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A Probabilistic Model of the Economic Risk to Britain’s
Railway Network from Bridge Scour During Floods

Rob Lamb ,1,2,∗ Paige Garside,1 Raghav Pant,3 and Jim W. Hall3

Scour (localized erosion by water) is an important risk to bridges, and hence many infrastruc-
ture networks, around the world. In Britain, scour has caused the failure of railway bridges
crossing rivers in more than 50 flood events. These events have been investigated in detail,
providing a data set with which we develop and test a model to quantify scour risk. The risk
analysis is formulated in terms of a generic, transferrable infrastructure network risk model.
For some bridge failures, the severity of the causative flood was recorded or can be recon-
structed. These data are combined with the background failure rate, and records of bridges
that have not failed, to construct fragility curves that quantify the failure probability con-
ditional on the severity of a flood event. The fragility curves generated are to some extent
sensitive to the way in which these data are incorporated into the statistical analysis. The new
fragility analysis is tested using flood events simulated from a spatial joint probability model
for extreme river flows for all river gauging sites in Britain. The combined models appear
robust in comparison with historical observations of the expected number of bridge failures
in a flood event. The analysis is used to estimate the probability of single or multiple bridge
failures in Britain’s rail network. Combined with a model for passenger journey disruption in
the event of bridge failure, we calculate a system-wide estimate for the risk of scour failures
in terms of passenger journey disruptions and associated economic costs.
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1. INTRODUCTION

1.1. Bridge Scour

Scour is localized erosion by water that un-
dermines bridge foundations, causing structural
damage or collapse, with consequential safety risk
and loss of utility for bridge users. It is cited as the
most common cause of bridge failures in the United
Kingdom (Kirby, Roca, Kitchen, Escarameia, &
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Chesterton, 2017) and the United States (Kattell
& Eriksson, 1998). Bridge failures due to scour
have occurred since the early years of the British
railway network. Despite many risk mitigation
measures (including codes of practice for design,
construction, inspection, and maintenance), failures
continue to happen occasionally, demonstrating that
a residual risk exists. Scour risk can be assessed from
multiple perspectives, including safety, economic,
and reputational risks. This article is concerned with
quantifying the residual risk in economic terms,
primarily through the economic utility of passenger
journeys. However, opportunities to include other
important social and political aspects of risk relating
to safety, loss of life, and public confidence in the
railway network are also discussed.

On the railway network in Great Britain, there
have been 100 recorded bridge failures at nontidal
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river crossings (up to 2013) attributed to scour
caused by 54 flood events (Rail Safety and Standards
Board, 2004; van Leeuwen & Lamb, 2014). We will
use this historical information, combined with data
about the railway network, passenger usage, and
river flows, to estimate the risk of scour across the
rail network in terms of loss of utility to rail passen-
gers. The analysis is presented for a specific context
relating to scour risk at British railway bridges, but
is formulated in terms of a generic infrastructure
network risk model that could be transferred to
other networks and spatial weather-related hazards.

1.2. Scour Risk Assessment

Scour risk is typically managed through the
application of engineering standards and guidance,
such as the U.K. Design Manual for Roads and
Bridges (UK Roads Liaison Group, 2009), the U.S.
National Bridge Inspection Standards (Federal High-
way Administration, 2017a), and U.S. Forest Service
scour assessment process (Kattell & Eriksson, 1998).
Most scour management protocols are tiered, with
initial, high-level screening being applied to iden-
tify and prioritize bridges requiring more detailed
assessment. Screening generally combines generic
information about the bridge and watercourse, such
as dimensions, bed material, and vegetation, and
its scour history. The U.K. railway industry’s scour
assessments assign priority scores based on a ratio
between foundation depth and estimated poten-
tial depth of scour within a prescribed modeling
approach (Kirby et al., 2017). Further assessment
considers a “design” flood event and may include
more detailed site inspections, but is based on a scor-
ing scheme rather than a fully probabilistic analysis.

Scour models have been proposed to predict
equilibrium scour depths (Melville, 1997), time
variation of scour (Hong, Goyal, Chiew, & Chua,
2012; Melville & Chiew, 1999), and scour at bridge
abutments (Coleman, Lauchlan, & Melville, 2003).
Most are functions of parameters describing the
structure (pier or abutment shape, dimensions, and
alignment), channel (cross-section and roughness),
water flow (depth and velocity), and sediment
regime (cohesive or noncohesive). Despite extensive
research, scour prediction involves many uncertain-
ties (Lamb, Aspinall, Odbert, & Wagener, 2017;
Zevenbergen, 2010) relating to the complexity of the
physical processes and the difficulty (and cost) of
collecting detailed asset-specific data.

It is economically unfeasible to protect all
bridges against all conceivable events; therefore,
some residual risk has to be tolerated (UK Roads
Liaison Group, 2009; Whitbread, Benn, & Hailes,
2000). The residual risk materializes in bridge fail-
ures that occasionally occur (e.g., flooding in 2015
caused damage to 235 road and foot bridges in Cum-
bria, northern England; Cumbria County Council,
2017). Here, we take a probabilistic approach to
quantify scour risk at a broad scale, meaning that we
consider risk over the whole rail network and taking
account of the unpredictability of bridge failure
events through data-driven, statistical models.

We conceptualize risk as a function of a hazard,
that is, a physical phenomenon carrying the potential
to cause harm, and its consequences. The hazard that
we consider is flooding, which subjects the bridge
to hydraulic loading in various ways that may lead
to scour, ultimately causing the bridge to fail. We
define failure as total or partial collapse of a bridge
such that it cannot convey traffic, described by a
state variable, s, where s = 0 indicates the failed
state. Any bridge not in a failed state is assumed to
be operational (s = 1), although in general this as-
sumption could be relaxed to allow for other damage
states, and their consequences, to be considered.

Uncertainties about scour formation are re-
flected in the wide range of flood event magnitudes
that can cause a bridge to fail, as shown in Table I
and elsewhere (Flint, Fringer, Billington, Freyberg,
& Diffenbaugh, 2017; Rail Safety and Standards
Board, 2004; van Leeuwen & Lamb, 2014), and are
accounted for here using a fragility function:

FY (y) =
∫ y

0
fY (y) dy, (1)

where the loading condition Y is treated as a random
variable related to the severity of a flood event, which
will be given a specific definition in Section 2.2, and
FY(y) is the cumulative probability distribution of the
load at which failure occurs. The probability of fail-
ure conditional on y is Pr[s = 0|y] = FY(y). It is not
certain how often a bridge will experience flooding,
nor how extreme those events might be; therefore,
the load in any specific event will also be considered
as a realization from a random variable, with distri-
bution function:

GY (y) =
∫ y

0
gY (y) dy. (2)
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Table I. Historical Rail Bridge Failure Events and Estimated Return Periods

Event N Day Month Year Watercourse Location
RPest

(Years)
RPmax

(Years)

1 1 20 January 1846 River Medway Between Tonbridge and Penshurst,
Kent

23

2 1 February 1846 River Sheppey Charlton Viaduct, near Shepton Mallet 25
3 9 29 September 1846 Eye Water,

Tower Burn,
Tyne

Grantshouse, Cockburnspath, East
Lothian

35

4 2 8 July 1847 River Camel Near Dunmmer Bridge, Bodmin,
Cornwall

178

5 1 30 August 1866 River Esk Between Grosmont and Whitby,
Malton and Whitby Line

45

6 1 16 November 1866 River Aire Apperley, West Yorkshire, Midland
Railway Leeds to Lancaster Line

65

7 2 February 1868 River Severn Caersws, Central Wales Line 314
8 1 13 November 1869 River Tees Darlington, County Durham,

Merrybent Railway Company
13

9 3 17 July 1880 Afon Wnion Near Dolgellau, Bala, exact locations
unknown

71

10 1 March 1881 Unnamed Ladmanlow, near Buxton, Cromford
and High Peak Railway

83

11 1 November 1882 Nant Burn Near Taynuilt Station, Callander and
Oban Railway

33

12 3 14 May 1886 River Teme Near Bransford between Ludlow and
Craven Arms

47

13 1 26 December 1886 River Rother Selham, West Sussex, Midhurst Branch
of London, Brighton and South
Coast Railway

15

14 1 August 1891 Black Brook Chorley, Lancashire, Chorley to
Blackburn (Cherry Tree Line)

110

15 3 21 September 1891 Gala Water Galashields 30
16 1 August 1912 River Tas Between Forncett and Flordon,

Norfolk
27

16 1 August 1912 River Stiffkey Fakenham, Norfolk 112
17 1 15 June 1914 Baddengorm

Burn
Aviemore to Inverness, near

Carrbridge Station, Highland Rlwy
1,000

18 6 26 September 1915 Findhorn and
Spey

Highland Railway 60

19 4 8 July 1923 Bogbain Burn Near Carrbridge 2,000
20 1 9 June 1924 River Erewash Pye Bridge, Ripley, Erewash Valley

Line
42

21 3 23 July 1930 River Esk Glaisdale, Esk Valley Line 1,000
22 1 4 September 1931 River Esk Glaisdale, Esk Valley Line 500
23 1 21 June 1936 Mochdre Brook Dulais Bridge, near Glandulais,

Newtown, Powys
100

24 1 7 September 1945 Llangollen Canal Sun Bank Halt, GWR Llangollen Line 101
25 1 March 1947 River Wye Strangford Viaduct, near Fawley,

Hereford to Gloucester Line
100

26 1 12 April 1947 Eastburn Beck Eastburn Bridge, between Skipton and
Keighley, Yorkshire

30

27 9 12 August 1948 River Eye Harelawside Bridge, Smiddy Bridge,
Mason’s Bridge, Free Kirk Bridge,
Eyemouth Viaduct and others
between Dunbar and Berwick, East
Coast main line

500

27 1 12 August 1948 Birns Water Between Humbie and Gifford, possibly
Gilchriston.

500

(Continued)
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Table I (Continued)

Event N Day Month Year Watercourse Location
RPest

(Years)
RPmax

(Years)

27 1 12 August 1948 Wooler Water Haugh Head, Northumberland 200
28 1 25 October 1949 Wooler Water Wooler, Northumberland 111
28 1 26 October 1949 Lilburn Burn Near Lilburn Tower, Northumberland 23
29 1 19 November 1951 Midhurst Stream Between Cocking and Midhurst, West

Sussex
100

30 1 October 1954 River Derwent Bridge between Cockermouth and
Workington

52

31 1 30 September 1960 River Creedy or
Exe

Cowley Junction 43

32 1 12 December 1964 River Ystwyth Llanilar, near Aberystwyth, Cambrian
Railway

30

32 1 12 December 1964 River Banwy Castle Caereinion 30
33 1 9 July 1968 River Chew Viaduct near Pensford, Somerset 29
34 1 15 September 1968 River Wey Between Farncombe and Godalming, 200
34 1 15 September 1968 River Mole Cobham 200
34 1 September 1968 River Kennett Nuns Wood, between Kennett and

Higham, Newmarket
200

34 1 September 1968 River Waveney Bridge 317, Norwich Ipswich Main
Line, Diss to Burston

200

35 2 10 August 1969 Unknown
(Lochaber)

Two bridges and six culverts washed
out, exact locations n/a

16

36 1 31 August 1973 Glen Finnan Fort William to Mallaig Line, bridge
313/051 Drumsallie

26

37 1 June 1985 River Deben Whickham Market, East Suffolk Line 85
38 2 19 October 1987 R. Towy and R.

Dulais
Glanrhyd and Llanwrda, Central Wales

Line
50

39 1 10 May 1988 Colne Brook Wraysbury, bridge No. 71,
Staines—Windsor Line

45

40 1 7 February 1989 River Ness Near Inverness 100
41 1 2 January 1991 Afon Twymyn Cemmaes Road 226
42 3 14 January 1993 Rivers Tay,

Earn, May
Dalguise, Forgandenny, Forteviot (SW

of Perth)
100

43 1 January 1994 River Severn Cilcewydd, between Welshpool and
Newtown

84

44 1 October 1997 Ettrick Water Heatherlie Bridge near Selkirk 56
45 1 15 October 1998 Trib of R. Leven Renton (Balloch), near Dunbarton 45
46 1 October 2000 River Taw Weir Marsh Bridge 51
47 1 8 December 2000 River Exe Cowley Junction, bridge carrying

Barnstaple Branch
43

48 1 14 June 2002 River Irwell Lower Ashenbottom Viaduct,
Rawtenstall, Greater Manchester

100

49 1 3 October 2002 River Tay N/A 47
50 1 December 2002 Monks Brook Between Eastleigh East and Romsey

Junctions, Chandlers Ford
75

51 1 11 September 2003 River Rother Beighton 2
52 1 1 November 2006 Burn of Winless Watten 15
53 1 14 November 2009 River Crane Feltham, West London 1
54 1 December 2012 River Taw Barnstaple line 51

Notes: For the September 1915 event on the Highland Railway, there is an account of 16 structures being washed away including bridges
and other types of structure. In the absence of further evidence, the number of bridges involved in this event has been assumed to be scaled
from the historical account according to the proportion of present-day assets that are bridges, which is 31,663/79,830 � 0.4, leading to an
estimate of 16 × 0.4 � 6 bridges, rounded to the nearest integer.
Event = index number of hydrological event associated with bridge failure(s); N = number of bridges failed during event; RPest = estimated
return period (years) of the associated flood based on historical analysis; RPmax = return period (years) of maximum flood estimated by
interpolation from gauged river flow records.
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1.3. Objectives and Outline

The goal of this article is to assess the risk
to the railway network in Britain associated with
bridge scour, and in doing so to develop and demon-
strate the application of a generic, probabilistic
infrastructure network risk model. A scour fragility
function, FY, is derived based on inferences from
historical bridge failures. Rather than modeling
scour processes explicitly, we interpret the historical
failure events as primary observations. The proposed
fragility function pools information from all rail
bridges and historical failures for use in a “broad-
scale” network risk analysis, which is introduced in
the next section.

The general formulation of the fragility function
is then discussed, followed by a review of the bridge
failure data. Next, the fragility function is fitted to the
historical data by maximum likelihood estimation
(MLE) and the results presented, with quantification
of uncertainty. The proposed fragility function
is combined with a spatial flood hazard model
to estimate bridge failure rates over the railway
networks, which are compared with the historical
evidence to test the model. Finally, the probabilistic
failure model is integrated with a passenger journey
disruption model to estimate the network-scale risk
associated with bridge failures.

2. PROBABILISTIC RISK ANALYSIS
FRAMEWORK

2.1. Broad-Scale Risk Analysis

Risk is often quantified in terms of the expected
value of losses incurred due to failure of an asset,

μ =
∫
y

z(s, y) FY (y) gY (y) dy, (3)

where z(s, y) is a measure of loss as a function of
asset state (assumed dependent on the load), which,
in general, may encompass operational or economic
consequences of asset failure; here a model of dis-
ruption to passenger journeys will be used. We will
consider risk to bridges across the British railways,
a national infrastructure network. This requires the
flood hazard to be represented in terms of spatially
coherent events, allowing for the possibility that mul-
tiple bridges in different locations could fail concur-
rently within an event. Although rare, such events
have occurred in the past (see Table I) and may have

significant impacts because failure at multiple loca-
tions limits possibilities for rerouting of trains, and
may lead to the partial or complete breakdown of
network functionality.

In a network of D bridges, contained in the set
�, the load is considered as a (spatial) vector random
variable Y = {Yk: k � �}. For load event Y = y, the
number of bridges that will fail is uncertain, with the
uncertainty captured by the fragility function. As-
suming failure processes at individual bridges to be
independent (although realizations of bridge failures
may be conditional upon spatially dependent loads),
the number of failures expected in a particular event
y is:

λ|Y=y =
∑
k∈�

Pr [sk = 0|yk] =
∑
k∈�

FY,k(yk), (4)

where FY,k(yk) is a fragility function at the kth bridge.
The vector-valued loads are now envisaged

as being described by a multivariate probability
density, gY(y). The expected number of failures,
taking account of all flood hazard events, is:

λ =
∫

. . .

∫
R

[∑
k∈�

FY,k(yk)

]
gY(y)dy, (5)

where R denotes a region of integration over all
physically plausible loads.

The disposition of the network during or follow-
ing an extreme flood can be represented as a vector
of asset states S = {sk: k � �}. The expected loss for
any given network state is

μ(S) = z(S)
∫

. . .

∫
R

Pr
[
S

∣∣y ]
gY(y)dy (6)

and the network risk is the integration, over all pos-
sible loading, of the losses in all 2D − 1 failure states,

μ =
∫

. . .

∫
R

2D−1∑
h=1

{
z(Sh) Pr

[
Sh

∣∣y ]}
gY(y)dy, (7)

where Sh = {si: i � �}h is the hth network failure state
considered (where a network failure is the failure of
at least one bridge).

The loss function z(Sh) accounts for the location
of bridge failure(s), the importance of the affected
routes, and the potential for trains to be rerouted
around the failure(s). In principle, these conse-
quences of failure could be different for every failure
state. For a national rail network with a large number
of bridges, computing all 2D − 1 values of the loss
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function is an expensive task. In Section 6, we present
a tractable way of approximating this calculation.

Few attempts have been made to derive risk
models for bridge scour based on asset-specific
analysis of loading and failure probabilities. One
study by Decò and Frangopol (2011) estimated
annual failure probabilities at individual bridges,
based on a method (Stein, Young, Trent, & Pearson,
1999) developed for use with U.S. National Bridge
Inventory (NBI) (Federal Highway Administration,
2017b) data. Their risk assessment framework (Decò
& Frangopol, 2011) was formulated as a multivari-
ate analysis, similar in form to Equation (7), but
accounting for independent, mutually exclusive
hazards (such as scour, earthquake, or traffic loads)
rather than spatially coherent events, as in our analy-
sis. A difference is that our analysis explicitly models
both the hazard and fragility using probabilistic mod-
els derived from observations of the hazard events
(flooding) and bridge failures, whereas Deco and
Frangopol’s method involved empirical estimation of
flow depths, combined with NBI scour vulnerability
scores, to infer annual failure probabilities. In our
analysis, the aim is not to assess scour risk at indi-
vidual bridges, but rather for the whole rail network.
We do this through pooling information spatially
and temporally to estimate a scour fragility function
for rail bridges in Britain, such that FY,k(yk) =
FY(yk), and then integrating the fragility function
into a risk assessment based on Equation (7).

2.2. Generic Approach to Fragility Analysis and
Definition of Loading Condition

Fragility functions for structures subjected to
flood risk have usually been derived by geotechnical
modeling, rather than empirical analysis of the
performance of a population of assets during flood
events (Buijs, Simm, Wallis, & Sayers, 2007; Hall
et al., 2003; US Army Corps of Engineers, 1993;
Van Gelder et al., 2008). In earthquake engineering,
fragility functions have been derived statistically
from observations of structures subjected to loads,
such as peak ground acceleration or displacement
(Federal Emergency Management Agency, 2012;
Porter, Kennedy, & Bachman, 2007). In addition to
failure observations, knowing which assets have sur-
vived extreme loading is useful because it can be in-
ferred that the load required to cause failure is likely
to be larger than any observed load. Observations of
this form are treated as censored data (Kim & Feng,

2003; Klugman, Panjer, & Willmot, 2004; Shinozuka,
Feng, Lee, & Naganuma, 2000) in fragility analysis.

Central to our study is the use of information
from historical bridge failures. The data are derived
from various sources. In some cases, even when
quantitative measurements exist, there is ambiguity
about how the evidence should be interpreted. For
this reason, the loading condition cannot be defined
precisely in terms of physical quantities that relate
directly to scour, such as water depth or velocity.

Instead, the load is understood as a relative
measure of the extremeness of a flood event, ex-
pressed in terms of its return period, τ , in years.
This approach, which was identified as a feasible
basis for a scour fragility analysis by an international
expert group (Lamb et al., 2017), standardizes over
river catchments of widely differing size (and hence
characteristic flow rates). Other scales, such as
annual exceedance probability (AEP), could be used
to the same effect; return period was chosen because
it is easily interpreted and matches the existing
assessments of failure events.

The AEP of a flood approximates to
1/τ , and the load variable will be defined as
y = τ = (1 − GX(x))−1, where GX(x) is a model,
in this case defined for annual probabilities, for
the distribution of peak river flows represented as
a random variable X. For some historical failures
where the causative river flow cannot be estimated
directly, the flood return period y has been inferred
from other data, as described in the next section.

3. DATA

3.1. Railway Bridges in Britain

Britain’s railway infrastructure owner, Network
Rail, maintains asset databases that the authors
have consolidated using topographic data and aerial
imagery to identify 8,877 bridges crossing rivers and
their floodplains in Britain, shown in Fig. 1(a).

The network has expanded and contracted over
time, potentially leading to bias in estimates of
failure probabilities if historical data were compared
directly with the present-day situation. Our data do
not include bridge construction or decommissioning
dates. However, some inferences may be drawn
from a reconstruction of the total rail network length
(Fig. 2) based on official information from the De-
partment for Transport (HM Government, 2017b)
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Fig. 1. (a) Location of rail bridges over rivers and their floodplains (floodplain defined as areas potentially at risk of flooding with a 1/1,000
annual probability or more, not accounting for flood defenses), shown as dots. River gauges shown as gray triangles. (b) Estimated daily
average number of passenger journeys on each edge of the rail network topological model described in Section 6.1.

Fig. 2. Reconstructed total length of railway network in Britain, 1830–2003 (inner ticks on horizontal axis are dates of bridge failures caused
by scour; see Section 3.2).

for 1900 onward, and studies by Martı́-Henneberg
(2013) and Haywood (2007) prior to 1900.

The mean network length over the period
1830–2003 is estimated as T1830–2003 = 22,291 km. The
length in 2003 was T2003 = 16,493 km, which is taken

to represent the present-day network (the official
value in 2012/2013 was 15,753 km, but figures after
2003 were omitted because of a change in calculation
methodology in 2004). These estimates will be used
in the fragility analysis.
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3.2. Historical Bridge Failures Attributed to Scour

Previous studies (Rail Safety and Standards
Board, 2004; van Leeuwen & Lamb, 2014) cata-
logued 138 railway bridge failures caused by scour
in Britain between 1846 and 2013. After removing
estuary crossings (where scour process may have
different physical drivers) and one misclassification,
we found 100 failures associated with 54 flood events,
which are summarized in Fig. 2 and Table I.

For 51 of the failures, there are estimates of the
return period of the associated hydrological event
(labeled RPest in Table I) from detailed assessments
of historical rainfall and river flow information,
previous research, published studies of notable
floods (Black & Law, 2004), and interpretations of
contemporary newspaper reports.

Of the 54 events that have caused bridge
failures, 35 (65%) are in the autumn, winter, and
spring months of September–March (inclusive).
These figures are consistent with studies of flood
seasonality in Britain, which show that the highest
river flow rates (defined either as annual maxima
or extreme threshold exceedances) occur predom-
inantly in September–March (Cunderlik, Ouarda,
& Bobée, 2004; Hall & Blöschl, 2018). There is also
a nonnegligible chance of flood flows occurring in
the summer (Cunderlik et al., 2004), and for some
rivers the most extreme flows have occurred during
the summer months (Black & Werritty, 1997), while
recent history has demonstrated that severe flooding
can happen in summer, for example, in 2007 when
Britain experienced one of the most damaging
flood episodes in modern history, including river-
ine flooding, during the months of June and July.
Table I contains 16 events (29%) linked to railway
bridge failures in the months of June–August, which
suggests a higher prevalence of failure events in
these months than might be expected if failures
were a deterministic function of river flow, rein-
forcing our motivations for modeling bridge failure
probabilistically.

Some flood events have caused more than one
bridge to fail. The potential for co-occurrence of
bridge failures within the same hydrological event
does not affect our fragility analysis in Section 4, in
which every bridge failure is included individually.
However, it is accounted for in our risk estimation
(Sections 5 and 6), where load events are simulated
from a model that captures the spatial and temporal
dependence of river flows in Britain, conditioned on
long-term observations.

3.3. Hydrological Analysis

There are 49 failures associated with 34 flood
events that lack detailed return period assessments.
For these events, and for the many bridges that have
not failed, an estimate of the most extreme load
experienced at each bridge location will be used in a
censored maximum likelihood (ML) estimate of the
fragility function parameters (Section 4).

River flow records were obtained for 494 gauges
from the U.K. National River Flow Archive (Centre
for Ecology and Hydrology, 2017) for the years
1960–2008, providing flow archive data for 48%
of the failure events. A generalized extreme value
distribution was fitted to annual maximum river
flows at each gauge to enable estimation of return
periods. The return period, τ k, of the flow at bridge
k was estimated using five neighboring gauges by
inverse distance-weighted interpolation, such that:

τk =
∑i=5

i=1 τi/di∑i=5
i=1 1/di

, (8)

where τ i is the return period of the flow at the ith
nearest gauge, and the proximity of gauges was as-
sessed in terms of di, the distance between the cen-
troids of the upstream catchment area draining to
gauge i and the centroid of the catchment area drain-
ing to the bridge k.

With this interpolation procedure, information
in small river basins can be contributed from nearby
gauging stations on different watercourses, allowing
for situations when one storm affects multiple
gauges. For large basins, gauges on the same branch
of the river network contribute more, reflecting the
importance of river routing. It has previously been
applied (Lamb et al., 2010) and tested (Environment
Agency, 2011) in a similar context for flood risk mod-
eling. Data transfers of this type, based on distance
between river basin centroids, have been found to
perform well for estimating annual maximum flows
on rivers in the United Kingdom (Kjeldsen & Jones,
2010; Kjeldsen, Jones, & Morris, 2014).

River flow data from 1960 to 2008 have been
interpreted as representative of conditions during
the lifetime of each bridge, an assumption that may
underestimate the true maximum load for bridges
that have been in service for longer. This approxi-
mation has been tolerated because its influence on
the fragility function likelihood (Section 4) is small
relative to the large difference between the number
of failed and nonfailed bridges.
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4. FRAGILITY ANALYSIS

4.1. Choice of Fragility Function

Our proposed fragility function is a lognor-
mal distribution, such that the loading condition
associated with a bridge failure is modeled as

Pr (s = 0|Y = y) = FY(y) = �

(
ln (y/θ)

β

)
, (9)

where �(·) is the standard normal cdf, θ is a location
parameter, and β is a dispersion parameter, and

FY(y) =
∫
y

fY(y)dy =
∫
y

φ

(
ln (y/θ)

β

)
, (10)

where φ(·) is the standard normal pdf.
A lognormal fragility function was chosen be-

cause it is a parsimonious two-parameter distribution
with positive support (ensuring that unrealistic neg-
ative loads cannot occur), and with many precedents
for its use in fragility analysis (Porter et al., 2007).
This does not necessarily mean that a lognormal
distribution is an appropriate fragility function, but
our results do not suggest any reason to choose a
different distribution.

4.2. Maximum Likelihood Estimation

The parameters θ and β are unknown and must
be estimated; we use an ML approach. The bridge
failures are treated as independent observations and
all failure events are pooled into one large sample,
removing any explicit consideration of time. Hence,
the replacement of failed bridges is not modeled.
It is reasonable to assume that most bridges will
have been repaired, and the influence of individual
failures compared with the (much larger) total
number of bridges on the network is negligible.

The data fall into three sets of observations that
will contribute information to the analysis, labeled
A, B, and C, described in Table II.

The likelihood function is:

L(	) =
∏
i∈�

{
f (yi ; 	)

}δA(i) {
F (yi ; 	)

}δB(i)

{
1 − F (yi ; 	)

}δC(i)
, (11)

where the indicator variable δ(i) takes the values:

δA(i) = 1; δB(i) = 0; δC(i) = 0 for a bridge fail-
ure with known load (set A),

Table II. Partition of Bridge Observations into Three Sets

Set A Historical bridge failures with associated flood
event return periods, which are regarded as
known values for the loading condition at failure.
The likelihood for the failure observations that
have known flood return periods is the density,
fY(y).

Set B Historical bridge failures associated with an
unknown flood return period are incorporated as
a form of left-censored data, for which the
likelihood is FY(y), the probability of loads not
exceeding the estimated maximum historical load
derived from gauged flood flows.

Set C Bridges that are assumed not to have failed
(“survivor” bridges), for which the likelihood is
1 − FY(y), which is the probability of exceeding
the estimated maximum historical loading
derived from the gauged flows.

δA(i) = 0; δB(i) = 1; δC(i) = 0 for a bridge fail-
ure with unknown load (set B),

δA(i) = 0; δB(i) = 0; δC(i) = 1 for a surviving
bridge (set C).

The parameters are 	 = {θ , β}, and � is the set of
observations of bridge states, combining all bridge
failures and surviving bridges.

The three contributions to the likelihood are
now described in more detail.

4.2.1. Contribution from Bridge Failures with
Known Load (Set A)

The likelihood for a failure observation associ-
ated with load y is:

Lθ,β (y) = φ

(
ln (y/θ)

β

)
. (12)

Equation (12) includes the contribution to the
likelihood from the set of bridge failures where
the failure event load y has been assessed. The
likelihood of observing this set of historical failures
with associated loads y = {yi: i � A) is:

LA =
∏
i∈A

φ

(
ln (yi/θ)

β

)
. (13)

4.2.2. Contribution from Bridge Failures with
Unknown Load (Set B)

The unknown failure load is assumed to have
been no greater than yi*, the estimated maximum



10 Lamb et al.

historical load at each bridge. The contribution to
the likelihood for i � B is then:

LB =
∏
i∈B

�

(
ln (y∗

i /θ)
β

)
. (14)

4.2.3. Contribution from Surviving Bridges (Set C)

Any surviving bridge, i � C, is known to have
resisted loads as large as yi*, so the likelihood of the
observation is Pr[Y > yi*], or

Lθ,β (y∗
i ) = 1 − �

(
ln (y∗

i /θ)
β

)
. (15)

The contribution from the observations of
surviving bridges in set C is therefore:

LC =
∏
i∈C

[
1 − �

(
ln (y∗

i /θ)
β

)]
. (16)

The bridges in set C represent the present-day
situation but, as discussed earlier, the network has
on average been more extensive in the past, with
more bridges than today. This means that Lc may un-
derestimate the probability of observing a survivor
bridge when considered alongside historical failure
data. Assuming the average number of bridges per
unit network length has remained constant, the ratio

γ = T1830−2003/T2003 ≈ 1.35 (17)

is applied as an adjustment to inflate the likelihood
associated with survivor bridges, reflecting the aver-
age extent of the historical network relative to the
present day.

4.2.4. Maximum Likelihood Analysis

Combining Equations (13), (14), (16), and (17),
the function to be maximized is the log-likelihood:

ln(L) =
∑
i∈A

ln φ

(
ln (yi/θ)

β

)
+

∑
i∈B

ln �

(
ln (y∗

i /θ)
β

)

+ γ
∑
i∈C

ln
[

1 − �

(
ln (y∗

i /θ)
β

)]
. (18)

Equation (18) was maximized in three stages.
First the likelihood was evaluated on a wide trial
grid of 250,000 values of θ and β. The grid was then
progressively refined to focus on the region of ML
so as to enclose the 95% confidence region (see
below). Finally, a Nelder–Mead (1965) optimization
procedure was applied to obtain the ML estimate.

Fig. 3. Likelihood surface contours conditioned on observations
in sets A, B, and C. Red dot is maximum; dashed line encloses
95% confidence region.

Fig. 3 shows the log-likelihood surface, con-
ditioned on all available data in sets A, B, and C.
The 95% confidence region, plotted as a dotted
line in Fig. 3, satisfies the condition (Clarke, 1994;
McCullagh & Nelder, 1989):

2
{
ln L

(
θ̂ , β̂

) − ln L(θ, β)
} ≤ χ2

α, (19)

where θ̂ and β̂ are the ML estimates and α = 0.05 is
the confidence level.

The estimation procedure was repeated, condi-
tioning each time on different combinations of the
data sets A, B, and C to explore the influence of
progressively introducing information from each set
of observations. The ML parameter estimates are
shown in Table III.

Fig. 4 shows the resulting family of fragility
curves. The dots are the empirical distribution of
failure observations in set A, with failure probabil-
ities estimated from the rank, r, of the associated
flood event return periods according to the Weibull
plotting position (r/N + 1). The curves conditioned
on sets A and B take into account only the subset of
bridges known to have failed. As expected, failure
probabilities increase when the additional failure
observations in set B are introduced, but the disper-
sion also increases, reflecting uncertainty about the
severity of flood events experienced at those bridges.

The solid curve fitted to all observations (sets
A, B, and C) accounts for all bridges and is the
proposed fragility model. As expected, it indicates a
much greater resilience than the curves fitted to the
failure observations alone, reflecting the fact that
many more bridges have survived than have failed.

Our fragility analysis allows us to quantify and
constrain uncertainties about scour failure probabil-
ities based on observations of past bridge failures.
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Table III. Estimated Fragility Curve Parameters

Conditioning Data Type Data Sets Notes Location, θ Dispersion, β

Failed bridges A Failures with estimated flood RP based
on detailed assessment

145 5.1

Failed bridges A, B As for set A plus failures with estimated
maximum historical flood RP from
gauged data

35 8.1

Failed and surviving bridges A, B, C All failure and survivor observations 88,239 18.4

Fig. 4. Fragility curves with shaded confidence regions. Curves fitted by MLE to historical bridge failure observations with an assessed
flood return period (set A), all historical bridge failures (sets A and B), and all available data including surviving bridges (sets A, B, and C).
Weibull plotting positions are shown for the observations in set A.

The unpredictable nature of failure events means
that quantification of these uncertainties is impor-
tant, but the complexity of the processes and relative
rarity of failures makes this difficult. A recent study
that pooled expert assessments of bridge failure
probabilities revealed very wide uncertainties (Lamb
et al., 2017) when considering generic classes of
bridge and watercourse type. The fragility function
we have derived in this article sits within the un-
certainty bounds elicited from expert judgments, as
shown in Fig. 3 in the work cited above (Lamb et al.,
2017). By making inferences from observed failure
events, in this case at railway bridges, the uncertainty
surrounding our failure probability analysis has been
reduced by up to an order of magnitude compared
with the experts’ judgments.

5. SIMULATED BRIDGE FAILURES

5.1. Spatial Load Event Model

Given a model of the joint (spatial) distribution
of flood events over the network, gY(y), Equation (7)
can be applied to estimate the expected number of
bridge failures per event. It is hard to specify gY(y)
directly. Instead, we use Monte Carlo simulation
from a model for spatially coherent extreme river
flows introduced by Lamb et al. (2010) and Keef,
Tawn, and Lamb (2013), based on theory developed
by Heffernan and Tawn (2004). The theory provides
an asymptotically justified model for the condi-
tional distribution of a set of variables, given that
one variable exceeds a threshold. This conditional
analysis allows for extrapolation into the joint tail
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region of the data, and hence can be used to simulate
events more extreme than any previously observed.
The model was fitted to data from the 494 river
flow gauges described earlier, and has previously
been applied in different forms to support U.K.
government assessments of national flood risk (HM
Government, 2016; Wood et al., 2016).

5.2. Probability Distribution of Concurrent
Bridge Failures

Since there are the 100 bridge failures in Table I
associated with 54 flood events, the mean number
of failures in any event where at least one failure
occurs is estimated to be λ|n>0 = 100/54 � 1.85. A
95% confidence interval around this estimate gives
λ|n>0 ± 1.96 s = (1.34, 2.38), where s = σ A�B/54(1/2) =
0.23 is the standard error of the mean, and σ A�B the
standard deviation of the number of bridge failures
observed in each event.

For comparison, a Monte Carlo simulation
procedure described by Keef et al. (2013) was used
to generate 1,000 samples, each comprising 54 load
events, yj (j = 1, . . . , 54), conceptually equivalent to
random samples drawn from the joint distribution
gY(y). The data were interpolated to railway bridge
locations using Equation (8).

For any simulated event j, the probability of
encountering one or more bridge failures is

Pr
[
nj > 0

] = 1 −
[∏

k∈�

{
1 − FY

(
y j

k

)}]
(20)

and the expected number of failures, conditional on
encountering at least one failure per sampled event,
is

λ̂|n>0 ≈ γ

54∑
j=1

[∑
k∈�

FY

(
y j

k

)
Pr

[
Yj

k = y j
k

∣∣nj > 0
]]

,

(21)

where

Pr
[
Yj

k = y j
k

∣∣nj > 0
]

= Pr
[
nj > 0

]
∑

j Pr [nj > 0]
(22)

and γ adjusts for the historical evolution of the net-
work, as before.

The conditional expectation, Equation (21), pro-
vides a statistic derived from modeled data that can
be compared with the observed failure events. This
modeled expected failure rate, λ̂, is compared with
λ in Fig. 5, using the fragility function conditioned

on observations in sets A, B, and C. Histograms in
Fig. 5 show the distribution of λ̂ over the 1,000 trials.
The solid black line is the central (mean) estimate.
The middle panel shows results for the MLE fragility
parameters (θ = 88,239, β = 18.4). The lower and
upper bound plots correspond to the 95% confidence
region around the fragility function (shaded area sur-
rounding the solid curve in Fig. 4). The dashed line
in each panel of Fig. 5 is the observed mean, λ, with
its 95% confidence region indicated as a shaded area.

With the MLE fragility parameters, the modeled
data appear to overpredict slightly the number of
bridge failures expected in an event, although the
modeled central estimate λ̂ = 1.97 lies within the
95% confidence interval around the observed value
λ = 1.85. The mean failure counts associated with
the upper and lower bounds of the fragility function
confidence region enclose the observed mean.

6. NETWORK RISK ASSESSMENT

6.1. Passenger Journey Disruption Model

The network risk of bridge failure, μ, can be
assessed using Equation (7) given a suitable loss
function, z(S). We use a model (Pant, Hall, &
Blainey, 2016) of the number of passenger journeys
disrupted in a 24-hour period if one or more bridges
fail somewhere in the network. By expressing losses
in terms of the daily disruption rate, we can integrate
over flood event and bridge failure probabilities
independently of any assumptions about how long
disruption may persist in the event of a bridge
failure, which will be considered later.

The model uses two data sources:

(i) Time table data from train operating compa-
nies (Association of Train Operating Compa-
nies, 2013b), giving weekly schedules detailing
the stations on the network where each train
calls. This information is used to estimate
the number of trains running along different
routes of the network on a typical day.

(ii) Station usage statistics from the Office of Rail
and Road (Office of Rail Regulation, 2013),
which record annual numbers of passengers
entering, exiting, and interchanging journeys at
all stations in the network. This information is
converted into daily estimates of station usage.

The model estimates the aggregated daily num-
bers of journeys distributed along different routes
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Fig. 5. Expected number of bridge failures in a spatial load event. Dashed line is the mean number of failures in 54 observed events, with
shaded 95% confidence interval. Histogram data are expected number of failures in samples of 54 simulated load events, with conditional
failure probabilities computed from a fragility curve conditioned on all observations (sets “A, B, and C” in Fig. 4). Lower and upper bounds
reflect the 95% confidence region around the fragility function (shaded region in Fig. 4).

from each station. This journey distribution is a
function of the number of trains and the volume of
journeys (passenger entries, exits, and interchanges)
along stations on each route. Once the aggregated
daily journey numbers are distributed along different
routes from each station, origin–destination (O–D)
estimates are made for exit stops along each route
by assuming O–D values will be in proportion to
the volume of journeys attracted at exit stations. By
repeating the above steps for all stations, the model
generates a comprehensive O–D journey assignment
for the entire network.

To estimate disruption for any failure state, the
model is developed further to estimate the spatial
distribution of journey reductions associated with a
failure on any edge in the network topology, which
is assumed to cause full closure of the affected part
of the network. The model finds the number of O–D
journeys along the affected section and searches for
alternative routes (based on shortest distance) to
complete these journeys. If there are no alternative
routes in the residual network, then the number

of journeys lost equals the O–D flows through the
affected section. If alternative routes exist, some
journeys are still lost as passengers might not travel
if the alternative journey is longer than the original
one. The railway passenger demand forecasting
handbook (Association of Train Operating Com-
panies, 2013a) provides estimates for the decay of
journeys with increasing distances, which are used
in the model. By looking at all disrupted routes,
the model estimates the passenger trips lost over
the entire network (on a per-day basis), which is
adopted as a loss function on the assumption that the
closure of the routes is caused by bridge failures. In
Section 7.1, we extend this analysis to consider the
duration of disruption to passenger journeys, and
consequential economic loss.

6.2. Network Edge Failure States

The network topology of the passenger journey
disruption model contains 2,047 edges, which we
denote by the set �. To compute network disruption,
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we map the 8,877 bridges onto the 2,047 network
edges, so that bridge failure probabilities calculated
using the spatial flood event model and the fragility
curve can be translated into probabilities of failure
(and hence passenger disruption) occurring on a
given edge. For an edge, E, passing over a subset of
bridges, B � �, the vector SB = {sk: k � B) describes
the state of each bridge. If one or more of the bridges
crossed by an edge fails, then the edge is considered
to be in a “failed state.” We describe this situation
by writing sE = 0, where the superscript notation is
used to denote the failure of an edge, E, rather than
a bridge. The probability of such an event is:

Pr[s E = 0|y] = 1 −
∏
k∈B

(1 − Pr [sk = 0|yk]), (23)

where Pr[sk = 0|yk] is the probability of failure of the
kth bridge crossed by the edge, which is evaluated us-
ing the fragility function, conditional on a load sup-
plied by the spatial river flow model.

An nth-order failure state refers to an event in
which there is a failure of each of a set of n (n > 0)
edges, E = {Ei: i � �, |E| = n}. The conditional
probability of the failure state is given by combining
the probabilities of states on the individual edges,

Pr[sE = 0|y] =
∏
i∈�

Pr[si |y]. (24)

The set of possible network failure states is
the power set ℘�1(�). Using Equation (24), the
expected loss integrated over all flood events and
network edge failure states is:

μ =
∫

. . .

∫
R

∑
E∈℘≥1(�)

{
z(sE) Pr

[
sE = 0

∣∣y ]}
gY(y)dy,

(25)

which is analogous to Equation (7), but now ex-
pressed in terms of network edge failures, for which
the passenger journey disruption model provides a
suitable loss function.

6.3. Risk Integration

Equation (25) represents the integration of
expected disruption over the distribution of load
events. We take a Monte Carlo approach to approxi-
mate the integral by averaging estimates of expected
network disruption over a large set of stochastically
simulated flood events, representing 10,000 years
of simulated data. This sample is generated from
the spatial river flow model (Section 5.1), which

simulates events at an annual rate inferred from the
observed river flow data, in this case 4.3 events/year.

The analysis of complex infrastructure networks
that involve many components and multiple damage
states is computationally demanding. A general
strategy is to prioritize important states, which can
be achieved using a probability sort algorithm (van
Erp, Linger, Khakzad, & van Gelder, 2017), even
for very large networks. Equation (25) requires
the evaluation of all 2|�| − 1 � O(102,672) possible
network edge failure states, which is not feasible.
However, many states will make a negligible con-
tribution to the risk: some, particularly higher-order
failure combinations, because their probability will
be negligible, and others because they may cause
relatively little disruption. Therefore, we approx-
imate μ by evaluating a subset of network states,
� (|� | � 2|�| − 1), starting with the first-order
states, which have the highest probabilities, and
then identifying those higher-order states that would
cause the greatest disruption, such that

μ ≈ μ(�) = 1
43,000

43,000∑
j=1

z̄j (�), (26)

where

z̄j (�) =
∑
E∈�

{
z(sE) Pr

[
sE = 0

∣∣y j ]} (27)

is the daily number of journeys expected to suffer dis-
ruption in the jth simulated spatial flood event, esti-
mated from the network disruption of all evaluated
network failure states weighted by the associated fail-
ure probabilities.

The subset � was chosen by first identifying
edges on which a bridge failure would cause disrup-
tion of more than 50,000 journeys per day. There are
19 such edges. The disruption arising from failure
combinations of up to six of these 19 edges was then
also calculated, meaning that Equations (26) and (27)
were evaluated for the set � containing all 2,047 first-
order edge failures plus 34,370 of the most important
higher-order failure cases. The practical constraint
on evaluating further failure scenarios is the in-
clusion of the journey rerouting algorithm, which
represents the adaptive capacity of the network, and
was prohibitively expensive to evaluate beyond the
sixth-order failure states. The number of journeys
predicted to be disrupted by all failure states within
�, expressed as an estimated daily rate, is shown in
Fig. 6. The mean increases sharply over the first- to
fourth-order states, but grows at a much smaller rate
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Fig. 6. Passenger journeys disrupted (daily rate) for failure of one network edge or combinations of up to six network edges. Thick hori-
zontal line is the mean, boxes span the interquartile range, area of box is proportional to number of failure states, circles represent the 19
most important first-order failures, which were used to compute disruption for a subset of higher-order failure states.

for the higher-order states, suggesting that there is
unlikely to be a significant error introduced by trun-
cating the analysis at the sixth-order failure states.

6.4. Results

The empirical distribution of the expected
number of passenger journeys disrupted in the
simulated spatial flood events is plotted in Fig. 7.
The distribution is highly skewed, with most flood
events expected to cause little disruption, but a
long tail of extreme floods contributing significantly
to the risk, emphasizing the need to model such
low-probability, high-consequence events explicitly.
Averaging over all simulated floods, the expected
number of disrupted passenger journeys per event is
μ = 10,954 per day of disruption.

The contributions to risk for the first- to sixth-
order failure states are further explored in Fig. 8,
where the boxplots represent the distribution of
daily expected rate of passenger journey disrup-
tion over all 43,000 simulated flood events (note
the logarithmic scale and the presence of a very
small number of important failure states, visible as
“whiskers,” that contribute disproportionately to the
total risk). Table IV summarizes the data plotted in
Fig. 8. Averaging over all flood events, the daily rate
of passenger disruption attributable to the failure of
bridge(s) on a single network edge is expected to be
2,682 (24% of the total risk), while that attributable
to failures in combinations of at least two edges is
estimated to be 8,272 (76% of the risk).

7. DISCUSSION

7.1. Quantification of Economic Risk

In the U.K. railway industry, the operational
consequences of scour risk are realized through a
complex internal business model. Costs of disruption
are transferred between multiple organizations via a
system of compensation payments, which are based
on delays incurred by rail users. Further costs are
associated with emergency works, monitoring, main-
tenance, and capital expenditure on resilience. Our
analysis does not include these impacts, which would
require additional proprietary data and models.

However, the economic impacts of scour risk can
be assessed in part by considering the loss of utility
associated with disruption to passenger journeys.
Our model estimates journey disruption at a daily
time scale, whereas the loss of utility caused by
a bridge failure will also depend on the time for
which the disruption persists. Neglecting the effect
of demand transfer to other modes of transport (but
accounting for the rerouting of journeys within the
rail network itself; see Section 6), we will approxi-
mate the total journey disruption caused by a failure
event as the daily disruption rate multiplied by an
estimate of the time required to reinstate a bridge,
informed by actual events as discussed below.

Following a bridge failure and consequent
line closure, the time needed to reopen the bridge
depends on many unpredictable factors, including
constraints imposed by continuing weather events,
site access and geotechnical issues, workforce
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Fig. 7. Empirical cumulative distribution of z̄j , the daily disruption to passenger journeys on the rail network estimated from 43,000 simu-
lated spatial flood events.

Table IV. Summary Statistics of the Contribution to Risk in Terms of the Daily Rate of Passenger Journeys Expected to Suffer Disruption
When Assessed Over 43,000 Simulated Flood Events and Failure States for All First- to Sixth-Order Failure States Evaluated

Number of network edges failed

1 2 3 4 5 �6

Number of passenger
journeys expected to
suffer disruption

Min. 849 3,253 7 <1 <1 <1
Median 1,812 4,113 10 <1 <1 <1
Mean 2,682 7,773 323 94 65 17
Max. 102,860 313,334 426,883 303,543 491,528 168,839

Table V. Documented Scour-Related Bridge Failures and Reinstatement Times

Location and Date of
Failure Cause of Failure Days Until Reopened Source

Lammington, Scotland,
December 31, 2015

Pier partially undermined by
scour, leading to sudden
movement of the viaduct deck

54 Rail Accident Investigation
Branch, Department for
Transport, Report 22/2016,
November 2016,
www.raib.gov.uk

Feltham, England,
November 14, 2009

Abutment undermined by scour,
linked to obstruction of arch,
causing subsidence and
dislocation of arch ring

180 (estimated, date
bridge fully
reinstated, reported
as middle of month)

Rail Accident Investigation
Branch, Department for
Transport, Report 17/2010,
September 2010,
www.raib.gov.uk

Malahide, Ireland,
August 21, 2009

Collapse caused by scour
following deterioration of
protection weir

87 Railway Accident Investigation
Unit, Investigation Report No.
2010—R004, August 2010

Glanrhyd, Wales,
October 19, 1987

Scour failure of piers resulting in
collapse of the bridge
superstructure

377 Department of Transport
Accident Report, HMSO, 1990,
ISBN 0 11 550961 5

resources, and competing emergency funding prior-
ities. Our estimate of a mean disruption duration is
informed by four scour failure events in the United
Kingdom and Ireland since 1987, and for which acci-
dent reports have been published, listed in Table V.

The average length of disruption in these cases
was 174 days. Adopting this figure as a general
estimate and combining with our disruption risk
model, the expected disruption per failure event is
174 × 10,954 = 1,905,996 journeys. Given further

http://www.raib.gov.uk
http://www.raib.gov.uk
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Fig. 8. Contribution to risk in terms of the daily expected rate
of passenger journey disruption estimated from 43,000 simulated
flood events, assessed separately for first- to sixth-order failure
states.

information, it would be desirable to treat the length
of disruption as a stochastic variable.

Since failure probabilities are very small, it is
assumed that flood events and their impacts are inde-
pendent and that the disruption from different flood
events is additive. With flood events simulated at a
mean rate of 4.3 per year, the annualized expected
disruption is estimated to be 1,905,996 × 4.3 =
8,195,783 journeys.

This represents 0.5% of the mean annual passen-
ger flow of 1.7 × 109 journeys per year (HM Govern-
ment, 2017a) on the British rail network. Recent eco-
nomic analysis places the network’s economic benefit
to passengers between £1.2 billion and £12 billion per
year (Oxera, 2014). The annual cost to passengers of
the loss of 0.5% network utilization can therefore be
valued at between £6 million and £60 million.

7.2. Safety Risk

Safety has long been a paramount concern
for Britain’s railways, beginning in 1840 with the
establishment of a Railway Inspectorate and a
requirement to report all injurious accidents (Hutter,
2001). Today, safety risk management follows prin-
ciples set out in the common safety method for risk
evaluation and assessment (CSM RA) (Office of Rail
Regulation, 2015a). One or more of the following
three risk acceptance principles can be applied: (1)
application of codes of practice, (2) comparison with
similar reference systems, or (3) explicit risk esti-
mation. We can compare our analysis of economic
disruption from scour with the Railway Safety and
Standards Board Safety Risk Model (SRM) (Rail
Safety and Standards Board, 2018), which quantifies

safety risk in units of fatalities and weighted injuries
(FWIs) (Rail Safety and Standards Board, 2008).

The SRM (v8.5, March 2018) estimates the
frequency of structural collapse due to scour and
water action leading to passenger train derailments
to be 3.62 × 10−3 events per year, leading to a risk
of 9.43 × 10−3 FWIs per year (we focus on passenger
trains, excluding freight, to compare with our eco-
nomic analysis of loss of utility to passengers). The
economic value of preventing a statistical fatality
adopted by the industry is approximately £1.9 mil-
lion (Rail Safety and Standards Board, 2017), which
means that the annual safety risk associated with
derailments of passenger trains, when quantified in
the same economic terms, is less than £20,000. With
safety being a fundamental driver for the industry
(Office of Rail Regulation, 2015b), our analysis
suggests that loss of utility to passengers from the
residual bridge scour risk has orders of magnitude
greater economic impact than the residual safety
risk, which has been significantly mitigated.

It should also be recognized that safety and
economic concerns motivate management practices
in different ways. Safety concerns are paramount,
motivating intensified surveillance, speed restric-
tions, and, indeed, line closures during extreme flood
events. These practices incur some economic losses
for passengers even in the absence of bridge failures,
while meaning that the probability of fatal bridge
failures is much lower than would otherwise be the
case.

7.3. Future Applications of the Analysis

Economic assessment of safety risk can be a part
of a cost–benefit analysis when determining whether
a specific measure is necessary to ensure “safety so
far as is reasonably practicable,” an important princi-
ple in the railway industry (Rail Safety and Standards
Board, 2014). Passenger utility, our present focus,
is considered within the industry’s wider business
planning. Our analysis demonstrates an approach
for explicit risk estimation in this context, analogous
to the third of the safety risk acceptance principles
outlined above. We hope to support future debate
about risk acceptance by adding this economic
dimension, which was not previously available.

The framework demonstrated here can also
support further analysis of the business case for
investments in scour mitigation. The generic fragility
model provides a baseline against which improve-
ments in risk mitigation may be compared. At
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present, there is no model available to specify
changes in the fragility function for specific scour
mitigation measures, but an earlier expert elicitation
study (Lamb et al., 2017) offers some evidence,
for generic bridge and watercourse types, about
how failure probabilities might change under three
different sets of assumptions about scour risk miti-
gation actions. These compare a “business as usual”
assumption with two counterfactuals: no scour
mitigation, or significantly enhanced mitigation. The
results showed order of magnitude changes in the
experts’ judgments of failure probabilities, which
could be implemented within our risk analysis to
quantify the difference in risk, and hence economic
benefits, of different levels of risk mitigation. Further
research would be needed (see below) to link those
changes to specific changes in scour management
practices. An approach to testing alternative mit-
igation strategies has been demonstrated for the
Chinese railway system (L. Hong, Ouyang, Peeta,
He, & Yan, 2015) using a network risk model in
which a scaling factor, representing a “maintenance
intensity,” was applied to modify failure rates under
stochastically generated event scenarios. A similar
approach could be applied with our model.

By combining spatially coherent models for
flood hazard and passenger journey disruption, our
analysis could be adapted to study the contribution
to risk from specific extreme event scenarios. We
have shown that rare events in which multiple
bridges fail contribute significantly to the total
risk, which would be underestimated if a simpler
model, lacking spatial dependence, were applied to
represent the flood hazard.

Our model may also be applied to help the in-
dustry and emergency planners in preparing for the
impacts and operational consequences of extreme
flood scenarios through the development of “stress
test” scenarios. In the United Kingdom, the govern-
ment’s National Risk Assessment (Cabinet Office,
2017) is the basis for assessing emergency prepared-
ness against a set of hazards, specified as scenarios
within defined probability and impact bounds.
Probability bounds are set so as to provide scenarios
that would be challenging for emergency responders,
but not implausible. It is therefore important that
the scenarios can be interpreted probabilistically.
For inland flooding, the National Risk Assessment
considers a probability of occurrence between 1/200
and 1/20 over five years, which was assessed using the
same type of spatial flood hazard model as applied
in this article (Wood et al., 2016). Our model could

be used to develop similar scenarios relating to dis-
ruption to rail services caused by flooding and scour,
with quantified probabilities and consequences.

Overall, this analysis provides the methodol-
ogy and tools to undertake a first-order screening
whereby locations and assets causing high systemic
risks can be prioritized for further detailed structural
engineering investigations. In a large-scale network,
such information becomes very useful when there are
limited budgets to invest in asset risk management.

7.4. Known Limitations and Opportunities for
Further Research

A number of limitations are acknowledged in
this analysis. Our empirical model does not repre-
sent scour processes physically and is dependent
on the set of failure events that happen to have
been observed. It does not account explicitly for
temporal processes, especially sequences of events
that may explain collapses in relatively minor floods.
Similarly, some recent events are known to have
involved blockage (e.g., the Feltham bridge failure
in 2009; RAIB, 2009), which is not accounted for
explicitly, though it is known that debris mobiliza-
tion increases markedly in extreme floods (Comiti,
Lucı́a, & Rickenmann, 2016; McIntyre & Thorne,
2013; Weeks, Witheridge, Rigby, Barthelmess, &
O’Loughlin, 2013). Long-term nonstationarity in the
probability distribution of historic flood events is ig-
nored, as are systematic changes in construction and
maintenance standards, or repair and replacement of
bridges. Additionally, variations in foundation types,
construction dates, and watercourse typology are not
accounted for, other than as a contribution to uncer-
tainty in the fragility analysis. Our standardization
methodology assumes that bridges have been built
to withstand roughly the same return period flood
irrespective of the mean flow in the river. Failure
processes are assumed to be independent between
bridges, given the flow conditions, meaning that we
do not allow for a cascading failure mechanism, as
could occur more obviously in situations such as dam
breaches where an asset failure leads to the release
of a large flood wave. We also assume that there
are no systematic weaknesses in particular subsets
of bridges, or at particular times, that might cause
failures to cluster (other than through a common
high level of loading simulated from the spatial flood
hazard model).

The factors mentioned above are captured
implicitly in the dispersion parameter of the fragility
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function and in the uncertainty analysis. With an
understanding of its limitations, the fragility function
is interpreted as a model for a broad-scale risk
analysis, that is, we consider the risk of scour at an
aggregate level, over the whole rail network, but
cannot attribute risk to individual bridges.

Although passenger journey disruption provides
one perspective on scour risk, other loss functions
could be applied within this framework to account
for economic, operational, or safety impacts of scour
risk. The wider economic impacts go beyond the
utility value for rail passengers, and include impacts
on freight, business interruption, and other indirect
consequences. These impacts can be significant; for
example, the economic cost of a coastal railway line
collapse at Dawlish in 2015 was estimated to be
about £2.1 billion (BBC, 2015).

Further research could add more granularity to
the model proposed here by classifying failure events
according to bridge typology or failure mechanism,
albeit at the cost of reducing the effective sample
size. As noted in Section 7.3, the fragility function
could also be adjusted to reflect differing scenarios
for construction, maintenance, or scour protection
standards, and hence reflect different risk mitigation
investment strategies. This will require research to
determine changes in failure probability linked to
specific changes in risk mitigation actions, and their
associated costs. Furthermore, the loading model
may be adjusted to reflect changes in hydrological
regime, especially to allow climate change scenarios
to be considered.

The integration of the fragility function with a
spatial flood hazard model allows the likelihood of
specific failure scenarios to be quantified. For exam-
ple, certain bridges are more critical than others in
terms of potential disruption (Pant, Blainey, Hall,
& Preston, 2015), hence it may be useful to assess
scenarios conditional on failure events at those
locations. Although concurrent failures of multiple
structures are very rare, they have occurred even in
recent decades, hence are known to contribute to the
network risk. A low-probability, high-consequence
scenario of this type, such as failure of multiple
bridges on major routes around London, could now
be assessed within a probabilistic framework by
applying the approach taken here.

8. CONCLUSIONS

Using a data set of 100 railway bridge failures
dating from 1846, we have estimated a fragility curve

for scour failure conditional upon the severity of
flood events at a bridge. The method incorporates
information from river flow records that coincided
with bridge failures, where available, and censored
data elsewhere, within an MLE framework. We
estimate the conditional bridge failure probability
to be 0.010 (range 0.002–0.02) in a 1/100 AEP flood
event, and 0.062 (0.02–0.1) in a 1/1,000 AEP event.

We combined the scour fragility model with a
statistical model for spatially coherent flood events
to create a probabilistic bridge failure model. The
known bridge failures are attributed to 54 historical
flood events. In repeated samples of 54 events sim-
ulated from the linked flooding and fragility models,
the average number of bridge failures is 1.97 (range
1.78–2.41), which compares well with the observed
mean of 1.85 (range 1.34–2.38).

By integrating the probabilistic failure model
with a network passenger journey model, we have
quantified the risk of disruption due to scour over
the British rail network. The annual risk is expressed
as an average of 8.2 million disrupted passenger
journeys. This estimate can be translated into an
expected annual utility cost to passengers of between
£6 million and £60 million. This estimate includes im-
portant contributions (76%) from low-probability,
high-consequence scenarios containing multiple
bridge failures, which can only be captured by mod-
eling both flood hazard and bridge failures spatially,
as we have done here. The loss of utility to passen-
gers is merely one element of the wider costs of (rail)
bridge scour risk to the U.K. economy. The costs
associated with disruption to rail freight, spending
on bridge repairs, delays caused by speed restrictions
(imposed when scour damage is suspected), and
injury or loss of life have not been computed, but
could be accounted for in the same framework if
suitable models are developed to quantify them.

The statistical approach proposed here repre-
sents an integrated, network-scale risk assessment
conditioned on historical observations of river flood-
ing and bridge failures. The same framework could
be generalized for other weather-related hazards,
asset types, and failure modes, such as extreme
rainfall and earthworks failures, or for other infras-
tructure networks. Though the inclusion of greater
site-specific information on bridge characteristics
and vulnerability is attractive in principle, in practice
records of observed failures (and the conditions asso-
ciated with those failures) are very limited, so empir-
ical methods of the type proposed here are bound to
be more generic. Appropriate levels of investment in
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risk mitigation are not only determined by the scale
of the risk, but by the sensitivity of reductions in risk,
that is, the marginal benefits, achieved with different
mitigation strategies. This article has demonstrated
the integration of generic fragility curves within a
probabilistic risk assessment framework that has not
hitherto been feasible, and that could be applied in
future to investigate those benefits of risk mitigation.
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NOMENCLATURE

Y random variable describing uncertain
loading condition, y, in fragility anal-
ysis

gY(y), GY(y) pdf and cdf of load variable
FY(y) fragility function

s state variable describing whether a
bridge has failed, or a network edge
has incurred one or more bridge fail-
ures

z(s) damages incurred for a given failure
state

μ expected damages
λ expected number of bridge failures
� a set containing all bridges in the rail

network
� a set containing all edges in the rail

network topology
X random variable describing peak river

flow rates, x
τ return period of a flood event
γ ratio between historical mean and

contemporary railway network
lengths

� subset of potential network failure
states

θ , β parameters of fragility function

φ, � standard normal probability density
function and distribution function, re-
spectively

χ2 chi-squared distribution
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Decò, A., & Frangopol, D. M. (2011). Risk assessment of highway
bridges under multiple hazards. Journal of Risk Research, 14(9),
1057–1089. https://doi.org/10.1080/13669877.2011.571789

Environment Agency. (2011). The risk of widespread flood-
ing: Capturing spatial patterns in flood risk from rivers and
coasts (Project SC060088) (978-1-84911-247-5). Retrieved
from https://www.gov.uk/government/publications/the-risk-of-
widespread-flooding-capturing-spatial-patterns-in-flood-risk-
from-rivers-and-coasts.

Federal Emergency Management Agency. (2012). Seis-
mic performance assessment of buildings (Vol. 1:
Methodology, P-58-1). Retrieved from https://www.fema.
gov/media-library/assets/documents/90380.

Federal Highway Administration. (2017a). National bridge
inspection standards. Retrieved from https://www.fhwa.
dot.gov/bridge/nbis.cfm.

Federal Highway Administration. (2017b). National bridge in-
ventory (NBI). Retrieved from https://www.fhwa.dot.gov/
bridge/nbi.cfm.

https://www.raildeliverygroup.com/pdfc.html
http://data.atoc.org
http://www.bbc.co.uk/news/uk-england-devon-31140192
https://doi.org/10.1623/hysj.49.2.237.34835
https://doi.org/10.1623/hysj.49.2.237.34835
https://doi.org/10.1016/s0022-1694(96)03264-7
http://randd.defra.gov.uk/Default.aspx?Module=More&Location=None&ProjectID=11615
http://randd.defra.gov.uk/Default.aspx?Module=More&Location=None&ProjectID=11615
https://www.gov.uk/government/publications/national-risk-register-of-civil-emergencies-2017-edition
https://www.gov.uk/government/publications/national-risk-register-of-civil-emergencies-2017-edition
https://www.gov.uk/government/publications/national-risk-register-of-civil-emergencies-2017-edition
http://nrfa.ceh.ac.uk/
https://doi.org/10.1080/00221680309499997
https://doi.org/10.1080/00221680309499997
https://doi.org/10.1016/j.geomorph.2016.06.016
https://doi.org/10.1016/j.geomorph.2016.06.016
https://www.cumbria.gov.uk/eLibrary/Content/Internet/536/6181/42769141953.pdf
https://www.cumbria.gov.uk/eLibrary/Content/Internet/536/6181/42769141953.pdf
https://doi.org/10.1029/2003wr002295
https://doi.org/10.1080/13669877.2011.571789
https://www.gov.uk/government/publications/the-risk-of-widespread-flooding-capturing-spatial-patterns-in-flood-risk-from-rivers-and-coasts
https://www.gov.uk/government/publications/the-risk-of-widespread-flooding-capturing-spatial-patterns-in-flood-risk-from-rivers-and-coasts
https://www.gov.uk/government/publications/the-risk-of-widespread-flooding-capturing-spatial-patterns-in-flood-risk-from-rivers-and-coasts
https://www.fema.gov/media-library/assets/documents/90380
https://www.fema.gov/media-library/assets/documents/90380
https://www.fhwa.dot.gov/bridge/nbis.cfm
https://www.fhwa.dot.gov/bridge/nbis.cfm
https://www.fhwa.dot.gov/bridge/nbi.cfm
https://www.fhwa.dot.gov/bridge/nbi.cfm


Economic Risk to Britain’s Railway Network from Bridge Scour 21

Flint, M. M., Fringer, O., Billington, S. L., Freyberg, D., & Dif-
fenbaugh, N. S. (2017). Historical analysis of hydraulic bridge
collapses in the continental United States. Journal of Infras-
tructure Systems, 23(3). https://doi.org/10.1061/(asce)is.1943-
555x.0000354
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