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UNIVERSITY OF BATH 

1 Abstract 

Doctor of Philosophy 

by Borja Hernandez Crespo 

 

Recently, great interest has arisen on the application of guided waves on composite 

materials, owing to the successful results achieved in metallic structures. Due to its 

more complex nature, guided wave technology for composites is still unmatured, 

requiring further research to be deployed in commercial structures. The work 

presented in this thesis focuses on overcoming some of the obstacles for its 

deployment, and better understanding uncertainties about its propagation and 

detection capabilities. Calculation of dispersion curves in composites hinders the use 

of guided waves, since material properties are not commonly available so existing 

techniques are unable to calculate them. In this thesis, a new experimental technique 

is presented for the creation of dispersion curves without requiring any prior 

knowledge of material properties and being able to be deployed on site. Firstly, the 

proposed technique is applied to an aluminium plate to validate its performance, 

where the formulation of its theoretical basis is explained in detail. Validation is 

achieved using synthesized signals, signals from finite element simulations and 

experimental signals from an aluminium plate, where accuracies to within 1% are 

reached. Subsequently, the proposed technique is applied to a biaxial GFRP plate to 

validate its applicability in composite structures. A finite element model is carefully 

created to obtain the full velocity profile and experimental tests are carried out for 

calculating the velocities at every direction. Results achieve high agreement with 

theoretical values and also with results from a well-known experimental technique 

(2D FFT). Then, a wave propagation analysis using three different lay-ups is carried 

out to study the complex propagation pattern and excitability of the shear horizontal 

mode. Finally, a study of delamination detection sensitivity is performed, where the 

three fundamental wave modes are evaluated individually under the same 

conditions. Results from FE analysis and experimental tests are presented along with 

best practices recommendations for future studies.   
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1 Introduction 

 

1.1 Motivation 
 

In the last decade, there has been an increasing presence of the use of composite 

materials to replace conventional critical metallic structures in a wide variety of 

sectors including aerospace, renewable energy and power. This is due to fibre 

reinforced polymers offer advantages over metallic materials, which make 

composites better suited for certain applications. The high strength-to-weight ratio 

that composites possess makes them a good candidate to replace metallic parts in 

structures where reducing weight is vital without sacrificing strength performance. 

Some of the main industries that take advantage of this property to improve the 

efficiency of their structures are the aerospace, wind energy and automotive 

industries [1]. For instance, the new aircrafts Boeing 787 Dreamline and Airbus A350 

XWB are composed by more than 50% of composite material weight content. In 

addition, composites also offer other advantages like corrosion resistance, durability 

and design flexibility. To a lesser extent, other industrial sectors benefit from these 

properties; such as sporting goods, pressure vessels, marine, oil & gas or 

construction. 
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Studies reveal that the composite industry will keep stably growing during the 

following years as it has been doing during the precedent years. In particular, the 

glass fibre market which is the major reinforcing material, is expected to grow with 

a compound annual growth rate of 3.4%. According to the market research company 

Lucintel: “The global composites end product market is expected to reach $113.2 billion by 

2022” [1]. Taking all of this into consideration, it can be concluded that the number 

of composite structures is going to largely increase in the upcoming years.  

Carbon fibre reinforced polymer (CFRP) and glass fibre reinforced polymer (GFRP) 

are the most common materials for the manufacture of composite structures. These 

two materials provide high strength-to-weight performance, so they are commonly 

used for structural components; however, when they get damaged their 

performance decreases severely, compromising the integrity of the structure. 

Unfortunately, these two fibre reinforced polymers can be easily damaged by 

impacts generating delaminations and, matrix and fibre cracking [2]. Due to the 

increased number of composite structures and their critical role in the structural 

integrity, these parts are oversized to withstand Barely Visible Impact Damages 

(BVID), however the use of monitoring methods to reliably asses the structural 

condition would optimize the design of the structure reducing weight and reducing 

costs. 

Non-destructive testing (NDT) techniques, which are processes of inspecting 

components without causing any damage, have been widely used to evaluate the 

health of composite structures. These techniques are commonly applied during 

scheduled maintenance inspections where the structure is out-of-service. Structural 

health monitoring (SHM) techniques, which are processes to provide integrity 

assessment of in-service structures on a continuous basis, are better suited to be used 

to address the discussed situations. Although, NDT techniques are successfully 

applied to examine the state of composites, using for instance, conventional 

ultrasonics, thermography or radiographic testing [3]; SHM techniques are the next 

step forward in the evaluation and diagnosis of the health of structures. SHM allows 

to reduce maintenance costs by minimizing downtime and reducing human labour, 

to improve safety and reliability by continuous monitoring and to minimize human 

errors [4].  
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Among the different SHM techniques, guided wave testing has become one of the 

most promising technologies due to its capability to interrogate tens of meters from 

a single location. Many investigations on the application of guided wave on metallic 

structures, mainly plates and pipes, for damage detection were successfully carried 

out in the past decade. Ground knowledge about wave mode propagation, 

dispersion characteristics, guided wave simulation or damage detection algorithms 

were established for isotropic metallic structures [5]–[9]. As a result of all of this 

research, guided wave commercial products for inspecting metallic straight 

pipelines were released to market. These products are able to interrogate more than 

one hundred meters in ideal conditions from a single location detecting cracks and 

corrosion. 

Recently, with the increasing emergence of composite structures, guided wave 

technology has been started being utilized on composites. Much interest in the last 

few years has arisen on the evaluation of composite structures using guided wave. 

Great number of investigations have been published about this topic [10]–[13], 

although further research is needed since the anisotropic nature of composites 

confers additional complexity on the evaluation of its structural integrity. To the best 

of the author’s knowledge, there are not currently guided wave commercial products 

for inspection of composite structures. There are still certain areas of research that 

need to be addressed.  

 

1.2 Aim 
 

The final aim of this doctorate is to address existing limitations and uncertainties on 

the application of ultrasonic guided waves in anisotropic media. Currently, guided 

waves are successfully applied in metallic structures; however, for composite 

materials, there are still some research areas that need to be addressed in order to 

reliably deploy this technology on commercial composite structures. 
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1.3 Objectives 
 

Composites are anisotropic structures due to the presence of fibres which possess 

higher strength and stiffness along the fibre direction in comparison to the other two 

orthogonal directions. Fibres are commonly presented in plies which can be stacked 

one on top of the other at different directions to meet the strength/stress 

requirements of the structure. In the composite market, there are plenty of different 

types of fibres and resins, each of them with different material properties, so the 

design flexibility to create a composite structure is enormous. Consequently, the 

wide variety of available materials and ply stacking sequences makes that every 

composite structure becomes unique; even same type of structure, for instance a 

wind turbine blade, will be practically different from one manufacturer to another. 

Using guided wave technology, the very first task is to get the dispersion curves of 

the structure to inspect. Dispersion curves are highly important since they provide 

information about the group and phase velocity at each frequency of the different 

modes of propagation present in the structure. Knowledge of this information is vital 

for the preparation of new tests and for the evaluation and post-processing of the 

acquired guided wave signals. Dispersion curves are dependent on the geometry 

and material properties of the structure. As previously said, the design of each 

composite structure is practically unique; therefore, their corresponding dispersion 

curves will be so too. For isotropic structures, dispersion curves are commonly 

calculated using the theoretical formulas where only two elastic constants are 

needed. In our study, composite plates are orthotropic structures; therefore, it 

requires knowledge of 9 different elastic constants and the density and thickness. 

The acquisition of these values is highly arduous in composites for several reasons. 

For instance, manufacturers of composite structures rarely share design information 

of materials, ply stacking sequences or thicknesses due to confidential reasons; fibre 

ply manufacturers do not commonly specify in the datasheet all the needed elastic 

constants; or simply, there is limited knowledge of the history of the structure to 

inspect being unfeasible the determination of the material properties. As a result, the 

development of a technique for creation of dispersion curves without requiring 
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material properties and being able to be deployed on-site has been addressed in this 

thesis. 

Another difference between metallic and composite structures is the type and 

geometry of the damages that are generated in each situation. For instance, in 

metallic structures the two main damages that inspection methods intend to detect 

are corrosion and cracks. The former produces a reduction of cross section area and 

the latter is a transverse interface separation. In composites, these two damage 

geometries are not created; instead, delaminations which are in-plane interfacial 

separations between plies are the most common composite damage. Therefore, wave 

modes that are highly sensitive to metallic damages does not imply that they will be 

equally sensitive to composite damages, since the mode of vibration may not interact 

with the new geometry of the composite damage. In the literature, there are tens of 

publications about delamination detection using S0 and A0 modes with successful 

results; however, there is not an agreement about which mode of propagation is 

more sensitive to delaminations [14]–[17]. Some papers establish that S0 is more 

sensitive and others affirm that A0 is better suited for this type of damage. In 

addition, SH0 mode has not been deeply studied for composite structures. The reason 

may be that its propagation pattern is highly complex when travels in anisotropic 

structures making more difficult its analysis. This fundamental wave mode is highly 

present in the evaluation of metallic structures, since it offers great advantages over 

other wave modes, such as non-dispersive behaviour and relatively small 

wavelength being able to detect smaller defects. For composites, this wave mode has 

not been evaluated yet for detection of delaminations. 

In this thesis, an analysis of delamination detection sensitivity using the three 

fundamental wave modes (S0, A0 and SH0) was carried out to determine which mode 

of vibration greatly interacts with the delamination, and in consequence it is more 

sensitive. Additionally, a deep study of SH0 mode propagation was also performed 

to better understand the propagation pattern of this wave mode and its mode 

activation using shear transducers for laminates with different lay-up. 
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1.4 Thesis outline 
 

Chapter 2 presents the fundamentals of guided wave technology. This theoretical 

background is needed to understand the work developed in the thesis. Basic 

ultrasound concepts, such group and phase velocities or dispersion curves are 

explained. A section about guided wave in composites is also included describing 

how fundamental wave modes propagate and the differences with isotropic 

structures.   

A review of the most relevant publications of guided wave technology about 

dispersion curve creation, wave propagation in composite structures and damage 

detection is presented in chapter 3. Indication of gaps in the knowledge is provided 

at the end of each subsection. 

In chapter 4, a novel experimental methodology is presented for dispersion curve 

creation without requiring prior knowledge of material properties. The method is 

based on the analysis of time and phase delays between two signals acquired at two 

locations separated a few centimetres. The method is firstly validated in an 

aluminium plate using synthesized signals, signals from a FE model and 

experimental signals from a 3-mm thick aluminium plate. 

In chapter 5, the methodology presented in previous chapter is used to determine the 

dispersion curves of a biaxial GFRP plate. Its application presents certain complexity 

since the wave velocity changes for different angles of propagation requiring 

additional analysis. The calculation of SH0 velocities also required further 

investigations to understand its propagation behaviour. The methodology was 

applied to signals from a FE model and experimental signals; and validated with 

velocities from Disperse® and also from the experimental method 2D FFT. 

Chapter 6 includes an analysis of the wave propagation of the three fundamental 

wave modes in three different laminates (unidirectional, biaxial and triaxial). It also 

contains a study about how the SH0 wavefronts can be generated depending on the 

orientation of the shear transducer.  
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In chapter 7, there is an in-depth study about delamination detection using the three 

fundamental modes. FE analyses and experimental tests using 3D vibrometry were 

performed to determine what mode of vibration is more sensitive to this damage. 

Finally, chapter 8 presents the conclusions of the thesis arguing recommendations for 

succeeding guided wave inspections in composites structures. Suggestions for future 

areas of investigations are also provided.  

 

1.5 Contribution to the knowledge 
 

Currently, composite inspection using guided wave technology still presents issues 

and uncertainties that have to be addressed. The aim of this thesis has been to answer 

some of these issues aiding future investigations for successfully and reliably 

deploying guided wave inspections on in-service composite structures. 

Author’s original contribution : 

An experimental methodology for dispersion curve creation was developed during 

the doctorate. This method allows the determination of dispersion curves without 

requiring knowledge of the elastic constants, density and thickness. It only requires 

two signals from two positions spaced a few centimetres, which enables its 

application in uncontrolled conditions, like in operating structures onsite. The 

method was validated on an aluminium plate and then successfully applied to a 

composite structure. 

The literature does not provide wide information about the wave propagation of SH0 

in anisotropic structures. Therefore, a study of the propagation pattern of the SH0 

mode in different composite laminates was carried out to understand how this mode 

behaves on different lay-ups. It was observed that different shear horizontal 

wavefronts coexist at the same time travelling at different velocities. It was also 

determined that these wavefronts can be excited independently depending on the 

orientation of the shear transducer used as transmitter. 
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SH0 mode has been neglected for use of delamination detection in composites in the 

literature, even having certain advantages that make it highly important for 

inspection of metallic structures. A study of delamination detection using SH0 was 

carried out focusing in flaw sensitivity for this damage geometry, in-plane interface 

separation between plies. Conclusions about its potential applicability for detection 

purposes are included. 

There is no agreement on what wave mode is more sensitive to delamination 

detection in the literature. This issue creates confusion to the scientific community 

when researching and preparing tests on this matter. An in-depth study evaluating 

the three fundamental wave modes was performed under the same delamination 

and conditions. 3D Scanning Laser Vibrometer and FE simulations were used to 

decouple vibrations at the three orthogonal directions and assess which mode of 

vibration interacts more with this type of defect. It is concluded that the A0 mode is 

the most suitable mode for detecting delaminations due to its high out-of-plane 

displacement component which highly interacts with the in-plane geometry of 

delaminations. 

 

1.6 Publications arising from the Doctorate 
 

B. Hernandez Crespo, C. Courtney, and B. Engineer, “Calculation of Guided Wave 

Dispersion Characteristics Using a Three-Transducer Measurement System,” Applied 

Sciences, vol. 8, no. 8, p. 1253, 2018. 

 

B. Hernandez Crespo, “Damage Sensing in Blades,” in MARE-WINT, Springer, 2016, 

pp. 25–52. 

 

B. Hernandez Crespo, B. Engineer, and C. Courtney, “Empirical technique for 

dispersion curve creation for guided wave applications,” In Proceedings of the 8th 

European Workshop on Structural Health Monitoring, 2016. 
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Chapter 2 

 

2 Fundamentals of Ultrasonic 
Guided Waves 

 

2.1 Propagation of Guided Waves 
 

Guided waves are ultrasonic elastic waves that propagate under the influence of 

boundaries, in contrast to bulk waves that propagate in infinite media. Guided 

waves are dependent on the material properties and the boundary conditions of the 

medium where the wave is propagating through. An important characteristic of this 

kind of waves is that the phase velocity and group velocity do not necessarily 

coincide and they may vary with the frequency. This effect is called dispersion.  

Depending on the boundaries, different possible wave modes can be obtained [18]. 

In the case of thin plate-like structures with free upper and lower surfaces, guided 

waves are also called Lamb waves and will propagate within both surfaces, 

established as boundaries, guiding the propagation of the waves. The governing 

equation of guided wave motion is the Navier’s equation [18]. 

𝜇 ∙
𝜕ଶ𝑢௜

𝜕𝑥௝
ଶ

+ (𝜆 + 𝜇) ∙
𝜕ଶ𝑢௝

𝜕𝑥௝𝜕𝑥௜
+ 𝜌 ∙ 𝑓௜ = 𝜌 ∙

𝜕ଶ𝑢௜

𝜕𝑡ଶ
       (i, j = 1,2,3)    (2.1) 
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Figure 2.1: Coordinates for thin plate-like structure. 

 

Where 𝑢௜ is the displacement in the 𝑥௜  direction, 𝑓௜ is the body force which is assumed 

to be zero, 𝜌 is the density and 𝜆 and 𝜇  are the Lamé constants. By using the method 

of potentials, this second order partial differential equation can be decomposed into 

two uncoupled parts through Helmholtz decomposition. By assuming plane strain 

[18], 

∂ଶ𝜙

∂𝑥ଵ
ଶ +

∂ଶ𝜙

∂𝑥ଷ
ଶ =

1

𝑐௅
ଶ

∂ଶ𝜙

𝜕𝑡ଶ
            for longitudinal modes (2.2) 

∂ଶ𝜓

∂𝑥ଵ
ଶ +

∂ଶ𝜓

∂𝑥ଷ
ଶ =

1

𝑐்
ଶ

∂ଶ𝜓

𝜕𝑡ଶ
                         for shear modes (2.3) 

 

where 𝑐௅ is the longitudinal velocity and 𝑐்  is the transversal velocity [18], 

 

𝑐௅ = ඨ
𝜆 + 2𝜇

𝜌
  and   𝑐் = ඨ

𝜇

𝜌
 (2.4) 

 

The potentials are expressed as follows in equations (2.5) and (2.6). The form of these 

potentials corresponds to specific solutions of plane harmonic waves, representing 

propagating waves in the 𝑥ଵ direction and stationary waves in the 𝑥ଷ direction [18]. 

 

𝜙 = [𝐴ଵ sin(𝑝𝑥ଷ) + 𝐴ଶ cos(𝑝𝑥ଷ)] ∙ exp[𝑖(𝑘𝑥ଵ − 𝜔𝑡)] (2.5) 

𝜓 = [𝐵ଵ sin(𝑞𝑥ଷ) + 𝐵ଶ cos(𝑞𝑥ଷ)] ∙ exp[𝑖(𝑘𝑥ଵ − 𝜔𝑡)] (2.6) 

𝑝ଶ =
𝜔ଶ

𝑐௅
ଶ − 𝑘ଶ, 𝑞ଶ =

𝜔ଶ

𝑐்
ଶ − 𝑘ଶ,       𝑘 =

2𝜋

𝜆௪௔௩௘

 (2.7) 
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where 𝑘 is the wavenumber, 𝜔 is the wave angular frequency and 𝜆௪௔௩௘ is the 

wavelength of the wave. The displacements are expressed in terms of the potentials 

as [18], 

 

𝑢ଵ =
𝜕𝜙

𝜕𝑥ଵ

+
𝜕𝜓

𝜕𝑥ଷ

  ,  𝑢ଶ = 0 , 𝑢ଷ =
𝜕𝜙

𝜕𝑥ଷ

−
𝜕𝜓

𝜕𝑥ଵ

 (2.8) 

 

After applying equations (2.5) and (2.6) into equations (2.8), these displacements can 

be split into symmetric and antisymmetric modes with respect to the midplane by 

choosing sines or cosines. For symmetric modes, displacement in the 𝑢ଵ direction 

should contain cosines; and sines in the case of 𝑢ଷ direction, 

 

𝑢 = 𝑢ଵ = [𝑖𝑘𝐴ଶ cos(𝑝𝑥ଷ) + 𝑞𝐵ଵ cos(𝑞𝑥ଷ) ] ∙ exp[𝑖(𝑘𝑥ଵ − 𝜔𝑡)] (2.9) 

𝑤 = 𝑢ଷ = [−𝑝𝐴ଶ sin(𝑝𝑥ଷ) − 𝑖𝑘𝐵ଵ sin(𝑞𝑥ଷ)] ∙ exp[𝑖(𝑘𝑥ଵ − 𝜔𝑡)] (2.10) 

 

And conversely, for antisymmetric modes, 

 

𝑢 = 𝑢ଵ = [𝑖𝑘𝐴ଵ sin(𝑝𝑥ଷ) − 𝑞𝐵ଶ sin(𝑞𝑥ଷ)] ∙ exp[𝑖(𝑘𝑥ଵ − 𝜔𝑡)] (2.11) 

𝑤 = 𝑢ଷ = [𝑝𝐴ଵ cos(𝑝𝑥ଷ) − 𝑖𝑘𝐵ଶ cos(𝑞𝑥ଷ)] ∙ exp[𝑖(𝑘𝑥ଵ − 𝜔𝑡)] (2.12) 

 

The stresses can be written by using the constitutive equations, equation (6.3) in [18], 

 

𝜎ଷଵ = 𝜇 ൬
𝜕𝑢ଷ

𝜕𝑥ଵ

+
𝜕𝑢ଵ

𝜕𝑥ଷ
൰ = 𝜇 ቆ

2𝜕ଶ𝜙

𝜕𝑥ଵ𝜕𝑥ଷ

−
𝜕ଶ𝜓

𝜕𝑥ଵ
ଶ +

𝜕ଶ𝜓

𝜕𝑥ଷ
ଶ ቇ (2.13) 

𝜎ଷଷ = 𝜆 ൬
𝜕𝑢ଵ

𝜕𝑥ଵ

+
𝜕𝑢ଷ

𝜕𝑥ଷ
൰ + 2𝜇

𝜕𝑢ଷ

𝜕𝑥ଷ

= 𝜆 ቆ
𝜕ଶ𝜙

𝜕𝑥ଵ
ଶ +

𝜕ଶ𝜙

𝜕𝑥ଷ
ଶ ቇ + 2𝜇 ቆ

𝜕ଶ𝜙

𝜕𝑥ଷ
ଶ −

𝜕ଶ𝜓

𝜕𝑥ଵ𝜕𝑥ଷ
ቇ (2.14) 

 

Constants 𝐴ଵ, 𝐴ଶ, 𝐵ଵ and 𝐵ଶ are still undetermined. However, by applying boundary 

conditions as a free-stress plate at both surfaces on equations (2.13) and (2.14), it is 
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possible to obtain two homogeneous systems of two equations; one for the 

symmetric case (𝐴ଶ, 𝐵ଵ) and another one for antisymmetric case (𝐴ଵ, 𝐵ଶ),  
 

𝜎ଵଷ = 𝜎ଷଷ = 0       at       𝑥ଷ = ±ℎ (2.15) 

 

Where ℎ is the half thickness. After some manipulation1 when applying equations 

(2.15), we can obtain the dispersion equations for the symmetric and antisymmetric 

modes in an isotropic and homogeneous plate-like structure [18], 

 

tan (𝑞ℎ)

tan(𝑝ℎ)
= −

4𝑘ଶ𝑞𝑝

(𝑘ଶ − 𝑞ଶ)ଶ
              for symmetric modes (2.16) 

tan (𝑞ℎ)

tan(𝑝ℎ)
= −

(𝑘ଶ − 𝑞ଶ)ଶ

4𝑘ଶ𝑞𝑝
       for antisymmetric modes (2.17) 

 

Solution of these equations can only be achieved by numerical methods. As it is 

shown in equations (2.9), (2.10), (2.11) and (2.12), the solution of guided wave 

propagation presents a symmetric (Si) and an antisymmetric (Ai) solution, 

consequently there will co-exist in the same plate the propagation of two different 

wave modes, one symmetric and one antisymmetric with respect to the middle 

plane. The subscript i represents the order of occurrence of the wave mode with the 

frequency, since an infinite number of symmetric and antisymmetric modes can 

exist. Special attention deserves the zero-order modes, also called fundamental 

modes, which are the only ones that exist over the entire frequency spectrum. These 

fundamental wave modes are commonly used for guided wave inspections because 

at low frequencies (lower than the 1st cut-off frequency) they are the only modes that 

exist; so working in this frequency range, the complexity of the signals is reduced. 

These fundamental modes will be the object of study during the thesis. For further 

clarification, both wave motions are represented in Figures 2.2 and 2.3. 

 
 

                                                   
1 More detailed explanation of the theoretical propagation of guided waves in plates is available 
in Chapter 6 of the book “Ultrasonic Guided Waves in Solid Media” by Joseph L. Rose. 



Chapter 2.  Fundamentals of Ultrasonic Guided Waves 13 

 

 

Figure 2.2: Fundamental symmetric (S0) mode of propagation. 

 
Figure 2.3: Fundamental antisymmetric (A0) mode of propagation. 

 

Another wave motion related to guided waves is the shear horizontal (SH) wave 

mode where the particles displace in-plane transversally to the propagation 

direction, see Figure 2.4. This mode presents advantages in comparison to Si and Ai 

in terms of dispersion and attenuation, since the fundamental shear mode is non-

dispersive so the energy is conserved during its propagation [18]. Because of the non-

dispersive nature of shear mode, the wave energy in the direction of propagation 

does not spread during its propagation, so the energy remains concentrated in the 

transmitting pulse enabling the wave to achieve longer distances. Also, the in-plane 

particle displacement of SH wave mode reduces the interaction with the 

surrounding media [19]. Consequently, the wave energy transmitted remains inside 

the host material minimizing the energy leakage. These advantages are particularly 

important when a structure which is subsea, buried or with heavy coatings has to be 

inspected, or when longer transmission distances are needed to inspect areas where 

the accessibility is limited or prohibitive. 

 

 

Figure 2.4: Fundamental shear horizontal (SH0) mode of propagation. 
 

Regarding the attenuation, it may be divided in absorption, scattering, leakage and 

beam spreading [7]. The first attenuation mechanism is due to the material damping 
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of the host material which converts the wave energy into heat. The second is 

produced when part of the wave energy is transmitted or reflected in other directions 

than the original one. This scattering is mainly produced by defects or irregularities 

in the way of the wave which reflect part of the wave energy in other directions. This 

mechanism enables the identification of damages by guided wave technology 

inspection. The third is produced by energy leakage which is the wave energy 

transmitted to the surrounding media. This energy transmission depends on the 

acoustic impedance compatibility between the surrounding material and the host 

material, the smaller the acoustic impedance mismatch the larger the energy is 

transmitted to the surrounding media. This energy leakage is commonly negligible 

for air, but it becomes more relevant when coatings, paints or high damping 

materials are applied on the surface, or even more when the structure is subsea or 

buried, in which the energy loss is highly significant [7]. And the forth is the beam 

spreading as the wave propagates away from the transmitter. This causes a 

reduction of amplitude proportional to 1 √𝑟⁄ , where r is the propagated distance 

from the transmitter. 

 

2.2 Phase and group velocities 
 

Typically, the velocity of guided waves can be described by the phase velocity and 

the group velocity. These two velocities measure different features of the wave, 

where phase velocity is the velocity related to the frequency, 𝑓, and wavelength, 𝜆, 

𝑣௣ = 𝜆 ∙ 𝑓, which is the speed at which any fixed phase of the cycle is displaced. On 

the other hand, group velocity is defined as the speed with which the information or 

energy of the wave propagates through the media. In other words, the speed at 

which the whole wave packet propagates.  

The propagation velocity of guided waves, in most of the cases, is frequency-

dependent. It is different at different frequencies, so consequently frequency 

components of the same wave packet will travel at different velocities distorting the 

original input signal along its propagation. This phenomenon is called dispersion, 

which will be explained further on. A graphic example is shown in Figure 2.5. 
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Figure 2.5: Example of dispersion. (a) Input signal. (b) Non-dispersive wave. (c) Dispersive 
wave. 

 

A consequence of this dispersion is that phase velocity is different to group velocity. 

In terms of angular frequency, 𝜔 = 2𝜋𝑓, and wavenumber, 𝑘 = 2𝜋 𝜆⁄ , phase velocity 

and group velocity are commonly expressed as, 

𝑣௣ =
𝜔

𝑘
 (2.18) 

𝑣௚ =
𝑑𝜔

𝑑𝑘
 (2.19) 

 

 

2.3 Dispersion curves 
 

The relationship between velocity and frequency can be plotted in graphs called 

dispersion curves. Figure 2.6 shows the dispersion curves of a 3-mm thick 

aluminium plate, showing how the phase velocity and group velocity of different 

modes of propagation (symmetric and antisymmetric modes) vary against the 

frequency. As shown in equations (2.16) and (2.17), the dispersion equations of Lamb 

waves for plate-like isotropic structures are, 

 

(a) 

(b) (c) 
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tan (𝑞ℎ)

𝑞
+

4𝑘ଶ𝑝 tan (𝑝ℎ)

(𝑘ଶ − 𝑞ଶ)ଶ
= 0              for symmetric modes (2.20) 

𝑞 tan(𝑞ℎ) +
(𝑘ଶ − 𝑞ଶ)ଶ tan (𝑝ℎ)

4𝑘ଶ𝑝
= 0   for antisymmetric modes (2.21) 

𝑝ଶ =
𝜔ଶ

𝑐௅
ଶ − 𝑘ଶ, 𝑞ଶ =

𝜔ଶ

𝑐்
ଶ − 𝑘ଶ,        𝑘 =

2𝜋

𝜆௪௔௩௘

 (2.22) 

 

where ℎ is the plate half thickness, 𝑘 is the wavenumber, 𝑐௅ is the longitudinal 

velocity, 𝑐் is the transverse velocity, 𝜔 is the wave angular frequency and 𝜆௪௔௩௘ is 

the wavelength. At each frequency, the wavenumber is modified in order to find the 

roots of the equations (2.20) and (2.21) [20]. The dispersion curves can be plotted by 

joining the roots of the different wave modes. These curves are highly important to 

deploy any guided wave application. They allow us to design proper experimental 

tests, to predict times of arrival of wave packets, to excite specific modes using 

phased array transducers or to apply post-processing techniques to the acquired 

signals. 

 
Figure 2.6: Dispersion Curves of a 3-mm thick aluminium plate. (a) Phase velocity against 

frequency. (b) Group velocity against frequency. Symmetric modes are in red and asymmetric 
modes are in blue. Extracted from Disperse® Software [21]. 

In guided wave inspection, it is common to use a finite number of cycles in a pulse 

to interrogate the structure. This approach is especially affected by dispersion, since 

(a) 

(b) 
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short pulses contain broadband frequency ranges centred at the transmitting 

frequency. Therefore, a wide frequency spectrum is involved in the travelling wave 

packet, in which each frequency component propagates at different velocity 

distorting the original shape of the signal to a higher extent, in contrast to the use of 

a narrowband input signal. Consequently, when guided waves propagate long 

distances, very distorted and attenuated signals are acquired for dispersive wave 

modes. Most of the investigations related to dispersion compensation are based on 

time reversal, in which the excitation signal is modified in order to concentrate the 

wave packet energy at a certain distance [22]. Wilcox [23] also proposed dispersion 

compensation based on a signal processing methodology, in which the dispersion 

effect is removed by replacing the time domain signal into a distance domain signal. 

Very accurate data of the dispersion curves of the studied wave modes is required, 

as the proposed methodology is very sensitive to small variations. 

 

2.4 Guided wave propagation in composites 
 

Composites are characterised by their multi-layered structure where layers are 

oriented at different directions to meet the design requirements, in contrast to 

metallic materials which are a continuous media with no interfaces. These layers are 

formed by fibres and resins. The high anisotropy of the fibres confers to the laminate 

an anisotropic nature, which depends on the stacking sequence of the plies [24]. 

Therefore, a laminate can be highly anisotropic if all the fibres are oriented in the 

same direction (unidirectional laminates, i.e. six plies at 0º [0]6) or it can be weakly 

anisotropic if the fibres are equally oriented in all directions (quasi-isotropic 

laminates, i.e. symmetric laminate with plies at +45º, -45º, 0º and 90º [±45/0/90]S). 

This anisotropy makes the wave velocity dependent on the angle of propagation, so 

this angular dependency will be more significant for highly anisotropic composites, 

unlike the weakly anisotropic laminates which will have a velocity profile similar to 

that of an isotropic material [25]. 

Another important consequence of the wave propagation in composites is the 

absence of pure modes of propagation. In isotropic materials Lamb waves have 
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displacements in x and z directions and the shear horizontal only in y direction but 

in anisotropic materials guided waves have displacements in the three directions 

[26]. For example, symmetric modes S୧ have displacements in the propagating 

direction (x axis) and in the out-of-plane direction (z axis) but in composites small 

displacements in the perpendicular direction (y axis) will be induced as well. 

Consequently, another way to designate the modes of propagation in composites 

was established by adding the prefix “quasi” to symmetric 𝑞S୧, antisymmetric 𝑞A୧ 

and shear horizontal 𝑞SH୧, since they are non-pure modes [27]. However, hereafter 

called symmetric S୧, antisymmetric A୧ and shear horizontal SH୧ modes for the sake 

of simplicity. The attenuation is another factor to have in mind for guided wave 

propagation in composites, since it gets significant at higher frequencies, in the range 

of MHz, due to the viscoelastic behaviour of the resin which damps the wave energy 

and also because of the scattering caused by the fibres [28]. 

The propagation of elastic waves in anisotropic media is governed by the following 

equations [18], 

𝜌
𝜕ଶ𝑢௜

𝜕𝑡ଶ
= 𝐶௜௝௞௟

𝜕ଶ𝑢௟

𝜕𝑥௜𝜕𝑥௞

 (2.23) 

𝜎௞௟ = 𝐶௜௝௞௟𝑠௞௟ (2.24) 

𝑠௞௟ =
1

2
൬

𝜕𝑢௟

𝜕𝑥௞

+
𝜕𝑢௞

𝜕𝑥௟
൰ (2.25) 

 

Where 𝑢௜ is the displacement vector, 𝜎௞௟  is the stress tensor, and 𝑠௞௟ is the strain 

tensor. For the case of anisotropic media, the partial wave technique assumes the 

solution of the displacements are in the format [18], 

𝑢ଵ = 𝑈ଵ𝑒௜௞(௫భାఈ௫యି௖೛௧)  

𝑢ଶ = 𝑈ଶ𝑒௜௞(௫భାఈ௫యି௖೛௧) (2.26) 

𝑢ଷ = 𝑈ଷ𝑒௜௞(௫భାఈ௫యି௖೛௧)  
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Using equations (2.25) and (2.26), we can get the Christoffel’s equation expressed in 

equation (2.27) [18]. 

൥

𝐴ଵଵ 𝐴ଵଶ 𝐴ଵଷ

𝐴ଵଶ 𝐴ଶଶ 𝐴ଶଷ

𝐴ଵଷ 𝐴ଶଷ 𝐴ଷଷ

൩ ൥
𝑈ଵ

𝑈ଶ

𝑈ଷ

൩ = ൥
0
0
0

൩ (2.27) 

 

Where the components of 𝑨 are, 

𝐴ଵଵ = 𝐶ଵଵ + 2𝐶ଵହ𝛼 + 𝐶ହହ𝛼ଶ − 𝜌𝑐௣
ଶ  

𝐴ଵଶ = 𝐶ଵ଺ + (𝐶ଵସ + 𝐶ହ଺)𝛼 + 𝐶ସହ𝛼ଶ  

𝐴ଵଷ = 𝐶ଵହ + (𝐶ଵଷ + 𝐶ହହ)𝛼 + 𝐶ଷହ𝛼ଶ (2.28) 

𝐴ଶଶ = 𝐶଺଺ + 2𝐶ସ଺𝛼 + 𝐶ସସ𝛼ଶ − 𝜌𝑐௣
ଶ  

𝐴ଶଷ = 𝐶ହ଺ + (𝐶ଷ଺ + 𝐶ସହ)𝛼 + 𝐶ଷସ𝛼ଶ  

𝐴ଷଷ = 𝐶ହହ + 2𝐶ଷହ𝛼 + 𝐶ଷଷ𝛼ଶ − 𝜌𝑐௣
ଶ  

 

After some manipulation2, the ultrasonic wave field can be obtained as the 

combination of the six partial waves [18], 

𝑢௟ = ൥ ෍ 𝐵௠𝑈௟௠𝑒𝑥𝑝(𝑖𝑘𝛼௠𝑥ଷ)

଺

௠ୀଵ

൩ 𝑒𝑥𝑝൫𝑖(𝑘𝑥ଵ − 𝜔𝑡)൯,   𝑙 = 1,2,3 (2.29) 

 

Where 𝛼௠ corresponds to the six solutions from |𝑨| = 0, 𝑈௟௠ is the solution of 

[𝑈ଵ 𝑈ଶ 𝑈ଷ] for a specific 𝛼௠; and 𝐵௠ is the six combination coefficients to be calculated 

when applying the boundary conditions. 

The boundary conditions as a free-stress plate at both surfaces are expressed in 

equation (2.30) [18], 

𝜎ଷ௟ = 0,   𝑙 = 1,2,3  at  𝑥ଷ = 0  and  𝑥ଷ = ℎ (2.30) 

Using equations (2.24) and (2.25), we can obtain the stress components in terms of 

the partial wave solutions [18], 

                                                   
2 More detailed explanation of the theoretical wave propagation in anisotropic plates is available 
in Chapter 15 of the book “Ultrasonic Guided Waves in Solid Media” by Joseph L. Rose. 
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𝜎ூ = ൥ ෍ 𝑀ூ௠𝐵௠𝑒𝑥𝑝(𝑖𝑘𝛼௠𝑥ଷ)

଺

௠ୀଵ

൩ (𝑖𝑘)𝑒𝑥𝑝൫𝑖(𝑘𝑥ଵ − 𝜔𝑡)൯, 𝐼 = 1,2, ⋯ ,6 (2.31) 

 

Where the expressions of 𝑀ூ are, 

𝑀ଵ௠ = 𝐶ଵଵ𝑈ଵ௠ + 𝐶ଵଷ𝑈ଷ௠𝛼௠ + 𝐶ଵସ𝑈ଶ௠𝛼௠ + 𝐶ଵହ(𝑈ଵ௠𝛼௠ + 𝑈ଷ௠) + 𝐶ଵ଺𝑈ଶ௠  

𝑀ଶ௠ = 𝐶ଵଶ𝑈ଵ௠ + 𝐶ଶଷ𝑈ଷ௠𝛼௠ + 𝐶ଶସ𝑈ଶ௠𝛼௠ + 𝐶ଶହ(𝑈ଵ௠𝛼௠ + 𝑈ଷ௠) + 𝐶ଶ଺𝑈ଶ௠  

𝑀ଷ௠ = 𝐶ଵଷ𝑈ଵ௠ + 𝐶ଷଷ𝑈ଷ௠𝛼௠ + 𝐶ଷସ𝑈ଶ௠𝛼௠ + 𝐶ଷହ(𝑈ଵ௠𝛼௠ + 𝑈ଷ௠) + 𝐶ଷ଺𝑈ଶ௠ (2.32) 

𝑀ସ௠ = 𝐶ଵସ𝑈ଵ௠ + 𝐶ଷସ𝑈ଷ௠𝛼௠ + 𝐶ସସ𝑈ଶ௠𝛼௠ + 𝐶ସହ(𝑈ଵ௠𝛼௠ + 𝑈ଷ௠) + 𝐶ସ଺𝑈ଶ௠  

𝑀ହ௠ = 𝐶ଵହ𝑈ଵ௠ + 𝐶ଷହ𝑈ଷ௠𝛼௠ + 𝐶ସହ𝑈ଶ௠𝛼௠ + 𝐶ହହ(𝑈ଵ௠𝛼௠ + 𝑈ଷ௠) + 𝐶ହ଺𝑈ଶ௠  

𝑀଺௠ = 𝐶ଵ଺𝑈ଵ௠ + 𝐶ଷ଺𝑈ଷ௠𝛼௠ + 𝐶ସ଺𝑈ଶ௠𝛼௠ + 𝐶ହ଺(𝑈ଵ௠𝛼௠ + 𝑈ଷ௠) + 𝐶଺଺𝑈ଶ௠  

 

Applying the boundary conditions to 𝜎ଷ, 𝜎ସ and 𝜎ହ, which are 𝜎ଷଷ, 𝜎ଷଶ and 𝜎ଷଵ; we 

can obtain the following equation (2.33), which by calculating the determinant of the 

characteristic equation equal zero,  it is possible to get the dispersion curves of the 

anisotropic structure, as we did before for the isotropic case [18]. 

 

⎣
⎢
⎢
⎢
⎢
⎡

𝑀ଷଵ                        𝑀ଷଶ

𝑀ସଵ                        𝑀ସଶ

𝑀ଷଷ                        𝑀ଷସ

𝑀ସଷ                        𝑀ସସ

𝑀ଷହ                        𝑀ଷ଺

𝑀ସହ                        𝑀ସ଺

𝑀ହଵ 𝑀ହଶ

𝑀ଷଵexp (𝑖𝑘𝛼ଵℎ) 𝑀ଷଶexp (𝑖𝑘𝛼ଶℎ)

𝑀ହଷ 𝑀ହସ

𝑀ଷଷexp (𝑖𝑘𝛼ଷℎ) 𝑀ଷସexp (𝑖𝑘𝛼ସℎ)

𝑀ହହ 𝑀ହ଺

𝑀ଷହexp (𝑖𝑘𝛼ହℎ) 𝑀ଷ଺exp (𝑖𝑘𝛼଺ℎ)
𝑀ସଵexp (𝑖𝑘𝛼ଵℎ) 𝑀ସଶexp (𝑖𝑘𝛼ଶℎ)

𝑀ହଵexp (𝑖𝑘𝛼ଵℎ) 𝑀ହଶexp (𝑖𝑘𝛼ଶℎ)

𝑀ସଷexp (𝑖𝑘𝛼ଷℎ) 𝑀ସସexp (𝑖𝑘𝛼ସℎ)

𝑀ହଷexp (𝑖𝑘𝛼ଷℎ) 𝑀ହସexp (𝑖𝑘𝛼ସℎ)

𝑀ସହexp (𝑖𝑘𝛼ହℎ) 𝑀ସ଺exp (𝑖𝑘𝛼଺ℎ)

𝑀ହହexp (𝑖𝑘𝛼ହℎ) 𝑀ହ଺exp (𝑖𝑘𝛼଺ℎ)⎦
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎡
𝐵ଵ

𝐵ଶ

𝐵ଷ

𝐵ସ

𝐵ହ

𝐵଺⎦
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡
0
0
0
0
0
0⎦

⎥
⎥
⎥
⎥
⎤

 

(2.33) 

For the calculation of the group and phase velocities, it is necessary to make a 

distinction between isotropic or anisotropic materials. Since for isotropic materials 

the wave velocity depends only on the magnitude of the wave vector k = |𝐤|, which 

is the wavenumber. But for anisotropic materials, it is required to consider the 

magnitude and also the direction of the wave vector. This distinction expands the 

previous definition of the phase velocity for anisotropic materials in order to involve 

in the equation the direction of the wave vector, which can be expressed as [28], 

 

𝒄𝒑 = ቀ
𝜔

𝑘
ቁ ൬

𝒌

|𝒌|
൰ = ቀ

𝜔

𝑘ଶ
ቁ 𝒌 (2.34) 
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where 𝜔 is the angular frequency and 𝒌 the wave vector. A new concept that was 

not indicated before for isotropic materials is the slowness. Mathematically, it is 

defined as the inverse velocity and it is given by, 

 

𝒔 =
𝒌

𝜔
 (2.35) 

 

Note that the phase velocity and the slowness always have the same direction as the 

wave vector, and the wave vector direction is always normal to the surfaces of 

constant phase, namely normal to the wavefronts. In order to calculate the group 

velocity, the wave vector direction has to be taken into consideration as well. 

Therefore, from the group velocity equation presented before in (2.19), the group 

velocity can be defined as [27], [28], 

 

𝒄𝒈 =
𝑑𝜔(𝑘, 𝜃)

𝑑𝒌
= ∇𝜔(𝑘, 𝜃) =

𝜕𝜔

𝜕𝑘
𝒆𝒌 +

1

𝑘

𝜕𝜔

𝜕𝜃
𝒆𝜽 (2.36) 

 

where 𝒆𝒌 is the unit vector in the radial direction and 𝒆𝜽 is the unit vector in the 

angular direction. The group velocity in Cartesian coordinates can be calculated 

using a transformation matrix, 

 

ቄ
𝑐௚௫

𝑐௚௬
ቅ = ቂ

cos 𝜃 −sin 𝜃
sin 𝜃 cos 𝜃

ቃ ൝

డఠ

డ௞
భ

ೖ

ങഘ

ങഇ

ൡ (2.37) 

 

Consequently, the magnitude of the group velocity is, 

 

𝑐௚ = ට𝑐௚௫
ଶ + 𝑐௚௬

ଶ  (2.38) 

 

And the angle of the group velocity direction is, 

 

𝜃௚ = tanିଵ
𝑐௚௬

𝑐௚௫

 (2.39) 
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The angular difference between the wave vector angle and the group velocity angle 

is known as the skew angle, 𝜑௦௞௘௪ = 𝜃 − 𝜃௚. An alternative way to calculate the skew 

angle from the complex Poynting vector is described in [26]. The equation of the 

Poynting vector is, 

 

𝑷 = −
𝒗෥ ∙ 𝝈𝑴

2
 (2.40) 

 

where 𝒗෥ is the conjugate of particle velocity vector and 𝝈𝑴 is the stress tensor, 

 

𝝈𝑴 = ൥

𝜎௞௞ 𝜎௞ఏ 𝜎௞௭

𝜎ఏ௞ 𝜎ఏఏ 𝜎ఏ௭

𝜎௭௞ 𝜎௭ఏ 𝜎௭௭

൩ (2.41) 

 

The integral of the Poynting vector across the thickness in a specific direction yields 

the power flow density in this chosen direction. Therefore in the case of plane waves, 

it is possible to determine the skew angle with equation (2.42) by calculating the 

power flow density in the wave vector direction 𝑃௞, and in the perpendicular 

direction (angular direction) 𝑃ఏ. For anisotropic materials, 𝑃ఏ is non-zero for certain 

wave modes. Hence, this component introduces a wave skew effect, which can be 

calculated by the following equation:  

 

𝜑௦௞௘௪ = tanିଵ ቆ
∫ 𝑃ఏ𝑑𝑧

∫ 𝑃௞𝑑𝑧
ቇ  (2.42) 

 

This is not the case for isotropic materials, where the component 𝑃ఏ will be equal to 

zero as there is no angular dependency of the velocities. So, the skew angle will be 

zero and the wave vector and group velocity will have the same direction.  

Geometrically, the wave vector can be related to the group velocity, see Figure 2.7. 

The normal direction of group velocity wavefront is the direction of the wave vector. 

And vice versa, the normal direction of the slowness curve is the group velocity 

direction. In this Figure, it is also represented the skew angle 𝜑, in which the different 

directions of the group, 𝜃௚, and phase velocities, 𝜃, are clearly shown. 
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Figure 2.7: Relationship between wave vector and group velocity vector. (a) Slowness curve. (b) 

Group velocity wave front. [28] 

 

In this chapter, fundamentals of ultrasonic guided waves in metallic and composite 

structures have been reviewed. Key concepts like group and phase velocity, 

dispersion curves or fundamental wave modes in plate-like structures (S0, A0 and 

SH0) will be frequently mentioned hereafter; hence, the reader should be familiar 

with these terms for the better understanding of the thesis. Next chapter, a review of 

the most relevant publications on this topic is presented. 

 

(a) (b) 
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Chapter 3 

 

3 Literature Review 

 

3.1 Introduction 
 

Guided Wave technology has been widely studied over the years and applied for 

inspection in different metallic structures such as pipes, plates or rails [5], [29]–[36]. 

During the 90´s, significant research was focused on pipe inspection [29], [30], [37]–

[40], because there was a need to assess in a rapid manner the integrity of hundreds 

of kilometres of pipelines in the oil & gas, nuclear and chemical industries. As a result 

of these investigations, guided wave commercial devices were released to service 

these industries [41] which are able to inspect tens of metres from one position and 

detect wall thickness variations caused by corrosion and cracks.  

In addition to metallic structure inspection, composite inspection using guided 

waves has been investigated in the recent years [10], [26], [42]–[51]. Much interest 

has arisen in this topic due to the increasing implementation of composite materials 

in the aerospace and wind energy industries and the necessity to inspect and monitor 

large composite structures, such as wings or wind turbine blades, in a cost-effective 

and rapid way. Moreover, composite materials, especially carbon fibre-epoxy due to 

its high Young’s modulus and high strength to low weight ratio, are commonly used 

as structural parts like the spar in wings and blades. It is essential the inspection of 
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those members to assure the integrity of the entire structure. Composite materials 

can be easily damaged when impacted, presenting damages such as delamination or 

matrix cracking which are difficult to detect in a visual based inspection. Currently, 

conventional ultrasonic inspection is widely used as the preferred NDT technique 

for composite structures [52]. This technique is able to detect the most common 

composite damages (delaminations, disbonds, porosity), but dependence on manual 

inspection of parts with difficult accessibility and the slowness of the inspection are 

obstacles, as well as the interruption of the operation of the entire structure means 

that an automatic inspection is also desirable. Guided wave technology provides an 

alternative solution for an in-service assessment of the integrity of the structure 

which can be deployed automatically. Damage detectability in composites using 

guided waves has been proved in many scientific publications [44], [48], [53]–[65]. 

The anisotropic nature of composites due to the different ply-orientations produces 

a directional dependence of the wave propagation properties in terms of velocity 

and wave directionality [26] which increases the difficulty of the data analysis. Also, 

the complex designs of in-service composite structures, such as wind turbine blades, 

which are composed of different materials, e.g. carbon fibre, glass fibre, balsa wood 

or honeycomb hinder the implementation of this technique commercially, since it is 

difficult to extract relevant information from the complex signals acquired in order 

to assess the integrity of the structure. One of the biggest obstacles when applying 

guided wave inspection on a composite structure is the acquisition of the dispersion 

curves. Dispersion curves are an essential tool for the analysis of guided waves and 

are commonly calculated using different numerical techniques which require the 

input of the material properties of the structure. This type of structures is commonly 

considered orthotropic which requires nine different elastic constants to characterise 

the material; in contrast to isotropic materials which only requires two. Obtaining 

this information is not a straightforward operation; since the datasheet does not 

usually provide all the required data; and when it comes to commercial structures, 

manufacturers due to confidentiality do not usually provide information about the 

lay-up, material properties or thicknesses, being unfeasible the calculation of the 

dispersion curves. 
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3.2 Methodologies for Dispersion Curve 
Creation 

 

There has been much work published on the determination of dispersion curves 

describing many analytical, numerical and experimental methods. For relatively 

simple structures like plates or pipes, dispersion curves can be predicted using the 

commercially available software Disperse®, which uses the Semi-Analytical Finite 

Element method  [21]. Other methods, such as transfer matrix method [66], [67] or 

pseudospectral collocation method [68], have been utilized to determine dispersion 

curves. Finite Element (FE) [69] and Semi-Analytical Finite Element [34], [70] 

methods have been also used. All these numerical and analytical methods require 

knowledge of material properties and thickness of the structure to determine the 

dispersion curves. 

Experimental methods do not suffer this limitation, since guided wave data is 

directly acquired from the inspected structure. The most widely used experimental 

technique to measure dispersion curves is the 2D Fast Fourier Transform (FFT) [71]. 

This signal processing technique requires the acquisition of many signals along the 

wave propagation direction in order to carry out a double FFT in time and space. 

The result is a wavenumber-frequency matrix, which can be rearranged to give the 

phase velocity dispersion map. The acquisition of the signals from all required 

locations is manually prohibitive; therefore, Scanning Laser Vibrometer (SLV) is 

commonly used to automatically obtain the signals from pre-selected points. This 

device is highly sensitive and bulky; being restricted to controlled areas like 

laboratories [72] and difficult to use in situ. 

Other experimental techniques have been proposed recently. Harb and Yuan [73], 

[74] presented a non-contact technique using an air-coupled transducer  to generate 

the wave mode on the plate and a SLV to acquire the propagating mode. The 

technique requires precise control of the incidence angle of the ultrasonic pressure 

from the air-coupled transducer upon the surface. By relating the frequency to the 

incidence angle at which the wave amplitude is maximized, it is possible to calculate 

the phase velocity using Snell’s law. However, the technique has limited 
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applicability outside of the laboratory. In works by Mažeika et al. [75], [76], a zero-

crossing technique is used to calculate the phase velocity based on the measurement 

of the position of constant phase points of the pulse corresponding to zero amplitude 

as a function of time. A similar approach is taken in the phase velocity method in 

[77], tracking the peaks of the pulse rather than the zero crossings. To produce 

convincing results, both techniques require the acquisition of a large number of 

signals at different distances making these techniques time-consuming. For the sake 

of reducing time and sampling points in space, Adams et al. [78] presented a method 

using an array probe from which a time-space matrix can be created. A 2D filter is 

applied to the matrix to extract the phase velocities. The technique was demonstrated 

to be valid in simulation using FE analysis. However, for realistic probe sizes, the 

technique has limited experimental applications. In [79], sparse wavenumber 

analysis was used to experimentally recover the dispersion curves from an 

aluminum plate; however, seventeen sensors were needed to deploy the technique. 

An alternative approach to getting dispersion curves from experimental signals is to 

use time-frequency representations [80], where group velocity can be directly 

determined. However, the calculation of phase velocity involves the integration of 

group velocity requiring precise values of ω and k at the lower limit, which are not 

easy to obtain experimentally.  

Experimental calculation of bulk wave velocities in dispersive materials has been 

studied [81]. Sachse and Pao used the method of phase spectral analysis, where the 

phase delay is calculated using the real and imaginary parts of the Fourier transform 

of the pulse, and then obtaining the group delay through the differentiation of the 

phase characteristics of the pulse with respect to frequency. Pialucha et al. presented 

the amplitude spectrum technique overcoming the requirement of the phase 

spectrum technique for the separation of successive pulses in the time domain for 

bulk waves [82]. However, phase spectral technique provided better results when 

pulses can be separated. 

 

These experimental techniques that have been reviewed present some limitations to 

be applied on commercial structures on-site, such as the collection of a large number 

of signals or the use of very sensitive equipment that only can be used in controlled 
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environments like laboratories. Therefore, in this chapter a novel methodology is 

proposed for the creation of the dispersion curves just requiring the acquisition of 

two signals and the use of two conventional transducers and a portable pulser-

receiver enabling the application of this technique in non-controlled environments. 

 

 

3.3 Analysis of Guided Wave Propagation in 
Composites 

 

Guided wave propagation in multi-layered plates is a topic that has been present in 

the literature for a few decades; however, in the recent years it has gained great 

popularity due to the increase of the number of composite structures and the need 

to find a rapid and reliable way to assess the structural integrity of them. Before 

applying guided wave technology to composites for inspection purposes, the 

structure’s wave propagation characteristics need to be understood, such as 

dispersion curves, attenuation, wave mode vibration, etc. Putkis et al. [83] studied 

the key propagation characteristics on composites of the three fundamental wave 

modes at low frequencies. In this investigation, the authors give some guidance 

about which wave mode would be viable for the intended application based on the 

attenuation, mode coupling, dispersion, velocity angular profile, energy focusing 

and minimum resolvable distance. Since there are many factors affecting wave 

propagation in composites, the selection of the preferred wave mode should be 

application driven which will be a trade-off between the different criteria. Typically, 

these propagation variables will depend on the lay-up configuration and elastic 

constants of the plies of the laminate, so each case is unique requiring a specific 

analysis. 

Simulation of guided waves helps us to understand the wave propagation in multi-

layered structures. It is an essential and useful step to analyse and validate new 

guided wave applications in composite structures. The wide range of different       

lay-ups makes the experimental analysis of each one individually impracticable; 

therefore the simulation is used to investigate different materials or lay-ups in an 

efficient manner. In guided wave analysis of composites, the hypothesis of 
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considering each layer isotropic across the thickness is commonly adopted; each ply 

is a homogeneous orthotropic layer. This assumption is based on the fact that the 

wavelengths of the propagating guided waves are substantially longer than the 

characteristic size of the cross section of the fibres [28], [84]. In [84], it is shown that 

the scattering produced by the fibres of each layer occurs when the wavelength           

(1 - 20 mm) is of the same order of the diameter of the fibres (0.005 - 0.010 mm) for 

longitudinal modes, and 40 times the order of the diameter for flexural modes. 

The study of ultrasonic waves in composite materials and the analysis of the 3D 

propagation of guided waves are commonly studied by numerical or analytical 

methods. Different techniques have been proposed, such as traditional Finite 

Element Method (FEM) [17], [85], [86], semi-analytical finite element method (SAFE) 

[18], [34], [87], finite differences [88], [89] or applying the elasticity theory using the 

global matrix and transfer matrix [25], [27], [28]. Finite Element Methods have 

limitations due to the available computational resources, since for high frequencies 

a very fine discretization, both temporal and spatial, is necessary to comply with the 

Nyquist theorem and to ensure a minimum number of elements per wavelength in 

order to replicate the wave. This problem is overcome with the use of SAFE, where 

the waveguide is only discretized in a cross section of the structure, reducing 

considerably the computational load. In the literature the analytical methods have 

been established as a good approach for the analysis of guided waves in composites, 

but they are more susceptible to miss roots of the dispersion equations and distort 

the results. However, the spectral collocation method which was recently presented 

in [90], offers advantages over classical partial wave root finding routings on 

robustness and reliability. 

The guided wave propagation in composites which depends on the angle of 

propagation and the stacking sequence of the laminate have been described in 

several publications [25], [27], [28], [91]. For instance, it has been shown that the 

propagation in unidirectional laminates has a preferential direction along the fibre 

direction. In the case of bidirectional laminates [±45], the simulations show that there 

are two preferential directions at 45º and -45º, which are the fibre directions. And for 

quasi-isotropic laminates, the wavefront profile is very similar to the isotropic 

materials; where the wave velocity has only small variations with the angle of 
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propagation. Most of the investigations on the wave propagation in composites have 

been carried out studying the S0 and A0 modes [50], [92]–[94]. In [27] for instance, the 

authors analysed the wave propagation in a cross-ply laminate using the analytical 

method of Green’s matrix in a frequency-wavenumber domain. In this work, it was 

concluded that the symmetric mode depends strongly on the wave propagation 

direction for high anisotropic laminates, in contrast to the antisymmetric modes 

which weakly depend on the propagation angle. On the other hand, a few papers 

have investigated the propagation of the SH0 which presents a complex and 

interesting propagation behaviour in anisotropic media. Karmazin et al. [27] studied 

the propagation of the shear horizontal mode analytically. They observed that SH0 

presented several group velocities values for the same propagation direction, 

particularly one, two or three different group velocities, as it can be seen in Figure 

3.1a. Therefore, in these particular multi-valued directions usually called caustics 

[27], three pulses of the same wave mode will propagate at different velocities. This 

effect is caused when the curvature of the slowness shifts from convex to concave 

shape, which is known as energy focusing effect in the analysis of bulk waves in 

anisotropic solids [28]. Note that close to the angles of 7º and 83º, there is a 

concentration of energy carried by the SH଴ mode.  

 

          
Figure 3.1: Representation of the group velocity wave front in a cross-ply laminate by two 

different methods. (a) An analytical method using the Fourier Transform of Green’s matrix. 
Solid line [27]. (b) An experimental technique using scanning air-coupled ultrasonic transducers 

(SAUT) [95] 

 

(a) (b) 
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The analysis of the guided wave propagation of the SH0 mode in composite materials 

has not been widely investigated yet. Studies on how the velocity angular profile 

changes depending on the lay-up of the laminate or how the different SH0 

wavefronts, presented in Figure 3.1, are generated depending on the transmitter 

direction have not been carried out yet and are required to better understand the 

propagation behaviour of the shear horizontal mode in anisotropic media. 

 

3.3.1 Damage Detection in Composites Using Guided 
Waves 

 

In composite materials, the most common damage is the delamination between plies 

caused by impacts or cyclic loads. This mode of failure consists in the separation of 

layers which leads to significant loss of strength. Typically, the flaws created inside 

the laminate by impacts are not visible to the naked eye, therefore guided wave 

inspection in composite is a suitable solution, since the wave modes propagate along 

the structure sweeping the entire thickness. Internal damages will interact with the 

propagating wave modes, inducing changes in its propagation pattern. The wave 

modes will be affected by the delamination in different ways depending on its mode 

of vibration. In the literature [48], [96]–[98], the fundamental wave modes are the 

most studied modes and the most commonly used in order to interrogate a structure. 

The symmetric mode is typically chosen at low frequencies, below 200 kHz, because 

it is less dispersive and the shape of the pulse does not spread out during the 

propagation which eases the post-analysis and reduce the complexity of the acquired 

signals. In addition, symmetric mode has less attenuation than A0 since its 

displacement is an in-plane motion and the carried energy remains inside the 

structure avoiding scattering. The S0 mode is also the fastest fundamental mode 

which means identification of the S0 mode in the acquired signals is easier [14]. 

Nevertheless, the A0 mode has more resolution in order to detect smaller flaws, since 

the wavelength of the A0 mode is shorter than the others and the size defect 

detectability is commonly established at the same order of the wavelength of the 

propagating mode. Moreover, the activation of A0 mode is easier through the use of 
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conventional compressional transducers. These transducers have an out-of-plane 

displacement; consequently the signal amplitude of A0 will be higher than S0 mode 

[14]. Regarding the sensitivity to delamination detection, the literature does not 

clarify which wave mode is more suitable for this application, since some papers 

affirm that S0 mode is more sensitive to delaminations [14], [15]; and other papers 

use A0 mode as the preferred mode [16], [17]. 

Investigations on delamination detection have observed that the crossing of wave 

modes through a delaminated area produces a split in energy to the propagating 

mode and creates a new mode of propagation [60], [97], [98]. This wave mechanism 

is called mode conversion, and it also occurs when the wave reaches the edge of a 

plate where new wave modes are created and reflected backwards. Mode conversion 

in delaminations has been studied in several investigations in order to take 

advantage of these changes and use them to detect and locate these defects. Hu et al. 

[97] analysed numerically the propagation of the S0 mode through a delamination. 

When the S0 mode enters in the delamination, a small amount of the energy of S0, 

almost undetectable, is reflected backwards and most of it is transmitted forward, 

but also mode conversion is produced, so a new A0 mode is reflected and a new A0 

mode is transmitted. The same mechanism occurs when the wave mode moves out 

of the delamination, the S0 and a new A0 are transmitted and a reflected S0 and a new 

A0 are transmitted backwards. In this case the reflected S0 mode has a greater amount 

of energy which enables the detection of the delamination in a pulse-echo 

configuration; see Figure 3.2 for further clarification. Therefore, in their simulation, 

they were able to locate the end of the delamination calculating the propagating 

distance with the dispersion curves but were not able to determine the extent of the 

delamination. 
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Figure 3.2: Wave signals of a beam with a delamination of length of 200 mm, and signal 
differences of intact and delaminated beams: (a) 139 µs (wave signal of a delaminated beam);  

(b) 139 µs (difference of wave signals of intact and delaminated beams); (c) 182 µs (wave signal 
of a delaminated beam); (d) 182 µs (difference of wave signals of intact and delaminated 

beams); (e) 236 µs (wave signal of a delaminated beam); (f) 236 µs (difference of wave signals of 
intact and delaminated beams); (g) 303 µs (wave signal of a delaminated beam) and (h) 303 µs 

(difference of wave signals of intact and delaminated beams) [97]. 
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Other detection techniques are based on a pitch-catch configuration, where the 

acquired signals are usually compared to a baseline signal from an undamaged 

condition. These techniques analyse the incoming wave packets and study their 

phase, amplitude and time of arrival establishing a damage index in order to 

compare different damage states [47], [48]; however, baseline subtraction method 

presents some challenges due to temperature variations, since at different 

temperatures the velocity of the wave will change due to a variation of the material 

properties of the structure. The use of a single pair of transducers on its own is quite 

limited since only the path between transmitter and receiver is inspected. Thus, a 

network of transducers covering the structure has been performed [46], [99], [100] in 

order to interrogate in a pitch-catch configuration the entire structure. With this 

technique, the system is able to map the inspected area by analysing all the paths 

between transducers. Different array algorithms have been used to accurately 

calculate and determine the position of the damage, and with the use of array-

imaging techniques the visual localization of the damage is highly facilitated [100], 

[101]. Figure 3.3 shows an example of a focusing array imaging algorithm which 

successfully locates the damages. 

 

 

Figure 3.3: (a) Reconstructed damage localization image and (b) corresponding binary image. 
Pink circle indicates the real location of the damage. [100] 
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Another interesting technique is to apply a data processing algorithm to a wave field 

image acquired by a Scanning Laser Vibrometer system [11], [64], [95], [102], [103]. 

In [95], the authors use a signal processing technique in order to remove specific 

wave modes from the images in order to reveal low amplitude reflections from 

damages masked by high amplitude wave modes. To do this, the images are 

transformed to a frequency-wavenumber plane using the 2D Fourier Transform. In 

this domain, the different propagating wave modes are easily recognisable, so by 

applying a filter it is possible to remove a specific wave mode, and subsequently 

perform the inverse Fourier Transform to get the images without this mode. This 

method is called the wavenumber image filtering algorithm. The disadvantage of 

this technique is that is not applicable to in-service structures, since the equipment 

to get the images is very sensitive to external vibrations so the acquisition has to be 

performed in very controlled conditions.  

Another important damage in composites that has been studied in the literature is 

the disbond, which is the separation between the shell and the core in a sandwich 

structure or between two parts joined by adhesive or co-curing. This kind of damage 

is structurally of great importance, since the disbond of a stiffener from the shell in 

a wing or the spar from the shell in a wind turbine blade can cause a great loss of 

stiffness and a possible collapse of the entire structure. Investigations of this type of 

damage with guided waves follow a similar approach to the delamination detection. 

Since most of the studies are based on a transducer network in order to map the 

bonding area and locate the disbond by analysing the paths between transducers 

[17], [86], [104], [105]. 

 

 

3.3.2 Damage Detection in Composites Using SH0 Mode 
 

Guided wave technology has been investigated for damage detection applications in 

composite materials, mainly using S0 and A0 modes for interrogating the structure. 

For the case of SH0 mode, there are only a few investigations using this mode for 

composite damage detections, even though it is a mode that offers great advantages 

over the other wave modes for applications in isotropic structures, such as non-
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dispersive behaviour allowing long propagations without spreading out of the pulse 

and also shorter wavelength in comparison to the S0 mode which provides more 

sensitivity for detection of smaller defects. Taking advantage of these properties, 

researchers have used SH0 to evaluate its detection capabilities for different damages 

in isotropic structures. For instance, in [106], SH0 is used to inspect the interfacial 

adhesion between two aluminium plates, as well as in [107] where the inspected 

bonded interface is between an aluminium plate and a CFRP plate, using the 

aluminium plate as the waveguide. SH0 was also used in [108] for inspection of 

tapered aluminium plates analysing the mode conversion generated at the tapered 

area. Recently, much interest has arisen about the use of Shear Horizontal mode for 

Structural Health Monitoring applications due to the advantages over the other 

fundamental modes presented above. However, an obstacle that SH0 is facing for its 

use in plate-like structures is the directionality that SH0 experiences when this mode 

is created, since the shear transducers generate SH0 just perpendicularly to the poling 

axis, not at all directions. In order to facilitate the deployment of SH0 mode, two new 

designs of an omnidirectional shear horizontal transducer are presented in [109]–

[111]. The new transducer designs are used in a sparse array SHM system for 

detecting and locating damages in aluminium plates obtaining accurate detection 

results. 

As mentioned above, shear horizontal mode has not been widely investigated for 

damage detection in composite structures, which could be due to its complex 

propagation pattern. The only publication that has been found using SH0 for 

delamination detection in composites is [60], which affirms that delamination 

detection in a CFRP beam can be obtained by evaluating SH0 which results from 

mode conversion of incident S0 wave mode when reaches the delamination area. 

However, the author of this thesis has some reservations about the validity of this 

method. Further investigations on the delamination sensitivity of SH0 should be 

carried out to prove its detection capabilities in composite materials. The main 

disadvantage of using SH0 could be the multiple group velocity values which would 

hinder the post-processing of the acquired signals. However, Shear Horizontal mode 

can bring advantages over the other two fundamental modes, as it occurs in isotropic 

structures where SH0 is a non-dispersive mode concentrating the wave energy in the 
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transmitting pulse without spreading out the wave packet, which facilitates the 

analysis of the signals and also allows the propagation of longer distances. Another 

potential benefit of using SH0 is the acquisition of less complex signals due to the use 

of shear transducers where the unique mode propagating perpendicularly to the 

poling axis will be SH0 mode without S0 and A0 modes. Moreover, SH0 mode has an 

in-plane displacement which allows to reduce the attenuation during its propagation 

due to energy leakage with the surrounding media enabling the propagation of 

longer distances; and another advantage over S0 mode is the shorter wavelength of 

the SH0 which allows the detection of smaller defects. Due to all of these reasons, it 

was decided that it was worth it to study SH0 mode for the detection of damages in 

anisotropic media. 
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Chapter 4 

 

4 Experimental Methodology for 
Dispersion Curve Creation 

 

4.1 Introduction 
 

In the Literature Review, it was mentioned that dispersion curves are important tools 

for any guided wave application; accurate dispersion curves enable wave modes of 

received wave packets to be distinguished, specific wave modes to be cancelled to 

clean the acquired signal, the propagation of wave modes in a particular direction 

using phased arrays and the spatial location of damage in the structure to be 

determined based on time-of-flight measurements. For instance, guided waves are 

being used in commercial products to detect wall thickness losses due to corrosion 

for pipeline inspection in oil & gas industry. These commercial products generate a 

unique wave mode which propagates along the structure avoiding the creation of 

multimodal excitations, as this would increase the complexity of the analysis of the 

signals [36]. This is achieved by cancelling undesired wave modes and the 

backwards propagation using the dispersion curves. 

Problems with the application of guided waves occur when the material properties 

or thickness of the structure to be inspected are unknown due to imprecise records, 

commercial confidentiality or manufacturing and maintenance uncertainty. This is a 
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particular problem when evaluating composite structures, like wind turbine blades, 

where elastic constants are not often available. To inspect this kind of structure in an 

industrial environment, it becomes impracticable as currently there are no means of 

generating the dispersion curves for such situations. Therefore, there is a need to be 

able to calculate in situ the phase and group velocities at frequencies of interest in a 

quick and reliable way without requiring prior knowledge of material properties or 

thickness. 

In this chapter, an experimental technique for straightforward calculations of phase 

and group velocities of guided waves at frequencies of interest is presented. The 

technique requires just the acquisition of two signals spaced a few centimetres using 

conventional transducers, enabling its application on in-service structures located in 

poorly-controlled environments. There is no requirement for prior knowledge of the 

material properties or thickness of the inspected structure. Hereunder, formulation 

on which the experimental technique relies is presented, as well as a detailed 

description of the methodology to extract the group delay and phase shift from 

experimental signals. Finally, validation tests using synthesized signals, simulated 

signals from FE analysis and experimental signals from a 3mm-thick aluminium 

plate were performed to validate the technique. 

 

4.2 Theoretical Basis 
 

Assuming that the propagating pulse is sufficiently narrow-band that dispersion 

does not significantly distort the wave-packet over the propagation distance, the 

signal can be approximated as [112], 

 

𝜓(𝑥, 𝑡) = 𝐺 ቆ𝑡 −
𝑥

𝑣௚
ቇ 𝑒௜(௞௫ିఠ௧) (4.1) 

 

where 𝑥 is propagation distance, 𝑡 is time, 𝜔 = 2𝜋𝑓 is the angular frequency of the 

harmonic wave at frequency 𝑓 and 𝑘 = 2𝜋 𝜆⁄  is the wavenumber. 𝐺(𝑡) is a function 

defining the temporal pulse shape. 𝐺(𝑡) is defined such that the pulse has a peak at 
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𝑡 = 0. 𝑣௚ is the group velocity at which the packet propagates and so if the trajectory 

of the wave packet peak is defined the point where by 𝐺൫𝑡଴ − 𝑥଴ 𝑣௚⁄ ൯ = 𝐺(0) then, 

 

𝑣௚ =
𝑥଴

𝑡଴

 (4.2) 

 

The wave packet is shown schematically in Figure 4.1. The harmonic part of the 

signal has a phase of 

 

𝜙 = 𝑘𝑥 − 𝜔𝑡 (4.3) 

 

and propagates at the phase velocity [18], [112]. 

 

𝑣௣ =
𝜔

𝑘
 (4.4) 

 

The phase of the harmonic signal at the centre of the wave packet 𝑥଴, 𝑡଴ is 

 

𝜙଴ = 𝑘𝑥଴ − 𝜔𝑡଴ (4.5) 

 

Rearranging and substituting for 𝑣௣ and 𝑣௚ gives 

 

𝜙଴ = 𝑘𝑡଴ ൬
𝑥଴

𝑡଴

−
𝜔

𝑘
൰ (4.6) 

𝜙଴ = 𝑘𝑡଴൫𝑣௚ − 𝑣௣൯ (4.7) 

 

For non-dispersive waves, 𝑣௣ = 𝑣௚ and equation (4.7) gives the expected result that 

the phase at the wave packet centre is 𝜙଴ = 0 for all propagation times. Where the 

system is dispersive there is a finite phase difference between the harmonic part of 

the signal and the wave packet, 𝜙଴ which increases linearly with propagation time 

and is positive if 𝑣௚ > 𝑣௣, negative if 𝑣௚ < 𝑣௣. Assuming that this phase difference 

can be measured experimentally, equations (4.4) and (4.5) further yield two useful 

equations for evaluating the phase velocity: 
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Figure 4.1: Wave packet arriving at 𝑥଴ at time 𝑡଴ with phase 𝜙଴ propagating at group velocity 

𝑣௚. 𝐺(𝑡) is represented as the envelope of the wave packet. 

 

𝑣௣ =
𝑥଴ −

𝜙଴

𝑘
𝑡଴

 (4.8) 

𝑣௣ =
𝑥଴

𝑡଴ +
𝜙଴

𝜔

 (4.9) 

 

In Figure 4.2, an illustrative example of a S0 mode wave packet at 150 kHz is shown. 

The solid line is the S0 mode after 1.2 metres propagation including the dispersion. 

The dashed line represents the S0 mode after the propagation without dispersion, 

namely the wave packet was calculated using the same phase velocity for all 

frequencies. In this example, the phase shift is negative (-1.26 radians), which means 

the phase velocity is higher than the group velocity. Using (4.9), the calculation of 

the phase velocity would be 1.2 metres divided by the sum of 223 µs, which is the 

time of the wave packet to travel 1.2 metres at group velocity, plus -1.34 µs which is 

the time that the signal at an angular frequency, 𝜔 = 2𝜋 ∙ 150000, takes to cover -1.26 

radians. Group velocity and phase velocity are calculated using (4.2) and (4.9) 

respectively: 𝑣௚ = 5381 𝑚𝑠ି1 and 𝑣௣ = 5414 𝑚𝑠ି1. 

 

𝑡଴ 

𝑥 = 𝑥଴ , 𝜙 = 𝜙଴ 𝑣௚ 
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Figure 4.2: S0 mode wave packet of 5 cycles at 150 kHz after propagating 1.2 metres, with 

dispersion and without dispersion. 

 

4.3 Methodology 
 

In this section, the methodology for determining the phase shift and hence the phase 

velocity is presented. The technique is based on the analysis of two signals acquired 

at different distances in the direction of wave propagation. One of them will be 

treated as the baseline and the other signal will be modified in time and phase in 

order to match with the baseline. The methodology is composed by different signal 

processing techniques which are presented in a block diagram in Figure 4.3. 

The experimental setup is composed of one transmitter and two receivers along the 

propagation direction of the wave to be measured, as shown in Figure 4.4. For 

isotropic systems the wave velocity is independent of direction. The technique 

analyses the effect of propagation between the first receiver and the second receiver. 

Spacing between receivers of a few centimetres is selected in order to avoid large 

phase shifts and waveform deformations due to dispersion. 
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Figure 4.3: Methodology’s block diagram to extract the optimum phase shift and time delay. 

 

 
Figure 4.4: Schematic of the test setup. 

 

The first step in analysing the data is the isolation of the desired wave packet by 

removing the rest of the signal. The boundaries of each wave packet are determined 

by studying the slope of its envelope. The boundaries are set at the closest zero slopes 

before and after to each peak, see example of real signals in Figure 4.5. Once the 

region containing the wavepacket is identified remainder of the signal is discarded. 

Both signals are truncated with the same boundaries in order to maintain the time 

difference between the wave packets, 𝑤ଵ and 𝑤ଶ. The boundaries used are the left 

limit of the signal of the closest receiver to the transmitter and the second limit of the 

signal of the further receiver as it can be seen in Figure 4.6. The gaps between the 

truncated signal and the boundaries is zero-padded, so the use of temporal windows 

would benefit to reduce FFT leakage. Afterwards, the Hilbert Transform (H(…)) 

[113] is applied to both wave packets and the magnitude extracted in order to 

determine the envelope of each wave packet: 

 

Transmitter Receivers 
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Figure 4.5: Wave packet detection and boundary determination established by the algorithm for 

two signals acquired at: (a) 30 cm and (b) 35 cm from the transmitter using a d33–type 
transducer. 

 

𝑒ଵ(𝑡) = ห𝐻൫𝑤ଵ(𝑡)൯ห (4.10) 

𝑒ଶ(𝑡) = ห𝐻൫𝑤ଶ(𝑡)൯ห (4.11) 

 

 
Figure 4.6: Shortening of the signals to reduce computational time. The same limits are used to 

truncate each signal in order to maintain the time difference between wave packets. Signals 
acquired at: (a) 30 cm and (b) 35 cm from the transmitter. 

 

(a) 

(b) 

(a) 

(b) 



Chapter 4.  Experimental Methodology for Dispersion Curve Creation 45 

 

These two envelopes are then cross-correlated to determine the time delay between 

them: 

𝛥𝑡 = 𝑎𝑟𝑔 𝑚𝑎𝑥
ఛ

൫(𝑒ଵ ⋆ 𝑒ଶ)(𝜏)൯ (4.12) 

 

Where 𝜏 is the applied time delay and 𝛥𝑡 the value that maximizes the correlation. 

Once this time delay is known, the phase delay to the harmonic part of 𝑤ଶ(𝑡) that 

maximizes the cross correlation between the delayed phase-shifted wavepacket  

 𝑤ଶ
∗(𝑡 − 𝛥𝑡) and 𝑤ଵ(𝑡) is calculated. This process consists on the modification in phase 

of the signal from the furthest receiver by a phase angle, 𝜙 and finding the phase 

shift that maximizes the cross correlation. The phase shift, 𝜙, is applied to 𝑤ଶ
∗; then 

the cross correlation between 𝑤ଵ and 𝑤ଶ
∗ is calculated. The optimum phase shift is 

the phase angle when the correlation coefficient with time delay, 𝛥𝑡, is highest. 

 

𝜙௢௣௧ = 𝑎𝑟𝑔 𝑚𝑎𝑥
థ

൫(𝑤ଵ ⋆ 𝑤ଶ
∗)(𝛥𝑡)(𝜙)൯ (4.13) 

 

This methodology enables the calculation of the lag time and phase shift between the 

two signals acquired at different distances. By knowing these three variables 

(distance, time and phase) and also the excitation frequency, (4.2) and (4.9) can be 

used to determine the group and phase velocity respectively. 

The proposed methodology is based on the acquisition of two signals spaced a few 

centimetres apart since for such short distances the distortion for any wave mode is 

relatively small enabling a straightforward determination of the phase shift. 

 

4.4 Synthetic Signal Analysis 
 

The first validation was carried out using synthesized signals. The signal synthesis 

is based on the adjustment in frequency and wavenumber of the transformed input 

signal in the frequency domain. Knowing the waveform at one point, in this case the 

input signal at the transmitting point, and the dispersion characteristics of each wave 

mode, the wave modes can be reconstructed in the time domain at any distance [23]. 

If 𝑢(𝑥, 𝑡) is the reconstructed wave mode at a distance 𝑥 from the transmitting point, 
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𝑡 is the time, 𝐹(𝜔) is the Fourier transform of the input signal and 𝑘(𝜔) is the 

wavenumber as a function of the angular frequency then 

 

𝑢(𝑥, 𝑡) = න 𝐹(𝜔)𝑒௜(௞(ఠ)௫ିఠ௧)𝑑𝜔

ஶ

ିஶ

 (4.14) 

 

The relation between wavenumber and angular frequency is extracted directly from 

the dispersion curves provided by Disperse® and introduced in the integral. 

As an initial test of the proposed signal processing method, signals are synthesized 

which are highly pure, without noise or overlapping between modes. The higher the 

sampling frequency is set the better accuracy the technique provides. The sampling 

frequency was set at 10 MHz, since it has been observed that it provides a good 

balance between computational time and accuracy. 

 

 

 
Figure 4.7: Comparison of the phase velocity and group velocity of S଴, A଴ and SH଴ between the 

results from the synthesized signals (black circles) and theoretical values (grey lines). 

S0 SH0 

A0 

S0 SH0 

A0 
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A set of signals for Symmetric (S0), Antisymmetric (A0) and Shear Horizontal (SH0) 

wave modes were created by evaluating equation (4.14) in MATLAB for two 

propagation distances, 30 cm and 35 cm: the analysed propagated distance (𝛥𝑑) in 

this case is 5 cm. The analysed frequencies are from 60 to 370 kHz with steps of 10 

kHz.  

The results after applying the signal processing algorithm described before to the 

synthesized signals are presented in Figure 4.7. The results (black circles) accurately 

reconstruct the theoretical values from Disperse® (grey lines) used to synthesis the 

data. In Figure 4.8, the extracted phase shift has been represented against the 

frequency for the three fundamental modes. For the S0 mode, the phase values have 

negative values decaying from -2 degrees at 60 kHz to -52 degrees at 370 kHz. For 

the A0 mode conversely, the phase is positive increasing along the frequency, since 

the phase velocity is lower than the group velocity; from 377 degrees at 60 kHz to 

673 degrees at 370 kHz. In this case, the phase values are much higher than the S0 

and SH0 ones, because the A0 mode is highly dispersive at these frequencies. For the 

SH0 mode, the extracted phase values are 0 degrees at 60 kHz and 1 degree at 370 

kHz. The SH0 is a non-dispersive mode so the phase value remains at near 0 degrees. 

 

 
Figure 4.8: Comparison of the phase shift of S0, A0 and SH0 between the results from the 

synthesized signals (black circles) and theoretical values (grey lines). 

 

The sampling frequency is an important factor, since it determines the degree of 

resolution of the group velocity. As these examples are performed for short 

propagation distances, the time that the wave modes take to cover that distance is 

S0 

SH0 

A0 
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small. Thus, low sampling frequencies are not able to determine the group velocity 

accurately. Faster modes require higher sampling frequencies to get the same 

resolution as slower modes. 

In this case of 5 cm spacing, the propagation time for S0 mode at 200 kHz is 9.3 µs; a 

sampling frequency of 1 MHz will have a time resolution of 1 µs which yields a 

velocity resolution for this particular example of 556 m/s (~10% error); with a 

sampling frequency of 10 MHz, the velocity resolution will be 58.4 m/s (~1% error); 

and with a sampling frequency of 100 MHz, the velocity resolution will be 5.8 m/s 

(~0.1% error). This resolution issue can be observed in Figure 4.7; at lower velocities 

the curves are smoother and at higher velocities (S0 mode) the curves have poorer 

velocity resolution. Errors of 1% are acceptable, so it was decided to use sampling 

frequencies of 10 MHz. The technique has only been applied to the three 

fundamental wave modes at lower frequencies, so highly dispersive modes were not 

evaluated which could be a limitation of this technique. For highly dispersive modes, 

it would be recommended to use the shortest propagation distance possible, to 

reduce the distortion of the mode due to the dispersion. 

 

4.5 Finite Element Analysis 
 

A three dimensional FE analysis was performed in Abaqus to reproduce the guided 

wave signals. While the previous analysis required the input of the dispersion curves 

to create the propagated signals, this FE analysis does not require prior knowledge 

of the dispersion characteristics. 

FE models were created simulating guided wave propagation at five different 

frequencies in an aluminium plate (1000 × 1000 × 3 mm). The transmitter and 

receivers were modelled as ideal point transducers. The transmitting point was 

placed at the centre of the plate, where the coordinate system was established. A 

displacement was applied in the x direction to simulate a shear transducer. This 

generated S0 and A0 modes along the x axis and the SH0 mode along the y axis. The 

input signal was a 5-cycle sine with a Hanning window at 5 different frequencies, 60 

kHz (fmin=36 kHz, fmax=84 kHz), 80 kHz (fmin=48 kHz, fmax=112 kHz), 100 kHz (fmin=60 
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kHz, fmax=140 kHz), 120 kHz (fmin=72 kHz, fmax=168 kHz) and 140 kHz (fmin=84 kHz, 

fmax=196 kHz). Multiple receiver points were located on the positive x axis and 

positive y axis from the centre of the plate to the edge every 1 cm, resulting 50 

receivers at each axis. The mesh was formed by C3D8 elements. The time and spatial 

discretization for the finite element model was established at 10-2 µs and 1 mm 

respectively, in order to ensure convergence and to obey the Nyquist sample-rate 

criterion. The following equations were used as a reference for the determination of 

the time and spatial discretization, 

𝛥𝑥 =
𝑣௚(𝑓௠௜௡)

𝑓௠௔௫

,    group velocity at 𝑓௠௜௡of the slowest mode of analysis (4.15) 

𝛥𝑡 =
𝛥𝑥

max bulk velocity
 (4.16) 

 

The FE analysis software provides the results decoupled for each axis direction, so it 

is straightforward to evaluate each wave mode separately. In Figure 4.9, the results 

have been computed in cylindrical coordinates to show clearly the three wave modes 

of propagation at each axis. In Figure 4.9a, showing radial displacement, S0 and A0 

modes are depicted, S0 being the faster mode. In Figure 4.9b showing tangential 

displacement, SH0 mode propagates along the y axis. And in Figure 4.9c, showing 

out-of-plane displacement, the A0 mode is clearly present. 
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Figure 4.9: Images of the FE simulation of the wave propagation in polar coordinate 
instantaneous displacement is shown 76 µs after excitation. (a) radial displacement,                   
(b) tangential displacement and (c) out-of-plane displacement. Scale bars in meters. 

 

 
Figure 4.10: Signal acquired at 33 cm from excitation point at 60 kHz. 
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Since the plate is relatively small, overlaps between wave modes and echoes from 

edges are produced as it can be seen in Figure 4.10. This is a particular problem at 

lower frequencies (60 and 80 kHz) due to the length of the pulses. Therefore, an 

additional optimisation step has been added to minimize the error introduced by the 

overlapping. The FE model has 50 receiver points, every 1 cm along the axis so the 5 

least overlapped signals are selected for analysis. The selection is performed by 

analyzing the amplitude at the beginning and end of the envelope of the wave packet 

of interest; the signals with the lowest amplitude at those regions are selected. Then 

the signal processing described above is applied for all the pair combinations 

between the 5 selected receivers. Once the phase and group velocities are calculated 

for each combination, the velocities are averaged to give the final velocity estimates. 

Any outliers that are introduced during selection of the 5 signals are eliminated. As 

shown in Figure 4.11, the phase velocity matches very well with the theoretical 

values from Disperse®. In the group velocity graph, the results correlate well with 

the theoretical velocities, having a noticeable variation in the S0 value at 60 kHz. This 

variation occurs at 60 kHz due to the overlap between the S0 mode and the A0 mode, 

which is more pronounced for the longer pulses at this frequency. This error does 

not appear for the A0 mode because the signals used for the analysis were out-of-

plane displacements, where the S0 mode is practically imperceptible. Note that the 

results improve as the frequency increases, since the wavelength decreases and 

mode separation increases. Overlapping of pulses is an issue for this technique, as it 

changes the phase and waveform of the analyzed mode, highly distorting the results 

and impeding its application. 

The results for the phase velocity are better than for the group velocity, more notably 

when overlapping occurs. This is because of the phase-shift term in the denominator 

in (4.9). This contribution in the phase velocity equation minimizes the erroneous 

calculated value of the propagation time and also provides more resolution on the 

calculation of the phase velocity, removing the stepped shape seen in the group 

velocity. 
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Figure 4.11: Comparison of the phase velocity and group velocity of S0, A0 and SH0 between the 
results from the FE signals (black circles) and theoretical values (grey lines). 

 

 

4.6 Experimental Demonstration 
 

4.6.1 Test Setup 
 

The specimen is a 4 m by 2 m aluminium plate of 3-mm thickness. Two PZT 

transducers were used, one transmitter and one receiver. The transmitter was fixed 

at the centre of the plate using a tool which provides force over the transducer. The 

tool is composed by a piston where the transducer is placed, and the piston is moved 

by a screw to adjust the force; additionally, the tool has two neodymium magnets at 

both sides of the piston to get attached to ferromagnetic plates; for the case of the 
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aluminium plate, another two neodymium magnets were placed at the other side of 

the plate to get fixed. The receiver was manually placed at various distances from 

the transmitter. For the evaluation of the S0 mode, the receiver was placed at 45, 50 

and 55 cm from the transmitter. For the case of the A0 and SH0 modes, the receiver 

was set at 25, 30 and 35 cm from the transmitter. Those distances were selected to 

minimize the wave packet distortion due to overlaps. 

A pulser-receiver (Teletest® unit) was used to excite the transducer and acquire the 

signals. Two independent channels were used for the excitation and acquisition. A 

PC with the Teletest® software was used to control the pulser-receiver and configure 

the experimental parameters. Input signals of 5-cycle Hanning-windowed bursts 

with centre frequencies from 40 kHz to 140 kHz in steps of 5 kHz were used to excite 

the transmitter. This frequency range was chosen since it is the operating frequency 

range of the transducers used in the experiment. Signals were recorded with a 1 MHz 

sampling frequency, 32 averages were taken and the record length of the signals was 

1 ms. The experimental setup is presented in Figure 4.12. 

 

Figure 4.12: Diagram and photo of the experimental setup. 

 

 

Figure 4.13: Schematics of the shear transducer. (a) Undeformed, (b) Deformed. 
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Two types of piezoelectric transducers (PI Ceramic GmbH) were used in the 

experiment, a shear piezoelectric element (d15 type) and a compressional 

piezoelectric element (d33 type), both with an active contact area of 13 mm by 3 mm. 

Figure 4.13 shows the direction of poling and corresponding shear deformation for 

the shear transducer. The shear transducer was used to evaluate the S0 and SH0 wave 

modes, and the A0 wave mode was analysed using the compressional transducer 

which mainly produces an out-of-plane vibration. Using the shear transducer, S0 

waves are generated in the direction of the poling axis, and SH0 in the perpendicular 

axis. A small amount of A0 is also generated on the poling axis. In the case of the 

compressional transducer, S0 and A0 are created omnidirectionally. The averaged 

amplitude of the S0 and SH0 modes using the shear transducer at the propagation 

distances specified above are 13 mV and 33 mV; and the amplitude of the A0 mode 

is 63 mV using the compressional transducer. 

Experimental signals were acquired at a sampling frequency of 1 MHz providing a 

poor time resolution for the wave velocities of interest. Therefore, the sampling rate 

of the signals was increased by a factor of 10 using cubic spline interpolation to give 

a time accuracy of 0.1 µm (10 MHz). However, Fourier interpolation would achieve 

better accuracy. The interpolation is a necessary step when the propagation distance 

is a few centimetres, as the propagation time of the faster modes, such as S0, is of the 

same order of magnitude as the original sampling period. By reducing the sampling 

period by means of interpolation, the accuracy of the group velocity is increased. 

However, a small error is introduced in the signal due to the interpolation. Overall 

the improvements gained for the velocity calculation are more significant than the 

errors introduced in the signals. The signal-to-noise ratios of the S0, A0 and SH0 

signals were around 30 dB, 37 dB and 35 dB respectively. 

 

4.6.2 Experimental Results 
 

The results presented in Figure 4.14 and Figure 4.15 have been extracted from signals 

at two different spacings: 5 cm and 10 cm. The velocities extracted from the 

experimental signals correlate quite well with the theoretical velocities. However, 
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there are slight variations around the theoretical velocities. These variations can be 

caused by a number of factors, such as the aforementioned interpolation and 

overlapping, but also by the manipulation of the transducers, which in this case were 

handled manually. Small variations in the correct spacing distance between 

transducers leads to errors in the calculation of the velocities. The velocity-distance 

relationship is linear so the relative error in the calculated velocity due to 

misplacement is the same as the relative distance error. 1 millimetre error in an 

intended 5-cm spacing distance will cause a 2% error in the velocity or an error of 

110 ms-1 in the S0 mode (≈ 5400 m/s) for example. On the other hand, 1 mm error 

transducer placement for a 10-cm spacing, the error will be of 1% of the velocity. 

Therefore, large errors can occur where small propagation distances are used. A0 and 

SH0 exhibit less absolute error variation than S0 due to their slower velocities: the 

generated errors being proportional to the velocity. 

 

 

Figure 4.14: Phase Velocity and Group Velocity created from experimental signals for 5 cm 
propagation distance (black circles) and theoretical values (grey lines). 
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Figure 4.15: Phase Velocity and Group Velocity created from experimental signals for 10 cm 
propagation distance (black circles) and theoretical values (grey lines). 

 

In this chapter, two propagation distances have been selected: 5 and 10 cm. From the 

S0 mode in Figure 4.15, it can be seen that the calculated velocities at 10 cm are more 

accurate, and the variance is also smaller. This is for two reasons, the first is the 

reduction in the error caused by an incorrect transducer placement, and the second 

is the implicit increase of the propagation time, which reduces the error in 

determining that time. Other factors that can introduce errors in the velocity 

calculation are the variations of the boundary conditions of the transducer, such as 

the applied pressure over the transducer at each receiving location; as well as the 

difference of transfer function of each transducer. This problem was overcome 

utilizing the same transducer to acquire the signals at all locations. Similarly, a 
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change in temperature between measurements will cause velocity changes leading 

to erroneous values. This can be avoided by acquiring results in quick succession to 

minimize the impact of the temperature in the results. Using three transducers, one 

transmitter and two receivers, would avoid the issues relating to moving the 

transducers. 

 

4.7 Conclusion 
 

This chapter has presented a methodology for creating dispersion curves based on 

measuring the phase difference and time lag between two pulses acquired at 

different distances. First, the theoretical basis of the method has been presented 

where the phase velocity has been related to the phase at the pulse centre for systems 

of limited dispersion; then, a signal processing methodology to extract the phase 

shift and time lag between two signals and subsequently calculate the phase and 

group velocities has been outlined. Three different tests were performed to validate 

the formulation and methodology; using synthesized signals, signals from a FE 

model and experimental signals. In the three cases the performance achieved agrees 

well with the theoretical values. 

There are some limitations to the proposed method for the extraction of the phase 

shift to calculate the dispersion curves. Highly dispersive modes, like high order 

modes, are more challenging to evaluate; to mitigate this issue much shorter spacing 

distances between transducers should be established to minimize the mode shape 

distortion. Overlapping between wave packets limits the method’s applicability, 

since it distorts the apparent phase of the mode being analyzed. Hence, relatively 

large samples are required to avoid overlapping between wave packets and edge 

echoes. The size of the sample can be smaller at higher frequencies. The velocity-

frequency spectrum that can be evaluated using this method will be determined by 

the excitation mechanism used to generate the guided waves in the solid media. With 

appropriate experimental design, errors of less than 1% are obtained. However, error 

can vary depending on experimental configuration.
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Chapter 5 

 

5 Experimental Dispersion Curve 
Calculation on a GFRP Plate 

 

5.1 Introduction 
 

Monitoring and inspection of composite structures using guided waves is a topic 

that currently has high relevance in the research NDT community. As mentioned in 

previous chapter, knowledge of the dispersion curves of the structure to inspect is 

essential to deploy any guided wave application. Most of the methodologies that 

have been presented in the literature for the determination of the dispersion curves 

of composite structures are based on numerical solutions. For instance, approaches 

that have been used to get those solutions are the global or transfer matrix method 

[66], [67]; the pseudospectral collocation method [68], or SAFE [90]. These 

methodologies require prior knowledge of the elastic constants of the material, 

which in the case of the orthotropic composite materials are defined by ten properties 

(E1, E2, E3, G12, G13, G23,  ν12,  ν13,  ν23, ρ) in contrast to metallic structures which only 

requires three properties (E, ν, ρ). The acquisition of these ten values is not a trivial 

process, where composite manufacturers do not commonly provide all property 

values. In addition, commercial structure designs are commonly under 

confidentiality agreements to avoid the disclosure of sensitive information, therefore 
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composite lay-ups and material properties that form these structures are not 

available. This is the most common case when guided wave technology is meant to 

be applied on a commercial composite structure, out of laboratories, like in a wind 

turbine blade. These complex structures are composed by different materials, lay-

ups, thicknesses, etc. Therefore, the determination of the dispersion curves using 

analytical or numerical methods would not be feasible. Experimental methods are 

the only way for the calculation of dispersion curves for commercial composite 

structures, since they do not require prior knowledge of material properties.  

In this chapter, determination of the dispersion curves of a GFRP plate is studied 

using the experimental methodology presented in the previous chapter. This method 

provides straightforward calculations of phase and group velocities of guided waves 

at frequencies of interest. The technique offers advantages over the other existing 

experimental techniques, such as zero-crossing technique [75] or techniques using 

ACT’s [73], [74] or LSV’s [12], as explained in Chapter 3. The technique presented in 

this thesis requires just the acquisition of two signals spaced a few centimetres using 

conventional transducers which enables its application on in-service structures 

located in poorly-controlled environments. The chapter presents the application of 

the proposed methodology on a glass fibre plate, using simulated signals from a 3D 

model in Abaqus and using experimental signals acquired from the GFRP plate. 

Experimental results are also compared with the results from another experimental 

test using the 2D FFT technique which is the most used experimental technique for 

dispersion curves acquisition. Conclusions are provided at the end of the chapter. 

 

5.2 Description of the GFRP Plate for Analysis  
 

The structure analysed in this chapter is a GFRP plate of 4 by 2 metres with a 

thickness of 4.558 millimetres. The plate is a 6-ply cross-ply laminate with a lay-up 

of [±45F6] using XE905/SE84LV (E-glass/epoxy) prepreg. XE905 is a stitched biaxial 

E-glass fabric at ±45° and SE84LV is an epoxy resin which offers excellent mechanical 

performance on glass fibre reinforcement. 
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TABLE 5.1 
XE905 / SE84LV MATERIAL PROPERTIES 

 

PROPERTY XE905 / SE84LV SOURCE 
𝝆  (KG/M3) 1800 DATASHEET 
E1 (GPA) 12.46 DATASHEET 
E2 (GPA) 12.46 DATASHEET 
E3 (GPA) 11.47 CES SELECTOR 
G12 (GPA) 9.5 CES SELECTOR 
G13 (GPA) 4.33 CES SELECTOR 
G23 (GPA) 4.33 CES SELECTOR 

𝝂12 0.5 CES SELECTOR 
𝝂13 0.259 CES SELECTOR 
𝝂23 0.326 CES SELECTOR 

 

Table 5.1 shows the material properties for the XE905/SE84LV laminate from values 

reported in the manufacturer datasheets and from extrapolated values from the 

material property database software CES Selector. ρ is density, E is Young’s 

modulus, G is shear modulus, and ν is Poisson’s ratio. The hypothesis of considering 

each layer isotropic across its thickness was adopted. This assumption is based on 

the fact that the wavelengths of the propagating guided waves are substantially 

longer than the characteristic size of the cross section of the fibres [28], [84]. In 

contrast to the aluminium plate, the GFRP plate is anisotropic; therefore, the phase 

and group velocity will be different depending on the propagation direction. This 

requires that the proposed dispersion curve creation method should be applied at 

different directions in order to produce a representative velocity map of the entire 

plate. In our case, due to the GFRP plate is a cross-ply laminate, with only fibres at 

±45° see Figure 5.1, the analysis of the plate can be simplified by just analysing an 

octant of the plate from 0° to 45° since the GFRP plate has 4 symmetry planes. Once 

the velocities are known for that angle range, the velocity values can be extrapolated 

using the symmetry planes to complete the 360° circumference. 
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Figure 5.1: Sketch of the design of the GFRP plate with fibres oriented at ±45°. 

 

5.3 Theoretical Dispersion Curves 
 

Theoretical Dispersion Curves of the GFRP plate have been generated using 

Disperse®, software developed by Imperial College London [21]; to validate the 

results from the simulated and experimental analyses. The software allows the 

calculation of dispersion curves of anisotropic simple structures like plates and 

cylinders using the global matrix method. Phase and group velocities were 

calculated for symmetric and antisymmetric modes at different directions using the 

software, where each direction must be evaluated individually. However, shear 

horizontal velocities were unable to be calculated consistently, since the obtained 

values were out of the theoretical and experimental patterns provided in the 

literature. The frequency range of study is from 30 to 140 kHz, which is the frequency 

range commonly used for NDT purposes in guided wave technology. Phase and 

group velocities were calculated every 5° from 0° to 45°; velocities at other directions 

can be extrapolated from this angle range using symmetry planes, as explained 

before. 
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5.4 Dispersion Curve Calculation Using 
Simulated Signals 

 

5.4.1 Finite Element Model Description 
 

Finite Element Analysis has been carried out to evaluate the performance of the 

proposed dispersion curve creation methodology using simulated signals from a 

GFRP plate. A 3D model was created using the software Abaqus/Explicit          

version 6.13. The geometry of the plate is a semicircle of 0.5 m radius and with a 

thickness of 4.558 mm. Symmetry boundary conditions were applied on the straight 

edge of the semicircle to simulate an entire circle, as shown in Figure 5.2. This 

Abaqus model has only one symmetry plane because the shear excitation load does 

not have four symmetry planes, like the GFRP plate; therefore, the model just could 

be reduced by one symmetry plane which is along the transducer excitation 

direction. 

 

Figure 5.2: Abaqus model of the GFRP plate. Semicircle plate with the symmetry plane at the 
straight edge simulating an entire circle. 

 

The excitation load, which was simulated by a displacement, was placed at the centre 

of the semicircle with an active area of 13 × 1.5 mm (half of the transducer area used 

for the experimental test, 13 × 3 mm; due to the symmetry plane). The direction of 
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the load is along the straight edge of the semicircle. The assumed material properties 

for the GFRP laminate are shown in Table 5.1 and they have been applied to the 

entire 3D solid model, since the stacking sequence is [±45F6], same orientation for the 

six plies. The model has been partitioned radially every 1° to set receiver points at 

different angles for phase and group velocity evaluation. The mesh element used for 

modelling guided wave propagation was the 8-node linear brick (Abaqus element 

type C3D8); additionally the 6-node linear triangular prism (Abaqus element type 

C3D6) was used in the interface circumferences to reduce the 8-node linear brick size 

as we move away from the centre of the semicircle ensuring that the maximum 

element size is not exceeded, see Figure 5.3. The maximum element size was 

established by dividing the smallest possible wavelength by eight at double of the 

transmitting frequency. This degree of mesh refinement has been validated in 

previous studies [18], [114]. The time step was such that it was lower than the 

maximum element size divided by the phase velocity of the fastest wave mode. The 

model was adapted for evaluating the guided wave propagation at 5 different 

frequencies (60, 80, 100, 120 and 140 kHz). The input signal used for the transmitting 

load was a 5-cycle sine with a Hanning window. For simplicity, receiver points were 

located between 180 and 350 mm from the centre of the semicircle every 10 mm, and 

between 0° to 90° every 5°; resulting with a total of 342 receivers. The creation of 

absorbing layers at the edges of model would improve the quality of the signals since 

the echoes from the edge will not overlap with the transmitting wave modes. 

 

 

(a) 
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Figure 5.3: Detail of the interface circumference to reduce the size of the mesh as the radius 
increases. (a) Without mesh. (b) With mesh. 

 

Compressional load simulation, out-of-plane direction, was also performed to 

separate the A0 and SH0 wave modes which have similar group velocity, since for 

out-of-plane excitation transducers Shear Horizontal modes are not generated. For 

compressional load, the FE simulation could have been carried out just modelling an 

octant of the plate, since the load is omnidirectional in comparison to the shear load 

which only has one symmetry plane; but due to the semicircle model was already 

created, it was decided that it was more convenient just to change the load direction 

to out-of-plane direction rather than to create a smaller model of a fourth of the 

current model for saving computational time. It took one day to run each model. 

In total, 15 different FE models were evaluated (5 different frequencies and 3 

different configurations). Figure 5.4 shows the guided wave propagation of S0, A0 

and SH0 using a shear transducer vibrating horizontally at 60 kHz with the glass 

fibres oriented at ±45. Figure 5.4(a) represents the global particle displacement 

amplitude of all three directions; Figure 5.4(b) shows the particle displacement 

amplitude corresponding to the radial direction; Figure 5.4(c) presents the 

circumferential component of the particle displacement amplitude and Figure 5.4(d) 

represents the particle displacement amplitude of out-of-plane direction. Figure 5.5 

shows the propagation of the fundamental wave modes using a shear transducer 

vibrating horizontally at 60 kHz with the glass fibres oriented at 0 and 90. Finally, 

Figure 5.6 represents the guided wave propagation when using a compressional 

(b) 
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transducer with the glass fibres oriented at ±45. Subplots with subscripts (X1) and 

(X2) were created to show the same propagation pattern but with different threshold 

to facilitate the visualization of low-amplitude wave modes.   
 

 

 

 

 
Figure 5.4: Simulation of the wave propagation in the GFRP plate using a Shear transducer 

oriented at 0°. (a) Global displacement. (b1) (b2) Displacement at radial direction.                     
(c1) (c2) Displacement at angular direction. (d1) (d2) Displacement at z direction. Scale bars in 

metres. 

(a) 

(b1) (b2) 

(c1) (c2) 

(d1) (d2) 
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Figure 5.5: Simulation of the wave propagation in the GFRP plate using a Shear transducer 
oriented at 45°. (a) Global displacement. (b1) (b2) Displacement at radial direction.                   

(c1) (c2) Displacement at angular direction. (d1) (d2) Displacement at z direction. direction. 
Scale bars in metres. 

 

(a) 

(b1) (b2) 

(c1) (c2) 

(d1) (d2) 
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Figure 5.6: Simulation of the wave propagation in the GFRP plate using a Compressional 
transducer. (a) Global displacement. (b1) (b2) Displacement at radial direction.                         

(c1) (c2) Displacement at angular direction. (d1) (d2) Displacement at z direction. direction.                     
Scale bars in metres. 

Due to the dimensions of FE model being relatively small; the wave modes of interest 

are partially overlapped with other wave modes or echoes from the edges. As 

(a) 

(b1) (b2) 

(c1) (c2) 

(d1) (d2) 
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described in Chapter 4, overlapping is a disadvantage when applying the dispersion 

curve creation method, since the wave phase is changed distorting the calculation of 

the velocity values. To overcome this issue for this small plate, 18 receiver points 

have been set at each propagation direction between 180 and 350 mm (every 10 mm) 

from the transmitter. The 18 signals are analysed and the best 5 signals in terms of 

overlapping for that specific wave mode selected. The selection is performed 

measuring the amplitude at the start and at the end of the absolute normalized wave 

mode. Both amplitudes are added together to give the total overlapped amplitude 

value. The selected best 5 signals are the ones with the lowest total overlapped 

amplitude. At some cases, outliers are selected when the overlapping is such that the 

two wave packets are perfectly overlapped. Those cases can be identified since the 

calculated phase and group velocities are not coherent with the rest of the calculated 

velocities from the other signals, and they are removed for the final velocity 

calculation. Once the best 5 signals are selected, all the pair permutations of signals 

between those 5 signals are evaluated to extract the phase and group velocities, 

resulting in 10 different analyses. When the phase and group velocities are calculated 

for all pair permutations, they are averaged to get the final velocity values. This 

process has been applied at each different direction, between 0° to 90° every 5°. 

 

5.4.2 Results 
 

Abaqus provides the displacement decomposed at the three principal axis (x, y, z); 

by applying the coordinate transformation formulas (5.1), the displacement signals 

can be modified to cylindrical coordinates (r, θ, z) which are more convenient to 

assess the propagation of the fundamental wave modes at different angle directions. 
 

𝑟 = 𝑥 cos 𝜃 + 𝑦 sin 𝜃 

𝜃 = −𝑥 sin 𝜃 + 𝑦 cos 𝜃  

𝑧 = 𝑧 

(5.1) 

The wave velocity results presented below were obtained using the transformed FE 

signals into cylindrical coordinates. Figure 5.7(a) and Figure 5.7(b) show the phase 

and group velocity profiles respectively at 80 kHz to have a 360 overview of the 

velocity profile of the fundamental wave modes depending on the propagation 
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direction. Velocity profiles from Disperse® have been added for comparison. As 

Disperse® does not provide reliable shear horizontal velocity values for anisotropic 

materials, this fundamental wave mode could not be compared with the results from 

the FE signals. 

 

   

Figure 5.7: Velocity profile created by the methodology proposed at 80 kHz using the simulated 
signals from Abaqus and compared with the Disperse® velocities. (a) Phase velocity. (b) Group 

velocity. 

 

Standard Dispersion Curves plots for propagation angles between 0° to 45° every 5° 

have been created comparing the Disperse® and FE results to easily assess the 

accuracy of the method. 

 

(a) (b) 
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Figure 5.8: Group Velocity Dispersion Curves from the results from the simulated signals for 

different angles of propagation compared to velocity values from Disperse®. 
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Figure 5.9: Phase Velocity Dispersion Curves from the results from the simulated signals for 
different angles of propagation compared to velocity values from Disperse®. 

 

For the sake of simplicity, just the results from 0° to 45° have been evaluated, since it 

is possible to extrapolate these velocity values to the other angles using the 

symmetry planes at 0°, 45° and 90°. Looking at the results, the A0 mode velocities 

from both techniques correlate very well. For the case of the S0 mode, the results are 

particularly accurate around 0° and 45°, having some variations between 15° and 

25°. Finally, the velocities obtained from the FE signals for the SH0 mode seem to be 

non-dispersive for the frequency range of evaluation, which is similar to the 

expected behaviour in isotropic materials. 

An interesting result is the appearance of out-of-plane displacement for the shear 

horizontal mode when using either the shear or the compressional transducer as 

transmitter being more significant for the former case as seen in Figure 5.4(d2) and 

Figure 5.5(d2). In isotropic materials, SH0 does not possess out-of-plane 

displacement; however, for this anisotropic GFRP plate out-of-plane component 

appears in the SH0 wavefront but only in certain areas, specifically on the energy 

focusing areas where the curvature of the slowness shifts from convex to concave 

shape as explained in the literature review chapter. In our specimen, these areas are 

the fastest parts of the SH0 wavefront which unfortunately overlap with S0 mode 

hindering the decoupling of SH0 and S0 at certain angles for evaluation of both modes 

separately. Therefore, looking at the performance of the new technique, S0 values 

between 15° and 25° have a larger variation; which is due to the overlapping of the 

S0 mode with the fastest SH0 wavefront within this angle range. This overlap causes 
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the S0 phase to be changed, and consequently producing a variation in the calculation 

of the velocities. Conversely, the calculation of the A0 velocities using the out-of-

plane displacement has not been affected since its velocity is much slower and the 

shear horizontal areas that could be overlapped with the A0 mode are not excited in 

the out-of-plane direction, see Figures 5.4(d2), 5.5(d2) and 5.6(d2). 

 

5.5 Dispersion Curve Calculation Using 
Experimental Signals from GFRP plate 

 

5.5.1 Description of Specimen 
 

The structure of analysis is the GFRP plate described in section 5.2, which is made 

by the prepreg XE905/SE84LV (E-glass/epoxy resin). This prepreg was provided in 

rolls with a width of 1270 mm; therefore, during the lay-up process, overlaps of 10 

mm along the length of the plate were established to achieve a total plate width of 

2000 mm. Therefore, the plate is not entirely homogeneous since the overlap areas 

are slightly thicker than the rest of the plate.  Figure 5.10 shows an image of the GFRP 

plate where the overlap areas along the plate can be spotted as they are slightly 

darker. The maximum average thickness on the overlapped area is 6.013 mm. The 

dimensions of the plies during the manufacturing were slightly larger since after the 

curing process the plate is trimmed to the final dimensions to remove the burrs of 

the edges. During the lay-up of the layers, the prepreg plies were flipped at mid-

plane of the laminate to ensure the symmetry across the thickness of the plate 

avoiding any spring-back. The curing process was carried out by vacuum bagging. 

The manufacturing of this GFRP plate was a manual process which caused that the 

thickness of the plate differs from the theoretical thickness (4.558 mm) detailed in the 

manufacturing specifications, with a variation of 2.5%. This variation in thickness 

will slightly affect the velocity of the wave modes, which may lead the experimental 

results to diverge from the velocity values from Disperse® and simulation analysis 

which used the theoretical properties of Table 5.1. 
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Figure 5.10: GFRP plate vertically placed using supports. Ply overlaps are visible along the 
plate. 

 

5.5.2 Experimental Setup 
 

The GFRP plate was placed vertically held by three supports along the 4-metre edge. 

A PZT transducer, used as transmitter, was fixed at the centre of the plate. The tool 

used in the previous chapter was also used to provide force over the transducer 

through the help of two pairs of neodymium magnets which were placed at both 

sides of the GFRP plate. A second PZT transducer was used as receiver which was 

manually positioned at different locations, see Figure 5.11. The receiver was placed 

at three distances from the transmitter (50, 55 and 60 cm) and at every evaluated 

angle (from -45° to 45° with 5° steps); 57 receiving points in total as it can be seen in 

Figure 5.11. The Teletest® unit was used as pulser-receiver utilizing two different 

channels, one for transmission and one for reception of the signals. A laptop was 

used to control the pulser-receiver and configure the experimental parameters 

through the Teletest® software. 

Overlaps 

Support 
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Figure 5.11: Diagram of the transmitting and receiving positions. Three distances from the 
transmitter (50, 55 and 60 cm) and nineteen different angles (from -45° to 45° with 5° steps). 

 

Input signals of 5-cycle Hanning-windowed bursts with centre frequencies from 30 

kHz to 140 kHz with steps of 10 kHz were used to excite the transmitter. This 

frequency range was chosen since it is the operating frequency range of the 

transducers used in the experiment. Signals were recorded with a 1 MHz sampling 

frequency, 32 averages taken and the record length of the signals was 1 ms. A 

sampling frequency of 1 MHz provided poor time resolution for the wave velocities 

of interest so the signals were interpolated to 10 MHz using cubic spline 

interpolation. As noted in Chapter 4, the interpolation is a necessary step to increase 

the accuracy for determining the group velocity of the wave modes, especially for 

those cases where the propagation time between receiving points is of the same order 

of magnitude as the sampling period. 
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Two types of transducers were utilized in order to evaluate the three fundamental 

wave modes (S0, A0 and SH0): shear transducers and compressional transducers. The 

shear piezoelectric element (d15 type) was used to analyse the S0 and SH0 modes and 

the compressional piezoelectric element (d33 type) to evaluate the A0, both with an 

active contact area of 13 mm by 3 mm. To evaluate the S0 mode using the shear 

transducer, the element was placed with the poling axis oriented along the 0° 

direction. Conversely to analyse the SH0, the transducer was placed with the poling 

axis oriented -45° in order to have a strong shear wavefront along 45°. For the case 

of the A0, the longer side of the transducer was oriented along the 90° direction, 

although it is not determinant since the excitation is omnidirectional. 

 

5.5.3 Results 
 

Signals acquired at 50, 55 and 60 cm from the transmitter were used to extract the 

phase and group velocities using the dispersion curve calculation method. Firstly, a 

band-pass filter was applied to all the acquired signals to remove low and high 

frequencies that are not of interest, and remove any offset from zero. The low and 

high cut-off frequencies for the band-pass filter were determined as follows: 

 

𝑓௖ ௟௢௪ = 𝑓 − 3
𝑓

𝑛௖௬௖௟௘௦

 (5.2) 

𝑓௖ ௛௜௚௛ = 𝑓 + 3
𝑓

𝑛௖௬௖௟௘௦

 (5.3) 

 

where 𝑓 and 𝑛௖௬௖௟௘௦ are the centre frequency and number of cycles of the transmitting 

signal respectively. Then, the signals were oversampled by 10 using the spline 

interpolation; increasing the sampling frequency from 1 MHz to 10 MHz. This 

sampling increment provides more accuracy for the determination of the time of 

flight between the two receiving points. The signals were divided to create two 

different datasets; one for a spacing of 5 cm (55 and 60 cm signals), and another one 

for a spacing of 10 cm (50 and 60 cm signals). The velocity profiles of both datasets 
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for a frequency of 80 kHz are shown in Figure 5.12 and Figure 5.13 and along with 

the values from Disperse®. 

  
Figure 5.12: Velocity profile created by the methodology proposed at 80 kHz using the 

experimental signals with a spacing of 5 cm and compared with the Disperse® velocities.        (a) 
Phase velocity. (b) Group velocity. 

 

 
Figure 5.13: Velocity profile created by the methodology proposed at 80 kHz using the 

experimental signals with a spacing of 10 cm and compared with the Disperse® velocities.          
(a) Phase velocity. (b) Group velocity. 

 

The velocity profiles for a spacing of 10 cm are smoother and consequently more 

accurate than for 5 cm. The reason is due to the time of flight; since for the case of 10-

(a) (b) 

(a) (b) 
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cm spacing, it is larger than for 5-cm spacing, so the error determining this time delay 

is smaller as both cases use the same sampling frequency. 

Standard dispersion curve plots have been created for both datasets between angles 

of 0° and 45°, with steps of 5°, but for the sake of simplicity only graphs for 10 cm 

spacing are shown below. In the graphs between the angles of 0 and 20, velocities 

for the faster wavefront of the SH0 mode are represented in red circles. 
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Figure 5.14: Group Velocity Dispersion Curves from the results from the experimental signals 
with a spacing of 10 cm for different angles of propagation compared to velocity values from 

Disperse®. Red dots correspond to the faster wavefront of the Shear Horizontal. 
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Figure 5.15: Phase Velocity Dispersion Curves from the results from the experimental signals 
with a spacing of 10 cm for different angles of propagation compared to velocity values from 

Disperse®. Red dots correspond to the faster wavefront of the Shear Horizontal. 
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5.6 Comparison with Existing Experimental 
Technique 

 

In previous experimental results, some wave modes presented a difference in 

velocity compared to the results from Abaqus and Disperse®. Therefore, to 

experimentally validate the results from the proposed methodology an additional 

test was performed using a 3D Vibrometer to calculate the phase velocity of the three 

fundamental modes for comparison with the values presented before. The 

experimental technique used to get the phase velocity values is the 2D Fast Fourier 

Transform (FFT). This technique was presented in [71] which requires the collection 

of a large number of signals at points equally spaced along the wave propagation 

direction. The advantage of using the 3D vibrometer is that the collection of these 

signals at equal spacings is easier, as the device automatically acquires the data at all 

points previously set. In the literature, the determination of the dispersion curves 

using the 3D vibrometer has been widely utilized [73], [115]. 

 

5.6.1 2D FFT Methodology 
 

Once the collection of the time domain signals at points equally spaced is carried out, 

a data matrix can be formed with the x axis as the propagated distance and the y axis 

as the time. Then, by performing a 2D FFT (a temporal Fourier transform and a 

spatial Fourier transform) to this matrix, the result obtained is a matrix where the x 

axis is the wavenumber (wavelengths per unit distance, 𝑚ିଵ) and the y axis is the 

frequency. If this new matrix is plotted as a colormap, the dispersion curves can be 

clearly seen as a function of wavenumber and frequency. Finally, if the wavenumber 

and frequency values are extracted from those local maximums, the phase velocity 

can be calculated using the following equation: 

 

𝑣௣ =
𝜔

𝑘
 (5.5) 

 

where 𝜔 = 2𝜋𝑓  is the angular frequency and 𝑘 = 2𝜋 𝜆⁄  is the angular wavenumber. 
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5.6.2 Experimental Setup 
 

A PSV-400-3D Scanning Vibrometer, see Figure 5.16, was used to collect the signals 

at three different propagation directions (0°, 20° and 45°). The acquired lines where 

collected from 500 millimetres to 800 millimetres from the excitation point. The 

spacing between points was established at 1.4 millimetres; the 3D vibrometer 

software automatically calculates the maximum positional error of the three heads 

when focusing at the same point, which was 0.5 millimetres based on the 3D 

alignment performed during the setup. The sampling frequency was 2.56 MHz. The 

number of acquired points for each direction was 214 points. The excitation signal 

was a 5-cycle sinusoidal with a Hann window at 80 kHz. Two transducers were used 

to introduce the guided waves to the GFRP plate, a shear transducer and a 

compressional transducer. The shear transducer was placed at two different 

orientations at 45° and -45°, in order to evaluate all the wave modes. 

 

 
Figure 5.16: Photo of the PSV-400-3D Scanning Vibrometer during the experiment setup. 

 

5.6.3 Results 
 

Once the collection finishes, 3D Vibrometer produces a data file for particle velocity 

along each Cartesian axis, which have to be post processed to split the data at each 

wave propagation direction (0°, 20° and 45°) and to transform the default Cartesian 

coordinates to cylindrical coordinates. In Figure 5.17 an example of the raw acquired 
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data is presented, which corresponds to the radial axis component of the data 

acquired to the line at 45° propagation direction with the shear transducer heading 

45°. 

 
Figure 5.17: Plot of the raw matrix data acquired by the vibrometer for the case of the radial axis 

component of the line at 45° propagation direction with the shear transducer heading 45°. 

 

The data matrix showed in the Figure 5.17 is evaluated using the 2D FFT to yield the 

frequency and wavenumber values. Figure 5.18 shows the result of the application 

of 2D FFT to the example presented in Figure 5.17. 

 

 

Figure 5.18: Plot of the 2D FFT matrix for the case of the radial axis component of the line at 45° 
propagation direction with the shear transducer heading 45°. 
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As expected due to the orientation of the transducer, the Figure 5.18 clearly shows 

the S0 wave mode and also the A0 wave mode with lower amplitude. This process 

was repeated for each axis of cylindrical coordinates, at each propagation direction 

and for each transducer configuration, a total of 27 different cases. The 

frequency/wavenumber matrixes were normalized and aggregated together for 

each propagation direction, in order to have just three dispersion curves, one per 

wave propagation direction. The results are presented in Figure 5.19. 

 

 
 

 

(a) 

(b) 
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Figure 5.19: Dispersion Curves around 80 kHz at three propagation directions: (a) 0° direction, 
(b) 20° direction and (c) 45° direction. 

 

Directions at 0° and 20° present four propagating modes, whilst the analysis at 45° 

presents three modes. The local maximums, which correspond to these propagating 

modes, were extracted at the frequency of 80 kHz for calculating the phase velocities. 

The polar plot in Figure 5.20 presents the phase velocity results from the 3D 

vibrometer, from the experimental signals with a spacing of 10 cm and from 

Disperse® software at 80 kHz. SH0 velocities from the 3D vibrometer correlate very 

well with the velocities from the proposed technique, validating these velocity 

values; which previously could not be compared since SH0 velocities were not 

available from Disperse®. The A0 mode velocities from the three sources match 

accurately between them. For the case of the S0 mode, the velocities from the 3D 

vibrometer are slightly higher than the ones from the other two methods, being 

closer to the values of technique proposed in this thesis. Looking closer at the results, 

we can observe that there is a linear offset of the calculated velocities, where the 

offset increases as the velocity increases. This is possibly due to an inaccurate 

determination of the spacing between points. The 3D SLV automatically calculates 

this spacing based on the positional setup of the three laser heads. This setup is 

carried out manually by the SLV operator which can introduce a positional error, 

and consequently produce a small error in the determination of the real spacing 

between scanned points.  

(c) 
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Figure 5.20: Phase velocity profile comparing the two experimental techniques (2D FFT 

vibrometer and the method proposed in this thesis) and the theoretical values from Disperse®. 

 

5.7 Conclusion 
 

The dispersion curve creation method proposed in this thesis has obtained positive 

results on the determination of the phase and group velocities for a composite 

structure. The calculated velocities for the three fundamental wave modes correlate 

well with existing techniques. However, small variations on the experimental results 

are present especially for the case of group velocity.  

It can be seen in Figure 5.15 that there is also a noticeable difference between S0 

velocity values from the proposed method using the experimental signals and from 

Disperse®. However, by looking at Figure 5.9 the S0 velocities from the proposed 

method using the simulated signals and from Disperse® are in excellent agreement. 

Therefore, these circumstances may lead us to think that this discrepancy could be 

caused by an inaccurate material property definition of the GFRP plate; since 
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Disperse® and the simulation were using the same material properties and thickness 

for determining the dispersion characteristics; whereas the experimental tests were 

using the signals directly from the specimen for its calculation. This deviation 

between the theoretical and the real material properties of a composite structure that 

we have just experienced in a relatively controlled and simple specimen is a quite 

common issue. In the case of more complex structures, like wind turbine blades, this 

variation could be probably higher than the one achieved in this chapter, 

consequently leading to bigger differences between the theoretical dispersion curves 

and the real dispersion curves of the structure. Therefore, the use of an experimental 

technique for the calculation of dispersion curves on complex structures, such as 

composite structures, is highly recommended, since it would avoid possible errors 

caused by inaccurate determination of material properties. 

At the end of the chapter, 2D FFT technique was performed on signals acquired 

directly from the real specimen to validate the results from the proposed method by 

using a different experimental technique. With this new test, SH0 velocities were also 

validated since Disperse® was unable to determine its values reliably at different 

angles; and it was checked that the agreement between both experimental techniques 

is high. In addition, this test also allowed us to verify that the S0 velocities calculated 

from experimental tests correlate well, meaning that the discrepancies of results 

between theoretical and experimental tests are due to an inaccurate material 

property determination. 
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Chapter 6 

 

6 Wave Propagation of Shear 
Horizontal Mode in GFRP Plates  

 

6.1 Introduction 
 

As shown in the previous chapter the SH0 possesses a unique wave propagation 

pattern, where at certain propagation directions three SH0 wavefronts co-exist 

propagating at different velocities. These complex wavefronts are caused by the lay-

up configuration, therefore in this chapter three different laminates are modelled in 

Abaqus to evaluate and understand how the SH0 mode propagates in composite 

plates. In addition to this chapter, an FE evaluation on how the shear horizontal 

wavefronts are generated depending on the shear transducer orientation is also 

carried out. 

For isotropic structures, the Shear Horizontal mode is one of the most used wave 

modes for damage detection in commercial applications due to its non-dispersive 

behaviour, sensitivity to damage, in-plane displacement (which increases the 

inspection range as the energy scattering is low) and mode purity since SH0 solely 

propagates along the inspection direction without S0 and A0. All these advantages 

make SH0 a potential good candidate for damage detection in composite structures. 

To assess its suitability, firstly an analysis of the SH0 wave propagation in multi-
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layered plates should be carried out to evaluate its propagation behaviour, as well 

as a study of SH0 generation in order to effectively steer the wave energy towards 

the desired direction. Both studies are presented using numerical models of three 

different composite laminates; unidirectional, bi-axial (cross-ply) and tri-axial. 

In the previous Chapter, it has been observed that the fundamental Shear Horizontal 

mode experiences a more complex wave propagation pattern in the bi-axial GFRP 

plate in comparison to the SH0 wave front in the aluminium plate. A FE model in 

Abaqus has been created to analyse the changes of the SH0 propagation between the 

three different GFRP laminates. To ensure validity of the results from the FE model, 

the results from the case of the bi-axial plate have been first compared to 

experimental results from the GFRP plate using the 3D Scanning Laser Vibrometer.  

 

6.2 Validation of the Finite Element Model 
 

To validate the Abaqus model, experimental results using the 3D Scanning Laser 

Vibrometer were performed to correlate with the wave propagation results from the 

simulation for the three fundamental wave modes. 

 

6.2.1 FE Simulation 
The 3D model was created using the Abaqus/Explicit version 6.13. The geometry is 

the same as the model presented in the previous chapter, a semicircle of 0.5 m radius 

with 4.558 mm thickness; with symmetry boundary conditions on the straight edge 

of the semicircle simulating an entire circle. The exciting load was placed at the 

centre of the semicircle with an active area of 13 × 1.5 mm and the direction of the 

load is along the straight edge of the semicircle. The input signal of the excitation 

load is a 5-cycle sinusoid with a Hanning window at the frequency of 80 kHz. The 

material properties are shown in Table 5.1 in the previous chapter which 

corresponds to the GFRP bi-axial ply. Due to the stacking sequence of the laminate 

where all the 6 plies have the same orientation [±45F6], the FE model was set as 3D 

solid model applying the material properties of the bi-axial ply to the model.  
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The model has been partitioned the same way as the model of the previous chapter 

and the mesh elements are also the same (C3D8 element type for the 8-node linear 

brick and C3D6 element type for the 6-node linear triangular prism). In Figure 6.1 

snapshots of the propagation results of the wave modes are shown for different time 

instants. The images represent the particle displacement magnitude of the top 

surface of the plate where the excitation load is applied. The S0 mode can be easily 

distinguished as it is the fastest mode. The A0 mode can be identified propagating at 

the same directions as S0 although it is overlapped by one of the SH0 wavefronts. The 

rest of wavefronts that appear in the images are SH0 wavefronts. 

 

 

 

 

 

Figure 6.1: Four snapshots of the guided propagation of the three fundamental wave modes (S0, 
A0 and SH0) in a cross-ply GFRP plate when exciting with a shear transducer vibrating 

horizontally. Scale bars in metres. 

 

6.2.2 Experimental Test 
Guided wave propagation was analysed in the same 6-ply prepreg XE905/SE84LV 

(E-glass/epoxy resin) bi-axial laminate used in the previous chapter. A shear 

piezoelectric transducer was attached at the centre of the plate for generating elastic 

SH0 

S0 

A0 

SH0 SH0 
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waves. The excitation signal is the same as the numerical simulation, a Hanning-

windowed 5-cycle 80-kHz sinusoidal signal. 

3D Scanning Laser Vibrometer was used to capture the wave propagation of the 

three fundamental wave modes close to the excitation point. The scanned area has a 

dimension of 120 × 150 mm and the grid of acquisition points on the surface of this 

area was established of 45 by 57 points respectively. 

 

6.2.2.1 Results 

The results are computed in Cartesian coordinates, since the results from the 3D SLV 

were provided in this reference system. The images on the left are the simulated 

propagation results in Abaqus and the images on the right are from the experimental 

test using the 3D SLV. The displacement for each coordinate axis is presented 

separately to illustrate more in detail the similarity between techniques; (a) x axis 

displacement, (b) y axis displacement and (c) z axis displacement. Two different 

snapshots were extracted at times 0.68 µs and 1.24 µs presented in Figure 6.2 and 

Figure 6.3 respectively. The black area in the vibrometer images is where the 

piezoelectric transducer was attached which was not scanned. In Figure 6.2, S0 and 

the faster wavefront of SH0 are depicted. On the other hand, the slower wavefront of 

SH0 and A0 can be spotted in Figure 6.3. 
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Figure 6.2: Guided wave propagation comparison between FE and experimental results in 
cross-ply GFRP plate. FE images at left. Experimental images from 3D SLV at right. (a) x axis 

displacement, (b) y axis displacement and (c) z axis displacement. Images extracted at time 0.68 
µs. 

(a) (a) 

(b) (b) 

(c) (c) 

SH0 
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wavefront 
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Figure 6.3: Guided wave propagation comparison between FE and experimental results in 
cross-ply GFRP plate. FE images at left. Experimental images from 3D SLV at right. (a) x axis 

displacement, (b) y axis displacement and (c) z axis displacement. Images extracted at time 1.24 
µs. 

 

Similarities of the propagation of the S0 mode between both techniques can be clearly 

seen in Figures 6.2a and 6.2b for the x axis and y axis components respectively; as 

well as, in the case of the initial propagation of the faster wavefront of the SH0 mode 

which propagates towards the positive y axis. In the z axis displacement images of 

Figures 6.2c, they also show the propagation of the A0 mode in both cases. In Figures 

(a) (a) 

(b) (b) 

(c) (c) 
A0 

SH0 
slower wavefront 
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6.3a and 6.3b, both techniques also capture the propagation of the slower wavefront 

of the SH0 along the 45° direction; and finally, A0 mode propagation can also be 

depicted in Figures 6.3c for both techniques. As it can be seen from the results, the 

numerical simulation reproduces well the real propagation of all the wave modes 

generated at 80 kHz in the composite plate; S0, A0 and SH0. From these results, it can 

be concluded that the Abaqus model produced in this chapter provides valid results 

to theoretically predict the elastic wave propagation of the fundamental modes for 

composite plates. 

 

6.3 Guided Wave Propagation in GFRP for three 
different laminates: Unidirectional, Bi-axial 
and Tri-axial 

 

6.3.1 Description 
Using the FE model validated in the previous section, three different composite 

configurations were evaluated to investigate the SH0 propagation. The material 

properties for the fabrics used in the three cases are shown in Table 6.1.  

TABLE 6.1 
MATERIAL PROPERTIES OF THE THREE FABRICS 

 

PROPERTY UNI-AXIAL BI-AXIAL TRI-AXIAL 
𝝆  (KG/M3) 1915.5 1800 1845 
E1 (GPA) 41.6 12.46 21.8 
E2 (GPA) 14.9 12.46 14.7 
E3 (GPA) 13.4 11.47 12.1 
G12 (GPA) 5 9.5 9.4 
G13 (GPA) 5 4.327 4.5 
G23 (GPA) 5 4.327 4.5 

𝝂12 0.241 0.5 0.478 
𝝂 13 0.2675 0.2585 0.275 
𝝂23 0.3301 0.3256 0.3329 

 

The values for the unidirectional and tri-axial plies were provided by a wind turbine 

blade manufacturer, being the parameters they use for FE modelling. Geometry 

dimensions, acquisition time, excitation area and mesh refinement are all the same 
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as previous model; except to the input signal of the excitation load which is a 5-cycle 

sine with a Hanning window at the frequency of 140 kHz. This high frequency was 

chosen since the wavelengths of the wave modes are shorter so the modes are more 

distinguishable facilitating the interpretation of the results. Table 6.2 shows the 

percentage of fibres at each direction for the three investigated laminates. 

TABLE 6.2 
COMPOSITION OF THE WOVEN PLIES 

 

FIBRE DIRECTION UNI-AXIAL BI-AXIAL TRI-AXIAL 
0° FIBRES (%) 95 0 30 
90° FIBRES (%) 5 0 0 

+45° FIBRES (%) 0 50 35 
-45° FIBRES (%) 0 50 35 

 

6.3.2 Results 

6.3.2.1 Unidirectional laminate 

Figure 6.4 shows the wave propagation pattern for the unidirectional case of the 

three fundamental modes, where the glass fibres are oriented at 0 degrees. For this 

highly anisotropic case, it can be clearly deduced that the velocity of the symmetric 

mode, S0, is highly dependent to the fibre orientation, being around 1.8 times faster 

along the fibres than perpendicularly to the fibres for this particular unidirectional 

case. Antisymmetric mode is hardly dependant on the fibre orientation propagating 

at same velocity at every direction. For the case of the Shear Horizontal mode, the 

propagation pattern has a singular shape. The wave mode could be divided into 

three different wavefronts; along the fibres, perpendicular to the fibres and at 45 to 

the fibres, see Figure 6.5. These images have been obtained using a photo editing 

tool. 
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Figure 6.4: Wave propagation pattern for the three fundamental wave modes on a 
unidirectional GFRP plate of 1-metre diameter at time 140.7 µs. 

 

     

Figure 6.5: Decomposition of the propagation pattern of the SH0 mode into three different 
wavefronts. 

 

Depending on how the shear transducer is oriented respect to the fibre orientation 

some wavefronts are created and others are not. As it can be seen in Figure 6.6, when 

the shear transducer is placed along the fibres, the shear mode which propagates 

perpendicularly to the fibres is highly excited as well as the wavefronts at 45. 

However, when the shear transducer is oriented perpendicularly to the fibres the 

(a) (b) (c) 
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wavefronts at 45 are slightly excited and the wavefronts that propagates along the 

fibres are highly excited. 

 

 

Figure 6.6: Representations of the wavefronts created for the three fundamental wave modes 
depending on the orientation of the shear transducer. (a)  Shear transducer vibrates 

horizontally. (b) Shear transducer vibrates vertically. 

 

6.3.2.2 Bi-axial laminate (Cross-ply) 

The bi-axial plate is composed of fibres oriented at two perpendicularly directions. 

In our model, the fibres are placed along 45 and -45. In Figure 6.7, the propagation 

of the three fundamental wave modes is represented. The symmetric mode travels 

faster along the fibres creating a square shape which has been also observed in 

previous publications [27], [95]. In this case, it is clearly depicted that the energy of 

the wave along the fibres is higher than the transmitted energy between fibres. The 

antisymmetric mode has a wavefront with a circular shape showing that it is not 

dependant on the fibre orientation. The shear horizontal mode for this case has two 

different propagation wavefronts, one propagating along the fibres and the other 

one along the bisector between fibres, see Figure 6.8. 

 

(b) (a) 
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Figure 6.7: Wave propagation pattern for the three fundamental wave modes on a biaxial GFRP 
plate of 1-metre diameter at time 140.7 µs. 

 

     

Figure 6.8: Decomposition of the propagation pattern of the SH0 mode in the biaxial GFRP plate 
into two different wavefronts. (a) Wavefronts propagating along the bisector between fibres.  

(b) Wavefronts propagating along the fibres. 

 

To evaluate the wave mode creation depending on the transducer orientation, two 

cases were selected which are when the shear transducer is placed along the fibres 

(b) (a) 
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and when the transducer is in the same direction as the bisector. The former case is 

shown in Figure 6.9a and the latter in Figure 6.9b. It is very relevant that in the second 

case where the transducer is along the bisector, shear horizontal mode appears at all 

directions. Conversely in isotropic plates, SH0 is only created perpendicularly to the 

excitation direction, not existing at every direction , see Figure 4.9b. This behaviour 

also occurs for the tri-axial laminate.  

Looking at the shear horizontal propagation patterns from both scenarios in Figure 

6.9, it can be concluded that the only wavefronts that are not created by the shear 

transducer are the ones that their particle displacement is perpendicular to the 

excitation direction (which depends on the orientation of the shear transducer). 

Therefore, the propagation direction of the wavefront is not relevant during the 

creation of the wave modes. This is why we can see in Figure 6.9b, SH0 modes 

propagation at all directions, but we will not see SH0 vibrating perpendicularly to 

the excitation direction. As discussed in the Literature Review, this distinction 

between propagation direction and normal vector of the wavefront is very important 

for composite plates since they do not coincide; this angular difference is commonly 

known as skew angle. 

 

    

Figure 6.9: Representations of the wavefronts for the three fundamental wave modes created 
depending on the orientation of the shear transducer. (a) Shear transducer vibrates at +45° 

along the fibres. (b) Shear transducer vibrates horizontally. 

(b) (a) 
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6.3.2.3 Tri-axial laminate 

The wave propagation of the three fundamental wave modes in the tri-axial laminate 

is represented in Figure 6.10. The laminate is composed by the same woven ply with 

fibres oriented at 0, +45 and -45. Consequently, the velocity of the symmetric 

mode at 90 will be slower with respect to the other directions, as expected from 

previous examples. The antisymmetric mode velocity is unaltered across all 

propagation angles despite of the different fibre orientation. For the case of shear 

horizontal, there are three different wavefronts depicted in Figure 6.11. Two 

different small focusing energy wavefronts and one long shear wavefront 

propagating at 45. As the laminate gets less anisotropic, the shear horizontal gets 

more uniform, reducing the energy focusing areas and creating highly focused 

energy waves like the wavefront at 0. 

 

 

Figure 6.10: Wave propagation pattern for the three fundamental wave modes on a triaxial 
GFRP plate of 1-metre diameter at time 140.7 µs. 
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Figure 6.11: Decomposition of the propagation pattern of the SH0 mode in the triaxial GFRP 
plate into three different wavefronts. 

 

Figure 6.12a and Figure 6.12b show the wave modes that have been excited using 

two different shear transducer orientations, when the poling axis of the transducer 

is at 0 and at 90 respectively. As well as in the bi-axial laminate case, shear 

horizontal wavefronts are created at all directions for both studied cases. 

 

    

Figure 6.12: Representations of the wavefronts created for the three fundamental wave modes 
depending on the orientation of the shear transducer. (a)  Shear transducer vibrates 

horizontally. (b) Shear transducer vibrates vertically. 

 

 

 

(a) (b) (c) 

(b) (a) 
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6.4 Conclusion 
 

Some conclusions of the wave propagation of the three fundamental modes can be 

extracted from the results of the FE models presented before. 

The symmetric mode is highly dependent on the fibre orientation. S0 travels at faster 

velocity along fibre directions, as well as the wave energy transmitted along the 

fibres is also higher than the energy at the other directions. Longitudinal waves are 

mainly governed by the elastic stiffness along the propagation direction; 

consequently at fibre directions, higher velocities are achieved. 

Antisymmetric mode velocity has been demonstrated that is weakly dependent on 

the fibre orientation. This quasi-omnidirectional velocity of propagation behaviour 

in composite materials is an advantage for using this mode for guided wave 

inspection since it reduces the complexity of possible post-processing calculations, 

like determining the damage location using time-of-flight measurements. The 

energy transmitted along the fibres is slightly higher than at other directions, this 

could be due to A0 propagation possesses a small in-plane displacement along the 

propagation direction due to the Poisson ratio. Therefore, the in-plane energy of the 

A0 along the fibres will be higher since the Young´s modulus at this direction is 

higher, as it happens to the symmetric mode. 

Shear Horizontal mode propagation is highly dependent on the fibre orientation. 

The shape of the wavefronts of SH0 changes considerably from one laminate to 

another. For the three studied anisotropic cases, areas with energy focusing appear 

at particular directions depending on the fibre directions. The singular shape of the 

SH0 has been attributed in the literature to the shift of the curvature of the slowness 

from convex to concave [27]. This effect is highly present for high anisotropic 

laminates and it becomes less pronounced as the laminate is less anisotropic, as we 

could see along the three examples; and disappearing when the plate is isotropic as 

seeing in Chapter 4 for the aluminium plate. Another interesting feature of the SH0 

mode is the co-existence of several wavefronts propagating at different velocities 

along the same direction. When these wavefronts overlap, they create the energy 

focusing areas. Depending on the excitation direction of the shear transducer, those 
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particular wavefronts can be created or not. In this section, the shear transducer 

orientation has been studied analysing what wavefronts are generated for each case. 

Surprisingly, SH0 can be created omnidirectionally with a shear transducer with a 

single excitation direction, since it was expected to have SH0 just perpendicularly to 

the excitation direction as it happens for isotropic cases. This is due to the high skew 

angle values that the SH0 mode experiences at certain propagation directions. As 

explained in Chapter 2, the skew angle is the angular difference between the group 

velocity vector (propagation direction) and the wave vector (wavefront normal) 

which is directly related to the particle displacement. Therefore, during the 

transducer excitation, the SH0 wavefronts where their particle displacement 

direction is similar to the excitation direction will be created; however, the 

propagation direction of these wavefronts can be highly offset from the wave vector 

due to its skew angle, resulting in SH0 wavefronts propagating at the same direction 

as the excitation direction. 

This analysis is particularly useful since it is important to have knowledge on how 

the shear horizontal modes are created when using shear transducers to inspect 

composite structures. The investigation intends to explain where and how to place 

the transducer on the composite plate to generate the desired SH0 wavefront to 

interrogate a specific area. 
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Chapter 7 

 

7 Delamination detection using the 
three fundamental wave modes 

 

7.1 Introduction 
 

In this chapter, the three fundamental modes are studied to evaluate their sensitivity 

to detect delaminations on a GFRP plate. In the literature, it is not clear what wave 

mode is the most suitable for delamination detection, some papers establish S0 as the 

preferred mode for interrogating the composite plate [14], [15] and other papers uses 

A0 mode [16], [17]. The SH0 mode has not been evaluated yet for delamination 

detection in composite structures, probably due to the difficulty to analyse its 

complex wave propagation pattern. In this section, a FE analysis is performed in 

Abaqus to evaluate the degree of interaction of each fundamental wave mode with 

a delamination in a GFRP plate. The delamination was modelled as a representative 

delamination caused by an impact. Furthermore, experimental tests using the 3D 

SLV are carried out to validate the simulation results. The considered scenario for 

the experimental test is a controlled 20 Joules impact delamination in a GFRP plate. 
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7.2 Simulation Analysis 
 

7.2.1 Abaqus Model 
The validated 3D Abaqus model presented previously was used in this section for 

the evaluation of the delamination sensitivity. The material properties applied to the 

model were the bi-axial ones shown in Table 6.1 to compare the simulation results 

with the experimental results from the bi-axial GFRP plate available in the 

laboratory. The 3D model is a semicircle of 500 mm radius with 4.558 mm thickness; 

with symmetry boundary conditions on the straight edge of the semicircle. Damage 

was introduced in the model simulating a characteristic delamination pattern 

produced by an impact. Due to the symmetry conditions a second damage was 

created at the symmetric part; however, it did not affect the final results since the 

analysed signals are not altered by the echoes generated by this second damage. The 

delamination was set at 370 mm from the excitation area as shown in Figure 7.1. The 

delamination caused by an impact is actually a set of delaminations with different 

sizes one on top the other creating a pyramid-like shape [116], [117]. The impact 

damage is represented in Figure 7.2 and Figure 7.3 where the delamination area 

generated in the interfaces between plies increases as we move from the top (impact 

surface) to the bottom side of the laminate. The impact damage is composed by 5 

delaminations, since the experimental GRFP plate is formed by 6 plies, resulting into 

5 ply interfaces. The shape of the delaminations depends on the fibre orientation of 

each ply of the lay-up of the GFRP plate [117]; for simplicity, the shapes adopted in 

this analysis are circular delaminations. The size of the delaminations for each 

interface is shown in Table 7.1; these values have been selected since they are 

common values from an impact energy of 20 J [102], [103], [116], [117]. To establish 

the delaminations in Abaqus, partitions with the size of the delaminations were first 

created in the model and then the property Crack-Seam available in Abaqus was 

applied to the five delamination areas. This property can be only applied to 

interfaces between elements which by default are connected to each other sharing 

nodes; however Crack-Seam separates nodes on elements on each side of the 

delamination defining a seam. This Crack-Seam property will not perfectly represent 

a delamination, since the separated elements will not interact between each other for 
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compressional forces; but it is a realistic approach for the representation of 

delaminations. 

 

TABLE 7.1 
DELAMINATION SIZE OF THE IMPACT DAMAGE 

 

INTERFACE 

BETWEEN PLIES 
DELAMINATION 

RADIUS (MM) 
1ST / 2ND 7.5 
2ND / 3RD 15 
3RD / 4TH 22.5 
4TH /5TH 30 
5TH / 6TH 37.5 

 

 

 
Figure 7.1: Geometry of the Abaqus model to evaluate the sensitivity of the fundamental wave 

modes to detect a delamination caused by an impact.  
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Figure 7.2: Top view of the impact damage geometry. 

 

 
Figure 7.3: Cross section of the plate to show the pyramid-like impact damage geometry. Top 

side is the impact surface. Delamination size increases as we move to the bottom surface. 

 

The exciting load was placed at the centre of the semicircle as previous models with 

an input signal of 5-cycle sine with a Hanning window at the frequency of 80 kHz. 

The receiver was created at the edge of the laminate at the y axis. The mesh element 

for the delamination areas is the C3D6 type (6-node linear triangular prism) and for 

the rest of the model the mesh elements are the same as previous models. 

 

7.2.2 Results 
The analysis consists in the evaluation of the three fundamental waves to detect 

delamination damages produced by impacts. For that purpose, three different 

models have been created using the bi-axial GFRP plate: 

1. Using a compressional transducer to evaluate the symmetric and 
antisymmetric modes with the fibres oriented 0/90. 

2. Using a shear transducer with the fibres oriented ±45 to evaluate the faster 
shear horizontal wavefront. 

3. Using a shear transducer with the fibres oriented 0/90 to evaluate the 
slower shear horizontal wavefront. 

The reason why the symmetric and antisymmetric modes were evaluated using the 

laminate configuration at 0º/90º was because the wave energy at those directions is 



Chapter 7.  Delamination detection using the three fundamental wave modes 108 

 

higher, therefore the interaction between the mode of propagation and the 

delaminations is more pronounced facilitating the evaluation. 

 

7.2.2.1 Symmetric Mode 

Images of the symmetric mode passing through the delamination are shown in 

Figure 7.4 at four different time steps. As shown, the S0 mode crosses the damaged 

area twice, directly from the transmitter and from the echo produced at the edge of 

the plate. 

 

Figure 7.4: Four images of the S0 mode propagating through a delamination on the GFRP plate 
at times (a) 62.5 µs, (b) 112.5 µs, (c) 162.5 µs and (d) 212.5 µs. 

 

Figure 7.5 shows images of the cross section of the laminate where the delamination 

is located for the four time steps represented before. As it can be seen, the interaction 

of the symmetric mode with the delaminations is low. The wave mode passes 

through the delamination hardly changing its shape. 

Delamination 
Area 

View (a) (b) 

(c) (d) 



Chapter 7.  Delamination detection using the three fundamental wave modes 109 

 

 

Figure 7.5: Cross section images of the symmetric mode when crossing the delaminated area at 
times (a) 62.5 µs, (b) 112.5 µs, (c) 162.5 µs and (d) 212.5 µs. Scale bar in metres. 

 

Time-based signals were acquired at the edge point of the plate next to the impact 

area for two different scenarios, healthy and unhealthy, to carry out a quantitative 

analysis calculating how much wave energy is scattered by the impact damage, and 

to study if the delamination can be detected by a pitch-catch configuration at the 

most favourable situation which is when the damage is in the middle of the path 

between transmitter and receiver. Normalization of both signals was performed by 

dividing by the highest absolute amplitude value of the non-damaged wave packet 

of interest. Figure 7.6 shows the symmetric mode after propagating 500 mm. 

Changes between the signals from both models are almost imperceptible. To 

enhance the changes, it was performed a baseline subtraction to the damaged signal 

which removes the unchanged values leaving just the variations. In the graph, it is 

represented in yellow as “Subtraction”. 

S0 

S0 

S0 

Delaminated Area (a) 

(b) 

(c) 

(d) 



Chapter 7.  Delamination detection using the three fundamental wave modes 110 

 

 

Figure 7.6: Comparison of the displacement along the radial direction at receiver between the 
healthy and unhealthy models for the S0 mode. Baseline subtraction is also presented for 

enhancing the variation caused by the damage. 

 

By performing a Hilbert transform, we can obtain the envelope of the acquired 

signals with which we can better visualize the decrease of amplitude due to the 

energy scattering produced by the damage, see Figure 7.7. 

 

Figure 7.7: Comparison of the envelopes of the acquired signals and baseline subtraction. 

 

Equation (7.1) was used to calculate the energy of the transmitted wave mode from 

the discrete normalized signals in time domain, 

𝐸 = ෍ |𝑥௡|ଶ

ஶ

௡ୀିஶ

 (7.1) 
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where 𝑥 is the normalized amplitude of point 𝑛. The calculated energies for both 

cases are shown in Table 7.2. The energy variation between them is just 3.22% of the 

total transmitted energy across the impact damage. Remember this transmitter-

receiver configuration is the most favourable configuration for detecting the damage 

and the simulated variation under perfect conditions is low.  

TABLE 7.2 
WAVE ENERGY OF SYMMETRIC MODE (RADIAL COMPONENT) 

 

FE MODEL 
NORMALIZED 

ENERGY 
NON-DAMAGED 1 

DAMAGED 0.968 
 

 

7.2.2.2 Antisymmetric Mode 

Figure 7.8 shows the propagation of the antisymmetric mode passing through the 

impact damage. This mode of propagation, out-of-plane displacement, highly 

interacts with the delaminations as it can be seen in the images.  

 

 

Figure 7.8: Four images of the A0 mode propagating through a delamination on the GFRP plate 
at times (a) 212.5 µs, (b) 262.5 µs, (c) 312.5 µs and (d) 362.5 µs. 
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Cross section images of A0 crossing the impact damage are provided in Figure 7.9. 

Displacement deformation of the simulation was amplified to visually show the 

interaction between the wave mode and the delaminations where the out-of-plane 

displacement can be clearly seen. Wave energy gets trapped in the delamination area 

as shown in the last time step image, which is in accordance with results in previous 

investigations [102], [118].  

 
Figure 7.9: Cross section images of the antisymmetric mode when crossing the delaminated area 

at times (a) 212.5 µs, (b) 262.5 µs, (c) 312.5 µs and (d) 362.5 µs. Scale bar in metres. 

 

Quantitative analysis is also performed using the signals from the damaged and 

undamaged model to evaluate the differences of wave energy after crossing the 

delamination area. 

Figure 7.10 shows the signals from both states and the signal produced after 

applying the baseline subtraction. As it can be seen, changes between signals are 

obvious, being very relevant the decrease of amplitude and time delay of the wave 

packet from the damaged case. The time delay is due to the decrease of velocity when 

crossing the delamination, since the delaminated plies have a thinner thickness, and 

consequently the wave modes have a slower velocity. 
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A0 
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Figure 7.10: Comparison of the displacement along the z direction at receiver between the 
healthy and unhealthy models for the A0 mode. Baseline subtraction is also presented for 

enhancing the variation caused by the damage. 

Envelopes of the previous signals are provided in Figure 7.11, to clearly visualize the 

energy reduction. 

 

Figure 7.11: Comparison of the envelopes of the acquired signals and the baseline subtraction. 

The wave energy greatly decrease due to the delaminations. Precisely, the energy 

drop is about 68%. Energies have been calculated with Equation 7.1 using the signals 

from both cases. 

TABLE 7.3 
WAVE ENERGY OF ANTISYMMETRIC MODE (Z COMPONENT) 

 

FE MODEL 
NORMALIZED 

ENERGY 
NON-DAMAGED 1 

DAMAGED 0.322 
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The same analysis has been applied to the signal component of antisymmetric mode 

along the radial direction. In Figure 7.12, we can see that the symmetric and 

antisymmetric modes vibrate in this direction but only A0 gets reasonably affected 

by the damage.  

 

Figure 7.12: Comparison of the displacement along the radial direction at receiver between the 
healthy and unhealthy models for the A0 mode. Baseline subtraction is also presented for 

enhancing the variation caused by the damage. 
 

The envelopes of the signals and the normalized energies for each scenario have been 

calculated and are presented in Figure 7.13 and Table 7.4 respectively. 

 

Figure 7.13: Comparison of the envelopes of the acquired signals and baseline subtraction. 

TABLE 7.4 
WAVE ENERGY OF ANTISYMMETRIC MODE (RADIAL COMPONENT) 

 

FE MODEL 
NORMALIZED 

ENERGY 
NON-DAMAGED 1 

DAMAGED 0.286 
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As expected from the results of the z axis, the radial component of the mode of 

vibration of A0 is also heavily affected by the delaminated area. As A0 mode is mainly 

governed by an out-of-plane displacement, propagation changes of A0 due to out-of-

plane interactions with delaminations will directly affect the other particle 

displacement components, as in this case has happened with the radial component. 

7.2.2.3 Shear Horizontal Mode (faster wavefront) 

In the section of the guided wave propagation in the bi-axial GFRP plate, it has been 

explained that there are two different shear horizontal wavefronts propagating at 

different velocities. Therefore, for the sake of clarity, the evaluation of the SH0 mode 

has been split into two, for the faster SH0 wavefront and for the slower wavefront. 

For the analysis of the faster wavefront, the fibres of the laminate were oriented 45, 

to direct this wavefront to the delaminated area. Images of the faster wavefront 

propagating across the damage are shown in Figure 7.14.  

 

Figure 7.14: Four images of the faster wavefront of the SH0 mode propagating through a 
delamination on the GFRP plate at times (a) 112.5 µs, (b) 162.5 µs, (c) 212.5 µs and (d) 262.5 µs. 

 

Cross section images are also provided for more detailed evaluation in Figure 7.15. 

Due to both SH0 wavefronts have similar velocities at angle of 90, they are 

represented together in the results so additional labelling for the slower wavefront 

has been added for clarification. 

Delamination 
Area 

View (a) (b) 

(c) (d) 
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Figure 7.15: Cross section images of the faster wavefront of the SH0 mode when crossing the 
delaminated area at times (a) 112.5 µs, (b) 162.5 µs, (c) 212.5 µs and (d) 262.5 µs. Scale bar in 

metres. 

 

Figure 7.16 shows the signals acquired at the edge of the plate for both scenarios. As 

it can be seen, there is no change between them, which is also validated by the 

baseline subtraction signal that is completely flat. 

 

Figure 7.16: Comparison of the displacement along the angular direction between the healthy 
and unhealthy models for the faster wavefront of the SH0 mode. Baseline subtraction is also 

presented for enhancing the variation caused by the damage. 
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Envelopes from signals were extracted in Figure 7.17; however, no variation is 

detected either. 

 

 

Figure 7.17: Comparison of the envelopes of the acquired signals and the baseline subtraction. 

 

Analysis of the signals was carried out to calculate the exact change of wave energy 

between the damage and undamaged states. Table 7.5 shows the normalized energy 

values which almost have the same result. The negligible variation between energies 

is around 0.2%. 

TABLE 7.5 
WAVE ENERGY OF SHEAR HORIZONTAL MODE (ANGULAR COMPONENT) 

 

FE MODEL 
NORMALIZED 

ENERGY 
NON-DAMAGED 1 

DAMAGED 0.998 
 

7.2.2.4 Shear Horizontal Mode (slower wavefront) 

The last FE simulation was made using the shear transducer with the fibres of the 

laminate oriented at 0/90 to study the slower wavefront of shear horizontal mode 

crossing the delaminated area. Images of the simulation are shown in Figure 7.18.  
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Figure 7.18: Four images of the slower wavefront of the SH0 mode propagating through a 
delamination on the GFRP plate at times (a) 212.5 µs, (b) 262.5 µs, (c) 312.5 µs and (d) 362.5 µs. 

 

As before, cross section images zooming on the delamination area were extracted 

from the model to better visualize the interaction between the SH0 wavefront and 

the delaminations. In Figure 7.19, we can see that the interaction is minimal, where 

the shear horizontal mode hardly get affected by the delaminations. 

 
Figure 7.19: Cross section images of the slower wavefront of the SH0 mode when crossing the 
delaminated area at times (a) 212.5 µs, (b) 262.5 µs, (c) 312.5 µs and (d) 362.5 µs. Scale bar in 

metres. 
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As in the previous case, the signals from damaged and undamaged model are 

practically the same, see Figure 7.20. 

 

 

Figure 7.20: Comparison of the displacement along the angular direction between the healthy 
and unhealthy models for the slower wavefront of the SH0 mode. Baseline subtraction is also 

presented for enhancing the variation caused by the damage. 

 

Hilbert transform was applied to the signals to get the envelopes which are 

represented in Figure 7.21. 

 

 

Figure 7.21: Comparison of the envelopes of the acquired signals and the baseline subtraction. 

 

Analysis of wave energy variations from the damaged and undamaged models were 

completed using Equation 7.1. For this case, the energies are basically the same, 
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therefore it can be concluded that the shear horizontal mode is insensitive to pure 

composite delaminations. 

 

TABLE 7.6 
WAVE ENERGY OF SHEAR HORIZONTAL MODE (ANGULAR COMPONENT) 

 

FE MODEL 
NORMALIZED 

ENERGY 
NON-DAMAGED 1 

DAMAGED 0.9995 

 

7.3 Experimental Analysis 
 

In this Section, experimental tests on the cross-ply GFRP plate were carried out to 

validate the results obtained in the simulation analysis. As explained before, the 

damage created by an impact is a set of delaminations across the thickness increasing 

the delaminated area as we move from the impacted surface to the back surface. In 

the literature, researchers have studied the detection of low energy impact damages 

using guided waves [14], [103], [116]. In their experimental work, they used impact 

energies in the range between 5 and 25 Joules to introduce the damage in the 

specimens. Therefore, in our experiments we have used a composite plate which was 

subjected to a low energy impact of 20 Joules for inducing the delamination. 

As before in the FE analysis, fundamental wave modes S0, A0, SH0 faster and SH0 

slower were excited individually to analyse their interaction with the delamination. 

3D Scanning Laser Vibrometer as well as transducers in a pitch-catch configuration 

were utilized to acquire the experimental data.  

 

7.3.1 Experimental setup 
The GFRP plate used for this experiment has the same material property, lay-up 

configuration and dimensions as the plate used in Chapter 5. The plate is a 6-ply bi-

axial laminate with a lay-up of [±45F6] made by the prepreg XE905/SE84LV (E-
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glass/epoxy resin), and its dimensions are 4 × 2 metres with an average thickness of 

4.67 millimetres.  

A modified version of a Gardner impact tester was designed to induce a 

delamination in the composite plate. Three components were manufactured to create 

the tester; the weight, the graduated guide tube and the platform to hold the plate. 

The weight is a solid steel cylinder of 60 mm diameter and 150 mm long, machined 

on one end to recreate a 10mm-radius sphere as impact surface. Its weight is 2476 

grams. The graduated guide is a 2m-long plastic tube with an inner diameter of 70 

mm to drop the weight inside at a determined height. The plastic tube has a half cut 

at a distance of 0.823 metres where the weight can be hold. This height corresponds 

to a potential energy of 20 Joules for the mass of our weight. The platform to hold 

the composite plate is composed by two equal steel plates with dimensions of           

350 × 350 × 15 mm. A 40mm-diameter through hole was machined at the middle of 

both steel plates to create a limited clearance for the impact. One steel plate was 

placed beneath the GFRP plate and the other steel plate was placed on top making 

sure both through holes are perfectly aligned. Two weights of 100 N and one of 200 

N were laid over the steel plate to ensure the holding of the GFRP plate. 

The components of the impact test are listed and described in Figure 7.22. A photo 

of the delamination caused by the 20 J impact is shown in Figure 7.23 (impact surface 

side). Size of the damage is shown in Figure 7.36 (back side of the GFRP plate). 

The delaminated area has a rectangle-like shape with the approximated dimensions 

of 32 × 25 mm. The images show that the impact caused delamination between plies, 

as well as transverse matrix cracks, which are the two most commonly impact-

induced damage mechanisms in composite laminates. In addition, a small fibre 

cracking was produced on the last ply of the plate (opposite impact side). 
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Figure 7.22: Photo and schema of the components for inducing delamination into the GRFP 

plate through a controlled impact. (a) 2 m-long plastic tube with a cut at 0.823 m. (b) Two equal 
steel plates with dimensions of 350 × 350 × 15 mm and a 40mm-diameter through hole to create 
a limited clearance for the impact. (c) 200 N weight to hold the plate. (d) Two 100 N weights to 
hold the plate. (e) Solid steel cylinder with a head of 10mm-radius sphere to impact the GFRP 

plate. 

     

Figure 7.23: Photo of the damaged area from the impacted side of the plate. (a) Original photo. 
(b) Edited photo to enhance the delaminated area. 

(a) (b) 

(a) 

Transverse matrix crack 

(b) 
(c) 

(d) (e) 

Delaminated area 
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Figure 7.24: Size of the delaminated area. Photos taken from the opposite side of the impacted 
surface. (a) Original photo measuring the vertical length of the delamination. (b) Edited photo 

to enhance the delaminated area. (c) Original photo measuring the horizontal length of the 
delamination. (d) Edited photo to enhance the delaminated area. 

 

3D Scanning Laser Vibrometry was used to acquire the wave propagation of the 

modes over an area around the delamination. The scanning area was a rectangle with 

the following dimensions 240 × 180 mm. Figure 7.25 shows the experimental setup. 

Four different test configurations were carried out to study the interaction of each of 

the four wavefronts with the delaminated area: 

1. Using a shear transducer with the poling axis at 90° to evaluate SH0 faster. 
2. Using a shear transducer with the poling axis at 45° to evaluate SH0 slower. 
3. Using a shear transducer with the poling axis at 0° to evaluate S0. 
4. Using a compressional transducer to evaluate A0. 

 

(a) (b) 

(c) (d) 

Fibre cracking 
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Figure 7.25: Experimental setup using the 3D Scanning Laser Vibrometer. 

 

7.3.2 Results 
Results for each mode of propagation have been divided into three analyses; 

propagation analysis, root mean square analysis and pitch-catch signal analysis. The 

two first analyses, in turn, are divided into each coordinate direction (x, y and z axis). 

The Root Mean Square (RMS) of the velocity-time field distribution from the 3D SLV 

has been computed for each axis to further evaluate the interaction of the wave 

modes with the delamination. The result of this analysis creates a colormap of the 

scanned region highlighting the areas that are affected by the damage. The RMS is 

calculated using Equation (7.2) for each time signal at every scanned point. 

𝑅𝑀𝑆 = ඩ
1

𝑛
෍ 𝑥௜

ଶ

௡

௜ୀଵ

= ඨ
𝑥ଵ

ଶ + 𝑥ଶ
ଶ + ⋯ + 𝑥௡

ଶ

𝑛
 (7.2) 

where 𝑥௜ is the amplitude of the signal at time 𝑡௜. 
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Pitch-catch signals were acquired before and after damaging the GFRP plate. Both 

signals are plotted together in the same graph to facilitate the visualization of the 

differences. 

7.3.2.1 Test 1 – Evaluation of SH0 mode (faster wavefront) 

Propagation Analysis 

X Direction 

 

       

       

       

Figure 7.26: Snapshots of x component of the SH0 (faster wavefront) at different times. 

t = 0.17480 ms t = 0.20020 ms 

t = 0.22461 ms t = 0.25000 ms 

t = 0.27530 ms t = 0.30371 ms 
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Y Direction 

 

       

       

       

Figure 7.27: Snapshots of y component of the SH0 (faster wavefront) at different times. 

 

 

 

t = 0.17480 ms t = 0.20020 ms 

t = 0.22461 ms t = 0.25000 ms 

t = 0.27530 ms t = 0.30371 ms 
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Z Direction 

 

       

       

       

Figure 7.28: Snapshots of z component of the SH0 (faster wavefront) at different times. 

 

The faster wavefront of SH0 is clearly depicted in Figure 7.27 as its main vibration 

direction is along the y axis. In Figures 7.26 and 7.27, the interaction with the 

delamination is minimal, almost imperceptible. However, if the amplitude is 

t = 0.17480 ms t = 0.20020 ms 

t = 0.22461 ms t = 0.25000 ms 

t = 0.27530 ms t = 0.30371 ms 
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amplified 5 times, we can see in Figure 7.28 that the small out-of-plane component 

of the SH0 interacts with the delamination. Out-of-plane wave energy is confined in 

the delamination turning into a source of new omnidirectional waves, which seem 

to be A0 waves since they propagate at similar velocities at all direction, the 

wavelength is shorter as the A0 mode and it possesses a predominant out-of-plane 

displacement. 

 

RMS Analysis 

X Direction 

 

Y Direction 
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Z Direction 

 
Figure 7.29: Colormaps of the RMS analysis over the signals in the scanned area for each axis. 

 

Using the RMS analysis, areas of the plate where the waves behave differently from 

the rest of areas can be spotted easily. Figure  7.29 shows the colormap results after 

applying the RMS to the signals at each axis. The bluer the point in the colormap is, 

the higher the mean amplitude of the signal at this point is. For the cases of the x axis 

and y axis, the delamination cannot be identified in the colormap; however, for the 

case of the z axis, the delamination is clearly detected at the middle of the scanned 

area. The bluer area where the delamination is located is due to the out-of-plane 

wave energy confined in the delamination which increased the mean signal 

amplitude at those points. This is why RMS analysis is particularly useful in the 

detection of delaminated areas using guided waves. 

 

Pitch-Catch Signal Analysis 

In this analysis, two shear transducers were used in a pitch-catch configuration. As 

shown in Figure 7.30, both poling axis are oriented vertically to allow the faster 

wavefront of the SH0 to propagate horizontally across the delaminated area. 
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Transducer Arrangement 

 

Figure 7.30: Configuration of the experimental test for acquiring the SH0 mode (faster 
wavefront). 

Figure 7.31 shows the signals acquired before and after introducing the damage in 

the plate. The very first wave packet at 0 s is not a propagated wave; this is due to 

the cross-talk between the transmitter and receiver channels. The first real wave 

packet at 400 µs is the faster wavefront of the SH0 and the other smaller wave packet 

belongs to the slower one. As it can be seen, detection of the delamination using this 

wave mode is highly difficult since this mode hardly interacts with the delamination. 

Therefore, signals at both cases are almost identical not being possible the 

identification of the delamination. 

Comparison between Damage and without Damage 

 

Figure 7.31: Comparison of the SH0 mode (faster wavefront) between the damaged and 
undamaged states. 
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7.3.2.2 Test 2 – Evaluation of SH0 mode (slower wavefront) 

In this section, the transmitter was moved at the -45° direction to direct the 

propagation of SH0 to the damaged area. Vibrometry images of the its propagation 

are presented below for the three directions. 

Propagation Analysis 

X Direction 

 

       

       

       
Figure 7.32: Snapshots of x component of the SH0 (slower wavefront) at different times. 

 

t = 0.25020 ms t = 0.27550 ms 

t = 0.30000 ms t = 0.32530 ms 

t = 0.34980 ms t = 0.38008 ms 
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Y Direction 

 

       

       

       

Figure 7.33: Snapshots of y component of the SH0 (slower wavefront) at different times. 

 

 

t = 0.25020 ms t = 0.27550 ms 

t = 0.30000 ms t = 0.32530 ms 

t = 0.34980 ms t = 0.38008 ms 
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Z Direction 

 

       

       

       

Figure 7.34: Snapshots of z component of the SH0 (slower wavefront) at different times. 

 

The slower wavefront of SH0 is clearly visualized in Figures 7.32 and 7.33 for the x 

and y directions, since the wave propagates along the 45° direction having wave 

components in both directions. From those images, it can be concluded that this SH0 

t = 0.25020 ms t = 0.27550 ms 

t = 0.30000 ms t = 0.32530 ms 

t = 0.34980 ms t = 0.38008 ms 
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wavefront does not interact at all with the delaminations. Looking at Figure 7.34, we 

check that the out-of-plane component of this wavefront is non-existent. The 

wavefront that appears in the images is the A0 mode which possesses a similar 

velocity. Therefore, the delamination cannot be spotted using the slower wavefront. 

From the previous case of the faster wavefront, we saw that it had a small out-of-

plane component in its vibration which interacts with the delamination allowing its 

detection, but in this case the slower wavefront has a more pure in-plane vibration 

which is not affected by the structural configuration of the delamination (in-plane 

separation between plies). 

 

RMS Analysis 

X Direction 

 

Y Direction 
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Z Direction 

 

Figure 7.35: Colormaps of the RMS analysis over the signals in the scanned area for each axis. 

 

After applying the RMS analysis to the acquired signals from the 3D SLV, the 

delamination is not detected for the x and y directions; however, the z direction 

colormap shows the damaged area highlighted. This is probably not due to the SH0 

mode, but the A0 mode which has a similar velocity and clearly interact with the 

delamination, as seen in Figure 7.34. 

 

Pitch-Catch Signal Analysis 

As described before, the transmitter was set at 45° with respect to the damaged area 

so the slower wavefront of SH0 can cross it for its evaluation. Additionally, for this 

pitch-catch analysis a second shear transducer was placed on the other side of the 

damage for acquiring the propagating waves. 



Chapter 7.  Delamination detection using the three fundamental wave modes 136 

 

Transducer Arrangement 

 

Figure 7.36: Configuration of the experimental test for acquiring the SH0 mode (slower 
wavefront). 

Signals acquired for the healthy and unhealthy states are plotted in Figure 7.37. The 

first part of the signal is irrelevant for this analysis (blue rectangle), since we are 

interested just in the SH0 wave packet which is the one inside the green circle at the 

end of the signal. Based on all of these results, the slower wavefront of SH0 mode has 

not been modified during its propagation through the delaminations maintaining 

the same shape and time-of-flight. In conclusion, SH0 is not able to detect typical in-

plane delaminations in composites. 

Comparison between Damage and without Damage 

 

Figure 7.37: Comparison of the SH0 mode (slower wavefront) between the damaged and 
undamaged states. 
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7.3.2.3 Test 3 – Evaluation of S0 mode 

To analyse the S0 mode, the transmitter was placed at 0° with respect to the damage 

and with the poling axis oriented horizontally. The images below show the S0 

propagation at different instants.  

Propagation Analysis 

X Direction 

 

       

       

      
Figure 7.38: Snapshots of x component of the S0 mode at different times. 

t = 0.12793 ms t = 0.15234 ms 

t = 0.17285 ms t = 0.19336 ms 

t = 0.21387 ms t = 0.23340 ms 
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Y Direction 

 

       

       

       

Figure 7.39: Snapshots of y component of the S0 mode at different times. 

 

 

t = 0.12793 ms t = 0.15234 ms 

t = 0.17285 ms t = 0.19336 ms 

t = 0.21387 ms t = 0.23340 ms 



Chapter 7.  Delamination detection using the three fundamental wave modes 139 

 

 

Z Direction 

 

       

       

      

Figure 7.40: Snapshots of z component of the S0 mode at different times. 

 

t = 0.12793 ms t = 0.15234 ms 

t = 0.17285 ms t = 0.19336 ms 

t = 0.21387 ms t = 0.23340 ms 
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Looking at the three different displacement components, S0 mode only appears at x 

and z directions, Figures 7.38 and 7.40. This was expected since the S0 mode is a 

longitudinal wave with a particle vibration mainly along the propagation direction 

(x axis) and a smaller out-of-plane movement (z axis) due to the Poisson´s ratio. In 

the case of the in-plane displacement (x axis), the wave propagation seems not to be 

affected by the delamination area. However, the out-of-plane displacement of S0 

mode gets altered when crossing the damaged area, as also seen in previous 

experiments. A part of the out-of-plane wave energy gets trapped in the 

delamination converting the S0 out-of-plane energy into A0 modes of propagation. 

After S0 mode crossed the delamination, the delamination became a source of A0 

waves. 

RMS Analysis 

X Direction 

 

Y Direction 
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Z Direction 

 

Figure 7.41: Colormaps of the RMS analysis over the signals in the scanned area for each axis. 

The results after applying RMS analysis are presented in Figure 7.41. S0 mode is able 

to detect the damage thanks to the small out-of-plane component of the S0 mode 

vibration, which interacts with the delamination. The biggest S0 wave energy which 

is the in-plane vibration along x direction was not altered by the delamination. 

 

Pitch-Catch Signal Analysis 

Figure 7.42 shows the experimental configuration to transmit and acquire the S0 

mode using two shear transducers. As explained before, the transducers were placed 

with their poling axis oriented at 0° maximising the creation and reception of S0 

mode. 

Transducer Arrangement 

 
Figure 7.42: Configuration of the experimental test for acquiring the S0 mode. 
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Signals were acquired before and after damaging the plate. Figure 7.43 shows the 

two signals. As it can be seen from the results, the identification of a delamination 

from these signals is hardly possible. Since the main S0 wave energy is the in-plane 

vibration, which does not interact with the delamination; small alterations on the 

out-of-plane displacement when crossing the delamination will not change the wave 

propagation pattern of the S0 mode. 

 

Comparison between Damage and without Damage 

 

Figure 7.43: Comparison of the S0 mode between the damaged and undamaged states. 

 

7.3.2.4 Test 4 – Evaluation of A0 mode 

The last experimental test is the evaluation of the A0 mode for delamination 

detection. In this case, compressional transducers were used to create the A0 mode. 

In Figures 7.44, 7.45 and 7.46, eight snapshots of the A0 propagation over the 

delamination are presented divided by the vibration component of each axis. 
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Propagation Analysis 

X Direction 

       

       

       

       
Figure 7.44: Snapshots of x component of the A0 mode at different times. 

t = 0.29590 ms t = 0.32031 ms 

t = 0.34570 ms t = 0.37012 ms 

t = 0.39453 ms t = 0.41992 ms 

t = 0.44922 ms t = 0.47461 ms 



Chapter 7.  Delamination detection using the three fundamental wave modes 144 

 

Y Direction 

 

       

       

       

       
Figure 7.45: Snapshots of y component of the A0 mode at different times. 

t = 0.29590 ms t = 0.32031 ms 

t = 0.34570 ms t = 0.37012 ms 

t = 0.39453 ms t = 0.41992 ms 

t = 0.44922 ms t = 0.47461 ms 
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Z Direction 

 

       

       

       

       
Figure 7.46: Snapshots of z component of the A0 mode at different times. 

t = 0.29590 ms t = 0.32031 ms 

t = 0.34570 ms t = 0.37012 ms 

t = 0.39453 ms t = 0.41992 ms 

t = 0.44922 ms t = 0.47461 ms 
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In the case of the A0 mode, the main wave energy vibration is in the out-of-plane 

direction, which is the one that interacts with the delaminations. A0 mode also 

possesses in-plane displacement along the propagation direction (x axis) to a lesser 

extent; and no vibration at the in-plane traverse direction (y axis). However, Figure 

7.45 shows that A0 mode slightly vibrates along y direction too. This could be either 

there was a small misalignment setting up the coordinate system in the 3D SLV, or 

A0 mode really has a small in-plane traverse displacement specifically for this GFRP 

plate. In the Literature Review, it was mentioned that the propagation of guided 

waves in composites is not pure due to the anisotropic nature of the structure, where 

the propagation of the modes have displacements at the three directions. 

The images in the three Figures 7.44, 7.45 and 7.46 show that A0 mode changes its 

wavefront shape when crossing the delamination. However, it was previously 

mentioned that the in-plane displacement was immutable to delaminations. The 

reason why Figures 7.44 and 7.45 (x and y displacements) show a changing 

propagation pattern when crossing the delamination is because A0 mode is 

predominantly an out-of-plane propagation. Thus, if the out-of-plane vibration gets 

altered due to the delamination, the entire A0 wavefront pattern will get altered and 

consequently also the in-plane displacements which are consequence of the out-of-

plane displacement. 

Figure 7.46 shows how A0 mode gets highly distorted by the delamination. It can 

also be seen the wave energy trapped in the delamination area and how it is leaked 

in form of new A0 waves. 

 

RMS Analysis 

The results after applying the RMS analysis to the 3D SLV signals are presented 

below: 
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X Direction 

 

Y Direction 

 

Z Direction 

 

Figure 7.47: Colormaps of the RMS analysis over the signals in the scanned area for each axis. 
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A0 mode is the only one that the delamination can be identified in the three 

Colormaps. For the two in-plane results, the delamination area is slightly 

highlighted. However, for the out-of-plane result, the delamination is clearly 

defined; even the decrease of amplitude of the propagating wave after crossing the 

delamination is also detected, which is the red trail next to the delamination in Figure 

7.47. 

 

Pitch-Catch Signal Analysis 

In this case, two compressional transducers were used to carry out the pitch-catch 

signal analysis for evaluating the A0 mode.  

Transducer Arrangement 

 

Figure 7.48: Configuration of the experimental test for acquiring the A0 mode. 

 

The signals before and after damaging the plate are plotted in Figure 7.49. The A0 

mode is the wave packet acquired between 7×10-4 s and 8×10-4 s. Figure 7.50 shows a 

zoom-in of the A0 wave packet to clearly visualize the differences between them. In 

this figure, it can be seen how for the case with damage A0 mode arrives with a small 

delay to the receiver and with lower amplitude. This behaviour correlates well with 

the experimental results from the 3D SLV in Figure 7.46, where we can see how the 

A0 wavefront gets distorted delaying its propagation and reducing its amplitude. 

Based on these results, A0 mode is able to detect a delamination in pitch-catch 

configuration. 
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Comparison between Damage and without Damage 

 
Figure 7.49: Comparison of the A0 mode between the damaged and undamaged states. 

 
Figure 7.50: Zoom in of the A0 mode between the damaged and undamaged states. 

 

 

7.4 Conclusion 
 

In this chapter, SH0 is studied for detecting a low energy impact damage, which is 

basically a delaminated area; and to clarify what fundamental wave mode is most 

suitable for detection of delaminations. A simulation analysis in Abaqus was 

performed to predict the interaction between the delamination and the wave modes. 

Individual analyses were carried out for each fundamental wave mode. The results 

concluded that the antisymmetric mode was the most suitable mode for detecting 

the delamination since it highly interacts with it due to its out-of-plane displacement. 
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Symmetric and shear horizontal modes are minimally affected by the delaminations. 

Finally, experimental tests were performed to validate the FE results. A 3D Scanning 

Laser Vibrometer was used to scan an area around the impact damage. In addition, 

pitch-catch signals were acquired before and after introducing the damage into the 

GFRP pate. Results correlate well with the simulation confirming that the 

antisymmetric mode is the most suitable mode for detecting delamination damages, 

due to its high out-of-plane displacement. In both analyses, it can be seen how the 

transmitting wave energy of A0 mode significantly drops after crossing the 

delamination enabling the detection, and how a small delay is also produced, as seen 

in Figures 7.10 and 7.11 for the FE analysis and Figures 7.46 and 7.50 for the 

experimental analysis. In the experimental images, we can also see the wave energy 

trapped in the delamination when waves with out-of-plane displacement pass 

through it. This wave energy creates a kind of wave source generating A0 waves 

omnidirectionally. This trapped wave bounces at the boundaries of the delamination 

leaking its energy in form of A0 waves. After analysing SH0, it has been demonstrated 

that its pure shear displacement does not interact at all with the delamination, not 

being recommended its use for delamination detection.  
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Chapter 8 

 

8 Conclusions and Further Work 

 

8.1 Conclusions 
 

Nowadays, the use of composite materials to manufacture lighter structures is 

greatly increasing. Consequently, non-destructive techniques have to be adapted to 

address the inspection necessities that these composite structures are facing. Guided 

wave testing is a promising technology that has been successfully applied on large 

metallic structures to rapidly screen their integrity and ultimately quantify the 

anomalies. The use of this technology on composite structures would be beneficial 

due to its capability to interrogate a large area from a single location assessing and 

diagnosing the structural health. In the literature, guided waves technology is being 

investigated to be applied on composite structures. Recently, great number of 

publications are related to this topic; however, there are still some uncertainties and 

challenges that have to be addressed to be able to use guided waves reliably in 

commercial applications. The objective of this thesis has been to address some of 

these uncertainties and push this technology forward for its deployment on 

composite structures. The research presented in this thesis has achieved significant 

advances towards this direction facilitating the application of guided waves in 

composites through the creation of dispersion curves without requiring prior 

knowledge of the material properties, studying the guided wave propagation of the 
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fundamental wave modes for different composite lay-ups; and performing a 

delamination sensitivity study using the three fundamental modes under the same 

conditions to clarify their delamination detection capabilities individually. 

Chapter 1 presents the motivation of the thesis summarizing the key points and 

arguing the importance of carrying out a research work on this topic. The 

contributions to the knowledge produced during the doctorate are listed along with 

the publications arisen from the thesis. 

Chapter 2 and Chapter 3 provide the background and context where the research 

develops by presenting the fundamental theory of guided waves as well as a review 

of the most relevant publications related to the gaps identified in the literature. 

Chapter 4 introduces to the reader the difficulty of applying guided wave technique 

on composite structures when elastic constants are inaccurate, incomplete or 

unknown, which is the most common situation. Dispersion curves, which is an 

essential tool for the deployment of any guided wave application, require these 

properties to be created. In this chapter, a novel experimental technique for the 

creation of dispersion curves without knowledge of material properties is presented. 

This technique offers advantages over other existing experimental techniques such 

as: the capability to be deployed on uncontrolled environments since it only requires 

the use of two standard transducers and a portable pulser-receiver; and the rapidity 

of the data collection since only requires two signals spaced a few centimetres for the 

analysis. The chapter presents the formulation of the technique which is developed 

from the wave theory. Formulas for the calculation of the group and phase velocities 

are presented which are based on the phase and time delays between two wave 

packets acquired at different locations. The methodology to extract the phase and 

time delays from the experimental signals is described in detail step by step. Firstly, 

the technique was tested in an aluminium plate to ensure its validity. Synthesized 

signals were created from dispersion curves from Disperse® to check in a first 

approach if the technique works. The results perfectly matched with the theoretical 

values. Sampling frequency was found to have an important role in the analysis of 

the signals. Since the spacing between the acquired signals is relatively small in the 

range of centimetres, the time delay for fast wave modes could be of the same order 
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of magnitude as the sampling period obtaining poor resolution for the calculation of 

the velocities. Therefore, upsampling of the acquired signals was performed using 

the spline interpolation to achieve more accurate results. A 3D model was created in 

Abaqus to get more realistic guided wave signals to test the technique. Results 

correlated very well with the theoretical values from Disperse®. Small variations 

were found at the lower frequencies due to the overlapping between wave packets; 

since the higher the frequency, the shorter the wavelength achieving better mode 

separation. Finally, experimental tests were performed in a 3-mm thick aluminium 

plate to fully validate the proposed technique. Two different spacings between the 

acquiring locations were created, for 5 and 10 cm. Final results correlated well with 

the theoretical velocities; however, the 10-cm spacing dataset achieved very accurate 

results obtaining less variance in comparison to the 5-cm case. This improvement is 

due to two reasons, longer spacing minimizes any possible error caused by incorrect 

transducer placement and longer time-of-flight between transducers reduces errors 

determining the exact time delay. Based on these results, it was concluded that the 

proposed novel technique is valid for the creation of dispersion curves. However, 

further work should be carried out to determine the limitations of this technique, 

such as maximum/minimum frequency of the transmitting pulse, maximum 

dispersion of the wave mode or maximum/minimum spacing between receivers. 

Chapter 5 presents the application of the proposed dispersion curve creation 

technique in a composite structure. A 3D FE model was carefully created for the 

evaluation of guided waves in a glass fibre plate. Due to the wave velocity varies 

depending on the propagation direction, receivers were modelled at different 

directions every 5° from 0° to 90°. In total, 15 different models were evaluated: 5 

different frequencies (80, 90, 100, 110 and 120 kHz) and 3 different excitation 

configurations (out-of-plane vibration, shear vibration at 0° and 45°). The dispersion 

curve creation technique was applied to the fundamental wave modes at every 

evaluated direction. Velocity results matched very well with theoretical results 

extracted from Disperse® which used the material property values. Theoretical SH0 

velocities could not be calculated consistently using Disperse®; therefore, it was not 

possible to do a comparison. Snapshots of the wave propagation were taken to 

visualize and understand the propagation pattern of the fundamental modes in the 
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biaxial composite plate, especially for the SH0 mode. SH0 was found to have a high 

velocity variation with respect to the propagation angle, having several wave 

velocities at certain directions. In addition, SH0 mode experiments different modes 

of vibration depending on the propagation direction. For instance, the slower 

wavefront has a pure in-plane displacement; conversely, the fastest wavefront which 

coincides with the energy focusing area, possesses a relevant out-of-plane 

component in its particle vibration. Unfortunately, this SH0 area has a similar 

velocity to the S0 mode making it difficult to isolate each mode. Consequently, the 

calculation of the velocities for both wave modes around those directions is less 

accurate. Experimental tests were performed on a biaxial GFRP plate. The angles of 

analysis were between -45° and 45°; and two spacings were evaluated, 5 and 10 cm. 

The dispersion curve creation technique successfully calculated the velocities on the 

composite plate, where results correlate with the theoretical values, especially for the 

dataset of 10-cm spacing. Results of the fundamental wave modes have low variance; 

however, they are slight offsets from the theoretical values, especially for the S0 mode 

case. This was because the elastic constants, thickness or density that were used to 

extract the dispersion curves from Disperse® and to create the FE models in Abaqus 

are not strictly the same as the real material properties of the GFRP plate.  

Consequently, the results between Disperse® and the FE models match perfectly, 

but the results from the experimental tests possesses a velocity offset from the 

Disperse® and FE values. Another experimental test was performed to validate the 

experimental results of the SH0 mode, since there are not theoretical velocities; and 

to check the velocity offset. 2D FFT technique was applied to signals acquired by a 

3D SLV at three propagation directions (0°, 20° and 45°). Results for the SH0 mode 

correlate very well between the experimental techniques, and the velocity offset of 

S0 mode is even larger between Disperse® and 2D FFT; validating the hypothesis of 

the inaccurate values of the GFRP material properties. After all the results presented 

in this chapter, it was concluded that the proposed dispersion curve creation 

technique is valid for the determination of the dispersion curves in composite 

structures. 

In Chapter 6, SH0 propagation was analysed for three different composite laminates 

(unidirectional, biaxial and triaxial) to understand its complex behaviour. A FE 
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model in Abaqus was used to perform the propagation analysis which was 

previously validated through experimental data from a 3D SLV. Propagation of the 

symmetric and antisymmetric modes has been studied before, where the S0 mode 

propagates faster along the fibres due to the higher modulus; and the A0 mode 

propagates with almost equal velocity in all directions. For the case of the shear 

horizontal mode, SH0 is highly dependent on the composite lay-up, changing its 

propagation pattern considerably from one to another. During the analysis, it was 

observed the co-existence of several SH0 wavefronts which can be excited 

independently depending on the orientation of the shear transducer. In the thesis, 

they have been roughly distinguished as faster and slower wavefronts. When these 

wavefronts overlap, they create the known energy focusing areas. The faster 

wavefront gets smaller as the laminate is less anisotropic; that is why the energy 

focusing area also reduces its size for less anisotropic laminates, disappearing for 

isotropic plates. A study of SH0 excitation depending on the shear transducer 

direction was carried out. It was observed that SH0 mode also experiences high skew 

angle values causing SH0 to propagate omnidirectionally when the shear transducer 

is placed along certain directions. This analysis was particularly useful to previously 

plan the experiment of delamination detection, since it is necessary to know how and 

where to place the shear transducer on the plate to generate the desired wavefront 

to interrogate the delaminated area. 

Chapter 7 studies the applicability of SH0 mode for delamination detection in 

composite structures and compares its performance with the other two fundamental 

wave modes. A simulation analysis in Abaqus was carried out to initially evaluate 

the interaction of the wave modes with a simulated damage caused by a low energy 

impact. Results revealed that A0 mode was the unique mode able to detect the 

damage, which is purely composed by a set of delaminations. S0 and SH0 modes 

exhibited hardly interaction with the damage precluding its detection since their 

wave propagation did not get altered. A quantitative analysis was also performed 

calculating the wave energy before and after damaging the plate. Results showed 

that A0 mode lost more than 60% of the wave energy when propagating through the 

damage; conversely, S0 mode only lost around 3% and SH0 less than 1% of the wave 

energy. Finally, experimental tests were carried out on the GFRP plate which was 
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subjected to a controlled low energy impact of 20 Joules to induce a delamination 

damage. Four different scenarios were configured to individually evaluate S0, A0, 

faster SH0 and slower SH0, minimizing overlapping with other wave packets. In 

addition, three different analyses were performed per configuration; a wave 

propagation analysis using a 3D SLV to visualize the interaction of the damage with 

the wave modes, a RMS analysis using the data from the 3D SLV to spot the location 

of the damage for each mode of vibration, and a pitch-catch analysis comparing 

signals before and after inducing the damage in the plate. Results proved that A0 is 

the preferred fundamental wave mode for detecting delaminations. Thanks to the 

use of the 3D SLV where displacements can be decoupled into the three axes, it was 

observed that the out-of-plane vibration (z axis) is the only one able to interact with 

the delamination. The other two in-plane vibrations are not affected. When a wave 

with out-of-plane displacement passes through a delamination, part of the wave 

energy gets trapped in the delaminated area, leaking the energy out in form of A0 

modes when the trapped wave bounces back at the edges of the delamination. Due 

to the nature of this composite damage, where the wave energy is confined in an 

area, the RMS analysis gets especially effective for the detection of the delaminations 

since the analysis is based on the average energy at each point along the evaluated 

time. Consequently, S0 mode which possesses a small out-of-plane vibration could 

spot the damage using the RMS analysis when evaluating its z axis component. In 

the case of SH0 mode, the faster wavefront was able to spot the damage as well, since 

it also has a very small out-of-plane vibration; however, the slower wavefront which 

is a pure in-plane vibration was unable to detect it. In real situations when using 

transducers in pitch-catch or pulse-echo configurations, this small amount of out-of-

plane vibration of S0 and SH0 would be difficult to acquire since it would be of the 

same order of magnitude as the noise signal being unable to detect the damage. 

Therefore, the A0 mode or any other higher order mode with a high out-of-plane 

component in its mode of vibration is strongly recommended for the detection of 

delaminations in composite structures. 

As final conclusions of this doctorate, guided wave technology is a potential 

candidate for the monitoring of composite structures. There are challenges on its 

application, being the main ones, the direction dependency of the velocities, and the 
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higher attenuation which reduces the inspection range in comparison to metallic 

structures. Moreover, if SH0 mode is used, more complex signal will be acquired; 

therefore, a thorough study of the inspected composite structure has to be carried 

out to correctly locate the transducer to interrogate the area with the desired SH0 

wavefront and to reduce the complexity of the signals minimizing the acquisition of 

multiple wave modes. 

As a first step on the evaluation of composite structures, the inspection of straight 

composite pipes can be a good approach. There is a solid knowledge on the 

application of guided waves on metallic pipes, and the pipe geometry is relatively 

easier than plates since the wave modes propagate in one direction facilitating the 

interpretation of the signals. Furthermore, pipe geometry with uniform thickness is 

in fact a commercial structure; unlike composite plates, which are commonly a 

subpart of a commercial structure. For instance, in a wind turbine plate, the only 

parts that are similar to plates are the shear webs, all the rest of the structure has 

bend sections, thickness variations or adhesive joints. To the best of the author’s 

knowledge, the fibres in composite pipes are mainly oriented at ±45° with respect to 

the axial axis of the pipe to withstand the pressure inside the pipe, and also at 0° to 

withstand axial forces; being consequently a tri-axial laminate. As seen in Figure 

6.12b, the shear excitation with the poling axis oriented perpendicularly to the 0° 

fibres will generate a high energy shear horizontal mode propagating at 0° which 

will propagate longer distances. This high concentration of energy will allow the 

wave packet to travel longer distances; and also as mentioned in this thesis, the 

energy focusing areas have displacement at the three axes, as seen in the 3D SLV 

images and FE images; therefore, these high energy waves will vibrate at the three 

directions potentially enabling the detection of any geometry of damage. The use of 

a collar of transducers wrapped around the pipe with the poling axis of the 

transducers oriented to the circumferential direction potentially will generate a high 

energy wavefront at the direction of the pipe axis. SH0 mode would be the only wave 

mode propagating in this direction, which would benefit for the post-processing of 

the acquired pulse-echo signals. Problems could appear due to the creation of S0 and 

A0 modes in the circumferential direction, which could hinder the analysis of the SH0 
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signals. A study on how these S0 and A0 modes can be cancelled should be carried 

out. 

Another potential application of guided waves on composite structures would be 

the monitoring of specific critical areas with limited accessibility, like the shell joints 

at the trailing and leading edge of wind turbine blades; instead of the monitoring of 

the whole structure. In those particular cases, a monitoring setup must be specifically 

designed for the application which will mainly depend on the stacking sequence and 

the damage geometry to detect. Results from this thesis can help to understand the 

propagation behaviour of the fundamental wave modes depending on the lay-up. 

The monitoring of a structure over time is still quite challenging, where possibly the 

two main issues could be the reliability and robustness of the transducers over time, 

which is critical in order to avoid false positives; and also the external effects which 

can modify the signals over time, such as temperature or aging. Baseline subtraction 

methods are usually used for the signal analysis of monitoring applications; 

consequently, compensation strategies of these effects should be had into 

consideration. Machine learning techniques could be a potential solution for the 

monitoring of structures over time, especially when signals are complex, and it is 

difficult to extract clear information. However, big datasets are needed in order to 

train the model and get reliable and accurate results.  
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8.2 Further Work 
 

In the near future, further work can be carried out to improve the dispersion curve 

creation technique presented in Chapter 4, by speeding up the signal acquisition and 

the calculation of the velocities, as well as enhancing the accuracy of the results. 

Further work could also be carried out in the research of SH0 mode for the evaluation 

of composite structures. This is the suggested work for the near future: 

Design and manufacture of a transducer holder to facilitate the acquisition of 

guided wave signals. During the experimental collection of the signals, there were 

some problems to accurately establish the defined spacing between receivers. By the 

creation of a transducer holder with a fixed spacing will reduce the time of test 

preparation and remove any uncertainty of results in relation to the spacing. If a 

holder with a variable spacing is required, a graduated metal strip can be added, so 

the transducers can be moved and fixed along the strip to establish the desired 

spacing. 

Research and application of wave mode separation algorithms to isolate the wave 

packets prior to the use of the dispersion curve creation technique. As discussed 

in Chapter 4 and Chapter 5, the overlapping is the biggest issue of the proposed 

technique since the phase of the wave mode gets distorted hindering its application. 

In the literature, there are publications about the separation of the different wave 

packets acquired in a signal through signal processing algorithms. If the isolation of 

the wave modes of analysis is achieved, it will greatly benefit the applicability of the 

technique since it could be deployed on small specimens without being concerned 

about the overlapping. 

Feasibility investigation of dispersion curve creation using only one receiver or 

using just the transmitter in a pulse-echo configuration. Since the technique 

presented for dispersion curve creation is based on just two signals acquired at 

different locations, it could be possible to apply this technique using the input signal 

of the transmitter and a signal acquired at one location. In this case, the spacing 

between the transmitter and the receiver should be much longer to achieve mode 

separation between wave packets, in the order of the tens of centimetres. 
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Consequently, the velocity calculation of high dispersive wave modes could be very 

challenging since the shape of the wave packet after propagating long distances will 

highly change making very difficult the phase comparison between both signals. 

Using a similar approach, it could be interesting to perform a test using just a single 

transducer to create the dispersion curves in a pulse-echo configuration. One signal 

would be the excitation input signal and the other signal would be the signal of the 

echoes from the edges of the specimen. In case one of these two configurations 

works, it would simplify the experimental tests reducing the acquisition time of the 

signals and improving its deployment on site. 

Investigation of the use of Chirp signals as excitation for evaluating multiple 

frequencies from a single set of signals. Chirp signals are broadband signals which 

are composed by a wide range of frequency components. Currently, the data used 

for the dispersion curve creation technique is collected individually for each 

frequency; however, using Chirp signals the acquisition time of the data would 

decrease dramatically, since only one collection would be sufficient. The procedure 

of the study would be as follows: Once the Chirp wave is acquired at two different 

locations, the signals are transformed to the frequency domain using the Fourier 

transform; then, a frequency filter is applied to select the frequency of interest; and 

finally, the frequency filtered signals are converted to time domain to be used in the 

dispersion curve creation technique. This procedure is repeated to any other 

frequency. 

Study of damage detection capabilities of SH0 in comparison to S0 and A0 for other 

composite damages. In this thesis, it has been concluded that SH0 mode is unable to 

detect delaminations, which are interlaminar separations between plies maintaining 

the same cross section area. However, SH0 mode could have great relevance for the 

detection of other composite damages, like severe fibre cracking areas or debonding 

of structural components, which have a significant variation of cross section area. 

The comparison study between wave modes should be carried out following a 

similar approach as in this thesis; evaluating each wave mode individually under 

the same experimental conditions. 
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For future work, some research directions have been identified to keep pushing 

ultrasonic guided wave technology forward with the final goal of being applied 

successfully in commercial structures. 

Use of guided waves in composite pipes. As mentioned before, composite pipes 

with a tri-axial laminate (±45°, 0°) would be an ideal structure to investigate the use 

of SH0 mode. At 0° direction, there is a small SH0 wave packet with a high energy 

concentration, which propagates at 0° without the other two fundamental modes (S0, 

A0) facilitating the analysis of the signals. It is proposed the study of this wave packet 

of high energy concentration to evaluate: 

 The mode of vibration (in-plane, shear in-plane, out-of-plane)  
 The damage detection capabilities for the most common damages in 

composite pipes. 
 The propagation range in comparison to the SH0 wavefront without energy 

focusing. 
Investigations on possible configurations of the shear transducers in the collar is 

proposed to cancel undesired wave modes, such as S0 and A0 at the circumferential 

direction and SH0 at backwards axial direction; by using different time delays 

between transducers or inputting the inverted shape of the transmitting signal. 

Use of guided wave arrays for inspection of specific composite areas. There are 

situations where the inspection of structural composite parts with limited 

accessibility is required, such as adhesive or co-curing joints in a wind turbine blade. 

For those cases, it would be interesting the research on guided wave arrays to carry 

out beamforming which can sweep the inspected area by using the desired wave 

mode. Ground knowledge of this technique has been extensively established for 

isotropic structures; however, the application of beamforming in anisotropic 

structures will be quite challenging due to the direction dependency of the velocities. 

Investigations on possible array configurations and time delay relations between 

transducers could be beneficial for cancelling undesired wave modes and steering 

the wave beam at the desired directions. 

Monitoring of complex composite structures using machine learning approaches. 

Flat plate structures have been the object of study in this thesis; however, more 

realistic structures should be analysed in future investigations, such as bend plates, 
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plates with thickness variation, adhesive joints, co-curing joints or sandwich 

structures. Combinations of these different structures will result in the acquisition of 

complex signals where different wave modes and echoes will overlap hindering 

their analysis. A potential solution for the analysis of these signals is the use of 

machine learning applications, where the determination of the most relevant 

features for the detection of the damage from the available data (guided wave 

signals, temperature, strain gauge measurements, etc.) should be carried out to 

efficiently train the machine learning model. A large data set with a wide variety of 

different cases should be created (no damage, damage, different temperatures, etc.). 

The acquisition of this large data set would be very time-consuming; however, it 

would be cost effective if the repeatability of this study case is high; meaning, the 

machine learning model created from this data set would be equally valid for other 

structures with the same design. 

 

 



Bibliography  163 

 

 

 

9 Bibliography 
 

 [1] “The 2018 State of the Composites Industry Report.” [Online]. Available: 
http://compositesmanufacturingmagazine.com/2018/01/2018-composites-
manufacturing-state-of-the-industry-report/. [Accessed: 08-Jan-2018]. 
 

[2] S. Abrate, “Impact on laminated composite materials,” Applied mechanics 
reviews, vol. 44, no. 4, pp. 155–190, 1991. 
 

[3] S. Gholizadeh, “A review of non-destructive testing methods of composite 
materials,” Procedia Structural Integrity, vol. 1, pp. 50–57, 2016. 
 

[4] D. Balageas, C.-P. Fritzen, and A. Güemes, Structural health monitoring, vol. 90. 
John Wiley & Sons, 2010. 
 

[5] D. N. Alleyne and P. Cawley, “The interaction of Lamb waves with defects,” 
Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on, vol. 
39, no. 3, pp. 381–397, 1992. 
 

[6] P. Wilcox, M. Lowe, and P. Cawley, “The effect of dispersion on long-range 
inspection using ultrasonic guided waves,” NDT & E International, vol. 34, no. 
1, pp. 1–9, 2001. 
 

[7] P. Wilcox, M. Lowe, and P. Cawley, “Mode and transducer selection for long 
range Lamb wave inspection,” Journal of intelligent material systems and 
structures, vol. 12, no. 8, pp. 553–565, 2001. 
 

[8] B. Lee and W. Staszewski, “Modelling of Lamb waves for damage detection in 
metallic structures: Part I. Wave propagation,” Smart Materials and Structures, 
vol. 12, no. 5, p. 804, 2003. 
 

[9] B. Lee and W. Staszewski, “Modelling of Lamb waves for damage detection in 
metallic structures: Part II. Wave interactions with damage,” Smart Materials 
and Structures, vol. 12, no. 5, p. 815, 2003. 
 

[10] M. Castaings, D. Singh, and P. Viot, “Sizing of impact damages in composite 
materials using ultrasonic guided waves,” NDT & E International, vol. 46, pp. 
22–31, 2012. 
 



Bibliography  164 

 

[11] M. D. Rogge and C. A. Leckey, “Characterization of impact damage in 
composite laminates using guided wavefield imaging and local wavenumber 
domain analysis,” Ultrasonics, vol. 53, no. 7, pp. 1217–1226, 2013. 
 

[12] C. A. Leckey, M. D. Rogge, and F. R. Parker, “Guided waves in anisotropic and 
quasi-isotropic aerospace composites: Three-dimensional simulation and 
experiment,” Ultrasonics, vol. 54, no. 1, pp. 385–394, 2014. 
 

[13] R. Soleimanpour and C.-T. Ng, “Locating delaminations in laminated composite 
beams using nonlinear guided waves,” Engineering Structures, vol. 131, pp. 
207–219, 2017. 
 

[14] A. De Luca, F. Caputo, Z. S. Khodaei, and M. Aliabadi, “Damage 
characterization of composite plates under low velocity impact using ultrasonic 
guided waves,” Composites Part B: Engineering, vol. 138, pp. 168–180, 2018. 
 

[15] S. Gupta, X. Yu, Z. Fan, and P. Rajagopal, “Interaction of guided waves with 
delaminations in composite plate structures,” in AIP Conference Proceedings, 
2017, vol. 1806, no. 1, p. 030011. 
 

[16] N. Testoni, L. De Marchi, and A. Marzani, “Detection and characterization of 
delaminations in composite plates via air-coupled probes and warped-domain 
filtering,” Composite Structures, vol. 153, pp. 773–781, 2016. 
 

[17] F. Ricci, A. K. Mal, E. Monaco, L. Maio, N. D. Boffa, M. Di Palma, and L. 
Lecce, “Guided Waves in Layered Plate with Delaminations,” in EWSHM-7th 
European Workshop on Structural Health Monitoring, 2014. 
 

[18] J. L. Rose, Ultrasonic Guided Waves in Solid Media. Cambridge University 
Press, 2014. 
 

[19] P. Petcher, S. E. Burrows, and S. Dixon, “Shear horizontal (SH) ultrasound wave 
propagation around smooth corners,” Ultrasonics, vol. 54, no. 4, pp. 997–1004, 
2014. 
 

[20] Z. Su and L. Ye, Identification of damage using Lamb waves: from fundamentals 
to applications, vol. 48. Springer Science \& Business Media, 2009. 
 

[21] B. Pavlakovic, M. Lowe, D. Alleyne, and P. Cawley, “Disperse: a general 
purpose program for creating dispersion curves,” in Review of progress in 
quantitative nondestructive evaluation, Springer, 1997, pp. 185–192. 
 

[22] C. H. Wang, J. T. Rose, and F.-K. Chang, “A synthetic time-reversal imaging 
method for structural health monitoring,” Smart materials and structures, vol. 13, 
no. 2, p. 415, 2004. 
 

[23] P. D. Wilcox, “A rapid signal processing technique to remove the effect of 
dispersion from guided wave signals,” Ultrasonics, Ferroelectrics, and 
Frequency Control, IEEE Transactions on, vol. 50, no. 4, pp. 419–427, 2003. 
 



Bibliography  165 

 

[24] K. S. Nadella, K. I. Salas, and C. E. Cesnik, “Characterization of guided-wave 
propagation in composite plates,” in SPIE Smart Structures and Materials+ 
Nondestructive Evaluation and Health Monitoring, 2010, p. 76502H–76502H. 
 

[25] A. Karmazin, E. Kirillova, W. Seemann, and P. Syromyatnikov, “Investigation of 
Lamb elastic waves in anisotropic multilayered composites applying the Green’s 
matrix,” Ultrasonics, vol. 51, no. 1, pp. 17–28, 2011. 
 

[26] J. L. Rose, “Health Monitoring of Composite Structures Using Guided Waves,” 
2012. 
 

[27] A. Karmazin, E. Kirillova, W. Seemann, and P. Syromyatnikov, “A study of time 
harmonic guided Lamb waves and their caustics in composite plates,” 
Ultrasonics, vol. 53, no. 1, pp. 283–293, 2013. 
 

[28] L. Wang and F. Yuan, “Group velocity and characteristic wave curves of Lamb 
waves in composites: Modeling and experiments,” Composites Science and 
Technology, vol. 67, no. 7, pp. 1370–1384, 2007. 
 

[29] D. Alleyne and P. Cawley, “The excitation of Lamb waves in pipes using dry-
coupled piezoelectric transducers,” Journal of Nondestructive Evaluation, vol. 
15, no. 1, pp. 11–20, 1996. 
 

[30] M. J. Lowe, D. N. Alleyne, and P. Cawley, “Defect detection in pipes using 
guided waves,” Ultrasonics, vol. 36, no. 1, pp. 147–154, 1998. 
 

[31] D. N. Alleyne and P. Cawley, “Optimization of Lamb wave inspection 
techniques,” NDT & E International, vol. 25, no. 1, pp. 11–22, 1992. 
 

[32] M. Lowe and P. Cawley, “The applicability of plate wave techniques for the 
inspection of adhesive and diffusion bonded joints,” Journal of Nondestructive 
Evaluation, vol. 13, no. 4, pp. 185–200, 1994. 
 

[33] D. Alleyne, T. Pialucha, and P. Cawley, “A signal regeneration technique for 
long-range propagation of dispersive Lamb waves,” Ultrasonics, vol. 31, no. 3, 
pp. 201–204, 1993. 
 

[34] T. Hayashi, W.-J. Song, and J. L. Rose, “Guided wave dispersion curves for a bar 
with an arbitrary cross-section, a rod and rail example,” Ultrasonics, vol. 41, no. 
3, pp. 175–183, 2003. 
 

[35] J. L. Rose, M. J. Avioli, P. Mudge, and R. Sanderson, “Guided wave inspection 
potential of defects in rail,” NDT & E International, vol. 37, no. 2, pp. 153–161, 
2004. 
 

[36] P. Cawley, M. Lowe, D. Alleyne, B. Pavlakovic, and P. Wilcox, “Practical long 
range guided wave inspection-applications to pipes and rail’,” Materials 
evaluation, vol. 61, no. 1, pp. 66–74, 2003. 
 



Bibliography  166 

 

[37] J. J. Ditri and J. L. Rose, “Excitation of guided elastic wave modes in hollow 
cylinders by applied surface tractions,” Journal of applied physics, vol. 72, no. 7, 
pp. 2589–2597, 1992. 
 

[38] M. Lowe, D. Alleyne, and P. Cawley, “The mode conversion of a guided wave 
by a part-circumferential notch in a pipe,” Journal of Applied mechanics, vol. 65, 
no. 3, pp. 649–656, 1998. 
 

[39] D. N. Alleyne, M. Lowe, and P. Cawley, “The reflection of guided waves from 
circumferential notches in pipes,” Journal of Applied mechanics, vol. 65, no. 3, 
pp. 635–641, 1998. 
 

[40] J. Li and J. L. Rose, “Excitation and propagation of non-axisymmetric guided 
waves in a hollow cylinder,” The Journal of the Acoustical Society of America, 
vol. 109, no. 2, pp. 457–464, 2001. 
 

[41] P. Mudge and J. Harrison, “TELETEST Guided Wave Technology-case 
histories,” in Nondestructive Testing, I Middle East Conference and Exhibition, 
2001. 
 

[42] P. Cawley, “The rapid non-destructive inspection of large composite structures,” 
Composites, vol. 25, no. 5, pp. 351–357, 1994. 
 

[43] R. Monkhouse, P. Wilcox, and P. Cawley, “Flexible interdigital PVDF 
transducers for the generation of Lamb waves in structures,” Ultrasonics, vol. 35, 
no. 7, pp. 489–498, 1997. 
 

[44] Z. Su, L. Ye, and X. Bu, “A damage identification technique for CF/EP 
composite laminates using distributed piezoelectric transducers,” Composite 
structures, vol. 57, no. 1, pp. 465–471, 2002. 
 

[45] J. Han, C.-G. Kim, and J.-Y. Kim, “The propagation of Lamb waves in a 
laminated composite plate with a variable stepped thickness,” Composite 
structures, vol. 76, no. 4, pp. 388–396, 2006. 
 

[46] C. J. Lissenden and J. L. Rose, “Structural Health Monitoring of Composite 
Laminates Through Ultrasonic Guided Wave Beam Forming,” in NATO Applied 
Vehilce Technology Symposium on Military Platform Ensured Availability 
Proceedings, 2008. 
 

[47] V. Giurgiutiu and G. Santoni-Bottai, “Structural health monitoring of composite 
structures with piezoelectric-wafer active sensors,” AIAA journal, vol. 49, no. 3, 
pp. 565–581, 2011. 
 

[48] S. Torkamani, S. Roy, M. E. Barkey, E. Sazonov, S. Burkett, and S. Kotru, “A 
novel damage index for damage identification using guided waves with 
application in laminated composites,” Smart Materials and Structures, vol. 23, 
no. 9, p. 095015, 2014. 
 



Bibliography  167 

 

[49] C. Rekatsinas, C. Nastos, T. Theodosiou, and D. Saravanos, “A time-domain 
high-order spectral finite element for the simulation of symmetric and anti-
symmetric guided waves in laminated composite strips,” Wave Motion, vol. 53, 
pp. 1–19, 2015. 
 

[50] H. Baid, C. Schaal, H. Samajder, and A. Mal, “Dispersion of Lamb waves in a 
honeycomb composite sandwich panel,” Ultrasonics, vol. 56, pp. 409–416, 2015. 
 

[51] C. Zhong, A. Croxford, and P. Wilcox, “Remote inspection system for impact 
damage in large composite structure,” in Proceedings of the Royal Society of 
London A: Mathematical, Physical and Engineering Sciences, 2015, vol. 471, no. 
2173, p. 20140631. 
 

[52] A. Kapadia, “Non-Destructive Testing of Composite Materials,” National 
Composites Network, 2012. 
 

[53] T. Hayashi and K. Kawashima, “Multiple reflections of Lamb waves at a 
delamination,” Ultrasonics, vol. 40, no. 1, pp. 193–197, 2002. 
 

[54] C. A. Paget, S. Grondel, K. Levin, and C. Delebarre, “Damage assessment in 
composites by Lamb waves and wavelet coefficients,” Smart materials and 
Structures, vol. 12, no. 3, p. 393, 2003. 
 

[55] T. R. Hay, L. Wei, J. L. Rose, and T. Hayashi, “Rapid inspection of composite 
skin-honeycomb core structures with ultrasonic guided waves,” Journal of 
Composite Materials, vol. 37, no. 10, pp. 929–939, 2003. 
 

[56] Z. Su and L. Ye, “Lamb wave-based quantitative identification of delamination 
in CF/EP composite structures using artificial neural algorithm,” Composite 
Structures, vol. 66, no. 1, pp. 627–637, 2004. 
 

[57] H. Sohn, G. Park, J. R. Wait, N. P. Limback, and C. R. Farrar, “Wavelet-based 
active sensing for delamination detection in composite structures,” Smart 
Materials and Structures, vol. 13, no. 1, p. 153, 2004. 
 

[58] G. Park, A. C. Rutherford, J. R. Wait, B. Nadler, C. Farrar, and T. N. Claytor, 
“High-frequency response functions for composite plate monitoring with 
ultrasonic validation,” AIAA journal, vol. 43, no. 11, pp. 2431–2437, 2005. 
 

[59] F. L. Discalea, H. Matt, I. Bartoli, S. Coccia, G. Park, and C. Farrar, “Health 
monitoring of UAV wing skin-to-spar joints using guided waves and macro fiber 
composite transducers,” Journal of intelligent material systems and structures, 
vol. 18, no. 4, pp. 373–388, 2007. 
 

[60] Z. Su, C. Yang, N. Pan, L. Ye, and L.-M. Zhou, “Assessment of delamination in 
composite beams using shear horizontal (SH) wave mode,” Composites science 
and technology, vol. 67, no. 2, pp. 244–251, 2007. 
 

[61] K. Diamanti and C. Soutis, “Structural health monitoring techniques for aircraft 
composite structures,” Progress in Aerospace Sciences, vol. 46, no. 8, pp. 342–



Bibliography  168 

 

352, 2010. 
 

[62] H. Gao, S. Ali, and B. Lopez, “Efficient detection of delamination in 
multilayered structures using ultrasonic guided wave EMATs,” NDT & E 
International, vol. 43, no. 4, pp. 316–322, 2010. 
 

[63] C. Ramadas, J. Padiyar, K. Balasubramaniam, M. Joshi, and C. Krishnamurthy, 
“Lamb wave based ultrasonic imaging of interface delamination in a composite 
T-joint,” NDT & E International, vol. 44, no. 6, pp. 523–530, 2011. 
 

[64] H. Sohn, D. Dutta, J. Yang, H. Park, M. DeSimio, S. Olson, and E. Swenson, 
“Delamination detection in composites through guided wave field image 
processing,” Composites science and technology, vol. 71, no. 9, pp. 1250–1256, 
2011. 
 

[65] C. M. Yeum, H. Sohn, J. B. Ihn, and H. J. Lim, “Instantaneous delamination 
detection in a composite plate using a dual piezoelectric transducer network,” 
Composite Structures, vol. 94, no. 12, pp. 3490–3499, 2012. 
 

[66] M. J. Lowe, “Matrix techniques for modeling ultrasonic waves in multilayered 
media,” Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions 
on, vol. 42, no. 4, pp. 525–542, 1995. 
 

[67] A. H. Nayfeh, “The general problem of elastic wave propagation in multilayered 
anisotropic media,” The Journal of the Acoustical Society of America, vol. 89, 
no. 4, pp. 1521–1531, 1991. 
 

[68] F. H. Quintanilla, Z. Fan, M. Lowe, and R. Craster, “Dispersion loci of guided 
waves in viscoelastic composites of general anisotropy,” in AIP Conference 
Proceedings, 2016, vol. 1706, no. 1, p. 120014. 
 

[69] X. Yu, M. Ratassepp, and Z. Fan, “Damage detection in quasi-isotropic 
composite bends using ultrasonic feature guided waves,” Composites Science and 
Technology, vol. 141, pp. 120–129, 2017. 
 

[70] M. Cong, X. Wu, and R. Liu, “Dispersion analysis of guided waves in the finned 
tube using the semi-analytical finite element method,” Journal of Sound and 
Vibration, vol. 401, pp. 114–126, 2017. 
 

[71] D. Alleyne and P. Cawley, “A two-dimensional Fourier transform method for the 
measurement of propagating multimode signals,” The Journal of the Acoustical 
Society of America, vol. 89, no. 3, pp. 1159–1168, 1991. 
 

[72] W. Ostachowicz and A. Güemes, New trends in structural health monitoring, 
vol. 542. Springer Science & Business Media, 2013. 
 

[73] M. Harb and F. Yuan, “A rapid, fully non-contact, hybrid system for generating 
Lamb wave dispersion curves,” Ultrasonics, vol. 61, pp. 62–70, 2015. 
 



Bibliography  169 

 

[74] M. Harb and F. Yuan, “Non-contact ultrasonic technique for Lamb wave 
characterization in composite plates,” Ultrasonics, vol. 64, pp. 162–169, 2016. 
 

[75] L. Mažeika and L. Draudvilienė, “Analysis of the zero-crossing technique in 
relation to measurements of phase velocities of the Lamb waves,” Ultragarsas“ 
Ultrasound,” vol. 65, no. 2, pp. 7–12, 2010. 
 

[76] L. Draudviliene, H. A. Aider, O. Tumsys, and L. Mazeika, “The Lamb waves 
phase velocity dispersion evaluation using an hybrid measurement technique,” 
Composite Structures, vol. 184, pp. 1156–1164, 2018. 
 

[77] E. Moreno, N. Galarza, B. Rubio, and J. A. Otero, “Phase Velocity Method for 
Guided Wave Measurements in Composite Plates,” Physics Procedia, vol. 63, 
pp. 54–60, 2015. 
 

[78] C. Adams, S. Harput, D. Cowell, and S. Freear, “A phase velocity filter for the 
measurement of Lamb wave dispersion,” in Ultrasonics Symposium (IUS), 2016 
IEEE International, 2016, pp. 1–4. 
 

[79] J. B. Harley and J. M. Moura, “Sparse recovery of the multimodal and dispersive 
characteristics of Lamb waves,” The Journal of the Acoustical Society of 
America, vol. 133, no. 5, pp. 2732–2745, 2013. 
 

[80] R. Latif, E. Aassif, G. Maze, A. Moudden, and B. Faiz, “Determination of the 
group and phase velocities from time-frequency representation of Wigner-Ville,” 
NDT & E International, vol. 32, no. 7, pp. 415–422, 1999. 
 

[81] W. Sachse and Y.-H. Pao, “On the determination of phase and group velocities of 
dispersive waves in solids,” Journal of applied Physics, vol. 49, no. 8, pp. 4320–
4327, 1978. 
 

[82] T. Pialucha, C. Guyott, and P. Cawley, “Amplitude spectrum method for the 
measurement of phase velocity,” Ultrasonics, vol. 27, no. 5, pp. 270–279, 1989. 
 

[83] O. Putkis, R. Dalton, and A. Croxford, “The anisotropic propagation of ultrasonic 
guided waves in composite materials and implications for practical applications,” 
Ultrasonics, 2014. 
 

[84] T. R. Tauchert and A. Guzelsu, “An experimental study of dispersion of stress 
waves in a fiber-reinforced composite,” Journal of Applied Mechanics, vol. 39, 
no. 1, pp. 98–102, 1972. 
 

[85] F. Song, G. Huang, and K. Hudson, “Guided wave propagation in honeycomb 
sandwich structures using a piezoelectric actuator/sensor system,” Smart 
Materials and Structures, vol. 18, no. 12, p. 125007, 2009. 
 

[86] C. Lissenden, P. Puthillath, and J. Rose, “Guided wave feature identification for 
monitoring structural damage in joints between composite laminates,” in Mater. 
Forum, 2009, vol. 33, pp. 279–285. 
 



Bibliography  170 

 

[87] Q. Deng and Z. Yang, “Propagation of guided waves in bonded composite 
structures with tapered adhesive layer,” Applied Mathematical Modelling, vol. 
35, no. 11, pp. 5369–5381, 2011. 
 

[88] E. H. Saenger and T. Bohlen, “Finite-difference modeling of viscoelastic and 
anisotropic wave propagation using the rotated staggered grid,” Geophysics, vol. 
69, no. 2, pp. 583–591, 2004. 
 

[89] P. Moczo, J. O. Robertsson, and L. Eisner, “The finite-difference time-domain 
method for modeling of seismic wave propagation,” Advances in Geophysics, 
vol. 48, pp. 421–516, 2007. 
 

[90] F. H. Quintanilla, Z. Fan, M. Lowe, and R. Craster, “Guided waves’ dispersion 
curves in anisotropic viscoelastic single-and multi-layered media,” Proc. R. Soc. 
A, vol. 471, no. 2183, p. 20150268, 2015. 
 

[91] S.-H. Rhee, J.-K. Lee, and J.-J. Lee, “The group velocity variation of Lamb wave 
in fiber reinforced composite plate,” Ultrasonics, vol. 47, no. 1, pp. 55–63, 2007. 
 

[92] L. Maio, V. Memmolo, F. Ricci, N. Boffa, E. Monaco, and R. Pecora, 
“Ultrasonic wave propagation in composite laminates by numerical simulation,” 
Composite Structures, vol. 121, pp. 64–74, 2015. 
 

[93] M. Gresil and V. Giurgiutiu, “Prediction of attenuated guided waves propagation 
in carbon fiber composites using Rayleigh damping model,” Journal of 
Intelligent Material Systems and Structures, vol. 26, no. 16, pp. 2151–2169, 
2015. 
 

[94] A. Eremin, E. Glushkov, N. Glushkova, and R. Lammering, “Evaluation of 
effective elastic properties of layered composite fiber-reinforced plastic plates by 
piezoelectrically induced guided waves and laser Doppler vibrometry,” 
Composite Structures, vol. 125, pp. 449–458, 2015. 
 

[95] T. E. Michaels, J. E. Michaels, and M. Ruzzene, “Frequency-wavenumber 
domain analysis of guided wavefields,” Ultrasonics, vol. 51, no. 4, pp. 452–466, 
2011. 
 

[96] S. Grondel, C. Paget, C. Delebarre, J. Assaad, and K. Levin, “Design of optimal 
configuration for generating A0 Lamb mode in a composite plate using 
piezoceramic transducers,” The Journal of the Acoustical Society of America, 
vol. 112, no. 1, pp. 84–90, 2002. 
 

[97] N. Hu, T. Shimomukai, C. Yan, and H. Fukunaga, “Identification of 
delamination position in cross-ply laminated composite beams using S0 Lamb 
mode,” Composites Science and Technology, vol. 68, no. 6, pp. 1548–1554, 
2008. 
 

[98] C. Ramadas, K. Balasubramaniam, M. Joshi, and C. Krishnamurthy, “Interaction 
of the primary anti-symmetric Lamb mode (Ao) with symmetric delaminations: 
numerical and experimental studies,” Smart Materials and Structures, vol. 18, 



Bibliography  171 

 

no. 8, p. 085011, 2009. 
 

[99] X. Zhao, H. Gao, G. Zhang, B. Ayhan, F. Yan, C. Kwan, and J. L. Rose, “Active 
health monitoring of an aircraft wing with embedded piezoelectric 
sensor/actuator network: I. Defect detection, localization and growth 
monitoring,” Smart materials and structures, vol. 16, no. 4, p. 1208, 2007. 
 

[100] C.-T. Ng and M. Veidt, “A Lamb-wave-based technique for damage detection in 
composite laminates,” Smart materials and structures, vol. 18, no. 7, p. 074006, 
2009. 
 

[101] E. B. Flynn, M. D. Todd, P. D. Wilcox, B. W. Drinkwater, and A. J. Croxford, 
“Maximum-likelihood estimation of damage location in guided-wave structural 
health monitoring,” in Proceedings of the Royal Society of London A: 
Mathematical, Physical and Engineering Sciences, 2011, p. rspa20110095. 
 

[102] Z. Tian, L. Yu, C. Leckey, and J. Seebo, “Guided wave imaging for detection and 
evaluation of impact-induced delamination in composites,” Smart Materials and 
Structures, vol. 24, no. 10, p. 105019, 2015. 
 

[103] P. Kudela, M. Radzienski, and W. Ostachowicz, “Impact induced damage 
assessment by means of Lamb wave image processing,” Mechanical Systems and 
Signal Processing, vol. 102, pp. 23–36, 2018. 
 

[104] F. Song, G. Huang, and G. Hu, “Online guided wave-based debonding detection 
in honeycomb sandwich structures,” Aiaa Journal, vol. 50, no. 2, pp. 284–293, 
2012. 
 

[105] S. Mustapha, L. Ye, D. Wang, and Y. Lu, “Debonding detection in composite 
sandwich structures based on guided waves,” AIAA journal, vol. 50, no. 8, pp. 
1697–1706, 2012. 
 

[106] M. Castaings, “SH ultrasonic guided waves for the evaluation of interfacial 
adhesion,” Ultrasonics, vol. 54, no. 7, pp. 1760–1775, 2014. 
 

[107] B. Le Crom and M. Castaings, “Shear horizontal guided wave modes to infer the 
shear stiffness of adhesive bond layers,” The Journal of the Acoustical Society of 
America, vol. 127, no. 4, pp. 2220–2230, 2010. 
 

[108] N. Nakamura, H. Ogi, M. Hirao, K. Nakahata, and others, “Mode conversion 
behavior of SH guided wave in a tapered plate,” NDT \& E International, vol. 45, 
no. 1, pp. 156–161, 2012. 
 

[109] J. Franklin Mansur Rodrigues Filho, N. Tremblay, G. Soares da Fonseca, and P. 
Belanger, “The feasibility of structural health monitoring using the fundamental 
shear horizontal guided wave in a thin aluminum plate,” Materials, vol. 10, no. 5, 
p. 551, 2017. 
 

[110] Q. Huan, H. Miao, and F. Li, “A variable-frequency structural health monitoring 
system based on omnidirectional shear horizontal wave piezoelectric 



Bibliography  172 

 

transducers,” Smart Materials and Structures, vol. 27, no. 2, p. 025008, 2018. 
 

[111] D. K. Kim, J. K. Lee, H. M. Seung, C. I. Park, and Y. Y. Kim, “Omnidirectional 
shear horizontal wave based tomography for damage detection in a metallic plate 
with the compensation for the transfer functions of transducer,” Ultrasonics, vol. 
88, pp. 72–83, 2018. 
 

[112] K. F. Graff, Wave motion in elastic solids. Courier Corporation, 2012, pp. 62–65. 
 

[113] J. E. Michaels, S. J. Lee, A. J. Croxford, and P. D. Wilcox, “Chirp excitation of 
ultrasonic guided waves,” Ultrasonics, vol. 53, no. 1, pp. 265–270, 2013. 
 

[114] F. Li, X. Sun, J. Qiu, L. Zhou, H. Li, and G. Meng, “Guided wave propagation in 
high-speed train axle and damage detection based on wave mode conversion,” 
Structural Control and Health Monitoring, 2015. 
 

[115] L. Yu and Z. Tian, “Lamb wave structural health monitoring using a hybrid PZT-
laser vibrometer approach,” Structural Health Monitoring, vol. 12, no. 5–6, pp. 
469–483, 2013. 
 

[116] B. Zhang, X. Sun, M. Eaton, R. Marks, A. Clarke, C. Featherston, L. Kawashita, 
and S. Hallett, “An integrated numerical model for investigating guided waves in 
impact-damaged composite laminates,” Composite Structures, vol. 176, pp. 945–
960, 2017. 
 

[117] C. Bouvet, B. Castanié, M. Bizeul, and J.-J. Barrau, “Low velocity impact 
modelling in laminate composite panels with discrete interface elements,” 
International Journal of Solids and Structures, vol. 46, no. 14–15, pp. 2809–
2821, 2009. 
 

[118] H. Reed, C. A. Leckey, A. Dick, G. Harvey, and J. Dobson, “A model based 
bayesian solution for characterization of complex damage scenarios in aerospace 
composite structures,” Ultrasonics, vol. 82, pp. 272–288, 2018. 
 

  


