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Agricultural pesticides are a key component of the toolbox of most agricultural systems and are 12 

likely to continue to play a role in meeting the challenge of feeding a growing global population. 13 

However, pesticide use has well documented and often significant consequences for populations of 14 

native wildlife. Although rigorous, regulatory processes for the approval of new chemicals for 15 

agronomic use do have limitations which may fail to identify real world negative effects of products.  16 

Here, we describe a possible approach to complement the existing regulatory process, which is to 17 

combine long-term and national-scale data sets on native wildlife with pesticide use data to 18 

understand long-term and large-scale impacts of agrochemicals on wildlife populations.  19 

 20 
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1111 IntroductionIntroductionIntroductionIntroduction    24 

Agricultural pesticides have an important role in feeding a rapidly growing human population [1], but 25 

their use has important consequences for the environment [2]. Pesticides can cause declines in 26 

populations of non-target organisms exposed to them [2–7], with potential knock-on consequences 27 

for the ecosystem services they provide, including pollination and natural pest control [8–10]. 28 

Internationally, there is enormous variation in the approach to pesticide regulation, in standards of 29 

implementation and extent of enforcement [11,12]. In most developed countries, laboratory and 30 

field tests are conducted to ensure acceptable thresholds of risk are met based on chemical 31 

toxicology, fate and behaviour in the environment [13] (Fig. 1).   After approval from the regulatory 32 

authority, the chemical is licenced under specific limitations (e.g. approved concentrations) for the 33 

duration of the licence, typically 10-15 years in Europe and the United States [11,14]. Whilst 34 

rigorous, this process has limited potential to assess the impacts of large-scale use of chemicals on 35 

wildlife populations.  The most significant limitations are: 1) a focus on time scales (days) much 36 

shorter than population level processes responding to environmental drivers (years) [15,16]; 2)  37 

failure to capture the fact that, as the pesticide becomes more common, its landscape-scale dose 38 

increases and so does wildlife exposure, despite the application per unit area remaining the same 39 

[14,17]; 3) assays are performed on a small number of model species [15]; and 4) an absence of post 40 

approval monitoring under real world conditions where species are exposed to a cocktail of 41 

agrochemicals that may interact in unexpected ways [8–10,14].   42 

Here, we assess the practicalities, limitations and best practices for linking long term wildlife 43 

population changes to pesticide exposure risks at national scales.  By making the most of available 44 

large-scale datasets and sophisticated statistical methods it is possible to gain new insights to 45 

augment the existing regulatory assessments in a manner not possible under current frameworks. 46 

Specifically, we argue for systematic post-approval monitoring of real-world impacts of pesticide use 47 

on wildlife populations (Fig. 1). We focus on terrestrial agroecosystems, which represent the direct 48 
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interface between agriculture and wildlife populations. Our goal is to provide a framework that can 49 

be applied to link the use and regulation of agrochemicals to long term declines in populations of 50 

non-target organisms.  51 

 52 

Figure Figure Figure Figure 1111. Proposed modification to the regulatory framework to evaluate large-scale and long-term 53 

impacts of pesticides on non-target organisms. The three green boxes represent the main steps of the 54 

approval procedure for a new pesticide [14]. First the substance is tested using both in vitro and in 55 

vivo trials in the lab to determine its efficacy, safety and toxicology. Then lab and field trials are 56 

conducted to determine the chemical’s toxicology, fate and behaviour in the environment. The data 57 

from these tests is submitted to the regulatory body, where the information is reviewed, and the 58 

substance can be approved for use under licenced conditions. The last box in yellow represents the 59 

missing step in this regulatory framework, a post-approval surveillance system that monitors real-60 

world effects of the chemical’s use on a commercial scale on non-target wildlife populations. The 61 

results from this monitoring step can either provide reassurance that the chemical is safe to use or 62 

early warning signs of impacts on wildlife, therefore providing important feedback for a review of 63 

licencing conditions, which, as a result, could become more or less stringent. 64 

 65 

 66 
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 67 

Box 1. Neonicotinoid insecticides were approved and introduced in the 1990s after laboratory and 68 

field testing determined they were safe to non-target organisms. By 2013, there was substantial 69 

published research evidence linking the use of neonicotinoids to impacts on bees [18,19]. This 70 

evidence was deemed sufficiently compelling for the European Commission to issue a moratorium 71 

on their use in mass-flowering crops, but falling short of an outright ban [20]. Most of the evidence 72 

for the effect of neonicotinoids on pollinators was provided by small-scale and short-term laboratory 73 

or semi-field experiments on honey bees, bumble bees and some solitary bees [8,18,19]. The sole 74 

landscape-scale experiment showed reduced wild pollinator survival and reproduction following 75 

actual field exposure to a combined neonicotinoid and pyrethroid treatment [21]. Employing long-76 

term, spatially explicit data collected by citizen scientists on the distribution of 62 wild bee species, 77 

allied with Bayesian multi-species statistical modelling techniques, Woodcock et al [15] tested 78 

whether the commercial use of these pesticides was linked to population loss through dietary 79 

exposure. They found evidence of increased wild bees’ population extinction rates in response to 80 

neonicotinoid use (Figure 2a). The effect was three times stronger for species known to forage on 81 

treated crops (Figure 2a&b). This study provided the first evidence that sub-lethal effects of 82 

neonicotinoids may have contributed to the observed declines in wild bee populations [8].  83 

    84 

FigFigFigFigureureureure    2222. . . . Modelled impact of neonicotinoid exposure to a) Andrena chrysosceles (species known to 85 

forage on treated crops) and b) Andrena fuscipes (species not known to forage on treated crop) 86 

population, two of 62 considered wild bee species. Red line shows actual populations at a national 87 

scale, the blue line shows the predicted trend if neonicotinoids were benign and/or had not been 88 

used. (from ref [15]) 89 
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2222 Limitations of the agricultural pesticide regulatory processLimitations of the agricultural pesticide regulatory processLimitations of the agricultural pesticide regulatory processLimitations of the agricultural pesticide regulatory process    91 

After a chemical has passed laboratory and field toxicity tests, it is certified to be safe for use given 92 

specific restrictions. There are, however, numerous cases where unexpected and significant 93 

environmental consequences have subsequently been identified, leading to the ban of that 94 

chemical, for example neonicotinoids ([15] Box 1) and DDT [22]. Unexpected consequences from 95 

commercial use of approved pesticides can occur for multiple reasons, including chronic/sub-lethal 96 

effects [23], unexpected synergistic interactions with existing chemicals [24] or species-specific 97 

toxicokinetic and toxicodynamic responses to chemical exposure [25]. As the majority of regulatory 98 

approaches, for practical reasons, focus on a small number of model organisms [26], the 99 

consequences of pesticide use on real world ecological communities are hard to predict. Behaviours 100 

rarely seen under laboratory conditions may also affect responses to chemicals when used in 101 

spatially complex agricultural systems.  Importantly, as the landscape-scale dose of a pesticide 102 

increases with its use becoming more widespread [14], the exposure of organisms that are long-103 

distance foragers (for example honeybees) also increases, despite the application rate per unit area 104 

remaining largely the same [17]. Even when chronic effects of pesticide exposure are assessed, the 105 

time scale of laboratory or semi-field experiments does not permit an assessment of the 106 

consequences of chemical exposure on long term population dynamics.  107 

For all these reasons, there is a strong argument for ongoing monitoring of agrochemical impacts 108 

after approval to ensure any emerging risks are identified [14]. Such monitoring has potential 109 

benefits both for wildlife as well as the agricultural and agrochemical industries: early warning of 110 

adverse impacts could be mitigated through control measures, thus avoiding more restrictive 111 

legislation such as an outright ban. The gold standard approach for monitoring such impacts is a 112 

Before-After-Control-Impact (BACI) design [27]. However, this may not be possible, especially if the 113 

goal is to make such assessments at large scale, where the cost would likely be prohibitive and 114 
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where replication would be challenging [16].  Moreover, the ‘before’ component of a BACI design is 115 

impossible for agrochemicals already in use. An alternative is to link large scale monitoring of wildlife 116 

populations to temporal and spatially explicit data on exposure risk to pesticides.  This approach has 117 

considerable potential to complement the existing regulatory process, but there are significant 118 

issues that need to be addressed for its robust implementation.  We discuss these below. 119 

 120 

3333 DataDataDataData    121 

3.13.13.13.1 Wildlife dataWildlife dataWildlife dataWildlife data    122 

Wild populations persist in highly variable systems, so the level of replication required to detect a 123 

signal may be hard to achieve under a field experimental settings, especially when large-scale, long-124 

term impacts need to be assessed [16]. Structured monitoring schemes that derive quantitative site 125 

specific data exist in many countries, e.g. there are more than ten national Butterfly Monitoring 126 

Schemes in Europe. Opportunistic data, including occurrence records submitted by volunteer citizen 127 

scientists, provide a vast source of information about biodiversity, but modelling change is 128 

complicated due to the lack of formal protocols [28].  Both monitoring schemes and opportunistic 129 

datasets span long periods of time (potentially prior to chemical exposure) and are collected from 130 

many sites exposed to different levels of pesticides, thus approximating a BACI design. Therefore, 131 

observational data on wildlife populations can be used to link trends in biodiversity to the use of 132 

chemicals, in spite of the fact that surveys were not designed specifically to detect such impacts. 133 

 134 

3.23.23.23.2 Pesticide dataPesticide dataPesticide dataPesticide data    135 

To quantify the exposure to plant protection products, such as pesticides, spatiotemporal data on 136 

their use is needed. Because there is no global governance for the use of these products and 137 
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different countries have very different regulatory standards [11], data on their use remain scattered 138 

and not necessarily publicly available. However, the European Union requires (Regulation (EC) No 139 

1185/2009) that member countries collect data on pesticide use.  For example, the United 140 

Kingdom’s Pesticide Usage Survey (PUS; [29]) collects data every two years from 1200 farms, 141 

stratified by region and size. However, obtaining these data at fine spatial resolution is difficult, in 142 

part due to legal protection of the identity of individual farmers. A snapshot of recent PUS data at 143 

1km resolution has been recently published [30]; to date time-series have been available only at the 144 

resolution of English regions [15]. Another example is California’s Pesticide Use Reporting 145 

programme [31] which is accessible directly from the California Pesticide Information Portal for the 146 

period 1974-2016 and at a spatial resolution of roughly 2.6 Km
2
.  Both of these reporting schemes 147 

collect information on the product used, the application rate and the area of crop treated. These 148 

data, combined with published information about mechanisms of exposure (e.g. dietary – direct or 149 

indirect through poisoned prey – or contact) provide an opportunity to estimate wildlife exposure 150 

risk, although not as precisely as would be possible with experimental data. For example, large scale 151 

data is not available on the mode of application  or the fate of chemicals (and their metabolites) in 152 

the environment [26], therefore this kind of data described here will not provide a true measure of 153 

exposure, but only an approximation.  154 

 155 

3.33.33.33.3 Other relevant covariatesOther relevant covariatesOther relevant covariatesOther relevant covariates    156 

Because wild populations are exposed to multiple stressors simultaneously it is valuable, where data 157 

allows, to quantify other major environmental drivers of biodiversity change, including land use 158 

change, landscape structure, agricultural practices, and weather [8,10]. These factors can either 159 

account for unexplained variation , act as confounding variables or interact with pesticide exposure 160 

to produce unexpected effects [32–34]. As ever data limitation at the appropriate spatial and 161 

temporal scales can limit the capacity of studies to include such information. 162 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

8 

 

 163 

4444 Statistical approachesStatistical approachesStatistical approachesStatistical approaches    164 

Spatiotemporal data of wildlife populations tends to include a number of significant biases.   This is a 165 

result of the fact that in most cases distribution or population data is not collected with the goal of 166 

investigating the impact of pesticides on wildlife population.  As such the selection of sites surveyed, 167 

the frequency or timing of the site visits might not be optimal. Uneven sampling in space is common 168 

to many biodiversity datasets, including structured monitoring schemes, however, it is possible to 169 

account for such issues statistically, e.g. by the addition of terms to stratify the analysis spatially. 170 

Having added such terms, it becomes possible to model biological parameters (e.g. population 171 

growth rates) as a function of pesticide exposure using standard statistical approaches (e.g. 172 

Generalised Linear Models).  173 

Due to their opportunistic nature, unstructured species records (e.g. most citizen science datasets) 174 

contain three additional biases: uneven recording intensity over time, uneven sampling effort per 175 

visit and uneven detectability across time and space [28]. Without appropriate statistical approaches 176 

there is a significant risk of both false positive or negative effects being detected. Occupancy-177 

detection models derived from capture-recapture theory [35], are robust to many of the biases in 178 

opportunistic data [36,37] because they explicitly model the detection process to correct for 179 

observation, reporting and detection bias. Occupancy-detection models are so-called because they 180 

incorporate both the occupancy process (presence/absence) and the detection process 181 

(detected/non-detected) in two hierarchically coupled sub-models. Within this modelling 182 

framework, covariates on pesticide use can be added to the occupancy sub-model described above. 183 

When fitted in a Bayesian framework, it is possible to add variables providing mechanistic 184 

explanations for chemical impact, such as species traits that predispose them to high or low risk, e.g. 185 

species commonly found in a treated crop are considered to have high risk. This approach has been 186 
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used to link application of neonicotinoids to oilseed rape crops to population declines of wild bee 187 

species across England (Box 1 [15]). 188 

 189 

5555 ConclusioConclusioConclusioConclusions, cns, cns, cns, challenges and limitationshallenges and limitationshallenges and limitationshallenges and limitations    190 

Laboratory and field tests conducted under the current pesticide regulatory framework can achieve 191 

high resolution assessments of the toxicity of a chemical by identifying causal effects of pesticide 192 

exposure on individuals and determining safe concentrations. However, current toxicology testing 193 

regimes are unable to detect the entire range of toxicity effects that could emerge when the 194 

chemical is used at large-scales and over long periods.  Therefore, a post-approval monitoring of the 195 

long-term population effects of large-scale pesticide use on non-target wildlife is necessary to make 196 

the pesticide regulatory framework relevant to real world situations.  Ultimately, evidence provided 197 

by the current regulatory framework would be complemented by long-term assessments of wildlife 198 

persistence linked to large scale pesticide exposure (Fig. 1).   The approach would mirror the type of 199 

ongoing post approval monitoring used in the regulation of pharmaceuticals [14].   200 

When other major factors of environmental change have been accounted for in the models, as well 201 

as potentially evidence on toxicity derived from controlled laboratory experiments, this type of 202 

analysis is capable of providing strong correlative evidence of a link between pesticide use and 203 

ongoing risks to wildlife populations. The main limitation of this approach is the complexity of the 204 

system, as it will be impractical to measure all potentially confounding effects or covariates. Wildlife 205 

monitoring schemes and citizen science programmes, however, produce big datasets characterised 206 

by high spatial and temporal replication. This scale can help to minimise false positives, because the 207 

larger the sample size the more representative it will be of the real population, and false negatives, 208 

by increasing statistical power. The inclusion of other possible confounding variables (e.g. landscape 209 

structure) would further reduce the chance of type I errors, although availability of this data may be 210 
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an issue.  A further final point to consider is the strong temporal component of use for many 211 

chemicals, which can rapidly go from zero, before approval, to almost complete usage for some 212 

products after several years. This strong time signal and possible lags between pesticide application 213 

and detectable impacts on wildlife, can influence our ability to identify a link between pesticide use 214 

and declines in wildlife populations.  215 

As with any modelling, data quality is crucial. There is an ethical argument at the heart of the issue 216 

with pesticide data availability. On the one hand, pesticide use affects ecosystem goods and services 217 

positively and negatively and agriculture receives a substantial amount of public subsidies. However, 218 

data protection regulations require that individual farms and farmers should not be identifiable from 219 

the data, leading to information on pesticide use being often only available at very coarse regional 220 

resolutions. Ethical considerations aside, the value of this approach can only be improved by open 221 

access efforts to collect detailed information on pesticide use at an international level, following the 222 

example of freshwater quality or pharmaceuticals monitoring programmes (e.g. World Health 223 

Organization Programme for International Drug Monitoring [14]). For example, water quality is 224 

monitored systematically by testing for the presence of different chemicals. In a similar way, a 225 

pesticide monitoring scheme for terrestrial systems could be implemented, including collection of 226 

soil and plant samples from farms to detect exact concentrations of chemicals in the field. These 227 

data could then be linked to data from wildlife monitoring programmes through the modelling 228 

approaches described here. This would establish a post-approval pesticide surveillance system that 229 

could provide either reassurance that the chemical is safe for the non-target organisms tested or 230 

early warning signs of impacts on wildlife populations [14].  231 

 232 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

11 

 

6666 AcknowledgementsAcknowledgementsAcknowledgementsAcknowledgements    233 

This work was supported by the Natural Environment Research Council [NERC grant reference 234 

number NEC06550]. 235 

 236 

7777 ReferencesReferencesReferencesReferences    237 

1.  Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, 238 

Thomas SM, Toulmin C: Food security: the challenge of feeding 9 billion people. Science 239 

2010, 327:812–8. 240 

2.  Köhler HR, Triebskorn R: Wildlife ecotoxicology of pesticides: Can we track effects to the 241 

population level and beyond? Science (80- ) 2013, 341:759–765. 242 

3.  Colborn T, vom Saal FS, Soto AM: Developmental effects of endocrine-disrupting chemicals 243 

in wildlife and humans. Environ Health Perspect 1993, 101:378–84. 244 

4.  Mañosa S, Mateo R, Guitart R: A Review of the Effects of Agricultural and Industrial 245 

Contamination on the Ebro Delta Biota and Wildlife. Environ Monit Assess 2001, 71:187–246 

205. 247 

5.  Hamlin HJ, Guillette LJ: Birth Defects in Wildlife: The Role of Environmental Contaminants as 248 

Inducers of Reproductive and Developmental Dysfunction. Syst Biol Reprod Med 2010, 249 

56:113–121. 250 

6.  Kendall MD, Safieh B, Harwood J, Pomeroy PP: Plasma thymulin concentrations, the thymus 251 

and organochlorine contaminant levels in seals infected with phocine distemper virus. Sci 252 

Total Environ 1992, 115:133–144. 253 

7.  Bandouchova H, Pohanka M, Kral J, Ondracek K, Osickova J, Damkova V, Vitula F, Treml F, 254 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

12 

 

Pikula J: Effects of sublethal exposure of European brown hares to paraoxon on the course 255 

of tularemia. Neuroendocrinol Lett 2011, 32:77–83. 256 

8.  IPBES: The assessment report on pollinators, pollination and food production. IPBES; 2016. 257 

9.  Pisa LW, Amaral-Rogers V, Belzunces LP, Bonmatin JM, Downs CA, Goulson D, Kreutzweiser 258 

DP, Krupke C, Liess M, Mcfield M, et al.: Effects of neonicotinoids and fipronil on non-target 259 

invertebrates. Environ Sci Pollut Res 2014, 22:68–102. 260 

10.  Potts SG, Imperatriz-Fonseca V, Ngo HT, Aizen MA, Biesmeijer JC, Breeze TD, Dicks L V., 261 

Garibaldi LA, Hill R, Settele J, et al.: Safeguarding pollinators and their values to human well-262 

being. Nature 2016, 540:220–229. 263 

11.  Handford CE, Elliott CT, Campbell K: A review of the global pesticide legislation and the scale 264 

of challenge in reaching the global harmonization of food safety standards. Integr Environ 265 

Assess Manag 2015, 11:525–536. 266 

12.  Matthews G, Zaim M, Yadav RS, Soares A, Hii J, Ameneshewa B, Mnzava A, Dash AP, Ejov M, 267 

Tan SH, et al.: Status of legislation and regulatory control of public health pesticides in 268 

countries endemic with or at risk of major vector-borne diseases. Environ Health Perspect 269 

2011, 119:1517–1522. 270 

13.  European Food Safety Authority: Guidance on the risk assessment of plant protection 271 

products on bees (Apis mellifera, Bombus spp. and solitary bees). EFSA J 2013, 11. 272 

14.  Milner AM, Boyd IL: Toward pesticidovigilance Can lessons from pharmaceutical monitoring 273 

help to improve pesticide regulation? Science (80- ) 2017, 357:1232–1234. The authors argue 274 

for the creation of a pesticide surveilance system analogous to the pharmacovigilance 275 

programme developed to ensure the safety and effectiveness of medicines for large-scale 276 

use. Such a monitoring system of pesticide use would improve decisions regarding the 277 

approved use of agrochemicals and it would be a foundation for defining best practice in the 278 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

13 

 

regulatory process. 279 

15.  Woodcock BA, Isaac NJB, Bullock JM, Roy DB, Garthwaite DG, Crowe A, Pywell RF: Impacts of 280 

neonicotinoid use on long-term population changes in wild bees in England. Nat Commun 281 

2016, 7:12459. Using large-scale citizen science data on 62 wild bee species and sophisticated 282 

statistical techniques, the authors showed a link between the large-scale use of neonicotinoid 283 

insecticides and declines in wild bee populations in the UK over a period of 18 years. This was 284 

the first time that sub-lethal effects of neonicotinoids were shown to scale up to cause losses 285 

in wild bee populations. 286 

16.  Woodcock BA, Heard MS, Jitlal MS, Rundlöf M, Bullock JM, Shore RF, Pywell RF: Replication, 287 

effect sizes and identifying the biological impacts of pesticides on bees under field 288 

conditions. J Appl Ecol 2016, 53:1358–1362. The amount of replication needed to detect a 7% 289 

effect size change in bee colony size, as stated in the European Food Safety Authority 290 

regulations, might be too costly or impractical to achieve in a field trial setting. The authors 291 

argue for a strategy that will use experimental as well as simulation approaches to define 292 

biologically meaningful threshold effects, power testing to determine the level of replication 293 

required to detect such effects and focus on examining the long-term impacts of pesticides 294 

on bee populations. 295 

17.  Sponsler DB, Johnson RM: Mechanistic modeling of pesticide exposure: The missing 296 

keystone of honey bee toxicology. Environ Toxicol Chem 2017, 36:871–881. 297 

18.  van der Sluijs JP, Simon-Delso N, Goulson D, Maxim L, Bonmatin J-M, Belzunces LP: 298 

Neonicotinoids, bee disorders and the sustainability of pollinator services. Curr Opin Environ 299 

Sustain 2013, 5:293–305. 300 

19.  Godfray HCJ, Blacquière T, Field LM, Hails RS, Petrokofsky G, Potts SG, Raine NE, Vanbergen 301 

AJ, McLean AR: A restatement of the natural science evidence base concerning 302 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

14 

 

neonicotinoid insecticides and insect pollinators. Proc R Soc B Biol Sci 2014, 281:20140558. 303 

20.  Gross M: EU ban puts spotlight on complex effects of neonicotinoids. Curr Biol 2013, 304 

23:R462–R464. 305 

21.  Rundlöf M, Andersson GKS, Bommarco R, Fries I, Hederström V, Herbertsson L, Jonsson O, 306 

Klatt BK, Pedersen TR, Yourstone J, et al.: Seed coating with a neonicotinoid insecticide 307 

negatively affects wild bees. Nature 2015, 521:77–80. 308 

22.  Carson R, Wilson EO, Lear LJ, Darling L, Darling L: Silent spring. Houghton Mifflin; 2002. 309 

23.  Sandrock C, Tanadini LG, Pettis JS, Biesmeijer JC, Potts SG, Neumann P: Sublethal 310 

neonicotinoid insecticide exposure reduces solitary bee reproductive success. Agric For 311 

Entomol 2014, 16:119–128. 312 

24.  Cedergreen N: Quantifying Synergy: A Systematic Review of Mixture Toxicity Studies within 313 

Environmental Toxicology. PLoS One 2014, 9:e96580. 314 

25.  Robinson A, Hesketh H, Lahive E, Horton AA, Svendsen C, Rortais A, Dorne J Lou, Baas J, 315 

Heard MS, Spurgeon DJ: Comparing bee species responses to chemical mixtures: Common 316 

response patterns? PLoS One 2017, 12:e0176289. 317 

26.  European Commission: Commission Regulation (EU) No 284/2013. 2013,  318 

27.  Eberhardt LL: Quantitative ecology and impact assessment. J Environ Manage 1976, 4:27–319 

70. 320 

28.  Isaac NJB, Pocock MJO: Bias and information in biological records. Biol J Linn Soc 2015, 321 

115:522–531. 322 

29.  FERA: PUS STAT: Pesticide Usage Surveys. 2014,  323 

30.  Jarvis SG, Henrys PA, Redhead JW, Da Silva Osório BM, Pywell RF: CEH Land Cover plus: 324 

Pesticides 2012-2016 (England and Wales). 2019, doi:https://doi.org/10.5285/a72f8ce8-325 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

15 

 

561f-4f3a-8866-5da620c0c9fe. 326 

31.  California Department of Pesticide Regulation: Pesticide Use Reporting: An Overview of 327 

California’s Unique Full Reporting System. Sacramento:California Department of Pesticide 328 

Regulation. 2000,  329 

32.  Dinh Van K, Janssens L, Debecker S, Stoks R: Temperature- and latitude-specific individual 330 

growth rates shape the vulnerability of damselfly larvae to a widespread pesticide. J Appl 331 

Ecol 2014, 51:919–928. 332 

33.  Dinh K V., Janssens L, Stoks R: Exposure to a heat wave under food limitation makes an 333 

agricultural insecticide lethal: a mechanistic laboratory experiment. Glob Chang Biol 2016, 334 

22:3361–3372. 335 

34.  Bednarska AJ, Laskowski R: Environmental conditions enhance toxicant effects in larvae of 336 

the ground beetle Pterostichus oblongopunctatus (Coleoptera: Carabidae). Environ Pollut 337 

2009, 157:1597–1602. 338 

35.  MacKenzie DI: Occupancy estimation and modeling : inferring patterns and dynamics of 339 

species occurrence. Academic Press, Burlington, Massachusetts,USA; 2006. 340 

36.  Isaac NJB, van Strien AJ, August TA, de Zeeuw MP, Roy DB: Statistics for citizen science: 341 

Extracting signals of change from noisy ecological data. Methods Ecol Evol 2014, 5:1052–342 

1060. 343 

37.  Van Strien AJ, Van Swaay CAM, Termaat T: Opportunistic citizen science data of animal 344 

species produce reliable estimates of distribution trends if analysed with occupancy 345 

models. J Appl Ecol 2013, 50:1450–1458. 346 

 347 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

• Agricultural pesticides can be harmful to non-target wildlife populations 

• Current regulatory processes often fail to identify impacts on real world systems 

• Large-scale long-term data can help identify these impacts 

• Sophisticated statistical tools are necessary to deal with the biases in the data 

• This approach can complement the regulatory process to prevent impacts on wildlife 
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