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When looking for gravitational wave signals from known pulsars, targets have been treated using
independent searches. Here we use a hierarchical Bayesian framework to combine observations
from individual sources for two purposes: to produce a detection statistic for the whole ensemble of
sources within a search, and to estimate the hyperparameters of the underlying distribution of pulsar
ellipticities. Both purposes require us to assume some functional form of the ellipticity distribution,
and as a proof of principle we take two toy distributions. One is an exponential distribution, defined
by its mean, and the other is a half-Gaussian distribution defined by its width. We show that
by incorporating a common parameterized prior ellipticity distribution we can be more efficient at
detecting gravitational waves from the whole ensemble of sources than trying to combine observations
with a simpler non-hierarchical method. This may allow us to detect gravitational waves from the
ensemble before there is confident detection of any single source. We also apply this method using
data for 92 pulsars from LIGO’s sixth science run. No evidence for a signal was seen, but 90%
upper limits of 3.9×10−8 and 4.7×10−8 were set on the mean of an assumed exponential ellipticity
distribution and the width of an assumed half-Gaussian ellipticity distribution, respectively.

PACS numbers: 02.50.Ng, 04.80.Nn, 95.55.Ym, 95.85.Sz, 97.60.Gb

I. INTRODUCTION

So far, Advanced LIGO [1] and Advanced Virgo [2]
have detected gravitational waves from the time vary-
ing mass quadrupole caused by the orbital motion of two
compact objects: binary systems consisting of two black
holes [3, 4] or two neutron stars [5]. However, individ-
ual neutron stars with deformations can also have a time
varying mass quadrupole that is not detectable as a tran-
sient signal with a chirplike nature, but is long-lived and
quasimonochromatic. From such sources, the expected
gravitational wave signal strength at Earth is given by[6]

h0 ≈ 4.2×10−24
f2kHz

Dkpc

(
Izz

1038 kg m2

)( ε

10−6

)
, (1)

where fkHz is the star’s rotation frequency in kHz, Dkpc

is its distance in kpc, and the combination of the fiducial

ellipticity [7], ε =
|Ixx−Iyy|

Izz
, and principal moment of

inertia, Izz, are related to the mass quadrupole moment
(based on the definition of [8]) by

Q22 =

√
15

8π
Izzε. (2)

Galactic neutron stars that are observed as pulsars
are an enticing target for such signals. The times of ar-
rival of electromagnetic pulses from pulsars can, in many
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cases, be used to fit their phase evolution to great ac-
curacy. This leads to high precision measurements of
the spin frequency and frequency derivative, often sub-
milliarcsecond position reconstruction, and for sources in
multiple systems, estimates of their orbital parameters.
Under the assumption that any pulsar’s mass quadrupole
is formed by its having a triaxial moment of inertia el-
lipsoid (or, more colloquially, a “hill,” “mountain,” or
“bump”), and that the rotation is phase locked with
the electromagnetic emission, then the gravitational wave
signal will be at exactly twice the observed frequency.
Therefore, the precise phase evolution of any associated
gravitational wave signal can be used as a filter for the
signal in gravitational wave data. The only unknowns
in the signal model are therefore the gravitational wave
amplitude at Earth, as given in Eq. (1), and the ori-
entation of the pulsar given by the inclination angle, ι,
polarization angle, ψ, and relative phase at the epoch of
the electromagnetic timing model, φ0. As in, e.g., [6, 9–
13], following the method of [14], Bayesian inference can
be used to produce a joint posterior probability density
function on these four parameters, and the orientation
parameters can be marginalized over to give a posterior
on only h0. If the distance to a pulsar is known then
this can be used to make inferences on, or set a limit on,
the mass quadrupole moment, Q22, or alternatively, the
pulsars fiducial ellipticity assuming a canonical moment
of inertia of Izz = 1038 kg m2 [7].1

In previous searches for known pulsars in gravitational

1 The canonical moment of inertia is roughly what you get from
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wave data from the LIGO, Virgo and GEO600 detectors
[6, 9–13] no signal has been seen, but upper limits, at a
95% credible level, were set on h0 for all included pul-
sars. In the latest results [13], using data from the first
observing run (O1) of the advanced LIGO detectors [15],
this produced limits on h0 for 200 pulsars, which in turn
gave limits on Q22 and ε using the best-fit measured dis-
tances given in the ATNF Pulsar Catalogue [16]. The
lowest limits on Q22 and ε found for any pulsar were
9.7×1029 kg m2 and 1.3×10−8 respectively, for the rela-
tively nearby (∼ 0.2 kpc) pulsar PSR J0636+5129.

Different neutron star equations of state can allow dif-
ferent sizes of deformations to be sustained in the star;
stiffer equations of state allow larger deformations than
softer ones. A good review of the maximum allowed ellip-
ticities is given in [7], which shows that in very extreme
cases they could be in the range of 10−3, but more real-
istically, for crustal deformations, they could reach a few
×10−6. Internal magnetic fields can also induce an ellip-
ticity in a neutron star (e.g., [17]), with field strengths
of order 1015 G required to give rise to ellipticities of
∼ 10−6. For known pulsars, assuming their rate of loss
of rotational energy is all due to gravitational wave emis-
sion, one can infer the ellipticity required to give the ob-
served spin-down (called the “spin-down limit”). For the
population of millisecond pulsars, such maximum pos-
sible ellipticities are generally well above the spin-down
limit, which give values in the range ∼ 10−9 − 10−8. So,
it is fair to assume that this population of pulsars is not
strained to their maximum allowed values. The recent
work in [18] provides some tentative evidence that mil-
lisecond pulsars may actually have a minimum ellipticity
of ∼ 10−9.

Searches for gravitational waves from pulsars have al-
ways treated each pulsar individually. However, as we
will describe further in this paper, it is possible to com-
bine observations from many pulsars to try and detect
the ensemble of all pulsars used in a search. The idea is
that there may be several sources that are individually
below some allowed threshold for detection, but when
combined the ensemble rises above a detection thresh-
old. This was proposed in [19], in which values of the F-
statistic [20], commonly used in continuous gravitational
wave searches, for individual sources are summed. The
method of [19] depends rather sensitively on the relative
strengths of the brightest few sources, and is unlikely to
be able to detect an ensemble of similar strength but indi-
vidually undetectable, sources, i.e., it does not “win” by
much over single source searches. This idea was extended
in [21] to weight the individual F-statistic values based
on the expected detectability of each source, i.e., favor-
ing close-by sources, which was found to always provide
a more sensitive detection statistic than [19].

In this paper we also address the task of combining an

assuming a uniform density spherical star with a mass of 1.4 M�
and radius of 10 km.

ensemble of sources, but for two purposes: to try and es-
timate the functional form of the underlying distribution
of pulsar ellipticities, and to use the combined sources
as an ensemble detection method. The former of these
could allow us to make some physical inferences about the
equation of state, or internal magnetic field strength, of
the population of neutron stars. The latter, as discussed
above, could allow us to detect the ensemble before an
individual source is confidently detected.

II. METHOD

Our aim is to combine data from all pulsars within a
gravitational wave signal search to try and estimate the
underlying distribution of their fiducial ellipticities (or
alternatively, Q22). We can do this within the context
of hierarchical Bayesian inference, whereby we use the
data to infer parameters of a probability distribution that
represents the prior on the ellipticities (in this context
these parameters are often called hyperparameters). This
is essentially the same underlying method as described in
[22], where in that context the main use is for detecting
a stochastic background of compact binaries coalescences
that are individually unresolvable.

In previous searches, each pulsar has been treated indi-
vidually, and a posterior distribution on the gravitational
wave amplitude, h0, has been estimated, via

p(h0|xi, I) ∝
∫ θi

p(xi|h0,θi, I)p(h0|I)p(θi|I)dθi, (3)

where xi is the data for the ith pulsar, θi = {cos ι, φ0, ψ}i
are the pulsar’s orientation parameters, p(xi|h0,θi, I) is
the likelihood of xi given the signal model and particular
parameter values, p(θi|I) is the prior probability on the
θi parameters (which is flat over the allowed parameter
ranges, see Sec. 3.2 of [23]), and p(h0|I) is the prior on
h0. More recently, in [13], the marginal likelihood (or
Bayesian evidence) for each pulsar’s data being consistent
with the expected signal model has also been calculated,
via

p(xi|I) =

∫ θi
∫ h0

p(xi|h0,θi, I)p(h0|I)p(θi|I)dθidh0.

(4)
The prior on h0 has often been flat between zero and
some hard upper cutoff, or having a Fermi-Dirac-like dis-
tribution (see, e.g., Sec. 2.3.5 of [24]) with a flat section
followed by an exponential-like decay at some predefined
value.

Alternatively, we can rearrange Eq. (1), and for each
pulsar we can estimate the joint posterior on εi and the
pulsar’s distance, Di,

p(εi, Di|xi, I) =
p(εi|I)

Zi

∫ θi

p(xi|εi, Di,θi, I)

× p(Di|I)p(θi|I)dθi, (5)
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where Zi ≡ p(xi|I) is the evidence of the data (we will
use the term evidence, rather than marginal likelihood in
the rest of this paper as it is more compact). To produce
a posterior on εi we need to set the priors for Di and εi.
We can use a Gaussian prior on Di defined by a mean
value µDi , taken as the best-fit estimate from the ATNF
Pulsar Catalogue [16] (which is generally a dispersion
measure-derived distance based on the galactic electron
density model of [25]), and a standard deviation, σDi

,2

p(Di|µDi
, σDi

, I) =
1√

2πσDi

exp

(
− (Di − µDi

)2

2σ2
Di

)
. (6)

For each pulsar the distance is independent, and as the
distances are not of interest to us, we can marginalize
over them in Eq. (5) as nuisance parameters.3

The prior on εi can be a function that represents the
underlying distribution of pulsar ellipticities. We will say
that the function is defined by a set of parameters, which
in this context are called the hyperparameters, Θ that
are intrinsic to the pulsar population. We can combine
likelihoods for all N pulsars in a search, where for each we
marginalize over the parameters θi, Di, and εi, leaving a
likelihood for Θ,

p(X|Θ, I) =

N∏

i

∫ εi ∫ θi
∫ Di

p(xi|εi,θi, Di, I)p(θi|I)p(εi|Θ, I)p(Di|µDi
, σDi

, I)dεidθidDi. (7)

where X ≡ {xi} means the combined data from all pul-
sars.4 We are interested in estimating the parameters of
the underlying ellipticity distribution, Θ, and also calcu-
lating the evidence for the data given our particular cho-
sen ellipticity distribution. To do this we further need to
define a prior on Θ and apply Bayes theorem,

p(Θ|X, I) =
p(Θ|I)p(X|Θ, I)

p(X|I)
, (8)

where the evidence is

p(X|I) =

∫ Θ

p(X|Θ, I)p(Θ|I)dΘ. (9)

The posterior on Θ allows us to estimate the distribu-
tion of ε, while we can use the evidence, p(X|I), for the
hypothesis that the data is consistent with that particu-
lar distribution to perform model selection. For example,

2 Throughout this work we will take the distance uncertainty to
be 20% of the µDi

value, which is roughly what Figure 12 in
[26] suggests for dispersion measure-based distance estimates.
For some pulsars better distance estimates are available (using,
for example, parallax measurements obtained using very long
baseline interferometry), while for others the uncertainties can
be considerably worse, so in a detailed analysis more reliable
uncertainties could be used for individual pulsars.

3 For pulsars in the same globular cluster the distance measure-
ments and error would essentially be the same, or at least very
highly correlated, but we will ignore that fact in this study. Of
the pulsars currently listed in the ATNF Pulsar Catalogue [16]
with rotation frequencies above 10 Hz, 139 of the 451 pulsars are
in globular clusters. The clusters with the largest numbers of
pulsars are 47 Tucanae, with 25, and Terzan 5, with 35.

4 It is worth emphasizing that even though the same raw data is
used for all pulsars, the precise signal and the Gaussian compo-
nent of the colored noise spectrum for each pulsar will be en-
tirely independent. Tracking the signal’s precise phase over a
long (weeks, months, or years) observation time means that the
phase templates for different sources (even if there were billions
of sources!) are highly orthogonal.

we could calculate the ratio of this evidence to one where
the hypothesis is that the data for all pulsars consists
purely of noise, i.e. the Bayes factor or odds (assuming
prior odds of unity), and use this as a detection statistic
for the ensemble of sources.

A. Ellipticity distribution priors

We study two different toy models for the underlying
ellipticity distribution: an exponential distribution de-
fined only by its mean, µε,

p(ε|µε, I) =
1

µε
e−ε/µε (10)

such that Θ ≡ µε; and, a half-Gaussian distribution
peaking at zero, and defined by its width, σε,

p(ε|σε, I) =
2√

2πσε
e−ε

2/2σ2
ε , (11)

such that Θ ≡ σε. We note that more attention is given
to the exponential model in most of our examples.

We also need to set a prior on Θ for both cases. For
both models we chose a prior on the hyperparameter that
is uniform in log-space between some lower and upper
bounds, e.g., for the exponential distribution we have

p(µε|I) = [ln (µεmax/µεmin)]
−1 1

µε
, (12)

and equivalently for σε. For the analyses described in
Sec. III we use a lower bound of 10−10 and an upper
bound of 10−5.

In our analyses we assume that all pulsar ellipticities
are drawn from these toy distributions. However, in re-
ality they are likely to be too simplistic to describe the
true ε distribution. For example, the population of young
pulsars and old recycled millisecond pulsars, have un-
dergone different evolutions, with the latter having most
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likely gone through a stage of accretion (see, e.g., the
review in [27]) that spins them up and reduces their ex-
ternal dipole magnetic field.5 This could mean that the
distribution of ellipticities for these two populations may
be quite different, and therefore a bimodal distribution,
or two independent exponential distributions with differ-
ent means, could be more appropriate. Alternatively, it
may be more appropriate to use a quasinonparametric
approach, such as the histogram binning in [28], an infi-
nite Gaussian mixture model (see, e.g., [29] for a recent
example of this in the context of gravitational waves),
or a Gaussian process to model the ellipticity distribu-
tion function space. All these approaches have larger Θ
parameter spaces to marginalize over and are therefore
computationally more challenging. We leave the explo-
ration of these ideas to future work.

B. Using posterior samples

If we have many pulsars, e.g., the 200 used in [13],
and wanted to directly calculate Eqs. (8) and (9) then it
would require integrals over 200× 4 independent param-
eters (θi = {cos ι, φ0, ψ}i and Di for each pulsar), and a
large data set consisting of the data for each pulsar. How-
ever, as those parameters and the noise in each pulsar’s
gravitational wave data are independent, we can calcu-
late the likelihood over εi for each pulsar individually, as
is already done for current targeted pulsar searches [13].
This simplifies Eq. 7 to be

p(X|Θ, I) =

N∏

i

∫ εi

p(xi|εi, I)p(εi|Θ, I)dεi. (13)

In reality those searches do not output a functional
form of the likelihood for each pulsar, but they use nested
sampling [30] to compute the evidence that the data con-
tains a signal (coherently combined over multiple de-
tectors), p(xi|I), and produce samples drawn from the
marginalized posterior distribution p(εi|xi, I). The pos-
terior samples therefore need to be converted into a func-
tional form of the likelihood for use in Eq. (8).6

First, to convert these samples into a smooth func-
tional form we can use kernel density estimation (KDE),
with a Gaussian kernel. To remove edge effects for sam-
ples that rail against the lower bound of zero we reflect all

5 Current searches for gravitational waves from pulsars [13] con-
sider all pulsars with rotation frequencies above 10 Hz. Within
this subset of ∼ 450 pulsars, as given by the ATNF Pulsar Cat-
alogue [16], about 50 of them have high spin-down rates and as
such would be considered “young”, while the rest are old recycled
pulsars.

6 In reality the software that performs the nested sampling [24]
and outputs the posterior samples uses Q22 rather than ε, but
we can easily convert between the two using Eq. (2) and assuming
a principal moment of inertia of 1038 kg m2.

the samples about zero and concatenate these with the
original samples before performing the KDE. When eval-
uating the resulting KDE only at allowed positive values
of ε it must then be multiplied by two to get the correct
probability density.

Next, rearranging Bayes theorem shows how to turn a
posterior for an individual pulsar into a likelihood

p(xi|εi, I) =
p(εi|xi, I)

p(εi|I)
p(xi|I), (14)

where in this case εi is the prior on ε used for the individ-
ual pulsar. If the prior p(εi|I) is uniform (i.e. a constant)
in some range within which the likelihood goes to zero
then this is simple to calculate. In all our examples this
is the case, with εi being defined between zero and an
upper range εmax, such that

p(εi|I) = ε−1max. (15)

To be explicit, we are undoing an effective uniform prior
that was used when calculating the original pulsar pos-
teriors, so that we can then reapply our new ellipticity
distribution prior for the whole ensemble. We can there-
fore substitute

p(xi|ε,I) = εmaxp(εi|xi, I)p(xi|I), (16)

into Eq. (7). We could also work with samples in h0
rather than ellipticity, and numerically marginalize over
distance errors, which we show in Appendix A, but we
will not use h0 samples in this paper.

We have found that in our analysis, when we have
many posteriors that peak at, or close to, zero, and a
prior function that increases rapidly as it approaches
zero, we cannot use the method as used in, e.g., [28].
That method approximates the integral over the likeli-
hood multiplied by the prior with the expectation value
of the prior evaluated at each of the samples. We find
that the accuracy of this approach is significantly reduced
for small values of prior parameters like µε (see Sec. II A
above) when there are no samples with roughly equiva-
lent values.

C. Spin-down limits

We could use the electromagnetically-derived spin-
down limits described briefly in Sec. I to infer the hyper-
parameters of our ellipticity distribution. For each pul-
sar we have a spin-down limit on ε based on its observed
electromagnetic spin-down, independent of the pulsar’s
distance (combining Eqs. (5) and (6) of [12])

εsd =
1.9×10−8

f
5/2
kHz

(
|ḟrot|

10−11 Hz s−1

)1/2(
1038 kg m2

Izz

)1/2

.

(17)
The observed frequency derivatives of pulsars are not nec-
essarily their true values, as they will be contaminated by
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proper motion effects (the Shklovskii effect [31]), differ-
ential galactic rotation [32], and, for pulsars in globular
clusters, local accelerations. Indeed, these effects lead to
some pulsars being observed to spin-up. Therefore in any
inference using spin-down limits one would have to either
correct for these effect, or exclude pulsars for which the
effects cannot be estimated.

We can use these spin-down limit derived values to
provide a likelihood on εi for each pulsar when estimat-
ing the underlying distribution’s hyperparameters. For
an individual pulsar we can (simplistically) say that the
spin-down limit gives us a flat likelihood on ε

p(dEMi|εi, I) =

{
1/εsdi if 0 ≤ εi ≤ εsdi ,
0 otherwise

(18)

where dEMi is the electromagnetically derived informa-
tion, i.e., from observed pulse time of arrivals, that gives
the spin-down limit for a given pulsar.

These likelihoods for each pulsar can be combined into
a joint likelihood, and form a likelihood on the distribu-
tion’s hyperparameters, Θ,

p({dEM}|Θ, I) =

N∏

i

(∫
p(dEMi|εi, I)p(εi|Θ, I)dεi

)
.

(19)
If we assume the underlying distribution is exponential

(so Θ ≡ µε) we have

p({dEM}|µε, I) =

N∏

i

(
1

εsdi

)∫ εsdi

0

1

µε
e−εi/µεdεi, (20)

where we can see that the integral is just the cumula-
tive distribution function for an exponential distribution,

which is given by CDF(εsdi , µε) = 1 − e−εsdi /µε . So, we
have

p({dEM}|µε, I) ∝
N∏

i

1− e−εsdi /µε . (21)

A similar result can be found for the half-Gaussian dis-
tribution using its CDF.

Using the priors given in Sec. II A we can calculate the
posteriors p(µε|{dEM}, I) and p(σε|{dEM}, I) for the ex-
ponential and half-Gaussian distributions, respectively.
To do this we use all pulsars in the ATNF Pulsar Cat-
alogue [16], excluding those in globular clusters and
with observed spin-ups, estimate their intrinsic period
derivatives (by calculating the combined Shklovskii and
galactic rotation effects using best-fit distances from the
catalogue), and calculate their spin-down limits using
Eq. (17). For this simple analysis we ignore uncertain-
ties in each pulsar’s moment of inertia. The posterior
probability distributions on µε and σε for the exponen-
tial and half-Gaussian are shown in Fig. 1. We find 90%
credible upper bounds on these two hyperparameters of
µ90%
ε ≤ 3.0×10−10 and σ90%

ε ≤ 4.1×10−10.

10−10 10−9 10−8 10−7 10−6 10−5

µε/σε

104

105

106

107

108

109

P
ro

b
ab

ili
ty

D
en

si
ty

Exponential

Half-Gaussian

Prior

FIG. 1. The posterior probability distributions on the el-
lipticity distribution prior hyperparameters µε and σε for
the exponential and half-Gaussian distributions when using
electromagnetically-derived spin-down limits.

In the rest of this paper we will purely assume the use
of gravitational wave data alone for making inferences
about the ellipticity distribution. However, an interest-
ing extension to this work could be combining the gravi-
tational wave data for pulsars, where that places a more
stringent limit than the spin-down limit, with spin-down
limits for the pulsars where it does not.

D. Bayes factor

We saw in Eq. (9) that we can calculate the evidence
that the data is consistent with a particular parameter-
ized ellipticity distribution (i.e., the exponential or half-
Gaussian distributions). However, to make this number
informative we need to be able to compare it to another
model. We can form the odds between this evidence and
one given by a different hypothesis, such as the data from
all pulsars being entirely consistent with Gaussian noise,
e.g.

Oεn =
p(X|Hε, I)

p(X|Hn, I)

p(Hε|I)

p(Hn|I)
, (22)

where Hε explicitly denotes the hypothesis of our data
containing signals drawn from the particular underlying
ellipticity distribution, and Hn denotes the noise-only hy-
pothesis. The first term on the right-hand side, the ra-
tio of evidences, is often called the Bayes factor, while
the second term is the prior odds of the two hypotheses,
which we will generally take as unity unless otherwise
stated.
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1. Noise hypothesis

The simplest way to form the evidence for the noise hy-
pothesis is just as the product of the null likelihoods for
all pulsars, where the null likelihood is the likelihood with
the signal model explicitly set of zero (see, e.g., Sec. 2.2.3
of [24] for the null likelihoods used in the analysis pre-
sented here). For a particular pulsar i and detector j the
null likelihood for the hypothesis that the data is consis-
tent with noise alone, Hn, is given by

p(xji |Hj
n, I) ≡ p(xji |εi = 0, I), (23)

i.e., it is just the likelihood [as seen in, e.g., Eq. (5)] eval-
uated with the signal model set to zero. Therefore, with
xi ≡ {xji}, the multidetector (Ndet) noise hypothesis for
a single pulsar is

p(xi|Hn, I) =

Ndet∏

j

p(xji |Hj
n, I), (24)

and evidence for the noise hypothesis for all pulsars is

p(X|Hn, I) =
∏

i

p(xi|Hn, I). (25)

In reality such a noise hypothesis is not robust against
instrumental spectral disturbances and lines in the data
(see, e.g., [33]), which can contaminate the frequencies
near, or at, those of an expected astrophysical pulsar
signal. If data from more than one detector is avail-
able, a more robust noise hypothesis is to allow it to
incorporate incoherent signals or noise between detec-
tors. When using multiple detectors, the individual pul-
sar signal hypothesis enforces coherence between them,
so we can more explicitly call the hypothesis the coher-
ent hypothesis, Hcoh, which is what the evidence term
p(xi|I) ≡ p({xji}|Hcoh, I) in Eqs. (5), (14) and (16) truly
represents.

The evidence for the new noise hypothesis for each
pulsar, which we will call the incoherent hypothesis, is
described in more detail in Sec. 2.6 of [24], or the Ap-
pendix of [13]. In all the analyses presented here we use
two detectors (the LIGO Hanford and Livingston detec-
tors, which we will denote as H1 and L1 respectively from
here onwards), so for each pulsar the evidence for the in-
coherent hypothesis, Hin is

p(xi|Hin) =
∏

j∈{H1,L1}

[
p(xji |Hj

s , I) + p(xji |Hj
n, I)

]
, (26)

where Hj
s is the evidence for the hypothesis that the data

is consistent with a signal for a single detector. This is
generalizable to any number of detectors. Again, we can
take the product of this to give the incoherent hypothesis
for all N pulsars

p(X|Hin) =

N∏

i

p(xi|Hin). (27)

This implies that in Eq. (22) we would substitute Hn ≡
Hin, which is the case for all results presented here.

2. Nonhierarchical statistic

Without using any of the machinery in defining an
underlying ellipticity distribution, and hyperparameters,
described previously in this section, we can form a more
näıve odds. This assumes all the pulsars have mass
quadrupoles (not ellipticities) drawn from the same flat
prior distribution with fixed bounds (between zero and
a large value at which all likelihoods have approached
zero). To differentiate it from the above odds formed
using an ellipticity distribution with unknown hyperpa-
rameters, we call this our nonhierarchical statistic.

As described above, for each pulsar we have the evi-
dence for the coherent signal model p({xji}|Hcoh, I) and
the null likelihood p(xi|Hn, I). Following a similar route
to Eqs. (49–52) of [34] we can form the probability (not
the evidence here as we are explicitly including priors on
the hypotheses) for a compound hypothesis of any com-
bination of individual signal and noise hypotheses

p(Hcom|X, I) ∝
N∏

i

[
p(xi|Hcohi, I)p(Hcohi|I)+

p(xi|Hini, I)p(Hini|I)
]
−

N∏

i

p(xi|Hini, I)p(Hini|I), (28)

where p(Hcohi|I) and p(Hini|I) are the priors for each
hypothesis, which here we explicitly state for each pulsar
i. The second product term on the right-hand side of
Eq. (28) is also the probability for the all-pulsar noise
hypothesis, so we can produce an odds between the two
probabilities (noting that they would both have the same
proportionality coefficient and it would thus cancel out)
as

O ≡p(Hcom|X, I)

p(Hin|X, I)
=
p(X|Hcom, I)

p(X|Hin, I)

p(Hcom|I)

p(Hin|I)

=

(
N∏

i

[
p(xi|Hcohi, I)p(Hcohi|I)+

p(xi|Hini, I)p(Hini|I)
])
×

(
N∏

i

p(xi|Hini, I)p(Hini|I)

)−1
− 1. (29)

If we state that we have equal a priori probability for
every combination of the coherent signal and incoherent
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hypotheses, e.g.,

N∏

i=1

p(Hini|I) =

N∏

i=2

p(Hini|I)

1∏

j=1

p(Hcohj |I)

=

N∏

i=3

p(Hini|I)

3∏

j=1

p(Hcohj |I)

= . . . , (30)

then Eq. (29) becomes

O =

∏N
i [p(xi|Hcohi, I) + p(xi|Hini, I)]

∏N
i p(xi|Hini, I)

− 1, (31)

where implicitly p(Hcom|I) = (2N − 1)p(Hin|I). There-
fore, to assign equal prior odds for the compound hy-
pothesis that data for any pulsar contains a signal one
must use

ONH
n =

O
2N − 1

. (32)

We will use this as a comparison to Eq. (22) in the sub-
sequent analyses.

3. B-statisticlike comparison

It is interesting to compare the above statistics to that
proposed in [19]. Due to how we have constructed our
data sets, it is not simple to calculate the F-statistic
(which is the log-likelihood ratio maximized over the
parameter space) for our simulated data for each pul-
sar. However, the natural logarithm of our signal versus
noise evidence ratios for each pulsar are essentially the
B-statistic of [35] (although we additionally marginalize
over pulsar distance) including the line robust incoherent
noise denominator [33] in our Bayes factors. Therefore,
as a comparison using an ensemble of pulsars, we can
simply sum these B-statistics. In our notation, where we
are not implicitly in log-space, we would have a product
rather than a sum of

OBn =

N∏

i

p(xi|Hcohi, I)

p(xi|Hini, I)
. (33)

As was shown in [35] the B-statistic is a slightly more effi-
cient discriminator between signal and noise than the F-
statistic, so we would expect this to produce a compara-
ble, but slightly more efficient statistic than that in [19].

On a final note, all the above likelihood, prior, poste-
rior, and odds calculations are in practice computed en-
tirely using the natural logarithm of the values to avoid
numerical underflow and overflow.

III. ANALYSIS

Here we will discuss analyses that have been performed
on simulated data to assess the performance of the three

odds given in Eqs. (22), (31) and (33) for detecting an
ensemble of gravitational wave signals from pulsars. In
the former case this assumes that all pulsars have ellip-
ticities drawn from some underlying distribution defined
by unknown hyperparameters, while the latter two as-
sume no unknown hyperparameters for the distribution.
In the former case we also assess how well we can recover
the hyperparameters defining the ellipticity distribution.

A. Simulations

To make these assessments we have produced a series
of simulated data sets to account for different ellipticity
distributions, hyperparameter values, and for different
realizations of noise. In all cases we take the 200 pulsars
searched for in the analysis of LIGO Observing Run 1
(O1) [13] as our sample of sources, with their sky po-
sitions and best-fit distances obtained from the ATNF
Pulsar Catalogue [16]. We also create data from two
detectors, the LIGO Hanford (H1) and Livingston (L1)
observatories, assuming that they are operating at their
advanced design sensitivities [36, 37] over one year with
a 100% duty cycle. For each pulsar a complex time series
is simulated at a sample rate of once per 1800 s, to repli-
cate the data that would be produced in a real targeted
pulsar search (e.g., [13]) following the application of a
heterodyne procedure [14] to remove the rapidly varying
signal phase evolution.

Firstly, we will discuss generating sources from the
exponential ellipticity distribution defined in Eq. (10).
There is a single hyperparameter that defines the distri-
bution, µε, the mean of the distribution. We take 15 val-
ues of µε spaced uniformly in log-space between 5×10−10

and 5× 10−8. For an exponential distribution defined
by a particular µε value, we randomly draw ε values for
each pulsar, which (assuming Izz = 1038 kg m2) we con-
vert into that pulsar’s equivalent h0 via Eq. (1). We also
randomly generate values of cos ι, ψ and φ0 for each pul-
sar, drawn uniformly from the ranges [−1, 1], [0, π/2] and
[0, π], respectively. Using these values, the time series’ for
the two detectors are generated via the signal model de-
fined in Equation 13 of [14] with additive Gaussian noise
with zero mean and standard deviation derived from the
Advanced LIGO (aLIGO) design curve sensitivity [36] at
the appropriate gravitational wave frequency (twice the
pulsar’s rotation frequency). For each pulsar we also cal-
culate the signal-to-noise ratio it would have via Eq. (2)
of [38] for the two-detector fully coherent analysis.

For µε values below ∼ 9.6×10−10 and above 4.5×10−9

we regenerate the ensemble of sources 10 times using dif-
ferent random seeds, while for values between that range
we regenerate the ensemble 100 times to provide a better
statistical sample. So, to summarize, assuming an un-
derlying exponential distribution of ellipticities, we have
(9 × 10) + (6 × 100) = 690 realizations of data for two
detectors containing signals from an ensemble of 200 pul-
sars.
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We perform exactly the same steps for the half-
Gaussian distribution defined in Eq. (11), where we take
15 values of σε spaced uniformly in log-space over the
same range as above.7 In this case we only create 10
ensembles of pulsars for each value of σε. So, we have
15× 10 = 150 realizations of data for two detectors con-
taining signals from an ensemble of 200 pulsars.

It is very useful to have “background” data sets with
which to compare odds values from ensembles containing
signals. So, for this purpose we have also generated 400
realizations of our data sets of 200 pulsars, with each pul-
sar’s data containing simulated Gaussian noise derived
from the aLIGO design sensitivity as above, but contain-
ing no signal.

B. Processing the data

For each pulsar in each ensemble realization we run
the parameter estimation and evidence evaluation code
[24] used for real known pulsar searches such as [13].
For each pulsar the code is run individually for the two
detectors, and with data from both detectors combined
coherently. The code uses a nested sampling algorithm
[30, 39, 40] to evaluate the model evidence given by the
integral in Eq. (5), and also outputs the null likelihood in
each case. For all pulsars, the code set up was identical
and 512 “live,” or “active,” points were used to initialize
the nested sampling algorithm. For the signal variables
Q22, cos ι, φ0, and ψ we defined uniform priors in the
ranges [0, 1037] kg m2, [−1, 1], [0, π] rad, and [0, π/2] rad,
respectively. The distance was also included as a vari-
able and assigned a Gaussian prior with a mean given by
each pulsar’s best fit distance, and a standard deviation
of 20% of that value, and a hard cutoff at zero. Note that
we did not sample in ε, but the Q22 samples were easily
converted into ε samples via the relation in Eq. (2).

Nested sampling outputs a chain of samples, where
each sample is a vector containing particular values of
each of the variable parameters {εj , cos ιj , φ0j , ψj , Dj}.
These are then resampled to provide draws from the pos-
terior distribution using the method described in [40].
As described in Sec. II B, for Eq. (16), which must be in-
serted into Eq. (13), we cannot use posterior samples, but
instead need a functional form of the posterior. We use
Gaussian kernel density estimation (KDE), in particular
the method implemented in the Scikit-learn Python
package [41], to convert the ε samples into a function that
can be evaluated. In practice, when samples are cut-off
at a hard boundary, such as not being allowed to be neg-
ative for the ε value, it can lead to boundary artifacts in
the KDE. So, to avoid such artifacts we produce a copy
of the samples, reflect them about zero, and concatenate

7 The mean of a half-Gaussian distribution, which may be more di-
rectly comparable to the exponential distribution mean, is given
by (

√
2/π)σε.

them to the original samples before performing the KDE.
KDEs are also dependent on the bandwidth chosen for
the Gaussian kernels. We use the Scott rule-of-thumb
[42] to estimate the bandwidth of the kernel, but only
using the original samples rather than the concatenated
version to avoid the kernel being too broad. The use of a
finite number of posterior samples, and their conversion
into a KDE, means that there will be some associated
uncertainties that will propagate through the analysis,
which are discussed briefly in Appendix B.

For each ensemble of pulsars the outputs from the
above processing for the coherent two-detector analyses
are inserted into Eq. (13) to form the likelihood for a
particular ellipticity distribution model. This is then
used in Eq. (9), along with the hyperparameter priors
in Sec. II A, to evaluate the evidence for that distribu-
tion (in practice trapezoidal integration is used over the
hyperparameter range). This then gives the evidence for
the numerator of Eq. (22). We also obtain the poste-
rior distribution on the hyperparameter via Eq. (8). For
both the simulated distributions (the exponential and
half-Gaussian) we calculate Eq. (9) twice, once with the
actual distribution used for the simulations and once as-
suming the alternative distribution, i.e., for the ensem-
bles containing sources with ellipticities drawn from an
exponential distribution we calculate the evidence that
the distribution was exponential and the evidence that
the distribution was half-Gaussian. This enables us to
do model comparison between the two distributions.

Likewise the outputs from the individual detector anal-
yses can be combined via Eqs. (26) and (27) to form the
denominator of Eq. (22). This means that for each en-
semble of pulsars drawn from a given distribution we have
two values of Oεn. The first is Oεexpn for the assumption
that the distribution is exponential, and the second is
Oεhgn for the assumption that it is half-Gaussian.

Similarly, we use all the individual pulsar signal and
noise evidences to produce values for ONH

n via Eqs. (31)
and (32), and values for OBn via Eq. (33), for each ensem-
ble.

IV. RESULTS

A. Odds values

For each ensemble we have calculated the value of the
odds for a given ε distribution: Oεexpn and Oεhgn . We
have also calculated the non-hierarchical odds assuming
no unknown hyperparameters Oind

n , and OBn . This has
been done for the 400 background ensembles in which
the data for each pulsar purely contains Gaussian noise.
For reasons we discuss in Appendix B 2 the true scaling of
odds values may not be reliable. However, as we are able
to calculate the odds for a background distribution in an
identical way to those containing signals, we can remove
any scaling dependent effects by looking at ratios with
respect to the background. So, we produce a detection
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statistic from the ratio between the observed odds for
each ensemble containing signals and the mean odds from
the background ensembles

D =
O

〈Obackground〉
, (34)

where we might have, e.g.,

Dεexp =
Oεexpn

〈Oεexpn background〉
, (35)

or equivalent values of DNH for the nonhierarchical
odds ONH

n , and DB for the B-statistic based odds from
Eq. (33). The base-10 logarithm of these three ratios is
what is shown in Fig. 2, and subsequent figures.

In the upper panel of Fig. 2 we see that the statis-
tic Dεexp appears to become completely disjoint from the
background distribution at values of µε ≈ 5×10−9, while
the nonhierarchical statistic DNH becomes disjoint a lit-
tle higher at µε ≈ 7×10−9. We see that the B-statistic-
based distributions, DB, have generally larger values, but
have a much broader background distribution than the
other two statistics (we see how this translates into effi-
ciency in Sec. IV A 1). We see a rather similar situation
in the lower panel of Fig. 2 for Dεhg with the distribu-
tions becoming completely disjoint from the background
at σε ≈ 5×10−9, or (

√
2/π)σε ≈ 6×10−9.

In Fig. 3 we show a zoomed in version of Fig. 2
for both the exponential distribution (left) and half-
Gaussian (right), with the results for Dεexp/Dεhg and
DNH split into separate panels (top and middle respec-
tively). The background distribution is shown in two
ways: horizontal solid lines show the upper and lower
extent of the 400 background realizations; shaded bands
show the bounds from 1σ to 5σ on the distribution. For
comparison the distributions of DB and its background,
also with bounds from 1σ to 5σ, are shown faintly. For
Dεexp/Dεhg the background distribution is roughly sym-
metrical and Gaussian, while for DNH the distribution is
not symmetric and is more similar to a Gamma or χ2-
distribution. However, to reflect the true distribution as
best we can we form a KDE from them, and use that
to estimate the σ-bounds by finding the intervals that
bound the probabilities defining the 1 − 5σ bounds of a
Gaussian distribution.

The bottom panels of Fig. 3 show binned distributions
of signal-to-noise ratios—the numbers within the boxes
show the number of pulsars in that bin for the ensemble,
whilst the number above the boxes shows the maximum
signal-to-noise ratio of all pulsars within that ensem-
ble. For each adjacent pair the left set of bins show the
signal-to-noise ratio distribution for the ensemble with
the smallest Oεexpn /Oεhg

n (which will be those that gave
rise to the lower extent of the distributions shown above);
and the right set of bins show the signal-to-noise ratio
distribution for the ensemble with the largest Oεexpn /Oεhgn

(which will be those that gave rise to the upper extent of
the distributions shown above). If we look at the right-
most value of µε in the left panel of Fig. 3 we see that the

lowest value of Oεexpn came from an ensemble in which all
pulsars had signal-to-noise ratios of ≤ 5.4. For an indi-
vidual pulsar analysis, such a signal-to-noise ratio could
easily not be enough to confidently assign it as detected
(the probable noise outlier in Fig. 2 of [13] had a similar
signal-to-noise ratio, as did the rejected outliers in [43]),
but this gave rise to a Dεexp value well outside the back-
ground distribution as seen in the top panel. However,
from the middle panel it is interesting to note that this
ensemble is just on the edge of the background distribu-
tion for the nonhierarchical statistic DNH. In the bot-
tom panels on both sides we see what would be expected
from the two different distributions; there is a longer tail
giving rise to larger outlier signal-to-noise ratios for the
exponential case than for the half-Gaussian case.

We will see what that means in terms of detection effi-
ciency for the exponential distribution in Sec. IV A 1 and
Fig. 4.

1. Detection efficiency

Using our distributions of statistics from the back-
ground analysis we can define a threshold in D at which
to claim detection with a given false alarm probability
(FAP). Here we do this in two ways, noting that we
only do this for the exponential distribution as we have
enough simulations to get reasonable statistics unlike for
the half-Gaussian. The simplest threshold is one based
on the maximum background value of D, which, given
our 400 background realizations, will represent a FAP of
1/400 = 0.0025. The other way that we use is via extrap-
olation from the KDEs of the background distributions
out to values of D that yield equivalent cumulative prob-
abilities to that of a Gaussian distribution at 5σ. To
compute efficiencies we find the number of ensembles for
each µε value that are above the two FAP D thresholds
for Dεexp , DNH, and DB, compared to the total number
of simulations at that value. These efficiency curves are
shown in Fig. 4, which also shows (as shaded regions) the
90% credible regions for each curve, and sigmoid fits to
the efficiencies as dashed lines.

We see that the false alarm probability based on the
number of background realizations Dεexp clearly outper-
forms both the DNH and DB statistics. For the false
alarm probability extrapolated from the background out
to 5σ the efficiencies of the two statistics, Dεexp and DNH,
are far more comparable. It is worth noting that the ef-
ficiency curves for DNH for both FAPs are very similar.
This is because the actual threshold value in both cases
is very similar due to there being one large outlier that
dominates the first FAP, but which only contributes a
small amount to the extrapolated threshold (which will
also depend on the KDE kernel width used for the back-
ground). Therefore, this KDE based threshold extrapo-
lated to 5σ for DNH is probably unreliable and if more
background realizations were performed larger outliers
may be found. So, we expect the performance of the two
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FIG. 2. The distributions of odds values for the ensembles of pulsars with ellipticities drawn from, in the upper panel,
exponential distributions with a range of mean values, µε, and in the lower panel, half-Gaussian distributions with a range of
widths, σε (the mean of the half-Gaussian distributions, (

√
2/π)σε, is displayed on the top axis). The distributions for the

statistic assuming there is a common distribution Dεexp/hg , using the nonhierarchical method DNH, and using the B-statistic-
based method DB, are shown. The shaded bands show the 5σ extent of the background distributions in all cases (for clarity
these are shown in greater detail in Fig. 3). Note that the y-axis is linear below 102 and logarithmic above it.

statistics, as observed in the left panel of Fig. 4 to be
more reliable, and better represent the true gain by in-
cluding the common ellipticity distribution. Both Dεexp
and DNH considerably outperform DB for the smallest
distributions, i.e., when the contribution from the single

strongest source is not overwhelming.



11

10−95×10−10 2×10−9 5×10−9

100

1020

1040

1060

1080

D
Dεexp

Dεexp KDE background

Dεexp background extent

DB

DB KDE background

10−95×10−10 2×10−9 5×10−9

100

1010

1020

1030

1040

D

DNH

DNH KDE background

DNH background extent

DB

DB KDE background

10−95×10−10 2×10−9 5×10−9

Exponential Mean µε

0

20

40

60

80

100

S
ig

n
al

-t
o-

N
oi

se
R

at
io

200

1.4

200

5.5

200

1.0

200

4.5

200

1.3

199

1

23.3

200

1.1

199

1

27.6

200

2.3

198

1

1

27.9

200

3.2

196

3

1

34.7

200

4.7

197

1

1

1

62.1

200

5.4

198

1

1

91.9minimum Oεexp
n

maximum Oεexp
n

10−95×10−10 2×10−9 5×10−9

100

1020

1040

1060

D

Dεhg

Dεhg KDE background

Dεhg background extent

DB

DB KDE background

10−95×10−10 2×10−9 5×10−9

100

1010

1020

1030

D

DNH

DNH KDE background

DNH background extent

DB

DB KDE background

10−95×10−10 2×10−9 5×10−9

Half-Gaussian Width σε

0

5

10

15

20

S
ig

n
al

-t
o-

N
oi

se
R

at
io

200

1.1

198

2

2.8

200

1.0

199

1

3.5

198

2

1.5

199

1

4.3

197

3

1.9

195

3

1

1

6.2

198

2

2.2

195

3

1

1

12.5

187

10

3

3.7

192

5

1

1

1

21.2

187

9

4

4.1

186

7

4

2

1

16.8

175

18

5

1

1

9.9

178

10

5

3

1

1

1

1

17.0

minimum Oεhg
n

maximum Oεhg
n

10−9
Half-Gaussian expectation value =

√
2/πσε

FIG. 3. The left panel shows results for the exponential distribution simulations and the right panel shows results for
the half-Gaussian distribution simulations. On each side the top panel shows the distribution of detection statistics Dεexp

(left)/Dεhg (right) for ensembles with distributions defined by eight different means/widths, µε (left)/σε (right), with the
equivalent DB distribution shown faintly for comparison. The middle panel shows the distributions of DNH (again with DB
shown for comparison). In both these panels the horizontal shaded regions show the distribution for the background (noise-
only) ensembles (see text), with the solid horizontal lines showing the maximum and minimum extent of the distribution. The
background distributions for the DB values are shown as the faint dashed lines. The bottom panel shows the distribution of
signal-to-noise ratios for the ensemble with the minimum (left box of each pair) and maximum (right box of each pair) Dεexp

(left)/Dεhg (right) value, with numbers inside the boxes showing the histogram count, and numbers above the boxes showing
the maximum signal-to-noise ratio for that ensemble.

B. Parameter estimation

One of the purposes of this paper has been to develop a
method to estimate the hyperparameters defining a com-
mon ellipticity distribution from which the ellipticities
of pulsars are drawn. As described in Sec. II A we have

taken two simple distributions with which to test this:
an exponential distribution and a half-Gaussian.

For each of the ensembles of pulsars described in
Sec. III A we have estimated the posterior for the distri-
bution means, µε, for the exponential distribution simu-
lations, and for the distribution widths, σε, for the half-
Gaussian distribution simulations. These can be seen as
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FIG. 4. Efficiency curves for the Dεexp , DNH and DB detection statistics for two different false alarm probabilities: a false
alarm probability of 0.0025 based on the number of background realizations, and an equivalent 5σ false alarm probability
extrapolated from KDEs of the background distributions. The dashed curves show sigmoid fits to the measured efficiencies.

a function of the simulated values used to construct the
ensembles in Fig. 5 (top panel for the exponential dis-
tribution and bottom panel for the half-Gaussian). The
plot shows the 90% credible interval on the posterior for
µε (top)/σε (bottom) for the ensemble with the largest
(dark error bars) and smallest (light error bars) odds,

Oεexp/hg
n , for each simulated value. We see that the true

distribution parameters are recovered accurately and, in
all bar one case for the exponential distribution simu-
lations, when no signal is detected (based on the FAP
of 0.0025) the posteriors include the lower prior bound-
ary on µε (and thus in these case the maximum bound
represents an upper limit).

C. Model comparison

We can compare the evidences for the two different
models of the ellipticity distribution. As discussed ear-
lier we have specified two toys distributions (the exponen-
tial and half-Gaussian distributions) and have calculated
the evidence for both for all our ensembles of pulsars.
We can take the ratio of these evidences and see which
distribution is preferred in each case. Figure 6 shows
this ratio for the ensembles created from sources with el-
lipticities drawn from the exponential distribution (top)
and the half-Gaussian distribution (bottom). In the top
panel, while there is a definite trend towards strongly fa-
voring the correct distribution there are still ensembles
with the largest exponential mean value that favor the
half-Gaussian model. At the smallest values of µε the
half-Gaussian is always favored, probably due to it hav-
ing a more sharply falling off tail and therefore smaller

prior volume. We find that the cases where the true ex-
ponential distribution is most highly favored are when
there are a few outliers with large signal-to-noise ratios
compared to the bulk of the distributions, which would
be allowed by the longer tail exponential distribution,
but not by the half-Gaussian. In the bottom panel of
Fig. 6 we find that the true half-Gaussian distribution
is generally favoured in the majority of cases, although
we have fewer simulations with which to truly probe the
tails of the distribution.

V. S6 RESULTS

Rather than purely working with simulated data with
have also run on real data from the LIGO detectors. Here
we present the results of this analysis using data from
LIGO’s sixth science run (S6) [44, 45].8 The run had
data from the two LIGO detectors at Hanford and Liv-
ingston operating in enhanced configuration between 8
July 2009 and 20 October 2010. We use 92 of the pul-
sars included in the analysis of [12].9 For each pulsar

8 The full LIGO S6 data set is publicly available through the LIGO
Open Science Center https://losc.ligo.org/S6/ [46].

9 For this analysis there was a selection cut meaning not all the
pulsars in [12] were used. To enable the relatively quick produc-
tion of background realizations of the data we made use of the
more efficient spectral interpolation algorithm [47], rather than
the standard heterodyne method [14], to process the S6 data.
This method makes use of Fourier transforms of 1800 s chunks
of data, which had been created for the analyses in [48, 49] and
included a low frequency cut-off at 40 Hz, so pulsars with gravi-

https://losc.ligo.org/S6/
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FIG. 5. Credible intervals (90%) about the median value
from the recovered posterior probability distributions on the
exponential ellipticity distribution hyperparameter µε, across
the range of simulated µε values (top), and the half-Gaussian
ellipticity distribution hyperparameter σε, across a range of
simulated σε values (bottom). The dark green error bars rep-
resent the credible interval for the ensemble with the largest
odds, while the orange error bars are for the ensemble with
the lowest odds. These, therefore, are indicative of the gen-
eral range of possible results. In the top plot error bars with
open circles around the median values are those that would
be considered “detected” above the Dεexp false alarm prob-
ability (see Sec. IV A 1) of 0.0025. The shaded bands show
the intervals with the largest and smallest upper bound for
ensembles consisting purely of noise.

tational wave frequencies below this cut-off were excluded. The
spectral interpolation method also has limitations for high spin-
down pulsars or those in tight binaries, so many where excluded
on these criteria.
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FIG. 6. The distributions of ratio Oεexp
n /Oεhg

n (top) for
sources with ellipticities drawn from exponential distributions
with given means µε, and Oεhg

n /Oεexp
n (bottom) for sources

with ellipticities drawn from half-Gaussian distributions with
given widths σε.

and for each individual detector, and for both detectors
combined, the evidence and posterior samples (marginal-
ized over orientation and pulsar distance) as required in
Eq. (16) were produced. As with the simulated data sets
described in Sec. III A, using these and the noise evi-
dence values we have calculated Oεexpn and Oεhgn for the
ensemble of pulsars. As before, we require a background
distribution of these values to compare our “foreground”
to. To create a background we required data that shares
the same noise characteristics as the foreground, but in
which an astrophysical signal from a given pulsar would
not be present. To achieve this we use the method de-
scribed briefly in Section V.A. of [43] (also see [50]), in
which for each pulsar we reprocess (using the spectral in-
terpolation method from [47]) the data with the pulsar’s
sky location changed to a different randomly selected sky
location. We performed this background generation 100
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times to find the distribution of values.
The foreground and background distribution of Dεexp ,

Dεhg , and DNH are shown in Fig. 7. We see that the fore-
ground for both ellipticity distributions are well within
the background distribution, so we see no evidence for
gravitational wave emission from the ensemble of pulsars.

However, we can set upper limits on the ellipticity dis-
tribution hyperparameters. Figure 8 shows the posteriors
for µε and σε for the exponential and half-Gaussian dis-
tributions, respectively. From these we find 90% credible
upper limits of µ90%

ε ≤ 3.9×10−8 and σ90%
ε ≤ 4.7×10−8.

These are about two orders of magnitude less constrain-
ing than the purely spin-down limit based limits dis-
cussed in Sec. II C, although they are the first such limits
to be set based purely on gravitational wave observations.

VI. CONCLUSIONS

In this work we have described a Bayesian hierarchi-
cal method for combining gravitational wave observa-
tions from an ensemble of known pulsars for two pur-
poses: to create a detection statistic for identifying a
signal from the ensemble, and to estimate the parame-
ters of the distribution of pulsars’ fiducial ellipticities.10

For two toy ellipticity distributions, an exponential and
a half-Gaussian, we have used simulations to find that
incorporating this distribution as a common prior on the
ellipticity of stars, with an unknown hyperparameter, can
produce a more efficient detection statistic than combin-
ing the data for the ensemble of pulsars in a nonhierar-
chical way. We also show that it is more efficient than a
statistic derived in a similar way to that in [19]. We find
that the detection of the ensemble could even be seen
in cases where individual sources may not be individu-
ally detectable with high confidence. However, we should
note that the efficiency may not be improved if the true
distribution does not well match our assumed prior form.

For ensembles for which gravitational wave emission
would be considered detected we have shown in Fig. 5
that we can correctly constrain the hyperparameters of
the simulated ellipticity distribution. If no signal is seen
we can also set upper limits on these. However, as shown
in Fig. 6, we have also found that it is difficult to dis-
tinguish between our two toy distributions as they are
broadly similar.

10 Here we have worked with fiducial ellipticities as they are a conve-
nient and relatable quantity (i.e., they express the relative defor-
mation of the star). However, the analysis actually estimates the
mass quadrupole moment of the stars and converts that into the
ellipticity given the canonical moment of inertia of 1038 kg m2.
So, one could convert back to the moment of inertia independent
mass quadrupole if required. We should note that simulated sig-
nals were drawn from the fiducial ellipticity ε parameter, and we
converted to mass quadrupoles using the canonical moment of
inertia, so they do not incorporate a realistic equation-of-state
dependent spread of moments of inertia.

We have performed the analyses using real data for
92 pulsars from the LIGO S6 science run, with the as-
sumption of the same two ellipticity distributions: an
exponential and a half-Gaussian. We saw no evidence of
a signal from the ensemble, but set upper limits on the
two distributions hyperparameters of µ90%

ε ≤ 3.9×10−8

and σ90%
ε ≤ 4.7×10−8. These upper limits are ∼ 2 or-

ders of magnitude less constraining than those that can
be produced using the electromagnetically derived pulsar
spin-down limits. However, they are the first such limits
to be produced purely from gravitational wave observa-
tions.

We note that the exponential and half-Gaussian dis-
tributions used are rather simple. They were chosen as
simple toy models that were easy to use due to being
defined by a single hyperparameter. However, they are
not necessarily physically realistic distributions. Obser-
vationally, we know that there are different populations of
pulsars, like the old recycled millisecond pulsars and the
young pulsars. The fact that the former are most likely to
have undergone an accretion phase, which could alter the
structure of their crust and magnetic field strength com-
pared to non-recycled pulsars, meaning they could well
have a different distribution. So, it could be that the two
populations should be treated independently, or a more
complex distribution that allows separation of the two
distributions should be used (for a simple case it could
be a bimodal Gaussian).

It should also be noted that in this work we assume
a 20% uncertainty of the distance to all pulsars, but in
reality there are range of distance uncertainties from a
few percent, or hundreds of percent. In a more thorough
analysis the actual measurement uncertainties for each
pulsar should be included, although we do not imagine
it would lead to a particularly significant change in the
results.

As discussed in Sec. II C the electromagnetic-
observation-derived spin-down limits could be incorpo-
rated more fully into the ellipticity distribution analysis.
The simplest way to do this would be use the spin-down
limits as a priors on the ellipticity (or mass quadrupole)
for each pulsar. In this way, for pulsars for which the
gravitational wave data alone is not particularly infor-
mative the spin-down limit-based prior would dominate.

Finally, it is worth highlighting that this type of anal-
ysis would only constrain the underlying distribution of
known pulsars, but not necessarily the entire neutron star
population. There could, for example, be a different dis-
tribution for accreting stars, or stars that are purely grav-
itars (i.e. neutron stars that are purely spinning down due
to gravitational wave emission.)
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Appendix A: h0 posteriors

If an analysis produced posterior samples on the ob-
served gravitational wave amplitude, h0, rather than on
ε or Q22 (as has been the case for previous known pul-
sar searches), the analysis described in this paper could
still be performed, although the marginalizations over
the each pulsar’s distance would have to be explicitly
computed. Assuming that a kernel density estimate has
been used to turn sets of h0 posterior samples into prob-
ability densities, then for each pulsar the likelihood on

http://arxiv.org/abs/ligo-p/1800171


16

εi (assuming a uniform prior on h0 that is only nonzero
between zero and some maximum h0max) is

p(xi|εi, I) =

∫ Di

p(xi|h0 =
κiεi
Di

, Di, I)
p(xi|I)

p(h0i|I)
dDi

=

∫ Di

p(h0i =
κiεi
Di
|xi, D, I)h0max×

p(xi|I)p(Di|I)dDi, (A1)

where

κi =
16π2Gfrot

2
i

c4
Izz. (A2)

Appendix B: Evidence evaluation

Here we describe the various features/issues that we
have found regarding evaluating the evidences. These
relate to the systematic biases on evidences from nested
sampling (see, e.g., [24]), and statistical uncertainties on
the final evidence due to a combination of uncertainties
from the KDE posterior estimates and statistical uncer-
tainties on the individual pulsar evidences.

1. Statistical uncertainties on evidence values

To produce our final evidence values given by Eq. (9)
we rely on the output of a code that uses a stochastic
sampler to perform the required integrals. We also rely
on a finite number of posterior samples from each pulsar’s
estimate of ε to form a kernel density estimate of the true
posterior. Both of these mean that even on identical
initial data (with identical noise realizations) there will
be some stochastic variation in the results.

To estimate these variations we have performed the
processing described in Sec. III B 10 times on the same
ensemble set, which in this case is one containing no pul-
sar signals. A different random seed is used for the sam-
pler in each case, otherwise the results really should be
identical. To estimate the variations in the final evidence
caused by the finite number of samples used for the KDE
of the ε posteriors, we use Eq. (16) but with p(xi|I) = 1
for each pulsar, so the only variation is from differences
between p(εi|xi, I) in each analysis. We find that there is
a standard deviation on the base-10 logarithm of the fi-
nal evidence from Eq. (9) of ∼ 0.6, which comes from the
variation in the estimates of the individual pulsar ε pos-
teriors. Each KDE is estimated using ∼ 1000 posterior
samples, so we can check if this is roughly the variation
you might expect. We can draw 1000 samples from 200
half-Gaussian distributions with known standard devia-
tions, for each distribution produce a KDE and evalu-
ate it at a range of points, sum the logarithms of these
KDEs, and then numerically integrate it over the range
of points. Doing this multiple times, but with the same
set of standard deviations for each half-Gaussian, we find

the variation in the final integral is of the same order as
that which we see for our analysis using simulated pul-
sar data. This uncertainty can be reduced by increasing
the number of posterior samples used for the KDE es-
timate. To get more samples in our actual analysis we
would need to use a greater number of nested sampling
live points, which increases the run time. However, in fu-
ture real analysis it may be worth doing this to cut down
the uncertainties.

To see the uncertainty in the final evidence cause by
both the stochastic variation in the individual pulsar ev-
idences and the KDE, we repeat the above with the ac-
tual estimated p(xi|I) for each pulsar. We find a stan-
dard deviation on in the base-10 logarithm of the final
evidence from Eq. (9) of ∼ 1.3. This suggests that the
stochastic variations in the individual pulsar evidences
and KDEs contribute roughly equally to the overall un-
certainty. Again, this could be reduced by using a larger
number of live points for the nested sampling algorithm.
However, this variation is smaller than the distribution
of background values, so will not be of great significance.

2. Systematic uncertainties on evidence values

When creating the odds for signals being drawn from
a particular distribution compared to the noise distri-
bution, we find that there can be a severe bias on the
odds value. This comes from individually small system-
atic biases on the signal evidence values calculated for
individual pulsars by the nested sampling algorithm (see,
for example, the study on biases in nested sampling in
[57]). For example, over the 200 pulsars used, if the av-
erage natural logarithm of the signal evidence was 0.05
smaller than the (unknowable) truth, then when the like-
lihoods for individual pulsars are combined there will be
a 0.05 × 200 = 10 offset compared to what the value
should be. In tests performed on identical realizations
of a population of 200 pulsars, all containing only noise,
where the only difference in the analysis is the number
of live points used for the nested sampling, we find, for
example, a mean difference in the pulsar’s signal natural
logarithm evidence values of -0.08 between using 512 live
points compared to 2048. While this difference is fairly
insignificant for a single pulsar, it adds up to a ∼ 16
offset between the final odds values. We do not have a
handle on whether using more live points produces ev-
idences that are systematically closer to the truth (al-
though Fig. 11 of [24] suggests that systematic errors are
present even for large numbers of live points in similar
cases when the true evidence can be calculated), as we
do not have access to the truth for this specific case, it
means that we cannot use the actual value of the odds as
a trustworthy indicator of the true odds. Therefore, to
gauge whether our model comparison favours one model
over the other we have to resort to comparing it to a
background distributions of odds, and see at what point
our simulations diverge from the background.
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We believe that these individually small systematic er-
rors in evidences may be important for other detection
statistics based on hierarchical analysis that combine ev-
idences from multiple independent analyses, such as that

proposed in [22]. This deserves more study (like that
in [57]) to see how if similar features are observed in
nested sampling algorithms that differ from that used
here [24, 40].
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