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ABSTRACT 

Hydrogel mineralization with calcium phosphate (CaP) and antibacterial activity are desirable 

for applications in bone regeneration. Mineralization with CaP can be induced using the 

enzyme alkaline phosphatase (ALP), responsible for CaP formation in bone tissue. 

Incorporation of polyphenols, plant-derived bactericidal molecules, was hypothesized to 

provide antibacterial activity and enhance ALP-induced mineralization. Three phenolic rich 

plant extracts from: (i) green tea, rich in epigallocatechin gallate (EGCG) (herafter referred to 

as EGCG-rich extract); (ii) pine bark and (iii) rosemary were added to gellan gum (GG) 

hydrogels and subsequently mineralized using ALP. The phenolic composition of the three 

extracts used were analyzed by ultra-high-performance liquid chromatography coupled to 

tandem mass spectrometry (UHPLC-MSn). EGCG-rich extract showed the highest content of 

phenolic compounds and promoted the highest CaP formation as corroborated by dry mass 

percentage meassurements and ICP-OES determination of mass of elemental Ca and P. All 

three extracts alone exhibited antibacterial activity in the following order EGCG-rich > PI > 

RO, respectively. However, extract-loaded and mineralized GG hydrogels did not exhibit 

appreciable antibacterial activity by diffusion test. In conclusion, only the EGCG-rich extract 

promotes ALP-mediated mineralization. 
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1. Introduction 

 Hydrogels are 3D polymer structures, or networks, in which a high amount of liquid is 

introduced [1]. These materials present the advantage of being loaded with active molecules, 
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drugs and/or cells. In addition, the properties of hydrogels can be tailored by modifying the 

polymer network composing the hydrogel or their cross-linking mechanism [2, 3]. Gellan 

Gum (GG) is made of polysaccharide anionic polymer which can be used as the networks for 

obtaining hydrogels [4, 5]. Mineralization of this type of hydrogels with calcium phosphate 

(CaP) is desirable for applications in bone regeneration. One mineralization strategy is 

incorporation of the enzyme alkaline phosphatase (ALP) to cleave phosphate from 

glycerophosphate (GP) substrate upon incubation in a solution containing Ca2+ and GP, 

resulting in CaP formation in the hydrogel [6].  

 In addition to this mineralization capacity, antibacterial properties are desirable for 

bone regeneration materials as the increasing prevalence of antibiotic-resistant bacteria, e.g. 

methicillin-resistant Staphylococcus aureus Mu50 (MRSA), is a major concern in clinic [7, 

8]. Flavonoids, i.e. a sub-class of polyphenols occurring in fruit, vegetables, nuts, seeds, 

stems, flowers and tea, exhibit antibacterial activity in addition to other properties such as 

antioxidant, anti-inflammatory, anti-mutagenic and anti-carcinogenic properties [9, 10]. The 

mechanism of action of several flavonoids has been investigated [9], being known that their 

structure and concentration can affect the ALP and cell activities [11]. Previously, 

incorporation of a macroalgae phenolic extract into GG hydrogels promoted subsequent ALP-

induced mineralization and endowed antibacterial activity before and after mineralization [6]. 

Quercetin and apigenin have been object of particular interest amongst flavonoids due to their 

antibacterial properties [10].  

 In this work, two well-known plant extracts, namely green tea extract, rich in 

epigallocatechin gallate (EGCG), hereafter referred to EGCG-rich extract, and rosemary 

extract (RO), and a less studied extract, i.e. pine bark (PI, Pycnogenol) were added to GG 

hydrogels. GG hydrogels were subsequently mineralized using ALP. We hypothesized that 

these extracts would promote CaP formation and endow antibacterial activity. In fact, green 
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tea extract has shown antibacterial activity against both Gram-positive and Gram-negative 

bacteria [12]. Pine bark and rosemary extracts have been also reported to show antibacterial 

activity, ascribed by the authors to the presence of polyphenols [13], and phenolic acids [14], 

respectively. Notwithstanding, green tea, rosemary and pine bark extracts were characterized 

by ultra-high-performance liquid chromatography with diode array detector and coupled to an 

ion trap mass spectrometer (UHPLC-DAD-MSn). Promotion of mineralization was assessed 

by measurement of dry mass percentage, i.e. mass percentage of mineralized hydrogels 

attributable to mineral and polymer and not water, by Inductively Coupled Plasma Optical 

Emission Spectroscopy (ICP-OES), Fourier Transform Infrared Spectroscopy (FTIR) and 

Scanning Electron Microscopy (SEM) analysis. Antibacterial activity was tested against three 

commonly occurring bacteria known to colonize biomaterials, i.e. MRSA, Staphylococcus 

aureus and Escherichia coli. 

 

2. Materials and methods 

 2.1. Materials  

 All materials, including GG (G1910, “Low-Acyl”, 200-300 kD), calcium 

glycerophosphate (CaGP, 50043) and alkaline phosphatase (P7640), formic acid (purity 

>98%) gallic acid (purity >97.5%), catechin (purity >96%), caffeic acid (purity >95%), 

chlorogenic acid (purity >95%), luteolin (purity >98%), naringenin (98% purity), 

isorhamnetin (99% purity) were acquired from Sigma-Aldrich, unless stated otherwise. 

HPLC-grade methanol, water and acetonitrile were supplied by Fisher Scientific Chemicals 

(Loures, Portugal) and further filtered using a Solvent Filtration Apparatus 58061 from 

Supelco (Bellefonte, PA, USA). EGCG-rich extract (Green tea polyphenol extract, extracted 

by liquid/solid extraction, using water as solvent for the extraction, followed by purification 

with ethanol. EGCG > 65% (according to specification and information from manufacturer) 
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was obtained from Oskar Tropitzsch e. K. Germany, PI extract (Pycnogenol®, from Pinus 

pinaster) was acquired from Biolandes Arômes, France and RO extract (Aquarox®, from 

Rosmarinus officinalis) from Vitiva, Slovenia. 

 2.1. Extract analysis 

  Extracts were analyzed by UHPL-DAD-MSn. Extracts were dissolved in methanol 

HPLC grade (2–10 mg/mL) and filtered through a 0.2 μm PTFE syringe filter before injection 

(5 µL). The UHPLC system comprised a variable loop Accela autosampler (15 °C), Accela 

600 LC pump and Accela 80 Hz PDA detector (Thermo Fisher Scientific, San Jose, CA, 

USA). Compound separation was performed using a Hypersil Gold C18 (100 mm × 2.1 mm × 

1.9 μm) column (Thermo Scientific, U.S.A.), at a flow rate of 0.42 mL/min and at 45°C. 

Mobile phase consisted of water/acetonitrile (99:1, v/v) (A) and acetonitrile (B), both with 

0.1% formic acid. The following linear gradient was applied: 0–3 min: 1% B; 3–6 min: 1–5% 

B; 6–12 min: 5–10% B; 12–15 min: 10–15% B; 15–17 min: 15% B; 17–22 min: 15–20% B; 

22–27 min: 20–25% B; 27–29 min: 25–50% B; 29–31 min: 50–100% B; 31-32 min: 100% B; 

32–36 min: 100–1% B; followed by 4 min re-equilibration. Chromatograms at 280, 320 and 

340 nm, and UV spectra from 200 to 600 nm were recorded.  

 UHPLC was coupled to a LCQ Fleet ion trap mass spectrometer (ThermoFinnigan, 

San Jose, CA, USA), as described before [15]. Capillary temperature was 275 ºC and capillary 

and tune lens voltages were -41 V and -75 V, respectively.  

 2.2. Hydrogel preparation 

  GG hydrogel discs loaded with ALP and extract were prepared as described before [6] 

(Figure 1a) and had final concentrations of 0.7% (w/v) GG, 0.03% (w/v) CaCl2, 2.5 mg/mL 

ALP and 2.5 mg/mL of extract and were of 6 mm in diameter and 2.5 mm in height. GG, 0.1 

M CaGP and ddH2O were sterilized by autoclaving, CaCl2, ALP and extract solutions by 

filtration (pore diameter 0.22 µm). ALP- and extract-loaded hydrogels were incubated in 0.1 



 6 

M CaGP for 5 days (with refreshment after 1 and 3 days). Dry mass percentage was calculated 

as [(sample mass after drying)/(sample mass before drying)]x100%. SEM, ICP-OES and 

FTIR were performed as described before [6, 16]. 

 2.3. Antibacterial properties 

  For the minimal inhibitory concentration (MIC) test, MRSA was cultured in Mueller-

Hinton broth (MH; Oxoid, Basingstoke, UK) at 37°C in aerobic conditions. The EUCAST 

broth microdilution protocol was used with flat-bottom 96-well plates (TPP, Trasadingen, 

Switzerland). The inoculum was standardized to approximately 5 × 105 Colony Forming Units 

(CFU)/mL. Extract concentrations ranging from 1024 μg/mL to 0.5 μg/mL were examined. 

After incubation at 37°C for 24 h, optical density was measured at 590 nm. MIC was defined 

as the lowest extract concentration at which the inoculated and the blank wells displayed 

similar optical densities. 

 After determining bactericidal activity by MIC measurement, antibacterial properties 

of the ALP- and extract loaded hydrogels post-mineralization were tested using the Kirby-

Bauer diffusion test [17]. A hydrogel was placed in the middle of a 9 cm diameter Petri dish. 

18 mL Mueller-Hinton agar (MHA) containing 1x107 CFU/mL bacteria solidified in the dish 

over the hydrogel. After 24 h incubation under aerobic conditions at 37°C, the diameter of 

the inhibition growth zone was measured. E. coli (L70A4), MRSA (07001) and S. aureus 

(CIP224) were used. 

 

3. Results and discussion 

3.1. Characteristics of extracts by UHPLC-DAD-MSn 

 The phenolic fraction of EGCG-rich, PI and RO extracts were detailed characterized 

by UHPLC-DAD-MSn analysis (Table 1). Phenolic compounds were identified based on their 

retention time, UV spectra and MSn fragmentation pathway, comparing them with reference 
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compounds or, when these were not available, with the literature. Quantification was 

performed using calibration curves of standards representative of each phenolic compound 

family (Table 2).  

Table 1 – Phenolic compounds identified in EGCG-rich, PI and RO extracts and their 
corresponding retention time and MSn fragmentation profile data 

EGCG-rich extract 
Rt 
(min) 

Compound [M-H]- 
(m/z) 

MSn product ions (m/z) Ref. 

1.34 Gallic acid 169 MS2: 169(100) Coa 
2.41 (epi)gallocatechin 

isomer 
305 MS2: 287(15), 261(40), 221(90), 219(100), 

179(100), 165(35), 137(30), 125(35) 
[18]  

6.09 (epi)gallocatechin 
isomer 

305 MS2: 287(15), 261(40), 221(90), 219(95), 
179(100), 165(30), 137(25), 125(30) 

[18]  

6.78 Catechin 289 MS2: 245(100), 205(35), 203(20), 179(20) Co 
9.75 Epigallocatechingallate 

isomer 
457 
 

MS2: 331(95), 305(45), 287(15), 269(10), 
193(25), 169(100) 

[18]  

11.40 Epigallocatechingallate 
isomer 

457 MS2: 331(100), 305(50), 287(15), 269(10), 
193(20), 169(90) 

[18]  

14.50 (epi)catechin gallate 441 MS2: 331(20), 289(100)271(15), 193(10), 
169(20) 

[18]  

PI extract 
Rt 
(min) 

Compound [M-H]- 
(m/z) 

MSn product ions (m/z) Ref. 

0.68 Quinic acid 191 MS2: 173(30), 127(10), 111(100), 93(10), 
85(40) 

[19] 

2.55 Protocatechuic acid 153 MS2: 109(100) Co 
6.28 Protanthocyanidin B-

type dimer 
577 MS2: 451(60), 425(100), 407(60), 289(50); 

MS3[289]: 245 (100) 
[20] 

6.71 Protanthocyanidin B-
type dimer 

577 MS2: 559(20), 441(20), 425(100), 407(60), 
289(20); MS3[289]: 245 (100) 

[20]  

6.79 Catechin 289 MS2: 289(100), 205(40), 203(20), 179(20) Co 
7.32 Caffeic acid 179 MS2: 135(100) Co 
12.99 Taxifolin-O-hexoside 465 MS2:447(40), 437(70), 303(30), 285(100), 

259(40); MS3[303]: 285(100), 177(15), 
151(10), 125(10); MS3[285]: 257(25), 
241(100), 217(55), 199(20), 175(40), 
163(15) 

 

13.28 Taxifolin 303 MS2: 285(100), 177(10); MS3[285]: 
257(15), 241(100), 217(15), 199(25), 
175(60) 

[19] 

RO extract 
Rt 
(min) 

Compound [M-H]- 
(m/z) 

MSn product ions (m/z) Ref. 

0.68 Quinic acid 191 173 (60), 129 (20), 127 (60), 111 (40), 93 
(50), 85 (100) 

[19] 

2.44 Syringic acid 197 MS2:179 (100), 135 (10) [21]  
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7.47 Caffeic acid 179 161(10), 135(100) Co 
8.70 Chlorogenic acid 353 MS2:191(20), 179(60), 173(100), 135(30) Co 
16.20 Luteolin-O-rutinoside 

isomer 
593 MS2: 285(100); MS3[285]: 267(20), 

241(80), 199(95), 175(100), 151(25) 
[22] 

16.88 Rosmarinic acid 
glucoside 

521 MS2: 359(100), 323(20) [21] 

17.04 Isorhamnetin-3-O-
hexoside 

477 MS2: 462(10), 357(10), 315(100), 300(20); 
MS3[315]:300(100) 

[22]  

18.18 Apigenin-7-O-
glucoside 

431 MS2: 269(100), 268(20) [22]  

18.71 Rosmarinic acid 359 MS2:223(10), 197(30), 179(30), 161(100) [22]  
19.42 Hesperetin-7-O-

rutinoside  
609 MS2: 301(100), 285(20); MS3[301]: 

286(100), 283(60), 257(40), 242(80), 
227(30), 215(20), 199(50), 125(20) 

[22]  

19.57 Luteolin-7-O-
glucuronide 

461 MS2: 446(20), 299(30), 285(100); 
MS3[285]: 267(40), 257(20), 241(100), 
217(85), 199(90), 175(90), 151(40) 

[22]  

21.95 Luteolin-3-O-(2”-O-
acetyl)-b-D-
glucuronide isomer 1 

503 MS2: 285 (100); MS3 [285]: 257(25), 
241(100), 217(70), 199(100), 175(90), 
151(60), 137 (15) 

[19, 
21]  

22.27 Luteolin-3-O-(2”-O-
acetyl)-b-D-
glucuronide isomer 2 

503 MS2: 443(10), 285 (100); MS3 [285]: 
257(30), 241(100), 217(80), 199(90), 
175(80), 151(30) 

[19, 
21]  

22.79 Luteolin-O-rutinoside 
isomer 

593 MS2: 285(100); MS3[285]: 267(100), 
241(30), 240(40), 199(10), 185(50), 
175(20) 

[22]  

24.44 Luteolin-3-O-(2”-O-
acetyl)-b-D-
glucuronide isomer 3 

503 MS2: 285 (100); MS3 [285]: 257(30), 
241(60), 217(100), 199(60), 175(80), 
151(20) 

[19, 
21]  

24.38 Isorhamnetin-O-
rutinoside 

623 MS2: 315(100), 300(70); MS3 [315]: 
300(100) 

[22]  

24.55 Luteolin-O-rutinoside 
isomer 

593 MS2: 285(100); MS3[285]: 267(70), 
257(80), 241(90), 199(100), 175(60), 
151(50) 

[22]  

25.77 Apigenin 269 MS2: 241(10), 227(20), 225(100), 201(30), 
197(15), 181(20), 151(30) 

[19]  

a Identified by co-injection of standard 
 
Table 2 – Calibration data used for the quantification of phenolic compounds in EGCG-rich, 
PI and RO extracts 
Compound λ 

(nm) 
Conc. 
Range 
(µg/mL) 

Calibration curvea R2 LODb LOQb 

Gallic acid 280 5.2-62.4 y=-270843+159824x 0.9918 6.4 21.2 
Catechin 280 5.1-61.2 y=-189194+46707x 0.9943 5.8 19.4 
Caffeic acid 320 5.3-63.6 y=-372767+460017x 0.9927 6.1 20.4 
Chlorogenic 
acid 

280 5.8-19.4 y=-340173+96071x 0.9928 5.8 19.4 

Luteolin 340 2.6-31.2 y=-393592+298270x 0.9943 2.7 8.9 
Naringenin 280 5.1-51.0 y=-193351+390536x 0.9573 16.0 53.2 
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Isorhamnetin 340 4.4-44.0 y=-9218+220419x 0.9531 12.1 40.3 
a y=peak area, x=concentration in µg/mL 
b LOD – limit of detection, LOQ – limit of quantification, both expressed as µg/mL 
 

Table S3 – Phenolic compounds content in EGCG-rich, PI and RO extracts, expressed in 
mg/g of extract 
Rt Compound EGCG-rich PI RO 
0.68 Quinic acida - 26.95±0.92 7.46±0.46 
1.34 Gallic acida 4.72±0.33 - - 
2.44 Syringic acida - - 2.19±0.15 
2.49 (Epi)gallocatechin isomerb <LOQ - - 
2.55 Protocatechuic acida - 1.81±0.08 - 
6.28 Proanthocyanidin B-typer dimerb - 4.40±0.40 - 
6.46 (Epi)gallocatechin isomerb 16.75±0.58 - - 
6.71 Proanthocyanidin B-typer dimerb - 6.05±0.44 - 
7.06 Catechinb 8.46±0.48 5.04±0.35 - 
7.47 Caffeic acidc - 1.57±0.09 1.55±0.09 
8.70 Chlorogenic acidd - - <LOQ 
9.84 (Epi)gallocatechin gallate isomerb 181.96±6.73 - - 
11.19 (Epi)gallocatechin gallate isomerb 387.20±15.53 - - 
12.99 Taxifolin-O-hexosidee - 2.97±0.06 - 
13.28 Taxifoline - 1.20±002 - 
14.72 (Epi)catechin gallateb 36.22±2.08 -  
16.20 Luteolin-O-rutinoside isomerf - - 1.64±0.08 
16.88 Rosmarinic acid glucosidec - - 2.82±0.14 
17.04 Isorhamnetin-3-O-hexosidee - - 2.32±0.08 
18.18 Apigenin-7-O-glucosidef - - 20.16±1.00 
18.71 Rosmarinic acidc - - 3.50±0.25 
19.42 Hesperetin-7-O-rutinosideg - - 43.14±1.09 
19.57 Luteolin-7-O-glucuronidef - - 6.32±0.15 
21.95 Luteolin-3-O-(2”-O-acetyl)-b-D-

glucuronide isomerf 
- - 4.59±0.25 

22.27 Luteolin-3-O-(2”-O-acetyl)-b-D-
glucuronide isomerf 

- - 5.57±0.18 

22.79 Luteolin-O-rutinoside isomerf - - 2.66±0.20 
24.44 Luteolin-3-O-(2”-O-acetyl)-b-D-

glucuronide isomerf 
- - 3.72±0.25 

24.55 Isorhamnetin-O-rutinosidee - - 1.31±0.09 
24.93 Luteolin-O-rutinoside isomerf - - 1.83±0.06 
25.77 Apigeninf - - 1.82±0.10 
 TOTAL 635.31±19.31 49.99±0.82 112.59±2.60 
Results correspond to the average±standard deviation estimated from the injection of three aliquots 
analyzed in triplicate 
Calibrations curves used: 
aGallic acid, 280 nm. 
bCatechin acid, 280 nm. 
cCaffeic acid, 320 nm. 
dChlorogenic acid, 280 nm. 
eIsorhamnetin, 340 nm. 
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fLuteolin, 340 nm. 
gNaringenin, 280 nm. 
 
 
 One phenolic acid and six flavanols were identified in EGCG-rich extract, namely 

gallic acid, two (epi)gallocatechin (EGC) isomers, catechin, two (epi)gallocatechin gallate 

(EGCG) isomers and (epi)catechin gallate (ECG) (Table 1). (Epi)gallocatechin gallate 

(EGCG) isomers were the major components found, accounting for 387.20 ± 15.53 mg/g and 

181.96 ± 6.73 mg/g of the extract, respectively (Table S3). These results are consistent with 

the findings of Del Rio et al [23]. PI extract was shown to consist of quinic acid, 

protocatechuic acid, two B-type proanthocyanidin dimer isomers, catechin, caffeic acid, 

taxifolin-O-hexoside and taxifolin (Table 1). These compounds are well known constituents 

of pine bark extracts [24, 25]. Quinic acid (26.95 ± 0.92 mg/g of the extract) and one B-type 

proanthocyanidin dimer (6.05 ± 0.44 mg/g of the extract) were shown to be the major 

components (Table 3).  

 In the same way, eighteen components were identified in RO extract (Table 1), 

namely quinic, syringic and caffeic and chlorogenic acids and three luteolin-O-rutinoside 

isomers, rosmarinic acid-glucoside, isorhamnetin-3-O-hexoside, apigenin-7-O-glucoside, 

rosmarinic acid, hesperetin-7-O-rutinoside, luteolin-7-O-glucuronide, three luteolin-3-O-(2’’-

O-acetyl)-b-D-glucuronide isomers, isorhamnetin-O-rutinoside and apigenin. Hesperetin-7-O-

rutinoside and apigenin-7-O-glucoside were shown to be the major components of RO extract, 

accounting for 43.14 ± 1.09 mg/g and 20.16 ± 1.00 mg/g of the extract, respectively (Table 

3). This in contrast to the findings of other authors who reported rosmarinic acid, carnosol and 

carnosic acid as the major compounds of rosemary extract [14, 26]. Considering the total 

content of phenolic compounds, EGCG-rich extract showed the highest content (635.31 ± 

19.31 mg/g of extract), followed by RO extract (112.59 ± 2.60 mg/g of extract) and by PI 

extract (49.99 ± 0.82 mg/g of extract). 
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3.2. Hydrogels mineralization: dry mass percentage and ICP-OES analysis 

 GG hydrogels were prepared with the same mass of extract per unit mass of hydrogel 

to ensure addition of equal masses of extract (Fig. 1a). Hydrogel mineralization led, as 

expected, to increased opacity (Fig. 1b), due to the formation of CaP inside the hydrogel. 

Extract-free hydrogels were white. Hydrogels loaded with EGCG-rich extract were light pink. 

PI-loaded hydrogels were distinctly pink and RO-loaded hydrogels were yellow. 
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Fig. 1. (a) Method of production of extract-loaded GG hydrogels containing ALP. (b) 

Reference sample (GG) and samples with added extracts, i.e. EGCG-rich extract, PI and RO, 

before and after mineralization. (c) Dry mass percentage. (d) ICP-OES determination of mass 

of elemental Ca and P per unit mass hydrogel (μg/mg).  
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 Dry mass percentage values (Fig. 1c) were markedly higher for hydrogels loaded with 

EGCG-rich extract. ICP-OES results (Fig. 1d) confirmed higher amounts of Ca and P in 

hydrogels loaded with EGCG-rich extract, indicating the highest level of mineralization for 

this group as the Ca:P ratio was markedly higher in this group. 

 The observed color development of the hydrogels suggests interactions between 

extract components and ALP, as was recently described for algae extracts in hydrogels [13]. 

Light and dark pink color development in GTE and in PI-loaded hydrogels (Fig. 1b) may be 

due to non-covalent interactions between ALP and EGCG in GTE, or between ALP and 

proanthocyanidins in PI, respectively. Interactions of proteins with polyphenols is a well 

described phenomenon and has also been observed, for example, for whey protein beta-

lactoglobulin and EGCG [27, 28]. In addition, anthocyanins are colorful pigments that alter 

between blue and red in dependence of the pH value [29], thus it is not necessarily an 

indicator for protein binding but rather the natural color of the pigments. The reasons for the 

development of the yellow color in RO-loaded hydrogels (Fig. 1b) remain unclear, although 

Bongartz et al. described that, depending on the pH value, the oxidation state and the type of 

interacting amino acid the color of a chlorogenic acid solution alters between green, red and 

yellow [30]. Similar mechanisms are possible for other phenolic acids such as rosmarinic 

acid. However, a detailed discussion is beyond the scope of this paper. 

 The reasons why the EGCG-rich extract, promotes mineralization (Fig. 1c, 1d) may be 

hypothesized  due to the binding of Ca2+ to EGCG, as EGCG has shown to form complexes 

with Ca2+ and proteins, which could stimulate CaP crystal nucleation [31]. Another possible 

explanation might be formation of complexes between polyphenols in the EGCG-rich extract 

and ALP, which could cause aggregation of ALP molecules or cause deformation leading to 

an increase in hydrodynamic diameter. Aggregation and increased hydrodynamic diameter 
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would hinder ALP’s diffusion from the hydrogel. This would increase intra-hydrogel ALP 

concentration, promoting CaP formation. The EGCG-rich extract contained a higher amount 

of phenolic compounds than the RO and PI extracts (Table 3). This may explain why the 

EGCG-rich extract promoted mineralization to a greater extent. 

3.3. SEM and FTIR analysis 

 SEM microphotographs (Fig. 2) revealed a morphology consisting of mineral 

agglomerates on the surfaces of all mineralized hydrogels; thus, confirming their 

mineralization. The deposits were of sizes similar to those observed in GG hydrogels 

mineralized with ALP in previous works [32, 33].  

 

 

 

Fig. 2. SEM images of reference sample (GG) and samples with added extracts, i.e. EGCG-

rich, PI and RO after mineralization. Top: magnification x2500. Bottom: magnification 

x20000. Scale bar: 10 µm (top), 1 µm (bottom). 

 

 



 15 

 

Fig. 3. FTIR spectra of reference GG hydrogels and GG hydrogels loaded with EGCG-rich, 

PI and RO extracts post-mineralization 

 

 FTIR spectra (Fig. 3) confirmed mineralization by revealing bands characteristic for 

phosphate at 1100-1000 cm-1 (υ3 stretching). Extract-loaded hydrogels exhibited a band at 870 

cm-1, corresponding to the υ5 P–O(H) deformation of hydrogen phosphate groups, indicating 
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formation of calcium-deficient hydroxyapatite (CDHA). In the case of EGCG-rich extract, the 

characteristic υ3 stretching and υ5 P–O(H) deformation bands were more pronounced. This 

finding and the higher Ca:P ratio in this group, suggest that the CDHA formed in the presence 

of this extract was of a higher degree of crystallinity. This outcome is consistent with previous 

work on enzymatic mineralization of catechol-PEG hydrogels [34], which revealed that 

presence of catechol groups displaying an affinity for Ca2+ ions and hydroxyapatite resulted in 

the highest degree of crystallinity [35, 36]. 

3.4. The broad absorption band at approximately 3250 cm-1 indicated the presence 

of the O-H hydroxyl group, while the smaller bands at approximately 2900 and 

2850 cm-1, are due to C-H bending and the carboxyl -COOH group, respectively, 

while the bands at approximately 1675 cm-1 and 1040 cm-1 are due to the C-O 

carbonyl group from the glycosidic bond and the presence of a C-O-C ester group, 

respectively [37]Antibacterial properties 

 The minimal inhibitory concentration (MIC) test (Fig. 4) showed that all extracts, per 

se, lowered bacterial number, demonstrating antibacterial activity in the following order 

EGCG-rich > PI > RO.  
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Fig. 4. Top: Minimal inhibitory concentration (MIC) of EGCG-rich, PI and RO extracts. 

Bottom: Representative images of the effect of the direct contact of the different hydrogels 

loaded with extracts post mineralization on growth of bacteria. GG: reference gellan gum 

hydrogel containing no extract or ALP. ALP: gellan gum hydrogel containing no extract. 

 

 The antibacterial activity in the order EGCG-rich > PI > RO (Fig. 4a) would be related 

with the higher quantity of phenolic compounds observed in EGCG-rich extracts, together 

with stronger antibacterial action of their components, namely EGC, catechin, EGCG and 

ECG (Table 1), which have been reported to be antibacterial towards S. aureus [38-40]. The 

PI extract displayed lower antibacterial activity. The polyphenols it contained (Table 1) have 

been reported to show different efficacies against S. aureus. Quinic acid, the major component 
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found in PI extract, is reportedly ineffective against MRSA [41]. However, catechin, the B-

type proanthocyanidin dimers or even other unidentified substances should be responsible for 

the antibacterial activity of this extract. RO extract displayed the lowest antibacterial activity 

against MRSA, although some of their components, such as apigenin derivatives and 

rosmarinic acid, have been reported to have considerable activity against S. aureus and MRSA 

[42].  

 Although solutions of the extracts themselves displayed antibacterial activity, 

antibacterial testing of extract-loaded hydrogels post-mineralization (Fig. 4) revealed that no 

zone of growth inhibition could be observed around any mineralized hydrogel discs, 

demonstration lack of activity against any bacterial strain. 

The lack of antibacterial activity of mineralized hydrogels (Fig. 4b) may be because 

bactericidal polyphenols and phenolic acids diffused out of the hydrogel during mineralization 

and/or become entrapped in the mineralized hydrogel. Hence the concentration of remaining 

polyphenols is below the MIC and hence too low to kill bacteria. Conceivably, a larger initial 

extract concentration should be used to guarantee antimicrobial activity after mineralization.  

 Further work will focus on cell biological characterization with bone-forming cells. It 

is believed that polyphenol-rich plant extracts will probably display minimal toxicity as they 

are used in traditional medicines but it is also believed that interactions of polyphenols with 

enzymes in eukaryotic cells is selective [9]. Therefore, in-depth testing is required. 

 

4. Conclusion 

 In conclusion, EGCG-rich extract promoted hydrogel mineralization. EGCG-rich, PI 

and RO extracts all exhibited antibacterial activity against MRSA. Nevertheless, extract-

loaded hydrogels post-mineralization did not appreciably hinder growth of MRSA, E. coli and 

S. aureus. 
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