre-industrial (1735 to 1840) and the post-'bomb' (1960 to 1999) period (see SI for 205 206 more detail). Regarding ¹⁴C data evaluation, the post-1960s period also is a benchmark to test 207 for the resilience and short-term dynamics of catchment processes. In contrast, the aquatic endmember is only affected by the marine reservoir effect, which is about 400 ± 40^{14} C years lower 208 than the atmospheric ¹⁴C concentration at the time of burial ⁴³. Furthermore, we neglect a 209 210 potential impact of petrogenic carbon ⁴⁴ in the Pettaquamscutt River because of the absence of post-glacial erosion and due to the absence of carbonaceous metasedimentary rocks in the basin 211 ⁴⁵. We constrain our model by $\delta^{13}C = -21.0$ ‰ for aquatic production ⁴⁶ and use local records of 212 perylene, pyrogenic carbon 35 and *n*-alkanoic acids (C₃₀₋₃₂) to define terrestrial end-members. 213 We further obtained the contemporary atmospheric ¹⁴C concentrations from the extended 214 Intcal13 reference chronology ^{43,47}. 215

216

217 **RESULTS AND DISCUSSION**

The exceptionally well-constrained chronology of the Pettaquamscutt River sediments along with detailed reconstructions of the provenance of combustion-derived PAHs ^{15,35} and Hg ³⁸ provide key constraints that allow us to determine whether perylene signatures are consistent with its production in the rhizosphere of catchment soils ^{23,26}. To characterize the export of 222 terrigenous organic matter, including the putative precursors of perylene, and its subsequent

223 burial in aquatic sediments, we report MAR for TOC, perylene, and fluoranthene. Isotopic mass

balance calculations for δ^{13} C and 14 C records are employed to further constrain the main source

225 of perylene precursors. With reference to recent research and our results, we then provide a

synthesis aiming to merge the existing concepts, reconciling the origin of perylene (i.e.,

227 terrestrial, diagenetic or petro-/pyrogenic).

228

229 Down-core mass accumulation rates of TOC and perylene

The burial rate of TOC in the sediments of the Pettaquamscutt River ranges from 38 to 61 g m⁻² 230 yr⁻¹ (average = 49 ± 6 g m⁻² yr⁻¹, n = 71). The lowest TOC burial flux is observed in ca. 1938 231 (Figure 1) and is related to a 16.7 % shift in burial flux from 53.0 ± 43 g m⁻² yr⁻¹ prior to ca. 232 1927 to 44.0 ± 3.7 g m⁻² yr⁻¹ for sediments deposited thereafter. The timing of this change 233 234 coincides with the construction of the Lacey Bridge on the ocean side of the lower basin in 1934⁴⁵ (Figure 1B) that likely caused a restriction in seawater intrusion, affecting the influx of 235 236 both marine as well as the terrestrial matter. We argue that this exemplifies the accelerated development of the catchment area beginning early in the last century and the related 237 238 infrastructure projects that changed the natural flow paths of materials within the watershed.

239

241 = 71; Figure 1) where three trends are delineated: decreasing C/N from 1730s (12.6) to 1840s

242 (9.4), a ~50-year reversal towards higher C/N ratios (13.2 in 1900), and a century-long C/N

secular decrease in the upper core (10.0 in 1999). This rather narrow range in C/N ratios

suggests that organic matter is predominantly yet not exclusively composed of labile material

245 with C/N values similar to aquatic organic matter (C/N = 4 to 10) 48 . However, we refrain from

- further speculations on this bulk-level information due to the absence of a robust reference for
- 247 C/N values of terrigenous organic matter from this area.

Figure 1: Mass accumulation rates for total organic carbon (TOC), perylene, and fluoranthene as well as carbon to nitrogen (TOC/TN) ratios and down-core shifts in coarse particle abundance (D₉₀) with shaded area **A** representing the maximum PAH flux in this area, **B** the period of amplified erosion due to infrastructure development, and **C** the pre-industrial era prior to 1840s.

254

262	exhibits significant variability ³⁵ , however the temporal evolution of MARs of this pyrogenic
263	PAH differs sharply with that of perylene. Specifically, fluoranthene's MAR was low until the
264	mid-19 th century (Figure 1C), increased steadily to a maximum in the late-1950s, then declined
265	in the post-1970s due to cleaner burning fuels and as consequence of environmental regulations
266	^{15,37} . Such down-core profiles of combustion-derived PAHs are also observed in other
267	sedimentary records, including the upper basin of the Pettaquamscutt River ^{16,19,49} .
268	
269	The observed decline in perylene/proto-perylene MAR between 1927-1938 coincides with the
270	abrupt decrease in TOC accumulation rate (Figure 1B). We attribute the latter to a dilution in
271	organic carbon content resulting from a higher proportion of clastic material due to erosion of
272	soil mineral horizons (Figure 1). Perylene is a trace constituent of TOC, never accounting for
273	more than 0.1 % of TOC, and consequently perylene/TOC ratios shift by 500 % relative to
274	before or after this time interval. These observations thus support the link between a decrease in
275	perylene's MAR resulting from an increase in erosional flux (Figure 1B).
276	
277	A striking feature of the perylene profile is that fluxes remain nearly constant (665 \pm 180 $\mu g~m^{\text{-}2}$
278	yr ⁻¹ ; $n = 26$) prior to 1865, indicating either steady-state erosional conditions or quantitative
279	conversion of precursor material (Figure 1) ²³ . Due to the large variations in perylene burial
280	rates in our sedimentary record we refrain from attempting to derive kinetic parameters for
281	conversion of perylenequinone (proto-perylene) precursor to perylene. However, Slater and
282	collaborators ⁵⁰ compared two perylene profiles from Lake Siskiwit collected in 1983 and 2005.
283	They found a reaction rate constant (0.048 yr ⁻¹), ca. 75 % higher than previously reported 20
284	while another study reported much lower rates ¹⁸ . All of the above studies suggest that the
285	conversion of perylenequinone to perylene follows first-order kinetics. Nevertheless, the strong
	12

(~ 97%) decrease in perylene abundance in Pettaquamscutt River sediments from 1973 to 1999
likely reflects incomplete conversion of precursor compounds (Figure 1).

288

Isotope mass balance calculations

290 The δ^{13} C TOC profile (Figure 2) appears relatively invariant throughout the core (-25.4 to -23.0 291 ‰, average -24.1 \pm 0.5 ‰, n = 36), indicating the absence of large variations in organic matter 292 composition. Although the TOC MAR decreased in the 1930s, δ^{13} C values do not suggest this 293 was accompanied by a shift in the nature of organic matter supplied to Pettaquamscutt River 294 basin. Instead, the observed changes in burial flux in this catchment are attributed to a shift in 295 land use stemming from an increase in the local human population and the accompanied development of infrastructure. The δ^{13} C values of pervlene (-28.9 to -28.3 ‰; average -28.6 ± 296 297 0.6 ‰; Figure 2) were similarly invariant, while significantly lower than TOC and similar to that reported for terrestrial C₃ plants (-29 to -25, average -28 %)⁵¹. 298

Figure 2: High-resolution δ^{13} C record for TOC and pooled sample results for perylene (left); molecular ¹⁴C data for the combustion-derived fluoranthene (middle) and results on perylene, leaf wax *n*-alkanoic acids as well as TOC (right).

301	In contrast, the ¹⁴ C record of TOC for pooled samples ($n = 8$; Figure 2) reveals only small
302	variations in pre-industrial time (1735 to 1840) but then tends to shift towards more ${}^{14}C$
303	depleted values between 1839 and 1958. This change is thought to integrate the increasing use
304	of fossil fuels slightly diluting the natural atmospheric ¹⁴ C concentration (the so-called 'Suess
305	effect') as well as on-going infrastructural development and constructions within the catchment
306	resulting in the mobilization of deeper mineral soils. Thereafter, we observed a drastic (~15 %)
307	increase in F ¹⁴ C TOC values reflecting the shift in atmospheric ¹⁴ C derived from thermonuclear
308	weapons testing in the post-1960s. The uppermost sediment layer signals declining ^{14}C
309	concentrations similar to the atmosphere ⁴⁷ .
310	
311	Compound-specific radiocarbon analysis reveals that the ¹⁴ C profile of perylene follows that of
312	TOC from the pre-industrial period until ~1950. Thereafter, ${}^{14}C$ of TOC increases due to the
313	incorporation of atmospheric bomb ¹⁴ C, while perylene trends to more ¹⁴ C-depleted values.
314	This could reflect a pyrogenic (fossil fuel) contribution to perylene, mitigating the impact of
315	'bomb' carbon in the Pettaquamscutt River sediments. However, CSRA of leaf wax <i>n</i> -alkanoic
316	acids (C ₃₀₋₃₂) from the same sediments reveals a concomitant ^{14}C trend with perylene (Figure
317	2). We infer, therefore, that leaf waxes and perylene share a common source and mode of
318	export, implying that local erosional fluxes and mobilization of soil organic matter are
319	responsible for the decoupled TOC and perylene post-1950s signals rather than global-scale
320	perturbations such as 'Suess effect' or above-ground nuclear weapons testing.
321	
322	In the mainly wooded catchment area of Pettaquamscutt River, organic molecules are produced
323	during photosynthetic activity, translocated and metabolized in plants, as well as released into
324	the rhizosphere. In the soil, plant and animal residues can be assimilated, stabilized and

metabolized until they eventually become respired to carbon dioxide ⁵², or they can be eroded 325 326 and redistributed within the watershed ⁵³. Source-specific molecular markers allow delineation 327 of specific processes associated with organic matter cycling, while molecular ¹⁴C data provide additional information on the timescales of organic matter storage and transport from its source 328 329 to the 'ultimate' site of burial. This "residence time" has been determined for several markers of terrestrial primary productivity ^{54–56}, as well as charred plant biomass ^{35,57}, and range from 330 331 centuries to several millennia. The underlying processes resulting in organic matter 'pre-aging' prior to burial in aquatic depocenters can complicate source apportionment because the ¹⁴C 332 333 concentration of various organic matter components differs from that of the corresponding 334 atmospheric ¹⁴C reference value.

335

We determined an average ¹⁴C residence time for pervlene of 1300 ± 300^{14} C years for samples 336 pre-dating the industrialization (1735-1840, n = 3) and 2000 ± 500^{14} C years for the post-337 338 'bomb' era (1960-1999; n = 3). These values agree well with leaf wax *n*-alkanoic acids (C₃₀₋₃₂) that showed a 2700 ± 700^{14} C year residence time for the post-'bomb' era (Figure 2), and a 339 340 record of biomass-derived pyrogenic carbon from the same core revealed an average age of 1460 ± 490 ¹⁴C years for the pre-industrial era ³⁵. The apparent average age or residence time 341 342 over the pre-industrial and the post-'bomb' era for perylene and higher plant *n*-alkanoic acids of 343 ca. 2000 ¹⁴C years is slightly higher than has been reported for (micro) charcoal in the same catchment ³⁵ as well as for leaf wax *n*-alkanoic acids in the Bengal fan ⁵⁵ yet similar to that of 344 345 Cariaco basin ⁵⁶. However in the post-'bomb' era we observed a decoupling of ¹⁴C 346 concentrations among molecular markers and TOC. Specifically, the increase in atmospheric ¹⁴C concentrations post-1960s is not apparent in pervlene or *n*-alkanoic acids, suggesting that 347 348 soil carbon storage on millennial timescales may conceal or delay the legacy.

Isotope mass balance calculations based on TOC ¹³C and ¹⁴C data yield similar values for the proportion of organic matter of terrestrial origin (δ^{13} C: -43 ± 10 % and ¹⁴C: -37 ± 10 %), with the remaining carbon derived from aquatic productivity. These results for the Pettaquamscutt River basin are slightly higher than an estimated global average of one-third of sedimentary organic of terrestrial origin ⁵⁸. The similar estimates obtained from dual-carbon isotope evaluations based on perylene reinforce its value in constraining the terrestrial end-member in source apportionment.

357

358 New constraints on the source of perylene

359 The origin and widespread distribution of pervlene in the environment has been a subject of 360 scientific debate for decades, although its conversion from the precursor molecule, 4,9dihydroxyperylene-3,10-quinone, has long been suspected ^{1,2,23,29}. In particular, it has remained 361 unclear whether pervlene is formed during *in-situ* diagenesis ^{6,16} or is of petro-/pyrogenic origin 362 363 ^{11,14,25,59}. The former hypothesis was stimulated by the presence of pervlene in Antarctic marine sediments ⁶⁰ and by large similarities between pervlene and total organic matter down-core 364 profiles, fueling the notion of *in-situ* synthesis from TOC ¹⁶. Along these lines, Gschwend and 365 collaborators ²⁰ calculated kinetic parameters necessary to yield perylene from biogenic 366 367 precursor concentrations that are consistent with results from a recent study comparing downcore profiles 20 years apart in Lake Siskiwit ⁵⁰, and both are in line with the observed reduction 368 of perylenequinones ²³. The second alternative hypothesis is based on the abundance of 369 pervlene in ancient sediments ^{22,61}, fossil fuels ^{11,12} or combustion emissions ^{13,14,59}. Regarding 370 371 the latter sources, pervlene concentrations remain below 1.4% of the total PAH and thus are 372 negligible for the overall budget. Its presence in these matrices, however, raises the question of

373 whether perylene is exclusively of fungal origin. A possible explanation for the occurrence of 374 pervlene in fossil fuels lies in the evolutionary development of fungi. The symbiotic interaction 375 between fungi and vascular plants evolved about 400 Ma ago, and ectomycorrhiza have existed 376 for at least 56 Ma⁶², while the divergence and evolution of the mycorrhiza gene pool remains largely unexplored ²⁸. However, Blumer proposed the conversion of pigments to hydrocarbons 377 378 through a geochemically irreversible deoxygenation of functional groups and hydrogenation under sustained reducing conditions ⁶³. Even though this was exemplified for fossil crinoids in a 379 380 pigment-rich Triassic oil shale, these reactions likely also apply to the precursors of biogenic 381 PAH. We deduce, therefore, that fungal-derived pervlenequinone is deoxygenated during 382 sediment diagenesis and, at least partly, survives coalification. This could explain the occurrence of pervlene in fossil deposits ³² and could explain its abundance in combustion 383 384 residues. One evolutionary rationale for the occurrence of perylene in scletoria, the resting 385 structures of C. geophyllum 64 , is the extreme mutagenic activity of the unsaturated nucleus of perylenequinones on gram-negative bacteria³³, protecting the reproductive function of fungal 386 387 spores. Overall, the preponderance of evidence ^{17,22,32}, reinforced by our new data, indicates that pervlene is a remnant of wood degradation or fungal activity in the rhizosphere – a hotspot of 388 389 biological activity on land, and source of organic matter to aquatic systems.

390

391 Parallels between perylene and TOC

392 Sedimentary organic matter is a highly complex mixture composed of aquatic and terrigenous 393 organic carbon, and this complexity complicates source apportionment calculations, as well as 394 determination of carbon fluxes and thus the carbon burial efficiencies ^{65,66}. Measurement of the 395 abundance and isotopic composition of source-specific molecular markers can provide 396 constraints on terrigenous organic matter in sediments ⁶⁵. In addition to source constraints from

397 δ^{13} C and 14 C signatures, the latter also yields information on whether organic matter is of 398 modern or fossil origin⁴⁴, as well as on timescales of terrigenous organic matter between 399 formation on land and burial in aquatic depocenters (i.e., "average residence times")³⁵. The 400 process of 'pre-aging' implies a lag between biosynthesis and export of organic matter from 401 land to depocenter, with natural as well as anthropogenic molecules being retained in catchment soils from annual to millennial time-scales ^{35,55,56}. Here, we find that this pre-aging process 402 403 occurs on similar time-scales for leaf wax fatty acids (*n*-alkanoic acids), biomass-derived 404 pyrogenic carbon and the rhizosphere tracer perylene – all together terrestrial markers with 405 different modes of formation, chemical structures and functionalities. This agreement between 406 these different source-specific markers suggests that retention within soils regulates the export 407 of most terrigenous organic matter and associated carbon-based pollutants that enter the soil 408 column.

409

410 TOC and pervlene MARs co-vary in the pre-industrial era until about 1850 despite some 411 variability in the TOC flux (Figure 1). We attribute the latter to the increasing pressure by 412 extensive farming, as well as potential changes in aquatic productivity. The dual carbon isotope 413 records for TOC and pervlene (Figure 2) support the absence of drastic compositional shifts 414 throughout the record, despite the influence of the 'Suess effect' and nuclear weapons testing on the latter part of the TOC ¹⁴C record. Notably, perylene shows large variation in MAR after 415 416 1850, which we suspect is due to the conversion of the catchment from a rural into a sub-urban 417 landscape that was accompanied by an enhanced erosional flux of carbon from bare soils. 418

Similarities between TOC and perylene records have been observed previously ^{6,16,22,61}, yet in
these cases it was suspected to reflect direct *in-situ* microbial production of perylene ¹⁶ rather

421	than	the reduction and conversion of a precursor into perylene. This depletion of the precursor				
422	pool may continue over geological time scales ⁶³ , thus limiting comprehensive quantitative					
423	assessment of perylene in recent sediments ⁵⁰ . In contrast, the isotopic composition of perylene					
424	is exp	pected to be insensitive to conversion efficiency, and thus can serve as a robust tracer of				
425	soil-c	lerived terrestrial organic matter.				
426						
427	Ackr	nowledgement				
428	The a	authors thank John King, Sean Sylva, Brad Hubeny, Peter Sauer, Jim Broda for their help				
429	in sa	mpling, Carl Johnson and Daniel Montluçon for their incessant help with analyses as well				
430	as M	ark Yunker for critical discussion on the perils of perylene. Professor Phil Meyers and two				
431	anon	ymous reviewers provided comments that improved the quality of the manuscript. U.M.H.				
432	ackn	owledges the Swiss National Science Foundation for his postdoctoral fellowship and T.I.E.				
433	and K.A.H. the NSF for research grants CHE-0089172 and OCE-9708478.					
434						
435	Supp	oorting Information. Provides details on the preparative chromatographic isolation of				
436	PAHs for compound-specific isotope analysis, the concept of two modes of terrigenous organic					
437	matter export from land to oceans, the impact of the nuclear weapon testing on the atmospheric					
438	and marine ¹⁴ C partitioning over time and results for grain size analyses, respectively.					
439						
440	Liter	ature				
441	(1)	Orr, W. L.; Grady, J. R. Perylene in Basin Sediments off Southern California. Geochim.				
442		Cosmochim. Acta 1967, 31, 1201–1209. https://doi.org/10.1016/S0016-7037(67)80058-				
443		9.				
444	(2)	Aizenshtat, Z. Perylene and Its Geochemical Significance. Geochim. Cosmochim. Acta				

445		1973, 37, 559–567. https://doi.org/10.1016/0016-7037(73)90218-4.
446	(3)	Silliman, J. E.; Meyers, P. A.; Ostrom, P. H.; Ostrom, N. E.; Eadie, B. J. Insights into the
447		Origin of Perylene from Isotopic Analyses of Sediments from Saanich Inlet, British
448		Columbia. Org. Geochem. 2000, 31 (11), 1133-1142. https://doi.org/10.1016/S0146-
449		6380(00)00120-0.
450	(4)	Zhang, X.; Xu, Y.; Ruan, J.; Ding, S.; Huang, X. Origin, Distribution and Environmental
451		Significance of Perylene in Okinawa Trough since Last Glaciation Maximum. Org.
452		Geochem. 2014, 76, 288–294. https://doi.org/10.1016/j.orggeochem.2014.09.008.
453	(5)	Venkatesan, M. I. Occurence and Possible Sources of Perylene in Marine Sediments-a
454		Review *. Mar. Chem. 1988, 25 (2845), 1-27. https://doi.org/10.1016/0304-
455		4203(88)90011-4.
456	(6)	Meyers, P. A.; Ishiwatari, R. Lacustrine Organic Geochemistry-an Overview of
457		Indicators of Organic Matter Sources and Diagenesis in Lake Sediments. Org. Geochem.
458		1993, 20 (7), 867–900. https://doi.org/10.1016/0146-6380(93)90100-P.
459	(7)	Itoh, N.; Tamamura, S.; Kumagai, M. Distributions of Polycyclic Aromatic
460		Hydrocarbons in a Sediment Core from the North Basin of Lake Biwa, Japan. Org.
461		Geochem. 2010, 41 (8), 845-852. https://doi.org/10.1016/j.orggeochem.2010.04.002.
462	(8)	Gschwend, P. M.; Hites, R. A. Fluxes of Polycyclic Aromatic Hydrocarbons to Marine
463		and Lacustrine Sediments in the Northeastern United States. Geochim. Cosmochim. Acta
464		1981, 45 (12), 2359–2367. https://doi.org/10.1016/0016-7037(81)90089-2.
465	(9)	Wilcke, W.; Krauss, M.; Amelung, W. Carbon Isotope Signature of Polycyclic Aromatic
466		Hydrocarbons (PAHs): Evidence for Different Sources in Tropical and Temperate
467		Environments? Environ. Sci. Technol. 2002, 36 (16), 3530-3535.
468		https://doi.org/10.1021/es020032h.

469	(10)	Gocht, T.	; Barth, J. A.	C.; Epp	, M.; Jochmann	, M.; Bless	ing, M.; Schmidt	, T. C.;
-----	------	-----------	----------------	---------	----------------	-------------	------------------	----------

- 470 Grathwohl, P. Indications for Pedogenic Formation of Perylene in a Terrestrial Soil
- 471 Profile: Depth Distribution and First Results from Stable Carbon Isotope Ratios. *Appl.*
- 472 *Geochemistry* **2007**, *22* (12), 2652–2663.
- 473 https://doi.org/10.1016/j.apgeochem.2007.06.004.
- 474 (11) Schnurmann, R.; Maddams, W. F.; Barlow, M. C. Spectrophotometric Identification of
- 475 Polynuclear Aromatic Components In High Boiling Petroleum Fractions. *Anal. Chem.*

476 **1953**, *25* (7), 1010–1013. https://doi.org/10.1021/ac60079a003.

- 477 (12) Wise, S. A.; Poster, D. L.; Leigh, S. D.; Rimmer, C. A.; Mössner, S.; Schubert, P.;
- 478 Sander, L. C.; Schantz, M. M. Polycyclic Aromatic Hydrocarbons (PAHs) in a Coal Tar
- 479 Standard Reference Material-SRM 1597a Updated. Anal. Bioanal. Chem. 2010, 398 (2),

480 717–728. https://doi.org/10.1007/s00216-010-4008-x.

- 481 (13) Simoneit, B. R. T.; Rogge, W. F.; Lang, Q.; Jaffé, R. Molecular Characterization of
- 482 Smoke from Campfire Burning of Pine Wood (Pinus Elliottii). *Chemosph. Glob.*
- 483 *Chang. Sci.* **2000**, *2* (1), 107–122. https://doi.org/10.1016/S1465-9972(99)00048-3.
- 484 (14) Wang, Z.; Fingas, M.; Shu, Y. Y.; Sigouin, L.; Landriault, M.; Lambert, P.; Turpin, R.;

485 Campagna, P.; Mullin, J. Quantitative Characterization of PAHs in Burn Residue and

- 486 Soot Samples and Differentiation of Pyrogenic PAH1 from Petrogenic PAHs The 1994
- 487 Mobile Burn Study. *Environ. Sci. Technol.* **1999**, *33* (18), 3100–3109.
- 488 https://doi.org/10.1021/es990031y.
- 489 (15) Lima, A. L.; Eglinton, T. I.; Reddy, C. M. High-Resolution Record of Pyrogenic
- 490 Polycyclic Aromatic Hydrocarbon Deposition during the 20th Century. *Environ. Sci.*
- 491 *Technol.* **2003**, *37* (1), 53–61. https://doi.org/10.1021/es025895p.
- 492 (16) Silliman, J. E.; Meyers, P. A.; Eadie, B. J.; Val Klump, J. A Hypothesis for the Origin of 21

493		Perylene Based on Its Low Abundance in Sediments of Green Bay, Wisconsin. Chem.
494		Geol. 2001, 177 (3-4), 309-322. https://doi.org/10.1016/S0009-2541(00)00415-0.
495	(17)	Wakeham, S. G.; Canuel, E. A. Biogenic Polycyclic Aromatic Hydrocarbons in
496		Sediments of the San Joaquin River in California (USA), and Current Paradigms on
497		Their Formation. Environ. Sci. Pollut. Res. 2016, 23 (11), 10426–10442.
498		https://doi.org/10.1007/s11356-015-5402-x.
499	(18)	Fan, C. W.; Shiue, J.; Wu, C. Y.; Wu, C. Y. Perylene Dominance in Sediments from a
500		Subtropical High Mountain Lake. Org. Geochem. 2011, 42 (1), 116-119.
501		https://doi.org/10.1016/j.orggeochem.2010.10.008.
502	(19)	Hites, R. A.; Laflamme, R. E.; Windsor, J. G.; Farrington, J. W.; Deuser, W. G.
503		Polycyclic Aromatic Hydrocarbons in an Anoxic Sediment Core from the
504		Pettaquamscutt River (Rhode Island, U.S.A.). Geochim. Cosmochim. Acta 1980, 44 (6),
505		873-878. https://doi.org/10.1016/0016-7037(80)90267-7.
506	(20)	Gschwend, P. M.; Chen, P. H.; Hites, R. A. On the Formation of Perylene in Recent
507		Sediments: Kinetic Models. Geochim. Cosmochim. Acta 1983, 47 (12), 2115–2119.
508		https://doi.org/10.1016/0016-7037(83)90036-4.
509	(21)	Wakeham, S. G. Synchronous Fluorescence Spectroscopy and Its Application to
510		Indigenous and Petroleum-Derived Hydrocarbons in Lacustrine Sediments. Environ. Sci
511		Technol. 1977, 11 (3), 272–276. https://doi.org/10.1021/es60126a012.
512	(22)	Grice, K.; Lu, H.; Atahan, P.; Asif, M.; Hallmann, C.; Greenwood, P.; Maslen, E.;
513		Tulipani, S.; Williford, K.; Dodson, J. New Insights into the Origin of Perylene in

- 514 Geological Samples. *Geochim. Cosmochim. Acta* **2009**, *73* (21), 6531–6543.
- 515 https://doi.org/10.1016/j.gca.2009.07.029.
- 516 (23) Itoh, N.; Sakagami, N.; Torimura, M.; Watanabe, M. Perylene in Lake Biwa Sediments

- 517 Originating from Cenococcum Geophilum in Its Catchment Area. *Geochim. Cosmochim.*
- 518 *Acta* **2012**, *95*, 241–251. https://doi.org/10.1016/j.gca.2012.07.037.
- 519 (24) Louda, J. W.; Baker, E. W. Perylene Occurrence, Alkylation and Possible Sources in
- 520 Deep-Ocean Sediments. *Geochim. Cosmochim. Acta* **1984**, *48* (5), 1043–1058.
- 521 https://doi.org/10.1016/0016-7037(84)90195-9.
- 522 (25) Jautzy, J. J.; Ahad, J. M. E.; Hall, R. I.; Wiklund, J. A.; Wolfe, B. B.; Gobeil, C.; Savard,
- 523 M. M. Source Apportionment of Background PAHs in the Peace-Athabasca Delta
- 524 (Alberta, Canada) Using Molecular Level Radiocarbon Analysis. *Environ. Sci. Technol.*

525 **2015**, *49* (15), 9056–9063. https://doi.org/10.1021/acs.est.5b01490.

- 526 (26) Obase, K.; Douhan, G. W.; Matsuda, Y.; Smith, M. E. Progress and Challenges in
- 527 Understanding the Biology, Diversity, and Biogeography of Cenococcum Geophilum. In
- 528 Biogeography of Mycorrhizal Symbiosis; Tedersoo, L., Ed.; Springer International
- 529 Publishing, 2017; Vol. Ecological, pp 299–318. https://doi.org/10.1007/978-3-319-
- 530 56363-3.
- 531 (27) Suzuki, N.; Yessalina, S.; Kikuchi, T. Probable Fungal Origin of Perylene in Late
- 532 Cretaceous to Paleogene Terrestrial Sedimentary Rocks of Northeastern Japan as
- 533 Indicated from Stable Carbon Isotopes. Org. Geochem. 2010, 41 (3), 234–241.
- 534 https://doi.org/10.1016/j.orggeochem.2009.11.010.
- 535 (28) Strullu-Derrien, C.; Selosse, M. A.; Kenrick, P.; Martin, F. M. The Origin and Evolution
- of Mycorrhizal Symbioses: From Palaeomycology to Phylogenomics. *New Phytol.* 2018,
- 537 220 (4), 1012–1030. https://doi.org/10.1111/nph.15076.
- 538 (29) Allport, D. C.; Bu'Lock, J. D. Biosynthetic Pathways in Daldina Concentrica. J. Chem.
 539 Soc. 1960, No. 654–662. https://doi.org/10.1039/JR9600000654.
- 540 (30) Wu, H.; Lao, X. F.; Wang, Q. W.; Ren-Rong, L.; Shen, C.; Zhang, F.; Liu, M.; Jia, L.

541		The Shiraiachromes: Novel Fungal Perylenequinone Pigments from Shiraia
542		Bambusicola. J. Nat. Prod. 1989, 52 (5), 948–951. https://doi.org/10.1021/np50065a006.
543	(31)	Daub, M. E.; Herrero, S.; Chung, K. R. Photoactivated Perylenequinone Toxins in
544		Fungal Pathogenesis of Plants. FEMS Microbiol. Lett. 2005, 252 (2), 197-206.
545		https://doi.org/10.1016/j.femsle.2005.08.033.
546	(32)	Marynowski, L.; Smolarek, J.; Bechtel, A.; Philippe, M.; Kurkiewicz, S.; Simoneit, B. R.
547		T. Perylene as an Indicator of Conifer Fossil Wood Degradation by Wood-Degrading
548		Fungi. Org. Geochem. 2013, 59, 143–151.
549		https://doi.org/10.1016/j.orggeochem.2013.04.006.
550	(33)	Kaden, D. A.; Hites, R. A.; Thilly, W. G. Mutagenicity of Soot and Associated
551		Polycyclic Aromatic Hydrocarbons to Salmonella Typhimurium. Cancer Res. 1979, 39
552		(10), 4152-4159. https://doi.org/10.1109/ICDM.2018.00085.
553	(34)	United States Environmental Protection Agency. Provisional Peer Reviewed Toxicity
554		Values for Perylene (CASRN 198-55-0); Cincinnati, 2006.
555	(35)	Hanke, U. M.; Reddy, C. M.; Braun, A. L. L.; Coppola, A. I.; Haghipour, N.; McIntyre,
556		C. P.; Wacker, L.; Xu, L.; McNichol, A. P.; Abiven, S.; Schmidt, M. W. I.; Eglinton, T.
557		I. What on Earth Have We Been Burning? Deciphering Sedimentary Records of
558		Pyrogenic Carbon. Environ. Sci. Technol. 2017, 51 (21), 12972–12980.
559		https://doi.org/10.1021/acs.est.7b03243.
560	(36)	Hubeny, J. B.; King, J. W.; Cantwell, M. Anthropogenic Influences on Estuarine
561		Sedimentation and Ecology: Examples from the Varved Sediments of the Pettaquamscutt
562		River Estuary, Rhode Island. J. Paleolimnol. 2009, 41, 297-314.
563		https://doi.org/10.1007/s10933-008-9226-2.

564 (37) Hanke, U. M.; Eglinton, T. I.; Braun, A. L. L.; Reddy, C. M.; Wiedemeier, D. B.;

565		Schmidt, M. W. I. Decoupled Sedimentary Records of Combustion: Causes and
566		Implications. Geophys. Res. Lett. 2016, 43 (10), 5098–5108.
567		https://doi.org/10.1002/2016GL069253.
568	(38)	Fitzgerald, W. F.; Engstrom, D. R.; Hammerschmidt, C. R.; Lamborg, C. H.; Balcom, P.
569		H.; Lima-Braun, A. L.; Bothner, M. H.; Reddy, C. M. Global and Local Sources of
570		Mercury Deposition in Coastal New England Reconstructed from a Multiproxy, High-
571		Resolution, Estuarine Sediment Record. Environ. Sci. Technol. 2018, 52 (14), 7614-
572		7620. https://doi.org/10.1021/acs.est.7b06122.
573	(39)	Lima, A. L.; Hubeny, J. B.; Reddy, C. M.; King, J. W.; Hughen, K. A.; Eglinton, T. I.
574		High-Resolution Historical Records from Pettaquamscutt River Basin Sediments: 1.
575		210Pb and Varve Chronologies Validate Record of 137Cs Released by the Chernobyl
576		Accident. Geochim. Cosmochim. Acta 2005, 69 (7), 1803–1812.
577		https://doi.org/10.1016/j.gca.2004.10.009.
578	(40)	Drenzek, N. J.; Montluçon, D. B.; Yunker, M. B.; Macdonald, R. W.; Eglinton, T. I.

- 579 Constraints on the Origin of Sedimentary Organic Carbon in the Beaufort Sea from
- 580 Coupled Molecular13C And14C Measurements. *Mar. Chem.* **2007**, *103* (1–2), 146–162.
- 581 https://doi.org/10.1016/j.marchem.2006.06.017.
- 582 (41) Eglinton, T. I.; Aluwihare, L. I.; Bauer, J. E.; Druffel, E. R. M.; McNichol, A. P. Gas
- 583 Chromatographic Isolation of Individual Compounds from Complex Matrices for
 584 Radiocarbon Dating. *Anal. Chem.* 1996, *68*, 904–912.
- -
- 585 https://doi.org/10.1021/ac9508513.
- 586 (42) Reimer, P. J.; Brown, T. A.; Reimer, R. W. Discussion: Reporting and Calibration of
- 587Post-Bomb 14C Data. Radiocarbon 2004, 46 (3), 1299–1304.
- 588 https://doi.org/10.2458/azu_js_rc.46.4183.

589	(43)	Reimer, P. J.; Bard, E.; Bayliss, A.; Beck, J. W.; Blackswell, P. G.; Ramsey, C. B.; Buck,
590		C. E.; Cheng, H.; Edwards, R. L.; Friedrich, M.; Grootes, P. M.; Guilderson, T. P.;
591		Haflidason, H.; Hajdas, I.; Hatté, C.; Heaton, T. J.; Hoffmann, D. L.; Hogg, A. G.;
592		Hughen, K. A.; Kaiser, K. F.; Kromer, B.; Manning, S. W.; Niu, M.; Reimer, R. W.;
593		Richards, D. A.; Scott, E. M.; Southon, J. R.; Staff, R. A.; Turney, C. S. M.; van der
594		Pflicht, J. Intcal13 and Marine13 Radiocarbon Age Calibration Curves 0-50,000 Years
595		Cal BP. Radiocarbon 2013, 55 (4), 1869–1887.
596		https://doi.org/10.2458/azu_js_rc.55.16947.
597	(44)	Blattmann, T. M.; Letsch, D.; Eglinton, T. I. On the Geological and Scientific Legacy of
598		Petrogenic Organic Carbon. Am. J. Sci. 2018, 318 (8), 861-881.
599		https://doi.org/10.2475/08.2018.02.
600	(45)	Gaines, A. G. Papers on the Geomorphology, Hydrography and Geochemistry of the
601		Pettaquamscutt River Estuary. PhD Dissertation, University of Rhode Island, 1975.

- 602 Meyers, P. A. Preservation of Elemental and Isotopic Source Identification of (46)
- 603 Sedimentary Organic Matter. Chem. Geol. 1994, 114 (3-4), 289-302.
- 604 https://doi.org/10.1016/0009-2541(94)90059-0.

605 (47) Levin, I.; Kromer, B.; Hammer, S. Atmospheric D14CO2 Trend in Western European

606 Background Air from 2000 to 2012. Tellus B 2013, 65 (20092), 1-7.

- 607 https://doi.org/10.3402/tellusb.v65i0.20092.
- 608 Meyers, P. A. Organic Geochemical Proxies of Paleoceanographic, Paleolimnologic, and (48)
- 609 Paleoclimatic Processes. Org. Geochem. 1997, 27 (5/6), 213-250.
- 610 https://doi.org/10.1016/S0146-6380(97)00049-1.
- 611 (49) Tan, Y. L.; Heit, M. Biogenic and Abiogenic Polynuclear Aromatic Hydrocarbons in
- 612 Sediments from Two Remote Adirondack Lakes. Geochim. Cosmochim. Acta 1981, 45

613 (11), 2267–2279. https://doi.org/10.1016/0016-7037(81)90076-4.

- 614 (50) Slater, G. F.; Benson, A. A.; Marvin, C.; Muir, D. PAH Fluxes to Siskiwit Revisited:
- 615 Trends in Fluxes and Sources of Pyrogenic PAH and Perylene Constrained via
- 616 Radiocarbon Analysis. *Environ. Sci. Technol.* **2013**, *47* (10), 5066–5073.
- 617 https://doi.org/10.1021/es400272z.
- 618 (51) O'Leary, M. Carbon Isotopes in Photosynthesis. *Bioscience* 1988, *38* (5), 328–336.
 619 https://doi.org/10.2307/1310735.
- 620 (52) Lehmann, J.; Kleber, M. The Contenious Nature of Soil Organic Matter. *Nature* 2015,

621 *528*, 60–68. https://doi.org/10.1038/nature16069.

- 622 (53) Berhe, A. A.; Barnes, R. T.; Six, J.; Marín-Spiotta, E. Role of Soil Erosion in
- Biogeochemical Cycling of Essential Elements: Carbon, Nitrogen, and Phosphorus.
- *Annu. Rev. Earth Planet. Sci.* 2018, 46 (1), 521–548. https://doi.org/10.1146/annurevearth-082517-010018.
- 626 (54) Douglas, P. M. J.; Pagani, M.; Eglinton, T. I.; Brenner, M.; Hodell, D. A.; Curtis, J. H.;
- 627 Ma, K. F.; Breckenridge, A. Pre-Aged Plant Waxes in Tropical Lake Sediments and
- 628 Their Influence on the Chronology of Molecular Paleoclimate Proxy Records. *Geochim*.
- 629 *Cosmochim. Acta* **2014**, *141*, 346–364. https://doi.org/10.1016/j.gca.2014.06.030.
- 630 (55) French, K. L.; Hein, C. J.; Haghipour, N.; Wacker, L.; Kudrass, H. R.; Eglinton, T. I.;
- Galy, V. Millennial Soil Retention of Terrestrial Organic Matter Deposited in the Bengal
 Fan. Sci. Rep. 2018, 8 (1), 1–8. https://doi.org/10.1038/s41598-018-30091-8.
- 633 (56) Vonk, J. E.; Drenzek, N. J.; Hughen, K. A.; Stanley, R. H. R.; McIntyre, C.; Montluçon,
- D. B.; Giosan, L.; Southon, J. R.; Santos, G. M.; Druffel, E. R. M.; Andersson, A. A.;
- 635 Sköld, M.; Eglinton, T. I. Temporal Deconvolution of Vascular Plant-Derived Fatty
- 636 Acids Exported from Terrestrial Watersheds. *Geochim. Cosmochim. Acta* 2019, 244,

502–521. https://doi.org/10.1016/j.gca.2018.09.034.

- 638 (57) Coppola, A. I.; Wiedemeier, D. B.; Galy, V.; Haghipour, N.; Hanke, U. M.; Nascimento,
- G. S.; Usman, M.; Blattmann, T. M.; Reisser, M.; Freymond, C. V.; Zhao, M.; Voss, B.;
- 640 Wacker, L.; Schefuß, E.; Peucker-Ehrenbrink, B.; Abiven, S.; Schmidt, M. W. I.;
- 641 Eglinton, T. I. Global-Scale Evidence for the Refractory Nature of Riverine Black
- 642 Carbon. Nat. Geosci. 2018, 11 (8), 584–588. https://doi.org/10.1038/s41561-018-0159-8.
- 643 (58) Burdige, D. J. Burial of Terrestrial Organic Matter in Marine Sediments: A Re-
- 644 Assessment. *Global Biogeochem. Cycles* **2005**, *19* (4), 1–7.
- 645 https://doi.org/10.1029/2004gb002368.
- 646 (59) Oros, D. R.; Simoneit, B. R. T. Identification and Emission Factors of Molecular
- 647 Tracers in Organic Aerosols from Biomass Burning Part 1. Temperate Climate
- 648 *Conifers*; 2001; Vol. 16. https://doi.org/10.1016/S0883-2927(01)00021-X.
- (60) Venkatesan, M. I.; Kaplan, I. R. The Lipid Geochemistry of Antarctic Marine Sediments:
 Bransfield Strait. *Mar. Chem.* 1987, *21* (2844), 347–375. https://doi.org/10.1016/0304-
- 651 4203(87)90056-9.
 - 652 (61) Jiang, C.; Alexander, R.; Kagi, R. I.; Murray, A. P. Origin of Perylene in Ancient
 - 653 Sediments and Its Geological Significance. Org. Geochem. 2000, 31 (12), 1545–1559.

654 https://doi.org/10.1016/S0146-6380(00)00074-7.

- 655 (62) Sánchez-Ramírez, S.; Wilson, A. W.; Ryberg, M. Overview of Phylogenetic Approaches
- to Mycorrhizal Biogeography, Diversity and Evolution. In *Biogeography of Mycorrhizal*
- 657 *Symbiosis*; Tedersoo, L., Ed.; Springer International Publishing, 2017; Vol. 230, pp 1–
- 658 38. https://doi.org/10.1007/978-3-319-56363-3.
- 659 (63) Blumer, M. Organic Pigments : Their Long-Term Fate. Science. 1965, 149 (3685), 722-
- 660 726. https://doi.org/10.1126/science.149.3685.722.

661	(64)	Fernandez, C. W.; Langley, J. A.; Chapman, S.; McCormack, M. L.; Koide, R. T. The
662		Decomposition of Ectomycorrhizal Fungal Necromass. Soil Biol. Biochem. 2016, 93, 38-
663		49. https://doi.org/10.1016/j.soilbio.2015.10.017.
664	(65)	Bianchi, T. S.; Cui, X.; Blair, N. E.; Burdige, D. J.; Eglinton, T. I.; Galy, V. Centers of
665		Organic Carbon Burial and Oxidation at the Land-Ocean Interface. Org. Geochem. 2018,
666		115, 138–155. https://doi.org/10.1016/j.orggeochem.2017.09.008.
667	(66)	Hedges, J. I.; Oades, J. M. Comparative Organic Geochemistries of Soils and Marine
668		Sediments. Org. Geochem. 1997, 27 (7-8), 319-361. https://doi.org/10.1016/s0146-
669		6380(97)00056-9.