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Abstract Persistent changes in the diameter of retinal bloodlemonstrate its competitiveness against the state-edithe
vessels may indicate some chronic eye diseases. Computenethods and its reliability for vessel segmentation.
assisted change observation attempts may become challeng-

ing due to the emergence of interfering pathologies around

blood vessels in retinal fundus images. The end result i$ |htroduction

lower sensitivity to thin vessels for certain computerized

detection methods. Quite recently, multi-scale line detecThe contraction and expansion of blood vessels, particu-
tion method proved to be worthy for improved sensitiv-|arly in small arteries, enable organs to adjust their own
ity towards lower-caliber vessels detection. This happengjood flow to meet the metabolic requirements of the tis-
largely due to its adaptive property that responds more tgye. Though variation in blood vessel diameter is part of
the longevity patterns than width of a given vessel. HoW+he natural control of blood flow in healthy subjects [1], the
ever, the method suffers from the lack of a better aggresystained changes may indicate the presence of pathalogies
gation process for individual line detectors. This paper inThe pathologies like micro-aneurysm, exudate, make it dif-
vestigates a scenario that introduces a supervised Genergkylt to analyze blood vessels around the foveal avascular
ized Gaussian mixture (GGM) classifier as a robust soluzone (FAZ) region. Tracking Vessel diameter changes for a
tion for the aggregate process. The classifier is built withonger period of time is therefore of interest to better unde
class-conditional probability density functions as a$igi  stand the regulation of blood flow [2,3] and are helpful in
function of linear mixtures. To boost the classifier's perfo prediction, diagnosis or progression of certain disedkes |
mance, the weighted scale images are modeled as Gaysmpetic Retinopathy, Glaucoma and leakages [4-7]. There
sian mixtures. The classifier is trained with weighted im-gre a number of different modalities to observe blood ves-
ages modeled on a Gaussian Mixture. The net effect is i%e]s such as Computer Tomography (CT) scans, Magnetic

creased sensitivity for small vessels. The classifier's pelResonance Imaging (MRI), X-rays, and Fundus Photogra-
formance has been tested with three commonly availablghy (used here) [8, 9].

datasets: DRIVE, SATRE, and CHASBEBL. The results of In the clinical setting, fundus retinal images are acquired

the proposed method (with an accuracy of 96%,96.1% angs color images composed of red, green and blue channels.
95% on DRIVE, STARE, and CHASIPBLI, respectively) The inverted green channel is then generally selected for fu
ther processing as its gray-scale representation as it@ev
the highest background vessel contrast among other chan-
Mohammad A. U Khan nels. Vessels appear With higher inten;ity levels (white) a
Biometric Lab, Effat University Research and Consultanustitute, ~ the background region with low intensity (black).

Jeddah, Saudi Arabia Retinal image analysis plays an important role in diag-
Tarig M. Khan, Saud S. Naqvi nosing eye-related diseases, the largest of which is D@abet
Department of Electrical and Computer Engineering, COMSAJNi-  Retinopathy. Diabetic patients are more suspectable to de-
versity Islamabad, Islamabad Campus, Pakistan velop eye diseases such as cataracts and glaucoma in the
School of Computing and Communication, Infolab21, Lareakini-  longer run, however, the impact on the retina is the most

versity, Lancaster, LA1 4WA, United Kingdom threatening that can ultimately lead to vision loss. Diabet


https://core.ac.uk/display/224767898?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Mohammad A. U. Khan et al.

Retinopathy (DR) damages retinal vessels. a specified directiord. In their basic format, the length is
The emphasis of a computerized retinal analysis syskept same as that of window siz&. The line detectors
tem is on the automatic extraction of the vasculature. Irwere later generalized in [17], by allowing the flexibility o
literature, there are two types of automated segmentatiochanging line length within a large window size, and thus
techniquessupervisedndunsupervisetiechniques. Super- result in, what they claimed as a multi-scale line dete&or.
vised techniques are the ones where segmentation algorithmopular supervised method is a morphology-based detector
learns from labeled data; once the classifier has learndtiat is used with a Gaussian mixture model to classify some
from the data, the process of segmentation can be applidtard-to-detect pixels in [18]. Khaet. al.[9] applied scale-
to the test data. On the contrary, unsupervised technique®rmalized detector for vessels. This method can deteet ves
operate without any learning schemes. Instead, they leasels regardless of their sizes. Sooratoal.[6] proposed an
to segment based on certain rules developed due to domdi@A-based enhancement technique for retinal vessels seg-
knowledge. In general, the supervised methods always prorentation. The low and varying contrast problem has been
vide better performance over those of unsupervised onetackled using Independent Component Analysis (ICA).
However, supervised methods are in need of training data In addition to the Gaussian Mixture model approach,
which is often not available in case of screening programsome other popular supervised methods including Neural
and large population-based studies. Furthermore, thea-supeetworks (NN) have been rigorously applied in the recent
vised method lacks the necessary generalization to redugast to the retinal vessel segmentation problem [19]. Per-
the mismatch in performance when dealing with unknowrtinent to mention is the NN method presented in [20],
test data. where classifier trained on one dataset, later tested on un-
Though monumental work has been reported for superseen images of another dataset provided fairly accurate re-
vised and unsupervised retinal vessel extraction, the lowsults in terms of area under the receiver operating curves
contrast vessels are still being elusive. The focus of the r§ AUC). Recent studies have investigated deep neural net-
search presented in this paper is to capture low-contrast navorks (DNN) for retinal vessel segmentation [21—-23] €tu
row vessels with a supervised method that can work with al. [24] utilize the fully convolutional neural network (CNN)
limited labeled dataset, leading to an improved accuracy db generate a vessel probability map. For providing the
the vascular segmentation process. To achieve this, a Geleng-range interactions between pixels and discrimieativ
eralized Gaussian mixture (GGM) classifier is proposed asessel probability map Conditional Random Fields (CRFs)
an appropriate solution to the aggregation problem encourare used. These neural network methods though provided
tered in multi-scale line detection methodology. The appli much-needed accuracy, their generalized abilities atie cri
cation of this supervised detector is not limited to vesselgally limited when used with small sized data. Therefore,
detection only, it can be used in other applications such ase opted to use the generalized Gaussian model (GGM), for
line detection in visual tracking [10-15] as well. its better generalization property for small data setshis t
This paper is organized as follows. In Section 2, re-work.
lated _vvork is pr_esente_d. In Section 3 prqposed method i§ Proposed Method
described. Section 4 discusses the experimental resiits fo, |\ i-scale line detector for a given image operates

lowed by the last section of the conclusion. by creating a series of scaled images %Sz, y; L) =

2 Related Work max0 <0 < wSr(x,y; L,0), whereL = L;,...,Ls. The

A number of successful computer-assisted analysis reportéieed for adopting the multi-scale methodology arises due to
in the literature with the goal of separatingsselfrom  the observation that basic line detectors produce unwanted
non-vesselegions. However, both the visual inspection andshadows in proximity to strong vessels. However, with a
objective assessment of the classification appears to hawulti-scale framework the new issue of aggregation appears
some performance gaps. The largest hindrance is the ifne straightforward way is to arithmetically average ingage
ability of the automatic method to capture some of theobtained at various scal&(x, y; L) to get the final output,
thinnest vessels that are barely perceivable even by th@(x,y) = %fo:h St (z,y; L), wheren represents the
keen human observers. A recently introduced line deteczount of scaled responses, an idea suggested in [17]. Aggre-
tor provides an improved sensitivity towards thin vesselgjate response computed in this way deals fairly well with
[16] due to its peculiar one-pixel-wide line shape. The actwo prominent problems associated with the response of
tion of line detectors follows a difference equation of theline detectors. First is the dominance of background noise
form: R(z,y; W)=mazo<orla(z,y; W,0) — Li(x,y; W),  duetosmall-scale line detectors, and the second is the pres
whereI;(z, y; W) is the average value calculated with anence of shadows in proximity to strong vessels in largeescal
isotropiciV x W local window surrounding the pixel, and responses. However, scaled images are computed incurring
I,(x,y; W, 0) is anisotropic average computed with pixelsdifferent precision errors, and thus should be weighted dif
directly under the line of lengthV, centered at pixel in ferently based on their noise profile. Later on, in a subse-
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quent research, the authors [25] floated an ideaefhted ages. We clearly see a large overlap in their histogram, mak-
linear combinationinstead of a simple addition to mitigate ing it difficult to find a threshold. However, the encouraging
unequal contribution issues with individual line detestor sign is that both classes depict normal distribution bedravi
thatisf(z,y) = %Zéf:m wr,S(z,y; L), wherewy, is the  that can later be used to the advantage of adopting a stable
weight assigned to a scaled response due to line detector Generalized Gaussian modeling (GGM) approach for both
length .. However, the author fell short of specifying a sys- classes.
tematic method to compute these weights, ad-hoc weights The performance of multi-scale line detection for reti-
in the form of increasing index were used in their work.nal images can be improved by making use of labeled
We proposed the use of weights that are inversely relatetlaining set, resulting in supervised classification. Tasa
to noise variance of a given scaled image in this work. that end, a retinal image is thought of made with two
This paper presents a semi-supervised weighted multelasses, the vessel class (foreground) and the non-vessel
scale line detector, where supervision is performed for thelass (background). Each clagg(vessels and C; (non-
aggregation of multi-scale line detector outputs for weighvessely is in turn represented degistic functionof lin-
learning. A small amount of labeled data is found adequatear combination of scale imag#8s (z, y), known as predic-
to train the model to capture the distribution of the data andors. Specifically, for the case of vessel class, it is dbscri
later the model can be easily generalized by the inclusion s C; = 1+exp—<ﬁo+ﬂ1sfwﬁz*"'*ﬁnsn’ The parameter set
new test images. The lower amount of supervision, require@y, 51, 52, - - - , B iS computed using Expected Minimiza-
only at the multi-scale aggregation stage, makes the prdion with maximum likelihood function for the labeled train
posed method much more attractive for screening programsg set belonging only to the vessel class. In case of linear
used in large population studies, where there is a scartity segression, the closed-form solution for the optimal param
labeled data. Fig. 1 shows the block diagram of the proposegters can be found. However, this is not the case for logis-
method. tic regression, where some iterative fitting procedure s in
corporated that needs good convergence properties. As our
) ) ) ] scaled images show normal distribution for both classes, th
3.1 Supervised weighted multi-scale line detector convergence of training method is achieved with fewer it-
Fundus camera provides color retinal images, in the formyation steps. For assessing a test image pixel to be one of

of three basic channels, red, green, and blue. We specifjra o opposite classes, the vessels or non-veBajes
cally worked with green channel only, whose inverted im-; e is applied, which isP(C;|v) = p(U/Cz)I;(Ci) where
. . ) K3 p(v )
age IS used_as_a gra_y-scale representation, where_ vessg{%/ci) is the class-conditional probability density func-
havg the white intensity and the non-vessel region is preﬁon, P(C;) is the prior probability of class’;, andp(v) is
dommate_ of black color. The reason for choosmg the 9reethe probability density function of v (sometimes called-evi
channel is the factor that it provides the highest contr@st f dence). The class-conditional probabilities, also reftto

t.he blood vessgls.among othgr channels [26]. BY Varyings likelihood, are represented as linear combination oE&Gau
line lengthsZ within a large window sizéV, a series of sian functions:

line detectors masks, from small to large, are generateal. Th

. . . 1

Ilne_ masks are then convolved with the_ mput. to produce a(v|C;) = 1 + exp— (BoB1p(0]S1,C0)+B2p(0]52,C) + -+ Bnp (0] 5 Ca))
series of scaled image¥x,y; L). Now sincen images of _ _ o

the same input are available, then smoothing can be accomWherep(v|S;, C;) is the Gaussian distribution ant} are

plished without blurring excessively Brithmetic averag- the parameters to be estimated from labeled training set.
n Once trained, the class-conditional probabilities aloritiy w

— priors are used to find the posterior probability for a given
difference in intensity dynamic range associated with eackest pixel to be in a vessel class.

of the scale images, they have to be first standardized to Due to large number of pixels, in our all experiments,
have zero mean and unit variance and then added pixel-wis&vo million pixel within FOV are randomly chosen to train
This addition results in lesser noise and clearer vessel trahe classifiers. For the GGM classifier, the number of pre-
structure, that can later be converted to binary output withdictors is same as that of scaled image count for model-
an appropriate threshold to results in the white foregrountéhg both vessel and non-vessel classes. The convergence
for vessels and black background for rest of the image. Thehile choosing parameters was fast, within a couple of it-
multi-scale line detection framework was found to provideerations. GGM supervised classification is also tested with
an improved classification as compared other detectors [1Aveighted scale images. Admitting the fact that scale images
The Fig. 2 shows the scale-3 and scale-13 images for a tesbntribute less noise as we move towards larger scales, as
image, related to a publicly available DRIVE database. Theshown in Fig.2(b), scale images are first weighted with the
histograms of the vessel and the non-vessel region are dewerse of their noise variances and then fed for logistic re
picted due to the availability of ground truth for the test im gression modeling, resulting in a different set of paramsete

ing as G(z,y) = + > S(z,y : k). However, due to the
k=1
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Fig. 2 The Fig shows on the left two scale images, one due to linectigtef scale 3, and other for scale-13. Also, depicted treseleand
non-vessel histogram, showing large overlap for both imagke graph on right is the depiction of fact that scale irsdge/e noise variance that
decreases with scale Graph.

for GGM classifier. The testing procedure is also used withthreshold to convert it into a binary image. Though we see a
the weighted scale images of the test image. We refer to thidear improvementin the sense that the overlap area between
scheme as supervised classification with weights. two classes is reduces as a result of supervised classifica-
The output of the classifier is a posterior probability im-tion, the minimum overlapping is still there. To clear this
age for the given test input image. The next task is to find aninimum overlap, a threshold strategy has to be adopted
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with some heuristics. To find an appropriate threshold t@nd ultimately stopping whed,,.; = A,,. Here® is the
pick thin vessels, one way is to adopt a Shannon-entropgxclusive-OR operation ardis an intersection operation.
based threshold scheme. The first threshiglis calculated The binary output images obtained through hysteresis
by finding the maximum of Shannon entropy curve, and althreshold method are having tiny holes inside vessel tree
the pixels of the image above that threshold are clipped tstructures with some breaks at the junction points. To fill
that threshold value. Now another Shannon entropy curvihe gaps, the morphologicdilation process is adopted. Di-
is found for this clipped image and we compute the seconthtion is one of the two basic operators in the field of math-
thresholdl’». All the pixels below that threshold are clipped ematical morphology. The basic impact of the operator on
to that value. The doubled-clipped image is now presented binary image is to gradually enlarge the boundaries of re-
for the third time to Shannon entropy curve, and third threshgions of foreground pixels (i.e. white pixels, typicallfhus
old T3 is obtained, which is our final threshold that can beareas of foreground pixels grow in size while holes within
used for producing all binary results. It was found in out testhose regions become smaller.The dilation operator takes
results, that the entropy-scheme is severally effectell wittwo pieces of data as inputs. The first is the image which is
non-uniform illumination present in an image. Therefore,to be dilated. The second is a set of coordinate points known
we inclined to adopt a morphological technique with hys-as a Structuring Element. It is this structuring element tha
teresis, as described in next section. determines the precise effect of the dilation on the inputim
4 Thresholding using Hysteresis age. However, not to disturb the tree structure, a smalhtine
Thresholding techniques are based on image charactsristigtructuring element, on the tune of only 3 pixels long, is uti
i.e. image space region. The multilevel image is convertetized. First, four3 x 3 templates of structuring element are
into a binary image by thresholding. Thresholding is usuall created to go along 0 degrees, 45 degrees, 90 degrees, and
categorized into two types: local thresholding and globall35 degrees. Then, the binary image is dilated with all the
thresholding. Fixed threshold (T) approach refers to dlobafour templates, to produce four dilated images correspond-
thresholding and variable threshold approach is calledlloc ing to four unique directions. Here, we take the help of Kas
thresholding. The global thresholding is likely to flop irsea  and Witkin [29] method to generate a reliable directional
of uneven illumination of background. field, which produces directional imagér, y) for the input
There are a couple of issues with a single thresholdpinary image. The directional image values are quantized to
First, single threshold takes into account intensity with n only four directions to match with template directions. Nex
regard to connectivity among pixels. Therefore, there is ndased on directional image quantized values, we pick the ap-
guarantee that the process will provide contiguous areagropriate dilated image values to form a new image, called
Second, changes in illumination across the scene may caufieal binary image, as shown in Fig. 3(c).
the single threshold to miss some parts of the vessels bei'l—'gResult and Discussion

darker. Third, a single threshold is quite sensitive; cliragg . The proposed modeling is evaluated on three publicly avail-
threshold value by even a small amount can have a large iNple databases DRIVE. STARE and CHASB1. The
pac_t on the bmary output. Therefore, a need arises to aquIVE database provides 40 retinal images with their
f'ex'b"'tY to asingle threshold. ) ) ground truth data. The first twenty images are used as train-
. Inthis paper, a band of thresholds, as |_mpl|edhbytere- ing set and the rest as testing set for producing the obgectiv
sisthreshold process_, are used. Hystere5|§ threshold Con_sgs'sessment. STARE data set contains 20 images and there is
tently outperforms single threshold techniques [27] and i$,, genarate training and test set available. In literatuce t
nowa de_ facto stand.arq in Canny edge deFecnon [28]',ThFechniques random sample and leave-one-out are available
Process 1s used for I|n.k|ng strong points W'_th weak p0|nt5[30]_ In this paper leave-one-out technique is used fontrai
caring vessel path tracing. A popular way to implement hys;, 1311 in which each image is tested using a trained model
teresis threshqld IS via morphologlcgl operat{opening- on the other 19 images. The CHASBEB1 data set contains
by-reconstruction) It enables the objects (vessels) to be28 images. First 20 images are used for training and last 8
exactly restored to their original shape initiated withcsee images are used for testing
points. The method requires_two i.mage_s, known asamarker The performance is quantified by comparing a seg-
(A) and mask (M). A ma_sk is a binary image tha}t provu_jesmemed output image with its corresponding golden-truth
boundaries for. the growing process to stop. It is Obtameﬂnage (a manually segmented image) available at the
from the combmed outp.ut by using .thresthg. Whereas database. Three parameters, sensitivity, specificity,aand
the marker image contam; §eed points and ',S found as a rt‘Z:'L'Jracy, are calculated for measuring the performance. Four
sult of threshqlch“H. By defm.mg a3 x 3 structuring elemer.n measures are required for the calculation of these three pa-
B for connectivity, the growing procedure can be described,meters. These four measures are true positive (TP), true
by iteratively applying negative (TN), false positive (FP) and false negative (FN).
Api1=(A, ®B)NM The TP represents the number of vessels correctly identified
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are used. The results on the two data sets are shown in Ta-
ble 1 and the results of CHASEBL1 are shown in Table

2. On DRIVE datebase, proposed method’s sensitivity is
0.782 which is slightly less than Orlané al. [33] sensi-
tivity 0.753. While on STARE its sensitivity is 0.786 which

is slightly greater than Soomet al. [32]sensitivity 0.785.

The sensitivity of the proposed method is higher than as
compared to other methods and is presented in Table 1 for
STARE data set.

Specificity (Sp) of the proposed method is comparable to
the state-of-art methods on these two data sets. On DRIVE
dataset, proposed method'’s specificity is higher than all ex
isting methods while on SATRE database it is slightly higher
than Soomret al.[7] Accuracy (AC) is the mean measure-
ment of closeness to the interpreted standards. The accu-
racy of the proposed method is also better than state-of-art
methods presented in Table 1 on both data sets. On STARE
database, the accuracy of the propose method is slightly
higher than Soomret al. [7]. On CHASE-DB1 database,
the performance of proposed method is better than other two
methods presented in Table 2. The sensitivity of the pro-
Fig. 3 a) Marker Image. b) Mask Image. c) Final binary result. posed method is 0.7626, specificity is 0.9717 and accuracy
is 0.9507, respectively.

while TN represents the number of non-vessels correctly
identified. The FP represents the number of non—vesselssConclusion

wrongly identified as vessels while FN represents the num- . . . .
. o Several eye diseases can be diagnosed by observing varia-
ber of vessels wrongly identified as non-vessels.

The accuracy can be defined as sum of correctly identit-lons in retinal blood vessel diameters. It is necessargeto d

. tef*ct accurate retinal vessels. Accurate detection of \®isse
fied vessels and non-vessels to the sum of total number 0

a challenging task in the presence of noise and pathologies.

(©

pixels, .

In the literature, many approaches are proposed to extract

Accuracy — TP+TN retinal blood vessels. This paper provides empirical evi-

° TP+FP+TN+FN dence of improved aggregate process linked with multiescal

The ratio of correctly identified vessels and the totalline detectors using inverse-noise variances based poeslic
number of vessel is called sensitivity, having generalized Gaussian mixture behavior. The lower
TP amount of supervision required at the multi-scale aggrega-
Sensitivity = —————. tion makes the proposed method more suitable for screen-
ensitivity TP+ FN prop

ing programs and large population studies, where there is
The ratio of correctly detected vessels and total number cfcarcity of labelled data. Another advantage of the pragose

non-vessels is called specificity, approach is its fast training time which is order of magni-
tude faster than the deep neural networks counterpart. The
S TN weight learning process becomes a simplified task with the
Specificity = TN+ FP use of GGM classifier. On the other hand, deep neural net-

|yvork classifier has shown the ability to provide comparable
results to the GGM, but at a larger computational cost for
its training phase. The visual comparison of the approaches
provides evidence towards improved sensitivity for thie-ve
sel detection.

For visual inspection, the Fig. 4 provides the images fo
multi-scale line detection, supervised multi-scale, anuks-
vised multi-scale with weights. The supervised classificat
shows more sensitivity to thin vessels.

5.1 Comparison of performance measures with other

algorithms Acknowledgement
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vised and unsupervised. For performance analysis three puBaudi Arabia, for funding the research reported in this pape
licly available databases DRIVE, STARE and CHABB1  through the Research and Consultancy Institute.



GGM Classifier with Multi-scale Line Detectors for Retina3dsel Segmentation

Fig. 4 Coulumn one show the ground truth images. Column two showtistale line detection method applied on the 1st and 16tmgenof
DRIVE database. Column three shows proposed multiscaelktection without weights is applied on the 1st and 16tlyaned DRIVE database.
Column four shows proposed multiscale line detection wiglghts is applied on the 1st and 16th image of DRIVE database.

Table 1 Performance Analysis of Segmentation Model

DRIVE STARE
Methods Se Sp AC Se Sp AC
Unsupervised Methods
Nguyenet al.[17] - - 0.940 - - 0.932
Soomroet al. [34] 0.713 0.968 0.941 | 0.711 0.965 0.942
Khanet al.[35] 0.734 0.967 0.951 | 0.736 0.971 0.95
Soomroet al.[7] 0.753 0.976 0.943 | 0.784 0.981 0.961
Supervised Methods
Stealet al.[31] - - 0.946 - - 0.951
Soarest al.[36] - - 0.946 - - 0.948
Lupascuet al.[37] 0.720 - 0.959 | - - -
Orlandoet al.[33] 0.785 0.967 - - - 0.951
Liskowski [22] - - 0.949 - - 0.949
Proposed Method 0.782 0.986 0.960 | 0.796 0.983 0.961
Table 2 Performance comparison on CHASEB1 database 3. Tyml K, Anderson D, Lidington D, and Ladak HM, “A new
method for assessing arteriolar diameter and hemodynasis-r
- Se Sp AC tance using image analysis of vessel lumehi J Physiol Heart
Unsuperwse_,d Circ Physiol vol. 284, pp. H17218, 2003.
Azzopardi [38] 0.7585 0.9587 0.9387
Supervised 4. Patton N, Aslam T, Macgillivray T, Pattie A, and Deary IR€ti-
Fraz [19] 0.7224 0.9711 0.9469 nal vascular image analysis as a potential screening tocki®-
Proposed 0.7626 0.9717 0.9507 brovascular disease: a rationale based on homology betvezen
bral and retinal microvasculatures),;Anat vol. 206, pp. 319-348,
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