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The Hermans–Rasson test as a powerful 
alternative to the Rayleigh test for circular 
statistics in biology
Lukas Landler1, Graeme D. Ruxton2 and E. Pascal Malkemper1* 

Abstract 

Background:  Circular data are gathered in diverse fields of science where measured traits are cyclical in nature: 
such as compass directions or times of day. The most common statistical question asked of a sample of circular data 
is whether the data seems to be drawn from a uniform distribution or one that is concentrated around one or more 
preferred directions. The overwhelmingly most-popular test of the null hypothesis of uniformity is the Rayleigh test, 
even though this test is known to have very low power in some circumstances. Here we present simulation studies 
evaluating the performance of tests developed as alternatives to the Rayleigh test.

Results:  The results of our simulations demonstrate that a single test, the Hermans and Rasson test is almost as pow-
erful as the Rayleigh test in unimodal situations (when the Rayleigh test does well) but substantially outperforms the 
Rayleigh test in multimodal situations.

Conclusion:  We recommend researchers switch to routine use of the new Hermans and Rasson test. We also demon-
strate that all available tests have low power to detect departures from uniformity involving more than two concen-
trated regions: we recommend that where researchers suspect such complex departures that they collect substan-
tially-sized samples and apply another recent test due to Pycke that was designed specifically for such complex cases. 
We provide clear textual descriptions of how to implement each of these recommended tests and encode them in R 
functions that we provide.
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Background
In many branches of science, data is collected on scales 
that are cyclical. The two most obvious cases of this relate 
to times and directions. For example, we might collect 
data on the time of day that calls are made to the emer-
gency services, or the occurrence of homicides in relation 
to phases of the moon, or particle counts of water sam-
ples from the surface waters of a lake at different times 
of year. In all these cases there is a cyclical nature to the 
data—we might label December the 12th month, but it is 
intrinsically closer to the 1st month of the next year than 

the 9th month of the current year. Directions can have 
a similar cyclical nature, if we measure for example, the 
directions relative to the shortest path to their loft that 
homing pigeons take after release, or the bond angles of 
molecules during collisions with the walls of a container, 
or the directions relative to true North that resting fish 
adopt. Such data requires different treatment than data 
collected on a linear scale (e.g. lengths or masses). A 
number of texts provide an introduction to the analysis 
of such circular data (so called because you could read-
ily envisage the data points on a scale encapsulated as the 
circumference of a circle): e.g. [1, 3, 7, 9, 12, 14].

The most common question that is asked of a sample 
of such data is whether the data is aggregated into one 
or more “preferred” directions. Within the framework of 
null hypothesis statistical testing, this equates to testing 
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the null hypothesis that the underlying distribution from 
which the sample is drawn is uniformly spread around 
the full circumference of the circle, so that no direction 
is inherently preferred over any other. Although model 
fitting approaches are entirely appropriate (see [4] for 
an excellent overview), null hypothesis statistical testing 
remains the norm amongst those investigating circu-
lar data, and the null hypothesis of uniformity is almost 
always tested in any statistical examination of a sample 
of circular data. Further, it is almost always tested using 
what is called the Rayleigh test (originally due to [16] but 
also defined and discussed in all the general texts listed 
above). There can be good reasons for adopting this test. 
It can be shown (e.g. [18]) to be the optimal test if the 
data is continuously distributed and any departure from 
uniformity takes a von Mises form (a symmetrical, uni-
modal distribution often referred to as the circular ana-
logue of a normal distribution). Further, this test also can 
be demonstrated numerically to perform very reliably 
when deviations are of other unimodal forms [8] or if 
data is discrete (e.g. as might be produced by a measur-
ing instrument with finite precision; [6]). However, this 
test is known to be less reliable when the deviation from 
uniformity is multi-modal, specifically its power to reject 
the null hypothesis when the deviation from uniform-
ity involves more than one mode can be concerningly 
low even for substantial sample sizes [1, 17]. We recently 
demonstrated this for a broad range of multimodal dis-
tributions [8]. This should not be seen as a failing or 
weakness of the Rayleigh test, since it was not originally 
designed to detect deviations other than unimodal von 
Mises ones. In [8], we highlighted a test due to Hermans 
and Rasson [5] that showed considerably more power 
than the Rayleigh test to detect some types of multimodal 
deviations, however we did not explore its performance 
for unimodal distributions. We argued that the power 
gain in multimodal scenarios should encourage more 
widespread uptake of the Hermans–Rasson test. Indeed, 
unless the researcher is certain that only von Mises devi-
ations from uniformity are possible or of interest, they 
might be best served by using this test in preference to 
the Rayleigh test. The test we use in our recent analy-
sis was an improved version (referred to as HR in this 
paper) in comparison to the original proposal (HR∞), 
which Hermans and Rasson [5] themselves and Pycke 
[15] implied as having generally greater power. Here we 
explore the robustness of this advice by comparing the 
Rayleigh, HR∞ and HR tests in further sets of simula-
tions. We also explore whether the HR test is really the 
optimum one to recommend for widespread replacement 
of the Rayleigh test, since this has been subject to rela-
tively little previous examination [5, 8, 15]. Accordingly, 
we compare the performance of these tests with one 

other: Pycke [15] argued that the HR test produced good 
performance for one or two modes but for larger number 
of modes he offered his own test as being more powerful. 
We call this test the Pycke test.

Results
When the underlying distribution from which samples 
were drawn was a uniform distribution then we found 
that all four tests maintained the Type I error rate at 
close to the nominal 5% value for a broad range of sample 
sizes (Fig. 1). The Type I error rate also stays close to the 
expected values when using 1% or 10% significance levels 
(Additional file 1: Figure S1).

Next, we considered the von Mises distribution, a sym-
metric unimodal distribution with a bell shape that often 
is described as the circular equivalent of the normal dis-
tribution (for examples of the different density distribu-
tions see [8], Fig.  2). The Rayleigh test is known to be 
theoretically optimal in this case, and our simulations 
agree with this in demonstrating that it has the high-
est overall power (Fig.  2). The HR and Pycke functions, 
however, have only slightly less power, with the differ-
ence only approaching non-trivial levels for the small-
est sample sizes considered (n = 10). HR∞ is noticeably 
inferior to the other tests (in agreement with previous 
work). We found essentially similar results for an asym-
metric unimodal distribution where the performance 
difference between the Rayleigh, HR and Pycke tests was 
even smaller (the wrapped skew normal distribution: see 
for example [14] for details, Additional file 1: Figure S2). 
Note that while increasing values of κ for the von Mises 
distribution signify increasing concentration around the 
central value, for the wrapped skew normal distribution 
increasing the parameter ω corresponds to increased dis-
persion (i.e. decreasing concentration).

In a multimodal situation with a combination of two 
identical von Mises distributions placed symmetrically 
opposite each other on the circle, the Rayleigh test per-
formed poorly, while all the other tests performed well 
(Fig.  3a). When the two distributions were a quarter 
circle apart, all the tests perform well except for HR∞ 
(Fig.  3b). Analyses of similar situations using wrapped 
skew normal distributions revealed very similar behav-
iour of the different tests (Fig.  3c, d). In all multimodal 
situations, if not stated otherwise, the densities were 
equally distributed between the modes (e.g. 0.5 for each 
mode in a bimodal situation), meaning that concentra-
tion changes affect each mode equally. When the density 
of the two distributions was set to be unequal (0.75, 0.25), 
the overall power of the tests, in particular of the Ray-
leigh test, increased, but the general trends remained the 
same (Additional file 1: Figure S3).
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Fig. 1  Estimated type I error rates for random samples of specified size drawn from a uniform population based on 10,000 replicates in each case. 
The significance level was set to 5%
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Fig. 2  Estimated power for random samples of size a 10, b 20, c 30 or d 60 drawn from a von Mises distribution with a range of concentration 
parameters (κ)
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When we varied the angle between the central con-
centrations of the two constituent identical unimodal 
distributions, from completely coincident (i.e. collapsing 
to the unimodal case) to completely opposite (yielding a 
symmetric bimodal aggregated distribution), we found 
low performance with HR∞ when coinciding and low 
performance of the Rayleigh test in the completely oppo-
site case. The other two tests show good performance 
across the whole range (with HR being superior to Pycke) 
(Fig. 4a, c). It is not surprising that performance is lower 
in general towards the right side of these figure panels. 
For such small sample sizes especially, detecting uni-
modal departures from uniformity is simply less challeng-
ing than detecting multimodal departures where there is 
necessarily a greater spread of sampled values around the 
circle. We observed similar relative performance when 
we varied the concentration of the two constituents in 
making up the aggregated distribution (Fig. 4b, d). Again, 
the results of von Mises distributions (Fig.  4a, b) and 
wrapped skew normal distributions (Fig. 4c, d) follow the 
same general trend. The same trends with overall higher 
power are visible at a larger sample size (n = 60) (Addi-
tional file 1: Figure S4).

We further explored symmetrical multimodal situ-
ations; for either three or four modes and either von 
Mises or wrapped skew normal constituent distributions 
(Fig. 5). Essentially, our results demonstrate that detect-
ing departures from uniformity is very challenging in 
this case even at large sample size (n = 60), with only the 
Pycke test showing useful levels of power and then only 
for the trimodal case when the constituent distributions 
are very concentrated (Fig.  5a). At a small sample size 
(n = 20) power is exceptionally low, and again only the 
Pycke test offers useful power and only when the sam-
ple is tightly concentrated around the modes (Additional 
file 1: Figure S5). Changing the density of one of the dis-
tributions while keeping the others identical (creating 
unequal distributions), increased the overall power, but 
the general trends remained the same (Additional file 1: 
Figure S6).

Discussion
We have previously presented comparison by simulation 
of a more extensive battery of alternative tests for test-
ing the null hypothesis of uniformity of circular data [8]. 
Our simulations here allow us to significantly improve 

a b

c d

Fig. 3  Estimated power of random samples (n = 20) drawn from bimodal distributions von Mises distributions [symmetrical: (a) and asymmetrical: 
(b)] and from bimodal wrapped skew normal distributions [symmetrical: (c) and asymmetrical: (d)], with a range of concentration/dispersion 
parameters. That is, for a the sample is drawn from an underlying distribution made of up two identical von mises distributions with central values 
positioned a half circle away from each other; c is the same but using wrapped skew normal distributions. b Is like a, and d is like c except that the 
two distributions are now only a quarter circle apart
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on the conclusions provided in that work, which were 
mainly based on the analysis of tests that are available in 
statistical software packages (Watson’s test, Kuiper’s test 
and Rao’s spacing test). The Rayleigh test was found to be 
superior to them, hence their omission from the current 
work. In Landler et al. [8] we recommended continuing 
use of the Rayleigh test when unimodal departure from 
uniformity is expected, and the HR test for multimodal 
departures. We evaluated another modern test due 
to Bogdan et al. [2] as an alternative to the HR test but 
found that its performance was generally inferior, hence 
we did not consider it further in this study. However, 
importantly, in our previous work we had not evalu-
ated the power of the HR in  situations with expected 
unimodal departures. Here, we performed that evalu-
ation and demonstrate that the performance of this test 
in detecting unimodal departures is only slightly inferior 
to the Rayleigh test. Further, we had previously not con-
sidered the test due to Pycke [15] which was specifically 
designed for cases with more than two modes. We found 
it to perform better than the other tests in such cases, but 
only in situations with highly concentrated data.

In summary our analyses show that for researchers 
interested in testing for departure from uniformity, the 
HR function represents an unjustly neglected tool. The 
simulations presented here and in Landler et al. [8] high-
light that this test offers as good control of type I error 
as currently-popular methods, combined with power to 
detect a wide range of unimodal and bimodal distribu-
tions that appears to be overall superior to any alternative 
method including the Rayleigh test. Although the Ray-
leigh test can offer slightly superior power for univariate 
departures, the difference in power is never substantial, 
whereas the HR test outcompetes other tests (including 
the Rayleigh test) for bimodal departures and can often 
offer markedly superior power. We could construct no 
unimodal or bimodal distribution for which this test was 
substantially outcompeted by any other. Thus, research-
ers can gain a power advantage by selecting this test 
routinely when they are interested in departures from 
normality that might be unimodal or bimodal.

Although the Rayleigh test is currently by far the most 
popular test, we and others (e.g. [1, 8, 15, 17]) have dem-
onstrated that there are situations where its power is 

a b

c d

Fig. 4  Estimated power of random samples (n = 20) drawn from bimodal distributions. In a, c we vary the central concentration points of the two 
identical constituent distributions (changing from exactly coincident with each other at the left extreme to exactly opposite each other at the 
right). In a the two distributions are von Mises with κ = 3; in c they are wrapped skew normal distributions with ω = 1. In b, d the two constituent 
distributions are at opposite points on the circle but now their concentration parameters differ, one is fixed, the value of the other distribution given 
on the x-axis. In b the two distributions are von Mises with κ = 3 for the fixed value; in d they are wrapped skew normal distributions with ω = 1 for 
the fixed value
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exceptionally low. We can find no analogous unimodal 
or bimodal situations for the HR test—so we believe that 
routine replacement of the Rayleigh test with the HR test 
would benefit the field of statistical analysis of circular 
data.

Our simulations highlight that rejection of non-uni-
formity is very challenging in  situations where the pos-
sible number of modes is greater than two and their 
distribution is unknown. In such situations we recom-
mend that researchers strive to maximise the size of the 
sample they obtain and apply the Pycke test only if their 
underlying knowledge of the system gives them reason 
to think that sample points will be tightly concentrated 
around the modes. In other circumstances, no test offers 
sufficiently useful power to be recommended.

Conclusions
We present simulations that demonstrate the supe-
rior power of the HR and Pycke tests in particular in 
multimodal situations. We provide the R functions for 
the two recommended tests, which now can be eas-
ily implemented. Considering the increasing popular-
ity of R in the research community we believe this tool 
is highly useful for all researchers working with circular 

data. Furthermore, we hope that our analysis also pro-
vides compelling cause for other software developers to 
include these tests in their new software versions and 
library functions. This could lead to the wider uptake of 
such very useful statistical procedures.

Methods
Defining the four different tests that we compare
The Rayleigh test is defined and discussed in all the gen-
eral texts listed above (we recommend [3] for a particu-
larly clear discussion), and readily available in a number 
of circular statistics packages. Here we use the imple-
mentation in the function Rayleigh.test in the R package 
circular.

For the three remaining tests it is difficult to give a con-
cise heuristic motivation for the form of the test statistics, 
although they are grounded in the theory of decompos-
ing the description of any shape using Fourier series. The 
interested and mathematically-confident reader should 
consult Hermans and Rasson [5], Bogdan et al. [2], Pycke 
[15] for full discussions. Further, none of these tests are 
currently available in any software package. However, 
their calculations are numerically intensive but rela-
tively simple to describe. Here we provide mathematical 

a b

c d

Fig. 5  Estimated power of random samples (n = 60) drawn from multimodal Von Mises distributions [3 symmetrical modes: (a) and 4 symmetrical 
modes: (b)] and from multimodal wrapped skew normal distribution [3 symmetrical modes: (d) and 4 symmetrical modes: (d)]
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definitions of each test, and in the additional information 
we encode each of these definitions within R functions 
for data in radians as well as in degrees (see Additional 
file 2).

In each case, the p-value of the test must be obtained 
by simulation. We use the following methodology. First 
the value of a given test statistic is calculated for the 
sample of interest. We then draw a number m (9999) 
of pseudo-samples each of size n (the size of the origi-
nal sample) from a uniform distribution on [0,2π). We 
then calculate the value of the test statistic for each of 
these pseudo-samples. We next calculate the number 
of pseudo-samples that give a test statistic equal to or 
greater in magnitude to that of the original sample, call 
that number Q. Then the p-value of the test is given by 
(Q + 1)/(m + 1). See [11] for a full discussion of the theo-
retical underpinning of this methodology. To fully define 
each test now, we need only describe how to calculate the 
test statistic for any sample.

In each case we assume that we have a sample of size 
n containing values {α1,…,αn} in radian measure in the 
range [0,2π).

For HR∞ test, the test statistic T is described in par-
ticularly clear form by Bodgan et al. [2]:

For HR, the clearest description of the test statistic V is 
given by [15]:

For the Pycke test the test statistic V is given by

General methods
We evaluate the relative performance of the different 
tests by simulation in R, reporting the fraction of 10,000 
samples of fixed size drawn from particular parent pop-
ulations for which the test reported a p-value less than 
0.05. For sample generation we used the rcircmix() func-
tion from the NPCirc package in R (see Additional file 2 
“Section 3” for code to generate the parent populations) 
[13].
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We used our own code (see Additional file 2) for all the 
tests except the Rayleigh test for which we used the func-
tion rayleigh.test in package circular in R [10]. We define 
particular parent populations in the relevant sections of 
“Results” section and relevant figure legends. If not stated 
otherwise the proportion in multimodal distributions 
was equal between all modes. In case of unequal propor-
tions, we used 0.25 and 0.75 for bimodal, 0.6, 0.2 and 0.2 
for trimodal, and 0.4, 0.2, 0.2 and 0.2 for the quadramodal 
case.

In order to calculate the power of a given test we 
drew 10,000 random samples from the distribution of 
interest [either Von Mises or wrapped skew normal 
(skewness = 30)] and applied each of the tests. We then 
calculated statistical power (i.e. proportion of tests with 
p < 0.05). This general approach was used for all the 
simulations.

Additional files

Additional file 1. Additional figures S1–S6. 

Additional file 2. R code.
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HR: Hermans–Rasson test (new version); HR∞: Hermans–Rasson test (original 
version).
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