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Abstract—Wireless sensor networks empowered with low-cost

sensing devices and wireless communications present an opportu-

nity to enable continuous, fine-grained data collection over a wide

environment. However, the quality of data collected is susceptible

to the hardware conditions and also adversarial external factors

such as high variance in temperature and humidity. Over time,

the sensors report erroneous readings, which deviate from true

readings. To tackle the problem, we propose an efficient self-

monitoring, self-managing and self-adaptive sensing framework

based on a dynamic hybrid Bayesian network that combines

Hidden Markov Model and Dynamic Linear Model. The frame-

work does not only enable automatic on-line inference of true

readings robustly but also monitor the working status of sensor

nodes at the same time, which can uncover important insights

on hardware management. The whole process also benefits from

the derived approximation algorithm and thus supports on-line

one-pass computation with minimum human intervention, which

make the accurate formal inference affordable for distributed

edge processing.

Index Terms—self-management, sensor networks, machine

learning, DLM, Markov switching model, state space model,

hybrid dynamic network

I. INTRODUCTION

Wireless sensor network (WSN) presents an unprecedented

opportunity for many scientific disciplines to explore scientific

questions on a collection of fine-grained, detailed observations.

One of the most critical challenges in WSN is sensor errors;

that is, sensors produce readings that deviate from normal

patterns exhibited by true readings [1]. Sensor errors are a

prevalent problem in deployed WSNs, which can be caused

by malfunction in the sensor hardware, low battery, or en-

vironmental interference. All these sensor errors can degrade

performance of a WSN, affect its monitoring performance,

and result in loss of information fidelity and wrong decision

making.

To make sure that sensor data are trustworthy representa-

tions of the physical process, a range of control decisions

need to be made. For example, from a decentralised self-

management perspective, each node needs to decide an appro-

priate sampling frequency to match the temporal involvement

of the phenomenon and also possibly the energy budget limit.

To make informed decisions, each node needs to form a

sound “understanding” over the physical process. Our previous

work demonstrates the value of Bayesian dynamic linear

model (DLM) in achieving this goal [2]. DLMs essentially

provide such an understanding by making formal probabilistic

inference: posterior probability distributions over the physical

process are recursively updated based on the accumulating

sensor data, which provides the required information for

decision making.

However, understanding the physical process alone is not

enough. Other context information, like the sensor hardware

status, is also important. Sensor nodes are known to be

unreliable and volatile. Depending on the hardware status, such

as low battery or connection failure, sensors often experience

various types of faults. Among them, SHORT, NOISE and

CONSTANT are the most common types of faults observed

across real world deployments [1]. They exhibit distinctive

statistical patterns and provide important insight into further

hardware failure diagnosis. Being able to identify and classify

them therefore is of great importance. At a surface level, sim-

ply filtering the faults can help clean the data, but uncovering

the categories of the faults can be more important, which

may lead to informed decision making on remedy strategies.

For example, transient spike errors probably can be safely

ignored; but a brief period of noisy readings, still providing

some vague information about the physical process, should be

dealt with caution rather than discarded completely; whereas

long-lasting or repetitive constant or noise faults should signal

sensor replacement.

Ideally, the fault monitoring process should be carried out

on-line and on-site; i.e., classify new sensor readings as they

arrive locally at each node. This is challenging for both the

complicated nature of the task and the physical constraints

of the hardware. As the physical process is dynamic and

hidden (the sensors readings are noisy observations rather

than the process itself), there is limited ground truth or

labels for supervised learning techniques. On the other hand,
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unsupervised clustering solutions usually require fixed-sized

times series segmentation for feature extraction, which is

inherently unpopular for on-line inference; and finding the

optimal window size introduces additional difficulty.

To tackle the problem, we extend our previous work on

DLMs and propose a hybrid model that combines the Bayesian

Dynamic Linear Models (DLMs) and Hidden Markov Models

(HMMs); i.e. Hidden Markov Switching Dynamic Linear

Models (HMS-DLMs). The proposed HMS-DLMs, falling into

a general framework of dynamic hybrid Bayesian network [3],

can make inference on both the physical process and other

context information at the same time. The key contributions

are summarised below:

• A model that can infer both the physical process and also

the sensor fault status at the same time;

• A model that can automatically filter out the data faults

without any ad hoc intervention;

• An efficient approximate on-line inference algorithm de-

rived for local processing;

• The one-pass algorithm that requires no storage of train-

ing data;

• The solution that achieves competitive inference results

compared to the state-of-the-art techniques.

In the following, we first present the background on DLMs

and sensor faults in Section III. The proposed model and

approximate inference is then presented in Section IV. We

evaluate the method and present the results in Section V.

Section VI concludes the paper with discussion and points

to future work.

II. RELATED WORK

Researchers have looked into automatic detection and man-

agement of sensor errors. The most common approach is to

use neighbouring sensors’ values, from which their spatial and

temporal correlations are explored and then used to predict the

ground truth values to detect and measure sensor errors [4],

[5], [6]. Miluzzo et al. [7] have designed a semi-blind approach

to calibrate sensors with the aid of infrequent true readings

from high-fidelity sources; e.g., a calibrated sensor. Kumar

et al. have used kriging to correlate readings from sensors

deployed at different locations [5].

Hybrid dynamic bayesian networks have been widely used

in many disciplines from econometrics to machine learn-

ing [8], [9], [10], [11]. Recently, a more flexible non-

parametric Bayesian framework that builds on hierarchical

dirichlet process is put forward to solve the hidden space

size problem [12], where the hidden states are adapted to the

dynamics of the data. Most of these existing solutions rely on

off-line learning procedures, like EM based procedure or sam-

pling techniques, to train the model. Approximate inference

and learning algorithms have also been extensively studied,

assumed density filtering [13], [14], sequential sampling [15],

[16] and MCMC [17] are popular candidates.

III. BACKGROUND

A. Bayesian dynamic linear model

A dynamic linear model is formed by a hidden Markov

process {θt} and a data generation process {yt}. θt evolves

over time based on its previous state θt−1 but subject to some

random turbulence; while yt is a noisy observation of θt.

A probabilistic graphical model representation (PGR) of the

DLM is listed in Fig. 1. Formally, a DLM can be defined as

follows.

Definition 1 (Dynamic Linear Model).

yt = F tθt + vt, vt ∼ N (µt, σ
2); (1a)

θt = Gtθt−1 +wt, wt ∼ N (0,W tσ
2), (1b)

together with a prior for θ0 ∼ N (m0,C0); where Gt and

F t are fixed matrices, N (·, ·) denotes a Gaussian distribution.

A DLM model matches the sensor context well. The hidden

process can be viewed as the physical process under moni-

toring, say temperature, while {yt} are the sensor readings.

To be more specific, by setting F t = F = [1, 0, . . . , 0]′,

µt = 0 and Gt as a p × p Jordan form matrix with 1 on

both diagonal and super diagonal entries, the physical process

essentially models an evolving p-order polynomial function of

time t and yt is an unbiased observation of the function [18].

By calculus, the model translates to assuming the physical

signal is evolving contentiously and smoothly over time 1. In

practice, the first and second order models are adequate, i.e.

p = 1, 2. For example, when p = 1, F = G = 1 and µt = 0,

the physical process is assumed as an evolving constant model

and yt is a sample subject to some sampling noise vt.

The online inference task is to find P (θt|y1:t), the distribu-

tion of the signal given data up to t; where y1:t , {y1 . . . yt}.

If both σ2 and W t are known, the inference can be carried out

by a Kalman Filter [18]. On the other hand, an online one-pass

Bayesian inference can be derived when σ2 is unknown and

W t is specified by a discount factor δ ∈ (0, 1] [2], [18]. The

inference is on both σ2 and θt together, i.e. P (θt, φ|y1:t),

where φ , 1/σ2 is the sensing precision. The algorithm is

summarised here.

1) Online discount factor learning for a DLM: Assume a

conjugate Gaussian Gamma prior for θ0, φ at t = 0:

P (θ0, φ) = N (m0,C0φ)G(n0, s0) , NG(m0,C0, n0, s0)

with m0,C0, n0, s0 as initial parameters; the recursive update

procedure is: for t > 0,

P (θt, φ|y1:t) = NG(mt,Ct, nt, st) (2)

1By Taylor’s expansion, a continuous and differentiable function f(t) can

be locally approximated arbitrarily well by polynomials.



with

mt = Gtmt−1 +Ktet, nt = nt−1 + 1/2,

Ct = δ−1
GtCt−1G

′

t −KtK
′

tQt, st = st−1 + e2t/2Qt

where Kt = RtF
′

t/Qt, et = yt − ft, ft = F tGtmt−1,

Qt = F tRtF
′

t + 1, and Rt = δ−1
GtCt−1G

′

t. It can be

shown the one step ahead forecasting distribution is a student

T distribution: P (y|y1:t−1) = T2nt−1
(ft, Qtst−1/nt−1) [18].

B. Sensor data faults

Sensor data faults are frequently observed in real deploy-

ments. Among them, the most common ones are SHORT,

NOISE and CONSTANT [1], [19]. The fault types can also

provide insights into the hardware status [1]. For example,

the NOISE fault is usually associated with low batteries. The

definitions of the three faults are listed below.

• SHORT: A sharp momentary jump between normal read-

ings, hardware failures like fault in the analog-to-digital

convert board can be associated with this fault;

• NOISE: Sensor readings exhibit large unexpected varia-

tion for a period of time and low batteries can lead to

this fault;

• CONSTANT: Also known as “stuck at” faults. Sensor

readings remain constant for a period of time, and the

reported value can be out of the possible range of the

normal readings and uncorrelated to the physical process.

θ0 θ1 θ2 θ3 θ4

Y1 Y2 Y3 Y4

Fig. 1. Probabilistic graphical model representation (PGR) of DLMs for

sensing, where the following notational convention is adopted: square nodes

are observed data, and circular nodes represent hidden random variables.

θ0 θ1 θ2 θ3 θ4

S1 S2 S3 S4

Y1 Y2 Y3 Y4

Fig. 2. PGR of Mixture-DLMs for sensing; where the sensor statuses St are

independent.

IV. THE PROPOSED MODEL

In this section, we give a comprehensive treatment of the

proposed solution. We first (in Section IV-A) discuss the limit

of the singular DLMs model, which motivates the extended

hybrid HMS-DLMs model introduced next. In Section IV-B,

we give the specification of the proposed model; the online

inference algorithm is presented in Section IV-C.

θ0 θ1 θ2 θ3 θ4

S1 S2 S3 S4

Y1 Y2 Y3 Y4

Fig. 3. PGR of HMS-DLMs for sensing; where the sensor statuses St are

serially dependent.

A. Motivation and overview

Singular DLMs can successfully model a continuously

evolving physical process and “normal” functioning sensing

model. However, it is not enough to accommodate the rich

dynamics induced by the hidden sensor status. A natural

choice is to include an extra layer of sensing status on top

of the DLM model. To be more specific, to model the sensor

status, we introduce hidden process {St, t > 0}, where each

St = k ∈ {1, 2, . . . ,K} is a discrete random variable indicat-

ing a particular status of the sensor at time t: for example, a

normal state or abnormal states that generate SHORT, NOISE

and so on.

A simple probabilistic model for categorical random vari-

ables is the multinomial distribution: assume St ∼ Multi(π)

for all t, where π is a probability distribution over 1 . . .K;

the model assumes all St are independent draws from one

multinomial distribution and P (St = k) = πk. However, this

assumption ignores the possible serial correlations between St.

When the current sensing status is NORMAL, it is reasonable

to assume it might stay NORMAL at the next step; and such

transitions should be different depending on the current St and

possibly its previous history. In light of this, we model St as

a 1st-order Markov chain: i.e. P (St|S1:t−1) = P (St|St−1 =

k) = πk. The associated transition matrix is written as

Γ = [π′

1, . . . ,π
′

K ]′, where P (St = j|St−1 = i) = Γij for

i, j ∈ {1 . . . ,K}. The formal definition of this hybrid model

can be written as follows.

Definition 2. A K state Hybrid DLM model is:

yt = F
[St]
t θt + v

[St]
t , v

[St]
t ∼ N (µ

[St]
t , σ2[St]

); (3a)

θt = G
[St]
t θt−1 +w

[St]
t . w

[St]
t ∼ N (0,W

[St]
t σ2[St]

), (3b)

where St ∈ 1 . . .K is a discrete valued stochastic process.

For the Markovian case of St, the model is named as Hidden

Markov Switching DLMs (HMS-DLMs). And for the constant

multinomial case, the model actually degenerates to a mixture

of DLMs, denoted as M-DLMs thereafter. The probabilistic

graphical representations (PGR) of the two models are listed

in Fig. 2 and 3 respectively. Note their differences over the

singular DLMs in Fig. 1 and the different specifications over

St between them.



B. Proposed HMS-DLMs model for sensor

In this section, we give detailed description on the proposed

HMS-DLMs for sensor nodes. We first discuss the component

DLMs individually; and then the transition distribution on St.

1) A four states DLMs for sensor: Based on the fault cate-

gories, we propose a four state HMS-DLMs to model sensor’s

behaviours comprehensively. They are NORMAL, SHORT,

NOISE and CONSTANT, corresponding to the named working

status of a sensor. Extensions to accommodate more states,

say expanding NOISE into LOW NOISE and HIGH NOISE,

is also straightforward. The proposed model is an observation

switching HMS-DLMs, in which the process model, defined

in (3b), is assumed to be the same among the four regimes

but the process for yt differs. This assumption matches the

problem context: the physical process is always a smoothly

evolving function irrespective of how sensors measure it. As

some of the four models are not standard DLMs; for example,

non-Gaussian noises are used to model outlier, we also find

their approximate DLM representations such that the standard

inference procedure can still be applied 2.

a) NORMAL: We model the normal state as the DLM

introduced in Section III-A, i.e. F t = F = [1, 0, . . . , 0]′p×1,

µt = 0, p ∈ {1, 2} and Gt as a p × p Jordan form matrix

with unit entries on the diagonal and upper diagonal entries.

To achieve efficient online inference over (σ2,θt), W t is

specified by a discount factor δ ∈ (0, 1], the same procedure

used in our previous work [2] (see Section III-A for details).

This process model is shared by the following three regimes.

b) SHORT: A SHORT fault is modelled as a transient

error which does not correlate with the signal [1], therefore

we use the following sensing model:

yt = F 0θt + vt, vt ∼ U(L,U), (4)

where F 0 = [0]′p×1 vector, and U denotes a uniform distri-

bution with the range [L,U ]. The zero linear transformation

implies the observation is independent of the signal.

The model assumes the reading is a random draw over the

sensing range. Note that L and U can either be set by checking

the sensor’s hardware specification or learnt by data; and the

estimation procedure is

L = min(L0, y1:t), U = max(U0, y1:t),

where L0 and U0 are some initial guess of the range. It is easy

to show that the procedure finds the maximum a posteriori

(MAP) estimate of a uniform distribution.

This model can be cast into a standard DLM as:

yt = F 0θt + vt, vt ∼ N (0, VS), (5)

2It is not strictly necessary but convenient to derive the general inference

algorithm.

where we approximate the uniform distribution by a Gaus-

sian. One can minimise the Kullack-Leibler (KL) divergence

between the two distributions to find the optimal VS :

VS = argmin
VS

DKL(N (0, VS)||U(L,U))

which leads to the following approximation:

VS =
1

3
(U2 + UL+ L2).

c) NOISE: NOISE is similar to the NORMAL state

except it samples with a larger noise:

yt = Fθt + vt, vt ∼ N (0, VNσ2) (6)

where we have introduced a parameter VN ≫ 1 to denote

the larger noise. A value between [5, 10] is a good choice.

Note that depending on the application, the user can introduce

more than one noise model to accommodate various scales of

noises, say VLN = 5 and VHN = 10, which extends to a 5 state

model.

d) CONSTANT: We model CONSTANT as follows:

yt = F 0θt + yt−1 + vt, vt ∼ δ0(·) (7)

where δ0(·) is a Dirac delta function on zero, which means a

noise free observation of the previous reading yt−1. Note that

in practice, this model can be cast into a DLM as:

yt = F 0θt + vt, vt ∼ N (yt−1, Vc),

where µt = yt−1 and Vc = ǫ is some very small value. It is

easy to show the two distributions converge as Vc → 0.

2) Transition matrix specification: In this section, we ex-

plain how the transition matrix Γ can be set by exploiting the

sensor faults’ properties. We explain each state based transition

probability individually and the full transition matrix is given

at the end.

a) SHORT: To model the transient behaviour, the self-

transition probability Γii is set to a small value, where i =

SHORT. The transition vector is set as follows Γii = pǫ,

the rest three states equally share the rest probability mass

Γij = 1/3(1 − ps) for i 6= j. In practice, pǫ = .0001 is

used 3. The equal sharing of the exit probability represents

our ignorance over its transition preference.

b) CONSTANT (CONS.): To model the temporal correla-

tion of CONS., i.e. a sensor might “stuck” for a while, we set

the self transition probability to a large value: Γii = ps where

i = CONS. and ps ≥ 0.8. We find any value in the range

(0.8, 0.95) for ps works well. The rest three states equally

share the rest probability mass Γij = 1/3(1− ps) for i 6= j.

3pǫ is not set as zero for numerical stability



c) NORMAL and NOISE: For NOISE and NORMAL,

according to their definitions [1], they both exhibit strong serial

correlations; i.e., a sensor is working fine (or reporting noisy

readings) at time t, it is more likely to work properly (or stay

noisy) at the next time step. Like the CONS. model, the self-

transition probability is set to a large value: Γii = ps where

i = NORMAL or NOISE to reflect this behaviour.

The transition probability to CONS. from NORMAL or

NOISE needs some explanation. Note that according to

CONS.’s definition, it is essentially a SHORT error (or a jump)

followed by a period of “stuck at” readings at that specific

erroneous value. In other words, the previous stuck at value

yt−1 can only be generated from a SHORT state but not the

other two. In light of this, the transition probability to CONS.

is set as zero, i.e. Γij = pǫ for j = CONS.. The transition

probabilities to the other states share the rest probability mass:

Γij = 1/2(1− ps − pǫ) for j /∈ {i, CONS.}.

d) Transition matrix: The full transition matrix Γ is

listed in (8). Note that the only parameter left to be specified is

the self-transition probability ps and the matrix can be viewed

as a function of ps (pǫ is introduced for stability reasons,

therefore can be safely set as a small value).

Γ =











NR SH NS CN

NR ps
(1−ps−pǫ)

2
(1−ps−pǫ)

2 pǫ
SH 1−pǫ

3 pǫ
1−pǫ

3
1−pǫ

3

NS
(1−ps−pǫ)

2
(1−ps−pǫ)

2 ps pǫ
CN 1−pǫ

3
1−pǫ

3
1−pǫ

3 ps











(8)

This method greatly relieves human input and the further

optimization procedure. For example, one can update ps based

on the inference results on St, which is similar to the E step

procedure of an EM algorithm. Note that a full analysis of the

matrix involves K ×K parameters, and it can only be done

either by a heavy iterative optimization algorithm or sampling

algorithm [17]. Such a procedure also requires storage of the

full dataset for off-line learning, which invalidates our on-line

inference requirement.

C. Approximate on-line inference

In this section, we discuss how the inference on the given

HMS-DLMs is done. We first give the problem statement

of the inference task; then an approximate on-line one-pass

inference algorithm is derived and presented.

1) Inference task: When a HMS-DLMs is specified, the

unknown parameters of interests are: the hidden physical

process signal θ1:t, the sensor status S1:t, and sensor noise

for the NORMAL state σ2 or precision φ. From an on-line

inference perspective, the task is to calculate the contemporary

posterior over the unknowns given sensor data up to t:

P (θt, St, φ|y1:t), for t > 0, (9)

based on its previous result P (θt−1, St−1, φ|y1:t−1). Compar-

ing with singular DLMs (see Section III-A), we have to make

additional inference on St.

Unfortunately, this problem has been shown to be NP-

hard [20]. To see this, note that a HMS-DLMs with known

hidden statues trace S1:t is a standard DLM (with switching

parameters: Ft = F [St], vt = V [St] . . . and so on): therefore

the on-line algorithm in Section III-A can be used to make

exact inference for this case: P (θt, φ|y1:t, S1:t). However,

unconditionally, by probability theory, the inference becomes

P (θt, φ|y1:t) =
∑

S1:t

P (θt, φ|S1:t, y1:t)P (S1:t|y1:t).

The posterior distribution can be considered as a mixture with

Kt components. And the difficulty originates from the expo-

nentially growing size of S1:t, at a scale of K×. . .×K = Kt.

2) Online inference algorithm: Approximate inference al-

gorithms therefore have been widely studied. We employ

a technique called Assumed Density Filter (ADF) here to

achieve efficient inference [21], [14], [13]. Intuitively, this

algorithm works by approximating the large Kt mixture as a

fix-sized, say Kh mixtures (h = 1, 2 is usually good enough).

The model essentially assumes θt, φ only depends on the past

h steps’ history rather than the whole trace S1:t:

P (θt, φ|y1:t) ≈
∑

St−h:t

P (θt, φ|St−h:t, y1:t)P (St−h:t|y1:t).

The difference of our algorithm lies in integrating discount

factor learning into the framework to facilitate on-line infer-

ence on φ at the same time.

In an overview, the derived algorithm consists of three steps:

it first expands and updates the posterior belief on θ
St−1

t given

yt, which leads to a K×K hypothesis conditional on St−1, St;

the algorithm then updates the posterior on St, St−1 given yt;

the last step is a collapsing step which reduces the model

size from K × K to K (the collapsing step is based on

minimising the KL divergence between the K mixture and the

collapsed singular distribution [18]), making the model ready

to be expanded again when a new observation arrives, which

repeats the first step. Note that for notational convenience, we

write the four states NORMAL, SHORT, NOISE, CONS. as

1, 2, 3, 4 respectively. The algorithm is summarised below.

Step 0 initialisation: at t = 0, assume prior distributions on

θ
i
0 for each S0 = i 6= 1:

P (θi
0) = N (mi

0,C
i
0),

and a Gaussian Gamma prior for S0 = i = 1 on (θi
0, φ):

P (θi
0, φ) = NG(mi

0,C
i
0, n0, s0);

and a prior distribution on S0: P (S0 = i) for i = 1 . . .K.

For t > 1, repeat the following steps



Step 1 (update on θ
i
t) For each St−1 = i, St = j pair,

where i, j = 1 . . .K Update the posterior mean and

variance on θ
(ij)
t :

m
(ij)
t = a

(ij)
t +K

(ij)
t e

(ij)
t ,

C
(ij)
t = R

(ij)
t −K

(ij)
t K

(ij)
t

′

Q
(ij)
t ,

where

a
(ij)
t = Gtm

i
t−1, R

(ij)
t = δ−1

GtC
i
t−1G

′

t,

f
(ij)
t = µ

[j]
t F

[j]
t a

(ij)
t , Q

(ij)
t = F

[j]
t R

(ij)
t F

[j]
t

′

+ V
[j]
t

K
(ij)
t = R

ij
t F

[j]
t

′

/Q
(ij)
t , e

(ij)
t = yt − f

(ij)
t .

If j = 1, update the posterior on φ:

nt = nt−1 + 1/2, s
(i)
t = st−1 +

(

e
(i1)
t

)2

/2Q
(i1)
t .

Step 2 (update on St) For each St−1 = i, St = j, i, j =

1 . . .K, update

P (St|y1:t) =
∑

st−1=1:K

P (St, St−1|y1:t) (10)

P (St−1|y1:t) =
∑

st=1:K

P (St, St−1|y1:t), (11)

where

P (St, St−1|y1:t) ∝ P (St, St−1|y1:t−1)·

fj(yt|f
(ij)
t , Q

(ij)
t , nt−1, st−1);

P (St, St−1|y1:t−1) = ΓijP (St−1|y1:t−1)

and fj is the likelihood associated with each state j.

For j = 1, 3, fj are Student T distributions:

T2nt−1
(f

(ij)
t , Q

(ij)
t st−1/nt−1);

For j = 2, 4, fj are Gaussians: N (f
(ij)
t , Q

(ij)
t ).

Step 3 (collapse) For each j = 1, . . . ,K calculate the col-

lapsed posterior mean and variance of θ
j
t :

m
j
t =

K
∑

i=1

pijm
(ij)
t

C
j
t =

K
∑

i=1

pij(C
(ij)
t + (m

(ij)
t −m

j
t )(m

(ij)
t −m

j
t )

′)

(12)

Collapse on φ: st =
(

∑K
i=1 pij/s

(i)
t

)

−1

, where

pij = P (St−1 = i|St = j, y1:t)

=
P (St = i, St−1 = j|y1:t)

P (St = j|y1:t)

Repeat to step 1 when a new data sample is observed.

A few observations can be made from the algorithm.

• The inference result on the sensor state St is summarised

in

P (St|y1:t) as defined in (10);

note that

P (St−1|y1:t) as defined in (11)

provides an alternative one step smoothed estimation

which is a by-product of our h step approximation. The

smoothed distribution is supposed to perform better than

the filtered distribution as it includes one more sensor

observation. See V-C2 for some empirical comparisons.

• The inference on the physical process θt is summarised

as

P (θt|y1:t) =
K
∑

j=1

P (St = j|y1:t)N (mj
t ,C

j
t ), (13)

a mixture of K Gaussians. An intuitive explanation is:

the distribution weights each hypothesis of the four states

to give a final result. The mean and variance of this

mixture distribution can be found in the same way as

the collapsing step (12) if summary statistics are needed.

• The inference is completely on-line which requires no

storage of historic sensor data and it scales at O(Kh×T )

in time complexity; for a finite K (4 in our case) and

h = 2, the complexity is linear.

3) Learning on discount factor δ: The discount factor

δ ∈ (0, 1] dictates how the physical process θt evolves.

According to the conjugate learning algorithm listed in III-A, it

quantifies the evolution noise by W t = (1− δ)/δGtCt−1G
′

t.

Therefore, it essentially provides a signal-noise-ratio decom-

position between W t and σ2, which can greatly affect the

inference result. To see this, when δ → 1, θt degenerates

to a constant vector, and most of the variance of yt will be

explained by the sensor noise σ2; and the opposite applies

when δ → 0.

To resolve this problem, we introduce an initialisation step

on δ based on the first batch of samples. In practice, it can

either be historic data or some initial samples at the beginning

of the deployment.

The idea is to find the best δ that explains the observed

data, and we adopt a Bayesian inference procedure to find the

best δ. Given a finite choices on δ ∈ {δd, d = 1 . . . D}. And a

prior on P (δ = δd), the posterior distribution can be obtained

as follows:

P (δ|y1:J) ∝ P (δ)P (y1:J |δ) = P (δ)

J
∏

t=1

P (yt|y1:t−1, δ)

= P (δ)

J
∏

t=1

T2nt−1
(yt|f

δ
t , Qts

δ
t−1/nt−1) (14)



where J denotes the initial sample size and the the required

parameters {ft, Qt, nt−1, st−1} are readily available through

the on-line inference algorithm (see III-A). For computational

efficiency, one can simply use the sum of the squared errors
∑J

t=1(yt − ft)
2nt−1/Qtst−1 to replace the (log-)likelihood

term, where we use the fact that a Gaussian approximates the

student T distribution when the degree of freedom increases.

The best δ = argmaxd P (δ = δd|y1:T ) is then used for further

analysis, the chosen δ is actually the maximum a posteriori

(MAP) estimate. The whole initialisation step is still a one-

pass algorithm, and scales linearly with J as long as D is

finite. In practice, δd can be set as a sequence from 0.5 to 0.9

inclusive with an equal step of 0.1 and the prior can either be

uniform or simply a posterior from some previous analysis.

V. EVALUATION

In this section, we evaluate the proposed solution on syn-

thetically generated data and real sensor data. The synthetic

analysis aims to empirical access the accuracy of the proposed

inference algorithm; while the real sensor data analysis com-

pare our solution with some popular baselines.

A. Implementation and Baselines

The proposed solution is implemented in R and the code

is made publicly available4. To compare the performance on

time series clustering on St, we compare with the following

baselines:

• Hidden Markov Models (HMM) with Gaussian emis-

sions, which is similar to the solution proposed in [1] 5;

depmixS4 package in R is used [22].

• K-means: sensor series are segmented into fixed sizes

and the mean, variance, minimum, and maximum are

extracted for clustering;

• Hierarchical Clustering (H-Clust): the complete linkage is

used on the same data generated in the K-means method.

Note that all the above methods are off-line which requires a

model training step. And the clustering size is set as the true

size: 4.

A few variants of the proposed HMS-DLMs are also com-

pared. In particular,

• Singular Dynamic Linear Model (DLM), which corre-

sponds to our previous work [2];

• Mixture of Dynamic Linear Models (M-DLMs): St are

assumed serially independent;

• HMS-DLMs (h = 1): a simplified approximate inference,

where h = 1 history is used for approximation;

• HMS-DLMs (h = 2): the proposed solution, as presented

in Section IV-C.

4https://leo.host.cs.st-andrews.ac.uk
5In their paper, they used supervised learning to train the HMM, and the

labels are provided by artificially injected errors. In reality, the labels are not

available in general.

B. Evaluation Metrics

Inference on St: To evaluate the unsupervised learning

performance on St, we use four commonly used measures

for clustering [23]: normalised mutual information (NMI),

adjusted Rand Index (ARI) and entropy (ENTR). All of them

except entropy ranges from 0 to 1 measuring similarities

between two clustering results. To assess the classification

accuracy, accuracy (ACC), balanced accuracy (ACCb) and by

class averaged F -measures are reported.

Inference on θt: Three metrics are used to assess the

signal inference accuracy: mean squared error (MSE), mean

absolute deviation (MAD) and mean absolute percentage error

(MAPE):

MSE =
1

n

n
∑

t=1

e2t ,MAD =
1

n

n
∑

t=1

|et|,MAPE =
1

n

n
∑

t=1

|et|

|θt|
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Fig. 4. Online inference results on the sensor status St where NR, SJ, NS,

and CN represent NORMAL, SHORT, NOISE and CONST. respectively. The

four diagrams are the sensor readings yt, the true state of St, online inferred

St by the proposed solution and the posterior probability P (St|y1:t). In this

case, the discount factor is set as 0.9.

C. Synthetic data analysis

In this section, we run the derived approximate inference

algorithm on simulated data. The data is generated by the

HSM-DLMs as specified in Section IV 6. As an example,

check the top row in Fig. 4, in which a series of synthetically

6In particular, given S0 and θ0; for t > 0, St is simulated based on

St−1 and Γ; then θt is simulated based on St and θt−1; then finally yt is

simulated based on St and θt.

https://leo.host.cs.st-andrews.ac.uk


TABLE I

ASSESSMENT ON HMS-DLMS WITH THE PROPOSED δ LEARNING PROCEDURE. THE RESULTS ARE MEASURED ON THE INFERENCE ON St

Meas.\ Model True Vars δMAP δ = 0.95 δ = 0.9 δ = 0.6 δ = 0.3 δ = 0.05

ACC 0.871 (0.043) 0.873 (0.037) 0.811 (0.092) 0.818 (0.087) 0.851 (0.049) 0.861 (0.031) 0.833 (0.038)

F -measure 0.856 (0.035) 0.850 (0.035) 0.763 (0.092) 0.771 (0.079) 0.820 (0.042) 0.829 (0.046) 0.787 (0.077)

ACCb 0.886 (0.024) 0.878 (0.024) 0.817 (0.064) 0.824 (0.058) 0.856 (0.032) 0.868 (0.027) 0.854 (0.034)

ARI 0.624 (0.105) 0.630 (0.095) 0.519 (0.185) 0.531 (0.178) 0.582 (0.113) 0.601 (0.078) 0.55 (0.069)

NMI 0.618 (0.059) 0.618 (0.059) 0.576 (0.089) 0.581 (0.086) 0.595 (0.060) 0.595 (0.052) 0.541 (0.055)

ENTR 0.268 (0.038) 0.275 (0.043) 0.334 (0.086) 0.327 (0.082) 0.300 (0.050) 0.291 (0.037) 0.314 (0.035)

TABLE II

ASSESSMENT ON HMS-DLMS WITH THE PROPOSED δ LEARNING PROCEDURE.; THE RESULTS ARE MEASURED ON THE INFERENCE ON θt

Meas.\ Model True Vars δMAP δ = 0.95 δ = 0.9 δ = 0.6 δ = 0.3 δ = 0.05

MSE 2.505 (3.353) 3.354 (5.14) 8.195 (10.232) 5.975 (7.571) 3.322 (3.859) 3.717 (3.61) 5.648 (3.948)

MAD 0.828 (0.53) 0.911 (0.613) 1.671 (1.411) 1.414 (1.145) 1.089 (0.523) 1.165 (0.33) 1.436 (0.316)

MAPE 1.396 (2.96) 1.606 (4.075) 1.723 (3.744) 1.716 (3.944) 3.89 (17.865) 6.109 (32.268) 8.164 (44.75)
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Fig. 5. Online inference results on the physical process θt. The five diagrams

are the sensor observations, the actual physical process, online inferred signal

by HMS-DLMs, singular DLM, and HMM.

generated data is listed. The four states are coloured to make

the four regimes distinctive.

The main objective for this section is to verify our derived

approximation algorithm works when data generated from a

HSM-DLMs is given. Note that synthetic data analysis is the

only way to obtain the ground truth on both St and θt. We also

want to access how the discount factor conjugate learning, a

building block of our method, can fulfil the required inference

task.

1) A running example: To better understand the proposed

solution, we pick up one particular dataset and show how the

proposed solution responds to the two inference tasks. See

Table III and IV for repeated experiment results.

Inference on St: As an illustrative example, the inference

on St is shown in Fig 4. The true states are shown in the

second row while the inferred state by the one-step smoothed

probability: St = argmaxk P (St = k|y1:t+1) is shown below,

and the posterior probability P (St = k|y1:t+1) is shown in

the last row. By visual inspection, the approximation on-line

inference has done a decent job, even the discount factor δ

is not optimised and set as the default value 0.9. Note that

there still exist some misclassification, especially between the

NOISE and NORMAL.

TABLE III

THE EFFECT OF THE APPROXIMATION SIZE h; AND COMPARISON

BETWEEN FILTERING AND SMOOTHING INFERENCE ON St

Meas.\Method
HMS-DLMs, (h = 2) HMS-DLMs,

St|y1:t St|y1:t+1 (h = 1) St|y1:t
ACC 0.854 (0.033) 0.876 (0.035) 0.756 (0.129)

F -m 0.802 (0.060) 0.857 (0.037) 0.723 (0.107)

ACCb 0.851 (0.032) 0.883 (0.025) 0.786 (0.075)

ARI 0.585 (0.083) 0.636 (0.090) 0.443 (0.198)

NMI 0.573 (0.055) 0.625 (0.058) 0.504 (0.104)

ENTR 0.307 (0.039) 0.270 (0.043) 0.359 (0.080)

Inference on θt: As the data is simulated, the ground

truth signal can be compared with the inferred P (θt|y1:t).

As an illustrative example, Fig. 5 shows the inference results

on the same data that generates Fig 4. The five pictures are

the sensor readings, true signal, inferred results by HMS-

DLMs, singular Kalman Filter, and HMM respectively. It can

be seen HMS-DLMs has automatically ignored the influence

of those erroneous observations, which is achieved with no

human intervention. The automatic robust inference over the

hidden signal is a key feature of HSM-DLMs. The results on

Kalman Filter and HMM, however, deviate significantly from

the ground truth. To achieve a more robust estimation, one



needs to device extra rules, say setting some ad hoc confidence

interval range, to specifically tell the Kalman Filter or HMM

to ignore some values.

2) Approximation size h : Our approximate algorithm as-

sumes the exponentially growing mixture can be summarised

by a Kh mixtures. Therefore, h can affect the inference

accuracy. To show h = 2 is a good approximation, we compare

two approximation settings: h = 1 and 2. The results are

shown in Table III and IV. As expected, h = 2 achieves better

results for both inference tasks. More details are presented

below.

Filtering and smoothing inference on St: For the h = 2

case, we listed the filtering and smoothing results in Table III:

the smoothing results are based on P (St|y1:t+1) (See (11)),

which is a by-product of the h = 2 approximation (note that

there is no equivalent smoothing distribution for the h = 1

case as it only keep one step expansion in the online inference

procedure). Unsurprisingly, the one step smoothed results are

better than the filtering version P (St|y1:t).

Effects on θt: Similarly, the inference results on the

hidden physical process θt under the same setting are shown

in Table IV. The gap between the h = 1 and h = 2 cases

are even larger than the St case. It is because the one step

approximation h = 1 is not enough to capture all the dynamics

of the hidden space of St. We also list the results of HMM

and Kalman Filter for reference: when the approximation is too

crude, the performance degenerates to homogeneous models.

3) Learning on discount factor δ : To access the effect of

δ on the inference, we simulate datasets based on different

signal-noise-ratios (varies from 0.1 to 10). The objective is to

check whether the conjugate inference via the discount factor

technique can cope with the complexity, especially when it is

employed in our approximate inference algorithm. For each in-

stance, we compare the following different settings: a baseline

method with the true variances (denoted as “True Vars” in the

table); δMAP denotes our proposed on-line δ learning solution;

also results with δ in the set of {0.05, 0.3, 0.6, 0.9, 0.95} are

compared. Note that the “True Var” case is only presented here

for reference as both the variances are unknown in reality. For

each signal-noise-ratio, we run 10 independent experiments,

and the average and standard deviations of the inference results

on St over all settings and repetitions are listed in Table I.

It can be observed that all different δs work well in terms

of the classification accuracy which means they all can be

used to do on-line faults classification, although our discount

factor learning method consistently outperforms the others and

achieves similar performance with the truth parameter case.

The inference results on θt under the same experiment setting

are listed Table II. The results show a similar pattern on the

signal inference task.

D. Real sensor data analysis

Now we use real world sensor data to access our solution.

The objective here is to access whether our proposed model,

especially the model assumption, meets the reality. As there is

no ground truth, the only way to perform large scale repetitive

experiments is to generate and inject artificial errors. And this

has been a common approach to measure the accuracy of

a fault detection algorithm in WSNs community [1][24][25],

although results vary greatly subjects to the choice of injection

parameters. And there is no uniformly accepted injection

method. That’s the main reason we focus on synthetic data

analysis, which actually provides a more objective assessment.

In this paper, we adopt exactly the same injection method

and parameters as used in [1]. The methods are listed below:

• SHORT: ŷt = yt + f × vi, f ∈ {1.5, 2.5, 10} ;

• NOISE: ŷt:T = yt + n, n ∼ N (0, V σ2), where V ∈

{0.5, 1.5, 3} and σ2 is the variance of yt:T ;

• CONSTANT: ŷt:T = c, where c = yt + f × yt, f ∈

{1.5, 2.5, 10} .

The parameters to generate the faults are randomly picked

from the given choices. Temperature sensor data from a

local deployment in Grangemouth is used. The results are

listed in Table V. We compare HSM-DLMs with its variants

and also some state of art clustering algorithms, like K-

means and HMM. It is obvious the proposed solution with

δ learning dominates all metrics especially comparing with

HMM, K-means and H-clust. Comparing with M-DLMs, our

proposed hidden markov state model is proved to be better;

while the h = 2 approximation strikes the balance between

efficiency and accuracy when compared with the crude h = 1

approximation method.

VI. CONCLUSION

In this paper, we have proposed a hybrid Bayesian network

based model to solve an on-line inference problem for wireless

sensor networks. The model is rich enough to capture the

distinctive statistical patterns of the sensor faults which are

widely found in real world deployments. The specification of

the model is built upon the statistical properties of the faults

but also can adapt itself to the data when required, which

greatly minimise the learning and modelling efforts. A very

efficient on-line one pass algorithm is derived to make formal

inference on the proposed model. The inference results on both

simulation and real sensor data studies are very promising.

There are a few possible extensions to consider as future

work. We have presented a uni-variate sensor model in this

work, and it would be interesting to accommodate the mul-

tivariate case. The complexity however might be too much

to handle for local sensors as the sensor status space grow

exponentially with the dimensionality of the sensor variates.



TABLE IV

THE EFFECT OF THE APPROXIMATION SIZE h ON INFERENCE OF THE PHYSICAL PROCESS θt

Meas.\Method HMS-DLMs (h = 2) HMS-DLMs (h = 1) DLM (Kalman Filter) HMMs

MSE 3.148 (4.64) 84.364 (187.774) 87.755 (191.333) 65.623 (160.774)

MAD 0.934 (0.553) 3.787 (5.197) 3.996 (3.709) 2.539 (2.182)

MAPE 1.378 (3.672) 1.954 (4.391) 2.026 (3.235) 2.198 (4.356)

TABLE V

INFERENCE RESULTS ON St ON REAL WORLD SENSOR DATA.

HMS-DLMs (δMAP) HMS-DLMs (δ = 0.9) HMS-DLMs, h = 1 M-DLMs HMMs K-means H-Clust

ACC 0.871 (0.029) 0.79 (0.064) 0.716 (0.114) 0.789 (0.027) 0.4 (0.051) 0.482 (0.066) 0.489 (0.064)

F -m 0.869 (0.035) 0.764 (0.074) 0.709 (0.124) 0.749 (0.063) 0.359 (0.085) 0.37 (0.052) 0.387 (0.057)

ACCb 0.888 (0.027) 0.809 (0.048) 0.782 (0.079) 0.801 (0.036) 0.589 (0.057) 0.61 (0.052) 0.62 (0.052)

ARI 0.618 (0.077) 0.454 (0.119) 0.373 (0.156) 0.441 (0.067) 0.052 (0.042) 0.077 (0.055) 0.09 (0.065)

NMI 0.616 (0.058) 0.534 (0.078) 0.467 (0.09) 0.472 (0.063) 0.127 (0.063) 0.117 (0.052) 0.134 (0.053)

ENTR 0.275 (0.042) 0.363 (0.056) 0.379 (0.071) 0.377 (0.043) 0.578 (0.06) 0.598 (0.052) 0.584 (0.051)

On the other hand, how to handle fault correlations within the

multivariate is challenging. We also plan to apply the method

in wild to see how it works in reality.
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