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Abstract 17 

As climate changes increase heat stress on tropical ecosystems, the long-term 18 

persistence of coral reefs requires rapid coral recovery following coral bleaching events. 19 

Using the extent of coral cover return to a pre-bleaching baseline as a benchmark, recovery of 20 

fast-growing and stress-tolerant coral growth forms suggest that reefs can bounce back 21 

between repeated disturbances if given adequate time and protection from anthropogenic 22 

disturbances. However, long-term recovery dynamics of coral communities following severe 23 

bleaching and mass mortality are limited, particularly for fringing reefs along inhabited 24 

coastlines where human stressors may compromise recovery potential. Here, we examine the 25 

dynamics and drivers of coral recovery in Seychelles, where 12 reefs returned to pre-26 

bleaching coral cover levels after a severe bleaching event caused >95% coral mortality. Six 27 

reefs with initially low cover (<25%) recovered within 7-12 years and, after 16 years, 28 

exceeded pre-bleaching cover levels by 132-305%. In contrast, six reefs with initially high 29 

cover (20-60%) remained at 48-93% of pre-bleaching levels, with recovery projected to take 30 

17-29 years. Abiotic and historic conditions constrained recovery rates, with the slowest 31 

recovery times observed on deep and wave-exposed reefs with high pre-bleaching coral 32 

cover. Reefs with high juvenile coral densities and low nitrogen levels recovered fastest, 33 

possibly due to the interplay between nutrient enrichment, algal proliferation, and coral 34 

recruitment. Our findings emphasize the importance of understanding small-scale variation in 35 

recovery potential, whereby recovery times were governed by natural limits on growth rates 36 

and modified by coral recruitment and nutrient enrichment. Ultimately, climate-impacted 37 

reefs can recover to moderate coral cover levels but, if bleaching causes repeated high coral 38 

mortality, short recovery windows will prevent a return to historic levels of coral dominance. 39 

 40 

 41 
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Introduction 42 

Climate-driven thermal stress events that cause coral bleaching events are accelerating in 43 

frequency, threatening the persistence of coral-dominated reefs across the tropics (Pandolfi et 44 

al. 2003, Heron et al. 2016). As global temperatures have risen from 1980 to 2016, coral 45 

bleaching recovery windows have shortened from 27 to 5.9 years (Hughes et al. 2018a), and 46 

are likely to become even shorter as severe bleaching events are expected to occur annually 47 

by 2050 (van Hooidonk et al. 2016). Although examples of resilient reefs that regenerate 48 

coral cover suggest that certain conditions, such as isolation from human stressors, facilitate 49 

recovery from bleaching (Sheppard et al. 2008, Gilmour et al. 2013), the conditions that 50 

promote or depress recovery rates are not well understood, particularly for fringing reefs 51 

along inhabited coastlines where chronic anthropogenic stressors are pervasive. As such, it is 52 

unclear under what conditions reefs may be able to recover rapidly in the face of diminishing 53 

recovery windows.  54 

The ability of coral reefs to return to coral-dominated states following declines from acute 55 

disturbances, including bleaching, is typically measured by the degree of recovery towards 56 

pre-disturbance coral cover (Connell 1997, Osborne et al. 2011, Johns et al. 2014). Although 57 

differential bleaching susceptibility and recovery potential of coral growth forms (Darling et 58 

al. 2013) means that reassembly of community composition is expected to lag behind cover 59 

recovery (Johns et al. 2014), return times to pre-disturbance coral cover (i.e. 100% recovery) 60 

may be considered an early indicator of recovery. Short return times enhance the probability 61 

of coral-dominated states under recurrent bleaching, but should also increase the potential for 62 

a return to pre-bleaching functioning (Alvarez-Filip et al. 2013). However, return times can 63 

vary considerably among reefs (Osborne et al. 2011, Johns et al. 2014) and regions (Connell 64 

1997, Baker et al. 2008, Graham et al. 2011), implying that recovery potential is highly 65 

context dependent. As such, our understanding of plausible recovery times under recurrent 66 
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bleaching scenarios requires analysis of long-term benthic changes according to local 67 

conditions of resilient reefs. 68 

Regional and local differences in coral recovery are likely due to reef-specific abiotic and 69 

biotic conditions that are conducive to coral growth, and to degrading influences of local 70 

anthropogenic stressors. For example, high wave energy limits coral growth and larval 71 

settlement, thus placing natural constraints on coral cover (Gove et al. 2015) which likely 72 

also influence recovery times. Ecological feedbacks between corals, algae, grazers and 73 

nutrients underscore the importance of biotic processes in determining coral recovery, with 74 

coral recruitment and survival dependent on grazing control of algal competitors (McCook et 75 

al. 2001, Birrell et al. 2008), particularly under nutrient regimes that stimulate algal 76 

productivity (Burkepile & Hay 2009, Burkepile et al. 2013). These feedbacks may be 77 

disrupted by anthropogenic influences where, for example, sedimentation directly inhibits 78 

coral growth (Fabricius et al. 2005) and nitrogen enrichment promotes macroalgal 79 

overgrowth (Lapointe 1997). Overexploitation of grazers can promote algal overgrowth 80 

(Mumby et al. 2006) and magnify nutrient effects (Burkepile & Hay 2006) and so, after 81 

bleaching, may slow recovery rates by limiting coral recruitment (Elmhirst et al. 2009). 82 

These factors imply that benthic recovery will vary spatially and thus impact ecosystem 83 

functions in different ways among reefs and between regions, but that natural recovery 84 

processes could be accelerated to increase the resilience of coral reefs within expected 85 

recovery windows.  86 

To date, empirical studies of coral recovery have typically contended with several types 87 

of disturbance on reefs that are partially protected from human stressors. For example, 88 

comparative analyses of reef recovery rates on the Great Barrier Reef (GBR) suggest that 89 

water quality (Ortiz et al. 2018, MacNeil et al. 2019) and thermal heating (Osborne et al. 90 

2017) have compromised GBR recovery potential. The GBR has suffered severe bleaching 91 
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following the 2016 El Niño (Hughes et al. 2018b) but previous studies have focused on 92 

recovery following moderate coral decline by other disturbances (e.g. cyclones, crown-of-93 

thorns starfish), and the role of protection networks (Mellin et al. 2016). Furthermore, 94 

detection of recovery mechanisms requires reef-scale ecological metrics (e.g. coral 95 

recruitment, nutrient loads) that are often unavailable at the appropriate temporal and spatial 96 

scale.  97 

Here, we assess the factors that promote or depress long-term coral recovery following a 98 

severe bleaching event. We utilize long-term monitoring data of reef sites in the inner 99 

Seychelles that experienced >90% coral mortality after bleaching in 1998, where 12 reefs 100 

gradually regained coral cover and habitat complexity over 2005-2014 (Graham et al. 2015). 101 

These monitoring data identified reef-specific conditions that increased the likelihood of 102 

regime shifts to macroalgal states (Graham et al. 2015), but equivalent reef-level variation in 103 

recovery dynamics at resilient reefs has not yet been examined. We used logistic growth 104 

models in a hierarchical Bayesian modelling framework to demonstrate variability in 105 

recovery trajectories, and quantified variation in projected recovery times according to 106 

historic reef states, abiotic and biotic influences, and anthropogenic stressors.  107 

 108 

Methods 109 

Identification of recovering reefs  110 

We examined the benthic recovery dynamics at 12 reef sites in the inner Seychelles 111 

(Fig. 1). Reefs were defined as recovering from the 1998 bleaching event by Graham et al. 112 

(2015), based on the relative abundance and trajectories of hard coral and macroalgae from 113 

1994-2014. Recovering reefs had greater cover of hard corals than macroalgae, increased in 114 

hard coral cover from 2005 to 2011, and met one of the three following trajectory criteria: 1) 115 

declining Euclidean distance between pre-disturbance (1994) and post-disturbance benthic 116 
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condition (2005, 2008, 2011); 2) the rate of hard coral cover increase was stable or greater 117 

than that of macroalgal cover change; 3) the decline in coral cover between 1994-2011 was 118 

lower than that of 1994-2005, and corresponding change in macroalgal cover was negligible 119 

(Graham et al. 2015). Because Seychelles reefs experienced a second mass bleaching event in 120 

2016 (Hughes et al. 2018a), our analysis focuses on the recovery period 2005-2014. 121 

 122 

Benthic community data 123 

Coral cover and structural complexity estimates were collected using visual point 124 

counts. Surveys were conducted in 1994 (i.e. pre-bleaching) and, in the recovery period, 125 

every three years from 2005-2014 (2005, 2008, 2011, 2014). At each reef site, one diver (SJ 126 

in 1994, SW in all subsequent years) visually assessed benthic cover and structural 127 

complexity in point counts of 7 m radius. Percent cover of major coral growth forms 128 

(branching, massive, encrusting) was estimated in each point count, and structural complexity 129 

was visually assessed on a 6-point scale (Polunin & Roberts 1993). Point counts were 130 

repeated for eight (2011, 2014) or sixteen replicates (1994, 2005, 2008) at each reef site. 131 

Coral visual assessments were supplemented with genera-level surveys conducted in 2008, 132 

2011 and 2014. At each reef site, we used eight replicate 10 m line intercept transects to 133 

record the percent cover of major coral genera. 134 

 135 

Predictors of benthic recovery 136 

 We examined reef-level variation in benthic recovery dynamics using a suite of 137 

abiotic, biotic and anthropogenic covariates that are thought to influence benthic recovery 138 

dynamics. Abiotic processes place natural constraints on coral abundances (Williams et al. 139 

2015) and, as such, may depress or promote recovery rates. For example, recovery may be 140 

compromised in shallow water locations where corals are more vulnerable to bleaching 141 



 7 

(Safaie et al. 2018). Locations subjected to high intensity wave action may have lower natural 142 

cover of fast-growing branching corals (Gove et al. 2015) that are vulnerable to breakage and 143 

dislodgement during severe storms (Madin & Connolly 2006) and, as such, may also require 144 

longer recovery periods. To measure these processes, we used UVC survey depth (5 – 10 m) 145 

and a long-term wave climatology metric as abiotic predictor covariates. Wave energy 146 

(Joules) estimates were derived from hourly wind speed and direction values (Seychelles 147 

National Meteorological Service) and accounted for the uninterrupted fetch distance across 148 

which waves are generated (Ekebom et al. 2003, Chollett & Mumby 2012). For each reef, 149 

fetch distances were based upon a 55 m resolution map extending to 500 km for 32 compass 150 

directions, and wind speed and direction values were averaged over 1998-2011 (Graham et 151 

al. 2015). Thus, our wave energy metric represents reef-level variation in physical exposure 152 

in the post-bleaching recovery period. 153 

Abiotic constraints may be modified by herbivorous grazing pressure, which enhances 154 

coral recruitment by clearing larval settlement space and suppressing growth of competing 155 

turf and macroalgae (McCook et al. 2001, Mumby et al. 2006). In Seychelles, reefs with 156 

higher herbivore biomass were also less likely to transition to macroalgal states after 1998 157 

bleaching, but it is unclear if this effect also influenced recovery of resilient reefs. We used 158 

observations of herbivorous fish biomass from diver surveys conducted at the same reef sites. 159 

Before each benthic survey conducted in 2005, one diver (NAJ) surveyed the abundance and 160 

length (cm) of 37 species of all diurnally active, reef-associated herbivorous fish (croppers, 161 

scrapers, excavators and browsers), using point counts of 7 m radius. Abundances and 162 

lengths were converted to biomass (kg ha-1) using published length ~ weight relationships 163 

(Froese and Pauly 2015), and averaged across replicates to give the mean herbivorous fish 164 

biomass at each reef. As a measure of coral recruitment rates at each reef in the recovery 165 

period, we estimated juvenile coral densities in 2011. Juveniles were corals <10 cm in 166 
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diameter, estimated using 33x33 cm quadrats for 8 replicates placed within each benthic 167 

point count survey. 168 

Recovery rates may be depressed on reefs nearby to sources of anthropogenic runoff, 169 

owing to unbalanced nutrient loads which may indirectly impact coral recruitment through 170 

proliferation of algal competitors (McCook et al. 2001, Fabricius et al. 2005, D’Angelo & 171 

Wiedenmann 2014). We estimated the nitrogen concentration (%) of Sargassum fronds 172 

collected at each reef site in 2014 (Graham et al. 2015). Nitrogen concentrations reflect 173 

differences in nitrogen availability among reefs due to spatial variation in terrestrial nutrient 174 

inputs.  175 

Finally, we used pre-disturbance surveys to account for potential unmeasured reef-176 

level variation in the capacity of each reef to reach highly complex, coral-dominated states 177 

(hereafter ‘historic’ predictors). Furthermore, because we defined recovery as a return to pre-178 

bleaching coral cover, we expected coral-dominated reefs to have the longest recovery times. 179 

Initial benthic conditions were the pre-bleaching estimate of hard coral cover and structural 180 

complexity (i.e. in 1994), averaged across replicates at each reef site. All predictor covariates 181 

were scaled and centered to a mean of 0 and standard deviation of 1 and examined for 182 

collinearity before model fitting. 183 

 184 

Coral recovery models 185 

We examined reef-level variation in hard coral recovery trajectories using a 186 

hierarchical Bayesian logistic model. Observed hard coral cover (y) was modelled as a 187 

logistic function where the recovery rate r, asymptote a_max, and the curve inflexion point 188 

xmid predict the coral cover in each post-disturbance survey year i. Survey year was rescaled 189 

to represent recovery years following 1998 bleaching (e.g. first survey year 2005 = 7 190 

recovery years).  191 
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We fitted two logistic model parameterizations, for either a standard 3-parameter 192 

logistic model with one maximum asymptote term (1) or a more flexible 4-parameter logistic 193 

with minimum (a_min) and maximum asymptote terms (a_max) (2). Furthermore, because 194 

the logistic asymptote may be defined by the observed recovery rate or fixed to the substrate 195 

area available for coral colonization, we also fitted models with either unconstrained 196 

asymptotes (i.e. a_max is estimated by the model) or asymptotes set to the amount of hard 197 

substrate area available for colonization at each reef in 1994 (i.e. a_max = total hard coral + 198 

rock + rubble). Reef-level recovery dynamics were modelled in a hierarchical structure that 199 

allowed r, a_min, and a_max to vary by each reef site s, for gamma-Poisson distributed 200 

observations (McElreath 2017), 201 

𝑦𝑦𝑖𝑖 ~ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜇𝜇, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) 202 

with mean models:  203 

log�𝜇𝜇𝑖𝑖,𝑠𝑠�~ 𝑎𝑎_𝑚𝑚𝑚𝑚𝑚𝑚𝑟𝑟

1+ 𝑒𝑒
(𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥−𝑖𝑖)

𝑟𝑟𝑠𝑠

         (1) 204 

log�𝜇𝜇𝑖𝑖,𝑠𝑠�~ 𝑎𝑎_𝑚𝑚𝑚𝑚𝑚𝑚𝑟𝑟 + 𝑎𝑎_𝑚𝑚𝑚𝑚𝑚𝑚𝑟𝑟−𝑎𝑎_𝑚𝑚𝑚𝑚𝑚𝑚𝑟𝑟

1+ 𝑒𝑒
(𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥−𝑖𝑖)

𝑟𝑟𝑠𝑠

        (2) 205 

Models were estimated by Markov Chain Monte Carlo (MCMC) using the No-U-206 

Turn-Sampler implemented in Stan, sampling for 3,000 iterations across 3 chains with 207 

warmup of 1,500. Prior values were drawn from a normal distribution with mean = 6 and 208 

standard deviation = 1 (N(6, 1)) for r, from N(3.6, 1) for a_min and a_max (= 36% cover on 209 

linear scale), and N(-0.9, 1) for xmid. We compared model fits among logistic models (1, 2) 210 

and asymptote values (unconstrained or fixed to available substrate area) with the Widely 211 

Applicable Information Criterion (WAIC) (McElreath 2017), which supported the four-212 

parameter logistic model with a_max fixed to the available substrate area (Electronic 213 

Supplementary Material, ESM Table S1). We ensured chain convergence by assessing trace 214 

plots, and by checking that the Gelman-Rubin diagnostic (𝑅𝑅�) was < 1.01 and the number of 215 
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effective samples was sufficiently high (Electronic Supplementary Material, ESM Table S2). 216 

We also evaluated model fits by checking correspondence between fitted and observed values 217 

(Electronic Supplementary Material, ESM Fig. S2). Finally, we sampled posterior predictions 218 

of recovery year using a model of 7,000 iterations across 1 chain.  219 

 220 

Reef level variability in coral recovery  221 

We examined coral recovery trajectories at each reef by drawing predicted cover 222 

values from the posterior distribution for each year in the recovery period 2005-2014. 223 

Observed reef-level trajectories were visualized on a common scale by rescaling each 224 

predicted coral cover value relative to its baseline (i.e. 1994), such that coral recovery was 225 

expressed as a proportion of its pre-bleaching cover (e.g. coral recovery = 100% when 226 

predicted coral cover = coral cover in 1994). We then examined variation in recovery times 227 

by identifying, for each reef, the year when mean predicted coral recovery reached the pre-228 

bleaching baseline. For reefs that failed to recover by the last visual census (2014), we 229 

projected coral recovery trajectories forward in time until the baseline was reached. 230 

Next, we sought to understand variation in the expected year of recovery (y_recovery) 231 

according to abiotic, biotic and anthropogenic covariates. We fitted a Bayesian linear model 232 

to recovery year and eight fixed covariates, 233 

𝑦𝑦_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠 ~ 𝑎𝑎𝑠𝑠 + 𝛽𝛽1ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 𝛽𝛽2𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ + 𝛽𝛽3𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝛽𝛽4𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐1994234 

+ 𝛽𝛽5𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐1994 + 𝛽𝛽6𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 + 𝛽𝛽7𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚+ 𝛽𝛽8𝐶𝐶:𝑁𝑁 235 

with prior values drawn from the distribution N(0, 2) for fixed covariates and at the average 236 

recovery year across reefs (N(17, 5)) for the intercept. Model parameters were estimated by 237 

MCMC sampling of 7,000 iterations, with a warmup of 1,500 across 3 chains. Model 238 

convergence was assessed with posterior predictive checks, effective samples, and 𝑅𝑅� 239 

(Electronic Supplementary Material, ESM Table S3). We further ensured that parameter 240 
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effect sizes were robust to potential estimation biases caused by outlying predictor values at 241 

individual reefs. Using a jackknife resampling approach, we compared parameter posterior 242 

distributions across predictive models fitted to datasets that dropped each reef in turn (i.e. 12 243 

models, each with n = 11). Possible overfitting of recovery year models fitted to relatively 244 

few reefs (n = 12) and a high number of predictors (8) was minimized by use of weakly-245 

uninformative covariate priors and half-Cauchy variance prior (Cauchy(0, 2)) (McNeish 246 

2016). 247 

We assessed covariate influences with standardized effect sizes, represented by the 248 

posterior distribution median with 95% (strong inference) and 50% (weak inference) 249 

confidence intervals, and visualized median recovery times across the observed gradient of 250 

each covariate. We also used heat maps to visualize the combined effect of any strong biotic 251 

and human covariates on median coral recovery time, thus allowing us to assess how local 252 

reef conditions might be manipulated to enhance coral recovery after bleaching.  253 

All analyses were conducted in R 3.4.1 (R Development Core Team 2018), logistic 254 

model parameterizations were provided by SSlogis and SSfpl, and Bayesian models were 255 

fitted in Stan with the rethinking package (McElreath 2017). We provide our R code and 256 

model predictions at github.com/jpwrobinson/coral-bleach-recovery. 257 

 258 

Results 259 

Of the 12 reefs that recovered from mass bleaching in 1998, pre-bleaching coral cover 260 

averaged 26%, with seven low cover reefs (10-20%) and five high cover reefs (20-60%). In 261 

2005, 7 years after bleaching, mean coral cover across all 12 reefs was 11%, which steadily 262 

increased to return to mean pre-bleaching cover (27%) by 2014 (Fig. 1d). However, mean 263 

trends obscured considerable variation in reef-level recovery trajectories. In 2005, four reefs 264 

had recovered 72-127% of pre-bleaching coral cover, whereas eight reefs remained below 265 

http://github.com/jpwrobinson/coral-bleach-recovery
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50% of pre-bleaching cover (Fig. 2a). From 2005 to 2014 (i.e. 7-16 years after bleaching), 266 

reefs steadily recovered towards pre-bleaching conditions (Electronic Supplementary 267 

Material, ESM Fig. S1). By 2014, six ‘overshoot’ reefs had exceeded baseline cover by 132 – 268 

305% to reach fully recovered states within 7-12 years, while six reefs failed to recover to 269 

1994 conditions and remained at 48-93% baseline cover, with recovery predicted to occur 270 

within 17-29 years (Fig. 2b). Thus, despite recovery trajectories across reefs (Electronic 271 

Supplementary Material, ESM Fig. S2) and return to average pre-bleaching coral cover (Fig. 272 

1d), time to recovery was highly variable across reefs, ranging from 7 to 29 years. Recovery 273 

was primarily driven by branching Acropora corals rather than massive or encrusting forms 274 

(Fig. 1d; Electronic Supplementary Material, ESM Figs. S3, S4). 275 

 276 

Reef-level influences on recovery year 277 

 Recovery years were strongly associated with reef-level explanatory covariates. For 278 

abiotic and historic covariates, recovery was slowest at exposed and deep reefs with high pre-279 

bleaching coral cover (Figs. 3,4). For instance, recovery year was delayed by 1.8 years for 280 

every 10% increase in historic coral cover, by 2.7 years for every 5 m increase in depth, and 281 

by 2.4 years for every 0.5 J hr-1 increase in wave energy (Fig. 4). Initial structural complexity, 282 

which was relatively similar among reefs (3 – 3.7) relative to post-bleaching habitat structure 283 

(1.9 – 3.2), was weakly associated with recovery year (effect size = 0.37; 95% CIs = -1.30, 284 

2.08).  285 

Coral juvenile densities and nitrogen load were the strongest positive influences on 286 

recovery year, with recovery times minimized on reefs with low nutrient enrichment and high 287 

juvenile coral density (Figs. 3, 5) (Electronic Supplementary Material, ESM Fig. S5). After 288 

accounting for abiotic effects, recovery times <10 years were expected for reefs with both 289 

low nitrogen load (nitrogen <0.7%) and high coral recruitment (>40 juveniles m-2) (Fig. 5). 290 
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Surveyed reefs, however, did not meet these criteria, with predicted relationships primarily 291 

driven by slow recovery times of nutrient enriched reefs with low juvenile coral densities, 292 

and by fast recovery times of one nutrient-poor reef (7 years, 0.6% nitrogen) and one high-293 

density juvenile coral reef (9 years, 58.8 juveniles m-2). Despite these outliers, covariate 294 

effect sizes were not biased by observations from individual reefs (Electronic Supplementary 295 

Material, ESM Fig. S7) and abiotic and biotic covariates were uncorrelated (Electronic 296 

Supplementary Material, ESM Fig. S1), indicating that variability in recovery times was 297 

attributable to the combined effect of several covariates rather than to collinearity or the 298 

condition of outlying reefs. Recovery times were slower on protected reefs (effect size = 299 

1.56; 95% CIs = -0.07, 3.18) and on those with abundant herbivores, with recovery extending 300 

by 4.1 years from the lowest to highest levels of grazing biomass (42-509 kg ha-1) (Electronic 301 

Supplementary Material, ESM Fig. S5b). 302 

 303 

Discussion 304 

 Over a decade after severe coral bleaching, recovering Seychelles reefs varied 305 

substantially in their extent of coral recovery, with six reefs returning to pre-bleaching coral 306 

cover within 7-12 years and six reefs failing to reach pre-bleaching cover before the next 307 

major bleaching event in 2016. Projected recovery times ranged from 7-29 years and were 308 

linked to reef-level variation in several abiotic, biotic and anthropogenic factors. Abiotic and 309 

historic conditions placed natural constraints on recovery, with the fastest recovery times 310 

predicted for shallow reefs with low initial coral cover and low daily wave exposure. After 311 

accounting for abiotic limits, recovery times were also faster under conditions of high coral 312 

recruitment and low nitrogen enrichment, implying that improving juvenile coral survival and 313 

mitigation of nutrient runoff may enhance coral recovery. 314 
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Reef recovery was driven by regeneration of fast-growing branching Acropora corals, 315 

which on most reefs have replaced massive growth forms (Wilson et al 2012, Wilson et al. in 316 

revision). Such compositional turnover suggests that these reefs have not recovered their pre-317 

bleaching functions and, for example, recovery of structural complexity was incomplete by 318 

2014. Other ecosystem functions, such as community calcification rates, have not fully 319 

returned (Januchowski-Hartley et al. 2017). Although we were unable to examine long-term 320 

abundance shifts among individual coral species, community turnover is expected to continue 321 

after pre-bleaching cover levels have been reached (Johns et al. 2014). Studies which model 322 

recovery trajectories for individual coral species will help to identify future community 323 

compositions for heat-stressed reefs (Ortiz et al. 2018). Compositional shifts towards 324 

branching Acropora corals, combined with either overshoot or failure to return to pre-325 

bleaching coral cover, mean that Seychelles reefs failed to resemble pre-bleaching states after 326 

16 years of recovery. As bleaching events continue to accentuate boom-bust dynamics in the 327 

keystone habitat structure of coral reefs (Wilson et al. in revision) the likelihood of full 328 

recovery cycles is diminishing (Hughes et al. 2018a). In Seychelles, the 2016 coral bleaching 329 

event caused extensive coral mortality (Wilson et al. in revision), meaning the recovery 330 

dynamics we have documented in this study need to re-commence. 331 

Recovery times did, however, vary predictably with natural abiotic limits, with the 332 

slowest recovery times occurring on deep reefs with high wave exposure. Such influences 333 

likely reflect constraints on coral growth rates where, for example, light attenuation at depth 334 

slows coral growth rates (Huston 1985, Pratchett et al. 2015). However, the influence of 335 

depth on bleaching responses is multifaceted, with evidence that shallow reefs often incur 336 

great incidences of bleaching (Bridge et al. 2013) and are more likely to undergo regime 337 

shifts to macroalgae after bleaching (Graham et al. 2015). Thus, deep cool water reefs may be 338 

refuges to heat stress (Safaie et al. 2018). As such, the fast coral growth at shallow reefs may 339 
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only be realized under conditions which promote coral growth (e.g. high juvenile coral 340 

density), while reduced stress in deeper waters may help reefs to retain high coral cover, at 341 

the cost of slower recovery times. For wave energy, exposure gradients determine spatial 342 

patterns in coral cover (Done 1982, Williams et al. 2015, Gove et al. 2015) and extreme 343 

events can cause physical dislodgement of coral colonies (Madin & Connolly 2006). We 344 

extend these concepts to show that wave energy may also negatively influence coral recovery 345 

rates, with reefs exposed to high daily wave action also slower to recover. Such physical 346 

constraints on coral recovery likely occurred because branching corals, which are most 347 

susceptible to removal by wave action (Madin & Connolly 2006), dominated recovery 348 

dynamics. Thus, abiotic filtering of community composition can enhance or retard reef 349 

recovery rates. For example, reefs with highest wave exposure were characterized by low 350 

levels of branching corals, and failed to reach pre-bleaching total coral cover (Mahe E Patch, 351 

66% recovery; Ste Anne Patch, 62% recovery). Together, these predictions of abiotic 352 

constraints can guide expectations of coral recovery after bleaching events, which are 353 

particularly needed for reefs where in-situ monitoring data are unavailable. For example, 354 

remote sensing of depth and wave energy could be paired with thermal stress maps and 355 

predictors of bleaching vulnerability (e.g. Safaie et al. 2018) to forecast long-term resilience 356 

to heat stress across large spatial scales. 357 

Coral recruitment and nutrient enrichment exceeded abiotic limits on coral recovery 358 

times, likely due to their opposing influences on competition between calcifiers and algal 359 

taxa. High rates of coral recruitment (i.e. juvenile coral densities) should positively correlate 360 

with future adult coral abundances (Birrell et al. 2008) and thus shorten recovery times. In 361 

Seychelles, reef-level variation in coral recruitment appears to be driven by benthic habitat 362 

properties rather than larval supply. Survivorship of juvenile corals to adults is lower on 363 

unstable rubble reefs that are frequently disturbed by wave action (Chong-Seng et al. 2014), 364 
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and juvenile coral recovery from severe bleaching is moderated by habitat complexity (Dajka 365 

et al. 2019). Nitrogen enrichment, however, may have had an additional, indirect influence on 366 

recovery times by stimulating algal growth. Nutrients may exert bottom-up control of benthic 367 

composition through animal excretion (Graham et al. 2018), seasonal and upwelling sources 368 

(Williams et al. 2015), and by anthropogenic-driven eutrophication (Fabricius et al. 2005). 369 

Our results demonstrate that high nutrient loads attributable to terrestrial run-off also slowed 370 

coral recovery, which is consistent with previous observations that low C:N ratios (i.e. high 371 

nitrogen concentrations) increased the probability of a macroalgal regime shift on Seychelles 372 

reefs (Graham et al. 2015). Indeed, juvenile coral densities decreased with increasing nutrient 373 

enrichment at 10 of 12 reefs (though were uncorrelated in our predictive models), possibly 374 

because high nutrient loads inhibit coral recruitment (Koop et al. 2001) and promote growth 375 

of competing algal organisms (Burkepile & Hay 2009), which likely combine to raise post-376 

recruitment coral mortality (Chong-Seng et al. 2014). Nutrient concentrations can also benefit 377 

coral growth, though this is contingent on high herbivory levels (Burkepile & Hay 2006) and 378 

the ratio of nitrogen to phosphorus (D’Angelo & Wiedenmann 2014). Given that several 379 

nutrient-based mechanisms potentially underpin considerable reef-level variability in 380 

recovery times, experimental investigation of the relationships between coral recruitment, 381 

nutrient enrichment, and bleaching recovery is urgently needed. Such research will help to 382 

unravel biotic feedbacks and thus identify conditions that accelerate coral recovery. 383 

Local biotic and anthropogenic influences on recovery times should anchor expectations 384 

according to abiotic constraints and reveal potential processes that might be manipulated to 385 

enhance recovery after bleaching. Across regions, large-scale oceanographic influences such 386 

as temperature and productivity constrain natural baselines of coral cover (Williams et al. 387 

2015) and so may contribute to regional differences in recovery times (Baker et al. 2008, 388 

Graham et al. 2011). At smaller spatial scales, biotic processes that promote coral recruitment 389 
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may be enhanced by manipulation of ecological feedbacks to enhance coral recovery 390 

(Nystrom et al. 2012, Ladd et al. 2018), such as reducing terrestrial run-off. However, the 391 

influences of nutrient enrichment on coral condition are complex, owing to confounding 392 

sources from terrestrial inputs (Fabricius et al. 2005), upwellings and animal excretion 393 

(Graham et al. 2018), variable impacts according to the type and balance of nutrients 394 

(D’Angelo & Wiedenmann 2014), and uncertainties surrounding nutrient cycling and their 395 

long-term persistence in seawater (Fabricius et al. 2005). Isolation of nutrient pathways 396 

which enhance coral growth and recruitment is a critical avenue for further research.  397 

Herbivore biomass had a weak, positive effect on recovery year, contradicting 398 

expectations that high grazing pressure will enhance recovery through top-down control of 399 

algae. Given that reefs with herbivore biomass >177 kg ha-1 were less likely to regime shift in 400 

Seychelles (Graham et al. 2015), grazing pressure may be a relatively weak influence on 401 

coral recovery as herbivore biomass has increased on Seychelles reefs since the 1998 402 

bleaching event (Robinson et al. 2019), and thus thresholds that prevent macroalgal 403 

overgrowth have been exceeded on many reefs. Alternatively, because grazing effects on 404 

benthic communities are tightly linked to the size structure and functional composition of 405 

herbivore assemblages (Nash et al. 2015, Steneck et al. 2018), grazing influences on coral 406 

recovery may not be detectable with coarse biomass metrics which combine distinct 407 

functional groups. The longer recovery times on reefs protected from fishing was also 408 

unexpected. Both herbivore and management effects may, however, be somewhat 409 

confounded by pre-bleaching coral cover. Compared to fished reefs, protected reefs 410 

supported 65 kg ha-1 greater herbivore biomass and 15.5% higher pre-bleaching coral cover, 411 

meaning that protected reefs require longer recovery times to reach coral-dominated states. 412 

Extending our recovery analyses to other regions will help resolve uncertainties around 413 

management and herbivory effects. 414 
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Recovery times from severe bleaching events inform expectations for the long-term 415 

persistence of coral-dominated reefs in a warming climate. Here, similar recovery trajectories 416 

meant that reefs that recovered before the next mass bleaching event (i.e. within 16 years) 417 

were those with pre-bleaching cover <25%. Reefs that failed to recover were generally those 418 

with exceptional coral cover (>30%). Such patterns are consistent with evidence that 419 

recurring mass bleaching events, particularly those that occur within 16 years of each other 420 

and cause severe coral mortality, will prevent coral reefs returning to historic coral-421 

dominated states (Birkeland 2004, Hughes et al. 2018a). Furthermore, given that pre-422 

bleaching cover was highly variable (11-55%), our findings underscore the uncertainty 423 

associated with using historic conditions as a recovery benchmark. For example, pre-424 

bleaching disturbances may have limited potential coral cover, which would explain why 425 

overshoot reefs were able to far exceed their baseline cover after bleaching. 426 

Our long-term analysis of coral recovery dynamics uncovered substantial reef-scale 427 

variability in recovery times after mass bleaching, whereby reefs either failed to recover or 428 

exceeded their baseline state and recovery ranged from 7 to 29 (projected) years. The number 429 

of recovery years were strongly constrained by abiotic conditions (depth, wave energy) and 430 

pre-bleaching coral cover, indicating that predictions of bleaching recovery times can be 431 

informed by abiotic and historic conditions at the scale of individual reefs. The strongest 432 

influences on recovery times were post-bleaching juvenile coral densities and nitrogen 433 

concentrations, suggesting that recovery might be enhanced by limiting nutrient run-off and 434 

promoting coral recruitment and survivorship. However, coral-dominated reefs are unlikely 435 

to persist under recurrent bleaching events that cause extensive coral mortality, if recovery 436 

windows from such severe bleaching shorten to less than 10 years (Hughes et al. 2018a). 437 

Further investigation of feedbacks between nutrients, algal growth, and coral recruitment is 438 
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necessary to understand how manipulation of biotic processes can accelerate reef recovery 439 

after climate-driven bleaching events. 440 
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List of Figures 655 

656 

Figure 1 Map of recovering reef sites on Mahe (a) and Praslin (b) in Seychelles, with Indian 657 

Ocean location (c) and change in benthic habitat composition over 2005-2014 (d,e). Points 658 

are mean percent cover of coral growth forms (d) and structural complexity (e) across all 659 

recovering reefs (± 2 standard errors). 1994 pre-bleaching baseline total coral cover and 660 

structural complexity indicated as dashed lines.  661 

 662 

Figure 2 Reef-level variability in the extent and timing of coral recovery. (a) Hard coral 663 

cover as a proportion of the pre-bleaching coral cover at each reef in 1994, for overshoot 664 

(green) and failed (purple) recovery trajectories. Lines are posterior predictions of hard coral 665 

at each reef from 2005-2014 conditioned on reef-specific predictor covariates, for the median 666 

prediction (solid lines) and 100 draws (thin lines) from the posterior distribution. (b) Time to 667 
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recovery for each reef, defined as the year at which predicted coral cover equaled pre-668 

bleaching cover (i.e. 1994). Points are median recovery year with 95% credible intervals, 669 

with lines indicating median recovery trajectories. Corresponding percent cover trajectories 670 

are displayed in Electronic Supplementary Material, ESM Fig. S2. Recovery models assume 671 

no further mortality to corals, but we note that the 2016 mass bleaching event caused mass 672 

mortality at these reefs (Wilson et al., in revision) and therefore visualized recovery 673 

trajectories were not completed. 674 

 675 

Figure 3 Abiotic, biotic, human and historic influences on recovery year. Effect sizes are the 676 

median of the posterior distribution for each parameter, with 95% and 50% credible intervals 677 

drawn from 1,000 samples. Predictors were standardized to the same scale and effect sizes 678 

were robust to jackknife resampling (Electronic Supplementary Material, ESM Fig. S5). 679 
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 680 

 Figure 4 Predicted change in recovery year across gradients in abiotic and historic 681 

conditions, for (a) depth, (b) initial complexity, (c) initial coral cover, and (d) wave energy. 682 

Thick lines are median posterior estimate sampled across the range of each abiotic covariate, 683 

holding all other covariate effects to their means (0), with uncertainty represented with by 684 

100 samples from the posterior distribution (thin lines). Observed data distribution is 685 

indicated along the x-axis with points colored by their recovery trajectory (overshoot = green, 686 

failed = purple). 687 

 688 
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 689 

Figure 5 Combined influence of juvenile coral density and nitrogen concentration on 690 

recovery year. Colors indicate the median recovery year across the range of each predictor 691 

covariate, holding all other influences to their means (0). The range of observed coral 692 

densities and nitrogen concentrations are represented by grey points. Note that additional 693 

abiotic and historic influences on recovery times mean that points do not necessarily 694 

correspond with predicted recovery year. 695 
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