
Paraphrasing:
Generating Parallel Programs using Refactoring

Christopher Brown1, Kevin Hammond1, Marco Danelutto2,
Peter Kilpatrick3, Holger Schöner4, and Tino Breddin5

1 School of Computer Science, University of St Andrews, Scotland KY16 9SX, UK.
2 Dept. Computer Science, Univ. Pisa, Largo Pontecorvo 3, 56127 PISA, Italy.

3 Sch. Electronics, Electrical Eng. and Comp. Sci., Queen’s University Belfast, UK.
4 Software Competence Centre Hagenberg GmbH, Austria.

5 Erlang Solutions, London. UK.

Email: chrisb@cs.st-andrews.ac.uk, kh@cs.st-andrews.ac.uk,
marcod@di.unipi.it, p.kilpatrick@qub.ac.uk, Holger.Schoener@scch.at

Abstract. Refactoring is the process of changing the structure of a pro-
gram without changing its behaviour. Refactoring has so far only really
been deployed effectively for sequential programs. However, with the in-
creased availability of multicore (and, soon, manycore) systems, refac-
toring can play an important role in helping both expert and non-expert
parallel programmers structure and implement their parallel programs.
This paper describes the design of a new refactoring tool that is aimed at
increasing the programmability of parallel systems. To motivate our de-
sign, we refactor a number of examples in C, C++ and Erlang into good
parallel implementations, using a set of formal pattern rewrite rules.

1 Introduction

Despite Moore’s “law” [?], uniprocessor clock speeds have now stalled. Rather
than using single processors running at ever-higher clock speeds, and drawing
ever-increasing amounts of power, even consumer laptops, tablets and desktops
now have dual-, quad- or hexa-core processors. Haswell, Intel’s next multicore
architecture, will have eight cores by default. Future hardware is likely to have
even more cores, with manycore and perhaps even megacore systems becoming
mainstream. This means that programmers need to start thinking parallel, mov-
ing away from traditional programming models where parallelism is a bolted-on
afterthought towards new models where parallelism is an intrinsic part of the
software development process. One means of developing parallel programs that
is attracting increasing interest is to employ parallel patterns, that is, sets of ba-
sic, predefined building blocks that each model and embed a frequently recurring
pattern of parallel computation. An application is then a composition of these
basic building blocks, that may be specialized by providing (suitably wrapped)
sequential portions of code implementing the business logic of the application.
Examples of such patterns include farms, pipelines, map-reduces, etc. By taking
a pattern-based approach the application programmer can focus on providing
the business code and, having identified a parallel pattern (composition) that is

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by St Andrews Research Repository

https://core.ac.uk/display/224768875?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

suitable for his/her application from a set of available patterns, can then get “for
free” the necessary behind-the-scenes code, such as that for implementing syn-
chronization and communication among the parallel activities. We thus envisage
that an application programmer will begin with a sequential version of his/her
business code and proceed to introduce parallelism by selecting parallel patterns
that are suitable for the application at hand and for the target architecture.
This, of course, requires expertise in pattern usage. It also requires suitable soft-
ware support to facilitate introduction of patterns into the existing (sequential)
code. This paper addresses this latter issue by exploring the use of refactoring
as a means of bringing parallelism to business code via patterns.

1.1 Using Refactoring for Parallelism

Refactoring is the process of changing the internal structure of a program, while
preserving its behaviour. The term refactoring was first introduced by Opdyke in
1992 [?], but the concept goes back to the fold/unfold system proposed by Dar-
lington and Burstall in 1977 [?]. In contrast to general program transformations,
such as generic programming, the key defining aspect of refactoring is its focus
on purely structural changes rather than on changes in program functionality.
Some advantages of refactoring are as follows:

– Refactoring aims to improve software design. Without refactoring, a program
design will naturally decay: as code is changed, it progressively loses its struc-
ture, especially when this is done without fully understanding the original
design. Regular refactoring helps tidy the code and retain its structure.

– Refactoring makes software easier to understand. Refactoring helps improve
readability, and so makes code easier to change. A small amount of time
spent refactoring means that the program better communicates its purpose.

– Refactoring helps the programmer to program more rapidly. Refactoring en-
courages good program design, which allows a development team to better
understand their code. A good design is essential to maintaining rapid, but
correct, software development.

Our refactoring tool will be developed as part of the ParaPhrase project, a
new 3 year EU Framework-7 research project. ParaPhrase will use refactoring
together with high-level design patterns6 to introduce parallelism into sequential
programs. In this paper we outline the design for the ParaPhrase refactoring
tool that will refactor sequential programs written in C/C++ and Erlang to
introduce parallelism, and will also refactor parallel programs in C/C++ and
Erlang into more efficient implementations. By targeting C/C++ and Erlang
we can demonstrate the effectiveness of our approach and its applicability to
different paradigms.

6 A parallel (design) pattern is a natural language description of a problem and of
the associated solution techniques that the parallel programmer may use to solve
that problem; an algorithmic skeleton is a programming entity used to implement a
parallel design pattern. Here, for simplicity, we use the terms interchangeably.

2

Distribute	 Merge	

Worker	 Worker	 Worker	

a* b*

a* a* a*

b*

b*

b*

Fig. 1. A Typical Task Farm Showing a Master Distribute Function and the Workers.

Listing 1 Sequential C Program Showing a Set of Tasks and a Worker Function
Before the Refactoring Process

1 int main(int argc, char ∗argv[]) {
2 compute();
3 }
4 void compute() {
5 int i , task[MAX TASKS];
6 for (i =0; i<MAX TASKS; i++) {
7 task[i] = ... ;

8 payload(task[i]); // set up some ”tasks”

9 }
10 }

The specific technical contributions of this paper are:

1. we show how structured transformation techniques can enhance the pro-
grammability of parallel systems through refactoring;

2. we present a novel design for a new, generic, refactoring system that aims
to transform programs into efficient parallel implementations, exploiting
pattern-based rewrite rules that operate on systems of well-structured soft-
ware components; and,

3. we present a number of new examples showing how refactoring can be used
to aid a programmer in implementing parallelism.

3

Listing 2 Parallel C Program Showing an MPI Farm After the Refactoring
Process

1 #include <mpi.h>
2 int main(int argc, char ∗argv[]) {
3 int np, rank;
4 MPI Init(&argc, &argv);
5 MPI Comm rank(MPI COMM WORLD,&rank);
6 MPI Comm size(MPI COMM WORLD,&np);
7 if (rank == 0) {
8 compute(np−1);
9 } else {

10 worker component();
11 }
12 MPI Finalize();
13 }
14 void compute(int workers) {
15 int i , task[MAX TASKS];
16 for (i =0; i<MAX TASKS; i++) {
17 task[i] = ... ;
18 }
19 for (i =0; i<workers; i++) {
20 MPI Send(&task[i], 1, MPI INT, i+1, i, MPI COMM WORLD);
21 }
22 while (i<MAX TASKS) {
23 MPI Recv(&temp, 1, MPI INT, MPI ANY SOURCE, MPI ANY TAG, MPI COMM WORLD, &status);
24 who = status.MPI SOURCE;
25 tag = status.MPI TAG;
26 result [tag] = temp;
27 MPI Send(&task[i], 1, MPI INT, who, i, MPI COMM WORLD);
28 i ++;
29 }
30 for (i =0; i<workers; i++) {
31 MPI Recv(&temp,1,MPI INT,MPI ANY SOURCE,MPI ANY TAG,MPI COMM WORLD,&status);
32 who = status.MPI SOURCE;
33 tag = status.MPI TAG;
34 result [tag] = temp;
35 MPI Send(&task[i], 1, MPI INT, who, NO MORE TASKS, MPI COMM WORLD);
36 }
37 }
38 int computation(int x) {
39 return (payload(x));
40 }
41 void worker component(){
42 int result , task;
43 MPI Recv(&task, 1, MPI INT, 0, MPI ANY TAG, MPI COMM WORLD, &status);
44 tag = status.MPI TAG;
45 while (tag != NO MORE TASKS) {
46 result = computation(task);
47 MPI Send(&result, 1, MPI INT, 0, tag, MPI COMM WORLD);
48 MPI Recv(&task, 1, MPI INT, 0, MPI ANY TAG, MPI COMM WORLD,&status);
49 tag = status.MPI TAG;
50 }
51 }

4

2 Motivation

To motivate our refactoring design, we explore a simple refactoring example7

that introduces a task farm [?] skeleton in C. A task farm is implemented as a
series of Worker functions which are mapped to processor nodes. Each worker
takes a set of tasks from a master and runs some computation that produces
a result for each task. All results are fed back to the master. This is shown in
Figure 1, where Distribute is the master, the sequence of inputs is shown as a*
and the sequence of results (which may be a different type to the tasks) is shown
as b*. The Merge function merges the results as they are delivered.

The sequential program before the refactoring process is shown in Listing 1.
The program itself is relatively simple: it simply creates some tasks and then
performs a computation for each task. The computation itself is not important
here, so we simply use the dummy function payload. In a real application, this
function would be replaced by some meaningful computation for each task. The
highlighted pieces of code are the parts that are needed as inputs to the refactor-
ing tool. In the listing, the user has highlighted compute to act as the Distribute
function; task[i] to represent the list of Tasks and payload(task[i]); to represent
the Worker function. The refactorer will generate a Merge function, based on
knowledge about C array processing. The user simply has to select these portions
of code in a refactoring editor, and choose the Introduce Task Farm refactoring
from the ParaPhrase refactorer. Preconditions, such as checking for non side-
effecting code in the highlighted components would be done automatically, and
the refactoring would fail if these conditions are not met. The refactored code
is shown in Listing 2, which reveals the significant amount of boilerplate code
that needs to be introduced to set up a task farm, including various low-level
calls to MPI [?]. Most of the new code deals with accumulating the results and
terminating the program. Once a worker processes a task, the result is returned
to the master, and a new task is sent to the worker. When there are no more
tasks, a termination message is sent to the worker. The important thing to note
is that a refactoring tool will automate all of these steps for the programmer. The
programmer can start with their sequential program, choose a task farm refac-
toring and have the refactoring tool produce the parallel version, complete with
all the necessary MPI calls etc. For a complex program, this can be an enormous
saving in effort. Even for a simple program, there is a significant saving in not
needing to understand the detail of the MPI implementation.

In the remainder of this section, we demonstrate the manual steps that are
needed to perform this refactoring by hand. We start with the simple C program
shown in Listing 1. The first step in this refactoring process is to identify the
computation component for the workers. In our example we identify the call to
payload as the computation component and isolate this as a component:

1 int main(...) {
2 ...
3 }
4

7 We use C and a task farm here for their familiarity and relative simplicity.

5

5 void compute() {
6 ...
7 for (i =0; i<MAX TASKS; i++) { // set up some tasks
8 task[i] = ...
9 (void) computation(task[i]);

10 }
11 }
12

13 int computation(int x) {
14 return (payload(x));
15 }

The next stage is to identify the component that will represent the workers of the
task farm. A refactoring tool will introduce this worker component automatically,
by also introducing the MPI calls that send tasks to the workers.

1 int computation(int x);
2

3 int main(int argc, char ∗argv[]) {
4 int np, rank;
5 MPI Status status;
6 MPI Init(&argc, &argv);
7 MPI Comm rank(MPI COMM WORLD, &rank);
8 MPI Comm size(MPI COMM WORLD, &np);
9

10 if (rank == 0)
11 compute(np−1);
12 else
13 worker component();
14

15 MPI Finalize();
16 }
17

18 void compute(int workers) {
19 int i , task[MAX TASKS];
20 MPI Status status;
21 for (i =0; i<MAX TASKS; i++) { // set up some tasks
22 task[i] = ...
23 (void) computation(task[i]);
24 }
25

26 for (i =0; i<workers; i++)
27 MPI Send(&task[i], 1, MPI INT, i+1, i, MPI COMM WORLD);
28 }
29

30 void worker component() {
31 int result , task;
32 MPI Recv(&task, 1, MPI INT, 0, MPI ANY TAG, MPI COMM WORLD, &status);
33 result = computation(task);
34 }

The main function is modified so that the workers are evaluated by separate
MPI tasks. The main MPI task becomes the master (compute). Tasks are sent

6

Listing 3 Sequential Erlang Program Before Task Farm Refactoring

1 −module(taskFarm).
2 −export([run/2]).
3

4 run (Fun, Parameters) −>
5 [Fun (P) || P <− Parameters].

to the workers in a round-robin manner. At this stage the results are not yet
accumulated, and no termination checking has been introduced. This is done in
the final stage of the refactoring, which produces the code in Listing 2. Although
there were only a small number of steps needed to perform this refactoring
by hand, the programmer needs to understand how to implement a task farm
skeleton, including checking for termination, and also needs expert knowledge in
the use of MPI. It would be very easy to make a mistake at any of these steps,
which could make debugging the parallel version very difficult. A refactoring
tool, on the other hand, which automates this for a programmer, can eliminate
potential mistakes and so allow the programmer to focus their effort on program
design, rather than on the intricate details of implementing skeletons.

2.1 Erlang Example

We now show how to refactor an equivalent skeleton implementation of the same
task farm in Erlang. Erlang [?] is a strict, impure, dynamically-typed functional
programming language with support for higher-order functions, pattern match-
ing, concurrency, communication, distribution, fault-tolerance and dynamic code
loading. We begin with a sequential Erlang program, which simply maps a func-
tion Fun over a list, Parameters, as shown in Listing 3. Due to Erlang’s functional
style, functions are higher-order, meaning that they can take functions as argu-
ments and return functions as results. We want to refactor this program into a
task farm skeleton, as shown in Figure 1. The Erlang version is similar to the C
version: we need to identify a number of components that will act as the Workers
and the Master ; a Distribute function is also required to merge the results of
the workers. In Listing 3, the user has highlighted run as the Master component;
Fun as the Worker and Parameters as the list of tasks.

The refactored version is shown in Listing 4. Here the refactoring has intro-
duced a new function, do run that takes three arguments: Fun, the computation
to be performed by each worker; Parameter, the task sent to each worker; and
Origin, the address of the master node on the network. Clearly, do run acts as the
Worker function in the task farm, computing the result by applying the compu-
tation Fun to the task, Parameter, and then sending the result back to the Master.
Erlang uses the (!) primitive to send messages, and the receive primitive to re-
ceive messages. In the refactored example, the Merge function is expressed as the
expression [receive {P, R} −> R end || P <− Procs]. which receives messages from
the workers as they arrive. This list comprehension ensures that the merge only
waits for the same number of results as there were original tasks. This merged
list is then returned as the result of the program. It is also important to stress

7

Listing 4 Parallel Erlang Program After Task Farm Refactoring

1 −module(taskFarm).
2

3 −export([run/2, do run/3]).
4

5 run(Fun, Parameters) −>
6 Procs = [spawn(?MODULE, do run, [Fun, P, self()]) || P <− Parameters],
7 [receive {P, R} −> R end || P <− Procs].
8

9 do run(Fun, Parameter, Origin) −>
10 Result = Fun(Parameter),
11 Origin ! {self (), Result}.

Listing 5 Parallel Erlang Program After a Renaming

1 −module(taskFarm).
2

3 −export([run/2, do run/3]).
4

5 run(Fun, Tasks) −>
6 Procs = [spawn(?MODULE, do run, [Fun, T , self()]) || T <− Tasks],

7 [receive { T , R} −> R end || T <− Procs].
8

9 do run(Fun, Task , Origin) −>
10 Result = Fun(Task),
11 Origin ! {self (), Result}.

that the program in Listing 4 can undergo a further renaming refactoring by
renaming Parameter in do run to Task, P to T, and Parameters in run to Tasks. The
completed code is shown in Listing 5.

3 The Design of the ParaPhrase Refactoring Tool

When constructing a refactoring tool, there are two main activities to consider:
program analysis and program transformation. Program analysis checks whether
certain side-conditions, which are necessary for the refactoring, are met and also
collects any information that is needed during the program transformation phase.
Program transformation performs the actual structural code changes that com-
prise a given refactoring. Both these steps are highly amenable to automation.
The ParaPhrase refactorer will be syntax independent, initially working over
C/C++ and Erlang. This demonstrates the generality of our approach, allowing
patterns and rewrite rules to be expressed in terms of components rather than
low-level language syntax. Targeting Erlang in addition to C/C++ also allows
us to explore the advantages and limitations of both the imperative and func-
tional paradigms, whilst also contributing to both user domains. Figure 2 shows

8

C	 Source	
Code	

Standard	
Parser	

Unified	
AST	

Component	
AST	

Refactoring	
transforma9on	

Printer	
C++	 Source	

Code	

Erlang	
Source	
Code	

AST	

Translator	

Fig. 2. The ParaPhrase Refactorer

Refactorer	
Transforma.on	 Rules	

Refactoring	 Domain	
Specific	 Language	

Low	 Level	 API	

Skeleton	 System	 and	 LIbraries	

Traversal	 Func.ons	

Refactoring	 Behaviour	

U
.lity	

Func.ons	

PaEern	 Rewrite	 Rules	

Fig. 3. The ParaPhrase Refactorer API

the design of the ParaPhrase refactorer, for C,C++ and Erlang. We note a
number of components of the workflow in Figure 2:

1. The source syntax is parsed into a corresponding Abstract Syntax Tree (AST).
Suitable static semantics must also be represented, such as use- and bind-
locations for variables and the types of variables and functions. These static
semantics are vital in order to correctly apply refactorings that make use of
(and transform) the binding structure of a program, for example.

2. The AST is transformed into a unified AST, which must be general enough
to express concepts from different paradigms and languages, yet still offer a
sound representation of each syntax in order to transform and query it.

3. The unified AST is transformed into a component AST which can express the
high level constructs in the program source that are required as arguments to
the parallel patterns. Typically these constructs will be expressed as software
components that might be identified automatically.

4. The component AST is refactored with respect to a set of well-defined trans-
formation rules for the parallel patterns. The output of this refactoring will
often be a modified version of the unified AST.

5. The refactored component AST is “pretty-printed” in the source syntax.
Layout and comments should be preserved where possible, so that the pro-
grammer is presented with a refactored program that preserves their pro-
gramming style and idiom.

The ParaPhrase refactoring tool will be made user-extensible through a num-
ber of layers of API abstractions, as shown in Figure 3. We predict that the
following will be needed to support user-level pattern-based refactorings:

1. Patterns will be expressed in a high level abstract language that will allow
users to write rules to introduce and eliminate patterns, together with their
composition. This pattern language will be void of any syntax information
and will be general enough to express pattern rewrites for all syntaxes. These
rules are described in more detail in Section 3.1.

9

Fig. 4. Map-Reduce pattern (left) and an equivalent Pipeline-Farm pattern (right)

2. A language for expressing refactoring transformations will allow the refac-
torings themselves to be expressed in terms of a general syntax, including
pre- and post-conditions and transformation rules.

3. A refactoring Domain Specific Language (DSL) framework will allow for the
composition of the refactorings to form larger refactorings.

4. A collection of utility functions such as traversal functions for the Abstract
Syntax Trees, retrieval of binding information, mapping an editor selection
onto its Syntax Tree representation, etc.

5. A Skeleton library that the refactored source program can import to access
low-level skeleton implementation details.

6. A concrete interface that will be integrated into a popular editing environ-
ment, such as Emacs or Eclipse.

Since there is already a refactoring tool for Erlang, Wrangler [?], that uses an
expressive Domain Specific Language (DSL) to define refactorings in terms of
their pre-conditions and transformation rules as Erlang macros, when dealing
with Erlang it may be possible to plug our pattern-rewrite rules directly into
the Wrangler DSL rather than using our own generic refactorer.

3.1 Patterns as Rewrite Rules

The ParaPhrase approach is based around the use of parallel patterns to drive
the program transformations in the refactoring tool. Parallel patterns impose a
clear and easily-recognised structure on the forms of parallelism that can be
exploited in an application. As an example, if we use the well-known map-reduce
pattern (Figure 4) to model parallel behaviour, then:

1. the signature of the function used to transform all the data collection items
during the map phase is known;

2. the signature of the function used to “sum up” all the items in the result
collection is known;

3. the data dependencies are known;
4. and it may, perhaps, be known whether the reduce operator is both associa-

tive and commutative.

All this information may be used to refactor the parallel computation in terms
of other parallel patterns. The map-reduce computation could be expressed, for
example, in terms of a pipeline pattern whose stages are:

– a stage splitting the input collection and delivering partitions of the collection
to the next stage (splitter stage, sequential);

10

– a stage modelled after the “embarrassingly parallel” parallel pattern (the
partition map-reduce stage, parallel), processing each partition by:
• first applying the map operator to each partition item;
• then applying the reduce operator to “sum up” all the computed results;
• finally delivering the result to the stream leading to the next stage.

– a stage gathering the results from the partitions and summing them again,
using the reduce operator.

The overall refactoring in this case transforms a composition of map and reduce
patterns into a composition of pipeline and farm (the embarrassingly parallel
pattern on streams) patterns, as shown in Figure 4. For a stream of input collec-
tions, the refactored program may exploit more parallelism (and therefore better
performance). A number of “rewrite rules” can be used once parallel patterns
are identified with all their functional and non-functional parameters. Assuming
we have a pattern palette defined by the following BNF:

Pattern ::= Pipe | Farm | Comp | Map | Reduce | Seq
P ipe ::= pipe(Pattern, Pattern)
Farm ::= farm(Pattern)
Comp ::= comp(Pattern, Pattern)
Map ::= map(Pattern)
Reduce ::= reduce(Pattern)
Seq ::= 〈sequential code wrapping〉

then the rules in Table 1 can be used to apply “parallel” refactoring. All these
rules preserve the “functional” semantics, but not the “parallel” semantics. Both
sides of each rule give the same results, but the computation may involve differ-
ent parallel patterns and therefore different performance. The performance obvi-
ously depends on various parameters, including application-related and target-
architecture related ones. These rules are used de facto by the Pattern Rewrite
Rules box in Figure 3 to drive the refactorer. It is worth pointing out that:

– where all the parallel patterns are directly available as algorithmic skeletons
(e.g. as entries of a skeleton library), the refactoring process may simply
consist of substituting sequences of library calls;

P → farm(P) farm introduction
farm(P) → P farm elimination
pipe(pipe(P1,P2),P3) ≡ pipe(P1,pipe(P2,P3)) pipeline assoc
pipe(map(P1),map(P2)) ≡ map(pipe(P1,P2)) pipe/map distrib
pipe(map(P1),reduce(P2)) → pipe(comp(map(P1),reduce(P2)),reduce(P2))

map reduce promotion
map(P1) ≡ pipe(coll2singleton,farm(P1),singleton2coll)

map/farm equivalence
pipe(P1,P2) → comp(P1,P2) stream par elimination
comp(P1,P2) → pipe(P1,P2) stream par introduction

Table 1. Parallel pattern rewriting rules. The coll2singleton and singleton2coll func-
tions transform a collection into a stream of collection item components and vice versa.

11

WiHj ≈ Vi,j

V1,1 V1,2 V1,n

V2,1 V2,2 V2,n

Vn,1 Vn,2 Vn,n

. . .

W1

W2

Wn

...

H1 H2 Hn· · ·

1 r
1

p

1

r

1 m
V,K,W,H SGD

SGD

. . .

SGD

W,H
V,K

V0,l,K0,l,W0,Hl

V1,l+1,K1,l+1,W
1,Hl+1

V
n−1,l+n−1 ,K

n−1,l+n−1 ,W
n−1 ,H

l+n−1

W1,Hl

W2,Hl+1

W
n
,H

l+
n−

1

iterate with l ←− (l + 1)%n

on convergence:
W,H

Fig. 5. Structure of coarse parallelization approach. By dividing matrix V into blocks,
only parts i and j of matrices W, H, respectively, are used for the approximation of
each block (i, j) of V. n blocks can thus be processed simultaneously with Stochastic
Gradient Descent (SGD) without conflicts of the parameter updates. After some SGD
iterations, the parameters W, H are collected again, and redistributed using a different
set of n non-overlapping blocks of V. As V has n × n different blocks, there are
n iterations of n parallel SGD updates until one sweep through all values in V is
completed (one epoch of an equivalent global SGD). K is a k× 2 matrix containing in
each row the index into V of one of the k known values of V, needed to compute the
SGD iterations.

– even where skeletons are available, the refactoring using the rules above may
require new sequential code to be generated. For example, for the task farm
refactoring above, the worker code for the second stage pipeline requires
some specific code to iterate the map operator over all the elements of the
partition. In most cases (e.g. in the rules of Table 1) the refactoring only
requires changing the (sequence of) calls to the skeleton library.

4 Use Case: Large Scale Matrix Factorization

Matrix factorization for data modeling. Factorization of large matrices is a
method common in applications like recommender systems, and user preference
modeling [?]. An example is a problem setting in which partial data of the ratings
of a large number of persons for a large number of movies are considered [?]. This
problem setting provides a suitable vehicle for parallelization and refactoring, as
the approach and its parallelization are simple enough for presentation here,
while still being of real world significance. In the following development we omit
problem specific sequential code (cf. [?]), and concentrate on the parallelization
and refactoring.

The known and unknown ratings of users for movies are collected in a rating
matrix V with size p×m. The rows correspond to persons, and the columns to
movies. Most of the values in this matrix will be unknown, as usually users rate
only a limited number of movies. An auxiliary k × 2 matrix K is used to keep
track of the known values of V: row (s, t) ∈ K⇔ Vs,t is known.

To obtain estimates for probable ratings of users for movies they have not
rated (or even seen) so far, a factorization of V into the p×r row factor matrix W
and the r×m matrix H is searched, with V ≈WH (for the known entries in V).
Estimate of an unknown rating of person s for movie t is the dot product Ws·H·t.

12

r is the number of factors, and W and H are the factor memberships of the
persons and movies. Factors could correspond to groups of movies and persons,
like action movies and action loving persons, or romantic movies/persons.

The factorization is performed by optimization of a cost function w.r.t. the
learned parameters W, H. The cost function is the mean of some loss over the
known rating values, e.g. the squared difference of the rating estimates to the
real ratings, for all known values (s, t) ∈ K. The optimization is performed by
gradient descent, which iterates epochs (one sweep through all known values) of
learning until convergence of the cost value.

Parallelization Approach. This problem can be parallelized on two levels.
The general approach for a high level parallelization is sketched in Figure 5. The
matrix V is split into blocks, the parameter matrices into stripes. The matrix
factorization can now be performed for each block of V separately, and all blocks
corresponding to independent stripes of W and H can be optimized in parallel.
As blocks of V in the same row or column share parameters and cannot be
optimized in parallel, one epoch of learning needs an additional loop around
these parallel optimizations, until all blocks are optimized once. Afterwards, the
whole process is repeated until convergence of the parameters. The square root
n of the number of blocks n×n of matrix V is the degree of parallelization, and
can be tuned to the number of processing elements, and to the problem size.

A sequential version of this approach, comprising the starting point of the
following refactoring, is shown in the C++-like pseudo code in Listing 6. The de-
tails of functions stochasticGradientDescent, partitionMatrices and randomMatrix are
not important for the high level parallelization, and the implementation is just
sketched. The second level of parallelization can be performed inside the stochas-
tic gradient descent. The computations of stochastic gradient descent are mainly
linear algebra. They are well parallelizable using a data-parallel approach. Para-
Phrase will also provide appropriate patterns, e.g. Map-Reduce, and support
for heterogeneous parallel architectures, such as distributed multicore systems
with GPGPUs on each node. The matrix factorization example could then be
mapped onto such a cluster by distributing the matrix blocks to the available
computation nodes, and parallelizing the stochastic gradient descent on their
respective GPGPUs.

Parallelization by Refactoring. Listing 6 is the starting point of refactoring
for parallelization. We wish to use the Farm pattern to distribute the n parallel
SGD computations. Before the Farm pattern can be applied, the worker func-
tion performing the SGD needs to be wrapped inside a Seq pattern, as other
refactoring rules can only be applied to existing patterns (cf. Section 3.1). This
is achieved by using the refactorer to mark the stochasticGradientDescent function
and wrap it in a Seq pattern. Afterwards, the “P → farm(P)” rewriting rule
can be used, to make the sequential loop parallel. The code which results from
those refactorings is given in Listing 7, with the changes highlighted. Similar
refactorings are also possible to introduce map-reduce parallelism in the linear
algebra operations performed by the stochastic gradient. The convenience of code
rewriting is one advantage of automatic refactoring; in addition, the following
considerations make it a valuable tool for applications such as the one above:

13

Listing 6 Sequential version of matrix factorization

1 (Matrix, Matrix) matrixFactorization(Matrix V, Matrix K, int r, int n) {
2 // initializations . . .
3 List<List<Matrix>> blocksV, filteredK;
4 List<Matrix> rowsW, colsH;
5 // assume that blocksV, . . . are views of parts of V, . . .,
6 // such that updates to rowsW, colsH also update W, H
7 (blocksV, filteredK, rowsW, colsH) = partitionMatrices(n, V, K, W, H);
8 while (!converged(loss, V, K, W, H)) {
9 loss = 0;

10 for (l ∈ {0, . . . , n− 1}) {
11 for (i ∈ {0, . . . , n− 1}) {
12 int j = (l+i) % n;
13 (loss part, rowsW[i], colsH[j]) = stochasticGradientDescent(
14 blocksV[i,j], filteredK[i , j], rowsW[i], colsH[j]);
15 loss += loss part;
16 }
17 }
18 loss /= n;
19 }
20 return (W, H);
21 }
22

23 // Performs one epoch of Stochastic gradient descent, returning loss and new W, H.
24 // An epoch corresponds to one sweep over all (known) elements of the matrix
25 (double, Matrix, Matrix) stochasticGradientDescent(Matrix V, Matrix K,
26 Matrix W, Matrix H) {
27 // . . .
28 }
29

30 // split V, K, W, H into n partitions (n× n for V and K).
31 (List<List<Matrix>>, List<List<Matrix>>, List<Matrix>, List<Matrix>)
32 partitionMatrices(int n, Matrix V, Matrix K, Matrix W, Matrix H) {
33 // . . .
34 // filteredK[i][j] contains all rows u of K, for which K[u] = (s, t) is
35 // an index into block (i, j) of V, recomputed to be the
36 // equivalent index into blocksV[i][j]
37 return (blocksV, filteredK, rowsW, colsH);
38 }

– checks will be performed to determine whether the intended refactoring is
possible, and whether there are conflicts on the new identifiers;

– switches between different kinds of parallel patterns will be easier, facilitating
the optimization of the patterns used for the application and for the available
hardware; and

– guidance might be available regarding an optimal choice of patterns given
non-functional criteria such as run-time considerations.

14

Listing 7 Farm version of matrix factorization

1 (Matrix, Matrix) matrixFactorization(Matrix V, Matrix K, int r, int n) {
2 // . . .
3 (blocksV, filteredK, rowsW, colsH) = partitionMatrices(n, V, K, W, H);

4 Pattern seqSGD = SequentialPattern(stochasticGradientDescent);

5 Pattern farmSGDEpoch = FarmPattern(seqSGD);

6 while (!converged(loss, V, K, W, H)) {
7 loss = 0;
8 for (l ∈ {0, . . . , n− 1}) {
9 for (i ∈ {0, . . . , n− 1}) {

10 int j = (l+i) % n;

11 farmSGDEpoch.execute(blocksV[i,j], filterdK[i,j], rowsW[i], colsH[j]);

12 }
13 List<(double,Matrix,Matrix)> resList = farmSGDEpoch.waitforall();

14 for (i ∈ {0, . . . , n− 1}) {

15 int j = (l+i) % n;

16 loss part = resList[i][0]; rowsW[i] = resList[i][1]; colsH[j] = resList[i][2];

17 loss += loss part;

18 }
19 }
20 loss /= n;
21 }
22 return (W, H);
23 }

Pattern Refactoring. To exploit the ease of refactoring parallel patterns, a
refactoring to use a parallel Map pattern instead of a Farm pattern is now con-
sidered. Such refactoring could be useful for clarifying the program structure, or
it might be more appropriate for a given parallel architecture. Automatic Refac-
toring allows easy switching between such patterns, making it straightforward to
explore the available alternatives and find the optimal one for a given situation.
To apply the Map pattern, the input arguments for the Farm workers have to be
collected in a list, automatized as much as possible by the refactoring, to which
the already existing Seq pattern can then be applied by the Map, as shown in
Listing 8 with refactoring changes highlighted.

Refactoring Analysis. Comparing the three versions of the matrixFactorization

function, it is obvious that large parts are very similar, a prerequisite for auto-
matic refactoring. Still, it is also obvious that refactoring does not mean just a
simple exchange of a FarmPattern by a MapPattern, or similar. Parts of the sur-
rounding code have to be reorganized as well. In this example, the following
issues arise:

15

Listing 8 Map version of matrix factorization

1 (Matrix, Matrix) matrixFactorization(Matrix V, Matrix K, int r, int n) {
2 // . . .
3 (blocksV, filteredK, rowsW, colsH) = partitionMatrices(n, V, K, W, H);
4 Pattern seqSGD = SequentialPattern(stochasticGradientDescent);

5 Pattern mapSGDEpoch = MapPattern(seqSGD);

6 while (!converged(loss, V, K, W, H)) {
7 loss = 0;
8 for (l ∈ {0, . . . , n− 1}) {
9 List<(Matrix,Matrix,Matrix,Matrix)> mapList;

10 for (i ∈ {0, . . . , n− 1}) {
11 int j = (l+i) % n;

12 mapList.append((blocksV[i,j], filteredK[i,j], rowsW[i], colsH[j]));

13 }
14 List<(double,Matrix,Matrix)> resList = mapSGDEpoch.execute(mapList);

15 for (i ∈ {0, . . . , n− 1}) {
16 int j = (l+i) % n;
17 loss part = resList[i][0]; rowsW[i] = resList[i][1]; colsH[j] = resList[i][2];
18 loss += loss part;
19 }
20 }
21 loss /= n;
22 }
23 return (W, H);
24 }

– introducing new variables; e.g. the variables for the pattern instances, but
also those collecting the Farm or Map results;

– handling arguments of the original worker function and its results, e.g. by
wrapping and unwrapping to and from single list items;

– splitting of loops, such that results of several iterations can be collected
outside the loop, while unwrapping the results might necessitate replicating
the loop a second time and repeating parts of the loop (here, “int j =(l+i)%n”
is necessary a second time);

– here, the sequential version already contained the code necessary for split-
ting the four distributed matrices into blocks; it would be desirable, although
maybe not realistic, to also have the refactoring introduce such helper func-
tions as necessary;

– the sequential version has already ensured that the worker function has no
side effects; it might be desirable to introduce refactorings transforming func-
tions (and calls to them) which are not yet side-effect free.

How many of these tasks can be performed automatically, and what other tasks
might be necessary for other use cases, remains to be investigated during the
ParaPhrase project.

16

5 Related Work

Program transformation has a long history, with early work in the field being
described by Partsch and Steinbruggen in 1983 [?] and Mens and Tourwé pro-
ducing an extensive survey of refactoring tools and techniques in 2004 [?]. The
first refactoring tool system was the fold/unfold system of Burstall and Dar-
lington [?] which was intended to transform recursively defined functions. The
overall aim of the fold/unfold system was to help programmers to write correct
programs which are easy to modify. There are six basic transformation rules that
the system is based on: unfolding; folding; instantiation; abstraction; definition
and laws. The advantage of using this methodology was that it deployed a num-
ber of simple, and yet effective, structural program transformations that aimed
to develop more efficient definitions; the disadvantage was that the use of the
fold rule sometimes resulted in non-terminating definitions.

The Haskell Refactorer, HaRe, is a semi-automated refactoring tool for se-
quential Haskell programs, developed at the University of Kent by Thompson,
Li and Brown [?]. HaRe works over the full Haskell 98 standard, and contains
a large catalog of refactorings that concentrate on small structural changes in
sequential Haskell programs, such as renaming, lambda lifting and type-based
refactorings. HaRe was recently extended by us to deal with a limited num-
ber of parallel refactorings. This technique is known as paraforming [?], and
allows Haskell programmers to construct data and task parallelism using small
structural refactoring steps, although it does not use pattern-based rewriting,
as in ParaPhrase. Wrangler [?], also developed at the University of Kent by
Thompson and Li, is similar to HaRe, but works over sequential Erlang instead.
Wrangler also contains a large database of refactorings for Erlang programs
and includes a Domain Specific Language for expressing transformations (to-
gether with their conditions) [?] and a further language for composing refactor-
ings [?]. Unlike our requirements for the ParaPhrase project, Wrangler does
not deal with parallel refactorings in any way. Cocinelle and its DSL frame-
work, SmPL [?], is a program matching and transformation engine for specify-
ing desired matches and transformations in C code. Stratego/XT [?] provides a
language-independent framework for expressing refactorings over arbitrarily de-
fined syntaxes. It may be possible to use Stratego in the context of Paraphrase
for expressing the parallel refactorings.

There has been a limited amount of work on parallel refactoring in gen-
eral, mostly with loop parallelisation in Fortran [?] and Java [?]. However these
approaches are limited to concrete structural changes (such as loop unrolling)
rather than applying high-level pattern-based rewrites. A companion paper con-
tains a much more detailed survey of refactoring tools for parallelisation [?].

Rewriting of structured parallel programs has been studied in different con-
texts. Backus’ Turing award lecture note [?], although not explicitly dealing with
parallel patterns or design patterns, sets up a scenario that allows to “compute”
program transformations using an algebra of programs. In particular, several
transformations related to map and reduce second order functions are already
present in this work. As an example the “pipe/map” rule described in Table 1
was already present in that seminal work described as

αf ◦ αg ≡ α(f ◦ g)

17

with the functional composition operator ◦ representing pipeline, as usual (stream
parallel), and the apply-to-all α representing the map skeleton. More recently
more rewriting rules have been designed for algorithmic skeletons. In [?] a con-
cept of “normal form” for stream parallel skeleton compositions is introduced
that maximizes the service time by applying systematic rewriting of arbitrary
stream parallel skeleton compositions to farms with sequential workers. Other
authors consider usage of different skeleton rewriting rules to target different ar-
chitectures, in particular those including GPUs [?]. The full SkeTo skeleton based
programming framework (see http://sketo.ipl-lab.org/) uses the results
from Bird-Merteens theory [?,?] to optimize data parallel skeleton compositions
[?]. The potential refactoring for C++ code by introducing algorithmic skeletons
has been previously discussed in the context of FastFlow (see http://calvados.
di.unipi.it/dokuwiki/doku.php?id=ffnamespace:about). In particular, in
[?] the refactoring of sequential code to introduce a task farm skeleton is dis-
cussed. Finally, PEPPHER: Performance Portability and Programmability for
Heterogeneous Many-core Architectures [?], is an EU FP7 funded project that
started in January 2010. The aim of PEPPHER is to devise a unified framework
for programming and optimizing applications for a diverse range of architec-
tures such as heterogeneous many-core processes in order to ensure performance
portability. PEPPHER uses direct compilation to the target architectures, so
portability is supported by powerful composition methods with a toolbox of
adaptive algorithms. However, the PEPPHER project does not use refactoring
and pattern rewriting to increase the programmability of parallel systems as we
do here, relying instead on adaptive algorithms and architecture-directed com-
pilation.

6 Conclusions

This paper has described a new design methodology for the ParaPhrase refac-
toring tool, a radically new system that will refactor systems of software com-
ponents into efficient parallel implementations. The tool will refactor programs
written in C, C++ and Erlang (although we also expect to extend our tool to
deal with other languages such as Haskell and Python), by applying high-level
abstract pattern rewrite rules that can either:

– Introduce new patterns into an existing sequential program; or,
– Modify an existing parallel program by changing the pattern already speci-

fied, or introducing a new pattern, therefore composing patterns together.

A companion paper by Hammond et al. [?] gives an overview of the Para-
Phrase project encompassing many key technologies and techniques that we
will employ in addition to refactoring. Among these is the need to identify
means of specifying non-functional properties of systems in such a way that
it becomes possible to verify that a refactoring achieves its intended purpose.
We have demonstrated the effectiveness of having such a refactoring tool by
motivating our design with a number of key examples in C, Erlang and C++,
where we showed that having a refactoring tool can effectively automate the
majority of the boilerplate implementation detail of introducing a new skeleton,

18

such as adding MPI code in C, or adding a master/worker skeleton in Erlang.
This is potentially an enormous saving in effort, allowing the programmer to
focus on designing algorithms rather than worrying about the details of parallel
implementation. We believe this is the correct way to improve substantially the
programmability of such parallel systems. A refactoring tool such as the one de-
scribed here would be a key component in increasing the productivity of parallel
programming in general.

Acknowledgments

This work has been supported by the European Union grants RII3-CT-2005-
026133 SCIEnce: Symbolic Computing Infrastructure in Europe, IST-2010- 248828
ADVANCE: Asynchronous and Dynamic Virtualisation through performance
ANalysis to support Concurrency Engineering, and IST-2011-288570 ParaPhrase:
Parallel Patterns for Adaptive Heterogeneous Multicore Systems, and by the
UK’s Engineering and Physical Sciences Research Council grant EP/G055181/1
HPC-GAP: High Performance Computational Algebra.

19

