
Social learning strategies regulate the wisdom and madness

of interactive crowds

Wataru Toyokawa1,2,3,*, Andrew Whalen1, and Kevin N. Laland1

1School of Biology, University of St Andrews, Harold Mitchel Building, St Andrews, Fife, KY16 9TH,

Scotland

2Japan Society for the Promotion of Science, Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan

3Department of Evolutionary Studies of Biosystems, School of Advanced Sciences, SOKENDAI (The

Graduate University for Advanced Studies), Shonan Village, Hayama, Kanagawa 240-0193, Japan

*corresponding author: wt25@st-andrews.ac.uk

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by St Andrews Research Repository

https://core.ac.uk/display/224768943?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Abstract1

Why groups of individuals sometimes exhibit collective ‘wisdom’ and other times mal-2

adaptive ‘herding’ is an enduring conundrum. Here we show that this apparent conflict is3

regulated by the social learning strategies deployed. We examined the patterns of human4

social learning through an interactive online experiment with 699 participants, varying both5

task uncertainty and group size, then used hierarchical Bayesian model-ftting to identify6

the individual learning strategies exhibited by participants. Challenging tasks elicit greater7

conformity amongst individuals, with rates of copying increasing with group size, leading to8

high probabilities of herding amongst large groups confronted with uncertainty. Conversely,9

the reduced social learning of small groups, and the greater probability that social informa-10

tion would be accurate for less-challenging tasks, generated ‘wisdom of the crowd’ effects11

in other circumstances. Our model-based approach provides evidence that the likelihood of12

collective intelligence versus herding can be predicted, resolving a longstanding puzzle in13

the literature.14
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Understanding the mechanisms that account for accurate collective decision-making amongst15

groups of animals – ‘collective intelligence’ – has been a central focus of animal behaviour re-16

search1–5. There are a large number of biological examples showing that collectives of poorly17

informed individuals can achieve a high performance in solving cognitive problems under un-18

certainty6–10. Although these findings suggest fundamental cognitive benefits of grouping11,19

there is also a long-standing recognition, especially for humans, that interacting individuals may20

sometimes be overwhelmed by the ‘extraordinary popular delusions and madness of crowds’12.21

Herd behaviour (i.e. an alignment of thoughts or behaviours of individuals in a group) occurs22

because individuals imitate each other13–15, even if each is a rational decision-maker16. Imita-23

tion is thought to be a cause of financial bubbles12;17, ‘groupthink’18 and volatility in cultural24

markets19;20. More generally, interdependence between individual decisions may undermine the25

wisdom of crowds effect21 (but see22), whilst potential disadvantages of information transfer are26

well-recognised in the biological literature23;24. It seems that information transmission among27

individuals, and making decisions collectively, is a double-edged sword: combining decisions28

may provide the benefits of collecitve intelligence, but at the same time, increase the risk of an29

informational cascade16. Collectively, an understanding of whether and, if so, how it is possible30

to prevent or reduce the risk of maladaptive herding, while concurrently keeping or enhancing31

collective intelligence, is largely lacking.32

A balance between using individual and social information may play a key role in deter-33

mining the trade-off between collective wisdom and ‘madness’25. If individuals are too reliant34

on copying others’ behaviour, any idea, even a maladaptive one, can propagate in the social35

group through positive feedbacks2;26. For instance, disproportionally strong positive responses36
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to recruitment signals in social insects have been shown to trap the whole colony to exploit a37

suboptimal, out-dated resource24;27. Likewise, conformity-biased transmission in humans and38

other animals can potentially lead groups to converge on a maladaptive behaviour16;23;28;29. On39

the other hand, however, if individuals completely ignore social information so as to be indepen-40

dent, they will fail to exploit the benefits of aggregating information through social interactions.41

The extent to which individuals should use social information should fall between these two42

extremes. Evolutionary models predict that the balance between independence and interdepen-43

dence in collective decision-making may be changeable, contingent upon the individual-level44

flexibility and inter-individual variability associated with the social learning strategies deployed45

in diverse environmental states28;30;31.46

Experimental studies report that animals (including humans) increase their use of social in-47

formation as the returns from asocial learning become more unreliable32–37, whilst theory and48

data suggest that the benefits to individuals of social learning increase with group size34;38–42.49

Selectivity in the predicted use of social information may impact on collective decision-making50

because slight differences in the parameter values of social information use are known to be able51

to alter qualitatively the collective behavioural dynamics1;2;5;43;44. Therefore, researchers should52

expect populations to exhibit a higher risk of being trapped with maladaptive behaviour with53

increasing group size and decreasing reliability of asocial learning (and concomitant increased54

reliance on social learning).55

From the viewpoint of the classic wisdom of crowds theory, increasing group size may in-56

crease collective accuracy45–48. The relative advantage of the collective over solitary individuals57

may also be highlighted by increased task difficulty, because there would be more room for the58
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performance of difficult tasks to be improved compared to easier tasks in which high accuracy59

can be achieved by asocial learning only. To understand the collective decision performance of60

social learners fully requires fine-grained quantitative studies of social learning strategies and61

their relations to collective dynamics, linked to sophisticated computational analysis.62

The aims of this study were twofold. First, we set to test the hypothesis that the circumstances63

under which collective decision making will generate ‘wisdom’ can be predicted with knowledge64

of the precise learning strategies individuals deploy, through a combination of experimentation65

and theoretical modelling. The choice of an abstract decision-making task allowed us to imple-66

ment a computational modelling approach, which has been increasingly deployed in quantitative67

studies of animal social learning strategies35;49–51. In particular, computational modelling al-68

lowed us to conduct a parametric description of different information-gathering processes and69

to estimate the parameter values at an individual-level resolution. This approach allows us to70

characterise the complex relationship between individual-level decision, learning strategies and71

collective-level behavioural dynamics.72

Second, we added resolution to our analyses by manipulating both task uncertainty and group73

size in our web-based experiments with adult human subjects, predicting that these factors would74

induce heavier use of social information in humans, and thereby alter the balance between col-75

lective intelligence and the risk of inflexible herding. To do this, we focused on human groups76

exposed to a simple gambling task called a multi-player ‘multi-armed bandit’, where both asocial77

and social sources of information were available35;51;52. Through development of an interactive,78

web-based collective decision-making task, and use of hierarchical Bayesian statistical meth-79

ods in fitting our computational model to the experimental data, we identify the individual-level80
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learning strategies of participants as well as quantify variation in different learning parameters,81

allowing us to conduct an informed exploration of the population-level outcomes. The results82

provide clear evidence that the collective behavioural dynamics can be predicted with knowledge83

of human social learning strategies.84

Below, we firstly deploy agent-based simulation to illustrate how the model parameters re-85

lating to social learning can in principle affect the collective-level behavioural dynamics. The86

simulation provides us with precise, quantitative predictions concerning the complex relation-87

ship between individual behaviour and group dynamics. Second, we present the findings of88

a multi-player web-based experiment with human participants that utilises the gambling task89

framework. Applying a hierarchical Bayesian statistical method, we estimated the model’s pa-90

rameters for each of 699 different individuals, allowing us to (i) examine whether and, if so, how91

social information use is affected by different group size and task uncertainty, and (ii) whether92

and how social-information use affects both collective intelligence and the risk of maladaptive93

herding.94

1 Results95

1.1 The relationship between social learning and the collective behaviour96

Figure 1 shows the relationship between the average decision accuracy and individual-level social97

information use obtained from our individual-based model simulations, highlighting the trade-98

off between accuracy and flexibility of collective decision-making. When the mean conformity99

exponent is small (i.e. 𝜃̄ = (
∑

𝑖 𝜃𝑖)∕individuals = 1), large groups are able to recover the decision100
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accuracy quickly as do small groups after the location of the optimal option has been switched,101

whereas overall improvement by increasing group size in decision accuracy is subtle when the102

average social learning weight is also small (i.e. 𝜎̄ = (
∑

𝑖
∑

𝑡 𝜎𝑖,𝑡)∕(individuals × rounds) = 0.3;103

Figure 1A and 1C). On the other hand, when both the conformity exponent 𝜃̄ and the social104

learning weight 𝜎̄ are large, average performance is no longer monotonically improving with in-105

creasing group size, and it is under these circumstances that the strong herding effect becomes106

prominent (Figure 1D). Although the high conformity bias with low social learning weight makes107

large groups more accurate before the environment changes, larger groups are less flexible in per-108

formance recovery (Figure 1B). The patten is robust for other parameter regions (Supplementary109

Figure 2).110

Figure 2 indicates that when both 𝜃̄ and 𝜎̄ are large the collective choices converged either on111

the good option or on one of the poor options almost randomly, regardless of the option’s quality,112

and that once individuals start converging on an option the population gets stuck. As a result,113

the distribution of the groups’ average performance over the replications becomes a bimodal114

‘U-shape’. Interestingly, however, the maladaptive herding effect remains relatively weak in115

smaller groups (see Figure 1D; the dotted line). This is because the majority of individuals in116

smaller groups (i.e. two individuals out of three) are more likely to break the cultural inertia by117

simultaneously exploring another option by chance than are the majority in larger groups (e.g.118

six out of ten).119

In summary, the model simulation suggests an interaction between social learning weight120

𝜎̄ and conformity exponent 𝜃̄ on decision accuracy and the risk of inflexible herding. When121

the conformity exponent is not too large, increasing group size can increase decision accuracy122
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while concurrently retaining decision flexibility across a broad range of the mean social learning123

weights. When the conformity bias becomes large, however, the risk of inflexible herding arises,124

and, when both social learning parameters are large, collective intelligence is rare and inflexible125

herd behaviour dominates.126

1.2 Collective performance of human participants127

Figure 3A shows behavioural dynamics of human participants in different group sizes and dif-128

ferent task uncertainty conditions (see Supplementary Figure 3 for each group’s behaviour). The129

average decision performance of collectives (i.e. group size ≥ 2) exceeded that of solitary in-130

dividuals (i.e. group size = 1) in the Moderate-uncertainty condition (i.e. the 95% Bayesian131

CI of 𝜉𝑡 exceeds 0 at regions 𝑡 ∈ [9, 40] and [67, 70]; Figure 3B). In other uncertainty condi-132

tions, no global positive effect of grouping was observed, suggesting that collective intelligence133

was prominent only in the Moderate-uncertainty condition. However, the main effect of group134

size was positive in the post-change period of the Low-uncertainty condition (mean and the 95%135

Bayesian CI of 𝜔2 = 0.67 [0.44, 0.91]; Table 1), suggesting that the average performance of large136

groups (e.g. 12 ≤ group size ≤ 16) were better, and hence more flexible, than smaller groups137

and solitaries (Figure 3A). On the other hand, in the Moderate-uncertainty condition, the aver-138

age performance of the collectives dropped below that of the solitaries after the environmental139

change (i.e. 𝜉𝑡 < 0 at a region 𝑡 ∈ [42, 45]; Figure 3B). Also, the main effect of group size140

was negative in the post-change period (mean and the 95% Bayesian CI of 𝜔2 = -0.26 [-0.44,141

-0.11]; Table 1), suggesting that larger groups were more likely to get stuck in the out-dated op-142

tion in the Moderate-uncertainty condition. In the High-uncertainty condition, the main effect of143
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group size was positive in the prior-change period and negative post-change (mean and the 95%144

Bayesian CIs are 𝜔1 = 0.07 [0.00, 0.15] and 𝜔2 = -0.10 [-0.17, -0.02]; Table 1), although the145

effect size was too small to differentiate performances of different group sizes visually (Figure146

3A). Using monetary earnings as an outcome variable of decision performance did not change147

our conclusions qualitatively (supporting Supplementary Figure 4 and Supplementary Table 2).148

Our phenomenological model regression established that manipulating both task uncertainty149

and group size indeed affected the collective decision dynamics. Below, we address whether or150

not the pattern could be explained with knowledge of human social learning strategies estimated151

through our learning and decision-making computational model.152

1.3 Estimation of human social information use153

Using posterior estimation values obtained by the hierarchical Bayesian model fitting method154

(Table 2), we were able to categorise the participants as deploying one of three different learn-155

ing strategies based on their fitted conformity exponent values; namely, the ‘positive frequency-156

dependent copying’ strategy (𝜃𝑖 ≫ 0), the ‘negative-frequency dependent copying’ strategy157

(𝜃𝑖 ≪ 0) and the ‘random choice’ strategy (𝜃𝑖 ≈ 0). Note that we could not reliably detect158

the ‘weak positive’ frequency-dependent strategy (0 < 𝜃𝑖 ≤ 1) due to the limitation of statisti-159

cal power (Supplementary Figure 5). Some individuals whose ‘true’ conformity exponent fell160

between zero and one would have been categorised as exhibiting a random choice strategy (Sup-161

plementary Figure 7). Individuals identified as exhibiting a positive frequency-dependent copiers162

were mainly those whose conformity exponent was larger than one (𝜃𝑖 > 1).163

Figure 4A show the estimated frequencies of different learning strategies. Generally speak-164
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ing, participants were more likely to utilize a positive frequency-dependent copying strategy165

than the other two strategies (the 95% Bayesian CI of the intercept of the GLMM predicting the166

probability to use the positive frequency-dependent copying strategy is above zero, [1.05, 2.50];167

Supplementary Table 4). We found that positive frequency-dependent copying decreased with168

increasing task uncertainty (the 95% Bayesian CI of task uncertainty effect is below zero, [-1.88,169

-0.25]; Supplementary Table 4). We found no clear effects of either the group size, age or gender170

on adoption of the positive frequency-dependent copying strategy, except for the negative inter-171

action effect between age and task uncertainty (the 95% Bayesian CI of the age × uncertainty172

interaction = [-1.46, -0.15]; Supplementary Table 4).173

We also investigated the effects of group size and task uncertainty on the fitted individual174

parameter values. We found that the individual mean social learning weight parameter (i.e. 𝜎𝑖 =175

(
∑

𝑡 𝜎𝑖,𝑡)∕(total rounds)) increased with group size (the 95% Bayesian CI = [0.15, 0.93]; Figure176

4B; Supplementary Table 5), and decreased with uncertainty (the 95% Bayesian CI = [-0.98,177

-0.22]), and age of subject (the 95% Bayesian CI = [-0.36, -0.02]). However, the negative effects178

of task uncertainty and age disappeared when we focused only on 𝜎𝑖 of the positive frequency-179

dependent copying individuals, and only the positive effect of the group size was confirmed180

(Supplementary Table 6; Supplementary Figure 6). It is worth noting that the meaning of the181

social learning weight is different between these three different strategies: The social learning182

weight regulates positive reactions to the majorities’ behaviour for positive frequency-dependent183

copiers, whereas it regulates avoidance of the majority for negative-frequency dependent copiers,184

and determines the probability of random decision-making for the random choice strategists.185

The individual conformity exponent parameter 𝜃𝑖 increased with task uncertainty (the 95%186
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Bayesian CI = [0.38, 1.41]), but we found no significant effects of group size, age, gender or187

interactions (Figure 4C; Supplementary Table 7). These results were qualitatively unchanged188

when we focused only on the positive frequency-dependent copying individuals (Supplementary189

Table 8; Supplementary Figure 6).190

We observed extensive individual variation in social information use. The greater the task’s191

uncertainty, the larger were individual variances in both the mean social learning weight and the192

conformity exponent (the 95% Bayesian CI of the GLMM’s variation parameter for 𝜎𝑖 was [1.11,193

1.62] (Supplementary Table 5) and for 𝜃𝑖 was [1.07, 1.54] (Supplementary Table 7)). This was194

confirmed when focusing only on the positive frequency-dependent copying individuals: The195

Bayesian 95% CIs were [1.14, 1.80] (Supplementary Table 6) and [0.71, 1.10] (Supplementary196

Table 8), respectively.197

The manner in which individual variation in social-information use of positive frequency-198

dependent copying individuals changes over time is visualised in Figure 5. The social learn-199

ing weights generally decreased with experimental round. However, some individuals in the200

Moderate- and the High-uncertain conditions accelerated rather than decreased their reliance on201

social learning over time. Interestingly, those accelerating individuals tended to have a larger202

conformity exponent (Supplementary Figure 5). In addition, the time-dependent 𝜃𝑖,𝑡 in our al-203

ternative model generally increased with experimental round in the Moderate- and the High-204

uncertainty conditions (Supplementary Figure 10), although the fitting of 𝜃𝑖,𝑡 in the alternative205

model was relatively unreliable (Supplementary Figure 9). These findings suggest that con-206

formists tended to use asocial learning at the outset (i.e. exploration asocially) but increasingly207

started to conform as the task proceeded (i.e. exploitation socially).208
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Extensive variation in the temporal dynamics of the social learning weight 𝜎𝑖,𝑡 was also found209

for the negative-frequency dependent copying individuals but not found for random choice indi-210

viduals (Supplementary Figure 5). Individuals deploying a random choice strategy exhibited a211

𝜎𝑖,𝑡 that approached to zero, indicating that their decision-making increasingly relied exclusively212

on the softmax choice rule, rather than unguided random choices, as the task proceeded.213

No significant fixed effects were found in other asocial learning parameters such as the learn-214

ing rate 𝛼𝑖 and the mean inverse temperature 𝛽𝑖 = (
∑

𝑡 𝛽𝑖,𝑡)∕(total rounds) (Supplementary Table215

9, Supplementary Table 10 and Supplementary Figure 6).216

In summary, our experiments on adult humans revealed asymmetric influences of increasing217

task uncertainty and increasing group size on the social learning parameters. The conformity218

exponent increased with task uncertainty on average but the proportion of positive frequency-219

dependent copying individuals showed a corresponding decrease, due to the extensive individual220

variation emerging in the High-uncertain condition. Conversely, group size had a positive effect221

on the mean social learning weight, but did not affect conformity.222

1.4 Social learning strategies explain the collective dynamics223

The post-hoc simulation provides statistical predictions on how likely it is, given the fitted learn-224

ing model parameters, that groups of individuals make accurate decisions and that they exhibit225

inflexible herding. Figure 3C shows the change over time in performance with different group226

sizes and different uncertainty conditions, generated by the post-hoc simulation (see also Sup-227

plementary Figure 3). The trajectories of the simulated dynamics recovered nicely the pattern228

observed in the experiment (Figure 3A and 3C), suggesting that the strategic changes in the229
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individual-level social information use (Figure 4) could explain the collective-level behavioural230

pattern.231

Figure 3D shows that larger groups are more likely to make accurate decisions than are232

both small groups and solitaries in the period prior to change across all uncertainty conditions,233

suggesting collective intelligence was operating. In the post-change period, however, perfor-234

mance differed between the conditions. In the Low-uncertainty condition, where we found that235

the participants were most likely to have a relatively weak positive frequency-dependence (i.e.236

𝜃̄ = 1.65), large groups performed better than did small groups over 59.5% of total 10,000237

repetitions. However, in the Moderate-uncertainty condition, where we found that participants238

were most likely to have strong positive frequency dependence (𝜃̄ = 3.00, c.f. 1.65 in the Low-239

uncertainty condition), the large groups were more likely to get stuck on the suboptimal option,240

and hence the small groups performed better than did the large groups over 69.5% of repetitions241

(Figure 3D). The decision accuracy did not substantially differ with group size in the post-change242

period in the High-uncertainty condition although the large groups performed slightly better than243

did the small groups (50.8% of the repetitions).244

Interestingly, although their relatively low conformity biases, there were some groups in the245

Low-uncertainty condition that seemed to exhibit herding (the ‘humped’ area at the lefthand side246

to the peak of the performance distribution in the post-change period; Figure 3D). This might be247

due to the lower softmax exploration rates among social learners in the Low-uncertainty condition248

(i.e. both 𝜇𝛽∗0 and 𝜇𝜖 were large; Table 2): the whole population gets stuck because all individuals249

are very exploitative on their past experience.250
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2 Discussion251

We investigated whether and how human social learning strategies regulate the trade-off between252

collective intelligence and inflexible herding behaviour using a collective learning-and-decision-253

making task combined with simulation and model fitting. We examined whether manipulat-254

ing the reliability of asocial learning and group size would affect the use of social information,255

and thereby alter the collective human decision dynamics, as suggested by our computational256

model simulation. Although a theoretical study has suggested that reliance on social learning257

and conformity bias would play a role in collective dynamics2;5;53, thus far no empirical studies258

have quantitatively investigated the population-level consequences of these two different social259

learning processes. Our high-resolution, model-based behavioural analysis using a hierarchi-260

cal Bayesian statistics enabled us to identify individual-level patterns and variation of different261

learning parameters and to explore their population-level outcomes. The results provide quanti-262

tative support for our hypothesis that the collective decision performance can be predicted with263

quantitative knowledge of social learning strategies.264

Overall, our individual-based computational model recovered the behavioural pattern sug-265

gested by the phenomenological regression (Figure 3). Using the post-hoc simulation with266

individually-fit model parameters, we confirmed that in the Low-uncertainty condition, where267

individuals had weaker positive frequency bias (i.e. 𝜃̄ ≈ 1.65), larger groups were able to be268

more accurate than smaller groups while retaining flexibility in their decision-making9, although269

their low asocial exploration rates seemed to undermine the potential flexibility. However, in the270

Moderate- and the High-uncertain conditions where individuals had the higher conformity ex-271
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ponent parameters (i.e. 𝜃̄ ≈ 3.0 and 2.7, respectively), larger groups performed better prior to272

environmental change but were vulnerable to getting stuck with an out-dated maladaptive option273

post change. Therefore, the changes in the level of conformity in human individuals34;41 indeed274

incurred a trade-off between the collective intelligence effect and the risk of inflexible herding.275

Although the social learning weight increased with increasing group size, the overall mean276

value was 𝜎𝑖 ≈ 0.3 (Figure 4B; Supplementary Figure 5; Supplementary Figure 6) and it de-277

creased on average as the task proceeded (Figure 5). This implies a weaker social than asocial278

influence on decision-making as reported in several other experimental studies35;54–56 although279

evolutionary models tend to predict heavier reliance on social learning than experimental studies280

report57;58. Thanks to this relatively weak reliance of social learning, the kind of extreme herding281

that would have blindly led a group to any option regardless of its quality, such as the ‘symmetry282

breaking’ known in trail-laying ant collective foraging systems2;5;26, did not occur (Figure 2).283

Individual differences in rates of exploration might also help to mitigate potential herding.284

Although a majority of participants adopted a positive frequency-dependent copying strategy,285

some individuals exhibited negative frequency dependence or random decision-making (Figure286

4A). The random choice strategy was associated with more exploration than the other strate-287

gies, because it led to an almost random choice at a rate 𝜎𝑖, irrespective of the options’ quality.288

Negative-frequency dependent copying individuals could also be highly exploratory. These indi-289

viduals tended to avoid choosing an option upon which other people had converged and would ex-290

plore the other two ‘unpopular’ options. Interestingly, in the High-uncertain condition the mean291

social learning weights of the negative-frequency dependent copying individuals (𝜎𝑖 ≈ 0.5) were292

larger than that of the other two strategies (𝜎𝑖 ≈ 0.1, Supplementary Figure 5), indicating that293
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these individuals engaged in such majority-avoiding exploration relatively frequently. Such a294

high variety in social information use59–62 and exploratory tendencies would prevent individuals295

from converging on a single option, leading to a mitigation of herding but concurrently dimin-296

ishing the decision accuracy in high-uncertainty circumstances (Figure 3).297

A methodological advantage of using computational models to study social learning strate-298

gies is its explicitness of assumptions about the temporal dynamics of behaviour, which enabled299

us to distinguish different learning strategies63–65. For example, very exploitative asocial re-300

inforcement learners (i.e. for whom exploitation parameter 𝛽𝑖,𝑡 is large and the social learning301

weight 𝜎𝑖,𝑡 is nearly zero, as seen in the Low-uncertainty condition) and conformity-biased social302

learners (where the conformity exponent 𝜃𝑖 is large and 𝜎𝑖,𝑡 is positive, as seen in the Moderate-303

uncertain condition) would eventually converge on the same option, resulting in the same final304

behavioural steady state. However, how they explored the environment, as well as how they re-305

acted to the other individuals in the same group, are significantly different and they could produce306

qualitatively different collective temporal dynamics.307

However, our computational model could not fully capture other, potentially more sophisti-308

cated forms of social learning strategies that participants might deploy, which might be a reason309

for the seemingly low rate of social learning observed in the experiment compared to theory57;58.310

Indeed, the post-hoc simulation sometimes failed to recover the observed behavioural trajecto-311

ries. In particular, experimental groups with 𝑛 = 12, 𝑛 = 16, and one group in 𝑛 = 9, in the312

Low-uncertainty condition performed very well, exceeding the 95% CIs of the post-hoc simu-313

lation after the environmental change (Supplementary Figure 3). This indicates that collective314

behaviour in these groups was more flexible than our model predicted. Further empirical studies315
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that consider a wider range of possible social learning strategies, e.g. ‘copy-rapidly-increasing-316

option’ strategy66 or Bayesian updating57;67, are needed to explore computational underpinnings317

of social learning and collective behaviour.318

The Internet-based experimentation allowed us to conduct a real-time interactive behavioural319

task with larger subject pools than a conventional laboratory-based experiment. This enabled us320

not only to quantify the individual-level learning-and-decision processes68 but also to map these321

individual-level processes on to the larger-scale collective behaviour5;15;20. Although there are322

always questions about the validity of participants’ behaviour when recruited via web-based tools,323

we believe that the computational modelling approach coupled with higher statistical power due324

to the large sample size, compensates for any drawbacks. The fact that our learning model could325

approximate the participants’ decision trajectories effectively suggest that most of the participants326

engaged seriously with solving the task. An increasing body of evidence supports the argument327

that web-based behavioural experiments are as reliable as results from the laboratory69;70.328

The diverse effects of social influence on the collective wisdom of a group has been draw-329

ing substantial attention19;21;22;71;72. The bulk of this literature, including many jury models and330

election models45;73, has focused primarily on the static estimation problem, where the ‘truth’ is331

fixed from the outset. However, in reality, there are many situations under which the state of the332

true value is changing over time so that monitoring and tracking the pattern of change is a crucial333

determinant of decision performance74. In such temporally dynamic environments, decision-334

making and learning are coordinated to affect future behavioural outcomes recursively75. Our335

experimental task provides a simple vehicle for exploring collective intelligence in a dynamic336

situation, which encompasses this learning-and-decision-making feedback loop. Potentially, in-337
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tegrating the wisdom of crowds with social learning and collective dynamics research will facil-338

itate the more tractable use of collective intelligence in a temporary changing world.339

In summary, a combination of experimentation and theoretical modelling sheds light on when340

groups of individuals will exhibit the wisdom of the crowds and when inflexible herding. Our341

analysis implies that herding is most likely amongst individuals in large groups exposed to chal-342

lenging tasks. That is because challenging tasks lead to greater uncertainty and thereby elicit343

greater conformist learning amongst individuals, whilst rates of copying increase with group344

size. Difficult tasks, by definition, render identification of the optimal behaviour harder, allow-345

ing groups sometimes to converge on maladaptive outcomes. Conversely, the reduced conformity346

levels of individuals in small groups, and the greater probability that social information would347

be accurate for less-challenging tasks, generated ‘wisdom of the crowd’ effects in most other cir-348

cumstances. Our findings provide clear evidence that the conflict between collective intelligence349

and maladaptive herding can be predicted with knowledge of human social learning strategies.350

3 Material and methods351

3.1 Participants352

The experimental procedure was approved by the Ethics Committee at the University of St An-353

drews (BL10808). A total of 755 subjects (354 females, 377 males, 2 others and 22 unspecified;354

mean age (1 𝑆𝐷.) = 34.33 (10.9)) participated through Amazon’s Mechanical Turk. All partic-355

ipants consented to participation through an online consent form at the beginning of the task.356

We excluded subjects who disconnected to the online task before completing at least the first 30357
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rounds from our computational-model fitting analysis due to unreliability of the model-parameter358

estimation, resulted in 699 subjects (573 subjects entered the group (i.e. 𝑁 ≥ 2) and 126 entered359

the solitary (i.e. 𝑁 = 1) condition). The task was only available for individuals who had greater360

than or equal to 90% HIT approval rate and who accessed from the United States. Although361

no sample-size calculation was performed in advance, our parameter recovery test confirmed362

that the sample size was sufficient for estimation of individual parameters using a hierarchical363

Bayesian method.364

3.2 Design of the experimental manipulations365

The three uncertainty conditions were: Low-uncertainty condition (differences between mean366

payoffs were 1.264), Moderate-uncertainty condition (differences between mean payoffs were367

0.742) and High-uncertainty condition (differences between mean payoffs were 0.3). The mean368

payoff associated with the ‘excellent’ slot in all three conditions was fixed to 3.1 cents (Supple-369

mentary Figure 1). Each task uncertainty condition was randomly assigned for each different HIT370

session, and participants were allowed to participate in one HIT only. Sample size after the data371

exclusion for each uncertainty condition was: 𝑁 = 113 (Low-uncertainty condition), 𝑁 = 132372

(Moderate-Uncertain condition), and 𝑁 = 454 (High-uncertain condition). We assigned more373

sessions to the High-uncertainty condition compared to the other two because we expected that374

larger group sizes would be needed to generate the collective wisdom in noisier environments.375

To manipulate the size of each group, we varied the capacity of the waiting room from 10 to376

30. Because the task was being advertised on the Worker website at AMT for approximately 2377

hours, some participants occasionally arrived after the earlier groups had already started. In that378
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case the participant entered the newly opened waiting room which was open for the next 5 min-379

utes. The number of participants arriving declined with time because newly posted alternative380

HITs were advertised on the top of the task list, which decreased our task’s visibility. This meant381

that a later-starting session tended to begin before reaching maximum room capacity, resulting382

in the smaller group size. Therefore, the actual size differed between groups (Supplementary383

Figure 3, Supplementary Table 1). Data collection and analysis were not performed blind to the384

conditions of the experiments.385

3.3 The multi-player three-armed bandit task386

To study the relationship between social information use and collective behavioural dynamics,387

we focused on a well-established learning-and-decision problem called a ‘multi-armed bandit’388

task, represented here as repeated choices between three slot machines (Supplementary Figure 1,389

Video 1, for detail see Supplementary Method). Participants played the task for 70 rounds. The390

slots paid off money noisily (in the US cents), varying around two different means during the391

first 40 rounds such that there was one ‘good’ slot and two other options giving poorer average392

returns. From the round 41st, however, one of the ‘poor’ slots abruptly increased its mean payoff393

to become ‘excellent’ (i.e. superior to ‘good’). The purpose of this environmental change was394

to observe the effects of maladaptive herding by potentially trapping groups in the out-of-date395

suboptimal (good) slot, as individuals did not know whether or how an environmental change396

would occur. Through making choices and earning a reward from each choice, individuals could397

gradually learn which slot generated the highest rewards.398

In addition to this asocial learning, we provided social information for each member of the399
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group specifying the frequency with which group members chose each slot. All group mem-400

bers played the same task with the same conditions simultaneously, and all individuals had been401

instructed that this was the case, and hence understood that the social information would be in-402

formative.403

Task uncertainty was experimentally manipulated by changing the difference between the404

mean payoffs for the slot machines. In the task with the least uncertainty, the distribution of405

payoffs barely overlapped, whilst in the task with the greatest uncertainty the distribution of406

payoffs overlapped considerably (Supplementary Figure 1).407

3.4 The computational learning-and-decision-making model408

We modelled individual behavioural processes by assuming that individual 𝑖 makes a choice for409

option 𝑚 at round 𝑡, in accordance with the choice-probability 𝑃𝑖,𝑡(𝑚) that is a weighted average410

of social and asocial influences:411

𝑃𝑖,𝑡(𝑚) = 𝜎𝑖,𝑡 × Social influence𝑖,𝑚,𝑡 + (1 − 𝜎𝑖,𝑡) × Asocial influence𝑖,𝑚,𝑡, (1)

where 𝜎𝑖,𝑡 is the social learning weight (0 ≤ 𝜎𝑖,𝑡 ≤ 1).412

For the social influence, we assumed a frequency-dependent copying strategy by which an413

individual copies others’ behaviour in accordance with the distribution of social frequency infor-414

mation49–51;55:415

Social influence𝑖,𝑚,𝑡 =

(
𝐹𝑡−1(𝑚) + 0.1

)𝜃𝑖

∑
𝑘∈𝑜𝑝𝑡𝑖𝑜𝑛𝑠

(
𝐹𝑡−1(𝑘) + 0.1

)𝜃𝑖
, (2)
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where 𝐹𝑡−1(𝑚) is a number of choices made by other individuals (excluding her/his own choice)416

for the option 𝑚 in the preceding round 𝑡 − 1 (𝑡 ≥ 2). 𝜃𝑖 is individual 𝑖’s conformity exponent,417

−∞ ≤ 𝜃𝑖 ≤ +∞. When this exponent is larger than zero, higher social influence is given418

to an option which was chosen by more individuals (i.e. positive frequency bias). When this419

exponent is larger than zero (𝜃𝑖 > 0), higher social influence is afforded to an option chosen420

by more individuals (i.e. positive frequency bias), with conformity bias arising when 𝜃𝑖 > 1,421

such that disproportionally more social influence is given to the most common option28. When422

𝜃𝑖 < 0, on the other hand, higher social influence is afforded to the option that fewest individuals423

chose in the preceding round 𝑡 − 1 (i.e. negative frequency bias). To implement the negative424

frequency dependence, we added a small number 0.1 to 𝐹 so that an option chosen by no one425

(i.e. 𝐹𝑡−1 = 0) could provide the highest social influence when 𝜃𝑖 < 0. Note, there is no social426

influence when 𝜃𝑖 = 0 because in this case the ‘social influence’ favours an uniformly random427

choice, i.e., 𝑆𝑖,𝑡(𝑚) = 𝑓 0
𝑚∕(𝑓

0
1 +𝑓 0

2 +𝑓 0
3 ) = 1∕3, independent of the social frequency distribution.428

Note also that, in the first round 𝑡 = 1, we assumed that the choice is only determined by the429

asocial softmax function because there is no social information available.430

For the asocial influence, we used a standard reinforcement learning with ‘softmax’ choice431

rule75, widely applied in human social learning studies e.g.35;51;55. An individual 𝑖 updates the432

estimated average reward associated with an option 𝑚 at round 𝑡, namely Q-value (𝑄𝑖,𝑡(𝑚)), ac-433

cording to the Rescorla-Wagner rule as follows:434

𝑄𝑖,𝑡+1(𝑚) = 𝑄𝑖,𝑡(𝑚) + 𝛼𝑖1(𝑚,𝑚𝑖,𝑡)
(
𝑟𝑖,𝑡(𝑚) −𝑄𝑖,𝑡(𝑚)

)
, (3)

where 𝛼𝑖 (0 ≤ 𝛼𝑖 ≤ 1) is a learning rate parameter of individual 𝑖 determining the weight given to435
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new experience and 𝑟𝑖,𝑡(𝑚) is the amount of monetary reward obtained from choosing the option436

𝑚 in round 𝑡. 1(𝑚,𝑚𝑖,𝑡) is the binary action-indicator function of individual 𝑖, given by437

1(𝑚,𝑚𝑖,𝑡) =

⎧⎪⎪⎨⎪⎪⎩
1, if 𝑚𝑖,𝑡 = 𝑚 or 𝑡 = 1,

0, otherwise.

(4)

Therefore, 𝑄𝑖,𝑡(𝑚) is updated only when the option 𝑚 was chosen; when the option 𝑚 was not438

chosen, 𝑄𝑖,𝑡(𝑚) is not updated (i.e. 𝑄𝑖,𝑡+1(𝑚) = 𝑄𝑖,𝑡(𝑚)). Note that, only in the first round 𝑡 = 1,439

all Q-values are updated by using the chosen option’s reward 𝑟𝑖,1(𝑚), so that the individual can440

set a naive ‘intuition’ about the magnitude of reward values she/he would expect to earn from a441

choice in the task; namely, 𝑄𝑖,𝑡=2(1) = 𝑄𝑖,𝑡=2(2) = 𝑄𝑖,𝑡=2(3) = 𝛼𝑖𝑟𝑖,𝑡=1(𝑚). In practical terms,442

this prevents the model from being overly sensitive to the first experience. Before the first choice,443

individuals had no prior preference for either option (i.e. 𝑄𝑖,1(1) = 𝑄𝑖,1(2) = 𝑄𝑖,1(3) = 0).444

The Q-value is then translated into the asocial influence through the softmax (or logit choice)445

function:446

𝐴𝑖,𝑡(𝑚) =
exp

(
𝛽𝑖,𝑡𝑄𝑖,𝑡(𝑚)

)
∑

𝑘∈𝑜𝑝𝑡𝑖𝑜𝑛𝑠 exp
(
𝛽𝑖,𝑡𝑄𝑖,𝑡(𝑘)

) , (5)

where 𝛽𝑖,𝑡, called inverse temperature, manipulates individual 𝑖’s sensitivity to the Q-values (in447

other words, controlling the proneness to explore). As 𝛽𝑖,𝑡 goes to zero, asocial influence ap-448

proximates to a random choice (i.e. highly explorative). Conversely, if 𝛽𝑖,𝑡 → +∞, the aso-449

cial influence leads to a deterministic choice in favour of the option with the highest Q-value450

(i.e. highly exploitative). For intermediate values of 𝛽𝑖,𝑡, individual 𝑖 exhibits a balance be-451

tween exploration and exploitation35;68. We allowed for the possibility that the balance between452
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exploration-exploitation could change as the task proceeds. To depict such time dependence in453

exploration, we used the equation: 𝛽𝑖,𝑡 = 𝛽∗𝑖,0 + 𝜖𝑖𝑡∕70. If the slope 𝜖𝑖 is positive (negative), aso-454

cial influence 𝐴𝑖,𝑡 becomes more and more exploitative (explorative) as round 𝑡 increases. For a455

model fitting purpose, the time-dependent term 𝜖𝑖𝑡 is scaled by the total round number 70.456

We allowed that the social learning weight 𝜎𝑖,𝑡 could also change over time as assumed in457

the inverse temperature 𝛽𝑖,𝑡. To let 𝜎𝑖,𝑡 satisfy the constraint 0 ≤ 𝜎𝑖,𝑡 ≤ 1, we used the following458

sigmoidal function:459

𝜎𝑖,𝑡 =
1

1 + exp(−(𝜎∗
𝑖,0 + 𝛿𝑖𝑡∕70))

. (6)

If the slope 𝛿𝑖 is positive (negative), the social influence increases (decreases) over time. We460

set the social learning weight equal to zero when group size is one (i.e. when an individual461

participated in the task alone and/or when
∑

𝑘∈𝑜𝑝𝑡𝑖𝑜𝑛𝑠 𝐹𝑡−1(𝑘) = 0).462

We modelled both the inverse temperature 𝛽𝑖,𝑡 and the social learning weight 𝜎𝑖,𝑡 as a time463

function since otherwise it would be challenging to distinguish different patterns of learning in464

this social learning task63. The parameter recovery test confirmed that we were able to differenti-465

ate such processes under these assumptions (Supplementary Figure 7, Supplementary Figure 8).466

While we also considered the possibility of the conformity exponent being time-dependent (i.e.467

𝜃𝑖,𝑡 = 𝜃∗𝑖,0 + 𝛾𝑖𝑡∕70), the parameter recovery test suggested that the individual slope parameter468

𝛾𝑖 was not reliably recovered (Supplementary Figure 9), and hence we concentrated our anal-469

ysis on the time-independent 𝜃𝑖 model. We confirmed that instead using the alternative model470

where both social learning parameters were time-dependent (i.e. 𝜎𝑖,𝑡 and 𝜃𝑖,𝑡) did not qualitatively471

change our results (Supplementary Figure 10).472
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One concern might be the asymmetry between the asocial softmax influence which takes473

many prior experiences into account (depending upon a learning rate) and the social influence474

referring only the most recent frequency information 𝐹𝑡−1. The choice frequency appeared at475

round 𝑡 is the most reliable social information, compared to the past frequencies, because it could476

be the most ‘updated’ information as long as the other individuals have made informed decisions477

in their best knowledge. In contrast, option’s reward just obtained at 𝑡 − 1, which was inde-478

pendently and randomly drawn from a probability distribution, is less reliable than accumulated479

Q-values taking past rewards into account. Although many other formulations for asocial and480

social learning processes were possible, we believe that our current choice – time-depth asocial481

reinforcement learning with the most-updated-frequency-dependent copying was a reasonable482

first step.483

In summary, the model has six free parameters that were estimated for each individual human484

participant; namely, 𝛼𝑖, 𝛽∗𝑖,0, 𝜖𝑖, 𝜎∗
𝑖,0, 𝛿𝑖, and 𝜃𝑖. To fit the model, we used a hierarchical Bayesian485

method (HBM), estimating the global means (𝜇𝛼, 𝜇𝛽∗0 , 𝜇𝜖, 𝜇𝜎∗0 , 𝜇𝛿, and 𝜇𝜃) and the global vari-486

ations (𝜈𝛼, 𝜈𝛽∗0 , 𝜈𝜖, 𝜈𝜎∗0 , 𝜈𝛿, and 𝜈𝜃) for each of the three experimental conditions (i.e. the Low-,487

Moderate- and High-uncertain condition), which govern overall distributions of individual pa-488

rameter values. It has become recognised that the HBM can provide more robust and reliable489

parameter estimation than conventional maximum likelihood point estimation in complex cog-490

nitive models76, a conclusion with which our parameter recovery test agreed (Supplementary491

Figure 7, Supplementary Figure 8).492
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3.5 Agent-based model simulation493

We ran a series of individual-based model simulations assuming that a group of individuals play494

our three-armed bandit task for 90 rounds (under the Moderate-uncertainty condition) and that in-495

dividuals behave in accordance with the computational learning-and-decision model. We varied496

the group size (𝑛 ∈ {3, 10, 30}), the mean social learning weight (𝜎̄ ∈ {0.01, 0.1, 0.2, 0.3, ..., 0.9})497

and the mean conformity exponent (𝜃̄ ∈ {0.5, 1, 3, 6}), running 10,000 replications for each of498

the possible parameter × group size combinations. As for the other parameter values (e.g. the499

asocial reinforcement learning parameters; 𝛼, 𝛽∗0 , 𝜖), here we used the experimentally fitted global500

means (Table 2 and Supplementary Table 3). Relaxation of this assumption (i.e. using a different501

set of asocial learning parameters) does not qualitatively change our story (Supplementary Fig-502

ure 2). Note that each individual’s parameter values were randomly drawn from the distributions503

centred by the global mean parameter values fixed to each simulation run. Therefore, the actual504

composition of individual parameter values were different between individuals even within the505

same social group.506

3.6 Generalised linear mixed models507

To directly analyse the effects of group size and task uncertainty on the time evolution of decision508

performance, we conducted a statistical analysis using a phenomenological model, namely, a509

hidden Markov process logistic regression without assuming any specific learning-and-decision-510

making processes. The dependent valuable was whether the participant chose the best option (1)511

or not (0). The model includes fixed effects of grouping 𝜉, standardised group size 𝜔, and an512

intercept with a random effect of individuals 𝜇+𝜌𝑖. We assumed that the intercept and the effect513
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of grouping change from round to round, as a random walk process. For the effect of group size514

we considered the effect of the 1st environment 1 ≤ 𝑡 ≤ 40 and that of the 2nd environment,515

namely, 𝜔1 and 𝜔2, separately.516

To examine whether increasing group size and increasing task uncertainty affected individ-517

ual use of the positive frequency-dependent copying strategy, we used a hierarchical Bayesian518

logistic regression model with a random effect of groups. The dependent valuable was whether519

the participant used the positive frequency-dependent copying (1) or not (0). The model includes520

fixed effects of group size (standardised), task uncertainty (0: Low, 0.5: Moderate, 1: High), age521

(standardised), gender (0: male, 1: female, NA: others or unspecified), and possible two-way522

interactions between these fixed effects.523

We also investigated the effects of both group size and the task’s uncertainty on the fitted524

values of the learning parameters. We used a hierarchical Bayesian gaussian regression model525

predicting the individual fitted parameter values. The model includes effects of group size (stan-526

dardised), task uncertainty (0: Low, 0.5: Moderate, 1: High), age (standardised), gender (0:527

male, 1: female, NA: others or unspecified), and two-way interactions between these fixed ef-528

fects. We assumed that the variance of the individual parameter values might be contingent upon529

task uncertainty because we had found in the computational model-fitting result that the fitted530

global variance parameters (i.e. 𝜈𝜎∗0 , 𝜈𝛿 and 𝜈𝜃) were larger in more uncertain conditions (Sup-531

plementary Table 2).532
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3.7 Statistical analysis533

We used a hierarchical Bayesian method (HBM) to estimate the free parameters of our sta-534

tistical models, including both the phenomenological regression model and the computational535

learning-and-decision-making model. The HBM allows us to estimate individual differences,536

while ensures these individual variations are bounded by the group-level global parameters. The537

HBM was performed under Stan 2.16.2 (http://mc-stan.org) in R 3.4.1 (https://www.538

r-project.org) software. The models contained at least 4 parallel chains and we confirmed539

convergence of the MCMC using both the Gelman-Rubin statistics and the effective sample sizes.540

Full details of the model fitting procedure and prior assumptions are shown in the appendix.541

3.7.1 Parameter recovery test542

To check the validity of our model-fitting method, we conducted a ‘parameter recovery test’543

so as to examine how well our model fitting procedure had been able to reveal true individual544

parameter values. To do this, we generated synthetic data by running a simulation with the545

empirically fitted global parameter values, and then re-fitted the model with this synthetic data546

using the same procedure. The parameter recovery test showed that the all true global parameter547

values were fallen into the 95% Bayesian credible interval (Supplementary Figure 7), and at least548

93% of the true individual parameter values were correctly recovered (i.e. 96% of 𝛼𝑖, 93% of 𝛽∗𝑖,0,549

95% of 𝜖𝑖, 97% of 𝜎∗
𝑖,0, 96% of 𝛿𝑖 and 97% of 𝜃𝑖 values were fallen into the 95% Bayesian CI.550

Supplementary Figure 7).551
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3.7.2 Categorisation of individual learning strategies552

Based on the 50% CI of the individual conformity exponent parameter values 𝜃𝑖, we divided553

the participants into the following three different social learning strategies. If her/his 50% CI554

of 𝜃𝑖 fell above zero (𝜃𝑙𝑜𝑤𝑒𝑟 > 0), below zero (𝜃𝑢𝑝𝑝𝑒𝑟 < 0) or including zero (𝜃𝑙𝑜𝑤𝑒𝑟 ≤ 0 ≤555

𝜃𝑢𝑝𝑝𝑒𝑟), she/he was categorised as a ‘positive frequency-dependent copier’, a ‘negative frequency-556

dependent copier’, or a ‘random choice individual’, respectively. We used the 50% Bayesian CI557

to conduct this categorisation instead of using the more conservative 95% CI because the latter558

would cause much higher rates of ‘false negatives’, by which an individual who applied either a559

positive frequency-dependent copying or a negative-frequency dependent copying strategy was560

falsely labelled as an asocial random choice individual (Supplementary Figure 7). Four hundred561

agents out of 572 (≈ 70%) were falsely categorised as a random choice learner in the recovery562

test when we used the 95% criterion (Supplementary Figure 7). On the other hand, the 50%563

CI criterion seemed to be much better in terms of the false negative rate which was only 18.5%564

(i.e. 106 agents), although it might be slightly worse in terms of ‘false positives’: Thirty-seven565

agents (6.5%) were falsely labelled as either a positive frequency-dependent copier or a negative-566

frequency dependent copier by the 50% CI, whereas the false positive rate of the 95% CI was567

only 0.2% (Supplementary Figure 7). To balance the risk of false positives and false negatives,568

we decided to use the 50% CI which seemed to have more strategy detecting power.569

3.7.3 The post-hoc model simulation570

So as to evaluate how accurately our model can generate observed decision pattern in our task571

setting, we ran a series of individual-based model simulation using the fitted individual param-572
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eter values (i.e. means of the individual posterior distributions) for each group size for each573

uncertainty condition. At the first step of the simulation, we assigned a set of fitted parameters574

of a randomly-chosen experimental subject from the same group size and the same uncertain575

condition to an simulated agent, until the number of agents reaches the simulated group size. We576

allowed duplicate choice of experimental subject in this parameter assignment. At the second577

step, we let this synthetic group of agents play the bandit task for 90 rounds. We repeated these578

steps 10,000 times for each group size, task uncertainty.579

3.8 Data availability580

Both experimental and simulation data are available on an online repository (https://github.581

com/WataruToyokawa/ToyokawaWhalenLaland2018).582

3.9 Code availability583

The browser based online task was built by Node.js (https://nodejs.org/en/) and socket.io584

(https://socket.io), and the code are available on a GitHub repository (https://github.585

com/WataruToyokawa/MultiPlayerThreeArmedBanditGame). Analyses were conducted in586

R (https://www.r-project.org) and simulations of individual based models were conducted587

in Mathematica (https://www.wolfram.com), both are available on an online repository (https:588

//github.com/WataruToyokawa/ToyokawaWhalenLaland2018).589
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Figure 1: Findings of the individual-based model showing the effects of social information use on the average

decision accuracy over replications. The x-axis gives the round and y-axis gives the proportion of individuals

expected to choose the optimal slot (i.e. decision accuracy) averaged over all replications. The vertical dashed line

indicates the timing of environmental (i.e. payoff) change (at 𝑡 = 41). Different group sizes are shown by different

styles (black (dotted): 𝑛 = 3, orange (dashed): 𝑛 = 10, red (solid): 𝑛 = 30). We set the average slopes for the social

learning weight to be equal to zero for the sake of simplicity; namely, 𝜇𝛿 = 0. Other free parameter values (i.e. 𝜇𝛼 ,

𝜇𝛽∗0
, 𝜇𝜖 ,𝜈𝛼 , 𝜈𝛽∗0 , 𝜈𝜖 , 𝜈𝜎 , 𝜈𝛿 and 𝜈𝜃) are best approximates to the experimental fitted values (see Table 2 and

Supplementary Table 1).

Figure 2: Results from the individual-based model simulations showing the distribution of each group’s mean

accuracy before environmental change (𝑡 ≤ 40). The x-axis gives the mean decision accuracy over the first 40

rounds (i.e. the environment 1) for each replication. Different group sizes are shown by different styles (black

(dotted): 𝑛 = 3, orange (dashed): 𝑛 = 10, red (solid): 𝑛 = 30). The other free parameter values are the same as in

Figure 1.

Table 1: The mean and the 95% Bayesian credible intervals of the posterior for the group size effect at the

phenomenological logistic model

Low Uncertainty Moderate Uncertainty High Uncertainty

𝜔1 0.08 [-0.15, 0.33] 0.10 [-0.06, 0.26] 0.07 [0.00, 0.15]

𝜔2 0.67 [0.44, 0.91] -0.26 [-0.44, -0.11] -0.10 [-0.17, -0.02]

Note: All 𝑅̂ values are 1.0 and the effective sample sizes are larger than 837.
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Figure 3: Time evolutions and distributions of decision performance for each condition. A: The average

decision accuracies of the experimental participants (red: large groups, orange: small groups, dark grey: lone

individuals). All individual performances were averaged within the same size category (solid lines). The

light-shaded areas, dark-shaded areas, and dashed curves show the 95%, 50%, and median Bayesian credible

intervals of the phenomenological, time-series logistic regression. Sample sizes for large, small, and lone groups

are: 𝑁 = 43, 𝑁 = 44 and 𝑁 = 38 for the Low-uncertainty condition; 𝑁 = 52, 𝑁 = 56 and 𝑁 = 37 for the

Moderate-uncertainty condition; and 𝑁 = 259, 𝑁 = 168 and 𝑁 = 58 for the High-uncertainty condition,

respectively. B: Change in the main effect of the dummy variable of grouping on the decision accuracy at the

phenomenological regression model. The shaded areas are the Bayesian CIs and solid curves are the median. C, D:

Change and distribution in average decision accuracy of the individual-based post-hoc simulations of the learning

process model using the experimentally fit parameter values. C: All replications were averaged within the same size

category (solid lines). The shaded areas give the 50% quantiles. The experimental horizon (i.e. 𝑡 = 70) is indicated

by the vertical line. D: Performance was averaged within prior- and post-change periods for each replication for

each group sizes category.

Figure 4: Model fitting for the three different task’s uncertain conditions (the Low-, Moderate- and

High-uncertainty) and the different group size. Three different learning strategies are shown in different styles

(red-triangle: positive frequency-dependent learning, blue-circle: negative frequency-dependent learning;

grey-circle: nearly random choice strategy). (A) Frequencies of three different learning strategies. Note that a sum

of the frequencies of these three strategies in the same group size does not necessarily equal to 1, because there are a

small number of individuals eliminated from this analysis due to insufficient data. (B) Estimated social learning

weight, and (C) estimated conformity exponent, for each individual shown for each learning strategy. The 50%

Bayesian CIs of the fitted GLMMs are shown by dashed lines and shaded areas. The horizontal lines in (C) show a

region −1 < 𝜃𝑖 < 1. Sample sizes for Negative Frequency Dependent, Positive Frequency Dependent, and Random

Choice strategies are: 𝑁 = 2, 𝑁 = 61 and 𝑁 = 14 for the Low-uncertainty condition; 𝑁 = 3, 𝑁 = 80 and 𝑁 = 15

for the Moderate-uncertainty condition; and 𝑁 = 32, 𝑁 = 260 and 𝑁 = 106 for the High-uncertainty condition,

respectively.
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Figure 5: Change in fitted values (i.e. median of the Bayesian posterior distribution) of the social learning

weight 𝜎𝑖,𝑡 with time for each Positive Frequency Dependent individual, for each level of task uncertainty.

Thick dashed lines are the median values of 𝜎𝑖,𝑡 across the subjects for each uncertainty condition. Individual

conformity exponent values 𝜃𝑖 are shown in different colours (higher 𝜃𝑖 is darker). Sample size for each task

uncertainty condition is: 𝑁 = 61 (Low-uncertainty), 𝑁 = 80 (Moderate-uncertainty) and 𝑁 = 260

(High-uncertainty).

Table 2: The mean and the 95% Bayesian credible intervals of the posterior global means for the parameter values.

The number of participants (𝑁) for each experimental condition are also shown.

Groups Solitary individuals

Uncertainty: Low Moderate High Low Moderate High

𝜇𝛼∗ (learning rate) 0.99 0.90 0.61 0.85 -0.17 0.46

[0.34, 1.73] [0.43, 1.44] [0.21, 1.03] [-0.07, 1.95] [-1.27, 0.89] [-0.39, 1.36]

𝜇𝛽∗0 (inv. temp.) 1.84 1.68 1.38 1.10 1.44 0.85

[1.15, 2.70] [1.25, 2.18] [1.16, 1.62] [0.69, 1.54] [0.80, 2.07] [0.46, 1.22]

𝜇𝜖 (inv. temp.) 3.70 3.01 2.97 2.39 2.81 2.27

[1.98, 5.71] [1.88, 4.27] [2.37, 3.60] [1.46, 3.53] [1.64, 4.07] [1.40, 3.31]

𝜇𝜎∗0 (soc. wight) -1.55 -2.37 -2.16 – – –

[-2.71, -0.71] [-4.12, -1.01] [-2.81, -1.63] – – –

𝜇𝛿 (soc. wight) -1.39 -1.55 -1.87 – – –

[-2.66, -0.03] [-4.29, 0.91] [-3.04, -0.81] – – –

𝜇𝜃 (conformity coeff.) 1.65 3.00 2.67 – – –

[0.83, 2.82] [1.57, 4.85] [1.80, 3.73] – – –

𝑁 77 98 398 36 34 56
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