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1 Introduction 

One-way car-sharing systems are nowadays operating in many cities around the world. They 

have proved to reduce vehicle ownership and greenhouse gas emissions [1,2,3] leading towards 

a more sustainable mobility [4]. The planning and operation of one-way car-sharing systems 

entail complex decision processes at strategic [5,6], tactical and operational levels 

[7,8,9,10,11,12,13].  

The operational level focuses on increasing vehicle and parking availability where and 

when needed to improve the quality of service provided to the users. In this work, we study the 

integration of relocations and system regulations. Specifically, we consider the on-line 

proactive planning of relocations in a one-way station-based electric car-sharing system 

implementing complete journey reservation policy [9]. In such a system, a user request is 

approved only if there exists an available vehicle at the origin station and an available parking 

spot at the destination station. In that case, a vehicle and a spot are immediately blocked in 

these stations until the rental start and the rental end, respectively. As users do not announce 

their return time when booking, the exact start and end times of the trip remain unknown to the 

system. Nevertheless, reservations provide information regarding stations in which parking 

spots and vehicles will soon be available. We propose to utilize this information in the planning 

of relocation activities.  

The contributions of this study are as follows: we formulate a Markovian model that uses 

reservation information to derive decisions regarding vehicle redistribution and we implement 

it in staff-based and user-based relocation algorithms. We test these algorithms in a simulation 
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environment using data derived from real-world car-sharing system and in field experiments 

through a collaboration with a car-sharing operator.  

2 A Markovian model  

In this section, we formulate a Markovian model that utilizes reservation information in order 

to estimate near-future shortages of vehicles and parking spots. Under the complete journey 

reservation policy, each parking spot may be in one of the four following states: empty free 

spot, empty reserved spot, available vehicle and reserved vehicle.  

Considering a single station with C parking spots, we denote the state of the station by the 

triplet (𝑥𝑎𝑣 , 𝑥𝑟𝑣 , 𝑥𝑟𝑠) corresponding to the number of available vehicles, the number of reserved 

vehicles and the number of reserved spots, respectively. The number of available spots is then 

given by 𝐶 − 𝑥𝑎𝑣 − 𝑥𝑟𝑣 − 𝑥𝑟𝑠. We model the evolution of a station using a continuous time 

Markov chain. For this purpose, we assume that at any station, booking rate for vehicles at the 

station and return rate of vehicles follow a station-specific time heterogeneous Poisson process 

with rates 𝜆𝑣(𝑡) and 𝜆𝑠(𝑡) respectively. The time between the users’ reservation and their 

arrival at the origin station is assumed to be exponentially distributed with mean 1/𝜇𝑣(𝑡). 

Travel time is also assumed to be exponentially distributed with mean 1/𝜇𝑠(𝑡). The transition 

rates out of state (𝑥𝑎𝑣 , 𝑥𝑟𝑣 , 𝑥𝑟𝑠) are summarized in Table 1. 

Given the current state of the station, the expected vehicle and parking spot shortages 

during a predefined planning horizon is approximated. For this end, we use an approximation 

procedure similar to the one presented in [14]. We next describe how these estimations are used 

in real-time decision making.  

Table 1: Continuous time Markov chain - transition rates 

Event  Current state Next state Transition rate 
Available vehicle reserved (𝑥𝑎𝑣, 𝑥𝑟𝑣, 𝑥𝑟𝑠), 𝑥𝑎𝑣 > 0 (𝑥𝑎𝑣 − 1, 𝑥𝑟𝑣 + 1, 𝑥𝑟𝑠) 𝜆𝑣(t) 

Reserved vehicle taken (𝑥𝑎𝑣, 𝑥𝑟𝑣, 𝑥𝑟𝑠) (𝑥𝑎𝑣, 𝑥𝑟𝑣 − 1, 𝑥𝑟𝑠)    𝑥𝑟𝑣𝜇𝑣(𝑡) 

Vehicle returned to station (𝑥𝑎𝑣, 𝑥𝑟𝑣, 𝑥𝑟𝑠) (𝑥𝑎𝑣 + 1, 𝑥𝑟𝑣, 𝑥𝑟𝑠 − 1) 𝑥𝑟𝑠𝜇𝑠(𝑡) 

Parking spot reserved (𝑥𝑎𝑣, 𝑥𝑟𝑣, 𝑥𝑟𝑠),  𝑥𝑎𝑣 + 𝑥𝑟𝑣 + 𝑥𝑟𝑠 < 𝐶 (𝑥𝑎𝑣, 𝑥𝑟𝑣 , 𝑥𝑟𝑠 + 1) 𝜆𝑠(𝑡) 

- (𝑥𝑎𝑣, 𝑥𝑟𝑣, 𝑥𝑟𝑠) Any other 0 

 

3 Staff based and user based relocations 

To select promising relocations, we identify the stations that would benefit the most from the 

introduction or removal of a vehicle in the following time-periods. Using the Markovian model, 

we calculate for each station independently, the gains in the expected shortages obtained by 

removing/adding a vehicle from/to the station. As relocators (staff or users) need to book a 

vehicle at origin and a spot at destination, the gain of relocating a vehicle from a station (resp. 



to a station) corresponds to the difference in expected shortages between the current state 

(𝑥𝑎𝑣 , 𝑥𝑟𝑣 , 𝑥𝑟𝑠) and state (𝑥𝑎𝑣 − 1, 𝑥𝑟𝑣 + 1, 𝑥𝑟𝑠) (resp. (𝑥𝑎𝑣 , 𝑥𝑟𝑣 , 𝑥𝑟𝑠 + 1)). The value of a 

relocation between an origin station and a destination station is the sum of the gains at the two 

stations.  

The calculated gains are utilized both in staff-based and user-based relocations. For staff 

relocations, the origin and destination are selected such that the relocation has a high impact 

while relocation distance is short. This approach can be extended to accommodate the planning 

of multiple relocation tasks at the same time. Independently, the calculated gains are also used 

to generate lists of recommended origin and destination stations suggested to users. They may 

select stations from these lists if they are neighboring their wished origins and destinations. 

4 Results 

During this study, we had the unique opportunity to examine the proposed algorithms in the 

field through a collaboration with a car-sharing operator. In parallel, we tested the policies 

using a purpose-built simulation framework. This allowed us to further assess insights derived 

in field. Results from these two types of experiments are presented hereafter. 

The case-studied system consisted in 27 charging stations with capacity varying from 3 to 

8 spots (121 spots in total) and a fleet of about 50 electric vehicles. Over the three weeks of 

field tests, demand was artificially increased from an average of 40 demands per day to 100 

demands per day by (i) generating additional requests with hired drivers and (ii) offering free 

usage to targeted frequent users. One to two staff members performed staff-based relocations. 

Statistics were retrieved from the operator’s information system. In addition, hired drivers were 

requested to log their requests in order to reveal the proportion of denied requests due to 

shortages, which cannot be derived from the information system.  

In the simulation framework, we tested 4 demand levels (50/100/200/400 demands per 

day), 3 fleet sizes (40/60/80 vehicles) and 3 staff numbers (1/2/5 employees relocating at the 

same time). For each configuration, results were averaged over 100 demand realizations in 

order to obtain statistically meaningful values. Each realization represents the demands over 

10 consecutive days.  

Alongside a benchmark policy which consisted in performing no relocations, 3 relocation 

algorithms were tested and compared: 1) the current relocation strategy of the system, 2) a 

simple threshold policy that aims at having at least one available parking spot and one available 

vehicle at each station and 3) the Markovian prediction relocation policy. We also tested the 



demand shifting recommendation strategy based also on the previously presented Markovian 

model for different compliance levels in users.  

On the field, we observed that using relocations had a positive impact and led to a 10-15% 

decrease in denied demands, as compared to no relocations. This came with a 30% average 

increase in the number of stations having a free spot and a free vehicle, namely ready to serve 

the following request. Yet, the small number of replications made it impossible to compare the 

relocation policies with certainty. Eventually, origin and destination shifting recommendations 

to the hired drivers, who were fully complying with them, reduced the previously refused 

demands by half. 

Simulation experiments reconfirmed the benefit of demand shifting as it improved in 

average the demand service ratio by 5 to 8% depending on the compliance level of the users. 

Concerning relocations, Table 1 shows the user acceptance rates for several combinations of 

demand levels and relocation policies with one personnel working and 60 vehicles in the system 

(i.e. half of the spot capacity). The benefits of relocations are again highlighted. However, the 

Markovian prediction-based policy has not shown to perform significantly better than a simple 

inventory rebalancing threshold policy, an unexpected result. 

 

  

Demand levels (users/day) 

50 100 200 400 

P
o

lic
ie

s No Relocations 71.6% 69.2% 65.6% 58.2% 

Threshold Policy 96.3% 88.5% 77.0% 63.8% 

Markovian Prediction 96.1% 88.3% 76.2% 62.6% 

Table 1: Acceptance rates as a function of demand level per day for three relocation policies 

 

We are currently investigating various hypotheses that may explain the results obtained up to 

now. In particular, we examine the impact of the complete journey policy on resource 

availability and the interaction with inadequate system dimensioning. This way, we hope to 

identify system settings in which reservation information can be utilized to improve system 

performance. 
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