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Abstract. The current state of the art in subgraph isomorphism solving
involves using degree as a value-ordering heuristic to direct backtracking
search. Such a search makes a heavy commitment to the first branching
choice, which is often incorrect. To mitigate this, we introduce and eval-
uate a new approach, which we call “solution-biased search”. By combin-
ing a slightly-random value-ordering heuristic, rapid restarts, and nogood
recording, we design an algorithm which instead uses degree to direct the
proportion of search effort spent in different subproblems. This increases
performance by two orders of magnitude on satisfiable instances, whilst
not affecting performance on unsatisfiable instances. This algorithm can
also be parallelised in a very simple but effective way: across both satis-
fiable and unsatisfiable instances, we get a further speedup of over thirty
from thirty-six cores, and over one hundred from ten distributed-memory
hosts. Finally, we show that solution-biased search is also suitable for
optimisation problems, by using it to improve two maximum common
induced subgraph algorithms.

1 Introduction

The subgraph isomorphism problem is to decide whether a copy of a small “pat-
tern” graph occurs inside a larger “target” graph. The problem is broadly ap-
plicable, arising in areas including bioinformatics [2], chemistry [46], computer
vision [11, 49], law enforcement [8], model checking [47], malware detection [4],
compilers [43, 1], pattern recognition [12], program similarity comparison [10],
the design of mechanical locks [50], and graph databases [37].

Although the problem is NP-complete, by combining design techniques from
artificial intelligence with careful algorithm engineering, modern subgraph iso-
morphism solvers can often produce exact solutions quickly even on graphs with
thousands of vertices. The current single strongest subgraph isomorphism solver
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uses “highest degree first” as a value-ordering heuristic to direct a constraint pro-
gramming style search [35, 25, 37]. This heuristic is much better than branching
randomly, but is still far from perfect. To offset mistakes made by this heuristic,
this paper proposes a new perspective on value-ordering: rather than defining a
search order, we use degree to direct what proportion of the search effort should
be spent in each subproblem. By combining rapid restarts and nogood recording,
and introducing a small amount of randomness into the value-ordering heuristic,
we make a state-of-the-art subgraph algorithm perform two orders of magnitude
better on a large number of satisfiable instances, whilst performing worse only
rarely on satisfiable instances, and never on unsatisfiable instances. This strategy
is also effective in an optimisation setting, producing benefits in two maximum
common induced subgraph algorithms.

This new form of search can also be parallelised, with a much simpler im-
plementation than conventional work-stealing. By running many threads with
different random seeds but the same restart schedule, and sharing nogoods only
following restarts, we can achieve aggregate speedups [20] of thirty-one from a
thirty-six core machine, or over one hundred by using ten such machines.

1.1 Background

The non-induced subgraph isomorphism problem is to find an injective mapping
from the vertices of a pattern graph P to the vertices of a target graph T , such
that adjacent vertices in P are mapped to adjacent vertices in T (including that
vertices with loops in P may only be mapped to vertices with loops in T ). The
induced problem additionally requires that non-adjacent vertices are mapped to
non-adjacent vertices. The degree of a vertex is the number of other vertices to
which it is adjacent.

This paper looks at improving the Glasgow Subgraph Solver3, which can
solve both the non-induced and the induced subgraph isomorphism problems.
The solver is very closely based upon the k↓ algorithm of Hoffmann et al. [21]
with k = 0, and we refer the reader to that paper for full technical details;
that algorithm, in turn, is a simplification and re-engineering of an older Glas-
gow algorithm [35, 25]. Essentially, the solver is a dedicated forward-checking
constraint programming implementation specifically for subgraph problems. It
works with a model having a variable per pattern graph vertex, with domains
ranging over the target graph vertices, and performs a backtracking search to
map each pattern vertex to a target vertex whilst propagating adjacency and
injectivity constraints (together with further implied constraints based upon de-
grees and paths). However, it uses specialised bit-parallel data structures and
algorithms, and propagates constraints in a fixed order rather than using a queue.

1.2 Experimental Setup

Our experiments are performed on the EPCC Cirrus HPC facility, on systems
with dual Intel Xeon E5-2695 v4 CPUs and 256GBytes RAM, running Centos

3 https://github.com/ciaranm/glasgow-subgraph-solver/
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7.3.1611. We use GCC 7.2.0 as the compiler. For parallelism, we use C++ native
threads, and for distributed parallelism we also use the SGI MPT implementation
of MPI. All timing measurements are steady-clock, and we use a deterministic
pseudo-random number generator for reproducibility.

We use the dataset introduced by Kotthoff et al. [25] for evaluation. This
dataset brings together a range of randomly-generated and application instance
families from earlier papers:

BVG(r), M4D(r), and Rand are families of randomly generated graphs us-
ing different models (bounded degree, regular mesh, and uniform), where
each pattern is a permuted random connected subgraph of the target (and
so each instance is satisfiable) [9]. These benchmark instances are widely
used, but have unusual properties and so broad conclusions should not be
drawn based solely upon behaviour of these instances [37].

SF contains randomly generated scale-free graphs using a similar method [52].
LV consists of various kinds of graph gathered by Larrosa and Valiente [27] from

the Stanford Graph Database. We include both the 50 small graphs, and the
50 large graphs.

Phase contains hand crafted instances that lie near the satisfiable / unsatisfi-
able phase transition [37].

PR contains graphs generated from segmented images, corresponding to a com-
puter vision problem [49].

Images and Meshes contain graphs representing 2D segmented images and
3D object models, again representing a computer vision problem [11].

Other studies use a random selection of 200 of each of the instances from the
“meshes” and “images” families because some earlier solvers find many of these
instances extremely hard. We would like to have a larger number of satisfiable
instances in our test set, and so we include all pattern / target pairs. This gives a
total of 14,621 instances (rather than the original 5,725). At least 2,150 of these
instances are known to be satisfiable for the non-induced problem, and at least
12,348 are unsatisfiable.

2 Improving Sequential Search

We begin with a set of baseline performance measurements. In the top two plots
of Figure 1 we show the cumulative number of instances solved over time for the
non-induced and induced problems respectively. We compare the Glasgow Sub-
graph Solver using depth-first search (DFS) and with the modifications described
in the remainder of this paper (solution-biased search, SBS), the PathLAD vari-
ation of the LAD algorithm [48, 25], VF2 [9], RI [2], and VF3 [5] (which only
supports the induced problem), in each case using the original implementation
provided by the algorithm’s authors. The plots show that our starting point
comfortably beats PathLAD, VF2, VF3 and RI, except for very low choices of
timeout. For each algorithm, the y value gives the cumulative number of in-
stances which (individually) can be solved in no more than x milliseconds. The
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Fig. 1. On the top row, the cumulative number of instances solved over time, comparing
the Glasgow Subgraph Solver (both in its basic form, and with the improvements
introduced in the remainder of the paper) to other solvers, for the non-induced and
induced problems. On the bottom row, the same, considering only satisfiable instances.

vertical distance between two lines therefore shows how many more instances can
be solved by one solver than another, if every instance is run separately with
the chosen x timeout. The horizontal distance shows how many times longer
the per-instance timeout would need to be to allow the rightmost algorithm to
succeed on y out of the 14,621 instances (bearing in mind that the two sets of y
instances could be different), and gives a measure called aggregate speedup [20].

The dataset includes many instances which are extremely easy for a good
solver, and so it can be hard to see the differences between the stronger solvers
at higher runtimes. This paper focusses upon improving the performance on the
remaining hard satisfiable instances, and so in the bottom two plots in Figure 1
(and in subsequent cumulative plots for sequential algorithms) we show only
satisfiable instances, and use a reduced range on both axes. For the remainder
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Fig. 2. Comparing depth-bounded discrepancy search (DDS) to depth-first backtrack-
ing search (DFS), both using degree as the value-ordering heuristic.

of this paper, we show only the non-induced problem, which tends to be harder;
results with the induced variant are similar.

2.1 Discrepancy Searches

A discrepancy is where search goes against the advice of a value-ordering heuris-
tic. Discrepancy searches [19, 24, 51, 23] are alternatives to backtracking search
that initially search disallowing all discrepancies, and then retry search allowing
an increasing number of discrepancies at each iteration until either a solution
is found or unsatisfiability is proven. These schemes assume that value-ordering
heuristics are usually reliable, and that most solutions can be found with only
a small number of discrepancies. In such cases, the heavy commitment to early
branching choices made by backtracking search can be extremely costly.

Figure 2 shows the effects of adding Walsh’s [51] depth-bounded discrep-
ancy search (DDS) to the solver (results with other discrepancy search variants
are similar). On the scatter plot, each point represents the solving time for one
instance—to avoid noise for easier instances, we measure only time spent dur-
ing search, and exclude time spent in preprocessing and initialisation. Points
below the x− y diagonal are speedups, whilst points on the top and right axes
represent instances which timed out after one thousand seconds with one al-
gorithm, but not the other. For satisfiable instances, the different point styles
show the different families, whilst all unsatisfiable instances are shown as dark
dots. The points well below the diagonal line and along the right-hand axis on
the scatter plot show that DDS can sometimes be extremely beneficial on satisfi-
able instances. However, on both unsatisfiable and most satisfiable instances, the
overheads can be extremely large, and DDS is much worse in aggregate and is
not a viable approach (even when only considering satisfiable instances). These
large overheads are to be expected: discrepancy searches are aimed primarily at
getting better feasible solutions in optimisation problems which are too large for
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Fig. 3. On the left, the cumulative number of satisfiable instances solved over time,
using four different value-ordering heuristics. On the right, an instance by instance
comparison of the degree and biased heuristics on all instances. Points on the outer
axes are timeouts, and point style shows instance family.

a proof of optimality to be a realistic prospect, and they are not well-suited for
unsatisfiable decision problems. Despite this, the extremely large gains on some
satisfiable instances confirm our suspicions that we should find an alternative to
heavy-commitment backtracking search.

2.2 Value-Ordering Heuristics

Traditionally, value-ordering heuristics are designed to drive search towards the
most promising region of the search space [14], or the most constrained [15], or
the region with the highest solution density [44]. In subgraph isomorphism, this
is done by selecting vertices from highest degree to lowest [37]. The left-hand plot
of Figure 3 demonstrates that this is indeed a good choice: the Degree heuristic’s
line shows much better performance on satisfiable instances than the Random
(branch randomly) or Anti (branch from lowest degree to highest) heuristic
lines. Meanwhile, on unsatisfiable instances, the value-ordering heuristic has no
effect on performance, because a complete search must be performed.

But what happens if our value-ordering heuristic has to choose between map-
ping a pattern vertex to one of, for example, three target vertices of degree ten,
two vertices of degree nine, or five of degree two? When driving conventional
backtracking search, the degree heuristic would pick one of the vertices of degree
ten, and we would commit all of our search effort to the exponentially large
search tree underneath it, not considering any other choice until this tree has
been fully explored and eliminated. We will show that this is not a wise choice,
and that instead, we should commit equal search effort to each of the three sub-
problems found by mapping to vertices of degree ten. And similarly, should we
be certain that a vertex of degree ten is so much better than a vertex of de-
gree nine that we should commit no effort to degree nine vertices until all the
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degree ten subproblems have been explored? Or might it be better to commit,
say, twice as much effort to each degree ten subproblems as to each degree nine
subproblems, and only a very small amount of effort to the degree two sub-
problems? To test this hypothesis, we will now introduce a new alternative to
backtracking search, which we call solution-biased search. This search is made
up of three components: a new slightly-random value-ordering heuristic, rapid
restarts, and nogood recording. The aim is to perform a complete search, but
spending proportionally more time in parts of the search tree that are preferred
by the value-ordering heuristic.

2.3 Biased Value-Ordering

We first define a new Biased value-ordering heuristic, as follows. When branch-
ing, we select a vertex v′ from the chosen domain Dv with probability

p(v′) =
2deg(v

′)∑
w∈Dv

2deg(w)
.

This heuristic is now equally likely to pick between vertices of equal degree, is
twice as likely to pick a vertex of degree d as one of degree d− 1, and is over a
thousand times more likely to pick a vertex of degree d than degree d− 10.

Figure 3 confirms that this heuristic, when used with backtracking search,
will solve close to the same number of instances as the degree heuristic would
for any given choice of timeout. In other words, we can introduce an element of
randomness into the degree value-ordering heuristic without adversely affecting
its performance in aggregate. The right-hand plot gives a detailed comparison.
It shows that despite the aggregate performance being similar, on a case by
case basis, the two heuristics can make a large difference to the performance for
individual satisfiable instances. This justifies our belief that although degree is
a good heuristic, we should perhaps not commit heavily to a single vertex of
highest degree, but also consider vertices of the same or similar degree.

2.4 Restarting Search and Nogood Recording

Having introduced a new value-ordering heuristic, we must now also move away
from depth-first backtracking search. We do this by using restarts and nogood
recording. The general idea is to perform a certain amount of search, and then if
no solution has been found (and unsatisfiability has not been proven), to abandon
search and restart from the beginning. Such an approach can only be beneficial
if something changes after restarting—in a constraint programming setting, this
is usually the variable-ordering heuristic [28, 13, 29, 16]. In this paper, we in-
stead rely upon randomness in our new value-ordering heuristic, and continue
to use smallest domain first with static tiebreaking for variable-ordering.4 Using

4 It may be possible to further improve the solver by also introducing randomness or
some form of learning into its variable-ordering heuristic. However, simultaneously
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restarts on value-ordering heuristics is uncommon (although Razgon et al. [45]
look at learning value-ordering heuristics from restarts, Chu et al. [6] use a sim-
ilar scheme in the context of parallel search, and an early approach by Gomes
et al. [17] does so in an optimisation context).

Preliminary experiments directed us to use the Luby scheme [33] to deter-
mine when to restart. Following convention, we multiply each item in the Luby
sequence by a constant—we used the SMAC automatic parameter tuner [22] to
select the value 660.

To avoid exploring portions of the search space that we have already visited,
every time we restart, we add new constraints to the problem which eliminate
already-explored subtrees—such a constraint is called a nogood. We generate sim-
ple decision nogoods. That is, upon backtracking due to a decision to restart,
we post a nogood of the form (v 7→ v′) ∧ (w 7→ w′) ∧ (x 7→ x′) ⇒ ⊥ for every
branch to the left of the current (incomplete) branch at every level of the search
tree, and when we first make a decision to restart before backtracking, we post a
similar nogood eliminating the entire subtree explored. We use the two watched
literals technique [42] to propagate stored nogoods. This has two benefits: the
propagation complexity does not particularly depend upon the number of stored
nogoods, and it does not require any work upon backtracking. Other more so-
phisticated nogood generation and propagation schemes exist [29, 16], but these
are not helpful in this setting (our solver does not maintain arc consistency or
use a propagation queue).

2.5 Solution-Biased Search in Practice

In Figure 4 we show the effects of adding restarts and nogood recording to the
algorithm. With restarts and nogood recording (random search with restarts,
RSR), the random value-ordering heuristic comfortably beats the degree strategy
with depth-first search. In other words, although having a good value-ordering
heuristic is beneficial, introducing randomness into the search is better, if it
is done alongside a mechanism to avoid heavy commitment to any particular
random choice. However, the biased heuristic together with restarts (solution-
biased search, SBS) is better still—that is, if we are introducing restarts, then
it is better to add a small amount of randomness to a tailored heuristic than
it is to throw away the heuristic altogether. Indeed, the original algorithm can
solve 1983 satisfiable instances by 909 seconds, whilst the biased and random
restarting algorithms require only 12 seconds and 35 seconds respectively to solve
the same number.

In the more detailed view in the right-hand plot of Figure 4, comparing the
original algorithm to solution-biased search, all of the unsatisfiable instances
are very close to the x − y diagonal, showing that their performance is nearly
unchanged. On the other hand, there are large numbers of satisfiable instances

introducing a second change would considerably complicate the empirical analysis.
Additionally, the solver’s current hand-crafted variable-ordering heuristics already
beat adaptive heuristics like impact or activity-based search.
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Fig. 4. On the left, the number of satisfiable instances solved over time, comparing
solution-biased search (SBS), random search with restarts (RSR), and the three value-
ordering heuristics with conventional depth-first search. To the right, a comparison
between the original algorithm and solution-biased search.

well below the diagonal line, indicating large speedups. Better yet, there are only
a handful of satisfiable instances that are more than a factor of ten times worse.
In other words, as well as improving performance, we have made up most of the
consistency we lost by introducing randomness.

As we might expect, these properties do not hold if any of the combination of
changes are disabled. In the left-hand plot of Figure 5, we see large slowdowns on
unsatisfiable instances when disabling nogood recording, and on the right-hand
plot we see many more satisfiable instances above the x−y diagonal when using
the random value-ordering heuristic as opposed to the degree-biased heuristic.

2.6 Solution-Biased Search in Theory

Although we have shown that it provides good results, we have yet to justify
where the biased formula comes from, or indeed why we call this approach
“solution-biased”. Our goal is to use biased randomness in a value-ordering
heuristic to spend time in subproblems proportional to an estimate of their so-
lution density [44]. Such an approach is better than committing entirely to the
area of maximum solution density because estimators only give a probability—
although we may estimate that one subtree has twice the solution density of
another, in reality the “better” subtree may contain no solutions at all.

To estimate solution density, we need an estimate of how big different sub-
problems are likely to be, and of how many solutions each subproblem is likely to
contain. Of course, obtaining exact (or even approximate) values for these figures
is at least as hard as solving the problem in its entirety, but we may obtain us-
able approximations. For pairs of Erdős-Rényi random graphs with large solution
counts (i.e. chosen from within the “easy satisfiable” region [37]), we can observe
a linear relationship between subproblem size and number of solutions. Thus,
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Fig. 5. On the left, not using nogood recording introduces slowdowns, particularly on
unsatisfiable instances. On the right, using a random value-ordering gives much worse
performance on many satisfiable instances.

for graphs from this distribution, we need only an estimator of subproblem size.
Measurements also suggest that, for pairs of Erdős-Rényi graphs, subproblems
under a target vertex of degree d tend to contain a small constant times more
search nodes than those under a target vertex of degree d − 1. This empirical
analysis suggests that an estimator that is exponential in d will give our method
the desired behaviour, at least for Erdős-Rényi graphs. We expect it may be
possible to derive better estimators for particular input classes, although over
the full range of problem instances, we have verified that exponential estimators
substantially outperform polynomial and factorial weightings.

3 Parallel Search

Exploiting multiple cores to speed up constraint programming solvers remains
an active area of research, with no universally perfect solution being available.
Four of the more common approaches are based upon decompositions [26, 34],
work-stealing [39, 6, 35, 20], parallel discrepancy searches [40, 41], and algorithm
portfolios [32]. Decomposition approaches are unsuitable for decision problems,
or problems where we have good value-ordering heuristics, because the decom-
position interferes strongly with the shape of the search tree [34]. Work-stealing,
traditionally, also interferes with value-ordering [36], although specially designed
exceptions exist [6, 35, 20]. However, these have very complicated implementa-
tions. Parallel discrepancy searches are aware of value-ordering heuristics, but
have other limitations: they struggles on search trees with heavy filtering, and
rely upon inner search tree nodes being orders of magnitude less expensive to
process than leaf nodes. Portfolios, meanwhile, typically rely upon running mul-
tiple models or heuristics simultaneously, and selecting whichever finishes first,
whereas here we have a known good model and set of heuristics.
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Fig. 6. Above, the cumulative number of instances solved over time, comparing the
sequential algorithm to results using 32 threads on a single machine, and using five,
ten or twenty distributed memory hosts. Below, instance by instance comparisons.

3.1 Shared Memory Parallelism

Solution-biased search allows for a much simpler parallel implementation. We
create a number of threads, and give each thread its own random seed; other-
wise each thread performs the same sequential search. Threads synchronise on
restarts, a simple barrier causing each thread to wait for every other thread to
also restart. Nogoods from all threads are then gathered and combined before
search resumes, now with a larger set of nogoods than in a sequential run. Finally,
whenever any single thread terminates, either due to having found a solution or
proved unsatisfiability, then every other thread may immediately terminate.

This technique requires only limited changes to the top level search driver,
and none whatsoever to the main recursive search algorithm. Notably, it does
not require any locking or communication during the recursive search, aside from
a single atomic boolean flag to assist early termination. A number of factors
combine to make this approach feasible:
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– Each thread will be run with the same restart schedule, and so will spend
approximately the same amount of time between restarts. Because the only
synchronisation between threads is at a restart, we expect threads to be busy
doing search. (This is in contrast to an alternative method for paralellising
restarting search [7], which packs together successive sequence values to pro-
duce a balanced workload.) This approach therefore avoids the irregular task
size issues which usually arise in parallel combinatorial search.

– Sequentially, on non-trivial instances the algorithm will restart often (many
tens of thousands, for instances that reach the thousand second timeout).

– Because the search trees we explore are exponentially large, the randomness
in the value-ordering heuristic is sufficient to ensure that most of the time,
threads are exploring different parts of the search tree.

– The gathering of nogoods to describe the work done so far provides an alter-
native to requiring either a specific mechanism to allocate work, or expensive
synchronisation between threads. Notably, this completely bypasses the typ-
ical difficulties of sharing all learned nogoods in learning solvers [18].

– If sometimes threads do happen to explore part of the same subproblems,
this is not a problem: if the instance is satisfiable, either thread might find a
solution first, and if the instance is unsatisfiable, we merely introduce some
redundancy into the proof.5 The combination of rapid restarts and nogood
recording is enough to ensure that this is only a small overhead.

Figure 6 shows how this scheme performs in practice. Sequentially, we can
solve 14,357 instances within the thousand second timeout, with the last instance
being solved at 939.0 seconds. Using thirty-six threads on machines with two
eighteen core processors, we can solve 14,357 instances with a timeout of only
74.2 seconds, giving an aggregate speedup [20] of 12.7.

Closer inspection of the results reveals that with this many threads, a con-
siderable proportion of the overall search time is spent with threads waiting
at the barrier for synchronisation. This is because the time taken to carry out
search until 660 backtracks are encountered is only roughly a constant (in prac-
tice it usually varies by around a factor of two). Furthermore, the Luby sequence
includes occasional large multipliers, and if unsatisfiability is proved during to-
wards the end of one of these runs, each thread will end up duplicating a large
amount of work.

Because we are using nogood recording, an alternative approach is possible.
Rather than using the Luby sequence for restarts, we could restart after either
a constant number of backtracks, or simply after a certain time interval has
passed—this bounds the maximum possible idle time that threads could spend at
a barrier. Figure 6 also shows the effects of restarting every 100ms. Sequentially,
this approach is slightly better than using the Luby sequence, being able to solve
14,370 instances, with the last at 996.4 seconds. With thirty-six threads, solving
this many instances takes 31.8 seconds, giving an aggregate speedup of 31.4.

5 For solving a counting or enumeration problem, matters become slightly more com-
plicated, but not devastatingly so.
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It is important to emphasise that there is no expectation of a linear speedup
from this approach [30, 31, 3], particularly for satisfiable instances. Due to the bi-
ased random nature of the value-ordering heuristic, one of our extra threads may
“get lucky” and find a solution much quicker than we would sequentially, leading
to a superlinear speedup. Conversely, our extra threads may contribute nothing
to finding a solution—or worse, due to new nogoods altering the choice made by
the random branching heuristic, we could even get an absolute slowdown. We
can see both of these effects in the bottom left plot of Figure 6: although we
achieve roughly a linear speedup on unsatisfiable instances, satisfiable instances
show much greater variability. However, this approach does at least mirror our
intuition of allocating search effort in proportion to where the value-ordering
heuristic believes it will be most fruitful, and so we should not be too surprised
that we see roughly a linear speedup on average on harder instances.

Additionally, for easy instances, most of the algorithm’s execution time is
spent in a preprocessing phase. We have not parallelised this, which is why our
results are poor below the one second mark.

3.2 Distributed Memory Parallelism

To further test the scalability of this technique, we also used MPI to implement
a distributed-memory parallelism layer on top of the threaded layer. In contrast
to the huge difficulties of implementing work-stealing in a distributed memory
setting, this required only the addition of two MPI calls: an “all gather” operation
to communicate nogoods, and a “gather” to collect and combine the results of
each host. Termination, meanwhile, was handled by posting an empty nogood
(and so termination can only occur on a restart).

Figure 6 also shows the results of these experiments, using five, ten, and
twenty hosts. Because each host has two CPU sockets, the five host results use
ten MPI ranks, each with eighteen threads, and the ten and twenty host results
use twenty and forty MPI ranks respectively. The supercomputing service we
use is not designed for huge numbers of very short problems, and so we ran
only instances whose sequential runtime was at least one second; for the sake
of plotting results, we treat skipped instances as taking one second. Due to the
job launcher used, it is also not possible to accurately measure “total” runtime
including startup costs, and so instead we report the runtime of the rank zero
process—this figure is somewhat optimistic for very easy instances. With these
caveats in mind, when seeing how long a timeout is needed to solve any 14,370
instances, we get aggregate speedups of 57.1 from five hosts and 95.5 from ten
hosts over a sequential baseline; using twenty hosts is slightly slower, due to
increased overheads. Finally, if we look at harder instances, by allow a longer
sequential timeout, we can solve 14,415 instances sequentially with the last at
8,549 seconds; at this difficulty level, we achieve aggregate speedups of 82.6,
103.2, and 144.9 from five, ten and twenty hosts.
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Fig. 7. Above, the cumulative number of maximum common induced subgraph in-
stances solved by k↓ and McSplit↓ over time, with the two forms of search. Below,
comparing k↓ (left) and McSplit↓ (right) on an instance by instance basis.

4 Maximum Common Subgraph Algorithms

Having looked at subgraph isomorphism in detail, we now briefly discuss the
maximum common induced subgraph problem, to see whether our new approach
to search has more general applicability. Two recent algorithms for this problem
also make use of backtracking search with degree as a value-ordering heuristic.
The k↓ algorithm [21] attempts to solve the problem by first trying to solve the
induced subgraph isomorphism problem, and then if that fails, retries allowing a
single unmatched vertex (and thus using weaker invariants), and so on. Due to
its similarity to the Glasgow Subgraph Solver, we can introduce the same bias
and restart strategy.

Meanwhile, the McSplit↓ algorithm [38] uses a constraint programming style
search, but with special propagators and backtrackable data structures that ex-
ploit special properties of the problem. The unconventional domain store used
by McSplit↓ precludes the use of arbitrary unit propagation, and so when in-
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troducing restarts, we cannot propagate using nogoods. Instead, we can only
detect when we are inside an already-visited branch. We must therefore use the
one watched literal scheme instead, and we also introduce a basic subsumption
scheme to prune redundant clauses.

Performance results from these two modified algorithms, using the same fam-
ilies of instances as in the previous section, are shown in Figure 7. Although
we have moved from a decision problem to an optimisation problem, the same
changes remain clearly beneficial. For the k↓ algorithm, the change has a minimal
effect on many instances (typically, where the k = 0 subproblem is unsatisfiable
and hard, and the k = 1 subproblem is satisfiable and easy), but gives large
benefits on many more instances than it penalises: it is over an order of magni-
tude better on over three hundred instances, whilst being an order of magnitude
worse on only seven.

With McSplit↓, the inability to use two watched literals means that in many
cases we introduce a small slowdown. However, the overall pattern is the same:
when introducing restarts and a biased value ordering heuristic, it is much more
common to see a large speedup than a large slowdown.

5 Conclusion and Future Work

The conventional view of value-ordering heuristics is that they define a search
order. We have proposed an alternative perspective, where value-orderings de-
fine a weighting specifying how much search effort should be put into different
subproblems, based upon a rough estimate of solution densities. We have also
shown how to turn this perspective into an algorithm, by combining a biased
random value-ordering heuristic with rapid restarts and nogood recording. This
combination of techniques gives us, for the first time, a practical alternative to
backtracking search where we have a strong value-ordering heuristic, and where
we care both about satisfiable and unsatisfiable instances.

A further benefit is the ease with which such a search can be parallelised. By
having each thread carry out the same search with a different random seed, and
sharing nogoods only on restarts, we remove the need for intrusive changes to
the core search algorithm, eliminate the irregularity problem, and still respect
the advice of the value-ordering heuristic.

We believe that these technique are broadly applicable, beyond subgraph
algorithms, and we intend to implement them in a full constraint programming
solver. We are also interested in making better use of statistical knowledge (either
a priori or learned during search) to further refine the biased randomisation
process. And finally, we are trying hard to work out whether our new perspective
also has some relevance to variable ordering heuristics.
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34. Malapert, A., Régin, J., Rezgui, M.: Embarrassingly parallel search
in constraint programming. J. Artif. Intell. Res. 57, 421–464 (2016).
https://doi.org/10.1613/jair.5247

35. McCreesh, C., Prosser, P.: A parallel, backjumping subgraph isomorphism algo-
rithm using supplemental graphs. In: Principles and Practice of Constraint Pro-
gramming - 21st International Conference, CP 2015, Cork, Ireland, August 31 -
September 4, 2015, Proceedings. pp. 295–312 (2015)

36. McCreesh, C., Prosser, P.: The shape of the search tree for the maximum clique
problem and the implications for parallel branch and bound. TOPC 2(1), 8:1–8:27
(2015). https://doi.org/10.1145/2742359

37. McCreesh, C., Prosser, P., Solnon, C., Trimble, J.: When subgraph isomorphism
is really hard, and why this matters for graph databases. J. Artif. Intell. Res. 61,
723–759 (2018)

38. McCreesh, C., Prosser, P., Trimble, J.: A partitioning algorithm for maximum com-
mon subgraph problems. In: Proceedings of the Twenty-Sixth International Joint
Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, August
19-25, 2017. pp. 712–719 (2017)

39. Michel, L., See, A., Van Hentenryck, P.: Parallelizing constraint programs trans-
parently. In: Principles and Practice of Constraint Programming - CP 2007, 13th
International Conference, CP 2007, Providence, RI, USA, September 23-27, 2007,
Proceedings. pp. 514–528 (2007). https://doi.org/10.1007/978-3-540-74970-7 37

40. Moisan, T., Gaudreault, J., Quimper, C.: Parallel discrepancy-based search. In:
Principles and Practice of Constraint Programming - 19th International Confer-
ence, CP 2013, Uppsala, Sweden, September 16-20, 2013. Proceedings. pp. 30–46
(2013). https://doi.org/10.1007/978-3-642-40627-0 6

41. Moisan, T., Quimper, C., Gaudreault, J.: Parallel depth-bounded discrepancy
search. In: Integration of AI and OR Techniques in Constraint Programming -
11th International Conference, CPAIOR 2014, Cork, Ireland, May 19-23, 2014.
Proceedings. pp. 377–393 (2014). https://doi.org/10.1007/978-3-319-07046-9 27

42. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engi-
neering an efficient SAT solver. In: Proceedings of the 38th Design Automation
Conference, DAC 2001, Las Vegas, NV, USA, June 18-22, 2001. pp. 530–535 (2001)



Sequential and Parallel Solution-Biased Search for Subgraph Algorithms 19

43. Murray, A.C., Franke, B.: Compiling for automatically generated instruction set
extensions. In: 10th Annual IEEE/ACM International Symposium on Code Gen-
eration and Optimization, CGO 2012, San Jose, CA, USA, March 31 - April 04,
2012. pp. 13–22 (2012). https://doi.org/10.1145/2259016.2259019

44. Pesant, G., Quimper, C., Zanarini, A.: Counting-based search: Branching heuris-
tics for constraint satisfaction problems. J. Artif. Intell. Res. 43, 173–210 (2012).
https://doi.org/10.1613/jair.3463

45. Razgon, M., O’Sullivan, B., Provan, G.M.: Search ordering heuristics for restarts-
based constraint solving. In: Proceedings of the Twentieth International Florida Ar-
tificial Intelligence Research Society Conference, May 7-9, 2007, Key West, Florida,
USA. pp. 182–183 (2007)
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