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Abstract

In this thesis, we propose novel methods for analysing nonstationary, multivariate

time series, focusing in particular on the problems of classification and imputation

within this context. Many existing methods for time series classification are static, in

that they assign the entire series to one class and do not allow for temporal depen-

dence with the signal. In the first part of this thesis, we propose a computationally

efficient extension of an existing dynamic classification method to the online setting.

Dependence within the series is captured by adopting the multivariate locally sta-

tionary wavelet (mvLSW) framework and the signal is classified at each time point

into one of a number of known classes. We apply the method to multivariate acoustic

sensing data in order to detect anomalous regions and evaluate the results against

alternative methods in the literature. The second part of this thesis considers im-

putation in multivariate locally stationary time series containing missing values. We

first introduce a method for estimating the local wavelet spectral matrix that can be

used in the presence of missingness. We then propose a novel method for imputing

missing values that uses the local auto and cross-covariance functions of a mvLSW

process to perform one step-ahead forecasting and backcasting. The performance of
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this nonstationary imputation approach is then assessed against competitor methods

for simulated examples and a case study involving a dataset from a Carbon Capture

and Storage facility. The software that implements this imputation scheme is also

described, together with examples of the R package functionality.
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Chapter 1

Introduction

In recent years, there has been a rapid increase in high-resolution sensors collecting

large amounts of data over short periods of time. One example is the high frequency

acoustic sensing data generated within the oil and gas sector, often sampled at a rate

of 10kHz per second across a range of depths within an oil well. This data collection

results in large multivariate time series that can be difficult to model and analyse for

a number of reasons. For example, it can be hard to capture complex inter-variable

relationships or the series may be nonstationary in nature. In particular, the second-

order structure may change over time. Wavelets, a form of localised basis functions,

offer one possible approach to solving this problem. Their localisation in both time and

scale allows for more efficient modelling of data containing locally changing behaviour

or discontinuities (Dahlhaus, 2012).

Within the existing wavelet literature, Nason et al. (2000) introduced the locally

stationary wavelet processes as a way of accurately modelling univariate time series

exhibiting smoothly varying second-order structure. In the multivariate setting, mod-

1



CHAPTER 1. INTRODUCTION 2

elling individual channels of the series using the LSW framework can be deficient as

relationships between variables are not taken into account. To this end, Park et al.

(2014) developed the multivariate locally stationary wavelet framework which accu-

rately captures the dependence structure between components of a multivariate time

series. A review of the properties of wavelets and their transforms is provided in

Chapter 2, along with a discussion of time series modelling and the wavelet-based

approaches discussed above.

One of the main challenges associated with industrial sensing technology is that

the recordings can be corrupted with periods of anomalous behaviour which have a

negative impact on any secondary analysis such as forecasting or performance mod-

elling. In Chapter 3, we introduce a computationally efficient extension of the dynamic

classification method of Park et al. (2018) to the online setting. This permits real-

time classification of a multivariate time series with changing class membership over

time. We conclude the chapter by assessing the performance of the proposed classifier

using simulated time series and demonstrating how it can be used to detect anoma-

lous regions within multivariate acoustic sensing data. Details of the software that

implements the online dynamic classification method can be found in Appendix A.

An additional issue with sensor recordings is that they can be severely affected by

technical faults in the recording equipment which can induce missingness within the

signal. Further analysis of such time series such as autocovariance and spectral esti-

mation often rely on the data being complete, therefore accurately replacing missing

values with appropriate estimates is an important task. Chapter 4 develops a novel

imputation method based on the multivariate locally stationary wavelet framework
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that can be used to estimate missing values within a multivariate locally stationary

time series. We extend the wavelet forecasting approach of Fryzlewicz and Ombao

(2009) to the multivariate setting and combine this with a backcasting step to improve

accuracy. We again assess the performance of the proposed method against competi-

tor methods through simulated examples and a dataset arising from a Carbon Capture

and Storage facility. The software that implements the imputation method is avail-

able in the R package mvLSWimpute, details of the package and a demonstration

of it’s functionality can be found in Chapter 5.

Finally, we conclude this thesis with a summary of the main contributions and a

discussion of avenues for future research in Chapter 6.



Chapter 2

Literature Review

This chapter reviews the literature on wavelets and time series modelling that are

required for the work presented in the other chapters of this thesis. The first part

of the chapter provides an introduction to wavelets and an overview of some popular

transforms. We begin by briefly summarising key aspects of Fourier analysis, pointing

out shortcomings of the approach and scenarios in which it will provide poor decom-

position results. Wavelets are introduced in Section 2.1.2 through the concept of a

multiresolution analysis and some popular wavelet families are summarised in Sec-

tion 2.1.3. A variety of wavelet transforms are discussed in Sections 2.1.4 and 2.1.5

including the discrete wavelet transform, the non-decimated wavelet transform and

wavelet packet transforms.

In the second part of the chapter, we review some approaches for modelling time

series. Section 2.2.1 covers methods for modelling stationary time series in both

the time and frequency domain. Some approaches for modelling nonstationary time

series through locally stationary representations are discussed in Section 2.2.2 includ-

4
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ing Locally Stationary Fourier processes (Dahlhaus, 1997) and the Smooth Localized

Exponential model (Ombao et al., 2002). An alternative method for modelling non-

stationary time series using wavelets as the basis functions is then discussed. The

(univariate) Locally Stationary Wavelet processes (Nason et al., 2000) are described

in detail in Section 2.3.1 before the Multivariate Locally Stationary Wavelet frame-

work (Park et al., 2014) is discussed in Section 2.3.2. In the final part of the chapter,

various approaches for the classification of nonstationary time series are discussed

including the SLEX-based method of Huang et al. (2004) and the wavelet-based ap-

proaches of Fryzlewicz and Ombao (2009), Krzemieniewska et al. (2014) and Park

et al. (2018).

2.1 Introduction to wavelets and their transforms

2.1.1 Fourier Analysis

Within classical Fourier analysis, a periodic square integrable function f ∈ L2([−π, π]),

can be represented in terms of the Fourier basis {exp(inx)}∞n=−∞ in the following way

f(x) =
∞∑
−∞

cnexp(inx), (2.1.1)

where the Fourier coefficients are computed by

cm = (2π)−1
∫ π

−π
f(x)exp(−imx) dx. (2.1.2)

Since exp(inx) = cos(nx) + isin(nx), the Fourier series in equation (2.1.1) can be

regarded as the expansion of f in terms of sine and cosine functions.
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One of the main drawbacks associated with Fourier series decomposition is that

it cannot efficiently deal with discontinuities in a signal due to the nature of the

basis functions {cos(nx), sin(nx)}n∈Z. Specifically, these functions are smooth and

have infinite support meaning that every basis sine and cosine function will interact

with a discontinuity which will influence the coefficients of the Fourier transform. An

example of this can be seen in Figure 2.1.1, the Fourier series representation of the

function near the discontinuities is poor and Gibbs effects can clearly be seen.

Figure 2.1.1: Example of the Gibbs effect

A further drawback of the Fourier approach is that, whilst it allows us to obtain

information on the frequency components present in a signal or the time at which

frequencies occur, it does not give information on both. For a more thorough review
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of Fourier theory, see Walker (1986) or Percival and Walden (2006).

In order to efficiently model functions containing discontinuities, alternative basis

functions are required that capture local features more accurately. Specifically, we

require basis functions that are compactly supported. Wavelet basis functions possess

this quality, as well as allowing for time-scale decomposition of a signal. For this

reason, wavelets are often seen as a desirable alternative to Fourier approaches in

situations where discontinuities or nonstationarity are present in a signal. In the next

section, we introduce wavelets through the idea of a multiresolution analysis before

discussing some of the commonly used wavelet basis functions.

2.1.2 Multiresolution Analysis (MRA)

A multiresolution analysis (MRA), first introduced in Meyer (1986) and Mallat (1989a),

is a sequence of closed subspaces {Vj}j∈Z in L2(R) such that the following containment

holds

. . . ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ . . . (2.1.3)

In order to be considered a MRA, this sequence of closed subspaces must also satisfy

some additional conditions given by

1.
⋃
j∈Z

Vj = L2(R).

2.
⋂
j∈Z

Vj = {0}.

3. f(2jx) ∈ Vj ⇐⇒ f(x) ∈ V0.

4. There exists a scaling function φ(x) ∈ V0 such that any element of V0 can be
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expressed as a linear combination of translated copies of φ(x). As such, the set

{φ(x− k)}k∈Z is an orthonormal basis of V0.

The scaling function φ(x) is also known as the father wavelet. As a consequence of

Conditions 3 and 4, we can see that the set

{φj,k(x) = 2
j
2φ(2jx− k)}k∈Z

is a basis of Vj for some fixed j.

A wavelet basis is characterised by two functions, the father wavelet as defined

above and a mother wavelet function. If we have subspaces that satisfy the conditions

for a MRA then we can define the mother wavelet. First we must define the subspace

Wj which is the orthogonal complement of Vj in Vj+1. In other words,

Vj+1 = Vj ⊕Wj.

Due to this relation, we can write any function g(x) ∈ Vj+1 uniquely as a linear

combination of elements of Vj and Wj. I.e. g(x) = vj(x) + wj(x) where vj(x) ∈ Vj

and wj(x) ∈ Wj.

If we have a sequence of subspaces that satisfy the conditions for a MRA then

there exists an orthonormal basis for L2(R) given by

{ψj,k(x) = 2
j
2ψ(2jx− k)}j,k∈Z,

such that {2 j
2ψ(2jx − k)}k∈Z is an orthonormal basis of Wj for fixed j. As a conse-

quence of this we can define the mother wavelet, ψ(x) = ψ0,0(x).

A key benefit of the MRA approach is that it provides us with the framework to

easily derive some of the important equations relating to wavelet theory, for example

the dilation equations. We know that the father wavelet φ(x) ∈ V0 and, by the
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definition of MRA, specifically relation (2.1.3), we obtain the containment V0 ⊂ V1.

As a consequence of this, we can conclude that φ(x) ∈ V1. Therefore we can represent

φ(x) as a linear combination of functions from V1, which has an orthonormal basis

given by {φ1,k(x) =
√

2φ(2x− k)}k∈Z. From this we can obtain the dilation equation

φ(x) =
∑
k∈Z

hkφ1,k(x) =
∑
k∈Z

hk
√

2φ(2x− k) (2.1.4)

where H = {hk}k∈Z is the low-pass filter. In a similar way we can obtain the corre-

sponding dilation equation for ψ(x)

ψ(x) =
∑
k∈Z

gkψ1,k(x) =
∑
k∈Z

gk
√

2ψ(2x− k) (2.1.5)

where G = {gk}k∈Z is the high-pass filter.

In addition, we can use MRA to show that the following links exist between the

father and mother wavelets

ψ(x) =
∑
k∈Z

gk
√

2φ(2x− k), (2.1.6)

φ(x) =
∑
k∈Z

hk
√

2ψ(2x− k). (2.1.7)

For example in the case of equation (2.1.6), we know that ψ(x) = ψ0,0(x) ∈ W0 and by

the definition of the space W0 we obtain the containment W0 ⊂ V1. As a consequence,

ψ(x) ∈ V1 can be written as a linear combination of the basis functions for V1. Hence

ψ(x) has the representation given by equation (2.1.6).

The quadrature mirror filter relation provides a formula that links the low and

high-pass filters, this is given by

gn = (−1)nh1−n. (2.1.8)
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Therefore, providing we have full knowledge of one of the filters then we can easily

find the other using equation (2.1.8).

2.1.3 Wavelet Families

We now discuss some of the most commonly used wavelet families. Specifically, we fo-

cus within this thesis on the Daubechies wavelets (Daubechies, 1988). The Daubechies

wavelets are split into two families; the “extremal phase” and “least asymmetric”

wavelets. More details on these wavelets can be found in Daubechies (1992) or Vi-

dakovic (1999). Within these families, the mother and father wavelet functions exhibit

varying levels of smoothness depending on the number of vanishing moments N . Fig-

ure 2.1.2 shows the Daubechies extremal phase mother wavelet functions for different

numbers of vanishing moments. Following Meyer (1992), a mother wavelet ψ(x) of

order N must satisfy the following properties:

1. ψ(x) ∈ L∞(R). If N > 1 then
dn

dxn
ψ(x) ∈ L∞(R) for all n ≤ N .

2. ψ(x) and all its derivatives up to order N decrease rapidly as x→ ±∞.

3. For all k ∈ {0, . . . , N}, ∫ ∞
−∞

xkψ(x)dx = 0 (2.1.9)

4. The collection {ψj,k}j,k∈Z forms an orthonormal basis of L2(R), the ψj,k being

constructed from the mother wavelet using the identity

ψj,k(x) = 2j/2ψ(2jx− k). (2.1.10)
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Here j relates to the dilation (known as the scale), whilst k relates to the trans-

lation (known as the location).

The second property ensures that the wavelet has compact support whilst the third, of-

ten referred to as the vanishing moments property, ensures that wavelets can produce

sparse representations of functions that contain a finite number of discontinuities.

(a) (b)

(c)

Figure 2.1.2: Daubechies Extremal Phase mother wavelets for N = 1, 3 and 6.

It can be shown that any function f(x) ∈ L2(R) can be represented as a linear

combination of a smooth component and scaled and translated copies of the mother
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wavelet

f(x) =
∑
k

c0,kφ0,k(x) +
∞∑
j=1

∞∑
k=−∞

dj,kψj,k(x) (2.1.11)

where {dj,k} are the set of wavelet detail coefficients which give information on the

local oscillatory behaviour of the function at scale j and location k.

2.1.4 Discrete Wavelet Transform (DWT)

In the previous section we introduced some of the most common wavelet families that

are used in analysis. These wavelets are the building blocks for a variety of methods

including wavelet transforms. In this section we will consider one such transform,

specifically the Discrete Wavelet Transform (DWT). The DWT provides a time-scale

representation of a signal in which the information contained in the signal is encoded

in a set of smooth and detail coefficients.

The dilation equations defined in equations (2.1.4) and (2.1.5) can be used to

derive the following relations which allow us to find the father and mother wavelets

at progressively coarser scales using the high and low-pass filters

φj−1,k(x) =
∑
n∈Z

hn−2kφj,n(x), (2.1.12)

ψj−1,k(x) =
∑
n∈Z

gn−2kφj,n(x). (2.1.13)

The Discrete Wavelet Transform, proposed in Mallat (1989a,b), takes a regularly

spaced signal of dyadic length 2J (for some J > 0) and decomposes it into a set of

smooth and detail coefficients which encapsulate the information contained in the

signal at different scales/resolutions. Equations (2.1.12) and (2.1.13) can be used to

derive the equations that calculate the smooth and detail coefficients at each level of
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the transform. The number of coefficients produced by the transform changes at each

step of the decomposition with more coefficients at finer scales and fewer at coarser

scales.

The smooth coefficients, cj,k, are associated with the father wavelet functions,

φj,k(x), and the detail coefficients, dj,k, are associated with the mother wavelet func-

tions ψj,k(x). The smooth coefficients at scale 2j are given by

cj,k =

∫ ∞
−∞

f(x)2
j
2φ(2jx− k)dx =

∫ ∞
−∞

f(x)φj,k(x)dx = 〈f(x), φj,k(x)〉. (2.1.14)

In a similar way, the detail coefficients at scale 2j can be found using

dj,k =

∫ ∞
−∞

f(x)2
j
2ψ(2jx− k)dx =

∫ ∞
−∞

f(x)ψj,k(x)dx = 〈f(x), ψj,k(x)〉. (2.1.15)

Using ideas motivated by the MRA framework, it is possible to define equations

to compute the smooth and detail coefficients at coarser scales in the following way

cj−1,l =
∑
k

hk−2lcj,k, (2.1.16)

dj−1,l =
∑
k

gk−2lcj,k, (2.1.17)

where {hk} and {gk} are the low and high-pass filter coefficients. The DWT takes an

initial data vector x = {x0, x1, . . . , xT−1} of length T = 2J and splits it into several

smooth and detail vectors. Let cJ = {cJ,k}k = x be the initial data vector. Setting

j = J in equation (2.1.16) and (2.1.17) allows us to compute the smooth (cJ−1,k) and

detail (dJ−1,k) coefficients at the finest scale. The set of smooth coefficients are then

filtered again using equations (2.1.16) and (2.1.17) to obtain coefficients at the next

coarsest scale. This process is repeated until the coarsest scale is reached, the final
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set of coefficients are then given by

(c0,d0,d1, . . . ,dJ−1). (2.1.18)

Note that the DWT is a decimated transform, for each level j ∈ {1, . . . , J} the

transform calculates coefficients for locations k ∈ {0, . . . , 2J−j − 1} which means that

the number of coefficients decreases for coarser levels.

The support of the wavelet filters used to decompose the series can sometimes

extend beyond the range of the data. In order to deal with these boundary problems,

Nason and Silverman (1994) proposed a number of solutions including

• Symmetry - The sequence is reflected at the endpoints to extend the original

length of the sequence, so that it has the form (y0, . . . , yT−1, yT−2, yT−3, . . .).

• Periodic - Assume the sequence is periodic on the range of the data, so that

yk+T = yk−T = yk for k = 0, . . . , T − 1.

• Zero padding - The sequence is padded with zeroes outside the range of the

data, (y0, . . . , yT−1, 0, 0, . . .).

Other solutions include specifically designed wavelets that always remain on the do-

main of the original data, see Cohen et al. (1993) for a description of wavelets on the

interval.

Instead of using the MRA framework, we can think of the DWT in an alternative

way that involves a filtering and decimation step, as described in Nason and Silverman

(1995). First we define the even decimation operator D0 that takes every even-indexed
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element in a sequence. This has the form

(D0x)l = x2l (2.1.19)

for the sequence {xl}. Let H and G represent the low and high-pass convolution

operators, defined by

(Hx)k =
∑
n

hn−kxn, (2.1.20)

(Gx)k =
∑
n

gn−kxn. (2.1.21)

As above, let cJ = {cJ,k}k = {x0, x1, . . . , x2J−1} be the initial data vector. Applying

the DWT on this vector using equations (2.1.16) and (2.1.17) can be written in the

following way using operator notation

cj−1 = D0Hcj, (2.1.22)

dj−1 = D0Gcj, (2.1.23)

for j = J, . . . , 1. Following Nason and Silverman (1995), the DWT smooth and detail

coefficients at level j given the original data cJ can be written as

dj = D0G(D0H)J−j−1cJ , (2.1.24)

cj = (D0H)J−jcJ , (2.1.25)

for j = 0, 1, . . . , J − 1.

A useful property of the DWT is that it is an orthogonal transform and can

therefore be inverted to obtain the initial data vector. Given the smooth and detail

coefficients at the coarsest level, Mallat (1989b) showed that the inversion relation is
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given by

cj,k =
∑
l

hk−2lcj−1,l +
∑
l

gk−2ldj−1,l. (2.1.26)

The original series can be recovered exactly using equation (2.1.26) given the smooth

coefficient at the coarsest scale c0 and the detail coefficients d0,d1, . . . ,dJ−1.

One of the major weaknesses of the Discrete Wavelet Transform is that it is not

translation-invariant, this means that if we take the DWT of an input vector and then

shift this input vector by some amount and again perform the transform then we will

obtain different results. This is not an attractive quality for a wavelet transform to

possess since it means that analysis using this transform will be affected by the choice

of origin. An example of this can be seen in Figure 2.1.3; shifting the original data by

one to the left results in completely different wavelet coefficients. The wavethresh R

package (Nason, 2016) was used to apply the wavelet transform and generate the plots

of the wavelet decomposition coefficients. The Non-decimated Wavelet Transform

(NDWT) was developed as a solution to this problem and will be outlined in the next

section.

2.1.5 Non-decimated Wavelet Transform (NDWT)

Nason and Silverman (1995) introduced the Non-decimated Wavelet Transform and

outlined the key differences between this method and that of the Discrete Wavelet

Transform. As with the DWT, this transform can only be used when the input data is

regularly spaced and of dyadic length. The first step of the NDWT is to take the input

data vector and filter with the high and low-pass filters. However, no decimation step
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(a) (b)

(c) (d)

Figure 2.1.3: Example of the lack of translation-invariance of the DWT; (a) shows

the original data whilst (b) shows the data rotated by a unit shift. Figures (c) and

(d) depict the Haar DWT for the original and shifted data respectively.

is carried out which means that the number of smooth and detail coefficients does not

change at each level of the process.

At each step of the NDWT we have to pad the high and low pass filters with

zeroes. Let H = {hk}k∈Z be the initial low-pass filter and let G = {gk}k∈Z be the

high-pass filter. Following the notation of Nason and Silverman (1995), we define the

filters H[r] and G [r] which consist of the elements

h
[r]
2rj = hj,

h
[r]
k = 0,

g
[r]
2rj = gj,

g
[r]
k = 0, if k is not a multiple of 2r.

(2.1.27)

The filter H[r] can be thought of as the filter which is obtained after a zero is added
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between every adjacent element of the filter H[r−1] which is used at the previous step

of the algorithm. As in Section 2.1.4, let cJ = {cJ,k}k be the initial data vector. The

smooth and detail coefficients at scale j − 1 are given by

c(j−1) = H[J−j]c(j), (2.1.28)

d(j−1) = G [J−j]c(j), (2.1.29)

where c(j) is the vector of smooth coefficients at scale j and d(j) is the vector of detail

coefficients. The operator H[r] can be thought of as the convolution operator with the

filter h(r).

One of the major strengths of the NDWT, in comparison to the DWT, is that it

includes extra information from the data at coarser scales, since no decimation step

is carried out. Any information contained in the odd-indexed elements is included

in the transform and not discarded, therefore each level of the transform will have

coefficients for all locations k ∈ {0, . . . , T − 1}. In addition to this, the NDWT is

translation-invariant and so is not affected by the choice of origin of the input data.

An example of the NDWT applied to a time series can be found in Figure 2.1.4,

where the time series considered are the same as those from Figure 2.1.3. The

translation-invariance property of the NDWT can be seen from Figures 2.1.4(c) and

2.1.4(d), a unit shift in the data has resulted in a shift in the wavelet coefficients

at each level. It can also be seen that the NDWT provides more information than

the DWT as we have T = 2J wavelet coefficients at each level in this case rather

than the decreasing number shown in Figures 2.1.3(c) and 2.1.3(d). However it must

be noted that the transform is overcomplete and therefore is not orthogonal. As a
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consequence of this, the NDWT does not have a unique inverse and so the algorithm

is not easily invertible. A number of approaches have been developed for inverting

the NDWT including the Average Basis method of Coifman and Donoho (1995) or

using the algorithm of Coifman and Wickerhauser (1992) to select a best basis and

reconstructing the signal from this.

(a) (b)

(c) (d)

Figure 2.1.4: Example of the translation-invariance of the NDWT; (a) shows the

original data whilst (b) shows the data rotated by a unit shift. Figures (c) and (d)

depict the Haar NDWT for the original and shifted data respectively.

In addition to the DWT and NDWT, there exists a range of other wavelet trans-

forms within the literature; we include a brief discussion of a few examples for com-

pleteness. One such example is the Maximal Overlap Discrete Wavelet Transform

(MODWT) which has the same translation-invariance property of the NDWT whilst
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relaxing the restriction that the input data must be dyadic length, see Percival and

Walden (2006) for a complete description. Another example is the wavelet packet

transform of Coifman and Wickerhauser (1992). This is a generalization of the dis-

crete transforms discussed above in which the low and high-pass filters are applied

to both the smooth and detail coefficients and these are then carried forward to the

next level of the transform. As with the NDWT, if all of the wavelet packets are

included in the decomposition then it can be seen that this is an overcomplete trans-

form. However Coifman and Wickerhauser (1992) proposed the best basis algorithm

to select which packets are best for representing the series and forming an orthogo-

nal transform. Finally, the lifting scheme, introduced in Sweldens (1996, 1998), can

be used to produce a multi-scale decomposition of signals observed on an irregularly

spaced grid or containing missing data in a computationally efficient manner.

2.2 Time Series Analysis

We now turn our attention to some key time series analysis concepts relevant for this

thesis. A time series is a collection of observations of a process made sequentially

through time. These measurements can either be taken continuously through time or

at discrete, successive time points. Within this thesis, we focus on discrete time series

{xt}t∈N. A comprehensive overview of time series analysis concepts can be found

in Shumway and Stoffer (2000) and Chatfield (2004). Below we briefly review the

concept of time series stationarity before concentrating on popular time series models

for both the stationary and nonstationary setting.
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One of the most widely covered topics within time series analysis is that of sta-

tionarity, in particular stationary time series modelling. Informally, one can consider

a stationary time series to be one whose statistical properties do not change over time.

More specifically, following Shumway and Stoffer (2000), a time series is said to be

strictly stationary if the probabilistic behaviour of every subset of values

{xt1 , xt2 , . . . , xtk}

is the same as that of the time shifted subset

{xt1+h, xt2+h, . . . , xtk+h}.

This can be expressed as,

P (xt1 ≤ c1, . . . , xtk ≤ ck) = P (xt1+h ≤ c1, . . . , xtk+h ≤ ck)

for all k = 1, 2, . . . , all time points t1, t2, . . . , tk, all time shifts h = 0,±1,±2, . . . , and

all constants c1, c2, . . . , ck.

In practice, these strict assumptions of stationarity can often be too restrictive

and so we consider an alternative; that of second order stationarity. A process is said

to be second order stationary if it has constant mean and the covariance between

observations depends only on the lag between them and not on time, in other words

E[xt] = µ, and γt(τ) = cov(xt, xt+τ ) = κτ .

For the remainder of this thesis, the use of the term stationary time series will refer

to second order stationary time series. In addition, we assume that all of the time

series considered throughout this thesis are zero-mean processes. The problem of
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modelling stationary time series and efficiently capturing their dependence structure is

an important one, we will now review some popular time series models in Section 2.2.1.

2.2.1 Stationary time series modelling

There are many existing stationary time series models within the literature that incor-

porate some degree of changing dependence; some focus on modelling the behaviour

of the series in the time domain whereas others concentrate on the frequency domain.

Stationary processes in time domain

Popular approaches to modelling univariate stationary processes in the time domain

include the moving average processes and the autoregressive processes, introduced

in Yule (1927). A moving average process of order q, denoted MA(q), is a linear

combination of the current innovation term and the q most recent innovations. The

tth observation of the process takes the form

Xt = εt + θ1εt−1 + . . .+ θqεt−q (2.2.1)

where εt are iid white noise processes with variance σ2 for all t ∈ N and {θt}t∈{1,...,q}

is the set of MA coefficients.

In a similar way, an autoregressive process of order p is a linear combination of

the current innovation term and the p most recent observations. The tth observation

of the process takes the form

Xt = φ1Xt−1 + φ2Xt−2 + . . .+ φpXt−p + εt (2.2.2)
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where again εt are iid white noise processes with variance σ2 and the φi are the model

parameters with φp 6= 0 for an order p process.

Whittle (1951) combined the MA and AR processes to form the autoregressive

moving average (ARMA) processes. The tth observation of an ARMA(p, q) process is

given by

Xt = φ1Xt−1 + φ2Xt−2 + . . .+ φpXt−p + εt + θ1εt−1 + . . .+ θqεt−q (2.2.3)

where p and q are the AR and MA orders respectively and ε is white noise with

variance σ2.

For a stationary time series, the autocorrelation and partial autocorrelation func-

tions can be used to estimate the values of p and q to be used in the ARMA model. The

Box-Jenkins methodology is commonly used to fit the stationary time series model

and estimate the AR and MA model parameters, further details on this method can

be found in Chatfield (2004) and Box et al. (2015).

All of the models described above are univariate and could be applied to individual

components of a multivariate time series however this would not account for any

dependencies between the components. For this reason, multivariate extensions of

the above models have been proposed in the literature. By way of introduction, we

briefly outline the vector autoregressive moving average processes. Interested readers

can find further details in Tiao and Tsay (1989) and Lütkepohl (2007).

Similar to the ARMA(p, q) process defined in equation (2.2.3), a vector autoregres-

sive moving average (VARMA) model can be used to capture multivariate dependence

where the current observation is a linear combination of past realisations and inno-
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vations. The tth observation of an m-dimensional VARMA(p, q) process Xt takes the

form

Xt = A1Xt−1 + . . .+ ApXt−p + Zt +M1Zt−1 + . . .+MqZt−q (2.2.4)

where {Al}l∈1,...,p and {Ml}l∈1,...,q are (m × m) matrices of AR and MA coefficients

respectively which capture the temporal dependence of the multivariate time series.

In this case, Zt is a (m× 1) innovation vector with mean 0 and covariance matrix Σ.

Stationary processes in frequency domain

Within the frequency domain, the Fourier basis has been used to construct represen-

tations of stationary univariate processes, see Priestley (1981) for a comprehensive

description.

A zero-mean stationary stochastic process Xt can be represented in the following

way within the Fourier setting

Xt =

∫ π

−π
A(ω)exp(iωt)dξ(ω) for t ∈ Z and ω ∈ [−π, π]. (2.2.5)

Here, A(ω) is the amplitude of the process, exp(iωt) is the oscillation and dξ(ω) is

an orthonormal increments process. The spectrum of a process provides information

on the power of the process at a given frequency. More precisely, for a time series of

length T , the spectrum at frequency ω of a stationary process X is given by

fX(ω) = T

∞∑
τ=−∞

γ(τ) exp(−iωτT ) (2.2.6)

where γ(τ) = cov(Xt, Xt+τ ). The covariance of the process can also be expressed in
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terms of the spectrum in the following way

γ(τ) =
1

T

∫
fX(ω) exp(iωτT )dω. (2.2.7)

2.2.2 Nonstationary time series modelling

In practice, many of the time series observed from industrial and other applications

are nonstationary. I.e. their second order structure evolves over time. When the

stationarity assumptions no longer hold, the previously described models should not

be applied in their standard forms because poor estimates of the model parameters will

be produced and the nonstationarity will not be accurately captured. Consequently,

further thought is required to model the changing second order behaviour. One way to

achieve this would be to adapt the ARMA framework to allow the model coefficients

to change over time, see Subba Rao (1970) and Grenier (1983) for details on how to

estimate these coefficients. In this section, we review some more recent approaches to

modelling nonstationary time series using a variety of basis functions, including the

Locally Stationary Fourier processes and the Smooth Localized Exponential (SLEX)

model.

Locally Stationary Fourier processes

The problem of modelling nonstationary behaviour using a Fourier representation

dates back to the work of Priestley (1965), through the concept of an evolutionary

spectra. We describe here the Locally Stationary Fourier (LSF) processes as detailed

in Dahlhaus (1997). Within this LSF framework, a zero-mean nonstationary series
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{Xt,T}T−1t=0 can be represented as follows

Xt,T =

∫ π

−π
A0
t,T (ω)exp(iωt)dξ(ω) (2.2.8)

where {exp(iωt)}ω is a set of harmonics and A0
t,T (ω) is the transfer function. A number

of smoothness conditions are imposed on A0
t,T (ω) to ensure that the amplitude is not

too irregular over time. Further details on these conditions can be found in Definition

2.1 of Dahlhaus (1997). The representation in equation (2.2.8) assumes that the series

is locally stationary, that is, if we observed the series at sufficiently small intervals

then it would appear stationary.

Within the LSF framework, Dahlhaus (1997) introduced the concept of rescaled

time. In other words, rather than observing a time series and the amplitude over a

grid t ∈ {1, . . . , T}, instead observe them on the interval u = t/T ∈ [0, 1]. In this

setting, increasing the number of observations T corresponds to observing the series

on a finer grid. This mathematical construct is important, as it enables us to establish

theoretical guarantees about the behaviour of LSF estimates.

Dahlhaus (2000) presents the multivariate generalization of the univariate local

stationarity described above. It is shown that there exists a locally stationary repre-

sentation analogous to that in equation (2.2.8) for Gaussian multivariate series and

time-varying MA(∞) processes. For a d-dimensional series, the univariate transfer

function is replaced with a (d×d) transfer function matrix A0 where smoothness con-

ditions are imposed on each entry A0
ab to control the evolution of the amplitude (for

a, b = 1, . . . , d). A complete description of these conditions can be found in Definition

2.1 of Dahlhaus (2000).
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Smooth Localized Exponential (SLEX) model

The LSF framework is by no means the only representation of a locally stationary

time series. For example, Ombao et al. (2002) build on the Locally Stationary Fourier

model of Dahlhaus (1997) to provide an alternative locally stationary representation

of a nonstationary process. Within the time series literature, windowed or tapered

Fourier exponentials have traditionally been used to model and analyse nonstationary

processes (Daubechies, 1992). These functions take the form

φF (u) = Ψ(u)exp(i2πωu) (2.2.9)

where Ψ is a taper with compact support and ω ∈ (− 1
2
, 1
2
]. The main drawback associ-

ated with the windowed Fourier exponentials is that, whilst they are localized in time,

they are not necessarily orthogonal (Wickerhauser, 1994). Ombao et al. (2002) replace

the set of Fourier complex exponential basis functions within the Locally Stationary

Fourier representation of equation (2.2.8) by the Smooth Localized Complex Expo-

nential (SLEX) basis functions in order to overcome this problem. Their approach

preserves the orthogonality of the basis functions through the use of a projection op-

erator, rather than applying a single taper. This projection operator has the same

effect as applying two smooth and compactly supported windows to the Fourier basis

functions.

The nonstationary time series is segmented dyadically into stationary blocks,

where neighbouring blocks are allowed to overlap by some small amount ε. A SLEX

basis vector defined on block S with support {α0 − ε, . . . , α0, . . . , α1 − 1, α1 − 1 + ε}
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has elements {φS,ωk
(t)} where

φS,ωk
(t) = φωk

(
t− α0

|S|

)

= Ψ+

(
t− α0

|S|

)
exp(i2πωk(t− α0)) + Ψ−

(
t− α0

|S|

)
exp(− i2πωk(t− α0))

(2.2.10)

where ωk =
k

|S|
and k = −|S|

2
+ 1, . . . ,

|S|
2
. A complete description of the locally

stationary SLEX model can be found in Ombao et al. (2002), including a description

of how to select the best SLEX basis for the particular time series.

A multivariate extension of the SLEX model was introduced by Ombao et al.

(2005), in which the scalar transfer functions used within the locally stationary uni-

variate representation are again replaced by (d×d) transfer function matrices defined

on particular blocks. In addition, the cost function used to determine the best SLEX

model for the time series is modified to take into account auto and cross-correlation

information from all channels.

2.3 Wavelets in Time series

The various methods for modelling nonstationary time series through locally station-

ary representations, discussed in Section 2.2.2, suffer from a number of drawbacks.

For example, the windowed Fourier exponentials used to model nonstationary time

series need to be carefully selected to accurately reflect the behaviour of the series.

An automatic approach for determining these windows based on the observed time

series has been developed but can be computationally intensive to implement. On



CHAPTER 2. LITERATURE REVIEW 29

the other hand, whilst the SLEX model is computationally efficient, the requirement

that the stationary blocks that segment the time series must be of dyadic length can

be restrictive. In this section, we discuss an alternative model that is built on non-

decimated wavelets, called the Locally Stationary Wavelet model. We then discuss

the multivariate generalization, the Multivariate Locally Stationary Wavelet model,

which is used within the time series classification and imputation methods outlined

in Chapter 3 and 4 respectively.

2.3.1 Locally Stationary Wavelet model

The Locally Stationary Wavelet (LSW) processes, introduced by Nason et al. (2000),

can be used to model a nonstationary time series with changing second order structure.

The model has as its building blocks the discrete non-decimated wavelets which are

compactly supported and localized in time and scale. A LSW process {Xt,T}t=0,...,T−1,

T = 2J ≥ 1 is formally defined as follows

Xt,T =
∞∑
j=1

∑
k

Wj(k/T )ψjk(t)ξjk. (2.3.1)

Here, {ψjk(t)}jk is a collection of discrete non-decimated wavelets, ξjk is a random or-

thonormal increments sequence and {Wj(k/T )} is a set of amplitudes. Consequently,

the time series is modelled as the sum of a collection of non-decimated wavelets

{ψjk(t)}jk (oscillations) which have random amplitudes {Wj(k/T )ξjk}.

The quantities in equation (2.3.1) must satisfy a number of assumptions in order

to ensure that the LSW process has zero mean, does not oscillate too rapidly and

the random orthonormal increments sequence is uncorrelated. Following Nason et al.
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(2000), these assumptions are

1. E(ξjk) = 0 for all j and k.

2. cov(ξjk, ξlm) = δjlδkm, where δjk is the Kronecker delta.

3. There exists a Lipschitz continuous function Wj(z) for each j ≥ 1, z ∈ (0, 1)

which satisfies the following properties:

(a)
∑
j

|Wj(z)|2<∞ uniformly in z ∈ (0, 1),

(b) The Lipschitz constants Lj are uniformly bounded in j and

∑
j

2jLj <∞.

(c) There exists a sequence of constants Cj such that for each T

sup
k

∣∣∣∣wj,k;T −Wj

(
k

T

)∣∣∣∣ ≤ Cj
T

where for each j = 1, . . . , J(T ) = log2(T ) the supremum is over k =

0, 1, . . . , T − 1, and where {Cj} fulfils

∑
j

Cj <∞.

The first assumption ensures that the LSW process has mean zero and the second

ensures that the orthonormal increments sequence is uncorrelated. The third as-

sumption controls how the amplitudes change over time, with the amplitudes wj,k:T

behaving similarly to some transfer function Wj(z), which in turn is controlled so that

it does not oscillate too rapidly.

With the basic model framework now in place, we proceed to consider some of

the key measures associated with the LSW framework. The first of these is the
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evolutionary wavelet spectrum (EWS). The EWS provides information about the

power of the process at scale j and location z where z = k
T

is the rescaled time. This

has the form

Sj(z) = |Wj(z)|2 (2.3.2)

for scale j and rescaled time z. As in the Fourier setting, Nason et al. (2000) show that

the autocovariance of function of a series can be written in terms of the EWS, similarly

to equation (2.2.7). The local autocovariance (LACV) function gives information on

the covariance of an LSW process around a location z = k/T ∈ (0, 1). The LACV

can be written as

c(z, τ) = cov(X[zT ], X[zT ]−τ ) =
∞∑
j=1

Sj(z)Ψj(τ) (2.3.3)

where the autocorrelation wavelets Ψj(τ) are given by

Ψj(τ) =
∑
k

ψjk(0)ψjk(τ). (2.3.4)

Estimation of the EWS

The first step towards estimating the EWS is to calculate the empirical wavelet coef-

ficients of Xt,T , which are defined to be

dj,k =
T−1∑
t=0

Xt,Tψjk(t). (2.3.5)

The raw wavelet periodogram of a LSW process Xt,T is then given by

Ij,k = |dj,k|2. (2.3.6)
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Nason et al. (2000) show that the (asymptotic) mean and variance of the raw wavelet

periodogram have the form

E[Ij,k] =
∑
l

Aj,lSl(z) +O(T−1), (2.3.7)

var[Ij,k] = 2
{∑

l

Aj,lSl(z)
}2

+O
(

2j

T

)
. (2.3.8)

Note that Aj,l refers to the (j, l) entry of the inner product matrix A of the autocor-

relation wavelets, defined by

Aj` = 〈Ψj,Ψ`〉 =
∑
τ

Ψj(τ)Ψ`(τ) (2.3.9)

where Ψ are the autocorrelation wavelets as defined in equation (2.3.4).

It can be seen from equation (2.3.7) and (2.3.8) that the raw wavelet periodogram

is an asymptotically biased and inconsistent estimator of the EWS. Nason et al.

(2000) propose smoothing the raw wavelet periodogram before correcting by A−1 to

obtain a consistent and unbiased estimator. Smoothing the raw wavelet periodogram

can be done in a number of ways, Nason et al. (2000) use the translation-invariant

denoising of Coifman and Donoho (1995) but alternative methods can be found in

Fryzlewicz and Nason (2006) and Van Bellegem and Von Sachs (2008).

We demonstrate the effect of correcting the raw wavelet periodogram through

an example. We consider an EWS containing varying power at finer scales, as in

Figure 2.3.1(a). A realisation of this process can be seen in Figure 2.3.1(b), the effect

of the changing power regimes in the EWS can clearly be seen in the simulated series.

We simulate 100 realisations from the EWS shown in Figure 2.3.1(a) before calculating

the raw and corrected wavelet periodogram for each realisation. Figure 2.3.1(c) shows
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(a) An example of an EWS (b) One realisation of this process

(c) Mean of 100 raw periodograms (d) Mean of 100 corrected periodograms

Figure 2.3.1: Example showing the effect of correcting the raw wavelet periodograms.

the mean of the 100 raw wavelet periodograms, from this we can see the bias in the

raw periodogram as power has leaked into surrounding scales. Correcting the raw

wavelet periodogram removes most of this bias, Figure 2.3.1(d) shows the mean of

the 100 corrected wavelet periodograms. We can see that most of the power leakage

has disappeared and the corrected periodogram is much closer to the true EWS.

2.3.2 Multivariate Locally Stationary Wavelet framework

The Multivariate Locally Stationary Wavelet (mvLSW) framework, developed by Park

et al. (2014), is a multivariate extension of the LSW processes that can be used

to model multivariate time series with an evolving dependence structure between
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components of the series. This framework allows each individual component of the

time series to exhibit nonstationary behaviour, which is captured by the model in

addition to the cross-dependence structure between components. A similar model is

developed in Cho and Fryzlewicz (2015) however this is restricted to the context of

changepoint detection of piecewise stationary signals.

Suppose that we have a P -variate input vector of the form Xt,T = {X(1)
t,T , X

(2)
t,T , . . . ,

X
(P )
t,T }>. Each element X

(i)
t,T (for i = 1, 2, . . . , P ) is a univariate component of the

signal, known as a channel. The transfer function, Wj(k/T ), from the univariate case

is replaced by a P × P transfer matrix of functions, denoted Vj(k/T ). The random

orthonormal increments sequence, ξjk, is replaced by a set of random vectors of the

form {zj,k} =
{

[z
(1)
j,k , z

(2)
j,k , . . . , z

(P )
j,k ]>

}
.

Following Park et al. (2014), a P -variate locally stationary wavelet process

{Xt,T}t=0,1,...,T−1, T = 2J ≥ 1 has the following representation

Xt,T =
∞∑
j=1

∑
k

Vj(k/T )ψj,t−kzj,k, (2.3.10)

where Vj(k/T ) is the transfer function matrix and {ψj,t−k}j,k is a set of discrete non-

decimated wavelets. There are a number of conditions required of the quantities in

equation (2.3.10) analogous to those for the univariate LSW case. Specifically, the

random vectors, zj,k, are uncorrelated, have mean vector 0 and variance-covariance

matrix equal to the P × P identity matrix. The lower-triangular transfer function

matrix must be made up of Lipschitz continuous functions with Lipschitz constants

Lj that satisfy ∑
j

2jL
(p,q)
j <∞.
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The time-dependent transfer function matrix, Vj(k/T ), encapsulates both the be-

haviour of the individual channels and the cross-channel dependence over time. The

spectral structure of the multivariate time series is important as this provides informa-

tion on the time-scale decomposition of power within the series; the transfer function

matrix is key to determining this structure. In particular, given a multivariate LSW

signal, Xt,T , with transfer function matrix, Vj(k/T ), the local wavelet spectral (LWS)

matrix is given by

Sj(z) = Vj(z)Vj(z)> (2.3.11)

where j is the scale and z = k
T

is the rescaled time. As in the univariate setting,

the local auto and cross-covariance of a multivariate LSW series can be expressed

in terms of the LWS matrix. Following Park et al. (2014), let c(p,p)(z, τ) denote the

local autocovariance of channel p at lag τ and let c(p,q)(z, τ) denote the local cross-

covariance between channels p and q. The local auto and cross-covariance functions

are then defined to be

c(p,p)(z, τ) =
∞∑
j=1

S
(p,p)
j (z)Ψj(τ), (2.3.12)

c(p,q)(z, τ) =
∞∑
j=1

S
(p,q)
j (z)Ψj(τ). (2.3.13)

Here Ψ are the discrete autocorrelation wavelets.

The LWS matrix is the multivariate analogue of the Evolutionary Wavelet Spec-

trum, defined in equation (2.3.2), and gives a measure of the local contribution to

both the variance of the channels and the cross-covariance between channels made

at a particular scale, j, and time, z. The diagonal elements of the matrix contain

the spectra of the individual channels whereas the off-diagonal elements consist of
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the cross-spectra between channels. Using the notation of Park et al. (2014), we de-

note the spectra of the individual channel p by S
(p,p)
j and the cross-spectra between

channels p and q as S
(p,q)
j .

A key strength of the mvLSW framework is that it provides a way to model time-

varying dependence structure between channels. The concept of wavelet coherence

was originally introduced in the bivariate setting in Sanderson et al. (2010), Park

et al. (2014) extend this to the multivariate setting using the mvLSW framework.

The wavelet coherence is defined to be the linear relationship between two channels,

including any indirect links between them that depend on other channels of the signal.

The wavelet coherence matrix, ρj(z), at scale, j, and rescaled time, z, can be defined

in terms of the local wavelet spectral matrix and has the form

ρj(z) = Dj(z)Sj(z)Dj(z), (2.3.14)

where, Sj(z), is the local wavelet spectral matrix and Dj(z) is a diagonal matrix with

elements S
(p,p)
j (z)(−1/2). Individual elements of the coherence matrix have the form

ρ
(p,q)
j (z) =

S
(p,q)
j (z)√

S
(p,p)
j (z)S

(q,q)
j (z)

, (2.3.15)

where ρ
(p,q)
j (z) is the coherence between channel p and q for scale j, at rescaled time

z ∈ (0, 1). The coherence takes a value between −1 and 1 where a value of ±1

shows a strong positive/negative linear relationship between channels at that scale

and time. On the other hand, a value close to 0 indicates that there is very little

linear dependence between channels.

Strong coherence between two channels may not necessarily mean that they are

directly linked, this dependence could be driven through a third channel. To overcome
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this, Park et al. (2014) introduce the concept of wavelet partial coherence which is a

measure of the coherence between two channels after removing the effects of all other

channels. The wavelet partial coherence matrix at scale, j, and rescaled time, z, is

defined to be

Γj(z) = −Hj(z)Gj(z)Hj(z) (2.3.16)

where Gj(z) = Sj(z)−1 and Hj(z) is a diagonal matrix with entries G
(p,p)
j (z)−1/2.

Estimation of the LWS

We can estimate the spectral properties of a multivariate signal by first calculating

the empirical wavelet coefficients for each channel of the signal, and then using this to

obtain the raw wavelet periodogram. More formally, the empirical wavelet coefficient

vector, dj,k =
{
d
(1)
j,k , d

(2)
j,k , . . . , d

(P )
j,k

}>
, is given by

dj,k =
T−1∑
t=0

Xtψj,k(t). (2.3.17)

This can then be used to obtain the raw wavelet periodogram matrix, Ij,k, which has

the following form

Ij,k = dj,kd
>
j,k. (2.3.18)

As in the univariate case, Park et al. (2014) demonstrate that the raw wavelet

periodogram matrix is an asymptotically biased and inconsistent estimator of the
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LWS. In particular, they show that

E[Ij,k] =
J∑
l=1

Aj,lSl(k/T ) +O(T−1), (2.3.19)

var(I
(p,q)
j,k ) =

J∑
l=1

Aj,lS
(p,p)
l (k/T )

J∑
l=1

Aj,lS
(q,q)
l (k/T )

+

(
J∑
l=1

Aj,lS
(p,q)
l (k/T )

)2

+O(22j/T ).

(2.3.20)

To account for this, the raw wavelet periodogram must be smoothed and cor-

rected in some way. Park et al. (2014) propose smoothing the periodogram using a

rectangular kernel smoother with window length 2M + 1 to obtain the estimator

Ĩj,k =
1

2M + 1

M∑
m=−M

Ij,k+m. (2.3.21)

The bias of the smoothed wavelet periodogram Ĩ can be corrected using the inverse

of the inner product matrix in order to give a consistent and unbiased estimate of the

LWS matrix Ŝ with entries given by

Ŝj,k =
J∑
l=1

A−1jl Ĩl,k. (2.3.22)

The wavelet coherence matrix can then easily be estimated by substituting Ŝ into

equation (2.3.14).

2.4 Classification of nonstationary time series

In recent years, the problem of classifying time series has been covered widely in

existing literature. See Bagnall et al. (2017) for a comprehensive review. In this thesis,

we restrict our attention to the classification of nonstationary time series. Below, we
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briefly review some approaches to do this both in the univariate and multivariate

contexts.

2.4.1 Static classification

We first consider static classification approaches in which an entire nonstationary

signal is assigned to one particular class. In this situation, the class membership

of the test signal is not permitted to vary over time. We will summarise a number

of classification methods which are based on the nonstationary models described in

Section 2.2.2 including the SLEX-based method of Huang et al. (2004) and the LSW-

based approaches of Fryzlewicz and Ombao (2009) and Krzemieniewska et al. (2014).

The classification method introduced in Huang et al. (2004) uses the SLEX model

to classify an unseen test signal using information from a set of (univariate) training

signals of known class membership. The first step of the algorithm involves determin-

ing the best basis representation of each training signal from the SLEX library before

estimating the SLEX periodograms based on these chosen representations. These pe-

riodograms are then averaged over the signals known to belong to each class to obtain

estimates of the spectral information. An unseen time series is then assigned to a

class, Πc, if the Kullback-Liebler divergence between its estimated spectrum and the

spectrum of Πc is smaller than that between the estimated spectrum and the spectra

of any other class.

Whilst the approach of Huang et al. (2004) is computationally efficient and allows

for accurate classification of (an entire) nonstationary time series, it suffers from the

constraint of dyadic segmentation due to the use of the SLEX model. Fryzlewicz and
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Ombao (2009) proposed an LSW-based alternative that overcomes this restriction.

Again, the first step of this approach involves calculating the empirical wavelet spec-

trum, Lj,k =
∑

i(A
−1)i,jIi,k, where Ii,k is defined as in equation (2.3.6). The empirical

wavelet spectra are then averaged over the training signals known to belong to class c

in order to estimate the evolutionary wavelet spectrum, denoted Ŝ
(c)
j (z). The discrim-

inating set,M, is then determined by choosing a specified proportion of the timescale

indices (j, k) that maximise the divergence index

∆(j, k) =
G∑
g=1

[
Ŝ
(g)
j (k/T )− 1

G

G∑
h=1

Ŝ
(h)
j (k/T )

]2
. (2.4.1)

In order to classify a time series, Fryzlewicz and Ombao (2009) first estimate its

empirical wavelet spectrum, Lj,k, and then calculate the following squared distances

for each class g

Dg =
∑

(j,k)∈M

(Lj,k − Ŝ(g)
j (k/T ))2. (2.4.2)

The time series is then assigned to the class g that minimises the above distance

measure.

Whilst this method works well when each of the class generators produce spectra

with equal variability across realizations, when this is not the case choosing the most

divergent coefficients may not be the best approach for classification. Krzemieniewska

et al. (2014) proposed an extension to the work of Fryzlewicz and Ombao (2009) that

accounts for within-class variation between signals. As in Fryzlewicz and Ombao

(2009), the empirical wavelet spectra for each class is estimated by averaging the

periodograms for the time series replications known to belong to that class. Krzemie-

niewska et al. (2014) then estimate the variability at different scales and locations σ2
j,k
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in the following way

σ2
j,k =

1∑c
g=1Ng

( c∑
g=1

Ng∑
n=1

(Lg,nj,k − Ŝ
(g)
j (k/T ))2

)
. (2.4.3)

The subset of discriminating coefficients, M, is chosen by selecting pairs (j, k) that

maximise the alternative divergence index

∆̃(j, k) = ∆(j, k)/σ2
j,k. (2.4.4)

Here, ∆(j, k) is defined in equation (2.4.1). The modified distance for an observed

signal is given by

D̃g =
∑

(j,k)∈M

(Lj,k − Ŝ(g)
j (k/T ))2

σ2
j,k

. (2.4.5)

The signal is then assigned to the class g for which D̃g is smallest.

2.4.2 Dynamic classification

In practice, classifying a signal entirely into one class is not appropriate for many

real systems where the nonstationarity of the series may be due to class switching.

In this case, methods that allow the class membership of the signal to change over

time are preferable. Park et al. (2018) introduce a dynamic classification approach

that is based on the mvLSW model, using information on the within and cross-channel

dependence to classify a multivariate, nonstationary signal. Given a set of multivariate

training signals of known class membership, denoted {Y (i)
t } for i ∈ {1, 2, . . . , Ni}, the

LWS matrix for each one can be estimated using the raw wavelet periodogram as

in equation (2.3.22). The wavelet coherence matrix for each training signal, ρj,k;Y (t) ,

can be estimated by substituting the LWS matrix into equation (2.3.14). Park et al.



CHAPTER 2. LITERATURE REVIEW 42

(2018) apply a Fisher z transform to the coherence estimates in order to ensure that

they can be approximated by a Gaussian distribution. For a class c, the transformed

coherence ξ
(c)
j is given by

ξ
(c)
j = tanh−1ρ

(c)
j . (2.4.6)

The mean and variance of the transformed coherence for class c can be estimated using

the transformed coherence for the training signals that are known to belong to that

particular class. In a similar way to the static classification method of Krzemieniewska

et al. (2014), these mean and variance estimates are used to determine the subset

of coefficients that show the largest difference between the classes in terms of the

transformed coherence. In the multivariate setting, the subsetM consists of the scale

and channel indices, (j, p, q), for p < q that maximise the discrepancy measure ∆
(p,q)
j

which is given by

∆
(p,q)
j =

Nc∑
c=1

Nc∑
g=c+1

∣∣∣∣ ξ
(p,q)(c)
j − ξ(p,q)(g)j√

var(ξ
(p,q)(c)
j ) + var(ξ

(p,q)(g)
j )

∣∣∣∣. (2.4.7)

As the class membership of the observed signal is allowed to change over time, this

approach estimates the probability that the signal belongs to a particular class at a

given time. Park et al. (2018) first estimate the transformed coherence for the signal

Xt, denoted ξ̂j,k;X . Bayes’ theorem is then used to estimate the probability that the

signal belongs to class c at a particular time given prior information in the following

way

Pr
[
C(k) = c|ξ̂j,k;X

]
∝ Pr [C(k) = c]L(ξ̂j,k;X |ξj(k/T ) = ξ

(c)
j ∀ j) (2.4.8)

where L(θ|x) is the likelihood, C(k) represents the class assignment of the signal at

rescaled time k and Pr [C(k) = c] is the prior probability that the signal is in class c
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at rescaled time k. This is typically assigned the probability of 1
Nc

provided that no

initial information is known.



Chapter 3

Dynamic detection of anomalous

regions within distributed acoustic

sensing data streams using locally

stationary wavelet time series

3.1 Introduction

The ability to accurately analyse geoscience data at, or close to, real time is becoming

increasingly important. For example, within the oil and gas sector this need can

arise as a consequence of (i) the sheer volume of data now being collected and (ii)

operational considerations. It is this setting that we consider in this article, seeking

to enable the rapid identification of certain anomalous features within Distributed

Acoustic Sensing data obtained from an oil producing facility. Specifically, we seek to

44
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build on recent work within the nonstationary time series community to develop an

approach that permits the online monitoring of these complex signals.

The technology used to generate the data considered in this article, Distributed

Acoustic Sensing (DAS), involves the use of a fibre-optic cable as a sensor in which the

entire length of the fibre is used to measure acoustic or thermal disturbances. DAS

originates from the defence industry where it is commonly used in security and border

monitoring (Owen et al., 2012). Recently, the technology has been applied within the

oil and gas industry, for example in pipeline monitoring and management (Williams,

2012; Mateeva et al., 2014). The use of DAS to monitor production volumes and

composition within a well requires the installation of a fibre-optic cable along the

length of the well combined with an interrogator unit on the surface (Paleja et al.,

2015). This unit sends light pulses down the cable and processes the back-scattered

light. The installation of such technology has become popular as it is can be a cost

effective way to obtain continuous, real-time and high-resolution information.

When monitoring the behaviour of wells it is important to be able to detect unusual

occurrences, including potential corruptions of the data. Striping is one particular

form of corruption that can have a particularly deleterious effect, rendering data

potentially unusable in a specific time region. Stripes are characterised by sudden,

and distinctive changes in the structure of the signal over time, see Mateeva et al.

(2014) and Ellmauthaler et al. (2017) for examples. These features can be present

simultaneously across all channels or only apparent across a subset of channels, for

example from the surface to a set depth within the well. Crucially, the occurrence

of stripes simultaneously at different locations indicates that these features are not
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physical. Instead stripes can occur for a number of reasons, including a disturbance

of the fibre-optic cable near the unit, or problems with the electronics due to the high

sampling rate.

Visually, stripes can manifest themselves in a variety ways. Some are visually

obvious within the DAS data, such as the stripe that occurs at around 4000ms in

Figure 3.1.1(a). Other occurrences can be more subtle, and therefore more challenging

to detect. For example, the stripe could be a change in the second-order structure.

Critically such features can make it difficult to carry out further analysis of the data,

such as flow rate analysis. For this reason, there is significant interest in being able

to detect regions of striping as soon as they occur, so that they can be removed

whilst keeping as much of the original signal intact as possible. It is this challenge

of dynamically detecting striping regions that motivates the work presented in this

article.

There exist a variety of techniques for the classification of time series in the sta-

tistical and machine learning literature. An exhaustive review is beyond the scope of

this article, but popular classification methods include hidden Markov models (HMM)

(see e.g. Rabiner (1989); Ephraim and Merhav (2002); Cappé et al. (2009)); support

vector machines (Cortes and Vapnik, 1995; Muller et al., 2001; Kampouraki et al.,

2009); Gaussian mixture models (McLachlan and Peel, 2004; Povinelli et al., 2004;

Kersten, 2014); nearest neighbour classifiers (Zhang et al., 2004; Wei and Keogh, 2006)

and multiscale methods (Chan and Fu, 1999; Mörchen, 2003; Aykroyd et al., 2016) to

name but a few. More recent contributions for large-scale (online) classification in-

clude the MOA machine learning framework (Bifet et al., 2010; Read et al., 2012). For
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(a)

(b)

Figure 3.1.1: Time series plots of DAS amplitude at four different well depths over the

same time period: (a) original series; (b) detrended series. The highlighted regions in

(a) indicate three examples of striping.
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(a)

(b)

Figure 3.1.2: Hidden time-varying coherence structure of the DAS series in Figure

3.1.1 at selected wavelet scales (resolutions): (a) coherence between series 1 and 2;

(b): coherence between series 3 and 4.
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a recent overview of classification in the time series context, see for example Fu (2011).

Dependent on the application being considered, one might adopt various modelling

choices. For example, some classifiers have distinct advantages, such as simplicity of

implementation, speed or suitability for massive online applications. However many,

such as GMM or SVM-based approaches, do not explicitly allow temporal dependence

or are limited to a narrow class of series structure (HMMs), which is seen as crucial

to classification of time series in the majority of realistic settings (see e.g. Bifet et al.

(2013)). Complex hidden dependence structure is typical of the DAS data studied in

this article (see Figure 3.1.2).

Our approach to the dynamic stripe identification problem builds on recent work

within the time series literature. Wavelet approaches to modelling time series have

become very popular in recent years, principally because of their ability to provide

time-localised measures of the spectral content inherent within many contemporary

data (e.g. Killick et al. (2013); Nam et al. (2015); Chau and von Sachs (2016); Nason

et al. (2017)). This locally stationary modelling paradigm is flexible enough to repre-

sent a wide range of nonstationary behaviour and has also been extended to enable

the modelling and estimation of multivariate nonstationary time series structures (e.g.

Sanderson et al. (2010) and Park et al. (2014)). Typically these settings assume that

the data have already been collected, and are available for offline analyses.

The novel contribution in this article is to employ the mvLSW modelling frame-

work of Park et al. (2014) to represent the DAS data, using a moving window ap-

proach, thereby extending previous work to the online dynamic classification setting.

This modelling framework allows us to classify multivariate time series with complex
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dependencies both within and between channels of the series, including those which

exhibit visually subtle changes in behaviour over time. Reusing data calculations al-

lows us to also produce a computationally efficient nondecimated wavelet transform

in the online setting.

This work is organised as follows. In Section 3.2, we describe the proposed online

classification method. Section 3.3 contains a simulation study evaluating the perfor-

mance of the proposed classifier using synthetic data, further justifying the use of

time-varying coherence as a feature for classification. A case study using an acoustic

sensing dataset is then described in Section 3.4, where we discuss the utility of the

proposed classifier as a stripe detection method. Finally, Section 3.5 includes some

concluding remarks.

3.2 Online dynamic classification of multivariate

series

In order to adapt the existing dynamic classification method outlined in Section 2.4.2

to an online setting, we make use of a moving window approach. The use of such a

window encapsulates the constraint in many data streaming applications that there

is only limited data storage and memory with which to perform analysis.

Our online dynamic classification technique proceeds as follows. For a window of

length w = 2J the first step of our algorithm is to calculate the set of discriminative

indices as defined in equation (2.4.7) using a set of training signals of length w.

For reasons of efficiency, the discriminative indices are used in the classification step
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for each window of the data. Although window-specific indices could be used, in

our experience, updating the set of discriminative indices for each window increases

computational complexity without providing significant accuracy improvement. The

dynamic classification method described in Section 2.4.2 is applied to the first window

of data to obtain the probability that the signal belongs to a particular class for the

time points in the window.

Upon arrival of a new data point, the window then shifts by one, and the data

under analysis consists of the old data together with the new data point, but we also

lose the first data point contained in the previous window. The online wavelet trans-

form is then used to efficiently update the wavelet coefficients and the transformed

coherence estimate for the new window. Using the information previously calculated

from the training signals, we can then obtain the probability that the signal belongs

to a particular class for the time points contained in the new window. The algorithm

continues by repeatedly moving the window for each new data point and estimating

the probability of each data point belonging to a class until we reach the end of the

data stream.

During our classification algorithm, we obtain multiple estimates for the probabil-

ity that a signal belongs to a particular class (at each time point) from the different

windows into which a data point falls. For example, for a time series of length T

analysed with a moving window of length w < T , we obtain w estimates for the prob-

abilities of an individual time point t belonging to a given class c, which we denote

p
(c)
t,i for window i.

A question that arises as a result of the iterative approach is how to combine
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the estimates from different windows to obtain an overall probability that the time

point belongs to a particular class, and hence classify the signal. In what follows,

for computational simplicity we use a simple average, but other more sophisticated

combination methods could be used. In other words, our final probability estimates

are given by

p
(c)
t =

1

w

w∑
i=1

p
(c)
t,i for t = 1, 2, . . . , T. (3.2.1)

In some applications, an overall classification of the signal is required rather than

probability estimates. In this case, the class c that has the largest probability p
(c)
t is

assigned to the time point t for all t ∈ {1, 2, . . . , T}.

A summary of our method for estimating the probability that a given multivariate

signal belongs to a particular class c at a particular time is given in Algorithm 1.

3.2.1 Edge Effects

One of the main issues related to the online dynamic classification is the edge effects

generated by the windowing procedure. These can result in sudden peaks in the

probability of the signal belonging to a particular class at the edges of the window.

For example, we consider a time-varying vector autoregressive moving average process

with two different classes defined by the following coefficient matrices

Class 1 : Xt =


−0.3 −0.2 0.3

−0.2 −0.3 0.1

0.3 0.1 0.2

Xt−1 + Zt +


1 −0.6 0.3

−0.6 1 −0.3

0.3 −0.3 1

Zt−1

Class 2 : Xt =


0.4 0.1 −0.2

0.1 0.3 −0.3

−0.2 −0.3 −0.2

Xt−1 + Zt +


1 0.8 0.4

0.8 1 0.1

0.4 0.1 1

Zt−1
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Algorithm 1 Online dynamic classification: Finding the average probability that a

multivariate signal belongs to a particular class over time.

1: Let X be a P -variate signal of length T that we wish to classify using a moving

window of length w.

2: Calculate the set of discriminative indices using a set of P-variate training signals

of length w, whose class assignments are known.

3: Apply dynamic classification method to the first window of data X[ , 1 : w] to

obtain the probability that the signal belongs to a particular class c for the time

points in the window, denoted p
(c)
t,1 for t = 1, 2, . . . , w.

4: Iterate for i in 2 to T − w + 1

(a) Apply the online wavelet transform to the new window of dataX[ , i : i+w−1]

to update the wavelet coefficients.

(b) Update the transformed coherence at the set of discriminative indices using

the wavelet coefficients calculated in the previous step.

(c) Apply dynamic classification method to obtain the probability that the signal

belongs to a particular class for window i, denoted p
(c)
t,i for t = i, i+1, . . . , i+

w − 1.

5: Average probability estimates for each window using (4) to obtain the final

probability that the signal X belongs to a particular class c over time, p
(c)
t for

t = 1, 2, . . . , T .
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where Zt and Zt−1 are zero-mean multivariate normal realisations, distributed with

class-dependent covariances

Σ1 =


3 0 0

0 3 0

0 0 3

 , Σ2 =


1 0 0

0 1 0

0 0 1

 .

We simulate a time series of length 600 from this process, where the signal is in

class 1 for the first 300 timepoints and then switches to class 2 for the remainder of

the series. An example realisation from this process can be found in Figure 3.2.1.

Figure 3.2.1: Realisation of a two class time-varying vector autoregressive moving

average process, where a change in class takes place at time 300.

After applying the online dynamic classification method to this process with a window

length of 256, we generate the probabilities that the signal belongs to each class for

the individual windows. Figure 3.2.2 shows some examples of the features and edge

effects that can arise as part of the classification process. One thing that can be seen

that from Figure 3.2.2 is that, whilst the class change within the signal takes place at

time 300, it can take around 15-20 timepoints for the probabilities to change.
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(a) Probability of belonging to each class for window 75.

(b) Probability of belonging to each class for window 151.

(c) Probability of belonging to each class for window 275.

Figure 3.2.2: Probability of belonging to each class for various windows of data, the

true class change at time 300 is marked in red.
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This can result in some small areas of misclassification around a class change, as

there is a small offset of time before the online dynamic classification method reports

a change in class. In addition, an edge effect can be seen in Figure 3.2.2(b), the proba-

bilities of belonging to each class contain a sudden unexpected change towards the end

of the window. These edge effects are present within a small proportion of windows

across the analysis but this has a negligible effect on the average probabilities that

the signal is in a particular class over time and the corresponding class memberships,

see Figure 3.2.3.

(a) Average probability that the signal belongs to each class over time.

(b) Class membership of the signal over time.

Figure 3.2.3: Average probabilities and class membership of the series over time.

However in situations where these edge effects are more prevalent, averaging the prob-



CHAPTER 3. DYNAMIC DETECTION OF ANOMALOUS REGIONS 57

ability estimates at each time point using equation (3.2.1) may not be the best option.

Alternative methods for obtaining an overall probability estimate could include tak-

ing the median of the quantities in equation (3.2.1) or using a weighted average with

more weight given to the estimates arising from the centre of a window rather than

the edges.

Currently a time point within a series can only be classified after the probability

estimates have been obtained from each window that covers that particular point. Of-

ten the most reliable probability estimates are generated from the centre of the sliding

window which means that potentially a point could be classified using w
2

probablity

estimates rather than the w needed currently. An avenue for future research would

be to investigate this further and determine if points within a time series could be

accurately classified before the sliding window ends.

3.3 Synthetic Data Examples

We now turn to assess the performance of our proposed online dynamic classification

approach. To this end, a simulation study is designed to test the ability of this

wavelet-based appproach to classify data streams exhibiting various characteristics.

More specifically, the study consists of three different scenarios. These scenarios are

chosen to mimic signals arising in practice:

Scenario 1: Signal of length 1024, short time segments of length 100 between changes

in class, nine class changes in total.

Scenario 2: Signal of length 1024, alternating long/short segments of length 300 and
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100 between changes, five class changes in total.

Scenario 3: Signal of length 2048, long segments of length 300 between changes, six

class changes in total.

For all scenarios, the generated series randomly switch classes between time seg-

ments. A window length of 256 is used when implementing the online dynamic clas-

sification method and the training data consists of 10 signals, some of which contain

changes in class. The R packages wavethresh (Nason, 2016) and mvLSW (Taylor

et al., 2017) are used to calculate the wavelet coefficients and transformed coherence

that are used in the online dynamic classification.

Long segments of length 300 between class changes are chosen to ensure that there

is a maximum of one class change in each dynamic classification window. In the situ-

ation where the class changes are reasonably far apart, we expect the online dynamic

classification algorithm to classify the signal well. As a contrast, short segments of

length 100 are also chosen to demonstrate some potential limitations of the method.

In particular, when the signal contains multiple class changes that are close together,

there is a possibility that our approach will misclassify the signals.

For each scenario, we consider a number of examples of generating processes for

the classes in the multivariate series. The first example we examine consists of three

classes where each class is defined by a trivariate normal signal with mean µ = (0, 0, 0)

and differing cross-channel dependence structure. More specifically, the classes are
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defined by the three covariance matrices

Σ(1) =


1 0 0.3

0 1 0.7

0.3 0.7 1

,Σ
(2) =


1 0.6 0.1

0.6 1 −0.4

0.1 −0.4 1

 and Σ(3) =


1 −0.5 −0.2

−0.5 1 0.1

−0.2 0.1 1

 .

Example simulated data for this process using the different class switching scenarios

above are shown in Figure 4.4.1(a).

To investigate the potential of our proposed approach further, we studied an ex-

ample with a time-varying moving average (VMA) process, with three classes defined

by the following coefficient matrices:

Class 1: Xt = Zt +


1 0 0.6

0 1 0.3

0.6 0.3 1

Zt−1 +


1 0.2 0.9

0.2 1 0.5

0.9 0.5 1

Zt−2

Class 2: Xt = Zt +


1 −0.7 −0.3

−0.7 1 0.4

−0.3 0.4 1

Zt−1 +


1 0.9 −0.3

0.9 1 0

−0.3 0 1

Zt−2,

Class 3: Xt = Zt +


1 −0.4 0.2

−0.4 1 −0.6

0.2 −0.6 1

Zt−1 +


1 0.1 −0.5

0.1 1 −0.3

−0.5 −0.3 1

Zt−2,

where Zt, Zt−1 and Zt−2 are IID multivariate Gaussian white noise (see Fig-

ure 4.4.1(b)).

The third example we consider is a vector autoregressive process with intra- and

cross-channel changes in dependence between each class (see Figure 4.4.1(c)). The
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three classes in the example are defined by

Class 1: Xt =


0.2 0.3 0

0.3 0.5 0

0 0 0

Xt−1 +


0.6 −0.1 0

−0.1 −0.3 0

0 0 0

Xt−2 + ε1,

Class 2: Xt =


0 0 0

0 0.4 −0.4

0 −0.4 0.4

Xt−1 +


0 0 0

0 −0.6 0.2

0 0.2 0.3

Xt−2 + ε2,

Class 3: Xt =


−0.1 0 0.4

0 0 0

0.4 0 −0.5

Xt−1 +


0.2 0 −0.2

0 0 0

−0.2 0 −0.3

Xt−2 + ε3,

where the noise vectors εi are zero-mean multivariate normal realisations, distributed

with covariances

Σε1 =


3 0.3 0.9

0.3 3 1.4

0.9 1.4 3

 , Σε2 =


2 1.3 0.4

1.3 1.8 0.3

0.4 0.3 2

 , Σε3 =


5 3.3 2.5

3.3 4.5 2.8

2.5 2.8 3.5

 .

Competitor methods. In the simulation study, we compare our proposed method

with a number of alternative classification techniques. Firstly we consider a Hidden

Markov Model (HMM) approach – a probabalistic model of the joint distribution of

observed variables, together with their “hidden” states (in this setting, classes). Such

methods have previously been used for classification in the literature, see for example
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(a) Scenario 1, multivariate Gaussian series

(b) Scenario 2, vector moving average series

(c) Scenario 3, vector autoregressive series

Figure 3.3.1: Example realisations of generating processes for the different scenarios

used in the simulation study. (a) Short segments of length 100 between class changes;

(b) Alternating long/short segments of length 300 and 100 between changes; (c) Long

segments of length 300 between changes.
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Ainsleigh et al. (2002). In this model, it is assumed that (i) the observed data at a

particular time is independent of all other variables, given its class and (ii) given the

previous class, the class at a time is independent of all other variables (i.e. the changes

in class are Markovian). This means that we assume that the probability of changing

class does not depend on time or previous class membership, which can be an unre-

alistic assumption to make in practice. Furthermore, HMMs can be computationally

intensive to implement especially in multiclass settings, requiring procedures such as

the EM algorithm for tractable model fitting, see e.g. Cappé et al. (2009). An intro-

duction to HMMs and their applications can be found in Zucchini and MacDonald

(2009).

A sequential HMM approach is applied to both the full test signal and its trans-

formed coherence at the set of discriminative indices, using the R package HMM

(Himmelmann, 2010). In both cases, the model is initialized to have equal state prob-

abilities, and then trained using the initial data. When a new data point arrives,

the probabilities of belonging to each state are computed. This process of increasing

the number of data points and computing the probabilities is repeated until we reach

the end of the signal. As with the online dynamic classification approach, multiple

estimates for the probability of belonging to a state at a particular time point are

obtained. This is because each time a data point falls within a window, probabilities

associated to the time point belonging to a particular class are calculated. For each

time point, the estimates are averaged and the overall classification of the signal is

then defined to be the most likely state at each point. We also considered a third

variant of the sequential HMM approach that was applied to each window of the data
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used in the online dynamic classification and the corresponding transformed coher-

ence. However this produced poor results so we omit them from the comparisons

below.

To demonstrate the importance of accounting for the dependence structure within

the test series, we also apply a support vector machine (SVM) classifier to the series,

available in the R package e1071 (Meyer et al., 2015), as well as the mixture modelling

approach from the mclust R package (Fraley et al., 2017) (denoted GMM). These

methods do not explicitly allow temporal dependence in the classification rules, and

so we would expect them to perform poorly in cases where this dependence features

in the test series. Specifically, we used a radial basis kernel for the SVM classifier.

The GMM approach implemented allows for potentially different numbers of mixture

components and covariance structures for each class, with the number of components

chosen with the Bayesian information criterion (BIC). Similar to the HMM method

described above, we show results on the SVM and GMM methods applied to the

transformed coherence measure – the results for the techniques on the raw series per-

formed poorly and so they aren’t reported in the tables. In addition, we compare our

method to the Näıve Bayes (NB) classifier in the RMOA (Wijfells, 2014) suite of

online methods (again using the transformed coherence). This latter technique uses

a Bayesian classification rule similar to that in (2.4.8), and hence provides a useful

comparison to our proposed use of time-varying wavelet coherence in a Bayesian rule.

We also investigated the performance of several of the ensemble classification tech-

niques implemented in the RMOA package, however their performance was similar

to the NB classifier so we omit these results for brevity.
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Training procedure details. The training data for both the online dynamic clas-

sification and the sequential HMM approaches consists of ten signals of length 256.

Of the ten signals, we simulate two each from Class 1, 2 and 3 and the remaining four

signals contain a mixture of all three. For the competitor methods that are applied to

the transformed coherence measure, the training data has a slightly different form. In

this case, the training signals are simulated with class memberships as defined above

but the approaches are trained on the transformed coherences of these signals at the

set of discriminative indices rather than the raw data. For the different scenarios and

generating processes considered, in practice we find that the subset of most discrimi-

native indices tends to consist of the finest scales, i.e. scales 1−3, but that all channel

indices appear to be important.

For each of the scenarios, 100 replications of the test signals are simulated and

three different classification evaluation measures are considered. In particular, the

number of class changes detected is recorded along with the V-measure (Rosenberg

and Hirschberg, 2007) and the true positive detection rate, defined to be the pro-

portion of each signal that is correctly classified. A change is detected if the signal

switches class and this change lasts for longer than four time points.

The V-measure assesses the quality of a certain segmentation (given the truth)

and is measured on the [0, 1] scale where a value of 1 represents perfect segmentation.

Following Rosenberg and Hirschberg (2007), assume N is the number of datapoints

within a data set, C = {ci, i = 1, . . . , n} is a set of classes and K = {ki, 1, . . . ,m} is a

set of clusters. Let A = {aij} where aij is the number of datapoints that are members
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of class ci and elements of cluster kj. The homogeneity h is then defined to be

h =


1 if H(C,K) = 0,

1− H(C|K)
H(C)

otherwise

(3.3.1)

where

H(C|K) = −
|K|∑
k=1

|C|∑
c=1

ack
N

log
ack∑|C|
c=1 ack

,

H(C) = −
|C|∑
c=1

∑|K|
k=1 ack
n

log

∑|K|
k=1 ack
n

.

Similarly, the completeness c is defined as

c =


1 if H(K,C) = 0,

1− H(K|C)
H(K)

otherwise

(3.3.2)

where

H(K|C) = −
|C|∑
c=1

|K|∑
k=1

ack
N

log
ack∑|K|
k=1 ack

,

H(K) = −
|K|∑
k=1

∑|C|
c=1 ack
n

log

∑|C|
c=1 ack
n

.

The V-measure is then calculated as the harmonic mean of homogeneity and com-

pleteness

V =
(1 + β)hc

βh+ c
(3.3.3)

where β is a user-set parameter that determines whether completeness or homogeneity

is weighted more strongly in the calculation. Throughout the simulation study, we

set the parameter β to 1.

The classification results for the different examples described above can be seen in

Tables 3.3.1 – 3.3.3. Sequential HMM denotes the results for the full test signal and
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Embedded HMM denotes the results for the transformed coherence; similar descriptors

are used for the SVM, GMM and NB classifiers applied to the transformed coherence

of the raw data. We remind the reader that these classification methods performed

very poorly on the original series, and so are not reported in the tables. In each

case, we have recorded the average number of changes detected, V-measure and true

positive rate (described above) over the 100 replications; the numbers within the

brackets represent the standard deviation of the corresponding quantities. Recall

that the number of true class changes for Scenarios 1, 2 and 3 are nine, five and six

respectively.

For the three class multivariate normal example (Table 3.3.1), it can be seen that

all three methods overestimate the number of changes detected. The online dynamic

classification performs the best in terms of the average number of changes detected,

only marginally overestimating the number of changes, and is competitive with other

methods in terms of V-measure and average true positive rate. Both the sequential

HMM approach and the Näıve Bayes classification rule perform well in this setting

according to the V-measure and the average true positive rate. However, we note here

that the improvement over our proposed method is minimal considering the variability

in the estimates.

As we introduce dependence into the series, the distinction between our proposed

method and its competitors becomes more marked. For the moving average process

(Table 3.3.2), the performance of the online dynamic classification method improves

as we increase the length of the segments between class changes; on the other hand,

the sequential HMM procedure (as with the other competitors applied to the original
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Table 3.3.1: Performance of classification procedures over 100 replications of multi-

variate Gaussian series for different scenarios of class changes, using the evaluation

measures described in the text. Numbers in brackets represent the standard deviation

of estimation errors. Bold numbers indicate best result.

Scenario 1 Scenario 2 Scenario 3

(nine changes) (five changes) (six changes)

Method Average number of changes detected

Online dynamic classification (w = 256) 9.38 (0.65) 5.58 (0.88) 6.19 (0.44)

Sequential HMM 10.44 (3.80) 6.71 (5.65) 10.96 (13.78)

Embedded HMM 11.90 (3.29) 8.49 (3.53) 15.29 (3.74)

Embedded SVM 13.55 (2.34) 8.50 (2.02) 8.02 (1.56)

Embedded GMM 17.88 (3.58) 15.45 (3.10) 29.16 (5.34)

Embedded NB 12.71 (2.27) 7.43 (1.50) 6.16 (0.42)

Method Average V-measure

Online dynamic classification (w = 256) 0.89 (0.02) 0.89 (0.03) 0.94 (0.01)

Sequential HMM 0.94 (0.05) 0.93 (0.09) 0.94 (0.09)

Embedded HMM 0.78 (0.05) 0.74 (0.10) 0.80 (0.04)

Embedded SVM 0.80 (0.03) 0.82 (0.04) 0.91 (0.02)

Embedded GMM 0.81 (0.02) 0.73 (0.04) 0.75 (0.03)

Embedded NB 0.82 (0.06) 0.86 (0.03) 0.95 (0.01)

Method Average true positive rate

Online dynamic classification (w = 256) 0.91 (0.02) 0.94 (0.02) 0.97 (0.01)

Sequential HMM 0.93 (0.11) 0.95 (0.11) 0.94 (0.13)

Embedded HMM 0.59 (0.09) 0.64 (0.13) 0.75 (0.10)

Embedded SVM 0.70 (0.05) 0.85 (0.05) 0.95 (0.02)

Embedded GMM 0.57 (0.06) 0.64 (0.05) 0.79 (0.05)

Embedded NB 0.75 (0.06) 0.88 (0.04) 0.97 (0.01)
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Table 3.3.2: Performance of classification procedures over 100 replications of vector

moving average series for different scenarios of class changes, using the evaluation

measures described in the text. Numbers in brackets represent the standard deviation

of estimation errors. Bold numbers indicate best result.

Scenario 1 Scenario 2 Scenario 3

(nine changes) (five changes) (six changes)

Method Average number of changes detected

Online dynamic classification (w = 256) 9.82 (1.10) 5.78 (0.93) 6.59 (0.87)

Sequential HMM 35.75 (7.38) 33.75 (8.82) 77.24 (16.54)

Embedded HMM 10.28 (3.71) 8.69 (2.74) 14.57 (4.89)

Embedded SVM 11.90 (1.90) 5.96 (1.10) 9.18 (2.28)

Embedded GMM 13.31 (2.89) 14.21 (3.32) 18.09 (4.56)

Embedded NB 12.07 (1.63) 5.87 (0.68) 11.38 (2.36)

Method Average V-measure

Online dynamic classification (w = 256) 0.87 (0.02) 0.89 (0.03) 0.94 (0.01)

Sequential HMM 0.76 (0.04) 0.66 (0.05) 0.64 (0.06)

Embedded HMM 0.75 (0.07) 0.73 (0.08) 0.79 (0.05)

Embedded SVM 0.85 (0.02) 0.88 (0.04) 0.87 (0.03)

Embedded GMM 0.81 (0.02) 0.71 (0.03) 0.81 (0.03)

Embedded NB 0.84 (0.02) 0.86 (0.03) 0.87 (0.03)

Method Average true positive rate

Online dynamic classification (w = 256) 0.89 (0.03) 0.93 (0.02) 0.97 (0.01)

Sequential HMM 0.54 (0.15) 0.57 (0.14) 0.50 (0.15)

Embedded HMM 0.62 (0.08) 0.67 (0.11) 0.68 (0.05)

Embedded SVM 0.83 (0.03) 0.91 (0.03) 0.92 (0.03)

Embedded GMM 0.70 (0.05) 0.62 (0.05) 0.72 (0.03)

Embedded NB 0.81 (0.03) 0.92 (0.02) 0.90 (0.03)



CHAPTER 3. DYNAMIC DETECTION OF ANOMALOUS REGIONS 69

series) cannot cope with the dependence in the data, drastically overestimating the

number of changes in the data.

The online dynamic classification algorithm outperforms the competitors consis-

tently for the autoregressive series, as shown in Table 3.3.3. More specifically, it

classifies the changes well in terms of the V-measure and true positive rate, i.e. a low

misclassification rate. Provided that the set of training data accurately represents

the range of classes present, we would expect the dynamic classification approach to

be able to correctly detect both the location of the changes and the classes involved.

In contrast, whilst the comparative methods detect the location of class changes well

resulting in high V-measure, they can struggle to identify which class the signal be-

longs to after the class change has occurred, resulting in a lower true positive rate (a

higher overall rate of misclassification). This can potentially be a challenge if accurate

detection of anomalous areas is important.

In addition, note that in nearly all cases across the examples and scenarios, there

is less variability in the evaluation measures using our proposed online dynamic clas-

sification (indicated by lower standard deviations). We also note here that the use of

the coherence measure improves the performance of all competitor methods, justify-

ing its efficacy as a classification feature in many settings. Crucially, we also found

that the online dynamic classification approach was faster than HMM-based methods

for longer time series. A more detailed analysis of the computational runtimes of the

algorithms can be found in Section 3.7.
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Table 3.3.3: Performance of classification procedures over 100 replications of vector

autoregressive series for different scenarios of class changes, using the evaluation mea-

sures described in the text. Numbers in brackets represent the standard deviation of

estimation errors. Bold numbers indicate best result.

Scenario 1 Scenario 2 Scenario 3

(nine changes) (five changes) (six changes)

Method Average number of changes detected

Online dynamic classification (w = 256) 9.79 (0.96) 5.36 (0.66) 6.64 (0.87)

Sequential HMM 12.03 (5.49) 9.30 (4.46) 17.27 (6.44)

Embedded HMM 13.11 (2.70) 10.44 (3.16) 17.83 (6.60)

Embedded SVM 12.80 (3.14) 7.59 (2.03) 12.37 (2.78)

Embedded GMM 16.82 (3.04) 6.32 (2.75) 19.64 (4.40)

Embedded NB 14.64 (3.13) 6.87 (1.40) 11.91 (2.62)

Method Average V-measure

Online dynamic classification (w = 256) 0.87 (0.02) 0.89 (0.03) 0.92 (0.02)

Sequential HMM 0.81 (0.08) 0.73 (0.09) 0.75 (0.07)

Embedded HMM 0.79 (0.03) 0.71 (0.08) 0.74 (0.06)

Embedded SVM 0.78 (0.03) 0.83 (0.05) 0.84 (0.03)

Embedded GMM 0.75 (0.02) 0.61 (0.07) 0.73 (0.04)

Embedded NB 0.78 (0.06) 0.84 (0.04) 0.84 (0.03)

Method Average true positive rate

Online dynamic classification (w = 256) 0.89 (0.02) 0.95 (0.02) 0.96 (0.01)

Sequential HMM 0.70 (0.11) 0.69 (0.09) 0.65 (0.11)

Embedded HMM 0.59 (0.09) 0.60 (0.10) 0.59 (0.10)

Embedded SVM 0.65 (0.05) 0.89 (0.04) 0.89 (0.04)

Embedded GMM 0.51 (0.04) 0.45 (0.04) 0.51 (0.05)

Embedded NB 0.64 (0.06) 0.89 (0.03) 0.89 (0.03)
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Choice of window length Within this simulation study, a window length of 256 is

chosen when implementing the online dynamic classification method for all scenarios.

Determining the best window length to use involves a trade-off between accuracy and

speed; longer windows give more accurate results but also take more time to imple-

ment. Consider the three class trivariate normal process used within the simulation

study, an example of which can be seen in Figure 4.4.1(a). For each of the scenarios

considered in the study, we again simulate 100 replications of the test signal and apply

the online dynamic classification method with differing window lengths of 128, 256

and 512. In this case, we record both the usual accuracy measures and the average

time taken, the results can be found in Table 3.3.4. Whilst a window length of 128

takes the shortest amount of time to run, it overestimates the number of changes

detected compared to the longer windows. For the windows of length 256 and 512,

the average number of changes detected, V-measure and true positive rate are very

similar. However the average time taken to run the algorithm with a window length

of 512 is much longer than that for a window length of 256, especially in the case of

Scenario 3. For this reason, we choose a window length of 256 for the simulations as

any accuracy benefits from using a longer window will be outweighed by the increase

in the time taken to implement the method in this case.

3.4 Case Study

In the previous section we considered the efficacy of our approach against tried and

tested examples. We now turn to consider an application arising from our collabora-
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Table 3.3.4: Performance of online dynamic classification algorithm with differing

window lengths over 100 replications of multivariate Gaussian series for different sce-

narios of class changes, using the evaluation measures described in the text. Numbers

in brackets represent the standard deviation of estimation errors. Bold numbers in-

dicate best result.

Scenario 1 Scenario 2 Scenario 3

(nine changes) (five changes) (six changes)

Method Average number of changes detected

Online dynamic classification (w = 128) 11.28 (1.29) 13.22 (3.77) 10.28 (2.79)

Online dynamic classification (w = 256) 10.54 (1.37) 5.80 (1.28) 6.56 (0.88)

Online dynamic classification (w = 512) 9.68 (0.96) 6.12 (1.26) 6.86 (0.86)

Method Average V-measure

Online dynamic classification (w = 128) 0.87 (0.02) 0.79 (0.04) 0.92 (0.02)

Online dynamic classification (w = 256) 0.88 (0.02) 0.90 (0.03) 0.95 (0.01)

Online dynamic classification (w = 512) 0.89 (0.02) 0.90 (0.02) 0.94 (0.02)

Method Average true positive rate

Online dynamic classification (w = 128) 0.88 (0.02) 0.87 (0.05) 0.96 (0.01)

Online dynamic classification (w = 256) 0.90 (0.02) 0.95 (0.02) 0.98 (0.01)

Online dynamic classification (w = 512) 0.92 (0.02) 0.95 (0.02) 0.97 (0.01)

Method Average time taken (seconds)

Online dynamic classification (w = 128) 56.25 (5.58) 55.68 (7.19) 114.14 (12.31)

Online dynamic classification (w = 256) 91.65 (3.52) 100.22 (9.10) 202.54 (14.27)

Online dynamic classification (w = 512) 134.43 (9.82) 130.08 (15.71) 367.86 (24.66)
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tion with researchers working in the oil and gas industry.

The general philosophy is to apply our online dynamic classification method to

acoustic sensing data provided by an industrial collaborator, with the aim of detecting

striping within these signals. The training data consists of ten quadvariate signals of

length 4096 obtained from a subsampled version of an acoustic sensing dataset. The

class assignments for each of the training signals have been decided by an industrial

expert. The test signal is obtained from the same dataset and is a quadvariate signal of

length 8192, unseen in the training signals. The test series exhibits autocorrelation as

well as dependence between series (see Figure 3.1.2). Due to the zero-mean assumption

of the mvLSW model, in practice we detrend the series before analysis by taking first

order differences of each component series, see Figure 3.1.1(b). We apply the online

dynamic classification approach with a moving window of length 4096 to the test

signal. Note that, we considered moving windows of length 1024, 2048, and 4096

within this analysis but in this case we select a window of length 4096 due to the

accuracy benefits that a longer window can provide.

It is important to check that the Fisher-z transformed coherence estimates can be

approximated by a Gaussian distribution. In order to validate this assumption, we

generated Q-Q plots for both the original and the transformed coherence for different

windows of data across the signal and for different channel combinations. Figure 3.4.1

includes one such example, it can be seen that the distribution of the transformed

coherence in this case more closely follows a Gaussian distribution than that of the

original coherence. Within this work, we only considered scenarios where the trans-

formed coherence could be suitably approximated by a Gaussian distribution however
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this assumption may not always hold.

(a) Original coherence (b) Transformed coherence

Figure 3.4.1: Q-Q plots for the original and transformed coherence between channels

2 and 3 for the first window of the data.

Based on the results from Section 3.3, for comparison the sequential HMM method

is applied to the full test signal with the first 400 data points used to train a two-state

model. We also apply the sequential HMM approach to the transformed coherence of

the test signal, again training a two state model using the first 400 data points. Two-

state models have been applied to demonstrate our belief that the acoustic sensing

data contains areas of stable behaviour and striping.

In this case the true class membership of the test signal is unknown, therefore we

compare the results visually. One of the main issues with visually classifying striping

features in this way is that the results can be subjective. For example, consider

the acoustic sensing data in Figure 3.4.2 around timepoint 4000. Observed over a
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sufficiently small interval, the data around timepoint 4000 could be considered to be

normal behaviour rather than striping. It is these potential differences in labelling

that can lead to misclassification.

The classification results for each of the methods are found in Figure 3.4.2; areas

of the test signal for which a change in class is detected are shown in red. It can be

seen that the online dynamic classification method performs best in that it detects the

stripes in the test signal with only minimal areas of misclassification when compared

to the expert’s judgement. In contrast, applying the sequential HMM approach to the

transformed coherence of the signal also results in a change of class being detected

at the stripes but the class changes take place over a longer period than we would

expect. Finally, applying the sequential HMM method to the full signal results in the

stripes being detected but the end of the test signal being misclassified.

Recalling that the overall aim of this analysis has been to detect sudden regions of

interest within (multivariate) acoustic sensing signals, as accurately as possible whilst

minimising the number of falsely detected points – then the results look very positive.

Specifically the classification results obtained by the online dynamic classification

method compare very favourably. It is interesting to note that in these examples,

coarser scales (i.e. scales 6-11) appear to play a key role in the classification.

When compared with a subjective analysis of the data as displayed in Figure 3.1.1

we see that, each method correctly assigns ‘non-stripe’ regions with the following

(correct) classification proportions; 0.944 for online dynamic classification, 0.792 for

embedded HMM and 0.477 for sequential HMM.
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(a) Online dynamic classification

(b) Sequential HMM

(c) Embedded HMM

Figure 3.4.2: Classification results obtained from applying online dynamic classifi-

cation, Sequential HMM and Embedded HMM approaches to acoustic sensing data,

areas of the signal for which a change in class is detected are shown in red.
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3.5 Concluding remarks

In this article, we introduced an online dynamic classification method that can be

used to detect changes in class within a data stream. We demonstrated the efficacy

of the method using simulated data examples and an acoustic sensing dataset from

an oil producing facility. The case study shows that our approach can be success-

fully used to detect anomalous periods in acoustic data, resulting in fewer areas of

misclassification compared to more traditional classification methods, such as Markov

Model approaches. Moreover, we have found that the use of a coherence measure in

classification improves the performance of these methods.

In practice, we have found that a parsimonious choice of window is required:

as with other moving window approaches, too short a window, and the results are

not satisfactory; too long a window increases the computational time and potentially

produces edge effects. We leave the challenge of automatically choosing window length

as an avenue for future research. In addition, we have observed that, as with other

competitor methods, our approach classifies well when the distance between class

changes is comparable to the window length but can struggle when we have shorter

segments between changes.

Future work may consider the problem of detecting stripes that are characterised

by more gradual changes in their properties. In practice, these features may be less

obvious and we might wish to not just detect but also classify the type of stripe

present in the acoustic sensing data. Our method could potentially be used to do

this, provided that our training data represents the range of stripes that we wish to
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classify.

3.6 Online nondecimated wavelet transforms

In this section, we give more detail on the online wavelet transform that forms part

of the online dynamic classification method outlined in Section 3.2. Assume that

we have data of the form (x0, x1, . . . , xT ) and we wish to apply the online wavelet

transform with window length w = 2J for w < T . The first step is to apply the Haar

NDWT to the first window of the data cJ = {x0, x1, . . . , xw−1} using the following

equations

c(j−1) = H[J−j]c(j)

d(j−1) = G [J−j]c(j)

for j = 1, . . . , J . Following the notation of Nason and Silverman (1995), the filters

H[r] and G [r] are defined by the following equations

h
[r]
2rj = hj

h
[r]
k = 0

g
[r]
2rj = gj

g
[r]
k = 0 if k is not a multiple of 2r.

For the Haar wavelet filters, H[0] consists of the elements h0 = h1 = 1√
2

and G [0] has

the form g0 = 1√
2
, g1 = − 1√

2
. As a result of applying the Haar NDWT, we obtain the

smooth and detail coefficients at each level of the transform,

(cJ , cJ−1, . . . , c1, c0,dJ−1, . . . ,d1,d0). In this case, we focus solely on the Haar NDWT

as this allows us to make the largest reduction in the number of calculations required

to update the wavelet coefficients for each window whilst also providing good classifi-
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cation results. However, the method could be generalised to use other wavelet filters

rather than Haar.

The next step is to shift the window along by one so that the new data vector is

of the form {x1, . . . , xw}. Instead of reapplying the transform to this new window of

data, the wavelet coefficients can be calculated using the information obtained from

the transform of the previous window. To do this, the elements of the smooth and

detail coefficients are shifted and the coefficients that change as a result of gaining

the new data point xw and losing x0 are recomputed.

Let cS,J = {cJ,1, . . . , cJ,w−1, cJ,0} denote the shifted version of the vector cJ . Then

the smooth coefficient vectors for the new window of data (ĉJ , ĉJ−1, . . . , ĉ0) can be

calculated from

ĉJ−n,2J−k = cSJ−n,2J−k −
( 1√

2

)n
x0 +

( 1√
2

)n
xw, (3.6.1)

for n = 0, 1 . . . , J and k = 1, . . . , 2n. In a similar way, the detail coefficients for the

new window of data (d̂J−1, . . . , d̂1, d̂0), can be calculated from the following formulae

d̃J−1−n,2J−k = dSJ−1−n,2J−k −
( 1√

2

)n+1

x0 +
( 1√

2

)n+1

xw, (3.6.2)

for n = 0, 1 . . . , J − 1 and k = 1, . . . , 2n,

d̃J−1−n,2J−k = dSJ−1−n,2J−k +
( 1√

2

)n+1

x0 −
( 1√

2

)n+1

xw (3.6.3)

for n = 0, 1 . . . , J − 1 and k = 2n+1, 2n+1 − 1 . . . , 2n − 1. The process of shifting the

window and calculating the new smooth and detail coefficient vectors using equations

(3.6.1)–(3.6.3) is repeated until we reach the end of the data set. In the case of the

Haar wavelets, the total number of updated coefficients for each window is
∑J

j=0 2j =

2J+1 − 1 compared to the J2J calculations required to fully recompute the NDWT.
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3.7 Comparison of computational cost of online

classification methods

In this section, we provide an analysis of the computational cost of the various com-

petitor classification methods outlined in Section 3.3. To this end, we run each

online classification method on a set of test signals of increasing length, namely

T = 1024, 2048, 4096, 8192. In particular, for each method and series length, we

record the runtime of each method, averaged over K = 25 replications of series from

the first example in Section 3.3. This allows us to compare how the runtime of each

method scales with series length, T , removing external factors such as efficiency of

coding and implementation programming language.

Figure 3.7.1: Comparison of computational cost of the classification methods de-

scribed in Section 3.3 in terms of their scaling behaviour with length of test series.

The results of the runtime analysis are shown in Figure 3.7.1. As seen from the

plot, as expected, each method increases in runtime with the length of the series.

However, after an initial increase, our dynamic online classification method has a
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desirable near constant scaling with the length of the series. Its scaling profile is

the best after the NB classifier. Given the improvement in classification over the

competitor methods across the range of examples studied in Section 3.3, we feel that

this profile justifies the use of the proposed method.



Chapter 4

A wavelet-based approach for

imputation in highdimensional

series

4.1 Introduction

Time series data commonly arise in a variety of different areas including finance

(Taylor, 2007), biology (Bar-Joseph et al., 2003) and energy (Alvarez et al., 2011;

Doucoure et al., 2016). The collection and recording of time series can be interrupted

in a number of ways including human error or technical faults with the recording

equipment which induces missingness within the time series. Little and Rubin (2002)

describe such occurrences of missing values in data through a number of “missingness

mechanisms”:

82
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1. Missing completely at random (MCAR) - The probability of missingness is the

same for all units, i.e. the missing value is not dependent on other variables.

2. Missing at random (MAR) - The probability of missingness depends only on

available information, i.e. the missing value depends on other variables.

3. Not missing at random (NMAR) - The missingness probability depends on the

variable itself, i.e. the missing observation depends on other missing values.

Regardless of the type of missingness present, further analysis of the time series such

as autocovariance or spectral estimation can be difficult without first replacing the

missing data with appropriate estimates. This estimation process is called imputation.

There exists a rich literature in the statistics community dedicated to the impu-

tation of missing values within stationary time series. See Pratama et al. (2016) for a

recent review of this literature. Popular multivariate approaches such as Multiple Im-

putation (Rubin, 1987), Hot-Deck (Ford, 1983) and Expectation-Maximisation (EM)

(Dempster et al., 1977) make use of inter-variable correlations to estimate missing

data. EM approaches within the literature often assume that the observed and miss-

ing data follow a multivariate normal distribution, see Junger and de Leon (2015),

Honaker and King (2010) and Honaker et al. (2011) for examples. Alternative methods

have been developed combining EM with other distributions including PCA fixed-

effects models (Caussinus, 1986) and Gaussian Mixture Models (Ghahramani and

Jordan, 1994). Other approaches to imputation within time series make use of sta-

tistical models to infer missing values. Examples of model-based methods include

those which use genetic algorithms (Lobato et al., 2015; Tang et al., 2015), support
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vector machines (Wu et al., 2015), random forests (Stekhoven and Bühlmann, 2011)

and autoregressive processes (Sridevi et al., 2011). On the other hand, univariate

time series measurements are collected from one variable only and so inter-time cor-

relation is important. Moritz and Bartz-Beielstein (2017) discuss various univariate

time series imputation approaches, ranging from simple methods that replace missing

values with the mean to more advanced approaches that involve spline interpolation

or model fitting combined with the use of a Kalman filter.

Another approach for coping with such missingness is to estimate the spectral

information of the series in some way; a range of methods have been developed for

spectral estimation in stationary time series with missing values or irregularly sampled

observations within the time series and signal processing literature. The Lomb-Scargle

estimator (Lomb, 1976; Scargle, 1982) estimates the Fourier spectrum from the irreg-

ularly sampled data but can be subject to strong bias which hinders it’s ability to

describe slopes within the spectrum. Variants of this approach have been applied in a

range of different fields including astronomy (Wen et al., 1999), biology (Van Dongen

et al., 1999) and biomedical engineering (Laguna et al., 1998). Other widely used

techniques involve fitting time series models directly to the unequally spaced data

and using this to estimate spectral information for stationary processes (Jones, 1980;

Bos et al., 2002; Broersen, 2006). In practice however, the assumptions imposed by

modelling an observed time series as stationary can be restrictive and unrealistic.

However, nonstationary time series, i.e. series with time-varying second order

structure, are observed in various fields including finance (Stărică and Granger, 2005;

Fryzlewicz et al., 2006), medicine (Cranstoun et al., 2002) and oceanography (Killick
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et al., 2013). For this reason, the problem of imputing missing values in multivariate,

nonstationary time series is a potentially important one. Many techniques have been

developed for modelling and analysing complete multivariate, nonstationary data in-

cluding the locally stationary Fourier model (Dahlhaus, 1997), the smooth localized

complex exponential (SLEX) model (Ombao et al., 2005) and the multivariate locally

stationary wavelet (mvLSW) framework (Park et al., 2014) but the literature on how

to deal with missingness within such data is sparse. In the univariate setting, Knight

et al. (2012) propose a method for estimating spectral information of a LSW process

containing missing values where information is estimated at the observed time loca-

tions. However, the problem of spectral estimation within multivariate, nonstationary

time series has not been widely studied.

In this article, we address the challenging problem of imputation in the multivari-

ate locally stationary time series setting. Our approach involves first estimating the

local wavelet spectral matrix of a mvLSW process with missing observations before

forecasting and backcasting the missing values of the time series using a multivariate

extension of the wavelet forecasting approach of Fryzlewicz et al. (2003). As a final

step, we average the estimates obtained from the forward and backward pass to obtain

an overall estimate of the time series. Through the use of simulated examples and

a case study, we demonstrate that our method performs well for a range of realistic

missingness scenarios in both the stationary and nonstationary setting.

This work is organised as follows. Within Section 4.2, we review existing methods

for forecasting within locally stationary time series. In Section 4.3, we introduce

the proposed imputation method. Section 4.4 contains a simulation study evaluating
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the performance of the proposed imputation method using synthetic examples. In

Section 4.5 we describe a case study using a dataset arising from a Carbon Capture

and Storage facility. Finally, Section 4.6 includes some concluding remarks.

4.2 Background

In this section we provide an overview of recent work on forecasting within locally

stationary time series. For a comprehensive review of nonstationary time series more

generally, please refer to the excellent review by Dahlhaus (2012). This section is

organised as follows; we focus on one-step ahead forecasting within univariate LSW

processes in Section 4.2.1 before looking at the mvLSW setting in 4.2.2.

4.2.1 Forecasting univariate locally stationary time series

Fryzlewicz et al. (2003) introduce a wavelet-based method for forecasting univariate,

nonstationary time series. The methodology uses the LSW framework of Nason et al.

(2000), outlined in Section 2.3.1, to form generalised Yule-Walker equations which can

be used to carry out h-step ahead prediction in this setting. We will briefly review

one-step ahead prediction as this is the case that we will use in the multivariate

setting.

Following Fryzlewicz et al. (2003), the one-step ahead predictor of Xt,T given

previous observations X0,T , . . . , Xt−1,T is defined by

X̂t,T =
t−1∑
s=0

b
(1)
t−1−s,T Xs,T , (4.2.1)
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where the coefficients bt−1−s,T minimise the mean square prediction error (MSPE)

defined by

MSPE(X̂t,T , Xt,T ) = E(X̂t,T −Xt,T )2.

The prediction method minimises the mean square prediction error

MSPE(X̂t,T , Xt,T ) = b>t Σt,Tbt,

where bt = (b
(1)
t−1,T , . . . , b

(1)
0,T ,−1) and Σt,T is the covariance matrix of X0,T , . . . , Xt,T .

The MSPE can be approximated by b>t Bt,Tbt where Bt,T is a (t+ 1)× (t+ 1) matrix

whose (m,n) entry is given by

−1∑
j=−J

Sj

(
m+ n

2T

)
Ψj(n−m),

where Sj(z) is the evolutionary wavelet spectrum introduced in equation (2.3.2) and

Ψ are the autocorrelation wavelets as defined in equation (2.3.4).

The coefficients bt that minimise the MSPE can be shown to solve the following

prediction equations

t−1∑
m=0

b
(1)
t−1−m,T c

(
m+ n

2T
,m− n

)
= c

(
n+ t

2T
, t− n

)
, (4.2.2)

where c(z, τ) is the local autocovariance function defined in equation (2.3.3).

4.2.2 Forecasting multivariate locally stationary wavelet pro-

cesses

Our one-step ahead prediction approach is a straightforward extension of the foregoing

work to the multivariate setting that makes use of the mvLSW model outlined in

Section 2.3.2.
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Due to the separable structure of the mvLSW model, we can form one-step ahead

prediction equations for each channel combination (p, q) using the local auto and cross-

covariance defined in equations (2.3.12) and (2.3.13) respectively. The multivariate

prediction equations are defined by

t−1∑
m=0

b
(p,q)
t−1−m,T c

(p,q)

(
m+ n

2T
,m− n

)
= c(p,q)

(
n+ t

2T
, t− n

)
. (4.2.3)

As in the univariate setting described in Section 4.2.1, the coefficients b
(p,q)
t that solve

the prediction equations can be shown to minimise the quadratic equation

b
(p,q)>
t Σ

(p,q)
t,T b

(p,q)
t ,

where b
(p,q)
t = (b

(p,q)
t−1,T , . . . , b

(p,q)
0,T ,−1) and Σ

(p,q)
t,T is the covariance matrix of X

(p)
0,T , . . . ,

X
(p)
t,T , X

(q)
0,T , . . . , X

(q)
t,T .

The one-step ahead predictor of Xt,T given previous multivariate observations

X0,T , . . . ,Xt−1,T is given by

X̂
(a)
t,T =

∑
b∈{1,...,P}

t−1∑
s=t−p

b
(a,b)
t−1−s;TX

(b)
s,T for p ∈ {1, . . . , P}, (4.2.4)

where p is the number of recent observations used in prediction. Having outlined

forecasting in the mvLSW setting, we now outline our imputation approach that uses

one-step ahead prediction to replace missing values in a multivariate locally stationary

time series.
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4.3 Imputation for multivariate locally stationary

wavelet processes

In this section we introduce our multivariate imputation method which uses the local

auto and cross-covariance structure of a nonstationary time series to estimate missing

observations. The key challenge in this context is that the usual mvLSW spectral

estimation process cannot be used due to the presence of missingness. For this rea-

son, the first step of the algorithm involves estimating the wavelet periodogram of a

mvLSW process with missing observations, this will be discussed in Section 4.3.1. Us-

ing the estimate of the LWS matrix, we then form the local auto and cross-covariance

structure and carry out a forward pass of the data where we forecast missing values.

To obtain more accurate estimates of the time series at missing locations, we also

implement a backward pass of the data where we backcast the missing values. We

then average the series obtained from the forward and backward pass in order to get

an overall estimate. The forecasting and backcasting steps will be described in Sec-

tion 4.3.2 and 4.3.3 respectively. A complete overview of the steps carried out in one

iteration of the method can be found in Algorithm 2.
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Algorithm 2 mvLSWimpute: Steps carried out in one iteration of the method.

1: Spectral estimation step

Estimate the LWS matrix of the signal containing missing data in the following

way:

(a) Estimate the raw wavelet periodogram keeping any NAs intact, any wavelet

coefficients affected by the initial NAs will also be missing.

(b) For each spectra and cross-spectra, determine the coarsest level that contains

true wavelet coefficients Ĵ (p,q).

(c) For the finer levels of the periodogram through to Ĵ (p,q), linearly interpolate

the missing wavelet coefficients by level.

(d) Recursively apply the wavelet filter equations to the level Ĵ (p,q) of the peri-

odogram to replace any levels that consist solely of NAs.

(e) Smooth the periodogram using a running mean smoother and correct using

the inverse of the inner product matrix of discrete autocorrelation wavelets

A.

2: Forecasting step

For each missing index i, forecast the missing value in the following way:

(a) Consider the spectra obtained in Step 1 from time 1 to time i− 1.

(b) Form the local auto and cross-covariance by substituting estimated spectra

from time 1 to i− 1 into equations (2.3.12) and (2.3.13).

(c) For each channel combination (p, q), solve the prediction equations given in

equation (4.2.3) to obtain b(p,q).
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(d) Use b(p,q) vectors along with the clipped predictor in equation (4.2.4) to esti-

mate the value of the time series at missing index i.

3: Backcasting step

For each missing index i, backcast the missing value in the following way:

(a) Consider the spectra obtained in Step 1 from time T to time i+ 1.

(b) Form the local auto and cross-covariance by substituting estimated spectra

from time T to i+ 1 into equations (2.3.12) and (2.3.13).

(c) For each channel combination (p, q), solve the prediction equations given in

equation (4.2.3) to obtain b(p,q).

(d) Use b(p,q) vectors along with the clipped predictor in equation (4.3.1) to

estimate the value of the time series at missing index i.

4: Averaging step

Average the estimates of the time series obtained from the forward pass described

in Step 2 and the backward pass described in Step 3.

4.3.1 Spectral Estimation

Suppose that we have a P -variate time series of length T = 2J containing missing

values which we wish to impute. The first step of the mvLSWimpute algorithm involves

estimating the LWS matrix of the time series. The presence of missing values means

that we can not use the usual estimation procedure and have to modify our approach.

First, we calculate the empirical wavelet coefficient vector, dj,k, for the time series
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ensuring that any wavelet coefficients at scales and locations affected by the initial

missing data will also be missing. The Haar wavelet is used within the calculation

of the empirical wavelet coefficient vector as this will ensure that more levels of the

wavelet transform will contain information. From this, we can form the raw wavelet

periodogram matrix as described in Section 2.3.2. Since the raw wavelet periodogram

will also have entries missing, we need to perform an intermediate step to fill in these

missing values before smoothing and correcting as described in Section 2.3.2 to obtain

an estimate of the LWS matrix.

In order to fill in the missing values, for each spectra and cross-spectra we deter-

mine the coarsest level of the periodogram Ĵ (p,q) that contains true wavelet coefficients

and does not consist solely of NAs. For the finer scales through to Ĵ (p,q), we linearly

interpolate the missing coefficients by level. For the coarsest levels of the periodogram

where the coefficients are all missing, we replace them in a different way. To do this,

we recursively apply the wavelet filter equations to the periodogram from level Ĵ (p,q)

which generates coefficients that allow us to replace the values in the coarsest levels.

To obtain an estimate of the LWS matrix, we correct the periodogram by mul-

tiplying by A−1 and then smooth the result using a running mean smoother with

window length b
√
T c, implemented in the mvLSW R package (Taylor et al. (2017)).

This estimate can then be substituted into equations (2.3.12) and (2.3.13) to form

the local auto and cross-covariance which are used in the forecasting and backcasting

steps of the algorithm.
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4.3.2 Forecasting

In order to replace missing data in the time series, we first carry out a forward pass of

the series where we use the one-step ahead multivariate wavelet forecasting approach

outlined in Section 4.2.2. A missing index is defined to be a timepoint at which one

or more channels of the P -variate time series has missing values present.

For each missing index i, we forecast the missing values sequentially in the fol-

lowing way. First, calculate the local auto and cross-covariance using the estimated

spectra from time 1 to time i− 1 and equations (2.3.12) and (2.3.13).

For each channel combination (p, q) where p, q ∈ {1, . . . , P}, form the prediction

equations using the local auto and cross-covariance at certain locations and lags, as

in equation (4.2.3). Solving the prediction equations allows us to obtain b(p,q) vectors

which are then used to predict the values of the series at time i using the one-step

ahead predictor defined in equation (4.2.4). The channels of the multivariate time

series that contain missing data at time i are then replaced by the corresponding

predicted values from the forecasting step.

It is important to note that, for efficiency, we use a clipped predictor in the fore-

casting step in which only the most recent p observations are used in the prediction.

Currently, we use a global value of p throughout the algorithm however in future we

may wish to develop a more data driven approach to choosing p.
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4.3.3 Backcasting

After carrying out the forward pass of the data, the next step is to backcast the

missing values sequentially. This backcasting step is included in order to improve the

accuracy of the imputation method since this allows us to incorporate information

from both sides of the missing observation in our estimation. Similarly to the approach

of Trindade (2003), we can form backward Yule-Walker equations in the mvLSW

setting by beginning at time T and again using the multivariate wavelet forecasting

approach from Section 4.2.2 but we must be careful in how we order the spectral

values in this case. Note that the backward pass is carried out independently to the

forward pass and does not depend on the imputed time series obtained in the previous

step.

For each missing index i (considered in descending order), we proceed as in the

forecasting case and form the local auto and cross-covariance using the estimated

spectra from time T to i + 1. As in the forward pass, for each channel combination

(p, q), we can solve the prediction equations using the local auto and cross-covariance

to obtain the b(p,q) vectors. However, the one-step ahead predictor has a slightly

different form in the backcasting step:

X̂
(a)
t,T =

∑
b∈{1,...,P}

t+1∑
s=t+p

b
(a,b)
t+1−s;TX

(b)
s,T for p ∈ {1, . . . , P}. (4.3.1)

The one-step ahead predictor in equation (4.3.1) is used to backcast the value of

the time series at index i and then any missing entries within channels are replaced

using their corresponding predicted values.

After carrying out the forward and backward pass independently, we obtain two
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imputed time series which are then averaged to get an overall estimate of the time

series. The process can then be iterated but from the second iteration onwards the

spectral estimation step no longer requires linear interpolation and the LWS matrix

can now be estimated using equation (2.3.22). The forecasting and backcasting steps

remain the same and we again average to obtain an updated estimate of the time

series.

4.4 Simulated performance of mvLSWimpute

We now assess the performance of our proposed multivariate imputation method

through a range of simulated data examples, a number of different scenarios have

been chosen for the missingness in order to mimic situations arising in practice. The

generating series used within the simulation study exhibit varying degrees of nonsta-

tionarity and dependence; these have been chosen to test the ability of our method

to impute missing values in multivariate, nonstationary time series.

For datasets containing missing entries, traditional analysis based on complete

cases has proven to be reasonably accurate provided that the amount of missing

values is small (Graham, 2009). However, such methods yield poor results when the

proportion of missing entries increases. To evaluate the performance proposed method

as the amount of missingness increases, we remove 10%, 20%, 30% and 40% of values

from the generating series at random, either from all channels simultaneously or from

one channel independently.

In practice, time series obtained from industrial applications can contain gaps that
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may extend over hours or even days due to faults in the recording equipment or human

error. In order to reflect this, we consider the case where information is missing from

one or more variables of the time series for a period of 20 consecutive time points. As

a third scenario, we also include the situation where the missingness occurs in bursts

up to length 20 before the signal returns to normal for a set period of time.

For all missingness scenarios, the coefficients of the generating series randomly

switch at set times in order to test the ability of the imputation methods to deal with

slowly and rapidly evolving dependence within a signal. The time series used in each

case have the following forms

Slow changes: Trivariate signal of length 512, two changes in the generating coeffi-

cients of the series, occurring at time 150 and 300.

Rapid changes: Trivariate signal of length 512, four changes in the generating coef-

ficients of the series, occurring at time 100, 200, 300 and 400.

The first example we consider is a mvLSW process with changing spectral struc-

ture, chosen in such a way that there is strong coherence between channels of the

signal. In this case, the example consists of two underlying classes with differing LWS
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(a) Slow changes, mvLSW process

(b) Rapid changes, vector autoregressive moving average series

(c) Slow changes, vector autoregressive series

(d) Stationary vector moving average series

Figure 4.4.1: Example realisations of generating processes for the different scenarios

used in the simulation study. (a), (c) Slowly evolving dependence, class changes at

time 150 and 300; (b) Rapidly changing dependence structure, class changes at time

100, 200, 300 and 400; (d) Stationary signal, no changes in the generating coefficient

matrices of the process.
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matrices as defined below

Class 1 : S
(1,2)
j (z) =



5 for j = 1,

−6 for j = 2,

−4 for j = 5.

S
(1,3)
j (z) =


2 for j = 3,

−4 for j = 4.

S
(2,3)
j (z) = −6 for j = 2.

Class 2 : S
(1,2)
j (z) =



−5 for j = 1,

6 for j = 2,

4 for j = 5.

S
(1,3)
j (z) =


8 for j = 3,

4 for j = 4.

S
(2,3)
j (z) = 6 for j = 2.

Example simulated data for this process using the different dependence structures

described above are shown in Figure 4.4.1(a).

The second example we examine is a time-varying vector autoregressive moving aver-

age process with three different classes defined by the following coefficient matrices

Class 1 : Xt =


0.4 0.1 −0.2

0.1 0.3 −0.3

−0.2 −0.3 −0.2

Xt−1 + Zt +


1 0.8 0.4

0.8 1 0.1

0.4 0.1 1

Zt−1

Class 2 : Xt =


−0.3 −0.2 0.3

−0.2 −0.3 0.1

0.3 0.1 0.2

Xt−1 + Zt +


1 −0.6 0.3

−0.6 1 −0.3

0.3 −0.3 1

Zt−1

Class 3 : Xt =


−0.6 0.4 0.1

0.4 0.2 0.3

0.1 0.3 0.5

Xt−1 + Zt +


1 0.2 −0.7

0.2 1 0.6

−0.7 0.6 1

Zt−1

where Zt and Zt−1 are zero-mean multivariate normal realisations, distributed with

class-dependent covariances
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Σ1 =


1 0 0

0 1 0

0 0 1

 , Σ2 = Σ3 =


3 0 0

0 3 0

0 0 3

 .

The signal switches randomly between each of the three classes at different times

depending on whether we are considering slowly or rapidly evolving dependence. This

ensures that the intra and cross-channel dependence of the process changes over time

(see Figure 4.4.1(b)).

The third example we consider is a time-varying vector autoregressive process with

two classes defined by the following coefficient matrices

Class 1 : Xt =


0.3 0.2 −0.2

0.2 0.4 −0.2

−0.2 −0.2 −0.1

Xt−1 +


0.4 −0.2 0.3

−0.2 −0.4 0.1

0.3 0.1 −0.2

Xt−2 + ε1

Class 2 : Xt =


0.2 −0.2 0

−0.2 0.4 −0.2

0 −0.2 0.2

Xt−1 +


−0.1 0 0

0 −0.4 0.3

0 0.3 0.3

Xt−2 + ε2

where the noise vectors εi are zero-mean multivariate normal realisations, distributed

with class-dependent covariances

Σε1 =


1 0.2 0

0.2 1 0.1

0 0.1 1

 , Σε2 =


5 1.2 2

1.2 5 1.5

2 1.5 5

 .

A realisation of such a process can be seen in Figure 4.4.1(c).

Within the simulation study, we compare our method to a range of multivariate impu-

tation approaches, some of which assume that the data follows a multivariate normal

distribution. For this reason, we also include a stationary example where the coeffi-

cients of the moving average process do not change over time. The coefficient matrices
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for this process are defined as follows

Xt = Zt +


1 0.5 −0.2

0.5 1 0.3

−0.2 0.3 1

Zt−1 +


1 −0.4 0.2

−0.4 1 −0.6

0.2 −0.6 1

Zt−2 +


1 0.1 −0.5

0.1 1 −0.3

−0.5 −0.3 1

Zt−3

where Zt−1,Zt−2 and Zt−3 are zero-mean multivariate normal realisations, with co-

variances given by

Σ =


2 0 0

0 2 0

0 0 2

 .

An example of this stationary process can be found in Figure 4.4.1(d).

4.4.1 Competitor methods

In the simulation study, we compare our method with a number of alternative multi-

variate imputation approaches. Firstly we consider the modified Expectation-

Maximization (EM) approach implemented in the R package mtsdi (Junger and

de Leon, 2018). Within this method, cross-channel correlations are taken into ac-

count within the multivariate normal modelling structure and inter-time behaviour is

accounted for using a level estimation step in which temporal behaviour of each of the

univariate time series is estimated. Within the mtsdi package, a number of different

methods are implemented for estimating the level of the univariate time series. For

all simulated examples, we fit a cubic spline to each univariate component where the

number of degrees of freedom of each spline is chosen by cross-validation.

Similarly, we also apply the multiple imputation method that combines expectation-

maximization with bootstrapping, available in the Amelia II R package (Honaker



CHAPTER 4. IMPUTATION IN HIGHDIMENSIONAL SERIES 101

et al., 2015). As this is a multiple imputation approach, the method produces m com-

pleted datasets which are then averaged to obtain a final imputed dataset. Within

the simulations, we choose m = 5 as this is suggested by the authors to be suitable

unless the rate of missingness is very high. As both of these methods assume that the

data can be modelled using a multivariate normal distribution, we would expect them

to perform poorly in cases where the underlying time series is highly nonstationary.

As we wish to impute missing values in a multivariate, nonstationary time series, it

is important to compare our method to a range of model-based approaches. We apply

the iterative PCA method from the R package missMDA (Husson and Josse, 2018).

Within the simulations, we apply the regularised iterative PCA algorithm with the

number of random initializations set to 10 and with the default parameter values.

In addition, we compare to the non-parametric random forest imputation method

implemented in the R package missForest (Stekhoven, 2013) where again we use the

default parameters.

Since our method involves using a one-step ahead forecasting and backcasting

step within the mvLSW framework, as a direct comparison to this we also apply the

vector autoregressive prediction approach from the R package MTS (Tsay, 2015). For

each missing index, the approach fits a vector autoregressive process to the available

observations and then produces one-step ahead forecasts to predict the missing values.

In the same way as the mvLSWimpute method, we carry out a backward pass of

the data and combine the estimates from the forecasting and backcasting steps by

averaging (denoted VAR-fb). For completeness, we also include the results from

applying one-step ahead forecasting only within this setting (denoted VAR-f).
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4.4.2 Evaluation measures

For each of the missingness scenarios and dependence structures described in Sec-

tion 4.4, 100 replications of the test signals are simulated and four different evaluation

measures are considered. In order to assess the performance of the imputation mea-

sures, we consider a modified version of the Root Mean Square Error (RMSE) and

Mean Absolute Error (MAE). The majority of the simulated examples we consider

contain changes in variability over time; this volatility affects the standard RMSE

and MAE and makes it difficult to directly compare results for slowly and rapidly

evolving dependence. For this reason, we scale the results over time using the true

standard deviation.

Let σt,P denote the true standard deviation of the signal at time t for channel

P . The calculations of the modified RMSE and MAE only include the predicted

values at the missing time points and not the full time series. Let N denote the

total number of missing values across all channels and timepoints, tmis = {t1, t2, · · ·}

contains the timepoints where observations are missing and Pmis = {Pt1 , Pt2 , · · ·}

denotes the corresponding channels which are affected. Then the modified RMSE can

be defined by

RMSE =

√√√√ 1

N

∑
b∈Pmis

∑
s∈tmis

(Xb
s,T − X̂b

s,T )2

σ2
s,b

, (4.4.1)

and the modified MAE is given by

MAE =
1

N

∑
b∈Pmis

∑
s∈tmis

|Xb
s,T − X̂b

s,T |
σs,b

. (4.4.2)

In addition to this, we also rank the imputation methods based on the modified

RMSE and MAE results. For each of the 100 replications carried out, we track which
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of the imputation methods gives the lowest scaled RMSE and MAE and sum the

results.

The imputation results for each of the examples described above (as in Figure

4.4.1) can be seen in Tables 4.4.1-4.4.4. For each example, we consider 10%, 20%,

30% and 40% missingness at random as well as chunks of 20 consecutive time points

missing and bursts of missingness up to length 20. A description of how the bursts

of missingness are generated can be found in Section 4.7. Note that we include the

results for the situation where the missingness occurs in all channels simultaneously.

In each case, we record the modified RMSE, modified MAE and rankings over the

100 replications based on these errors (as described above); the numbers within the

brackets represent the standard deviation of these quantities.

When we consider rapidly evolving dependence within the time varying vector

autoregressive moving average setting (Table 4.4.2), it can be seen that the mvL-

SWimpute method performs well both in terms of the modified error measures and

the rankings when percentages of the data are missing at random. On the other hand,

the competitor methods which rely on the assumption of an underlying stationary

model cannot cope with the changing dependence structure. Note that the addition

of a backcasting step into the vector autoregressive prediction approach (VAR-fb)

provides an improvement in performance. However, it can be seen that the results

weaken when we look at more extreme missingness scenarios such as bursts or chunks

missing. When imputing missing values in areas of a signal where consecutive time

points are missing, all methods can struggle to accurately reconstruct the dependence

behaviour within these areas; our proposed method still gives mild improvements in
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Table 4.4.1: Performance of the imputation methods over 100 replications of mvLSW

process with slowly evolving dependence for different missingness scenarios occurring

simultaneously across all channels, using the evaluation measures described in the

text. Numbers in brackets represent the standard deviation of estimation errors.

Bold numbers indicate best result.

10% 20% 30% 40% Chunks Bursts

Method Scaled by true standard deviation - RMSE

mvLSWimpute-f 0.88 (0.06) 0.90 (0.05) 0.92 (0.04) 0.94 (0.04) 1.00 (0.14) 0.92 (0.08)

mvLSWimpute-fb 0.81 (0.06) 0.85 (0.04) 0.87 (0.04) 0.89 (0.04) 1.00 (0.14) 0.88 (0.08)

mtsdi 0.93 (0.06) 0.95 (0.05) 0.97 (0.04) 1.01 (0.07) 1.15 (0.22) 0.97 (0.09)

Amelia 1.10 (0.07) 1.10 (0.06) 1.11 (0.05) 1.09 (0.04) 1.11 (0.15) 1.09 (0.09)

VAR-f 0.92 (0.06) 0.94 (0.05) 0.95 (0.04) 0.97 (0.04) 1.03 (0.15) 0.95 (0.08)

VAR-fb 0.86 (0.06) 0.88 (0.05) 0.90 (0.04) 0.92 (0.04) 1.02 (0.15) 0.89 (0.08)

PCA 1.00 (0.07) 1.00 (0.05) 1.00 (0.04) 0.99 (0.04) 1.02 (0.14) 0.99 (0.08)

Random forest 1.06 (0.09) 1.06 (0.09) 1.06 (0.07) 1.04 (0.05) 1.08 (0.15) 1.04 (0.09)

Method Scaled by true standard deviation - MAE

mvLSWimpute-f 0.70 (0.05) 0.72 (0.04) 0.73 (0.03) 0.75 (0.03) 0.81 (0.12) 0.73 (0.06)

mvLSWimpute-fb 0.65 (0.05) 0.67 (0.04) 0.69 (0.03) 0.71 (0.03) 0.80 (0.12) 0.70 (0.06)

mtsdi 0.75 (0.06) 0.76 (0.04) 0.77 (0.03) 0.80 (0.04) 0.93 (0.18) 0.77 (0.07)

Amelia 0.88 (0.06) 0.88 (0.05) 0.88 (0.04) 0.87 (0.03) 0.89 (0.12) 0.87 (0.07)

VAR-f 0.73 (0.05) 0.75 (0.04) 0.76 (0.03) 0.77 (0.03) 0.83 (0.13) 0.75 (0.06)

VAR-fb 0.68 (0.05) 0.70 (0.04) 0.71 (0.03) 0.73 (0.03) 0.82 (0.13) 0.71 (0.06)

PCA 0.80 (0.06) 0.80 (0.04) 0.81 (0.04) 0.79 (0.03) 0.82 (0.12) 0.79 (0.06)

Random forest 0.85 (0.07) 0.85 (0.07) 0.85 (0.05) 0.83 (0.04) 0.87 (0.13) 0.84 (0.07)

Method Ranking - RMSE

mvLSWimpute-f 3 1 0 0 29 10

mvLSWimpute-fb 90 91 97 98 32 67

mtsdi 1 0 0 0 7 4

Amelia 0 0 0 0 2 0

VAR-f 0 0 0 0 11 0

VAR-fb 6 8 3 2 12 19

PCA 0 0 0 0 3 0

Random forest 0 0 0 0 4 0

Method Ranking - MAE

mvLSWimpute-f 5 2 1 1 24 10

mvLSWimpute-fb 88 90 92 89 31 66

mtsdi 0 0 0 0 10 4

Amelia 0 0 0 0 3 0

VAR-f 1 0 0 0 11 0

VAR-fb 6 8 7 10 11 20

PCA 0 0 0 0 2 0

Random forest 0 0 0 0 8 0
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Table 4.4.2: Performance of the imputation methods over 100 replications of vector

moving average, autoregressive series with rapidly changing dependence structure for

different missingness scenarios occurring simultaneously across all channels, using the

evaluation measures described in the text. Numbers in brackets represent the standard

deviation of estimation errors. Bold numbers indicate best result.

10% 20% 30% 40% Chunks Bursts

Method Scaled by true standard deviation - RMSE

mvLSWimpute-f 1.67 (0.13) 1.76 (0.10) 1.80 (0.10) 1.88 (0.10) 2.02 (0.52) 1.81 (0.16)

mvLSWimpute-fb 1.45 (0.11) 1.54 (0.09) 1.60 (0.09) 1.70 (0.09) 2.00 (0.52) 1.62 (0.14)

mtsdi 1.69 (0.12) 1.74 (0.11) 1.78 (0.10) 1.89 (0.11) 2.33 (0.64) 1.82 (0.18)

Amelia 2.40 (0.19) 2.42 (0.14) 2.41 (0.14) 2.44 (0.14) 2.36 (0.51) 2.37 (0.22)

VAR-f 1.75 (0.15) 1.84 (0.11) 1.90 (0.12) 1.98 (0.11) 2.05 (0.53) 1.84 (0.16)

VAR-fb 1.54 (0.12) 1.65 (0.09) 1.71 (0.10) 1.82 (0.09) 2.02 (0.52) 1.68 (0.16)

PCA 2.10 (0.18) 2.12 (0.13) 2.11 (0.13) 2.15 (0.13) 2.07 (0.53) 2.07 (0.20)

Random forest 2.19 (0.21) 2.19 (0.14) 2.21 (0.15) 2.26 (0.18) 2.15 (0.54) 2.16 (0.22)

Method Scaled by true standard deviation - MAE

mvLSWimpute-f 1.32 (0.10) 1.39 (0.08) 1.42 (0.08) 1.48 (0.07) 1.61 (0.43) 1.42 (0.13)

mvLSWimpute-fb 1.14 (0.09) 1.22 (0.07) 1.26 (0.07) 1.34 (0.07) 1.59 (0.43) 1.27 (0.11)

mtsdi 1.34 (0.10) 1.37 (0.09) 1.41 (0.07) 1.48 (0.08) 1.86 (0.52) 1.44 (0.14)

Amelia 1.89 (0.15) 1.91 (0.11) 1.91 (0.11) 1.92 (0.11) 1.90 (0.42) 1.87 (0.17)

VAR-f 1.38 (0.11) 1.45 (0.09) 1.50 (0.09) 1.56 (0.08) 1.64 (0.44) 1.46 (0.13)

VAR-fb 1.21 (0.09) 1.30 (0.07) 1.35 (0.08) 1.43 (0.07) 1.62 (0.43) 1.33 (0.13)

PCA 1.65 (0.14) 1.67 (0.10) 1.66 (0.10) 1.68 (0.10) 1.66 (0.44) 1.64 (0.16)

Random forest 1.72 (0.16) 1.72 (0.11) 1.74 (0.12) 1.78 (0.15) 1.73 (0.44) 1.71 (0.17)

Method Ranking - RMSE

mvLSWimpute-f 0 0 0 0 19 0

mvLSWimpute-fb 92 95 99 97 27 80

mtsdi 0 0 0 1 3 2

Amelia 0 0 0 0 2 0

VAR-f 0 0 0 0 11 0

VAR-fb 8 5 1 2 17 18

PCA 0 0 0 0 7 0

Random forest 0 0 0 0 14 0

Method Ranking - MAE

mvLSWimpute-f 1 0 0 0 20 1

mvLSWimpute-fb 90 98 98 99 28 77

mtsdi 0 0 0 1 5 3

Amelia 0 0 0 0 3 0

VAR-f 0 0 0 0 9 0

VAR-fb 9 2 2 0 15 19

PCA 0 0 0 0 7 0

Random forest 0 0 0 0 13 0
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Table 4.4.3: Performance of the imputation methods over 100 replications of vector

autoregressive series with slowly evolving dependence structure for different miss-

ingness scenarios occurring simultaneously across all channels, using the evaluation

measures described in the text. Numbers in brackets represent the standard deviation

of estimation errors. Bold numbers indicate best result.

10% 20% 30% 40% Chunks Bursts

Method Scaled by true standard deviation - RMSE

mvLSWimpute-f 1.10 (0.08) 1.13 (0.05) 1.14 (0.05) 1.16 (0.04) 1.14 (0.13) 1.14 (0.08)

mvLSWimpute-fb 1.04 (0.07) 1.07 (0.05) 1.08 (0.05) 1.11 (0.04) 1.13 (0.13) 1.09 (0.07)

mtsdi 1.14 (0.08) 1.17 (0.05) 1.18 (0.05) 1.19 (0.05) 1.21 (0.18) 1.17 (0.09)

Amelia 1.34 (0.09) 1.36 (0.07) 1.36 (0.07) 1.37 (0.05) 1.35 (0.25) 1.34 (0.09)

VAR-f 1.11 (0.09) 1.15 (0.05) 1.15 (0.06) 1.17 (0.04) 1.15 (0.14) 1.14 (0.08)

VAR-fb 1.06 (0.08) 1.09 (0.05) 1.10 (0.05) 1.13 (0.04) 1.15 (0.20) 1.10 (0.08)

PCA 1.16 (0.08) 1.17 (0.05) 1.16 (0.06) 1.17 (0.04) 1.17 (0.18) 1.17 (0.08)

Random forest 1.24 (0.12) 1.26 (0.12) 1.27 (0.11) 1.27 (0.10) 1.21 (0.17) 1.25 (0.12)

Method Scaled by true standard deviation - MAE

mvLSWimpute-f 0.88 (0.07) 0.90 (0.04) 0.91 (0.04) 0.92 (0.03) 0.94 (0.14) 0.90 (0.06)

mvLSWimpute-fb 0.82 (0.06) 0.85 (0.04) 0.86 (0.04) 0.88 (0.03) 0.93 (0.14) 0.86 (0.07)

mtsdi 0.91 (0.06) 0.93 (0.04) 0.94 (0.04) 0.95 (0.04) 0.97 (0.14) 0.93 (0.07)

Amelia 1.06 (0.07) 1.08 (0.05) 1.08 (0.04) 1.08 (0.04) 1.08 (0.20) 1.06 (0.08)

VAR-f 0.88 (0.07) 0.91 (0.05) 0.92 (0.05) 0.93 (0.03) 0.95 (0.15) 0.91 (0.06)

VAR-fb 0.84 (0.06) 0.87 (0.04) 0.87 (0.04) 0.89 (0.03) 0.94 (0.15) 0.87 (0.07)

PCA 0.92 (0.06) 0.94 (0.04) 0.93 (0.04) 0.94 (0.03) 0.95 (0.15) 0.93 (0.07)

Random forest 0.99 (0.10) 1.00 (0.09) 1.01 (0.08) 1.01 (0.08) 0.99 (0.20) 0.99 (0.10)

Method Ranking - RMSE

mvLSWimpute-f 0 0 0 0 22 2

mvLSWimpute-fb 68 66 72 73 17 57

mtsdi 0 0 0 0 12 1

Amelia 0 0 0 0 2 0

VAR-f 0 0 0 0 14 1

VAR-fb 32 34 28 27 21 38

PCA 0 0 0 0 3 1

Random forest 0 0 0 0 9 0

Method Ranking - MAE

mvLSWimpute-f 1 0 0 1 22 3

mvLSWimpute-fb 63 64 67 67 17 55

mtsdi 0 0 0 0 11 0

Amelia 0 0 0 0 2 0

VAR-f 1 0 0 0 14 2

VAR-fb 35 36 33 32 20 39

PCA 0 0 0 0 3 1

Random forest 0 0 0 0 11 0
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Table 4.4.4: Performance of the imputation methods over 100 replications of station-

ary vector moving average series for different missingness scenarios occurring simul-

taneously across all channels, using the evaluation measures described in the text.

Numbers in brackets represent the standard deviation of estimation errors. Bold

numbers indicate best result.

10% 20% 30% 40% Chunks Bursts

Method Scaled by true standard deviation - RMSE

mvLSWimpute-f 1.81 (0.12) 1.89 (0.09) 1.94 (0.07) 2.00 (0.07) 2.14 (0.26) 1.97 (0.15)

mvLSWimpute-fb 1.63 (0.11) 1.71 (0.09) 1.77 (0.06) 1.83 (0.07) 2.13 (0.25) 1.81 (0.14)

mtsdi 1.71 (0.11) 1.79 (0.10) 1.89 (0.10) 2.02 (0.12) 2.33 (0.31) 1.94 (0.19)

Amelia 2.36 (0.15) 2.41 (0.11) 2.42 (0.10) 2.42 (0.10) 2.41 (0.26) 2.43 (0.18)

VAR-f 1.83 (0.12) 1.91 (0.10) 1.96 (0.08) 2.03 (0.08) 2.19 (0.26) 2.01 (0.16)

VAR-fb 1.66 (0.11) 1.75 (0.09) 1.81 (0.07) 1.89 (0.08) 2.16 (0.26) 1.85 (0.14)

PCA 2.15 (0.14) 2.21 (0.10) 2.21 (0.08) 2.22 (0.10) 2.20 (0.25) 2.20 (0.16)

Random forest 2.30 (0.19) 2.37 (0.18) 2.35 (0.17) 2.37 (0.16) 2.39 (0.35) 2.35 (0.23)

Method Scaled by true standard deviation - MAE

mvLSWimpute-f 1.44 (0.10) 1.51 (0.08) 1.54 (0.06) 1.59 (0.06) 1.73 (0.23) 1.56 (0.11)

mvLSWimpute-fb 1.29 (0.09) 1.36 (0.07) 1.40 (0.05) 1.45 (0.06) 1.72 (0.22) 1.43 (0.11)

mtsdi 1.36 (0.09) 1.43 (0.08) 1.49 (0.07) 1.58 (0.08) 1.86 (0.25) 1.52 (0.14)

Amelia 1.89 (0.13) 1.93 (0.09) 1.93 (0.07) 1.93 (0.09) 1.94 (0.24) 1.94 (0.16)

VAR-f 1.45 (0.10) 1.52 (0.08) 1.56 (0.06) 1.61 (0.07) 1.78 (0.23) 1.59 (0.12)

VAR-fb 1.32 (0.09) 1.39 (0.07) 1.44 (0.05) 1.50 (0.07) 1.76 (0.23) 1.47 (0.11)

PCA 1.72 (0.12) 1.76 (0.09) 1.76 (0.06) 1.77 (0.09) 1.79 (0.23) 1.76 (0.14)

Random forest 1.84 (0.16) 1.90 (0.15) 1.88 (0.14) 1.90 (0.13) 1.95 (0.31) 1.88 (0.20)

Method Ranking - RMSE

mvLSWimpute-f 1 0 0 0 26 1

mvLSWimpute-fb 67 79 84 95 31 71

mtsdi 12 8 6 0 11 14

Amelia 0 0 0 0 0 0

VAR-f 0 0 0 0 5 1

VAR-fb 20 13 10 5 13 13

PCA 0 0 0 0 3 0

Random forest 0 0 0 0 11 0

Method Ranking - MAE

mvLSWimpute-f 1 0 0 0 25 1

mvLSWimpute 63 78 90 92 30 68

mtsdi 12 9 5 4 10 17

Amelia 0 0 0 0 0 0

VAR-f 0 0 0 0 10 0

VAR-fb 24 13 5 4 10 14

PCA 0 0 0 0 4 0

Random forest 0 0 0 0 11 0
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this challenging scenario.

When we consider the stationary moving average process (Table 4.4.4), it can be

seen that the mvLSWimpute approach again produces more accurate results followed

by both VAR-fb and mtsdi. Despite the competitor methods being designed for

imputation within stationary time series, the mvLSWimpute method outperforms

them both in terms of the modified error measures and the rankings.

As expected, for the mvLSW process exhibiting slowly varying spectral struc-

ture (Table 4.4.1), the mvLSWimpute method performs strongly across all evaluation

measures. For the slowly evolving vector autoregressive series (Table 4.4.3), the mvL-

SWimpute method consistently performs better than the competitors. However, the

VAR-fb approach also performs well in this setting due to the underlying model used

for the one step ahead predictions being designed for this scenario. In this case, the

results produced are comparable to mvLSWimpute in terms of the modified RMSE

and MAE.

Note that in nearly all cases across the examples, mvLSWimpute performs consis-

tently well in terms of the error measures considered, despite some of the competitor

methods being designed specifically for imputation within those scenarios. We also

note that the use of a backcasting step within both the mvLSW and VAR imputa-

tion methods improves their performance, justifying its inclusion. For the scenarios

discussed above, missingness in one channel only was also considered and similar

performance was observed. The full results for missingness in one channel only are

included in Section 4.8.
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4.5 Case study

In the previous section, we evaluated the performance of our multivariate imputation

method against a range of alternatives for a variety of simulated scenarios. We now

consider an application related to the use of atmospheric monitoring techniques within

the oil and gas industry.

There has been an increased interest in Carbon Capture and Storage (CCS)

projects over recent years due to the environmental benefits that such operations

can bring (Bachu, 2008; Leung et al., 2014). However, the associated climate benefits

are highly dependent on the efficient containment of the injected gases. For this rea-

son, there has been a particular focus on developing reliable atmospheric monitoring

techniques to detect and locate CO2 leakages within CCS sites. Current approaches

include methods based on atmospheric tomography (Jenkins et al., 2011; Levine et al.,

2016), Lagrangian particle dispersion models (Luhar et al., 2014) and Gaussian plume

dispersion models (Hirst et al., 2017). Any attempts to detect such leaks can be hin-

dered by the presence of missingness within the data as missing entries must either

be removed or replaced with suitable estimates before further analysis can take place.

Within this section, we focus on the problem of imputing missing values in a mul-

tivariate time series arising from a CCS project using data provided by our industrial

collaborator. We consider a trivariate signal of length 2048 corresponding to approxi-

mately one week of measurements; Figure 4.5.1(a) shows the CO2 concentrations over

time for three sensors. The signal exhibits a range of missingness, including data miss-

ing both at random or for consecutive time points across one or more sensors. The
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(a) (b)

Figure 4.5.1: Time series plots of the CO2 concentration for three sensors over the

same time period: (a) original series; (b) detrended series.

total number of missing values across the signal corresponds to approximately 6.5%.

Due to the zero-mean assumption of the mvLSW model, before analysis we detrend

the series by fitting a smoothing spline to each of the components and considering the

residuals, see Figure 4.5.1(b).

It is important to note that after removing the trend effect and imputing missing

values in the now zero-mean process, the trend must then be introduced back into the

series in some way to ensure direct comparisons can be made between the original and

imputed time series. However, this means that we must be aware that any interesting

behaviour within an imputed time series may be a feature of the imputation method

or could be due to the trend being added back into the series.

We apply the mvLSW-based imputation approach with p = 20 points considered in

the clipped predictor for both the forecasting and backcasting steps. For comparison,

we apply the mtsdi method and the VAR-fb approach as, of the existing methods,

these performed better in the simulation study. Since the true values of the test

signal are unknown at the missing time points, we compare the results visually. The
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(a) MvLSWimpute-fb (b) mtsdi

(c) VAR-fb

Figure 4.5.2: Imputation results obtained from applying mvLSWimpute-fb, mtsdi and

VAR-fb approaches to CO2 data, imputed values are shown in red.

imputation results for each of the methods are found in Figure 4.5.2; imputed values

are shown in red. It can be seen that, whilst the imputation results for all three

methods are quite similar, the mvLSWimpute method produces the most reliable

estimate for the missing data between August 5 and 6 when compared to the daily

behaviour over the rest of the week. Figure 4.5.3 shows the imputation results for

each of the methods, focusing on August 5 only. As the background concentration

of CO2 within the atmosphere naturally varies over the course of a day, it would be

unlikely that we would see any features as imputed by mtsdi and VAR-fb (Figures

4.5.3(b) and 4.5.3(c)) where the concentration suddenly changes over a short period

of time.
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(a) MvLSWimpute-fb

(b) mtsdi

(c) VAR-fb

Figure 4.5.3: Imputation results for August 5 only, imputed values are shown in red.
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Recall that the overall aim of atmospheric monitoring within CCS regions is to be

able to detect anomalous regions that could indicate releases of CO2. It is therefore

important to be able to replace missing values with reasonable estimates which will

then allow further analysis to be carried out. Our mvLSW imputation approach

can be used as a first step to infill any missing values before attempting to detect

anomalous regions or other secondary analysis tasks of interest.

4.6 Concluding remarks

In this work, we have introduced a wavelet-based imputation method that can be

used to replace missing values within a multivariate, nonstationary time series. We

compared the performance of our method against existing imputation approaches

using simulated data examples and a dataset from a Carbon Capture and Storage

facility. The simulated data examples demonstrate that the use of a backcasting

step within imputation can improve the performance of the prediction methods. The

case study shows that our method can be used to successfully impute missing values

within time series containing both nonstationarity and seasonality, resulting in a more

reliable imputation estimate compared to existing approaches.

In practice, we have found that, as with other competitor methods, the perfor-

mance of our approach suffers when we have extreme scenarios such as chunks of

consecutive time points missing or bursts of missingness. An avenue for future re-

search could be to look at ways in which we could improve the imputation results for

these cases.
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4.7 Bursts of missingness

For all the simulations described in Section 4.4, we generate 5 bursts of missingness

that have maximum length l = 20 and are a minimum of d = 70 timepoints apart.

First, we randomly sample 50% of the indices without replacement which form the

set of candidate locations for missing data. Next, we select the start location for the

first burst by sampling an index k between 30 and 70. The start locations s of the

bursts are then defined by k+ ln+ dn where n ∈ {1, . . . , 5} and the end locations are

determined by s+ l. For each of the bursts, the missing indices are chosen by selecting

the candidate locations (determined in Step 1) that are between the start and end

point of the burst. An example time series containing bursts of missingness can be

seen in Figure 4.7.1, the filled black circles represent the locations of the missing

values.

Figure 4.7.1: Example time series containing bursts of missingness.
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4.8 Simulated performance of mvLSWimpute - ad-

ditional tables

In this section, we present the results for the simulated examples considered in Sec-

tion 4.4 where the missingness occurs across one channel only. Specifically, we include

the imputation results for slowly evolving mvLSW and vector autoregressive series in

Tables 4.8.1 and 4.8.3 respectively. Table 4.8.2 contains the results for vector mov-

ing average, autoregressive series with rapidly changing dependence structure and

Table 4.8.4 contains the results for stationary vector moving average series with miss-

ingness in one channel only.

Similarly to the results included in Section 4.4, we can see from Tables 4.8.1-

4.8.4 that the mvLSWimpute method performs consistently well in terms of the error

measures across all cases. Note that the missingness mechanism appears to affect the

results more than the underlying time series model. As in Section 4.4, it is clear that

all methods struggle to accurately impute missing values when there are bursts of

missingness or chunks of consecutive time points missing.
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Table 4.8.1: Performance of the imputation methods over 100 replications of mvLSW

process with slowly evolving dependence for different missingness scenarios occurring

across one channel, using the evaluation measures described in the text. Numbers in

brackets represent the standard deviation of estimation errors. Bold numbers indicate

best result.

10% 20% 30% 40% Chunks Bursts

Method Scaled by true standard deviation - RMSE

mvLSWforecast 0.84 (0.08) 0.86 (0.06) 0.87 (0.05) 0.87 (0.05) 0.90 (0.17) 0.90 (0.09)

mvLSWimpute 0.78 (0.08) 0.80 (0.05) 0.81 (0.05) 0.82 (0.04) 0.88 (0.18) 0.83 (0.08)

mtsdi 0.81 (0.09) 0.83 (0.06) 0.82 (0.05) 0.84 (0.06) 0.93 (0.27) 0.83 (0.09)

Amelia 1.01 (0.10) 1.04 (0.07) 1.02 (0.07) 1.03 (0.06) 1.03 (0.23) 1.06 (0.12)

VARforecast 0.90 (0.09) 0.91 (0.06) 0.91 (0.06) 0.93 (0.05) 0.99 (0.23) 0.94 (0.09)

VARpred 0.83 (0.08) 0.85 (0.06) 0.85 (0.05) 0.87 (0.05) 0.94 (0.20) 0.87 (0.09)

PCA 0.93 (0.10) 0.95 (0.06) 0.94 (0.07) 0.94 (0.06) 0.92 (0.23) 0.97 (0.12)

Random forest 0.99 (0.11) 1.01 (0.07) 1.00 (0.07) 1.01 (0.07) 1.01 (0.24) 1.03 (0.12)

Method Scaled by true standard deviation - MAE

mvLSWforecast 0.67 (0.07) 0.69 (0.05) 0.69 (0.05) 0.70 (0.04) 0.73 (0.14) 0.72 (0.08)

mvLSWimpute 0.63 (0.07) 0.64 (0.05) 0.64 (0.04) 0.65 (0.04) 0.71 (0.15) 0.66 (0.07)

mtsdi 0.65 (0.07) 0.65 (0.05) 0.65 (0.04) 0.67 (0.05) 0.75 (0.23) 0.66 (0.07)

Amelia 0.81 (0.08) 0.82 (0.06) 0.81 (0.06) 0.82 (0.05) 0.84 (0.20) 0.85 (0.11)

VARforecast 0.72 (0.07) 0.72 (0.05) 0.73 (0.05) 0.74 (0.05) 0.80 (0.20) 0.75 (0.08)

VARpred 0.66 (0.07) 0.67 (0.05) 0.67 (0.04) 0.69 (0.04) 0.76 (0.17) 0.69 (0.07)

PCA 0.75 (0.08) 0.75 (0.05) 0.74 (0.06) 0.75 (0.05) 0.75 (0.20) 0.77 (0.10)

Random forest 0.79 (0.10) 0.80 (0.05) 0.79 (0.06) 0.80 (0.06) 0.81 (0.20) 0.82 (0.10)

Method Ranking - RMSE

mvLSWforecast 7 3 1 1 7 4

mvLSWimpute 58 60 66 65 21 37

mtsdi 25 31 32 32 25 42

Amelia 0 0 0 0 4 0

VARforecast 1 0 0 0 8 1

VARpred 9 6 1 2 16 12

PCA 0 0 0 0 15 3

Random forest 1 0 0 0 4 1

Method Ranking - MAE

mvLSWforecast 11 3 0 3 11 6

mvLSWimpute 47 50 60 60 22 35

mtsdi 30 35 35 35 26 43

Amelia 0 0 0 0 3 0

VARforecast 0 0 0 0 7 2

VARpred 10 12 5 2 12 12

PCA 1 0 0 0 13 2

Random forest 1 0 0 0 6 0
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Table 4.8.2: Performance of the imputation methods over 100 replications of vector

moving average, autoregressive series with rapidly changing dependence structure

for different missingness scenarios occurring across one channel, using the evaluation

measures described in the text. Numbers in brackets represent the standard deviation

of estimation errors. Bold numbers indicate best result.

10% 20% 30% 40% Chunks Bursts

Method Scaled by true standard deviation - RMSE

mvLSWforecast 1.62 (0.21) 1.63 (0.13) 1.68 (0.11) 1.69 (0.11) 1.75 (0.40) 1.61 (0.18)

mvLSWimpute 1.39 (0.17) 1.41 (0.12) 1.47 (0.09) 1.48 (0.09) 1.71 (0.39) 1.41 (0.17)

mtsdi 1.72 (0.18) 1.68 (0.15) 1.74 (0.11) 1.75 (0.12) 2.00 (0.54) 1.76 (0.19)

Amelia 2.26 (0.26) 2.23 (0.16) 2.30 (0.13) 2.27 (0.14) 2.12 (0.52) 2.20 (0.26)

VARforecast 1.72 (0.22) 1.73 (0.13) 1.77 (0.11) 1.77 (0.12) 1.87 (0.47) 1.70 (0.20)

VARpred 1.48 (0.19) 1.51 (0.11) 1.56 (0.09) 1.57 (0.10) 1.71 (0.42) 1.51 (0.18)

PCA 2.01 (0.21) 2.01 (0.16) 2.06 (0.13) 2.04 (0.14) 1.89 (0.44) 1.97 (0.26)

Random forest 2.08 (0.24) 2.06 (0.17) 2.13 (0.15) 2.12 (0.15) 1.98 (0.42) 2.04 (0.28)

Method Scaled by true standard deviation - MAE

mvLSWforecast 1.29 (0.17) 1.29 (0.10) 1.33 (0.09) 1.34 (0.09) 1.44 (0.34) 1.29 (0.14)

mvLSWimpute 1.10 (0.13) 1.12 (0.09) 1.16 (0.07) 1.17 (0.07) 1.40 (0.34) 1.13 (0.14)

mtsdi 1.37 (0.14) 1.34 (0.12) 1.38 (0.09) 1.39 (0.10) 1.65 (0.48) 1.41 (0.16)

Amelia 1.80 (0.21) 1.79 (0.13) 1.89 (0.10) 1.80 (0.12) 1.73 (0.43) 1.76 (0.21)

VARforecast 1.36 (0.17) 1.37 (0.10) 1.40 (0.08) 1.40 (0.09) 1.54 (0.41) 1.36 (0.16)

VARpred 1.17 (0.15) 1.19 (0.08) 1.23 (0.08) 1.24 (0.08) 1.40 (0.37) 1.19 (0.14)

PCA 1.60 (0.18) 1.61 (0.13) 1.63 (0.10) 1.62 (0.12) 1.55 (0.39) 1.58 (0.22)

Random forest 1.64 (0.19) 1.63 (0.13) 1.67 (0.11) 1.66 (0.12) 1.61 (0.33) 1.61 (0.23)

Method Ranking - RMSE

mvLSWforecast 2 0 0 0 18 4

mvLSWimpute 73 91 90 89 19 78

mtsdi 1 0 0 0 7 0

Amelia 0 0 0 0 2 0

VARforecast 2 0 0 0 7 0

VARpred 22 9 10 11 33 18

PCA 0 0 0 0 5 0

Random forest 0 0 0 0 9 0

Method Ranking - MAE

mvLSWforecast 2 1 1 0 10 5

mvLSWimpute 74 90 89 86 14 76

mtsdi 1 0 0 0 6 0

Amelia 0 0 0 0 2 0

VARforecast 1 0 0 0 10 0

VARpred 22 9 10 14 40 18

PCA 0 0 0 0 6 0

Random forest 0 0 0 0 12 1
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Table 4.8.3: Performance of the imputation methods over 100 replications of vector

autoregressive series with slowly evolving dependence structure for different missing-

ness scenarios occurring across one channel, using the evaluation measures described

in the text. Numbers in brackets represent the standard deviation of estimation errors.

Bold numbers indicate best result.

10% 20% 30% 40% Bursts Chunks

Method Scaled by true standard deviation - RMSE

mvLSWforecast 1.09 (0.11) 1.08 (0.08) 1.10 (0.06) 1.10 (0.06) 1.12 (0.19) 1.12 (0.11)

mvLSWimpute 1.03 (0.10) 1.02 (0.08) 1.04 (0.06) 1.05 (0.06) 1.11 (0.18) 1.06 (0.10)

mtsdi 1.15 (0.12) 1.13 (0.10) 1.14 (0.07) 1.14 (0.07) 1.18 (0.30) 1.16 (0.12)

Amelia 1.34 (0.15) 1.32 (0.10) 1.32 (0.09) 1.33 (0.08) 1.27 (0.27) 1.33 (0.14)

VARforecast 1.14 (0.12) 1.11 (0.09) 1.12 (0.07) 1.12 (0.06) 1.15 (0.17) 1.15 (0.11)

VARpred 1.08 (0.12) 1.05 (0.09) 1.06 (0.06) 1.07 (0.05) 1.14 (0.18) 1.08 (0.11)

PCA 1.17 (0.13) 1.14 (0.10) 1.15 (0.07) 1.16 (0.07) 1.13 (0.18) 1.16 (0.12)

Random forest 1.29 (0.14) 1.27 (0.11) 1.29 (0.09) 1.30 (0.08) 1.25 (0.20) 1.30 (0.14)

Method Scaled by true standard deviation - MAE

mvLSWforecast 0.87 (0.10) 0.86 (0.07) 0.87 (0.05) 0.88 (0.05) 0.91 (0.27) 0.89 (0.09)

mvLSWimpute 0.83 (0.09) 0.82 (0.07) 0.83 (0.05) 0.84 (0.05) 0.89 (0.16) 0.85 (0.08)

mtsdi 0.92 (0.10) 0.90 (0.08) 0.91 (0.06) 0.91 (0.05) 0.96 (0.27) 0.92 (0.10)

Amelia 1.06 (0.13) 1.05 (0.08) 1.05 (0.07) 1.04 (0.06) 1.03 (0.21) 1.06 (0.11)

VARforecast 0.91 (0.11) 0.89 (0.07) 0.89 (0.05) 0.91 (0.05) 0.93 (0.15) 0.92 (0.09)

VARpred 0.86 (0.11) 0.83 (0.07) 0.84 (0.05) 0.85 (0.04) 0.93 (0.15) 0.86 (0.09)

PCA 0.93 (0.11) 0.91 (0.08) 0.92 (0.06) 0.92 (0.06) 0.91 (0.15) 0.93 (0.10)

Random forest 1.02 (0.12) 1.00 (0.08) 1.02 (0.07) 1.03 (0.07) 1.01 (0.18) 1.02 (0.11)

Method Ranking - RMSE

mvLSWforecast 12 5 1 1 19 9

mvLSWimpute 58 60 65 76 25 47

mtsdi 5 5 2 3 14 7

Amelia 1 0 0 0 7 1

VARforecast 3 0 0 0 5 3

VARpred 18 29 29 19 5 30

PCA 3 1 3 1 18 3

Random forest 0 0 0 0 7 0

Method Ranking - MAE

mvLSWforecast 16 8 5 3 18 11

mvLSWimpute 48 55 60 66 24 45

mtsdi 7 4 5 2 19 10

Amelia 0 0 0 0 10 0

VARforecast 4 4 0 2 5 3

VARpred 22 26 28 26 6 24

PCA 3 3 2 1 9 7

Random forest 0 0 0 0 9 0
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Table 4.8.4: Performance of the imputation methods over 100 replications of station-

ary vector moving average series for different missingness scenarios occurring across

one channel, using the evaluation measures described in the text. Numbers in brack-

ets represent the standard deviation of estimation errors. Bold numbers indicate best

result.

10% 20% 30% 40% Chunks Bursts

Method Scaled by true standard deviation - RMSE

mvLSWforecast 1.78 (0.18) 1.87 (0.15) 1.94 (0.13) 2.00 (0.12) 2.12 (0.52) 1.81 (0.18)

mvLSWimpute 1.62 (0.17) 1.69 (0.13) 1.76 (0.11) 1.83 (0.11) 2.11 (0.52) 1.65 (0.17)

mtsdi 1.67 (0.18) 1.77 (0.15) 1.85 (0.13) 2.00 (0.17) 2.20 (0.69) 1.71 (0.19)

Amelia 2.28 (0.25) 2.34 (0.17) 2.32 (0.14) 2.34 (0.14) 2.32 (0.55) 2.29 (0.22)

VARforecast 1.80 (0.19) 1.90 (0.15) 1.97 (0.14) 2.05 (0.13) 2.26 (0.53) 1.85 (0.18)

VARpred 1.64 (0.18) 1.74 (0.13) 1.81 (0.11) 1.89 (0.11) 2.18 (0.52) 1.67 (0.17)

PCA 2.09 (0.24) 2.13 (0.15) 2.13 (0.12) 2.15 (0.13) 2.11 (0.55) 2.12 (0.21)

Random forest 2.25 (0.23) 2.30 (0.17) 2.31 (0.13) 2.31 (0.14) 2.28 (0.54) 2.28 (0.23)

Method Scaled by true standard deviation - MAE

mvLSWforecast 1.42 (0.14) 1.49 (0.13) 1.54 (0.10) 1.58 (0.10) 1.71 (0.43) 1.45 (0.15)

mvLSWimpute 1.29 (0.13) 1.36 (0.11) 1.40 (0.10) 1.45 (0.09) 1.70 (0.43) 1.32 (0.15)

mtsdi 1.34 (0.15) 1.41 (0.12) 1.47 (0.10) 1.57 (0.12) 1.77 (0.58) 1.38 (0.16)

Amelia 1.82 (0.21) 1.88 (0.15) 1.85 (0.12) 1.87 (0.12) 1.87 (0.45) 1.84 (0.18)

VARforecast 1.45 (0.16) 1.52 (0.13) 1.57 (0.11) 1.63 (1.07) 1.83 (0.44) 1.49 (0.15)

VARpred 1.31 (0.15) 1.39 (0.11) 1.44 (0.10) 1.50 (0.10) 1.77 (0.43) 1.35 (0.14)

PCA 1.68 (0.21) 1.71 (0.13) 1.70 (0.11) 1.72 (0.11) 1.70 (0.45) 1.69 (0.17)

Random forest 1.79 (0.21) 1.83 (0.15) 1.85 (0.12) 1.85 (0.12) 1.84 (0.44) 1.83 (0.20)

Method Ranking - RMSE

mvLSWforecast 3 2 0 0 19 3

mvLSWimpute 33 54 65 75 14 40

mtsdi 31 24 23 11 19 32

Amelia 0 0 0 0 5 0

VARforecast 2 0 1 0 7 3

VARpred 31 20 11 14 11 22

PCA 0 0 0 0 16 0

Random forest 0 0 0 0 9 0

Method Ranking - MAE

mvLSWforecast 4 2 1 0 15 2

mvLSWimpute 38 52 68 72 18 45

mtsdi 31 30 25 12 20 25

Amelia 0 0 0 0 8 0

VARforecast 3 0 0 0 11 4

VARpred 24 16 6 15 6 24

PCA 0 0 0 1 12 0

Random forest 0 0 0 0 10 0



Chapter 5

mvLSWimpute: An R package for

imputation in multivariate locally

stationary time series

5.1 Introduction

This chapter focuses on the implementation of the mvLSWimpute method proposed

in Chapter 4 within R. We describe the package functionality and demonstrate how

it can be used to replace missing values within multivariate locally stationary time

series. Missing values commonly occur in real world datasets across a range of ap-

plications including environmental research (Junninen et al., 2004; Plaia and Bondi,

2006), epidemiology (Greenland and Finkle, 1995; Clark and Altman, 2003) and sig-

nal processing (Gemmeke et al., 2010; Smaragdis et al., 2011). Secondary analysis of

such series, for example clustering (Tuikkala et al., 2008) and forecasting (Haworth

120
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and Cheng, 2012), can often be hindered by the presence of missingness. With that

in mind, the task of replacing these missing values accurately is an important one

and depends both on the application and the structure of the dataset. This task is

commonly called imputation.

For univariate time series data, any method to impute missing data must take into

account the inherent temporal dependence across successive time points, see Moritz

et al. (2015) for an extensive summary. Simple approaches to univariate time se-

ries imputation include replacing missing values with the mean, carrying forward the

last observed value or linear interpolation. All of these are implemented in the R

package imputeTS (Moritz, 2018) which provides the most comprehensive suite of

functions for imputation within this setting. In many cases, the underlying time series

containing missing data may have trend and seasonality and for this reason it can be

beneficial to model the series in some way to accurately capture this behaviour. Pack-

ages available on CRAN that contain advanced time series imputation functionality

and allow for imputation within such series include zoo (Zeileis et al., 2018) which

uses seasonal Kalman filters and forecast (Hyndman, 2017) which employs Seasonal

Trend Decomposition using Loess to replace missing values.

Turning to the multivariate setting, a variety of different imputation methods have

been proposed for imputing missing values, see Garćıa-Laencina et al. (2010) for an

indepth review. A range of existing R packages are dedicated to this task, some

popular examples include missMDA (Husson and Josse, 2018), mice (van Buuren

and Groothuis-Oudshoorn, 2018), missForest (Stekhoven, 2013) and VIM (Templ

et al., 2017). These implement a selection of algorithms for multivariate imputation
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within continuous, categorical and count variables including methods based on ran-

dom forests (Ishwaran et al., 2008), k-nearest neighbours (Hudak et al., 2008; Li and

Parker, 2014), PCA (Josse et al., 2011) and fully conditional specification models

(Bouhlila and Sellaouti, 2013). In terms of multivariate time series data, there are a

number of packages available on CRAN that specifically deal with imputing missing

values in this context. Each of these contain model-based algorithms that use the

expectation-maximization algorithm to infer missing values, this is implemented in

mtsdi (Junger and de Leon, 2018) and Amelia (Honaker et al., 2015) for Gaussian

distributions and in MARSS (Holmes et al., 2018) for Vector Autoregressive models.

However, current model-based approaches only cover imputation within stationary

time series where characteristics such as the mean and variance remain constant over

time. Time series that arise in practice across a range of applications often exhibit

changes in characteristics such as trend, variance and autocorrelation. Hence, ex-

isting imputation methods have not been designed with the requisite nonstationary

structure in mind.

In this chapter we introduce the mvLSWimpute package. This package can be

used to replace missing values in a multivariate locally stationary time series. The

method extends the one-step ahead forecasting approach of Fryzlewicz et al. (2003) to

the multivariate Locally Stationary Wavelet setting (Park et al., 2014); using the auto

and cross-covariance structure of the time series to accurately predict missing values.

Specifically, mvLSWimpute provides functionality for: the estimation of the Local

Wavelet Spectral (LWS) matrix for a given multivariate locally stationary time series

containing missing entries; and, imputation of the missing values within this setting.
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The package has been developed in R and makes use of a number of functions from

the mvLSW package (Taylor et al., 2017). Note that the mvLSWimpute approach

is designed for imputation within zero-mean time series containing missing values, for

this reason we must detrend the series before carrying out any analysis to ensure this

assumption holds. For the data used within the case study in Section 5.3, we fit a

smoothing spline to each component of the time series and consider the residuals.

This chapter is organised as follows. Within Section 5.2, we briefly review the

methodology for the mvLSWimpute approach before demonstrating the R package

functions through the use of a worked example. Specifically, we focus on the spec-

tral estimation step in Section 5.2.1. One-step ahead forecasting within the mvLSW

framework is discussed in Section 5.2.2. Section 5.2.3 describes the backcasting step,

included to improve imputation results. In Section 5.3 we describe a case study using

the EuStockMarkets data from the datasets package. Finally, Section 5.4 includes

some concluding remarks.

5.2 mvLSWimpute approach

Each iteration of the mvLSWimpute method consists of three steps: (i) an initial

spectral estimation step, (ii) a forward pass of the data in which missing values are

forecasted using one-step ahead prediction and (iii) a backward pass of the data

where missing entries are backcasted. An overall estimate of the imputed values of

the time series is then obtained by averaging the series obtained from the forward and

backward pass of the data. We briefly describe the LWS matrix estimation process
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in Section 5.2.1 before presenting a worked example for a trivariate locally stationary

wavelet (LSW) time series containing missing values. For a more comprehensive

discussion please read Chapter 4.

The theory behind forecasting multivariate locally stationary time series is intro-

duced in Section 5.2.2 along with an example of how this is implemented within R

in the mvLSWimpute package. The backcasting step, which was introduced to im-

prove imputation results, is summarized in Section 5.2.3. A complete demonstration

of one iteration of the imputation process is then included.

The mvLSWimpute package consists of functions that allow us to impute missing

values in a multivariate locally stationary time series, following the method outlined

in Algorithm 2. The main functions contained in this package can be found in Table

5.2.1.

5.2.1 Spectral Estimation

The first step of the imputation approach involves estimating the Local Wavelet Spec-

tral (LWS) matrix of the time series. The theory on how to accurately estimate this

quantity was introduced by Park et al. (2014) for the case where the underlying data

is complete. However, when the time series contains missing values, the estimation

procedure can no longer be applied in its existing form and must be modified. Fol-

lowing the work in Chapter 4, we first calculate the Haar empirical wavelet coefficient

vector dj,k for the time series, ensuring that any wavelet coefficients at scales and loca-

tions affected by the initial missing values are also missing. From this, we can obtain

the raw wavelet periodogram matrix and linearly interpolate missing coefficients in
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Function Description

spec estimation Estimates the LWS matrix for a multivariate time series

containing missing values. Returns a mvLSW object containing

the spectral array and information on the estimation procedure.

mv impute Can be used to carry out one iteration of the mvLSWimpute

method, using either one-step ahead forecasting only or

combined forecasting and backcasting. Returns a list containing

the imputed time series and information on the times and

locations of the original missing data points.

Table 5.2.1: mvLSWimpute functions

the spectra and cross-spectra across the levels containing information. For the levels

of the periodogram where the coefficients are all missing, we replace them by recur-

sively applying the wavelet filter equations to the coarsest level of the periodogram

that contains information. Finally, we smooth and correct the periodogram in the

usual manner, as described in Park et al. (2014) and implemented in the mvLSW R

package. A comprehensive description of this estimation procedure can be found in

Chapter 4.

We demonstrate the performance of the spectral estimation function on a simulated

example, using the mvLSW process with slowly evolving dependence structure from

the simulation study in Section 4.4. The trivariate EWS is defined in R using the

mvLSW package for a time series of length T = 512 (i.e. J = 9).
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R> library("mvLSW")

R> P <- 3

R> T <- 512

R> J <- log2(T)

R> true_spec <- array(0,dim=c(3,3,9,512))

R> true_spec[1,2,1,] <- true_spec[2,1,1,] <-

+ c(rep(5,150),rep(-5,150),rep(5,212))

R> true_spec[2,3,2,] <- true_spec[3,2,2,] <-

+ c(rep(-7,150),rep(7,150),rep(-7,212))

R> true_spec[1,3,3,] <- true_spec[3,1,3,] <-

+ c(rep(2,150),rep(8,150),rep(2,212))

R> true_spec[1,2,5,] <- true_spec[2,1,5,] <- true_spec[1,3,4,] <-

+ true_spec[3,1,4,] <- c(rep(-4,150),rep(4,150),rep(-4,212))

R> true_spec[1,2,2,] <- true_spec[2,1,2,] <- true_spec[2,3,2,] <-

+ true_spec[3,2,2,] <- c(rep(-6,150),rep(6,150),rep(-6,212))

R> true_spec <- as.mvLSW(true_spec)

R> true_spec <- mvLSW:::AdjPositiveDef(true_spec, 1e-10)

To obtain a LSW time series containing missing values, we first generate a reali-

sation from the EWS structure defined above with Gaussian innovations, again using

the mvLSW package. To ensure reproducibility in this article, we set the seed.

R> set.seed(1)

R> X <- rmvLSW(Spectrum = true_spec, noiseFN = rnorm)
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We then randomly sample 10% of indices to contain missing values across all

variables, Figure 5.2.1(b) shows an example realisation with this type of missingness

induced.

R> missing.indices <- sample(1:T,size=floor(0.1*T))

R> test.missing <- X

R> test.missing[missing.indices,] <- NA

(a) (b)

Figure 5.2.1: Example realisation of the process. (a) True signal; (b) Signal after

missingness has been induced.

Estimation of the LWS matrix for a multivariate locally stationary time series

containing missing values is implemented using the spec estimation function. The

wavelet transform is performed using the HaarWT function and we use routines from

the mvLSW package to smooth and correct the estimates and ensure the spectra and

cross-spectra are positive definite. This ensures that our spectral estimates should be

comparable to those generated using the mvEWS function from mvLSW.

R> est.LWS <- spec_estimation(data=test.missing)
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The input arguments of spec estimation are :

• data: A P -variate time series with dyadic length containing missing values.

Note that the input time series must be of class matrix, ts, xts (Ryan et al., 2018)

or zoo (Zeileis et al., 2018).

Within the spectral estimation step, we use the Smooth EWS and AdjPositiveDef

functions from the mvLSW package to smooth our estimates and ensure the spectra

and cross-spectra are positive definite. The function returns a mvLSW object containing

the following elements:

• spectrum: A P × P × J × T array containing the estimated LWS matrix.

• Information: A list containing information on the estimation procedure, see

Taylor et al. (2017) for further details.

To illustrate the performance of the spec estimation function, we simulate 100

multivariate locally stationary wavelet processes from this spectral structure and es-

timate the LWS matrix of each complete series using the mvLSW R package. Miss-

ingness is then induced within the data, for each replication we randomly select 10%

of indices to contain missing values across all variables. The spectral structure for the

signal containing missing data is then estimated using the spec estimation function

described above. Over the 100 replications, we compare the average spectra and cross-

spectra at different levels for each of the methods to see how our spectral estimation

approach for missing data compares with the true values generated using the com-

plete data and the mvEWS function. Figure 5.2.2 shows the average cross-spectra for the
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channel combinations (1, 2), (1, 3) and (2, 3) across all levels. The true spectral values

are plotted in black, the red lines represent the average cross-spectra over the repli-

cations generated by applying the mvEWS function to the complete time series and the

blue lines are the average cross-spectra generated by applying the spec estimation

function to the time series containing missingness.

It can be seen that our spectral estimation method produces cross-spectra that

broadly match those produced using the mvEWS function on the complete time series,

however there appear to be some differences across Levels 4, 5 and 6. In this case,

across all replications the coarsest level of the cross-spectra Ĵ that contains true

wavelet coefficients is 5. This level of the raw wavelet periodogram contains very

little true information from the original time series, and so it can be difficult to

accurately replace the missing wavelet coefficients. This can result in the imputed

spectra differing from the truth, an example of which can be seen in Figure 5.2.2(a).

It can also be seen from Figure 5.2.2 that our spectral estimation method is able

to reproduce the features in the cross-spectra at finer levels 1–4. However, it is

important to note that if we wanted to estimate the LWS matrix for a multivariate

locally stationary wavelet process which had power only at coarser scales then the

utility of our approach may be limited due to the difficulties mentioned above.

We also consider a further example, this time using the time-varying vector au-

toregressive process with slowly evolving dependence structure from the simulation

study in Section 4.4. Again we simulate 100 replications from this process and re-

peat the imputation process described above. The average cross-spectra across all

levels for the channel combinations (1, 2), (1, 3) and (2, 3) can be seen in Figure 5.2.3.
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(a) Cross-spectra for channels 1 and 2 across all levels

(b) Cross-spectra for channels 1 and 3 across all levels

(c) Cross-spectra for channels 2 and 3 across all levels

Figure 5.2.2: Average spectra across 100 replications of the slowly evolving mvLSW

process; True spectral values shown in black, spectral values generated using mvEWS

shown in red and the spectral estimates for the missing data are shown in blue.
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(a) Cross-spectra for channels 1 and 2 across all levels

(b) Cross-spectra for channels 1 and 3 across all levels

(c) Cross-spectra for channels 2 and 3 across all levels

Figure 5.2.3: Average spectra across 100 replications of the time varying vector au-

toregressive process; spectral values generated using mvEWS shown in red and the

spectral estimates for the missing data are shown in blue.
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Again the red lines represent the average cross-spectra over the replications generated

by applying the mvEWS function to the complete time series and the blue lines are

the average cross-spectra obtained by applying the spec estimation function to the

time series containing missingness. It can be seen that the estimates produced by the

spec estimation function match those produced by mvEWS across most levels. The

largest difference can be seen in the coefficients at level 4 in Figure 5.2.3(b), as in the

previous example this can be explained by the fact that few true wavelet coefficients

will be generated at levels 4–5 for time series with this structure and so it is difficult

to produce accurate estimates of the missing coefficients.

The examples within this section show that the mvLSWimpute method produces

accurate estimates of the spectra and cross-spectra of a multivariate locally stationary

wavelet process containing missing values at finer scales. However they also show some

of the downsides of the imputation approach, in that the wavelet coefficients produced

by the method at coarser levels can contain little true information from the original

time series. For this reason, it is important to note that the mvLSWimpute approach

may produce poor imputation results for processes that contain power only at coarser

scales.

5.2.2 Forecasting

Within the mvLSWimpute method, the LWS matrix estimated as described in Sec-

tion 5.2.1 is used to produce one-step ahead forecasts of missing values. The fore-

casting step consists of an extensions of the wavelet-based forecasting approach of

Fryzlewicz et al. (2003) to the multivariate setting which uses the Multivariate Lo-
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cally Stationary Wavelet (MvLSW) framework of Park et al. (2014). The local auto

and cross-covariance structure of the multivariate time series are used to form Yule-

Walker equations which can be solved to carry out one-step ahead predictions and

replace missing values with suitable estimates. A full description of the forecasting

procedure can be found in Chapter 4.

The forward pass of the data involves predicting the missing values at each time

point using the one-step ahead multivariate wavelet forecasting approach described

in Section 4.3.2. For each timepoint i at which one or more channels of the P -variate

time series has missing values, we first consider the spectra from time 1 to i−1 and use

this to form the local auto and cross-covariance using Equations (2.3.12) and (2.3.13).

Following this, the prediction equations defined in equation (4.2.3) can be formed for

each channel combination (p, q). These are then solved to obtain b(p,q) vectors that

are substituted into the one-step ahead predictor in equation (4.2.4) to predict the

values of the series at time i. The channels of the multivariate time series that contain

missing data at time i are then replaced by the corresponding predicted values.

Within the mvLSWimpute package, the mv impute function implements the

multivariate wavelet-based imputation approach. Setting the argument type="forward"

allows the user to impute missing values using one-step ahead forecasting only and not

include the backcasting step of the algorithm. The input arguments for mv impute

are:

• data: A P -variate time series with of dyadic length containing missing values.

• p: The number of terms to consider in the clipped predictor.
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• type: Choose either "forward" for one-step ahead forecasting only or

"forward-backward" to apply both the forecasting and backcasting step.

• ind: Vector containing the indices where datapoints are missing. By default,

this is set to NULL and the indices are determined from the input data.

For efficiency, the mv impute function calculates and returns a slice of the lacv array

corresponding to the lags and locations that are needed to solve the prediction equa-

tions for the particular missing index and clipped predictor length rather than the

full lacv array. This function returns a list containing the following elements:

• ImputedData: A T × P matrix containing the imputed time series.

• missing.index: Vector containing the indices where datapoints are missing.

For the time series shown in Figure 5.2.1(b), we use mv impute to forecast missing val-

ues, compare the results visually and calculate the Root Mean Square Error (RMSE)

and Mean Absolute Error (MAE). Within the mvLSW forecasting method, we choose

to use p = 2 for the number of terms to include in the clipped predictor. Note that

if the time series contained larger periods of missing values then we would choose a

larger value of p to reflect this.

R> forecasted.series = mv_impute(test.missing, p = 2, type = "forward")

The results of applying one iteration of the mvLSW forecasting method can be seen

in Figure 5.2.4, along with the true time series.

Finally, we apply the accuracy function from the forecast R package to assess the

performance of the forecasting step. Later we will compare this to the corresponding
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(a) True signal (b) Forecasted signal

Figure 5.2.4: True series and signal after applying the mvLSWimpute forecasting

method.

results obtained from the combined imputation approach using a forecasting and

backcasting step.

R> accuracy(as.ts(true),as.ts(forecasted.series$ImputedData))[1,2:3]

RMSE MAE

Test set 0.8877950 0.2157173

5.2.3 Backcasting

Independently of the forward pass of the data, we now carry out a backward pass in

which any missing values are backcasted sequentially. This step is included to improve

the imputation results as we now incorporate information from p points on either side

of each missing value within the prediction. In a similar way to the approach of

Trindade (2003), we form backward Yule-Walker equations in the mvLSW setting

by ordering the spectral values in a different way within the multivariate wavelet

forecasting approach. The backcasting step is described in more detail in Section 5.2.3.
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In this case, we consider the missing indices in descending order. For each time i in

which the series contains missing values, we consider the estimated spectra from time

T to i+ 1. As in the forecasting case, we can form the local auto and cross-covariance

using the estimated spectra from time T to i+ 1 and Equations (2.3.12) and (2.3.13).

The local auto and cross-covariance can then be used to solve the prediction equations

for each channel combination (p, q) and obtain the b(p,q) vectors. The one-step ahead

predictor in Equation (4.3.1) is used to backcast the value of the time series at index

i and then any missing entries within channels are replaced using their corresponding

predicted values.

Since the forward and backward pass of the time series are carried out indepen-

dently, we must combine them in some way to obtain an overall estimate of the series,

we choose to do this by averaging them. Note the backcasting approach is included

as a way to enhance the imputation results when combined with the one-step ahead

forecasts, and as such is not meant to be applied independently.

We use the mv impute function to estimate missing values in the time series shown

in Figure 5.2.1(b), again we choose p = 2 as the number of terms to include in the

clipped predictor for the forecasting and backcasting step, the results can be seen in

Figure 5.2.5.

R> imputed.series = mv.impute(test.missing, p = 2,

+ type = "forward-backward")

Applying the accuracy function to the imputed time series results in the following

RMSE and MAE estimates
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(a) True signal (b) Imputed signal

Figure 5.2.5: True series and signal after applying mvLSWimpute method.

R> accuracy(as.ts(true), as.ts(imputed.series$ImputedData))[1,2:3]

RMSE MAE

Test set 0.8058244 0.1945510

It can be seen that the RMSE and MAE are lower for the time series obtained from

the complete mvLSWimpute method than for the individual forecasted series. This

is to be expected as each missing point will be estimated using 2p total points rather

than p points for forecasting individually (where p is the number of terms in the

clipped predictor). This illustrates how the inclusion of the backcasting step helps

improve the accuracy of the imputation results.

The mvLSWimpute method can be iterated by applying the mv impute function

to the imputed time series obtained from the initial step and specifying the time and

location of the initial missing values. In practice we have typically found that the first

application of the method produces an accurate imputation estimate and subsequent

iterations do not provide much improvement in terms of accuracy, for this reason we

do not include the option to iterate within the mv impute function.
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5.3 Case Study

In this section, we demonstrate the mvLSWimpute package functionality through

the use of a case study. We consider the EuStockMarkets data from the datasets

package that consists of the daily financial index of the German (DAX), Swiss (SMI),

French (CAC) and British (FTSE) markets from 1991 to 1999. In order to remove

any trend from the series, we first fit a smoothing spline to each financial index

before considering the residuals. We then select a window of the time series of length

T = 1024 on which to perform the analysis, a plot of this series can be seen in

Figure 5.3.1.

Figure 5.3.1: Time series of four European financial indices.

R> data("EuStockMarkets", package = "datasets")

R> T <- 1024; J <- log2(T); N <- nrow(EuStockMarkets)

R> detrend_fun = function(data)return(residuals(smooth.spline(data)))
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R> apply(EuStockMarkets, FUN = detrend_fun, MARGIN = 2)

R> EU.ret = ts(EU.ret, start = start(EuStockMarkets),

+ end = end(EuStockMarkets), frequency = frequency(EuStockMarkets))

R> EU.ret <- window(EU.ret, start = c(1992,130), end = c(1996,113))

R> plot(x = EU.ret, main = "EU Financial Indices", nc = 2)

As in Section 5.2.1, we sample 10% of indices at random that will contain missing

values across all variables, a plot of the time series containing missing values can be

seen in Figure 5.3.2.

R> set.seed(123)

R> missing.indices <- sample(10:(T-1), size = floor(0.1*T))

R> EU.missing <- EU.ret

R> EU.missing[missing.indices,] <- NA

R> plot(x = EU.missing, main = "EU Financial Indices", nc = 2)

Imputation of the time series in Figure 5.3.2 is carried out using the mv impute

function, we consider the results from the combined forecasting and backcasting ap-

proach. The following code extract applies the wavelet-based imputation method and

creates a plot of the imputed time series which can be seen in Figure 5.3.3. Note

that in this case we choose to set the length of the clipped predictor p = 2 since

there are not many consecutive missing values in the time series. In situations where

longer periods of time contain missing values, selecting a larger value for the length

of clipped predictor may be more suitable.

R> EU.imputed <- mv_impute(EU.missing, p = 2,
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Figure 5.3.2: Time series of four European financial indices, for each series 10% of

values are missing.

+ type = "forward-backward")

R> plot(x = EU.imputed$ImputedData, nc = 2,

+ main = "EU Financial Indices - mvLSWimpute")

Applying the accuracy function to the imputed time series results in the following

RMSE and MAE estimates

R> accuracy(EU.ret, EU.imputed$ImputedData)[1,2:3]

RMSE MAE

Test set 5.194638 1.290103

We compare these imputation results with those obtained from the mtsdi R pack-

age which, of the competitor methods, has produced the strongest results. The fol-
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Figure 5.3.3: European Financial Indices time series after imputing missing values

using mvLSWimpute.

lowing code extract applies the EM-based method and creates a plot of the imputed

time series which can be seen in Figure 5.3.4.

R> library("mtsdi")

R> EU.mtsdi <- mnimput(formula=~DAX+SMI+CAC+FTSE, dataset=EU.missing)

R> plot(x = ts(EU.mtsdi$filled.dataset, start = start(EU.ret),

+ end = end(EU.ret), nc = 2, frequency = frequency(EU.ret)),

+ main = "EU Financial Indices - mtsdi")

Again, we apply the accuracy function to the imputed time series to obtain the

following RMSE and MAE estimates

R> accuracy(EU.ret, EU.mtsdi$filled.dataset))[1,2:3]

RMSE MAE
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Figure 5.3.4: European Financial Indices time series after imputing missing values

using mtsdi.

Test set 7.219201 1.740379

For the European Financial Indices time series, the mvLSWimpute method pro-

duces better imputation results than the competitor both in terms of the RMSE and

MAE. For each of the imputed time series, we considered the absolute difference be-

tween the imputed estimate and the true values over time. Figure 5.3.5 shows the

sum of this absolute difference over the four financial indices of interest. It can clearly

be seen that the magnitude of these differences are greater for the imputed time series

produced by mtsdi.

Within this case study, we have demonstrated that the mvLSWimpute R pack-

age can be used to replace missing values within a multivariate locally stationary time

series with suitable predictions based on the local auto and cross-covariance of the

series.
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(a) (b)

Figure 5.3.5: Sum of the absolute differences between the imputed time series and the

truth. (a) mvLSWimpute; (b) mtsdi.

5.4 Summary

The mvLSWimpute package contains a number of useful tools for analysing mul-

tivariate nonstationary time series containing missing values, using the multivariate

locally stationary wavelet framework defined in Park et al. (2014). The command

spec estimation, discussed in Section 5.2.1, allows the user to estimate the Local

Wavelet Spectral matrix of a time series containing missing entries by first estimat-

ing the raw wavelet periodogram, keeping any missing coefficients intact. Depending

on the level of the periodogram, these missing wavelet coefficients are then replaced

by either linearly interpolating or recursively applying the wavelet filter equations.

The main function mv impute, can be used to impute missing values in nonstationary

time series using either one-step ahead forecasting, described in Section 5.2.2, or a

combined approach which incorporates a backcasting step to enhance the forecasting

results, discussed in Section 5.2.3.

A case study that demonstrates the package utilities using the EuStockMarkets,
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European financial indices dataset can be found in Section 5.3. Through this, we show

that mvLSWimpute can be used to replace missing values in a nonstationary time

series where the spectral power of the process varies over time. The nonstationarity is

taken into account within the local auto and cross-covariance functions that are used

to replace the missing values within the series with suitable estimates.



Chapter 6

Conclusions and Discussion of

Future Work

In this thesis, we considered two different problems related to nonstationary time se-

ries analysis. In particular, we have focused on classifying and imputing missing values

within multivariate time series with slowly evolving dependence structure. In Chap-

ter 2, we review the extensive literature on wavelets and time series modelling. A brief

overview of wavelet analysis and some of the most common wavelet transforms is pro-

vided before summarising popular approaches for modelling time series, concentrating

on the nonstationary setting with the Locally Stationary Fourier processes (Dahlhaus,

1997) and the Smooth Localized Complex Exponential model (Ombao et al., 2002).

We conclude the chapter by introducing alternative wavelet-based methods for mod-

elling nonstationary time series with changing second-order structure, including the

(univariate) Locally Stationary Wavelet model (Nason et al., 2000) and the multivari-

ate Locally Stationary Wavelet framework (Park et al., 2014) that forms a key part

145
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of the classification and imputation approaches developed in this thesis.

In Chapter 3, we presented an extension of the dynamic classification approach

of Park et al. (2018) to the online setting. In order to allow for classification of

data streams, we make use of a dyadic length moving window. For each shift of the

window, we update the wavelet coefficients and transformed coherence estimate from

which we can obtain the probability that the signal belongs to a particular class for

the time points contained in the window. This procedure results in the collection

of multiple probability estimates corresponding to the different windows, these are

combined by averaging the estimates at each time point. Finally, we present a case

study demonstrating the utility of our method as a tool for classifying and detecting

periods of anomalous behaviour within distributed acoustic sensing data. The details

of the software that implements the online dynamic classification method can be found

in Appendix A.

In Chapter 4, we developed the mvLSWimpute approach as a method for replacing

missing values within a multivariate locally stationary time series. Our approach first

estimates the local wavelet spectral information of the process containing missing

values which is used to form the local auto and cross-covariance functions. These are

key quantities in the prediction step where a multivariate extension of the wavelet

forecasting approach of Fryzlewicz et al. (2003) is introduced, allowing us to calculate

one-step ahead forecasts for the missing values. This is combined with a backcasting

step to improve the performance of the imputation method. Finally, we describe

a case study in which the mvLSWimpute method is applied to a dataset arising

from a Carbon Capture and Storage facility. The mvLSWimpute R package that
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implements the imputation approach is outlined in Chapter 5 along with detailed

examples of the package functionality.

We conclude this thesis by discussing some avenues for future research. The mo-

tivation for the development of the online dynamic classification method detailed in

Chapter 3 was to be able to detect anomalous regions within acoustic sensing data.

At the moment, we have considered the two-class problem within Section 3.4 where

normal behaviour and stripes are well defined classes. In practice, we may come

across stripes of a different structure and there are a number of ways in which we

could approach this classification problem. Firstly, we could compile a universal bank

of training signals containing examples of different types of anomalous behaviour, a

suitable collection of training signals would allow us to both detect stripes and de-

termine the type present within a time series. This would require an extensive and

exhaustive knowledge of the features present in this type of data. An alternative

would be to treat this as a classification problem with N known classes and other un-

seen ones. The challenge then would be to develop a dynamic classification method

that can distinguish between the known classes and determine time points belonging

to unknown ones.

Future work arising from Chapter 4 could include developing a data-driven ap-

proach for determining the number of terms to include in the clipped predictor p

and the smoothing bandwidth parameter g. This has been studied in the univariate

forecasting setting, for example Fryzlewicz et al. (2003) uses a grid search method

which involves moving backwards by a certain number of observations s, choosing

some initial estimates for the parameters (p0, g0) and predicting Xt−s on the grid
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[(p0 − 1, g0 − δ), (p0, g0 − δ), . . . , (p0 + 1, g0 + δ)]. The pair that corresponds to the

best predictor is then chosen to be the new initial parameters, the process is iterated

to predict Xt−s+1, Xt−s+2, . . . , Xt−1 and the parameters are updated each time to ob-

tain the parameters (p1, g1) to be used in the final prediction. A similar approach

could be carried out in the multivariate setting but this updating procedure would

not be computationally efficient. Alternatively, Killick et al. (2018) uses the local

partial autocorrelation function to select p. Within this method, an estimate of the

local partial autocorrelation function is computed for a window centred on the last

observation in the process t − 1. In a similar manner to the stationary setting, p̂ is

then chosen to be the lag that minimises this. The smoothing is carried out using a

rectangular kernel with window size determined using the best bandwidth selection

algorithm in the locits R package (Nason, 2016). In the multivariate setting, we cur-

rently use a global value of p for each missing values of the time series and the default

settings for the smoothing parameters b
√
T c, where T is the length of the time series.

For each of the different channel combinations for a P -variate time series, we could

obtain the local windowed partial autocorrelation function but the challenge would

then be how to determine an overall value of p̂ from the estimates.



Appendix A

onlineDC: R package

A.1 The onlineDC package functions

The onlineDC package implements the online dynamic classification approach de-

scribed in Chapter 3. The main functions contained in this package are:

• sim.training: Simulates multivariate normal training signals from predefined

classes. Returns a list containing the training data and the true class member-

ship of the signals.

• get.info: Computes useful information such as the set of discriminative in-

dices from training signals. Returns a list containing the indices along with the

transformed coherence of the training signals grouped by class.

• calc.prob: Implements the offline dynamic classification method and calculates

the probability that the test signal belongs to a particular class over time.

• windowed.prob: Implements the dynamic classification with a moving window,
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the probability of belonging to a particular class for each window of data is

saved in an array.

• prob.est: Computes the average probability that the test signal belongs to a

particular class over time based on the estimates obtained from the different

windows. Returns an object of class onlineDC.

• plot.onlineDC: Plot the average probability of belonging to each class over

time. There are three different displays options, the average probability can be

plotted as a line graph or heat/gradient plot and the average class membership

over time can also be displayed.

We will now demonstrate how the onlineDC package works through a simulated

example. We consider a three class example, where each class is defined by a trivari-

ate normal signal with the same mean vector µ = (0, 0, 0) and differing covariance

matrices. The covariance matrices are given by:

Σ(1) =


1 0 0.3

0 1 0.7

0.3 0.7 1

 , Σ(2) =


1 0.6 0.1

0.6 1 −0.4

0.1 −0.4 1

 , Σ(3) =


1 0.2 −0.5

0.2 1 0

−0.5 0 1

 .

A.1.1 Simulating multivariate normal training data

To begin, we use the function sim.training to simulate a set of training signals of

length 128 that will be used in the classification:

library("onlineDC")

R> mean.vec <- list(c(0,0,0), c(0,0,0), c(0,0,0))
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R> cov.mat <- list(matrix(c(1,0,0.3,0,1,0.7,0.3,0.7,1), 3, 3),

+ matrix(c(1,0.6,0.1,0.6,1,-0.4,0.1,-0.4,1), 3, 3),

+ matrix(c(1,0.2,-0.5,0.2,1,0,-0.5,0,1), 3, 3))

R> training <- sim.training(w = 128, mean = mean.vec, cov = cov.mat)

The input arguments for this function are:

• w: The length of the training signals which we wish to simulate.

• mean: A list containing the mean vectors for each multivariate normal class.

• cov: A list containing the corresponding covariance matrices for the classes.

Using the predefined input multivariate normal classes, the function returns a list

containing the following elements:

• data: An array containing the simulated training signals.

• class: A matrix containing the true class membership of the training data.

As default, the signal generates two signals of length w from each of the classes and

further signals that contain a change in class at the halfway point. For example, the

above code will generate nine training signals of length 128; two simulations from

each of the three classes and a further three signals containing changes in class.

A.1.2 Obtaining information from the training data

As described in Section 3.2, the first step in the dynamic classification method involves

the calculation of the transformed coherence for each training signal and determining

the set of discriminative indices as in Definition 2.4.7. We can invoke the get.info
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function to obtain the set of discriminative indices that will then be used in the

classification step. This function requires several arguments:

• training: An array of dimension P×w×N containing the training data, where

P is the number of channels, w is the window length and N is the number of

training signals.

• true.class: A matrix of dimension w×N that contains the class assignments

of the training signals.

• Jstar: Maximum level of the wavelet transform to consider, if none is entered

the default is log2(w).

• prop: This is used to determine the size of the set of discriminative indices used

for classification, given by prop(P (P−1)J
2

), if no value is entered then the default

is prop = 0.25.

• filter.number: The filter number of the wavelet function used in the calcula-

tion of the transformed coherence.

• family: The wavelet function family used in the calculation of the transformed

coherence.

• smooth: Logical variable, determines whether the wavelet periodogram should

be smoothed. By default, this is set to TRUE.

• bias.correct: Logical variable, determines whether to correct the wavelet peri-

odogram using the inverse of the inner product matrix of discrete autocorrelation

wavelets, as described in Section 2.3.2.
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In order to compute the transformed coherence estimates, we call functions from

the mvLSW package, specifically mvEWS and coherence. Additional arguments can

be passed to get.info specifying the smoothing method to be applied and the smooth-

ing parameters, as required by mvEWS. Note that if smooth=TRUE, default values are

provided for all of the required smoothing arguments.

The get.info function returns a list containing the following elements:

• ind: A vector containing the set of discriminative indices.

• Sc: A list containing the spectral estimates of the training signals, split by class.

This can then be used to easily determine the estimated mean and covariance

matrices for the transformed coherence of each class.

This function is called automatically when we invoke the main classification function

in the package prob.est but we have included the description here for complete-

ness. For example, using the training data generated above we can use the Haar

wavelet transform to obtain the transformed coherence of the signals and the set of

discriminative indices using the following command:

R> info <- get.info(training = training$data, Jstar = 7, prop = 0.25,

+ true.class = training$class, filter.number = 1, smooth = TRUE,

+ family = "DaubExPhase")

A.1.3 Applying Dynamic Classification method

We now simulate a test signal Y that we will classify using the functions in the package.

This signal will be of length 450, starting in class 2 for the first 150 timepoints before
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moving to class 1 at time 300 and then ending in class 3.

R> set.seed <- 1000

R> Y <- matrix(NA,3,450)

R> Y[,1:150] <- t(rmvnorm(150, mean = rep(0,3),

+ sigma = matrix(c(1,0.6,0.1,0.6,1,-0.4,0.1,-0.4,1), 3, 3)))

R> Y[,151:300] <- t(rmvnorm(150, mean = rep(0,3),

+ sigma = matrix(c(1,0,0.3,0,1,0.7,0.3,0.7,1), 3, 3)))

R> Y[,301:450] <- t(rmvnorm(150, mean = rep(0,3),

+ sigma = matrix(c(1,0.2,-0.5,0.2,1,0,-0.5,0,1), 3, 3)))

At this stage, we can use the calc.prob function on individual windows of the test

signal to estimate the probability that the signal belongs to a particular class for the

duration of the window. For example, if we wish to obtain the probabilities for the

first window of data we use the following command:

R> window1 <- calc.prob(test = Y[,1:128], training = training$data,

+ true.class = training$class, Jstar = 7, prop = 0.25,

+ filter.number = 1, family = "DaubExPhase", smooth = TRUE)$prob

Again we include this function for completeness as it is invoked by both the windowed.prob

and prob.est functions. We do not include a full description of the function argu-

ments here since it shares arguments with both of these functions.
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A.1.4 Applying Dynamic Classification with a moving win-

dow

In order to carry out the online dynamic classification method, we select a suitable

moving window length w and classify each window of the data individually as de-

scribed in Section 3.2. We use the function windowed.prob to generate an array that

contains the probability of belonging to a particular class for each of the window of

data. The arguments required by this function are:

• test: Multivariate test signal that we wish to classify, matrix of dimension

P × T where P is the number of channels and T is the length of the series.

• training: An array containing the training data.

• true.class: A matrix that contains the class assignments of the training sig-

nals.

• Jstar: Maximum level of the wavelet transform to consider, if none is entered

the default is log2(w).

• prop: Determines the size of the set of discriminative indices used for classifi-

cation, as in the get.info function.

• filter.number: The filter number of the wavelet function used in the calcula-

tion of the transformed coherence.

• family: The wavelet function family used in the calculation of the transformed

coherence.
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• smooth: Logical variable, determines whether the wavelet periodogram should

be smoothed. By default, this is set to TRUE.

• bias.correct: Logical variable, determines whether to correct the wavelet peri-

odogram using the inverse of the inner product matrix of discrete autocorrelation

wavelets.

• return: Logical condition, determines if the probability array containing the

results for each window is returned.

It is important to note that the probability array generated by this function can be

very large, it is for this reason we include the logical condition return. If return=FALSE

then the probability array is not returned for efficiency. If return=TRUE then the func-

tion returns a list containing the elements:

• ind: A vector containing the set of discriminative indices used in the classifica-

tion.

• window.length: Length of the moving window used in the method.

• prob.array: An array containing the probability of belonging to a particular

class for each window of data.

Since the probability array contains the probability of belonging to a particular

class for each window of data, we can use this to plot a number of different things. The

plot.dynamic function can be used to plot dynamically how the probability estimates

change over time for each window. In addition, for a particular timepoint we can plot
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the probability estimates that arise from the different windows. The plot.dynamic

function requires the following arguments:

• data: An array containing the probability of belonging to a particular class for

each window.

• type: Two different methods are available. Using the option type="dynamic"

plots how the probability estimates change over time as a result of the differ-

ent windows of data. The option type="time" selects a particular timepoint

and plots the probability estimates for that time that arise from the different

windows.

• interval: Sets the time interval between frames of the animation, required

when type="dynamic". Default is 0.5 seconds.

• t: The timepoint for which we want to plot the probability estimates from

different windows, required when type="time".

First, we use the windowed.prob function to generate the required array:

R> window.results <- windowed.prob(test = Y, training = training$data,

+ true.class = training$class, Jstar = 7, prop = 0.25,

+ filter.number = 1, family = "DaubExPhase", smooth = TRUE,

+ return = TRUE)

The following command can then be used to generate the dynamic plot in HTML

form:
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R> plot.dynamic(window.results$prob.array, type = "dynamic",

+ interval = 0.5)

Alternatively, we can plot the probability estimates for a given timepoint, for example

time 200, using the following command:

R > plot.dynamic(window.results$prob.array, type = "time", t = 200)

Figure A.1.1: Probability estimates from different windows at time 200.

The results can be seen in Figure A.1.1.

A.1.5 Combining probabilities

We will now describe the main function defined in the package, prob.est. This func-

tion calls get.info to calculate the transformed coherence of the training signals and

to obtain the set of discriminative indices. Then calc.prob and windowed.prob are

invoked to obtain estimates of the probability that the signal belongs to a particular

class over time. Finally, prob.est combines the probability estimates to obtain an

overall average probability that the signal belongs to a particular class over time, as

described in Section 3.2. The main arguments for prob.est are:
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• test: Multivariate test signal that we wish to classify, matrix of dimension

P × T where P is the number of channels and T is the length of the series.

• training: An array containing the training data.

• true.class: A matrix that contains the class assignments of the training sig-

nals.

• Jstar: Maximum level of the wavelet transform to consider, if none is entered

the default is log2(w).

• prop: Determines the size of the set of discriminative indices used for classifi-

cation, as in the get.info function.

• filter.number: The filter number of the wavelet function used in the calcula-

tion of the transformed coherence.

• family: The wavelet function family used in the calculation of the transformed

coherence.

• smooth: Logical variable, determines whether the wavelet periodogram should

be smoothed. By default, this is set to TRUE.

• bias.correct: Logical variable, determines whether to correct the wavelet peri-

odogram using the inverse of the inner product matrix of discrete autocorrelation

wavelets.

The following code extract classifies the trivariate series Y using a moving window of

length 128 and the previously generated training data.
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R > out <- prob.est(test=Y, training = training$data, Jstar = 7,

+ true.class = training$class, filter.number = 1, prop = 0.25,

+ family = "DaubExPhase", smooth = TRUE)

This function returns an object of class onlineDC. The onlineDC class objects are

returned as lists. Three methods are available for this object class : summary, print

and plot.

R> summary(out)

Length of data: 450

Number of channels: 3

Window length: 128

Number of training signals: 9

Levels: 7

Filter was: Haar wavelet

Date: Fri Dec 07 10:28:54 2018

Using the summary command in this case tells us that we classified a trivariate signal of

length 450 using a moving window of length 128, we used information from 9 training

signals and the wavelet used in the analysis was the Haar wavelet.

R> print(out)

Class ’onlineDC’ : Online Dynamic Classification Object:

~~ : List with 7 components with names

data training.data prob.est window.length Jstar filter
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date

Created on : Fri Dec 07 10:28:54 2018

Invoking the print command tells us information about the onlineDC class object,

in particular that it contains the following elements:

• data: The input test signal that has been classified.

• training.data: A list containing the training signals and true class assignments

used in the method.

• prob.est: A matrix containing the average probability that the test signal

belongs to each class over time.

• window.length: The length of the moving window used in the method.

• Jstar: Number of levels of the wavelet transform considered.

• filter: List containing information on the wavelet filter used in the method.

• date: The date the classification was carried out.

Finally, we can use the plot.onlineDC function to plot the information contained

in an onlineDC object in a number of different ways. The function requires the

following arguments:

• object: An onlineDC class object.
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• display: Three display methods are available. The average probability that

the signal belongs to each class over time can be plotted as a line graph using

the option display="prob.l". Similarly, using the option display="prob.h"

allows us to display the average probability as a heat/gradient plot. The final

option display="class" plots the average class membership over time of the

signal.

For example, using the command

R> plot(out, display = "plot.l")

results in a plot of the average probability that the signal belongs to each of the three

classes over time, as seen in Figure A.1.2(a).

The onlineDC package implements the online dynamic classification approach,

as described in Chapter 3. onlineDC consists of functions that allow us to obtain

the set of discriminative indices from training signals, apply dynamic classification

with a moving window and then obtain an overall probability that the signal belongs

to a particular class over time. As a result, onlineDC can be used to classify a

multivariate data stream which is not of dyadic length and contains multiple class

changes.
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(a) Using display="prob.l" (b) Using display="prob.h"

(c) Using display="class"

Figure A.1.2: The result of using the different display options to plot the onlineDC

class object.
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