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Abstract

The simulation of the physical movement of multi-body systems at an atomistic level, with
forces calculated from a quantum mechanical description of the electrons, motivates a graph
partitioning problem studied in this article. Several advanced algorithms relying on evaluations
of matrix polynomials have been published in the literature for such simulations. We aim to use
a special type of graph partitioning in order to efficiently parallelize these computations. For
this, we create a graph representing the zero-nonzero structure of a thresholded density matrix,
and partition that graph into several components. Each separate submatrix (corresponding
to each subgraph) is then substituted into the matrix polynomial, and the result for the full
matrix polynomial is reassembled at the end from the individual polynomials. This paper starts
by introducing a rigorous definition as well as a mathematical justification of this partitioning
problem. We assess the performance of several methods to compute graph partitions with
respect to both the quality of the partitioning and their runtime.

1 Introduction

The physical movements of multi-body systems on an atomistic level is at the core of molecular
dynamics (MD) simulations. Those dynamics take place at the femtosecond (10−15 second) time
scale and they are incorporated in a larger simulation which typically is of the order of pico- to
nanoseconds (10−12 to 10−9 second). A simple way to conduct MD simulations is to derive all
forces from the potential energy surface for all the interacting particles, and to compute molecular
trajectories for the multi-particle system by solving Newton’s equations numerically. In quantum-
based molecular dynamics (QMD) simulations, the electronic structure is based on an underlying
quantum mechanical description, from which interatomic forces are calculated.

Several QMD methods are published in the literature for a variety of materials systems. So-
called first principle methods are capable of simulating a few hundred atoms over a picosecond
range. Important approaches of this type include Hartree-Fock or density functional theory.
Semiempirical methods such as self-consistent tight-binding techniques increase the applicability
to systems of several thousand atoms. In contrast to regular first principle methods, approximate
methods are often two to three orders of magnitude faster while still capturing the quantum me-
chanical behavior (for example, charge transfer, bond formation, excitations, and quantum size
effects) of the system.

∗Los Alamos National Laboratory, Los Alamos, NM 87544, USA
†Lancaster University, Bailrigg, Lancaster LA1 4YW, U.K.
‡University of Iowa, Computer Science Department, Iowa City, IA 52242, USA

1

ar
X

iv
:1

90
6.

10
95

9v
1 

 [
ph

ys
ic

s.
co

m
p-

ph
] 

 2
6 

Ju
n 

20
19



One of the most efficient and widely used methods is density functional based self-consistent
tight-binding theory (Elstner et al., 1998; Finnis et al., 1998; Frauenheim et al., 2000). In this
approach, the main computational effort stems from the diagonalization of a matrix, the so-called
Hamiltonian matrix, which encodes the electronic energy of the system. The Hamiltonian matrix
is needed in order to construct the density matrix describing the electronic structure of the system.
Before evaluating the forces at each time step of a QMD simulation, the self-consistent construction
of the density marix is carried out. Computing the density matrix requires matrix diagonalization
with a computational cost of O(N3), where N is the dimension of the Hamiltonian. This makes
diagonalization only viable for small system sizes. For this reason, the last two decades have seen
the development of a number of linear runtime (i.e., O(N)) algorithms.

One such linear runtime approach is based on a recursive polynomial expansion of the density
matrix (Niklasson, 2002). A linear scaling with the system size for non-metallic systems is achieved
by the sparse-matrix second-order spectral projection (SM-SP2) algorithm. On dense or sparse
matrices, SM-SP2 competes with or outperforms regular diagonalization schemes with respect to
both speed and accuracy (Mniszewski et al., 2015). SM-SP2 uses the expression

D = lim
i→∞

fi[fi−1[. . . f0[X0] . . . ]] (1)

to compute the density matrix D from the Hamiltonian H, where fi(Xi) is a quadratic function
(either X2

i or 2Xi −X2
i , depending on Tr(Xi) or Tr(Xi+1)) and the initial matrix X0 is a linearly

modified version of H. Usually, 20 − 30 iterations suffice to obtain a close approximation of D.
Additionally, thresholding is applied to further reduce the computational complexity, where small
nonzero elements of the matrix (typically between 10−5 to 10−7) are set to zero.

The cost of computing a matrix polynomial P (which is mainly due to the squaring of a matrix)
dominates the computational cost of the SM-SP2 algorithm. Since we are interested in performing
a large number of time steps (of the order of 104 − 106) in a typical QMD simulation, we need to
parallelize the evaluation of the matrix polynomials in order to keep the wall-clock time low. How-
ever, the significant communication overhead for every iteration causes SM-SP2 to not parallelize
well. Linear scaling complexity has been achieved with thresholded blocked sparse matrix algebra
(Bock and Challacombe, 2013; Borstnik et al., 2014; Mniszewski et al., 2015; VandeVondele et al.,
2012). In our paper, we present an alternative formulation that reduces communication overhead
via graph partitioning and enables scalable parallelism. Our basic approach was introduced in
Niklasson et al. (2016), but with the main focus being on the physics aspects.

This paper addresses the aforementioned parallel version of SP2 together with an inbuilt par-
titioning scheme applied to the graph representation of the density matrix, denoted as G-SP2 in
the remainder of the article. In particular, the computational aspects of evaluating the matrix
polynomial in G-SP2 are investigated. We represent the Hamiltonian (or density) matrix as a
graph where atomic orbitals are given as vertices and non-zero interactions become edges, and then
partition that graph into parts (or partitions) with the aim to minimize a suitable cost function.
The submatrices of the Hamiltonian or density matrix correspond to the divisions of the molecule,
and are derived from the graph partitions. We show that applying the full matrix polynomial to
the unpartitioned matrix is equivalent to combining the results obtained by applying the matrix
polynomials to each submatrix independently.

We show that partitions with overlapping parts (or halos) need to be computed in order to
obtain accurate results with our graph approach. Naturally, the computational overhead increases
with the overlap between partitions. The aim of this work is to minimize the computational cost
of the matrix polynomial evaluation through appropriate partitioning schemes. Those schemes will
directly minimize the cost of the corresponding polynomial evaluation as opposed to traditional
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edge cut minimization. In our article, we will experimentally study several algorithms for the
aforementioned graph partitioning problem, which we formally introduce first.

We rigorously prove that applying the matrix polynomial to the entire Hamiltonian is equivalent
to applying it to the partitioned Hamiltonian matrix and re-assembling the partial solutions, thus
justifying our approach to parallelize the computational workload via graph partitioning. Although
demonstrated numerically (Niklasson et al., 2016), no such proof exists in the literature to the best
of our knowledge.

Regular graph partitioning, defined as the task of separating the vertices of a graph into roughly
equal sets that minimize the edge cut between them, has been studied extensively from theoretical
and applied aspects. Graph separators form the basis of many divide-and-conquer algorithms for
problems such as VLSI design, shortest paths finding, solving sparse systems of linear equations,
and approximations of NP-hard problems in theoretical computer science (Lipton and Tarjan,
1979; Aleksandrov and Djidjev, 1996; Miller, 1997; Wulff-Nilsen, 2011). Graph separator algorithms
produce balanced partitions for graphs from a given class. The separator is a set of vertices or edges
whose removal divides the graph, which usually has size bounded by a small function of the graph
parameters. Although theoretical results on graph separators are usually asymptotically optimal,
those are still too impractical for applications due to the fact that their leading constants are often
too large. A class of graph partitioning tools has been devised which is based on heuristics such
as Kernighan-Lin (Kernighan and Lin, 1970) and multilevel optimization Hendrickson and Leland
(1995). Available software using those techniques include Chaco (Hendrickson and Leland, 1995),
METIS (Karypis and Kumar, 1999), Jostle (Walshaw and Cross, 2000), and KaHIP (Sanders and
Schulz, 2011). The advantage of such tools consists in the fact that the input graph is not required
to belong to a certain class of graphs (such as planar graphs or graphs of bounded genus). Moreover,
those tools usually return partitions of good quality, yet without provable quality bounds. Existing
algorithms optimize the size of the cutset as objective function, whereas our work focuses on a new
flavor of the graph partitioning problem with overlapping partitions.

Thresholding the matrix elements of the Hamiltonian is essential in order to arrive at a fast way
to calculate the density matrix: without thresholding, the resulting matrix would quickly become
dense due to fill-in. The accuracy of the collected density matrix will depend on the chosen graph
partitioning, though in general the effect is small and the error is controlled mainly by the numerical
threshold (Niklasson et al., 2016).

Our approach allows us to avoid communication between processors after each iteration of (1)
until the entire polynomial is evaluated. To this end, each processor independently evaluates its
assigned polynomial after partitioning and distributing the inital matrix, and the final output is
assembled from the computed submatrices. In this article, different algorithmic approaches for
computing graph partitions are assessed with respect to the aforementioned objective function and
their computational effort. Importantly, we analyze the tradeoff between the additional compu-
tational costs for computing graph partitions before running the SP2 algorithm in parallel, and
carrying out regular molecular dynamics. We also investigate the optimal number of partitions as
a function of the graph size.

The structure of this paper is as follows. Section 2 introduces the mathematical foundations
for partitioning the evaluation of matrix polynomials, states our algorithm including a proof of
correctness, and defines the graph partitioning problem we consider. Algorithms for constructing
such partitions and their implementations are discussed in Section 3. Experimental results for
several physical test systems are given in Section 4. Section 5 discusses our results. Proofs for
Section 2 can be found in Appendix A, and Appendix B presents further experimental results.

A preliminary version of this article has been published as a conference paper in the SIAM
Workshop on Combinatorial Scientific Computing (CSC16), see Djidjev et al. (2016). This article

3



is an extension of the work of Djidjev et al. (2016), and includes proofs of all theoretical results
of Section 2 in Appendix A, pseudo-code of our simulated annealing approach in Section 3.2, a
visualization of the relationship between the graph structure of a molecule and its partitioned
graph representation in Section 4.3, and more detailed performance data used for all experiments
in Appendix B.

2 Evaluating Matrix Polynomials on Partitions

We define a thresholded matrix polynomial, justify its parallelized evaluation, present an algorithm
to evaluate a matrix polynomial in a parallelized fashion, and conclude by defining the cost function
for an implied graph partitioning problem.

We encode the zero-nonzero structure of a symmetric matrix X = {xij} as a graph G(X), called
the sparsity graph of X. G(X) contains a vertex for each row (or column) in X, and G(X) contains
an edge between vertices i and j if and only if xij 6= 0. We now generalize the matrix polynomial
defined in (1) for any symmetric n×n matrix A. Denote the superposition of operators of the type

P = P1◦T1◦ . . . ◦Ps◦Ts (2)

as a thresholded matrix polynomial of degree m = 2s, where Ti is a thresholding operation and
Pi is a polynomial of degree 2. For any graph I, we formally define Ti as the graph operator
(with associated edge set E(Ti)) such that Ti(I) is a graph with a vertex set V (I) and an edge set
E(I) \ Ti.

The application of a superpositioned operator P of the type (2) to a matrix A of appropriate
dimension is denoted as P (A). Analogously to (2), P is composed of polynomials Pi and thresh-
olding operations Ti. For our SM-SP2 application, the Hamiltonian is A and the density matrix is
P (A).

For any matrix A, we define all matrices B which have the same zero-nonzero structure as A
(that is, G(A) = G(B)) to be in the structure class M(A).

Let G = G(A) for a matrix A and let P be a thresholded matrix polynomial. With P(G) we
denote the minimal graph with the same vertices as G such that if P (B)|vw 6= 0 for any matrix
B ∈M(A) and any v, w, then there is an edge (v, w) ∈ E(P (G)). We interpret P(G) as the worst-
case zero-nonzero structure of P (A) which excludes cancellations resulting from the addition of
opposite-sign numbers, thus resulting in coincidental zeros. All diagonal elements of A are assumed
to be non-zero, and E(Ti) is assumed to not contain a loop edge.

Assume we are given a collection of partitions Π = {Π1, . . . ,Πq}. Each partition Πi = Ui ∪Wi

is a union of a core vertex set Ui and a halo vertex set Wi. Given the two following conditions hold
true, we call Π a CH-partition (or core-halo partition):

1.
⋃

i Ui = V (G), Ui ∩ Uj = ∅ for all i 6= j;

2. neighbors of vertices in Ui that are themselves not in Ui are contained in Wi.

Let HUi be the subgraph of H = P(G) induced by all neighbors of Ui in H. We combine all rows
and columns of A that correspond to vertices of V (HUi) in a submatrix AUi of A. The following
lemma shows that P (A) can be computed on submatrices of the Hamiltonian.

Lemma 1. For any v ∈ Ui and any neighbor w of v in P(G), the element of P (A) corresponding
to the edge (v, w) of P(G) is equal to the element of P (AUi) corresponding to the edge (v, w) of Hi.
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Lemma 1 justifies the parallelized evaluation of a matrix polynomial.
Let us apply the aforementioned results to a Hamiltonian matrix A in a QMD simulation. In

this case, we can assume that the sparsity structure of the density matrix D from the previous
QMD simulation step is being passed on to P (A). We can thus approximate H = P(G) with G(D)
(the graph H is unknown until P (A) is computed). The halos can also be taken from H in practice.

We propose the following algorithm for computing P (A) from H = G(D):

1. Divide V (G) into q disjoint sets {U1, . . . , Uq} and define a CH-partition Π = {Π1, . . . ,Πq},
where Πi has core Ui and halo N(Ui, H) \ Ui;

2. Construct submatrices AUi for all i = 1, . . . , q;

3. Compute P(AUi) for all i independently using dense matrix algebra;

4. Define P(A) as a matrix whose i-th row has nonzero elements equal to the corresponding
elements of the j-th row of P(AUk

), where Uk is the set containing vertex i and j is the row
in AUk

corresponding to the i-th row in A.

This algorithm computes P (A) as demonstrated in Lemma 1.
The computational bottleneck of the algorithm for P (A) is caused by the dense matrix-matrix

multiplication required to compute P(AUi) for all i in step (iii).
To be precise, according to (2), computing P(AUi) takes s(ci +hi)

3 operations, where ci and hi
are the size of the core and the halo of Πi and s is the number of superpositioned operators (see
(2)). In this calculation, the computational effort for thresholding some matrix elements is excluded,
since this effort is quadratic in the worst case and linear in ci + hi in average cases. We observe
that a CH-partition which minimizes the effort to compute P (A) also minimizes

∑q
i=1(ci + hi)

3

due to the fact that s is independent of Π.
This observation motivates our CH-partitioning problem, defined as follows: For an undirected

graph G and an integer q ≥ 2, split G into q parts Π1, . . . ,Πq such that

q∑
i=1

(ci + hi)
3 (3)

is minimized, where Πi has a core Ui of size ci and a halo N(Ui, G) \ Ui of size hi.
As an example, the optimal CH-partitioning for a star graph of n vertices has a single non-empty

part containing all vertices: this part is composed of the central vertex, whose halo contains all
other vertices. In contrast, a standard (edge cut) partitioning will have n parts, thus demonstrating
that a CH-partitioning minimizing (3) can be quite different from a standard balanced partitioning.

3 Algorithms for Graph Partitioning Considered in our Study

In this section we investigate the ability of existing graph partitioning packages, as well as our
own heuristic algorithm, for computing CH-partitions that minimize the objective function (3).
Those algorithms are: METIS and hMETIS due to their widespread use, and KaHIP based on its
convincing performance at the 10th DIMACS Implementation Challenge Bader et al. (2013).

3.1 Edge Cut Graph Partitioning

We observe that we obtain |V (G)| +
∑

i hi when leaving out the cubes in the objective function
(3), thus making it necessary to minimize the sum of the halo nodes over all parts.
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Regular graph partitions and CH-partitions are related. Suppose we are given a regular partition
P . For any part in P , we can define a core corresponding to that part, and a halo consisting of
all adjacent vertices of the core vertices (excluding the core vertices themselves). We define the
CH-partition Π to consist of precisely those parts and halos for any element of P . It must then be
true that either v or w is a halo vertex for any cut edge (v, w) of P . Conversely, there exists a core
vertex w such that (v, w) is a cut edge for any halo vertex v belonging to some part in Π.

This shows that the cut edges of P and the set of halo nodes in Π are related but not equal. We
observe that another measure, the total communication volume, exactly corresponds to the sum of
halo nodes. Certain tools like METIS allow us to optimize with respect to the total communication
volume. By ignoring the cubes in (3), we aim to study how well CH-partitions can be produced
by regular graph partitioning tools. Additionally, we improve the solutions obtained by standard
graph partitioning tools with our own heuristic in Section 3.2. The three following algorithms will
be used:

3.1.1 METIS

METIS (Karypis and Kumar, 1999) uses a three-phase multilevel approach to perform graph par-
titioning:

1. Starting from the original graph G = G0, METIS generates a graph sequence G0, G1, . . . , Gn

to coarsen the input graph. The coarsening ends with a suitably small graph Gn (typically
less than 100 vertices).

2. An algorithm of choice is used to partition Gn.

3. Using the sequence Gn−1, . . . , G1, the partitions are projected back from Gn to G0.

Additionally, METIS employs a refinement algorithm such as the one of Fiduccia-Mattheyses
(Fiduccia and Mattheyses, 1982) to improve the partitioning after each projection. This is nec-
essary since the finer the partition, the more degrees of freedom it has during the uncoarsening
phase. Several tuning parameters can be set in METIS, including the size of Gn, the coarsening
algorithm, and the algorithm used for partitioning Gn.

3.1.2 KaHIP

Several multilevel graph partitioning algorithms are combined in KaHIP Sanders and Schulz (2013).
KaHIP works similarly to METIS. A given input graph is first contracted, partitions are computed
on the highest contraction level, and the partitions obtained in this way are projected back to coarser
levels, where refinement algorithms are used to enhance the solutions. KaHIP offers max-flow/min-
cut (Sanders and Schulz, 2011; Ford Jr. and Fulkerson, 1956), Fiduccia-Mattheyses (Fiduccia and
Mattheyses, 1982) or F-cycles (Sanders and Schulz, 2011) for local improvement of the solution.

3.1.3 Hypergraph partitioning

A hypergraph formulation is an alternative approach to the classical interpretation of the den-
sity matrix as an adjacency matrix (where each nonzero interaction in the density matrix is an
undirected and unweighted edge).

The set of all neighbors of a vertex form a single hyperedge in the hypergraph formulation. The
main advantage of using hyperedges consists in the fact that minimizing the edge-cut with respect
to hyperedges results in either all or zero vertices being included in a partition. This automatically
ensures that halos are included in a partition together with the core vertex.
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We use hMETIS of Karypis and Kumar (2000) in order to compute hypergraph partitionings.
hMETIS is the hypergraph analog of METIS.

3.2 Refinement with Simulated Annealing

The objective function (3) we aim to minimize differs from the size of the edge or hyperedge cut
minimized by standard graph and hypergraph partitioning algorithms. With the help the algorithm
derived in this section we explicitly minimize (3).

A standard tool in optimization is the probabilistic algorithm of (Kirkpatrick et al., 1983), called
simulated annealing (SA). SA iteratively proposes random modifications to an existing solution in
order to improve it, and thus optimizes without gradients. If a proposed modification (or move) does
not immediately lower the objective function, it might still be accepted with a certain acceptance
probability. The acceptance probability is proportional to the magnitude of the (unfavorable)
increase in the objective function, and antiproportional to the runtime. The latter makes it more
likely for SA to accept unfavorable moves in the exploration phase at the start of each run, and
it is implemented using a strictly decreasing temperature function. Modifications to the existing
solution which further minimize the objective function are always accepted.

A fixed number of iterations, a vanishingly small temperature, or the lack of further improve-
ments in the solution over a certain number of iterations can be employed as stopping criteria for
SA.

We test the following proposal functions that return modifications to existing solutions, where
a partition P is simply a set of nodes:

1. Select a random partition P , select one of its halo nodes v at random and move v into partition
P .

2. Select a random partition P , select one of its nodes v at random and move v into P .

3. Like (2.) but select a random halo node v of partition P .

4. Select the partition P with most halo nodes and (a) move a random node v into P , (b) make
a random halo node of P a core node, or (c) move any node of P to another partition.

5. Like (4.) using the partition P with the largest sum of core and halo nodes.

Many more sensible proposal functions could be devised. However, in our experiments we observed
that the above proposals result in a similar behavior of SA, with the best tradeoff between speed
and performance being achieved by scheme (3.).

Algorithm 1 states the SA implementation we use in our experiments. Any regular (edge cut)
partitioning (e.g., obtained with METIS ), and even a random partitioning, serves as input Π (the
set of partitions) to Algorithm 1. The SA algorithm runs over a fixed number of N iterations. In
each iteration, we randomly select a partition π ∈ Π as well as a random edge joining a core vertex
v with a halo vertex w in π. Afterwards, π is updated with w being a core vertex. After storing
the new partitioning in a set Π′, both Π and Π′ are assessed. For this we compute the change ∆ in
the objective function (3) between Π′ and Π, which is used to update the acceptance probability p.
We accept Π′ (thus overwriting Π := Π′) with probability p. Note that p > 1 if ∆ < 0, thus leading
to a guaranteed acceptance of a proposal that directly improves (3). Afterwards, the iteration is
repeated.

SA is run with a maximal number of iterations N = 100 as stopping criterion, and the tempera-
ture function is chosen as t(i) = 1/i. In practice, we first threshold a density matrix (see Section 2),
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Algorithm 1: Simulated Annealing

Input: Graph G, number of iterations N , initial partitioning Π
Output: Updated partitioning Π

1 Select a temperature function t(i) = 1/i ;
2 for i = 1 to N do
3 Select random partition π in Π and a random core-halo edge (v, w) in π;
4 Make w a core vertex of π and update the halo of π;
5 Compute the values S and S′ of (3) for Π and Π′, respectively, and set ∆ = S′ − S;
6 Compute p = exp (−∆/t(i));
7 Set Π = Π′ with probability min(1, p);

8 end
9 Output partitioning Π;

convert it to a graph, compute regular edge cut partitions for the converted graph with a standard
software, and post-process the partitions with SA.

4 Experiments

Using three measures the quality of the CH-partitions returned by the algorithms of Section 3 is
evaluated. Those measures are the objective function (3), the algorithmic runtime, and the number
of MPI ranks and threads in an assessment of the scaling behavior of the G-SP2 algorithm (for one
fixed system). We employ graphs derived from representations of actual molecules as opposed to
simulated random graphs.

4.1 Parameter Choices for METIS and hMETIS

Using a grid search over sensible values, we tune the parameters of METIS and hMETIS, and will
keep the set of parameters yielding the best average performance for all systems considered in this
section fixed throughout the remainder of the simulations.

The default multilevel k-way partitioning as well as the default sorted heavy-edge matching for
coarsening the graph were employed to run METIS. Importantly, the user can choose to minimize
either the edge cut or the total communication volume of the partitioning within the k-way parti-
tioning routine of METIS. As our definition of the sum of halo nodes in Section 2 is equivalent to
the definition of the total communication volume of METIS, we choose this option.

We employ hMETIS with the followed parameters: we use recursive bisectioning (instead of
k-way partitioning) with vertex grouping scheme Ctype= 1 (meaning the hybrid first-choice scheme
HFC), Fiduccia-Mattheyses refinement (refinement heuristic parameter set to 1), and V -cycle re-
finement on each intermediate solution (V -cycle refinement parameter set to 3). These parameters
are explained in the hMetis manual Karypis and Kumar (1998).

4.2 A Collection of Test Graphs Derived from Molecular Systems

This section uses a selection of physical test systems to evaluate all algorithms of Section 3, which
were chosen to represent a variety of realistic scenarios where graph partitioning can be applied to
MD simulations. We demonstrate how the graph structure influences the results (Section 4.3) and
additionally provide insights into the physics of each test system.
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Figure 1: Molecular representation of phenyl dendrimer (left) using cyan and white spheres for
carbon and hydrogen atoms, respectively. Hamiltonian matrix as 2D representation (middle) and
thresholded density matrix (right). All plots show log10 of the absolute values of all matrix ele-
ments. The SM-SP2 algorithm was used to compute the density matrix. Figure taken from Djidjev
et al. (2016). Copyright c©2016 Society for Industrial and Applied Mathematics. Reprinted with
permission. All rights reserved.

Table 1: Physical systems of our study: number of vertices n in the graph and number of edges
m. Table taken from Djidjev et al. (2016). Copyright c©2016 Society for Industrial and Applied
Mathematics. Reprinted with permission. All rights reserved.

Name n m m/n Description

polyethylene dense crystal 18432 4112189 223.1 crystal molecule in water solvent (low threshold)
polyethylene sparse crystal 18432 812343 44.1 crystal molecule in water solvent (high threshold)
phenyl dendrimer 730 31147 42.7 polyphenylene branched molecule
polyalanine 189 31941 1879751 58.9 poly-alanine protein solvated in water
peptide 1aft 385 1833 4.76 ribonucleoside-diphosphate reductase protein
polyethylene chain 1024 12288 290816 23.7 chain of polymer molecule, almost 1-dimensional
polyalanine 289 41185 1827256 44.4 large protein in water solvent
peptide trp cage 16863 176300 10.5 smallest protein with ability to fold (in water)
urea crystal 3584 109067 30.4 organic compound in living organisms

A dendrimer molecule with 22 covalently bonded phenyl groups of solely C and H atoms is
schematically shown in Figure 1 (left). The graph of the dendrimer molecule has 730 vertices,
composed of 262 atoms and 730 orbitals.

Figure 1 (middle) displays the absolute values of the Hamiltonian matrix for the dendrimer
system. Figure 1 (right) displays the density matrix encoding the physical properties of the system,
which is obtained by applying the SM-SP2 algorithm to the Hamiltonian.

We threshold the density matrix at 10−5 to convert it into a graph needed to find meaningful
physical components via graph partitioning. This is done with all systems of Table 1 to arrive at
their adjacency matrices. The first column of Table 1 displays the molecule name, the number
of vertices n and edges m (second and third column) of its graph representation, and its average
vertex degree m/n (fourth column). A short description of the molecule can be found in the last
column.

We consider four topologically different types of molecular systems (see Figure 2) as test beds
for the partitioning algorithms. This is to provide a wider range of test systems for our algorithms.
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Figure 2: Molecular systems of this study: polyethyene linear chain (first plot), urea crystal (second
plot), 189 residue polyalanine solvated in a water box (third plot), and phenyl dendrimer molecule
(fourth plot). Cyan, blue, red and white spheres represent carbon, nitrogen, oxygen and hydrogen
atoms, respectively. Figure taken from Djidjev et al. (2016). Copyright c©2016 Society for Industrial
and Applied Mathematics. Reprinted with permission. All rights reserved.

Figure 2 displays a one dimensional system in the first panel (polyethyene linear chain with repeated
CH2 units), an anisotropic pristine 3D urea crystal (second panel), a polyalanine molecule solvated
in water (third panel) with a typical α-helix secondary structure, and a dendrimeric system with a
fractal arrangement of phenyl rings (fourth panel) to challenge our partitioning algorithms.

4.3 Comparison of the Partitioning Algorithms

Six methods are tested to partition each graph of Table 1 into 16 parts:

1. METIS with parameters of Section 4.1;

2. METIS with subsequent simulated annealing (SA);

3. hMETIS ;

4. hMETIS with subsequent SA;

5. KaHIP ;

6. KaHIP with subsequent SA.

As before, the sum of cubes (3) criterion is used to assess the effectiveness of each method.
Figures 3 and 4 show experimental results. We observe that all algorithms perform well (with

the exception of the first two systems), and that METIS and KaHIP are significantly faster than
hMETIS. Importantly, post-processing with SA seems to improve solutions in almost all cases at
negligible additional runtime, and is thus recommended.

Surprisingly, CH-partitions seem to pose a challenge for hMETIS as its solutions are usually
worse than those of the other two methods, and its runtime significantly exceeds the one of the
other methods (an explanation of this remains for further reseach). We conclude that for these two
reasons, hMETIS seems unsuited for QMD simulations over longer time intervals, which is the aim
of this work.

Although solutions returned by KaHIP are of very good quality (measured with the sum of
cubes criterion), the combination of METIS and SA still outperforms KaHIP while also having a
shorter combined runtime.
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Figure 3: Sum of cubes performance measure to evaluate partitions. Values are normalized to have
a median of 100. To make the chart more informative, very large values are truncated, though all
exact values can be found in (Djidjev et al., 2016, Table 2). Figure taken from Djidjev et al. (2016).
Copyright c©2016 Society for Industrial and Applied Mathematics. Reprinted with permission. All
rights reserved.

The behavior of our algorithms seems to be dependent on the sparsity of the graph of a physical
system. First, METIS is able to outperform hMETIS for denser graphs, but not for sparser
ones. Second, the post-improvement of partitions with SA seems to be especially effective for
dense graphs, which can be explained with the fact that dense graphs offer more possibilities to
reassign and optimize edges than sparse graphs. This can be seen when applying the combination
of METIS+SA to the dense dendrimer system, see (Djidjev et al., 2016, Table 2) for details.

Figure 5 visualizes the relationship between the graph structure of a molecule (for the phenyl
dendrimer molecule of Table 1) and its graph partitioning obtained through METIS and SA.
After partitioning the molecular graph structure, the fractal-like structure of the phenyl dendrimer
molecule and its dense components become clearly visible, as well as its sparse connections to other
dense components. This structure is what our algorithm exploits to reduce the computations of
the density matrix. Interestingly, SA sometimes dissolves entire partitions (meaning it produces
partitions with no vertices), since such imbalanced partitions still yield a further decrease of the
objective function (3).

4.4 Parallelized Implementation of G-SP2

We also assess the quality of the CH-partitions by measuring the speed-up when parallelizing the
G-SP2 algorithm and applying it to real physical systems. In order to do this, the implementation of
the G-SP2 algorithm of (Niklasson et al., 2016) was modified to incorporate the graph partitioning
step.
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Figure 4: Computing time for partitioning. Test systems of Table 1. We use the formatting
of Figure 3 to handle the big discrepancy between values for different graphs. Figure taken from
Djidjev et al. (2016). Copyright c©2016 Society for Industrial and Applied Mathematics. Reprinted
with permission. All rights reserved.

In particular, to measure the speed-up, we run METIS and METIS+SA on the polyalanine
259 protein system of Table 1 and record the obtained CH-partitions. Computations were carried
out with the Wolf IC cluster of Los Alamos National Laboratory, whose computing nodes have
2 sockets each containing an 8-core Intel Xeon SandyBridge E5-2670, amounting to a total of 16
cores per computing node. A total of 32 GB of RAM are shared between the sixteen cores on each
node, which are connected using a Qlogic Infiniband (IB) Quad Data Rate (QDR) network in a
fat tree topology using a 7300 Series switch. Parallelization across nodes was done with OpenMPI,
and parallelization across cores within a node was done with OpenMP.

The sum of cubes measure and the computing time are displayed in Figure 6 as a function of
the number of CH-partitions for the polyalanine 259 protein system. We observe in Figure 6 (top)
that the total effort of G-SP2, measured with the sum of cubes criterion, decreases monotonically
as a function of the number of partitions and parallelized subproblems.

Figure 6 (bottom) displays the computing time for the graph partitioning step alone. We
observe that the partitioning effort increases with the number of partitions. The steps occurring
at 65, 129, 257 etc. partitions in the plot can easily be explained: Every time the number of
partitions surpasses a power of two, the multilevel algorithm which METIS is based on bisects the
partitioning problem into one more (recursive) layer. Figure 6 (bottom) also displays that employing
the SA post-processing step only adds a minimal additional effort to the overall computation (when
compared to the graph partitioning step alone). The usage of SA thus seems very sensible in light
of the improvements it achieves when applied to the edge cut optimized partitions computed by a
conventional algorithm. To summarize, Figure 6 demonstrates that the total effort of the G-SP2
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Figure 5: Left: Original graph extracted from the density matrix for the phenyl dendrimer molecular
structure. Note the fractal-like structure of the graph. Right: Rearranged graph by the partitions
resulting from the METIS + SA algorithms. Only edges with weights larger than 0.01 were kept
to ease visualization.

algorithm decreases when applied in parallel despite the increasing effort to compute a partitioning.

4.5 Single Node SM-SP2 versus Parallelized Implementation of G-SP2

Figure 7 aims to quantify the computational savings over single node G-SP2 when running our
proposed parallel SP2 algorithm. For this, Figure 7 compares the runtime for our parallel G-SP2
on 1− 32 nodes against a threaded single node implementation of SM-SP2. This is due to the fact
that the communication overhead exceeds the gain obtained by the extra computing power in a
multi-node implementation, which is also the main motivation for developing G-SP2. As before, we
employed METIS with parameters specified in Section 4.1 together with SA for post-processing.
The test system is again the polyalanine 259 molecule.

Figure 7 shows that, as expected, both an increasing number of nodes and an increasing number
of partitions decreases the G-SP2 runtime. When only few nodes are used for parallelization, the
decrease in runtime is most pronounced since then, increasing the number of parallel nodes causes
the runtime to drop sharply. For a higher number of nodes the curves somewhat flatten out.

Due to the overhead from the parallel G-SP2 computation, the parallelized run of SP2 is actually
slower than the SM-SP2 computation on a single node for low numbers of nodes (between 4 and
16 nodes depending on the number of partitions). The runtime decreases with an increase in the
number of nodes. Eventually, the effort falls below the one of a single node implementation. For
the particular physical system of the polyalanine 259 molecule, a computational speed-up is only
observed for at least 4 nodes.
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Figure 6: Sum of cubes measure (top) and runtime to find the partitions (bottom) as a function
of the number of partitions. Figure taken from Djidjev et al. (2016). Copyright c©2016 Society for
Industrial and Applied Mathematics. Reprinted with permission. All rights reserved.
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4.6 Relationship between Molecular System and Partitions

Figure 8 does not seem to exhibit a correlation between the molecular connectivity (measured with
the average graph degree) and the normalized number of operations (NNO), defined as the sum of
cubes criterion (3) normalized by the complexity n3 of the dense matrix-matrix multiplication. The
observation also applies to the polyethylene dense crystal, whose normalized number of operations
remains low although its average degree is high. Similar observations can be made for other
molecules with a smaller average degree.

Our algorithm is capable of finding the lowest NNO for 1-dimensional systems such as the
polyethylene linear chain and the polyethylene sparse crystal. According to Bunn (1939), regular
agglomerates of polyethylene chains align along a particular direction with a large chain-to-chain
distance. We conjecture that the reason for this lies in the sparsity of the system.

We do not observe any advantage of our approach (measured via NNO) for regular systems
(polyethylene linear chain, polyethylene sparse crystal, polyethylene dense crystal and urea crystal).

A difficult case for our graph partitioning task is the phenyl dendrimer (expressed through
its high NNO values). This is due to the fractal-like structure of the graph associated with the
molecule. According to (Djidjev et al., 2016, Table 2), METIS and SA together seem to yield the
best runtime for this molecule.

Another class with a large NNO are proteins (solvated polyalanines). We conjecture that the
large average node degree (in comparison to peptides, i.e. small proteins) is responsible for the large
NNO measurements. Based on Figure 8, we further conjecture that the difference of maximum and
minimum partition norms (max−min)/n (MMPN) is correlated with the NNO. Here, the number
of vertices is denoted as n, and the maximal and minimal sizes of the obtained partitions are
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Figure 8: Sum of cubes criterion (3) normalized by the complexity n3 of the dense matrix-matrix
multiplication. Number of vertices n, number of edges m, and average degree m/n. Test systems
of Table 1. Brackets show fractions of (max−min)/n (MMPN). For the combination METIS and
SA similar trends are expected. Figure taken from Djidjev et al. (2016). Copyright c©2016 Society
for Industrial and Applied Mathematics. Reprinted with permission. All rights reserved.

denoted as max and min, respectively. The conjectured correlation is clearly visible in Figure 8:
the dendrimer tends to both large MMPN and NNO values, proteins exhibit intermediate values
of both MMPN and NNO and finally, we observe low values of both MMPN and NNO for sparse
ordered systems such as polyethyene chains.

5 Discussion

This paper speeds up the computation of the density matrix in MD simulations through paralleliza-
tion, informed by graph partitioning applied to the structure graph underlying a molecule. Our
experimental results are based on graphs derived from density matrices of physical systems.

In our article we focus on a certain flavor of the classical graph partitioning problem arising
from molecular dynamics simulations. In contrast to classical edge cut partitioning, we minimize
partitions with respect to both the number of their core vertices and the number of their neighbors
in adjacent partitions (halos). To the best of our knowledge, this type of graph partitioning (which
we coin CH-(core-halo)-partitioning) has not been studied previously.

This work makes two contributions. First, the CH-partitioning problem under consideration
is mathematically described and justified. We prove that the partitioned evaluation of a matrix
polynomial is equivalent to the evaluation of the original (unpartitioned) matrix given a sufficient
condition is satisfied. Second, we evaluate several approaches for computing CH-partitions using
three error criteria: the total computational effort, the maximal effort per processor, and the overall
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computational runtime. Special focus is given to the post-processing of partitions obtained with
conventional graph partitioning algorithms for which we use our own modified SA approach.

We find that our flavor of the partitioning problem can be solved using standard graph parti-
tioning packages. Moreover, post-optimization of the partitions obtained through classical graph
partitioning packages can be performed well with our SA scheme. As expected, the time to evaluate
matrix polynomials for different system (graph) sizes decreases with both the number of processors
and parts in our simulations. Our main result is that the increased effort for graph partitioning
and post-optimization with SA is beneficial overall when applying our parallelized version of the
G-SP2 algorithm to meaningful physical systems. Based on our observation that METIS with a
SA post-processing step is significantly faster than competing methods while giving the best results
on average, we recommend this combination for practical use.
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A Proofs for Section 2

For any graph I and vertex v ∈ I, the neighborhood of v in I is the setN(v, I) = {w ∈ V (I) | (v, w) ∈
E(I)}. Let H = P(G), v be a vertex of G, and Hv denote the subgraph of H induced by N(v,H).
For the following lemmas we assume that Ti∩E(H) = ∅ for all i, i.e., none of the edges in H = P(G)
are thresholded. We have the following properties.

Lemma 2. Let v be a vertex of G. Then N(v,P(G)) = N(v,P(Hv)).

Proof. First we prove that N(v,P(G)) ⊆ N(v,P(Hv)). Let w ∈ N(v,P(G)). Then (v, w) ∈
E(P(G)) and hence (v, w) ∈ E(Hv) ⊆ E(H). Since by assumption Ti ∩ E(H) = ∅, (v, w) 6∈ Ti
for all i. From (v, w) ∈ E(Hv), the last relation, and the fact that all vertices of H have loops,
(v, w) ∈ E(P(Hv)). Hence, w ∈ N(v,P(Hv)).

Now we prove that N(v,P(Hv)) ⊆ N(v,P(G)). Let w ∈ N(v,P(Hv)). Since P(Hv) and Hv

have the same vertex sets, we have w ∈ N(v,Hv). Furthermore, since Hv is a subgraph of H,
w ∈ N(v,H) = N(v,P(G)).

The lemma shows that v has the same neighbors in P(G) and P(Hv), i.e., their corresponding
matrices have nonzero entries in the same positions in the row (or column) corresponding to v. We
will next strengthen that claim by showing that the corresponding nonzero entries contain equal
values.

Let Xv be the submatrix of A defined by all rows and columns that correspond to vertices of
V (Hv). We will call vertex v the core and the remaining vertices the halo of V (Hv). We define the
set {V (Hv) | v ∈ G} to be the CH-partition of G. Note that, unlike other definitions of a partition
used elsewhere, the vertex sets of CH-partitions (and, specifically, the halos) can be, and typically
are, overlapping.

Lemma 3. For any v ∈ V (G) and any w ∈ N(v,P(G)), the element of P (A) corresponding to the
edge (v, w) of P(G) is equal to the element of P (Xv) corresponding to the edge (v, w) of P(Hv).

Proof. Let m = 2s be the degree of P . We will prove the lemma by induction on s. Clearly, the
claim is true for s = 0 since the elements of both A1 and X1 are original elements of the matrix A.
Assume the claim is true for s−1. Define P ′ = P1◦T1◦ . . . ◦Ps−1◦Ts−1. By the inductive assumption,
the corresponding elements in the matrices A′ = P ′(A) and X ′ = P ′(X) have equal values. We
need to prove the same for the elements of A′2 and X ′2.

Let (v, w) ∈ E(P(G)). By Lemma 2, (v, w) ∈ E(P(Hv)). For each vertex u of P(Hv) let u′

denote the corresponding row/column of X. We want to show that P (A)(v, w) = P (X)(v′, w′).
By definition of matrix product, A′2(v, w) =

∑
A′(v, u)A′(u,w), where the summation is

over all u such that (v, u), (u,w) ∈ E(P(G)). Similarly, X ′2(v′, w′) =
∑
X ′(v′, u′)X ′(u′, w′),

where the summation is over the values of u′ corresponding to the values of u from the previ-
ous formula, by Lemma 2. By the inductive assumption, A′(v, u) = X ′(v′, u′) and A′(u,w) =
X ′(u′, w′), thus A′2(v, w) = X ′2(v′, w′). Since by assumption A′(v, w) = X ′(v′, w′), we have
Ps(A

′)(v, w) = Ps(X
′)(v′, w′), and hence P (A)(v, w) = (Ps◦Ts)(A

′)(v, w) = (Ps◦Ts)(X
′)(v′, w′) =

P (X)(v′, w′).

Lemma 3 implies the following algorithm to compute P(A) given we know its sparsity structure
in Hv:

1. Construct a CH-partition Π of G into n parts such that each part consists of a vertex (core)
and its adjacent vertices in Hv (halo);
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2. For the i-th part Πi of Π whose core is the i-th vertex of G(A), construct a submatrix Ai

containing the rows and columns of A corresponding to the vertices of Πi;

3. Compute P(Ai) for all i;

4. Define P(A) as a matrix whose i-th row has nonzero elements corresponding to the i-th row
of P(Ai) (subject to appropriate reordering).

Clearly, in many cases it will be advantageous to consider CH-partitions whose cores contain
multiple vertices. We will next show that the above approach for CH-partitions with single-node
cores can be generalized to the multi-node core case.

We will generalize the definitions of N(v,P(G)) and N(v,P(Hv)) for the case where the vertex
v is replaced by a set U of vertices of G. For any graph I, we define N(U, I) =

⋃
v∈U N(v, I).

Furthermore, we define by HU the subgraph of H induced by N(U,H).
Suppose the sets {Ui | i = 1, . . . , q} are such that

⋃
i Ui = V (G(A)) and Ui ∩ Uj = ∅. In this

case we can define a CH-partition of G = G(A) consisting of q sets, where for each i, Ui is the core
and N(Ui, H) \ Ui is the halo of Πi.

The following generalizations of Lemma 2 and Lemma 3 follow in a straightforward manner.

Lemma 4. Denote by Hi the subgraph P(HUi) of G. Let v be a vertex of Ui. Then N(v,P(G)) =
N(v,Hi).

Denote by AUi the submatrix of A consisting of all rows and columns that correspond to
vertices of V (HUi). The following main result of this section shows that P (A) can be computed
on submatrices of the Hamiltonian: this insight justifies the parallelized evaluation of a matrix
polynomial.

Lemma 5. For any v ∈ Ui and any w ∈ N(v,P(G)), the element of P (A) corresponding to the
edge (v, w) of P(G) is equal to the element of P (AUi) corresponding to the edge (v, w) of Hi.

In case of a QMD simulation, as outlined in Section 2, we assume that the sparsity structure of
P (A) can be approximated by the one of the density matrix D from the previous QMD simulation
step. For the halos we approximate H = P(G) with G(D) as before, and use the current H as a
substitute for the halos. This leads to the generalization of the partitioned algorithm for computing
P (A) in case of multi-vertex cores given at the end of Section 2.

B Further Details on Experimental Results

Raw data for the experiments described in Section 4.3 can be found in Table 2. The six partitioning
schemes we use are listed in column “methods”. The performance of those methods is measured
in four different ways: As a measure of the total matrix multiplication cost of a step of the SP2
algorithm, we report the sum of cubes criterion (3) in column 3 (“sum”). The sum of cubes
criterion is also a measure of the computational effort of SP2 since matrix multiplications consume
most of the computation time in SP2. As a measure of the variability of partition sizes created
by our algorithm, we report the smallest and largest size of any CH-partition (columns 4 (“min”)
and 5 (“max”)). In the best case scenario, the sizes of all partitions should be roughly equal
since otherwise, the nodes or processors will have very unequal computational loads in our parallel
implementation of the SP2 algorithm. This is undesirable in practice. The average computation
time (in seconds) for each partitioning algorithm is shown in the last column (“time”).
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Table 2: Various test systems (first column) evaluated by different partition schemes (second col-
umn; number of vertices n, edges m, and partitions p are given). Results measured with the sum
of cubes (3) criterion (sum), the sum of size and halo for the smallest CH-partition (min) as well
as the biggest CH-partition (max), and the overall runtime (in seconds) are given in columns 3-6.

Test system method sum min max time [s]
polyethylene dense crystal METIS 57,982,058,496 1536 1536 0.267175
n = 18432 METIS + SA 51,856,752,364 976 1536 0.347209
m = 4112189 HMETIS 7,126,357,377,024 3840 9984 141.426
p = 16 HMETIS + SA 1,362,943,612,944 2520 5814 141.79

KaHIP 32,614,907,904 768 1536 0.7
KaHIP + SA 32,614,907,904 768 1536 0.73

polyethylene sparse crystal METIS 24,461,180,928 1152 1152 0.024942
n = 18432 METIS + SA 24,461,180,928 1152 1152 0.030508
m = 812343 HMETIS 195,689,447,424 2304 2304 55.9726
p = 16 HMETIS + SA 170,056,587,295 2013 2299 55.9943

KaHIP 24,461,180,928 1152 1152 0.07
KaHIP + SA 24,461,180,928 1152 1152 0.08

phenyl dendrimer METIS 336,049,081 150 409 0.13482
n = 730 METIS + SA 146,550,740 0 382 0.14877
m = 31147 HMETIS 177,436,462 135 358 1.578
p = 16 HMETIS + SA 118,409,940 0 358 1.59436

KaHIP 231,550,645 55 381 1.72
KaHIP + SA 116,248,715 0 324 1.74

polyalanine 189 METIS 1,305,573,505,507 3358 5145 0.332091
n = 31941 METIS + SA 1,297,206,329,828 3362 5093 0.372463
m = 1879751 HMETIS 1,402,737,703,273 3762 5124 418.229
p = 16 HMETIS + SA 1,393,115,476,879 3765 5119 418.28

KaHIP 1,649,301,823,304 12 6030 18.35
KaHIP + SA 1,624,800,725,049 12 5983 18.39

peptide 1aft METIS 603,251 24 41 0.004755
n = 384 METIS + SA 572,281 24 41 0.005007
m = 1833 HMETIS 562,601 24 40 0.820561
p = 16 HMETIS + SA 538,345 24 42 0.820771

KaHIP 575,978 11 44 0.08
KaHIP + SA 575,978 11 44 0.08

polyethylene chain 1024 METIS 8,961,763,376 800 848 0.01513
n = 12288 METIS + SA 8,961,763,376 800 848 0.017951
m = 290816 HMETIS 8,951,619,584 824 824 27.3297
p = 16 HMETIS + SA 8,951,619,584 824 824 27.3332

KaHIP 9,037,266,968 782 875 0.73
KaHIP + SA 9,000,224,048 782 872 0.74

polyalanine 289 METIS 2,816,765,783,803 4591 6102 0.366308
n = 41185 METIS + SA 2,816,141,689,603 4591 6093 0.399265
m = 1827256 HMETIS 3,694,884,690,563 5733 6828 710.084
p = 16 HMETIS + SA 3,681,874,557,307 5733 6830 710.128

KaHIP 4,347,865,055,912 52 8955 43.9
KaHIP + SA 4,309,969,305,955 52 8907 43.94

peptide trp cage METIS 35,742,302,607 1228 1414 0.025795
n = 16863 METIS + SA 35,740,265,780 1228 1414 0.029837
m = 176300 HMETIS 35,428,817,730 1214 1472 31.0506
p = 16 HMETIS + SA 35,237,003,004 1214 1472 31.0545

KaHIP 43,551,196,287 515 1898 2.81
KaHIP + SA 43,388,946,192 536 1896 2.81

urea crystal METIS 4,126,744,977 608 708 0.047032
n = 3584 METIS + SA 4,126,744,977 608 708 0.057645
m = 109067 HMETIS 5,913,680,136 643 811 15.2321
p = 16 HMETIS + SA 5,194,749,106 604 785 15.2443

KaHIP 3,907,671,473 622 630 1.05
KaHIP + SA 3,907,671,473 622 630 1.05
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