

Citation for published version:
Gundersen, T, Heijltjes, W & Parigot, M 2013, A proof of strong normalisation of the typed atomic lambda-
calculus. in Logic for Programming, Artificial Intelligence, and Reasoning (LPAR): Proceedings of the 19th
International Conference, LPAR, Stellenbosch, South Africa, December 14-19, 2013. Lecture Notes in Computer
Science, vol. 8312, Springer, Heidelberg, Germany, pp. 340-354, LPAR: International Conferences on Logic for
Programming, Artificial Intelligence and Reasoning, Stellenbosch, South Africa, 15/11/13.
https://doi.org/10.1007/978-3-642-45221-5_24
DOI:
10.1007/978-3-642-45221-5_24

Publication date:
2013

Document Version
Peer reviewed version

Link to publication

The final publication is available at https://doi.org/10.1007/978-3-642-45221-5_24

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 11. Sep. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Bath Research Portal

https://core.ac.uk/display/224768587?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/978-3-642-45221-5_24
https://doi.org/10.1007/978-3-642-45221-5_24
https://researchportal.bath.ac.uk/en/publications/a-proof-of-strong-normalisation-of-the-typed-atomic-lambdacalculus(c28a6acb-0258-4d79-a794-e4a828337e5c).html

A Proof of Strong Normalisation of the Typed
Atomic Lambda-Calculus

Tom Gundersen1, Willem Heijltjes2, and Michel Parigot1

1 Laboratoire Preuves, Programmes, Systèmes
CNRS & Université Paris Diderot

teg@jklm.no, parigot@pps.univ-paris-diderot.fr
2 University of Bath

w.b.heijltjes@bath.ac.uk

Abstract. The atomic lambda-calculus is a typed lambda-calculus with
explicit sharing, which originates in a Curry-Howard interpretation of
a deep-inference system for intuitionistic logic. It has been shown that
it allows fully lazy sharing to be reproduced in a typed setting. In this
paper we prove strong normalization of the typed atomic lambda-calculus
using Tait’s reducibility method.

1 Introduction

The atomic lambda-calculus is a typeable lambda-calculus with explicit sharing,
recently introduced in [13, 12], developed as the Curry–Howard interpretation
of a deep-inference proof system for intuitionistic logic. The present paper con-
stitutes an important step in the development of its meta-theory, by extending
Tait’s reducibility method to show strong normalisation of the simply typed
atomic lambda-calculus. The primary motivation for establishing this result is
to demonstrate that the atomic lambda-calculus is a natural and well-behaved
calculus, to which the main standard techniques and results apply.

Sharing is an approach to efficient computation in lambda-calculi whereby du-
plication of subterms is deferred in favor of reference to a common representation.
It is a leading principle behind, among others, explicit substitution calculi [1, 18,
8, 9, 15, 2], term calculi with strategies or higher-order transformations [14, 3], and
sharing graphs in the style of Lamping [17, 4, 21]. The atomic lambda-calculus
represents a novel category in this range. As a typeable term calculus it is an
alternative to explicit substitution calculi, providing a different perspective on
sharing: as in sharing graphs, sharing is evaluated atomically, by duplicating
individual constructors. A salient property is that the calculus implements fully
lazy sharing [22, 14, 5], a degree of sharing that, while standard, had previously
been achieved in lambda-calculi only by means of external transformations.

The paper [12] details how the atomic lambda-calculus and its sharing mecha-
nisms are derived from deep inference [6], a proof methodology where inferences
apply in context, reminiscent of term rewriting. Sharing in deep inference is by
explicit contraction rules, which implement atomic duplication by interacting with

individual inferences. By embedding natural deduction within the deep-inference
formalism open deduction [11], duplication in traditional normalisation is broken
up into atomic steps. The atomic lambda-calculus is a direct computational in-
terpretation of the resulting proof system. The paper [12] further establishes the
technical properties of full laziness and PSN, preservation of strong normalisation
with respect to the lambda-calculus.

In the present paper strong normalisation for the typed atomic lambda-
calculus will be proven using the Tait-reducibility method [20, 10]. Reducibility
is an abstract method compatible with higher-order logic, whose application
provides a deeper understanding of reduction and its dynamics. The fact that a
reducibility proof can be carried out for the atomic lambda-calculus shows the
generic character of this extension of the lambda-calculus.

2 The atomic lambda-calculus

The atomic lambda-calculus introduced in [12] is a refined lambda-calculus, in
which abstraction is split into a linear abstraction and a sharing operation.
Duplication and deletion proceeds locally through the evaluation of sharings. The
calculus consists of a standard linear lambda-calculus with a sharing construct,
extended by a further construction called the distributor. The distributor allows to
duplicate an abstraction without duplicating its scope: it replaces the abstraction
while duplication of its scope is in progress, where the duplicated parts of the
scope are stored in a tuple of terms (see also the reduction rules in Section 2.1).

Definition 1. The atomic lambda-calculus ΛA is defined by the grammars

s, t, u, v, w ··= x | λx.t | (t)u | t[γ]

[γ], [δ] ··= [x1, . . . , xn ← t] | [x1, . . . , xn � λy.tn]

tn ··= 〈t1, . . . , tn〉 | tn[γ]

where (i) n ≥ 0, (ii) each variable may occur at most once in a term, (iii) in λx.t,
x must be free in t and becomes bound, (iv) in λy.tn, y must be free in tn and
becomes bound, (v) in t[γ] where [γ] is [x1, . . . , xn ← u] or [x1, . . . , xn � λy.tn],
each xi must be free in t and becomes bound, and (vi) likewise for tn[γ].

Terms t are atomic lambda-terms. The closures [γ] are called respectively
sharing and distributor, and a nullary sharing [← t] is a weakening. Atomic
lambda-terms not containing a distributor are basic terms. A sequence of closures
[γ1] . . . [γn] will be denoted [γi]i≤n or [Γ]. The tn are terms of multiplicity n or n-
terms, and are of the form 〈t1, . . . , tn〉[Γ]. Where possible, terms and n-terms will
not be distinguished, and both denoted t, u, v. A sequence of variables x1, . . . , xn
may be abbreviated ~x; a sharing is then denoted [~x← t]. Standard notions are:
FV(u) is the set of free variables of u, and u{t/x} denotes the substitution of t for
x in u. A series of substitutions {t1/x1} . . . {tn/xn} is abbreviated {ti/xi}i≤n.

Atomic lambda terms will be considered up to the congruence (∼) induced
by (1) below; note that due to linearity, both terms are only well-defined if both
[γ] and [δ] bind only in t.

t[γ][δ] ∼ t[δ][γ] (1)

The functions L−M : Λ → ΛA and J−K : ΛA → Λ translate between atomic
lambda-terms and standard lambda-terms. The former is defined below. For
a formal definition of the function L−M see [12]; intuitively, it replaces each
abstraction λx.− in a term by λx.− [x1, . . . , xn ← x], where x1, . . . , xn replace
the occurrences of x, so that JLNMK = N for any lambda-term N .

Definition 2. The functions J−K and {[−]} interpret atomic lambda-terms and
closures respectively as lambda-terms and substitutions. For a sequence of closures
[Γ] = [γ][Γ′] with [Γ′] non-empty, let {[Γ]} = {[γ]}{[Γ′]}.

JxK = x Jλx.tK = λx.JtK J(t)uK = (JtK)JuK Jt[γ]K = JtK{[γ]}

{[x1, . . . , xn ← t]} = {JtK/xi}i≤n
{[x1, . . . , xn � λy.〈t1, . . . , tn〉[Γ]]} = {λy.JtiK{[Γ]}/xi}i≤n

2.1 Reduction rules

Reduction in the atomic lambda-calculus, denoted , consists of two parts:
(i) linear β-reduction, denoted β : the usual rule (rule β below) applied linearly;
(ii) sharing reductions, denoted S , comprising two kinds of rule: (a) permutations
taking closures outward (rules 2–6), and (b) local transformations that evaluate
closures (rules 7–10).

Linear β-reduction:
(λx.u)t β u{t/x} (β)

Permutations of closures:

λx.t[γ] S (λx.t)[γ] if x ∈ FV(t) (2)
(u[γ])t S ((u)t)[γ] (3)
(u)t[γ] S ((u)t)[γ] (4)

u[x1, . . . , xn ← t[γ]] S u[x1, . . . , xn ← t][γ] (5)
u[x1, . . . , xn � λy.tn[γ]] S u[x1, . . . , xn � λy.tn][γ] if y ∈ FV(tn) (6)

Transformations on closures:

u[~y ← y][~x, y, ~z ← t] S u[~x, ~y, ~z ← t] (7)

u[x1, . . . , xn ← (v)t] S u{(yi)zi/xi}i≤n[y1, . . . , yn ← v][z1, . . . , zn ← t] (8)

u[x1, . . . , xn ← λx.t] S u[x1, . . . , xn � λx.〈y1, . . . , yn〉[y1, . . . , yn ← t]] (9)

u[x1, . . . , xn � λy.〈t1, . . . , tn〉[~z ← y]] S u{λyi.ti[~zi ← yi]/xi}i≤n

where {~zi} = {~z} ∩ FV(ti) for every i ≤ n (10)

The fact that a term u reduces to v in exactly n steps will be denoted u n v,
while an arbitrary number of steps is indicated simply by . A term u is called
strongly normalisable if all the reduction sequences starting with u are finite.
The set of strongly normalisable terms is denoted N . Reduction in the atomic
lambda-calculus commutes 1–1 with substitution, due to the linearity condition
on free variables.

Lemma 3. For atomic lambda-terms u, u′, v and v′ and variable x ∈ FV(u), if
u 1 u′, then u{v/x} 1 u′{v/x}; and if v 1 v′, then u{v/x} 1 u{v′/x}.

2.2 Basic properties of the atomic lambda-calculus

We collect in this section the main basic properties we are using in the strong
normalisation proof. The two main properties are (i) the strong normalisation
property of the sharing reduction, and (ii) the decomposition of the computational
content of sharings and distributors.

Theorem 4 ([12, Theorem 11]). The reduction S is strongly normalising
and confluent.

Sharing reductions preserve the denotation JtK of a term [12, Prop. 10]. The
normal form under S of an atomic lambda-term t is called its unfolding u(t).
It is a basic term (i.e., no distributors occur) of the form u[Γ], where sharing in
u occurs only as λy.v[~x← y], of bound variables immediately within the scope
of their binder, and where [Γ] are sharings [~x ← y] of the free variables y in t
that occur in shared subterms [12, Prop. 9]. For closed terms, u(t) =α LJtKM.

Definition 5. The unfolded body ub(t) of t is the largest subterm of u(t) not of
the form u[γ].

The unfolded body of a term is what is duplicated during reduction. To
identify the various copies, let a variant of a term t be any term obtained from t
by renaming certain (bound or free) variables. A variant is fresh if all its variables
are fresh, and ti is the fresh variant of t obtained by replacing each variable x by
a fresh variable xi.

For an n-term tn = 〈t1, . . . , tn〉[Γ] let the ith projection πi(t
n) be the atomic

lambda term ti[Γi] where [Γi] is obtained by removing the binders from [Γ]
binding in any tj (i 6= j), and iteratively removing binders in sk when xk is
removed from a distributor [x1, . . . , xk, . . . , xm � λy.〈s1, . . . , sk, . . . , sm〉[Γ′]].

The following basic facts then characterise ub.

Proposition 6.

ub(x) = x ub(λx.t) = λx.ub(t)[~x← x] ub((u)v) = (ub(u))ub(v)

ub(u[x1, . . . , xn ← t]) = ub(u){ub(t)i/xi}i≤n

ub(u[x1, . . . , xn � λy.tn]) = ub(u){ub(λy.πi(t
n))i/xi}i≤n

Proposition 7. For t = 〈t1, . . . , tn〉[Γ], ub(πi(t)) = ub(ti[← x1] . . . [← xm][Γ])
where x1, . . . , xm are the free variables of all tj (i 6= j).

To characterise the effects of duplication on the free variables of a term t
or an abstracted n-term λy.tn, let FV(t) = FV(λy.tn) = {y1, . . . , yk}, and let
FV(ub(t)i) = FV(ub(λy.πi(t

n))i) = {~y i1 , . . . , ~y ik }. Define the renamings of t and
λy.tn to be the sharings [~y 1

i , . . . , ~y
n
i ← yi]i≤k, denoted [rn(t) : 1, . . . , n] and

[rn(λy.tn) : 1, . . . , n] and abbreviated [rn(t)] and [rn(λy.tn)] where possible. The
unfolded body and the renamings give the following key decomposition properties
of the computational content of closures.

Lemma 8. u[x1, . . . , xn ← t] u{ub(t)i/xi}i≤n[rn(t)]

Lemma 9. u[x1, . . . , xn � λy.tn] u{ub(λy.πi(t
n))i/xi}i≤n[rn(λy.tn)]

3 Typed atomic lambda-calculus

The simply typed atomic lambda-calculus Sa is defined by the following rules
(see [13, 12]). Terms, including variables, are typed t : A with A a minimal
formula, one built over →, while n-terms are typed by conjunctive formulae,
tn : A1 ∧ · · · ∧An. With the notation t∗ indicating either a term or an n-term, a
judgment is of the form x1 : A1, . . . , xn : An ` t∗ : B, where x1, . . . , xn are the
free variables of t∗. The antecedent x1 : A1, . . . , xn : An of a judgement is treated
as a set, denoted Γ , ∆, and abbreviated (xi : Ai)i≤n, or ~x : A if Ai = A for all i.

Typing rules of Sa:

Γ, x : A ` t : B
λ

Γ ` λx.t : A→B

Γ ` u : A→B ∆ ` v : A
@

Γ,∆ ` (u)v : B

ax
x : A ` x : A

Γ1 ` t1 : A1 · · · Γn ` tn : An 〈 〉nΓ1, . . . , Γn ` 〈t1, . . . , tn〉 : A1 ∧ · · · ∧An

Γ, (xi : B)i≤n ` t∗ : A ∆ ` u : B
←

Γ,∆ ` t∗[x1, . . . , xn ← u] : A

Γ, (xi : A→Bi)i≤n ` s∗ : C ∆, y : A ` tn : B1 ∧ · · · ∧Bn
�

Γ,∆ ` s∗[x1, . . . , xn � λy.tn] : C

The type system Sa of the atomic lambda-calculus is a refinement of the simply
typed lambda-calculus S: the rules ax, λ, and @ are the rules of S restricted by
the linearity condition. The rule for sharing, ←, is a standard cut-rule combined
with contraction on the left. Similarly, the rule for the distributor, �, is a
cut-rule, albeit a highly non-standard one. It contracts on A, the antecedent of

the implications, but not on their consequent, integrating a limited amount of
deepness.

The typed atomic lambda-calculus Sa enjoys the usual properties of typed
systems, in particular subject reduction.

Theorem 10 ([13]). If Γ ` u : A and u v, then Γ ` v : A.

Moreover, types are preserved in the interpretation of standard lambda-terms as
atomic lambda-terms, by inserting sharing-inferences (←) where required.

Proposition 11. If Γ ` N : A, then Γ ` LNM : A

Despite the fact that sharing reductions are strongly normalising, commute
with denotation, and preserve typing, preservation of strong normalisation (PSN)
is not immediate since infinite reduction may take place within weakenings:
consider the denotation Jx[← t]K = x where t is not SN.

4 Proof of Strong Normalisation for Simple Types

In this section we prove the strong normalisation theorem for atomic lambda-
terms, typed in the system Sa, using Tait’s reducibility method. The proof of the
main proposition (Proposition 18) relies on closure properties of the reducibility
sets (Lemma 17), which again relies on closure properties on the set of strongly
normalisable atomic lambda terms proved in Section 5.

For simplifying the presentation, we consider in the remainder of this paper,
that no beta-reduction happens inside n-tuples, that n-tuples are unfolded, and
that all their free variables are captured by closures. This property is preserved
by reduction and it is natural in the context of sharing calculus. In particular all
the useful computation strategies satisfy it, including the one reproducing fully
lazy sharing.

Definition 12. The value |A| of a formula A is defined inductively by:

|X| = N
|A→B| = {u | u is a term and, for each term v ∈ |A|, (u)v ∈ |B| }

Values are extended to conjunctive formulae by the following clauses, for n > 0.
We denote by V the set of variables, and note that 〈〉 is the empty tuple.

|A1 ∧ . . . ∧An| = {tn | for each i ≤ n, πi(t) ∈ |Ai|}
|>| = {〈〉[Γ] | for any x ∈ V, x[Γ] ∈ N}

Values of formulae are called reducibility sets. Note that if t ∈ |A| and t′ is a
variant of t, then t′ ∈ |A|.

Proposition 13. For each minimal formula A, V ⊆ |A| ⊆ N

Proposition 14. For any formulae A1, . . . , An, |A1 ∧ . . . ∧An| ⊆ N .

Lemma 15. For any formula A, if u ∈ |A| and u v, then v ∈ |A| .

Proof. Immediate by induction on A.

Let {·}w denote a term context consisting of repeated applications, so that
{u}w is (. . . (u)w1 . . .)wn.

Lemma 16. For any formula B, if u ∈ |B| then u[~x← y] ∈ |B|.

Proof. By induction on B, if (u)w ∈ |B| then (u[~x← y])w ∈ |B|.

Lemma 17.
(i) If u{v/x} ∈ |B| and x ∈ FV(u), then (λx.u)v ∈ |B|.
(ii) If u{ub(t)i/xi}i≤n[rn(t)] ∈ |B| and t ∈ N , then u[x1, . . . , xn ← t] ∈ |B|.
(iii) If u{ub(λy.πi(t

n))i/xi}i≤n[rn(λy.tn)] ∈ |B| and tn ∈ N ,
then u[x1, . . . , xn � λy.tn] ∈ |B|.

Proof. Each case is proved by induction on B, using context {·}w.
(i) If B is a variable, |B| = N and the result is given by Lemma 21. Otherwise,

let B = C →D. Suppose (u{v/x})w ∈ |C →D| and x ∈ FV(u). Let t ∈ |C|. We
prove that (((λx.u)v)w)t ∈ |D|. Because (u{v/x})w ∈ |C →D| and t ∈ |C|, we
have ((u{v/x})w)t ∈ |D| and by the induction hypothesis, (((λx.u)v)w)t ∈ |D|.
It follows that ((λx.u)v)w ∈ |C →D|.

(ii) If B is a variable, |B| = N and the result is given by Lemma 24.
Otherwise, let B = C → D. Let u′ = (u{ub(t)i/xi}i≤n[rn(t)])w ∈ |C → D|
and t ∈ N . Let v ∈ |C|. We prove that ((u[x1, . . . , xn ← t])w)v ∈ |D|. By
the definition of |C → D| we have (u′)v ∈ |D|. By the induction hypothesis
((u[x1, . . . , xn ← t])w)v ∈ |D|. It follows that (u[x1, . . . , xn ← t])w ∈ |C →D|.

(iii) The proof is similar to that of (ii).

Proposition 18. If (xi : Ai)i≤n ` u : B and vi ∈ |Ai|, then u{vi/xi}i≤n ∈ |B|.

Proof. We proceed by induction on the derivation of (xi : Ai)i≤n ` u : B.

1. The last rule is ax, with conclusion x : A ` x : A. For v ∈ |A| we have
x{v/x} = v ∈ |A|.

2. The last rule is

(xi : Ci)i≤n ` t : A→B (yj : Dj)j≤m ` u : A
@

(xi : Ci)i≤n, (yj : Dj)j≤m ` (t)u : B

Let vi ∈ |Ci| and wj ∈ |Dj | for i ≤ n and j ≤ m. By the induction hypothesis,
t{vi/xi}i≤n ∈ |A→B| and u{wj/yj}j≤m ∈ |A|. By the definition of | − |,

((t)u){vi/xi}i≤n{wj/yj}j≤m = (t{vi/xi}i≤n)u{wj/yj}j≤m ∈ |B| .

3. The last rule is
(xi : Ci)i≤n, x : A ` t : B

λ
(xi : Ci)i≤n ` λx.t : A→B

Let vi ∈ |Ci| for i ≤ n, and suppose w ∈ |A|. By the induction hypothesis
we have t{vi/xi}i≤n{w/x} ∈ |B|. By Lemma 17, (λx.t{vi/xi}i≤n)w ∈ |B|. It
follows that

(λx.t){vi/xi}i≤n = λx.t{vi/xi}i≤n ∈ |A→B| .

4. The last rule is

(yi : Ci)i≤k, (xi : B)i≤n ` u : A (zi : Di)i≤m ` t : B
←

(yi : Ci)i≤k, (zi : Di)i≤m ` u[x1, . . . , xn ← t] : A

Let vi ∈ |Ci| and wj ∈ |Dj | for i ≤ k and j ≤ m, and let u′ = u{vi/yi}i≤k
and t′ = t{wj/zj}j≤m. We have to prove that the following term is in |A|:

(u[x1, . . . , xn ← t]){vi/yi}i≤k{wj/zj}j≤m = u′[x1, . . . , xn ← t′] .

By the induction hypothesis, t′ ∈ |B|; then by Lemma 15 also the unfolded
body ub(t′) is in |B|. Let ub(t′)1, . . . , ub(t′)n be fresh variants. By the induc-
tion hypothesis, u′{ub(t′)i/xi}i≤n ∈ |A|, and u′{ub(t′)i/xi}i≤n[rn(t′)] ∈ |A|
by Lemma 16. It follows by Lemma 17 that u′[x1, . . . , xn ← t′] ∈ |A|.

5. The last rule is

(yi : Ci)i≤k, (xi : A→B)i≤n ` u : C (zi : Di)i≤m, y : A ` tn : B ∧ · · · ∧B
�

(yi : Ci)i≤k, (zi : Di)i≤m ` u[x1, . . . , xn � λy.tn] : C

Let vi ∈ |Ci| and wj ∈ |Dj | for i ≤ k and j ≤ m, and let u′ = u{vi/yi}i≤k
and t′ = tn{wj/zj}j≤m. We have to prove that the following term is in |C|:

(u[x1, . . . , xn � λy.tn]){vi/yi}i≤k{wj/zj}j≤m = u′[x1, . . . , xn � λy.t′] .

By the induction hypothesis, t′{s/y} ∈ |B ∧ · · · ∧ B| for each s ∈ |A|,
and therefore πi(t

′{s/y}) = πi(t
′){s/y} ∈ |B|. Then, for each s ∈ |A|,

(λy.πi(t
′))s ∈ |B| by Lemma 17, and by definition of |− |, λy.πi(t′) ∈ |A→B|.

By Lemma 15 also the unfolding of λy.πi(t′) belongs to |A→B|, as does any
variant ub(λy.πi(t

′))i. By the induction hypothesis, u′{ub(λy.πi(t
′))i/xi}i≤n

is in |C|, and by Lemma 16, u′{ub(λy.πi(t
′))i/xi}i≤n[rn(λy.tn)] ∈ |C|. It

follows by Lemma 17 that u′[x1, . . . , xn � λy.t′] ∈ |C|.

Theorem 19. If (xi : Ai)i≤n ` u : B then u ∈ N .

Proof. Suppose (xi : Ai)i≤n ` u : B. By Proposition 13, we have xi ∈ |Ai| for
i ≤ n. Therefore by Proposition 18, u{xi/xi}i≤n ∈ |B|, i.e. u ∈ |B|, and by
Proposition 13 we have u ∈ N .

5 Closure properties of Strongly Normalisable Atomic
Lambda Terms

In this section we prove closure properties for the set of strongly normalisable
atomic lambda terms which are used in Section 4. To strengthen the induction
hypothesis in several lemmata, we define a further context, {·}w[∆], which is
given by the following grammar.

∗ ··= {·} | (∗)u | ∗[δ]

The terms within a context {·}w[∆] are denoted w = w1, . . . , wn, and the sharings
are denoted [∆] = [δ1], . . . , [δm].

Lemma 20. If x ∈ V and in {·}w each wi ∈ N , then (x)w ∈ N .

For each term t ∈ N , we denote by R(t) the sum of the number of reduction
steps in all reduction sequences of t to its normal form. For any term t, we denote
by S(t) the number of sharing-reduction steps in all reduction paths to u(t).

Lemma 21. If (u{v/x})w ∈ N and x ∈ FV(u), then ((λx.u)v)w ∈ N .

Proof. To obtain a suitable induction hypothesis, the context {·}w is strengthened
to {·}w[∆], and further closures are inserted. It will be shown by induction on
(R(T ′),S(T)) that if T ′ ∈ N then T ∈ N , where

T = (((λx.u)[Γ])v)w[∆] T ′ = (u{v/x}[Γ])w[∆] .

It will be shown that for any term U reached by a reduction step T 1 U , there
is a term U ′ reached by a reduction T ′ U ′, such that the induction hypothesis
applies to U and U ′ and (R(U ′),S(U)) < (R(T ′),S(T)), giving U ∈ N . Since
this holds for any term U , it follows that T ∈ N .

The first, special case, is T ′ = U (with [Γ] empty), for which U ∈ N is
immediate. For the remaining cases, we have to verify that U and U ′ have the
right form, that the measure decreases and that T ′ U ′, which implies that
U ′ ∈ N . In the following cases, R(U ′) < R(T ′).

1. If T 1 U is due to u 1 u′, then U and U ′ are as follows.

U = (((λx.u′)[Γ])v)w[∆] U ′ = (u′{v/x}[Γ])w[∆]

2. If T 1 U is due to v 1 v′, then U and U ′ are as follows.

U = (((λx.u)[Γ])v′)w[∆] U ′ = (u{v′/x}[Γ])w[∆]

3. If T 1 U is due to a rewrite step entirely inside [Γ] or inside w[∆]—which
covers any rule except (8) and (10)—then U and U ′ are as follows.

U = (((λx.u)[Γ′])v)w′[∆′] U ′ = (u{v/x}[Γ′])w′[∆′]

4. If T 1 U is due to an application of rule (8) or (10) to [Γ] with subsitutions
in u, then U and U ′ are as follows.

U = (((λx.u′)[Γ′])v)w[∆] U ′ = (u′{v/x}[Γ′])w[∆]

5. If T 1 U is due to an application of rule (8) or (10) to w[∆] with subsitutions
anywhere in ((λx.u)[Γ])v, then U and U ′ are as follows.

U = (((λx.u′)[Γ′])v′)w′[∆′] U ′ = (u′{v′/x}[Γ′])w′[∆′]

For the remaining cases, R(U ′) ≤ R(T ′) and S(U) < S(T).

6. If T 1 U is an application of permutation rule (2) to [γ] in λx.u′[γ], where
u = u′[γ], then U and U ′ are as follows (note that T ′ = U ′).

U = (((λx.u′)[γ][Γ])v)w[∆] U ′ = (u′{v/x}[γ][Γ])w[∆]

7. If T 1 U is an application of permutation rule (3) to [γ] in ((λx.u)[Γ′][γ])v,
where [Γ] = [Γ′][γ], then U and U ′ are as follows (note that T ′ = U ′).

U = ((((λx.u)[Γ′])v)[γ])w[∆] U ′ = (u{v/x}[Γ′][γ])w[∆]

8. If T 1 U is an application of permutation rule (4) to [γ] in ((λx.u)[Γ])v′[γ],
where v = v′[γ], then U and U ′ are as below. Note that T ′ U ′ by permuting
[γ] outward, from u{v′[γ]/x} to u{v′/x}[γ], and T ′ = U ′ if u = x.

U = ((((λx.u)[Γ])v′)[γ])w[∆] U ′ = (u{v′/x}[Γ][γ])w[∆]

For the following proofs, we associate with each closure [γ] its body b[γ] and
its computation [γ]c, defined as follows.

b[~x← t] = t

b[~x� λy.tn] = λy.tn

[x1, . . . , xn ← t]c = {ub(t)i/xi}i≤n[rn(t)]

[x1, . . . , xn � λy.tn]c = {ub(λy.πi(t
n))i/xi}i≤n[rn(λy.tn)]

Lemma 22.
1. If z is free in t, then u[~x← t]c{w/z} u[~x← t{w/z}]c.
2. If z is free in tn, then u[~x� λy.tn]c{w/z} u[~x� λy.t{w/z}]c.

Proof. Immediate from the definitions, Lemma 8, and Lemma 9.

The notation [γ]∗ will indicate a either [γ] or [γ]c. For a sequence of clo-
sures [Γ] = [γ1] . . . [γp], we denote by [Γ]∗ a partial computation [γ1]∗ . . . [γp]

∗.
Analogously, {·}w[∆]∗ denotes a partial computation for a context {·}w[∆].

In order to measure the number of reduction steps in a context w[∆], we use
the notion of applicative n-term, defined by the following grammar.

Tn ··= 〈t1, . . . , tn〉 | Tn[γ] | (Tn)t

Rewrite rules apply to applicative n-terms as normal, but reduction within the
tuple is permitted. Then for a term (u)w[∆], reduction in the context w[∆] is
separated from that in u by considering reduction in the applicative n-term
〈x1, . . . , xn〉w[∆], where {x1, . . . , xn} = FV(u).

Lemma 23. For any terms t, v, and w, if t 1 v and t S w then w u(v).

Proof. There are two cases.
1. If t 1

S v, then u(v) = u(w), as sharing reduction is confluent and strongly
normalising by Theorem 4.

2. If t 1
β v, by [12, Lemma 17 and Theorem 18] the unfolding of w beta-reduces

(in zero or more beta-steps) to a term w′ such that u(w′) = u(v).

Lemma 24. If (u[γ]c)w ∈ N and b[γ] ∈ N , then (u[γ])w ∈ N .

Proof. The following stronger statement will be proved: given

T = (u)w[∆] and T ′ = (u)w[∆]∗ ,

let Tn be the applicative n-term 〈x1, . . . , xn〉w[∆] where FV(u) = {~x}. If T ′ ∈ N
and Tn ∈ N , then T ∈ N .

We proceed by induction on the measure (R(T ′),R(Tn)). For each term U
reached by a reduction step T 1 U it will be shown that U ∈ N , proving that
T ∈ N . This will be done by giving a term U ′ reachable by a reduction T ′ U ′,
to which the induction hypothesis applies; note that since T ′ ∈ N also U ′ ∈ N ,
but it must also be shown that the corresponding applicative n-term Un is in N .
The induction hypothesis for U and U ′ then gives U ∈ N .

1. If the reduction step T 1 U takes place inside u, then U and U ′ are as
follows.

U = (u′)w[∆] U ′ = (u′)w[∆]∗

Then R(U ′) < R(T ′), and since FV(u) = FV(u′) we have Un = Tn ∈ N .
2. If the reduction step T 1 U takes place inside the context w[∆], then
R(Un) < R(Tn). Let U and U ′ be

U = (u′)w′[∆′] U ′ = (u′)w′[∆′]∗

where every closure in w′[∆′]∗ is computed. The reduction T 1 U S U
′

corresponds 1-1 to a reduction from Tn = 〈x1, . . . , xn〉w[∆] of the form

Tn 1 V S u(V) .

(Given that only unfolded terms are instantiated into the n-tuple in the
reduction V S u(V), which holds due to the restriction on tuples instated
in the beginning of Section 4.) Similarly, for the reduction T S T

′ there
is a corresponding Tn S W . For these reduction paths, Lemma 23 gives
a reduction W S u(V). The corresponding reduction path T ′ U ′ gives
R(U ′) ≤ R(T ′), so that the induction hypothesis applies.

3. If the reduction step T 1 U is a beta-step where u = λx.u′ is the function,
and the argument v is the first element of the context {·}w[∆], then U and
U ′ are as follows.

U = (u′{v/x})w′[∆] U ′ = (u′{v/x})w′[∆]∗

Here, w′[∆] is w[∆] with the first application v removed; it follows that
Un = 〈~x, ~y〉w′[∆] ∈ N because Tn = (〈~x〉v)w′[∆] ∈ N , where ~x and ~y are
the free variables of λx.u′ and v respectively. The induction hypothesis applies
since R(U ′) < R(T ′).

4. Let the reduction step T 1 U be an application of rule (7), combining two
sharings [γ] = [~y ← y] and [δ] = [~x, y, ~z ← t] into one [δ′] = [~x, ~y, ~z ← t],
where u = u′[γ] and [δ] is the first element of the context w[∆]. Then U and
U ′ are as follows.

U = u′[δ′]w[∆] U ′ = u′[δ′]∗w[∆]∗

Then T ′ = u′[γ][δ]∗w[∆]∗ U ′, and hence R(U ′) < R(T ′). The difference
between Tn and Un is that between the following n-terms.

〈~x, y, ~z〉[~x, y, ~z ← t] 〈~x, ~y, ~z〉[~x, ~y, ~z ← t]

While t may be duplicated more times in Un than in Tn, since no interaction
is possible between the elements of a tuple it follows that Un ∈ N , so that
the induction hypothesis applies.

5. Finally, there is one case where u = u′[γ] and a reduction step forces the
closure [γ] into the context w[∆]. Since the context w[∆] consists of closures
and applications; moving [γ] into it means it must be permuted past a
closure [δ] or an application (·)v. In the former case, u′[γ][δ] ∼ u′[δ][γ] is an
equivalence, not a rewrite step; thus the reduction step must be an application
of rewrite rule (3). But because of the congruence ∼ on terms, the application
(·)v need not be the first element of w[∆]: there may be closures [Γ] such
that u[γ][Γ] ∼ u[Γ][γ]. Then consider the following rewrite step.

(u′[γ][Γ])v ∼ (u′[Γ][γ])v 1 ((u′[Γ])v)[γ]

Then T , T ′, U and U ′ are as follows.

T = ((u′[γ][Γ])v)w′[∆′] T ′ = ((u′[γ][Γ]∗)v)w′[∆′]∗

U = ((u′[Γ])v)[γ]w′[∆′] U ′ = ((u′[Γ]∗)v)[γ]w′[∆′]∗

Here, the context {·}w[∆] = (({·}[Γ])v)w′[∆′]. Since T ′ 1 U ′ we have that
R(T ′) < R(U ′). To apply the induction hypothesis to U and U ′, due to the
presence of [Γ]∗ we are forced to include [γ] into the context w[∆]. It must
then be shown that the n-term Un is in N , given that Tn ∈ N ; however, Un
includes [γ] where Tn does not:

Tn = ((〈x1, . . . , xn, y1, . . . , ym〉[Γ])v)w′[∆′]

Un = ((〈x1, . . . , xn, z1, . . . , zk〉[Γ])v)[γ]w′[∆′] .

Here, FV(b[γ]) = {y1, . . . , ym} and FV(u′) = {x1, . . . , xn, z1, . . . , zk}, with
the zi bound by [γ].

In case w′[∆′] does not bind in [γ], it follows that Un ∈ N because b[γ] ∈ N
(as it is a subterm of T ′ ∈ N) and Tn ∈ N .

Otherwise, let w′[∆′] bind in [γ]. The n-term B′ below is obtained from T ′

by replacing u = u′[γ] by the tuple 〈x1, . . . , xn, b[γ]〉.

B′ = ((〈x1, . . . , xn, b[γ]〉[Γ]∗)v)w′[∆′]∗ ∈ N

Recall that the xi are the free variables of u′ not bound by [γ]; then each
element of the tuple is a subterm of u. Then since T ′ ∈ N , also B′ ∈ N , and
since w′[∆′] binds in [γ], the computations or closures in w′[∆′]∗ binding in
b[γ] create reductions in u[γ] that have no counterpart in 〈x1, . . . , xn, b[γ]〉,
so that R(B′) < R(T ′). Then the induction hypothesis can be applied for B′
and the term B below, with Bn = Tn ∈ N , giving B ∈ N .

B = ((〈x1, . . . , xn, b[γ]〉[Γ])v)w′[∆′]

From this it follows that Un ∈ N , by the following argument. Let B1, . . . , Bm

be variants of B. Then a reduction step in Un must do one of three things:
(a) if it duplicates a part of b[γ] from [γ] into a yi, it is a sharing step,

of which there are only finitely many until a step of kind (b) or (c) is
performed,

(b) if it applies to an xi or outside the tuple, there is a corresponding step
in each Bj ,

(c) if it applies to a (part of) b[γ]i that has been duplicated into the tuple,
there is a corresponding step in Bi.

6 Conclusions and further work

The present result, of strong normalisation for the simply typed atomic lambda-
calculus, emphasises how the calculus is a natural and well-behaved formalisation
of sharing in the lambda-calculus. Future investigations will expand in three
directions: strengthening the current strong normalisation result; adapting the

atomic lambda-calculus to address further notions of sharing; and investigating
the practical use of the calculus in computation, for instance in compiling or
implementing functional programming languages.

The present work strongly suggests two angles for future research. A natural
extension would be to characterise the strongly normalisable atomic lambda-terms
by an intersection typing discipline [7, 19, 16], to which the current reducibility
proof is expected to extend naturally. In a second direction, it is expected that the
type system and strong normalisation proof can be extended to the second-order
case—although subject reduction is not immediately obvious.

For the atomic lambda-calculus in general, further work will focus on variations
on the calculus that more closely approach the reduction dynamics of sharing
graphs, to encompass further degrees of sharing. Another direction would be
the inclusion of general recursion in the calculus, and the investigation of its
interaction with the sharing constructs, as a prerequisite of making the calculus
useful in practice to the implementation of functional programming languages.

References

1. Martín Abadi, Luca Cardelli, Pierre-Louis Curien, and Jean-Jacques Lévy. Explicit
substitutions. Journal of Functional Programming, 1(4):375–416, 1991.

2. Beniamino Accattoli and Delia Kesner. The structural lambda-calculus. In CSL,
2010.

3. Zena M. Ariola, Matthias Felleisen, John Maraist, Martin Odersky, and Philip
Wadler. A call-by-need lambda calculus. In POPL, 1995.

4. Andrea Asperti and Stefano Guerrini. The Optimal Implementation of Functional
Programming Languages. Cambridge University Press, 1998.

5. Thibaut Balabonski. A unified approach to fully lazy sharing. In POPL, 2012.
6. Kai Brünnler and Alwen Tiu. A local system for classical logic. In LPAR, volume

2250 of LNCS, pages 347–361, 2001.
7. M. Coppo and M. Dezani-Ciancaglini. An extension of the basic functionality

theory for the λ-calculus. Notre Dame Journal of Formal Logic, 21(4):685–693,
1980.

8. Rene David and Bruno Guillaume. A λ-calculus with explicit weakening and explicit
substitution. MSCS, 11(1):169–206, 2001.

9. Roberto Di Cosmo, Delia Kesner, and Emmanuel Polonovski. Proof nets and
explicit substitutions. MSCS, 2003.

10. Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types. Cambridge
University Press, 1989.

11. Alessio Guglielmi, Tom Gundersen, and Michel Parigot. A proof calculus which
reduces syntactic bureaucracy. In RTA, pages 135–150, 2010.

12. Tom Gundersen, Willem Heijltjes, and Michel Parigot. Atomic lambda-calculus: a
typed lambda-calculus with explicit sharing. In LICS, 2013.

13. Tom Gundersen, Willem Heijltjes, and Michel Parigot. Un lambda-calcul atomique.
In Journées Francophones des Langages Applicatifs, 2013.

14. R.J.M. Hughes. Super-combinators: a new implementation method for applicative
languages. In ACM Symposium on Lisp and Functional Programming, pages 1–10,
1982.

15. Delia Kesner and Stéphane Lengrand. Resource operators for lambda-calculus.
Information and Computation, 205(4):419–473, 2007.

16. Jean-Louis Krivine. Lambda-calculus types and models. Ellis Horwood, Chichester,
UK, 1993.

17. John Lamping. An algorithm for optimal lambda calculus reduction. In POPL,
pages 16–30, 1990.

18. P. Lescanne. From lambda-sigma to lambda-upsilon, a journey through calculi of
explicit substitutions. In POPL, 1994.

19. G. Pottinger. A type assignment for the strongly normalizable λ-terms. In To H. B.
Curry: essays on combinatory logic, lambda calculus and formalism, pages 561–577.
Academic Press, London, 1980.

20. W.W. Tait. Intensional interpretations of functionals of finite type I. The Journal
of Symbolic Logic, 32(2):198–212, 1967.

21. Vincent van Oostrom, Kees-Jan van de Looij, and Marijn Zwitserlood. Lambdascope:
another optimal implementation of the lambda-calculus. In Workshop on Algebra
and Logic on Programming Systems, 2004.

22. Christopher Peter Wadsworth. Semantics and Pragmatics of the Lambda-Calculus.
PhD thesis, University of Oxford, 1971.

