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Abstract

Environmental, energy, and societal considerations have given rise to the concept of shared-
vehicle mobility systems. This concept postulates that the use of a fleet of vehicles made
available on demand to the general public on a rental basis, can increase the mobility of certain
population categories. In addition to mobility enhancement, shared-vehicle mobility systems
have the potential to contribute to the sustainability of the transportation system through the
decrease of environmental impacts, energy and space requirements ).

As a consequence of the promises that shared-vehicle mobility systems hold, numerous such
systems have been introduced in many cities around the world (Barth et al., ‘200&). However,
most of the real-world applications of the car-sharing systems works in two ways, i.e. the
vehicle should be returned to where it is rented from. Although there are some examples of
one-way car-sharing systems in practice, they are not preferred by the operators because of
their operational difficulties (e.g. relocations of vehicles).

In this research we aim to propose a generic model for supporting the strategic (station location
and size) and tactical (fleet size) decisions of a general one-way car-sharing system, with a
direct application in a case study in Nice, France. For this purpose, a mathematical model is
formulated and sensitivity analysis is conducted for different parameters. As a future work, we
plan to work on the operational problem which considers requests on-line and updates vehicle
rosters accordingly.
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1 Introduction

Car-sharing (also known as shared-use vehicle) systems have attracted considerable attention

throughout the world (Barth et al.‘, ‘2006‘) due to their potential to improve mobility and sustain-
ability , 2011). These systems provide benefits both to their users and the society as
a whole. Reduced personal transportation cost and mobility enhancement have been cited as

the two most notable benefits to individual users. Societal benefits include reduction of parking

space requirements, reduction of capacity expansion, congestion reduction, provision of afford-

able mobility to economically disadvantaged groups JShaheen et al.‘. ‘2004& ‘Fan et al.‘. ‘2008‘).

In cases of electric shared vehicles (many examples in European cities), it can also provide

significant reductions in energy and emissions.

The attractiveness of car-sharing systems is determined by the level of service offered and the
cost associated with the use of the system. The level of service is influenced by the accessibility
of vehicle stations, i.e. (i) how far a potential user of the system has to walk to reach a pick-
up and/or a drop-off vehicle station, and (ii) the availability of vehicles at the station. The
higher the accessibility of stations and availability of vehicles, the higher the level of service
offered to the potential users, and hence the higher the attractiveness and potential utilization
of the system. On the other hand, the station number and size, as well as the fleet size and
availability of vehicles, the “right time” at the “right station”, influence the cost of establishing
and operating a car-sharing system. The shared-used car system can be classified into the
flexible “one-way” and the more restricted “two-way” type according to where the users can
return a vehicle in a different or the same location they picked it up. The problem of ensuring
vehicle availability becomes more prominent when vehicles can be used on a one-way basis, i.e.
when a vehicle picked-up at a station is not necessary to be returned back to the same station.
The one-way operation of the vehicles coupled with the imbalance of demand for cars, both
at the origin of the trip (pick-up station) and at the destination (drop-off station), may result to
a situation where vehicles are accumulated to stations that are not needed, while at the same
time there is vehicle shortage at stations where more vehicles are needed. Vehicle relocation,

i.e. transfer of vehicles from stations with high vehicle accumulation to stations where shortage

is experienced, is a technique that has been proposed to improve the performance of one-wa
car-sharing systems ABarth et al.‘. ‘2004. ‘Kek et al.‘. ‘200&. ‘Cucu et al.‘. 2009, Fassi et al., 2012).

Lack of efficient vehicle relocation coupled with the need to guarantee a given level of vehicle

availability, may lead to an unnecessary increase of fleet size and vehicle underutilization.

The efficient and cost-effective strategic planning and operation of station based car-sharing
systems require the use of models that will determine the number and location of the service

stations, the fleet size, and the dynamic allocation of vehicles to stations. These models should
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assist decision makers to strike an optimum balance between the level of service offered and the
total cost (including vehicle relocation costs) for implementing and operating the car-sharing

system.

However, the literature currently lacks a model that can consider simultaneously decisions re-
lated to the determination of station location, size and number, and fleet size, while taking into
account the dynamics of vehicle relocation and balancing. Existing models either look at the
location of stations without due consideration to vehicle relocation decisions ,
), or consider the location of vehicle stations assuming that only the demand of open sta-

tions needs to be serviced (de Almeida Correia and Antunes, 2012). In the case where vehicle

relocation is modeled Ade Almeida Correia and Antunes, 2012), the relocation of vehicles and

the associated costs are considered only at the end of the operating period, and therefore they

are not taken into account in determining the fleet size.

The objective of this paper is twofold: (i) to develop and solve a mathematical model for
determining the optimum fleet size and the number and location of the required stations of
a car-sharing system by taking into account the dynamic repositioning of vehicles and (ii) to
apply the proposed model for planning and operating a station based shared-use electric vehicle

system in the city of Nice, France.

The remainder of this paper is organized as follows. Section two provides an overview of pre-
vious related work and further elaborates on the arguments justifying the need for the proposed
model, section three presents the formulation and the solution approach of the proposed model,
section four describes the application of the proposed model for planning and operating a sta-
tion based shared-use electric vehicle system in Nice, France and section five discusses the

research conclusions and provides recommendations for future research.

2 Previous Related Research

Strategic planning decisions seek to determine the number, size and location of stations, and the
number of the vehicles that should be assigned to each station, in order to optimize a measure

or a combination of measures of system performance. Station location models have been devel-
to locate bicycle stations (Lin and Yang, M) and car stations Ade Almeida Correia and Antunes,
20

12). Although the focus of our work is on shared-use station based electric car systems, in

our literature review we also include a review of a model that addresses the station location of

shared-use bicycles.
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The problem of locating stations for shared-use bicycles has been studied recently.
) present a model for determining the number and location of bicycle stations and the
structure of the network of bicycle paths that should be developed to connect the bicycle sta-
tions. This model does not consider the daily variation of demand, and the problems arising
from the dynamic accumulation/shortage of bicycles due to the variation of demand in time and

space.

‘de Almeida Correia and AntuneJ ZOlj) addressed the optimization of car depot locations and

the definition of the number of parking spaces (size of the depot) for each depot. Vehicle relo-
cation (and the associated relocation cost) is considered only at the end of the entire operating
period (i.e. day) and does not rebalance the vehicles at the end of each operating sub-interval
(e.g. hour). The objective function of the model seeks to maximize the profit of the operat-
ing agency and does not consider the access and egress cost of the potential users to/from the

candidate station locations.

‘Fan et al.‘ 42008‘) modeled the dynamic allocation of vehicles at the end of the day among the

stations of a shared-use car system to maximize profit. The fleet size, the location of the stations,
and the demand for trips for a given planning horizon are known in advance. A multistage
stochastic linear-model with recourse has been proposed to address this problem. A stochastic

optimization method based on Monte Carlo simulation was used to solve the proposed model.

The problem of determining the fleet size and the distribution of vehicles among the stations of
a car-sharing system was studied in relation to the Personal Intelligent City Accessible Vehicles

(PICAV5s). This system uses a homogeneous fleet of eco-friendly vehicles and allows one-way

trips ACepolina and Farini ‘2012J). The stations are parking lots that offer vehicle recharging

services and are located at inter-modal transfer points and near major attraction sites within the
pedestrian area. The number, the location, and the capacity of the stations are not determined
by the model. To cope with the imbalanced accumulation of the one-way system, this model
introduces the concept of supervisor. The task of the supervisor is to direct users that are
flexible in returning the car to alternative stations, as to achieve a balanced operation and fulfill

a maximum waiting time constraint.

‘Fassi et al.‘ AZOIQJ) introduced a model for evaluating the performance of a network of car-

sharing stations. This problem arises when the demand for car-sharing services changes (in-
creases) and as a consequence the network of stations should be adapted to serve better the
emerging demand profile. In response to this need a decision support tool was developed
which allows decision makers to simulate alternative strategies. Such strategies include opening
and/or closing stations, and increasing the capacity of stations. This tool is based on discrete

event simulation and seeks to maximize the satisfaction level of the users and to minimize the
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number of the cars used.

A major decision associated with the operation of multiple station car-sharing systems is how to
relocate vehicles. The vehicle relocation problem arises from the imbalanced accumulation of
vehicles to stations when the car-sharing system allows their one-way use. Different strategies

and models have been proposed in the literature to cope with the vehicle relocation problem.

The relocation of shared vehicles can be realized by using operating staff or it can be user based.

Barth et al.‘ AZOOAJ) proposed two user-based relocation strategies namely, trip-joining and trip-

splitting. The trip-joining strategy is used when two users have common pick-up and drop-off
stations and there is a shortage of vehicles at the pick-up station. In this case, the users are
asked to share the ride. The trip-splitting strategy is used when there is a surplus of vehicles
at the pick-up station and there are users that are traveling as a group. Under this condition
the users are asked to use separate vehicles. The strategies were analyzed using data collected
from a car-sharing system operated and through simulation. The results of the simulation model

suggest that the need for vehicle relocations can be decreased by 42% by using these strategies.

User based relocation can be partially achieved by introducing different pricing policies for

movements that create high system imbalances AKek et al.‘. ‘2()0 ).

‘Kek et al.‘ 42006‘) introduced shortest time, and inventory balancing strategies for staff based

vehicle relocation. The shortest time strategy relocates cars from other stations in such a way
as to minimize the travel time needed for a staff member from his/her current location to the
station where the car is available plus the travel time needed from the station that the car is
available to the station where the car is needed. The inventory balancing strategy relocates
cars from stations with over-accumulated vehicles to stations that experience vehicle shortages.
Both strategies were tested through a simulation model which was validated using data from an

operational car-sharing system.

The literature review revealed that existing modeling efforts make a sharp separation between
strategic and operational decisions. This means that strategic decision-making models do not
integrate in their structure aspects of operational decisions, e.g. vehicle relocation, that have
a significant bearing on the cost and performance of the resulting car-sharing system. On
the other hand, operational models are focused on the detailed modeling of different types of
relocation strategies, assuming that the location, number, and station and fleet size are given or

exogenously defined.

In reality strategic, tactical, and operational decisions are interweaved and therefore there is a
strong interaction between the three decision making levels. Strategic decisions are primarily

related to the definition of the location, number, and size of stations and interact with the tactical
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decision of fleet size determination. In turn the fleet size is affected by vehicle relocation which
is an operational decision. Here it is important to stress the fact that both fleet size and vehicle
relocation influence the strategic level decisions. The above discussion suggests that there is a
need for a model that will be able to address the strategic and tactical decisions by taking into

account (at a macroscopic level) the impact of vehicle relocation.

3 Model Description

The proposed model is motivated from the planning of a station based shared-use electric ve-
hicle system. Shared-use electric cars are used to serve trips within a given geographical area.
The system operates on the basis of reservations and therefore the origin-destination matrix for
the planning period is known in advance. A penalty is imposed if the system cannot satisfy a
reserved-trip. In what follows we proived a description of the system in terms of its demand

and supply characteristics.

3.1 System Characteristics

i) Regions: The study area is divided into regions. The demand is assumed to be generated at

the center of the regions and end up either at the same or other regions.

ii) Atoms: Each region contains a number of atoms with known population. The atoms are
used to model the population coverage of the car-sharing system. In our model, we assume
that there is a maximum distance that determines if an atom is covered. Thus, if there is an

operating station closer than that predefined maximum value, the atom is covered.

iii) Stations: Vehicles are picked-up and dropped-off at designated stations. Stations have
the necessary infrastructure for parking and for recharging the vehicles. Each station provides
a specific number of parking spaces which define the station size. The station size can vary
among stations and has a maximum capacity. The cost of opening and operating a station
depends on the station size and location. A station can serve a trip as a pick-up (drop-off)

location if the trip originates and terminates within the catchment area of the station.

iv) Vehicles: A homogeneous fleet of electric cars is used to provide the services. This means
that any type of trip request can be accommodated by any available car. For each car there is

an acquisition (depreciation cost) and a maintenance cost which is function of its utilization.
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Figure 1: The relationship between time intervals and operations

v) Time Intervals: An operating day is divided into time intervals (not necessarily equal) and
each operation starts at the beginning or end of a time interval. The model assumes that demand
is repeated on a daily basis and the first time interval of a given day starts after the last time

interval of the previous day (Figure

vi) Working Shifts: A set of consecutive time intervals composes a working shift. Working

shifts are used to model the man power needed for relocation operations.

vii) Demand: A demand is expressed as number of trips requested from a region to either the
same or another region (not station). Each demand has also departure and arrival time intervals.
In order to satisfy a trip (i) a vehicle from a station that is accessible from the origin region at the
beginning of the departure time interval and (ii) a parking space from a station that is accessible

from the destination region at the end of the arrival time interval have to be available. Please
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note that, trips do not have to be assigned to the closest stations. However, the accessibility cost

forces the model to use closest region-station pairs if possible.
viii) Operations: The system contains two types of operations: rental and relocation.

a) Rental: The system operates on the basis of reservations and allows one way rental of
cars. Reservations are made in advance of the pick-up period with the knowledge of origin and
destination regions and pick-up and drop-off times. Cars are picked-up and dropped-off from/at
a station that is accessible to the initial origin/destination region of the respective user at pre-
specified (when reservation is made) periods. Each user encounters a cost for accessing/leaving
the stations. It is assumed that each rental starts at the beginning of a time interval and ends up

at the end of the same or another time interval (Figure [1).

b) Relocation: The system allows one way rental of cars. As a result, there might be accumu-
lation and shortage of cars in stations. Relocation is used to rebalance the system resources, i.e.
vehicles. Relocations can last more than one time interval based on the duration of the activity
(Figure [1). During relocation the vehicle is not available.Total time spend for relocation in a

time interval cannot be more than the total time of the man power available in that working
shift.

ix) Costs: The model contains both user and operator costs.

a) User Costs: Composed of accessibility cost for each satisfied trip which contains value of

time to reach from origin region to origin station and destination station to destination region.

b) System Costs: Contains unserved customer cost, vehicle operating cost, station opening
cost and relocation cost. Unserved customer cost is used to penalize trip requests that cannot
be satisfied. Vehicle operating cost is incurred per vehicle per day. Station opening cost has
two components: fixed and variable. Fixed cost incurs if the candidate station is operating, i.e.
the station is open, whereas variable cost is a function of number of parking spaces attached to
the operating station. Relocation cost has also two components. The relocation personnel cost

(per shift) and vehicle moving cost between stations.

x) Revenue: When a demand is fulfilled, a predefined value that depends on origin and destina-

tion stations, and starting and ending time intervals of that demand is added to the revenue.

3.2 Mathematical Model

The description of the mathematical model requires the definition of the following
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The mathematical model can be formulated as follows:
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Equation 1, is the objective function of the model and seeks to maximize the profit of the
operator. Equation |1, includes six terms. The first term expresses the total revenues resulting
from the operation of the system. The second term refers to the cost incurred by the operator
due to lost customers , i.e. customers that cannot be served due to the unavailability of cars.
The third term expresses the accessibility cost encountered by the users of the system. The
accessibility cost depends on the number of the car-sharing stations that will be open. The
lower the number of stations the higher the time needed to reach them and consequently the
higher the accessibility cost. The fourth term represents the depreciation cost of the vehicles
and depends on the fleet size. The larger the fleet size the higher the vehicle depreciation
cost will be. The fifth and sixth terms relate to the station opening and car relocation costs
respectively. The station opening cost and the car relocation costs are increasing as the number

of open stations and the car relocation operations are increasing.

The objective function of the model also addresses, implicitly, the trade-off between the opera-
tor’s profit and the level of service offered to the system users. The penalty cost for unserved
customers is increasing (second term of the objective function) as cars are not available at the
right place at the right time, i.e. where and when the customers require them. The unavailabil-
ity of cars at the right place the right time is influenced by the fleet size and the number of car
relocations. The smaller the fleet size and the number of car relocation operations the larger
the penalty cost for unserved customers will be and the smaller the operator. On the other hand
an increase of the fleet size and car relocation operations results to an increase of the operating

costs and consequently to a reduction of the profit of the operator. The inclusion of the accessi-

10
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bility cost in the objective function also contributes to the examination of the trade-off between
revenues and the level of service. The accessibility cost of the users is increasing as the number

of open stations is decreasing.

The above discussion suggests that a lower commitment of resources in terms of number of
stations, fleet size, and car relocation operations leads to a reduction of the cost of the operator.
On the other hand the inclusion of the users’ accessibility cost and the penalty cost for lost
customers leads to an increase of the resources made available by the operator and consequently
to an increase of the level of service offered to the system users. Constraints 2a, 2b, 2¢ restrict
the number of parking spaces (station capacity constraint), and the number of available vehicles
and for each time interval and station. If a station is not open in a candidate station location
the station capacity is set equal to zero. If the station is open then there is an upper bound
(CAP)) for its capacity. Constraints 3@, 3b require that at least one parking space and pick-up
and drop-off location is assigned to a rented vehicle. These constraints are essential in order
to guarantee the coverage of the demand by an open station that has at least a capacity of one
parking space. Constraints 4a ,4b are the atom coverage constraints, i.e. if an atom covered
or not, and population coverage constraints, i.e. the shared-use system is accessible by a given
percentage of the population, respectively. Constraints |5, ensure that the total demand is equal

to the sum of the satisfied and unserved (lost) demand.

Constraints 6, postulate that the total number of vehicles assigned to each station j to cover the
demand originating from all regions i at the beginning of interval ¢ to reach destination regions
k through station [ at the end of interval u, is equal to the number of vehicles rented from
station j at the beginning of interval ¢ to reach station [ at the end of interval u. Constraints 74,
indicates that the total number of vehicles assigned to each station j to cover the demand from
regions i for all destination regions k through stations / at the end of all intervals u is equal to
the number of vehicles rented from station j at the beginning of time interval ¢ to serve demand
from regions i. Constraint/7b does the same as constraint|7a for the cars originating from region
i left at station j at the end of period 7. Constraints 8a and[8b are equivalent of constraints[7a and
and ensure respectively the same conditions for the cars that are relocated to/from a station
J. Thus, constraints 6] 74, [7b, and [8b, establish the functional relationship between the
variables y, z, p (p), and g (q) respectively. Please note that, variables z express car assignments
independent of the region to which originate/end their movement, variables p and p indicate
customer movements from regions to stations and from stations to regions respectively, and

variables g and g, signify region station and station region assignments respectively.
Constraints [9a require that the number of cars leaving a station (due to rental and relocation)

at the beginning of interval ¢ cannot exceed the number of vehicles available at that stations

at the same time interval. Constraints 9b suggest that the number of cars entering a station

11
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(due to rental drop-off and relocation) cannot be more than the number of available parking
spaces at the same time period. Similarly, constraints 10/ force the total number of parking
spaces at the station minus the number of empty parking spaces at the end of a time interval
should be at least equal to the number of cars present at the station at the beginning of the
next time interval. Constraints require that the total number of parking spaces available at
a station at the end of a time interval plus the available number of cars at the beginning of the
next time interval is equal to the number of parking spaces existing in a station. Constraints
are the “car conservation” constraints for each station. Constraints 12 are used to establish
the functional relationship between variables b, e, and z, r respectively. Variables b and e
are used in constraints which are used to determine the total number of cars (fleet size)
used in the system. Constraints (144, are introduced to ensure the per shift availability of
workforce needed to perform car relocations. Constraints assign the number of relocation
operations needed at each time interval , while constraints ensures that the number of
persons needed to perform the relocation operations per shift will not exceed the available

workforce per shift.

4 Model Application

The model presented in the previous section was applied to plan a station based shared-use
electric vehicle system in Nice, France. The study area is 294.19km?, and has a population
327188 inhabitants between ages 15-64, with a density 1112 persons/km?>. The area under con-
sideration consists of 210 regions. The population of each region has been obtained from 2009
census data. The demand for shared-use services originates from each region and is assumed
to be known for each time interval. In total 42 locations were considered to be candidate lo-
cations for establishing a shared-use station. The maximum capacity of each candidate station
location was established to be 5 car parking spaces. Furthermore, the distance used to deter-
mine if the population of an atom is considered to be covered was defined to be 500 meters
in the base case scenario. Data related to the cost of opening a station, car operating cost,

cost of relocation operations, penalty costs for lost customers, station accessibility costs, and

unit costs for estimating system revenues were obtained from the company (Veolia) operatin
2012

the Nice system and from relevant literature sources Ade Almeida Correia and Antunes,
‘Cepolina and Farini ‘2012).

Figure 2a illustrates the study area and its partition into regions and the candidate station lo-
cations, while Figure 2b summarizes the values of all the parameters needed to run the base
model scenario and the associated sources of information. In all the other scenarios, all the

parameters that are not specifically mentioned are set to these values.
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border
of atom

center

of atom
candidate
location

vehicle operating cost (€/day): 17 lost trip cost (€/trip): 20
station opening cost (<€/station/day): 30 station capacity (veh): 5
parking space operating cost (€/space/day): 5 accessibility distance (km): 0.5
minimum accessible population: 25 % | accessibility cost (€/km): 5
revenue per time interval (€/int): 8 revenue per distance (€/km): 0.1
relocation cost (€/km): 0.12 | relocation speed (km/h): 30
personnel cost per hour (€/personnel): 12 relocation coeflicient: 4
length of each working shift (h): 8 number of time intervals 15

Figure 2: (a) The study area in Nice, France and (b) the parameters used in the mathematical model

The results of the solution of the proposed model provide useful information to decision makers

regarding:

e The location and number of car-sharing stations and parking spaces per station
e The service regions of the car-sharing system
e The required fleet size and the initial allocation of cars to stations
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e The total workload associated with car relocation operations and the workforce per shift

e The average car-utilization

e The average and the per station utilization of the parking spaces

e The total costs associated with the users (station accessibility) and the operator (car oper-
ation, unserved customers, establishment and operation of stations)

e Operator revenues and profit

One of the advantages of the proposed model is its ability to create a large number of alternative

scenarios that can be used to study:

e The trade-off between operator’s profit and accessibility cost, and population coverage.
e The sensitivity of the solution in terms of the values of such parameters as unit vehicle
operating cost, unit labor cost of relocation personnel, and penalty cost for unserved

customers.

IBM ILOG Cplex version 12.2 was used to solve the proposed model. The resulting applica-
tion was run on a Intel Core2 Quad 3.00 Ghz and the resulting CPU times were limited to 3600
seconds and the absolute optimality gap is limited to 0.5 %. The results of the different scenar-
ios of the proposed model are summarized in Figure 3. In the base scenario a demand of 200
one-way trips are used. Since the current system of Veolia is a two-way shared-car system, we
have divided each trip into subtrips. The registered trips are divided into subtrips if the vehicle
does not change its location for more than 60 minutes. In addition to that, we have filtered the
trips used in the problems in such a way that, there is at least a candidate station that is 300

meters close to both origin and destination region of that trip.

A base scenario was analyzed with values for the parameters as in Figure 1. The different user
and operator costs associated with the model are summarized in the part of Figure 3, which
describes the base scenario. Additionally, average car utilization rate is 53%, while the total
net benefit is 2231.46 €.

Furthermore, we perform a sensitivity analysis (SA) for the demand increase. We consider
the demand level is critical for the efficient operation of the system and it can provide useful
insights to the operator regarding the level of service. For each different scenario an optimiza-
tion is performed and values for the fleet size, the number of stations and the number of total

parking spaces is also shown in Figure

Figure 3/shows the effect of demand increase. In this graph, we compare the demand increase
on two scenarios. In the “fixed spaces” scenario, the problem is solved for 200 trip requests,
selected stations and their sizes are fixed and number of requests is increased to 250, 300,

350 and 400 trips. In the other scenario, namely “unrestricted”, operating stations and parking
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number of vehicles: 64 number of stations: 21
number of parking spaces: 88 ave. number of parking spaces per station: 4.19
ave. car utilization (hour based): 53% ave. car utilization (interval based): 62%
number of relocations: 54 distance traveled in relocations (km): 105.48
number of relocation personnel: 2 ave. number of relocations per car: 0.84
number of served trips: 169 number of lost trips: 31
accessibility cost (€): 407.52 | unserved customer cost (€): 620
station opening cost (€): 1070 relocation cost (€): 204.66
vehicle operating cost (€): 1088 total cost (€): 3390.18
revenue (time intervals) (€): 4936 revenue (distance) (€): 685.64
total revenue (€): 5621.64 | total profit (€): 2231.46

Table 1: Output values for the base scenario

200 (fixed spaces)

200 (unrestricted)

250 (fixed spaces)

250 (unrestricted)
300 (fixed spaces)
300 (unrestricted)
350 (fixed spaces)
350 (unrestricted)
400 (fixed spaces)
400 (unrestricted)

5
o

12000
Sensitivity Analysis for DemanH rease

10000

8000
@ revenue (distance)

M revenue (time intervals)

6000

M vehicle operating cost

M relocation cost

4000

[ station opening cost

2000 M lost customer cost

W accessibility cost

@ net revenue (fixed spaces)

@ net revenue (optimal)

costs and revenues (€/day)

-2000

-4000

-6000

-8000

64 vehicles
21 stations
71 vehicles
21 stations
81 vehicles
23 stations

2 vehicles

1 stations
27 stations
21 stations

-10000

total trips requested and model type

Figure 3: Computational results for different demand levels

spaces are not limited and the “unrestricted” problem is optimally solved for the same requested
trip set. Figure[3a shows that, as demand increases, the profit difference of the systems increases
between two models. In addition to that, the number of vehicles is also increasing in order to
fulfill the requested trips in both scenarios. However, the increase is slow in the “fixed spaces”
scenario whereas it is faster in the “unrestricted”. Last but not least, readers can also observe
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that although the revenue from served trips increased in both cases as demand increases, the net
system profit of the “fixed spaces” scenario decreases. This is the outcome of the increase in the
number of unserved trips. This means that while a small increase in demand can be absorbed
by the existing system without new infrastructure, a larger increase would require a significant
increase in the resources and possibly the opening of new stations to continue offering a high
quality service. Note the higher number of lost customers with the increase of the demand in

the “fixed spaces” scenario.

5 Concluding Remarks

A model for supporting strategic and tactical planning decisions for car-sharing systems was
developed and tested in a large scale real world setting. The proposed model closes a gap in
the existing literature by considering simultaneously decisions associated with the allocation of
strategic assets, i.e. stations and vehicles of car-sharing systems and the allocation of person-
nel for relocation operations (tactical decision). The model provides the decision makers with
ample opportunities to perform sensitivity analysis for the relevant model parameters, a feature
particularly useful for cost values that are difficult to establish empirically, e.g. unit cost of
unserved customers, population coverage, station accessibility cost. Furthermore, the model al-
lows the decision maker to examine the trade-off between profit and the level of service offered
to the public. This last feature is of particular importance if we consider that car-sharing sys-
tems are subsidized with public funds. The results obtained from the application of the model

to a case resembling real world decision making requirements, give satisfactory results.

Research work under way involves the development of a multi-criteria formulation having sim-
ilar features with the proposed model which will allow the explicit consideration of the prefer-
ences of the decision maker in terms of the relevant importance of the operator’s profit and the
level of service offered to the public. Another stream of research that will extend and enhance
the work presented in this paper is the integration of the proposed model with a simulation
model that will provide a more realistic representation of the relocation operation costs. In
the proposed model, the system is only optimized for a single scenario. We plan to alter the
model in such a way to be capable to optimize the system for multiple demand scenarios on a
single configuration. This will create a more robust setting that will integrate stochasticity and
fluctuations in the demand. Modeling the operational problem and assigning the vehicle rosters
while taking their electrical charge level into consideration is another future work directions of

this project.
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