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Summary
Castrate-Resistant Prostate-Cancer (CRPC) is one of themost commonmalignancies occurring inmen. Unfortunately, even if several
recently approved agents clinically improved the outcome of CRPC patients, none of these is curative especially for a splice version
of theAndrogenReceptor (AR)AR-V7, which is a variant of the receptor constitutively activated and does not require the presence of
androgens for the activationAR down-stream pathways. Since highAR-V7 expression is one of themost common features of CRPC,
targeting this receptor variant is considered as one of the most promising strategies for treating this disease. Therefore anti-AR-V7
molecules could lead to a potential shift in paradigm in the treatment of CRPC. Niclosamide, an already FDA-approved anti-
helminthic drug, was identified as a potent AR-V7 inhibitor in prostate cancer cells. Due to the recent positive preclinical results,
niclosamidemay be an interesting and novel type of targeted treatments for CRPC. Thismini-review outlines themost recent pre- and
clinical- data on the current status of niclosamide in the treatment of ARV7-positive CRPC patients.
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Introduction

Prostate cancer (PC) is one of the most common causes of
cancer-related deaths worldwide, with approximately 164,690
new occurrences of the disease and 29,430 deaths in 2018 [1].
Although during the last years, inhibition of Androgen Receptor
Signalling (ARS) as well as conventional chemotherapeutic
agents, reported 5-year survival values as low as 29%, the
end-stage of Castrate-Resistant Prostate-Cancer (CRPC) is still
incurable [2–5]. Even if during the years, food and drug admin-
istration (FDA) approved several hormonal agents such as
flutamide, bicalutamide and nilutamide,there was still a need
for not having agonist activity against wild-type AR, not

recruiting AR coactivators and consequently blocking the sub-
sequent AR binding to DNA and acting as a transcription factor
for the expression of androgen-dependent genes leading to tu-
mour proliferation. This requirement brought to the develop-
ment of new drugs that subsequently were defined as second-
generation antiandrogens. Consequently, in 2012 enzalutamide
and abiraterone acetate were FDA approved as second-
generation antiandrogens [2, 3]. There are also other second-
generation anti-androgens that are at various stages of pre-
clinical and clinical development. The FDA approved also an
immunotherapeutic agent Sipuleucel-T after the successful re-
sults of a phase III randomized-to control clinical trial
(IMPACT) showing a decrease in the risk of death and an in-
crease in median survival [4]. In this context, niclosamide, an
FDA-approved anti-helminthic drug, generated positive results
in the first preclinical studies [4, 5]. The aim of this mini-review
is to summarize the first preliminary available data on
niclosamide in PC. Finally, future directions will be discussed.

The molecular basis of tumour growth
by androgen receptor signalling

Androgen receptor (AR) is a cytoplasmic ligand-dependent
transcription factor, which directs the expression of specific
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genes involved in differentiation and sexual development. The
main AR native ligand is testosterone, which is primarily syn-
thesized by the Leydig cells in testies; androgens such as tes-
tosterone are under the regulation of a hormone produced by
the anterior pituitary gland, the luteinizing hormone (LH),
which in turn is regulated by gonadotropin-releasing hormone
(GnRH). There are other endogenous androgens, such as di-
hydrotestosterone, androstenedione, androstenediol, DHEA,
androsterone. Examples of synthetic androgens are
methyltestosterone, nandrolone, metandienone, trenbolone,
stranozolol and oxandrolone (Fig. 1).

As to the example of testosterone, inside vessels this an-
drogen circulates bound to albumin and serum sex hormone-
binding globulin (SHBG). Subsequently only the unbound
form of SHBG enters cells [6, 7], which is a powerful
metabolite- named 5α-dihydrotestosterone (DHT)- capable
of promoting cellular growth and survival. DHT tethers AR
with high affinity in the cytoplasm, replaces heat-shock pro-
teins bound to the AR and promotes the interaction between
the N and C termini stabilizing the AR dimer and slowing-
down the rate of ligand dissociation [8]. The translocation into
the nucleus takes place when the complex AR-DHT binds to
importin-α [8]. Once inside the nucleus, the receptor
dimerises and tethers to androgen response elements (AREs)
within promoter regions of target genes, such as prostate-
specific antigen (PSA) and transmembrane protease serine 2
(TMPRSS2). After recruiting other co-regulators in order to
promote transcription, androgen receptor, dimers drive cell
growth and survival [9–14].

At the structural level AR belongs to the steroid hormone
group of nuclear receptors together with the mineralocorticoid
receptor (MR), glucocorticoid receptor (PR), oestrogen recep-
tor (ER) and progesterone receptor (PR). All these nuclear
receptors are structurally similar and can have several interac-
tions between themselves [12, 15–17]. AR gene is located at
the chromosomal locus Xq11-Xq12 and the protein coding
region has 2757 nucleotides [18–20]. The coding region is
composed of eight exons and encodes a 110 kDa protein with
919 amino acids [21]. On a structural level, the AR is
characterised by three domains, all of which are important
for receptor function. Such domains are the N-terminal do-
main (NTD), followed by the DNA binding domain (DBD)
and a flexible hinge region which connects the DBD region to
the C-terminal ligand binding domain (LBD) [15]. Currently
the main structural domains have been solved singularly. The
NTD is entirely coded by exon 1 and represents most of the
size of the AR (residues 1–555); it is highly variable in the
human population and includes the activation function 1
(AF1, residues 142–485) [22–24]. This region is constitutive-
ly active and it is the primary effector region of the NTD [25];
AF1 contains two singular transcription units: Tau 1 (amino
acids 23–27) and Tau 5 (amino acids 433–437) [26], both
important in the interactions between the NTD and the LBD
which, in turn, are crucial in regulating some androgen-
dependent genes [27–29]. The DBD (residues 556–623) is
the central domain of AR, is highly conserved among steroid
hormone receptors and is encoded by exons 2 and 3. It is a
cysteine-rich region and is followed by a hinge region (resi-
dues 624–665). Even though AR functions as a dimer, every
DBD monomer has a core comprising two zinc fingers, each
of which includes four cysteine residues that coordinate a zinc
ion [30]. Through interaction with the major groove of the
DNA helix, the zinc fingers are able to bind the androgen
receptor to its target genes [14]. The nuclear localization sig-
nal (NLS) (residues 617–633) is situated at the junction be-
tween the DBD and the hinge region, which plays a pivotal
role in the nuclear import of the receptor [31, 32]. The hinge
region also plays a complex role in coactivator recruitment
and DNA binding. Furthermore, such hinge is target for acet-
ylation, methylation and ubiquitylation [33, 34]. The LBD
(residues 666–919) has been first solved by crystallography
in the year 2000 and it is structurally well-characterized.
According to the crystal structure, the LBD structure is ar-
ranged in a three-layer fold and consists of eleven α-helices
and four short β-strands creating two anti-parallel β-sheets. A
ligand-binding pocket (LBP) is surrounded by N termini of
H3, H5 and H11. H12 is a peripheral α-helix, whose folding
on the upper part of LBP acts as a lid to close the agonist-
binding, forms the core of the activation function 2 domain
(AF-2) [35, 36]. Over the past decades, several groups have
demonstrated that regulation of AR can occur at the protein
level, involving post-translational modifications and

Fig. 1 The molecular pathway of niclosamide on full length AR and
ARV7
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interactions with regulatory proteins, and at the genomic level,
where some key mutations correlated with the PC have been
identified [37–40]. Moreover, AR activity can be regulated by
alternative splicing, but some ARVs that lack the LBD and
enhance gene transcription without androgen hormones sig-
nalling [41]. Up-to-date, ARVs are considered responsible for
AR activity, PC cell survival and tumour progression [37].
Within ARVs group, 7 splice version of the Androgen
Receptor (AR-V7) is the only variant endogenously observed
at the protein level and therefore well-characterized [5]. Many
studies in literature have shown that AR-V7 is the predomi-
nant AR variant. Antonarakis ES et al. showed that ARV7 is
highly expressed in circulating tumour cells (CTC), as quan-
tified with RT-PCR [50], and it is associated with resistance to
abiraterone and enzalutamide in metastatic CRPC patients
[42–44]. AR-V7 is a truncated androgen-receptor protein
lacking the C-terminal ligand-binding domain, but retaining
the transactivating N-terminal domain. As a consequence it is
unable to bind to ligands, but remains constitutively active as a
transcription factor and it is therefore able to promote the
activation of target genes promoting cancer [45, 46].
Figure 1 shows a model of action of androgens on the receptor
in the context of new treatments aiming to inhibit both full
length and AR-V7.

Niclosamide and its inhibitory role of AR-V7
in CRPC: Preclinical data

Niclosamide (5-Chloro-N-{2-chloro-4-nitrophenyl}-2-
hydroxybenzamide) is an already FDA-approved anti-helmin-
thic drug that has been identified as a potent AR-V7 inhibitor
in prostate cancer cells. Niclosamide significantly downregu-
lated AR-V7 protein level by protein degradation through a
proteasome dependent pathway. Therefore its inhibition offers
a valid approach for the treatment of those CRPC samples that
are AR-V7-positive. In 2014, Liu et al. identified inhibitors of
AR variants capable to overcome drug resistance conferred by
AR-V7. Niclosamide inhibits androgen receptor variants ex-
pression and overcomes enzalutamide resistance in CRPC
[55]. Liu et al. discovered that niclosamide is capable of de-
creasing protein levels of AR-V7 in CRPC cell lines, by
means of ubiquitin proteasome system. They used the 26S
proteasome inhibitor MG132 to inhibit proteosomal degrada-
tion. The authors showed that MG132 (5 μM) efficiently re-
duced the ability of niclosamide-mediated inhibition of AR-
V7. The drug was able to reduce AR-V7 protein levels, while
measurement with qPCR proved that the full length AR-V7
mRNA remained unchanged, while Western Blotting showed
lower levels of AR-V7 protein. The transcriptional activity of
AR-V7 was noticeably down-modulated as proven by lucif-
erase reporter gene assay, and recruitment of AR-V7 at the
PSA promoter resulted in a diminution of PSA protein

expression. Furthermore, by ELISA, the authors proved that
no PSA levels were observed in cells treated with niclosamide.
ChiP assays further confirmed that AR-V7 was recruited to
the promoter. It was therefore the transcriptional activity of
AR-V7 to be impaired in the presence of niclosamide.
Moreover, as proven by cell-death ELISA, niclosamide fos-
tered the AR-V7 positive cells to become apoptotic. The au-
thors further proved in vitro and in vivo that niclosamide was
capable of enhancing enzalutamide efficacy. Moreover, the
authors proved that 25 mg/kg of niclosamide reduced tumour
volume in mice xenografted with AR-V7 expressing CRPC
cells. Additionally, the combination of niclosamide with
enzalutamide was more efficient compared to niclosamide
alone as it significantly reduced tumour volume compared to
niclosamide on its own (p < 0.05). The authors concluded that
niclosamide is a promising inhibitor of AR variants useful to
treat patients with advanced PC, especially those resistant to
enzalutamide. Interestingly it was shown that niclosamide re-
stored sensitivity to enzalumatide by the inhibition of IL6-
Stat3-AR axis, which is a crucial mechanisms of enzalutamide
resistance [56]. In 2016, Liu C et al. demonstrated that
niclosamide was a stronger agent when combined with
abiraterone compared to single agents niclosamide or
arbiraterone in AR-V7 positive CRPC cells. They showed
how AR-V7 conferred resistance to their cell line. They
knocked-down by siRNA the AR-V7 gene in AR-V7 positive
cell lines CWR22RV1 and C4-2B MDVR and demonstrated
that AR-V7 siRNA treated cell lines became sensitive to the
abiraterone drug. On the same note, when the original
abiraterone-resistant cell lines were treated with niclosamide
they became sensitive to abiraterone treatment in both in vitro
and in vivo models. This was first proven by showing that the
cell numbers significantly decreased by niclosamide with or
without abiraterone (p < 0.05). Clonogenic assays confirmed
these results by showing how the niclosamide and/or
abiraterone was/were able to significantly reduce the number
of colonies in these cell lines (p < 0.05). The highest reduction
in colony numbers, as for the in vivo tumour growth, was
observed using the combination of niclosamide with
abiraterone (p < 0.05). Also the colony size was reduced in
the cell lines treated with these two compounds. As to the in
vitro results the authors proved that when CWR22RV1 or C4-
2B MDVR were treated with or without abiraterone the cell
growth was inhibited and the combination had a synergic ef-
fect, with a significantly greater ability to inhibit cell-growth
compared to single agents (p < 0.05) [57]. Finally, it has been
recently demonstrated that targeting AR-V7 with niclosamide
can resensitize bicalutamide-resistant cells to bicalutamide.
Furthermore, combination of niclosamide with bicalutamide
inhibits enzalutamide resistant tumor growth, suggesting that
the combination of niclosamide and bicalutamide could be an
interesting strategy to treat patients who fail to respond to
enzalutamide therapy [58].
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Niclosamide: On-going clinical data

There are three clinical trials testing niclosamide in CRPC pa-
tients: two of them use it in combination with enzalutamide
(Phase I, NCT02532114; Phase I, NCT03123978); one of them
uses it in combination abiraterone (Phase II, NCT02807805).
NCT02532114 clinical trial’s primary objective is testing the
safety and tolerability of niclosamide in combination with
enzalutamide. This is a phase I that uses the combination of
niclosamide and enzalutamide as a second line of treatment after
the CRPC patients had progressed on abiraterone acetate.
NCT03123978 clinical trial’s primary objective is to determine
safety and the phase II recommended dose in the treatment of
patients with CRPC. As secondary objectives PFS and response
by PSA are measured. NCT02807805 is a phase II clinical trial
is testing PSA-measured responsiveness as primary objective
and as secondary objective the overall response rate, PFS and
toxicity. Moreover, since niclosamide is specific to AR-V7,
these trials may shed some light over the question of the effec-
tiveness of targeting only the AR-V7 in CRPC. To obtain al-
ways more statistically robust data, successively the first obtain-
ed results should be further tested in larger and randomized
clinical trials after passing all the other initial phases of the
clinical trials. The clinical trials testing niclosamide are summa-
rized in Table 1.

Future directions

Despite the progress in this field, CRPC still remains one of
the most lethal diseases. The AR-V7 isoform, which is often
found in CRPC, it is very difficult to treat by the standard
second-generation anti-androgens because this variant has
the peculiarity of being constitutively active and therefore
independent of the binding of androgens for its activation
and downstream signalling. Towards the adoption of always
more efficient and target-specific treatments, the scientific
community has closely been looking at the efficacy in of
CRPC therapies directed against the AR-V7-positive CRPC
for its degradation. There has been an interest for the use of
niclosamide for the treatment of patients with this type of
receptor variant after the positive results of the first pre- and

clinical data. The results of first ongoing clinical trials could
prove crucial for the further development of niclosamide in
later stages clinical trials.
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