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Abstract 

Newcastle disease, caused by Avian avulavirus 1 (AAvV 1), is endemic to many developing 

countries around the globe including Pakistan. Frequent epidemics are not uncommon even in 

vaccinated populations and are largely attributed to the genetic divergence of prevailing 

isolates and their transmission in the environment. With the strengthening of laboratory 

capabilities in Pakistan, a number of genetically diverse AAvV 1 strains have recently been 

isolated and individually characterized in comparison with isolates reported elsewhere in the 

world. However, there lacks sufficient comparative genomic and phylogenomic analyses of 

field circulating strains that can elucidate the evolutionary dynamics over a period of time. 

Herein, we enriched the whole genome sequences of AAvV reported so far (n= 35) from 

Pakistan and performed comparative genomic, phylogenetic and evolutionary analyses. Based 

on these analyses, we found only isolates belonging to genotypes VI, VII and XIII of AAvV 1 

in a wide range of avian and human hosts. Comparative phylogeny revealed the concurrent 
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circulation of avualviruses representing different sub-genotypes such as VIg, VIm, VIIa, VIIb, 

VIIe, VIIf, VIIi, XIIIb and XIIId. We found that that isolates of genotype VII were more closely 

associated with viruses of genotype XIII than genotype VI. An inter-genotype comparative 

residue analysis revealed a few substitutions in structurally and functionally important motifs. 

Putative recombination events were reported for only one of the captive-wild bird (pheasant)-

origin isolates. The viruses of genotype VII had high genetic diversity as compared to isolates 

from genotypes VI and XIII and, therefore, have more potential to evolve over time. Taken 

together, the current study provides an insight into the genetic diversity and evolutionary 

dynamics of AAvV 1 circulating in Pakistan. Such findings are expected to facilitate better 

intervention strategies for the prevention and control of ND in disease-endemic countries 

across the globe particularly Pakistan. 

Keywords Avian avulavirus 1; genomic comparison; phylogenomic analysis; evolutionary 

dynamic; genetic diversity; genotypes and sub-genotypes 

Introduction 

Avian avulavirus 1 (AAvV 1) causes a highly contagious disease (Newcastle disease; ND) in 

commercial and backyard poultry with enormous economic impacts worldwide (Alexander 

2003). The virus was recently classified as genus Orthoavulavirus within the family 

Paramyxoviridae (Kuhn et al. 2019). It has an enveloped, mono-partite, negative-sense single-

stranded RNA genome that is potentially 15186, 15192 or 15198 nucleotides in length 

(Kolakofsky et al. 2005). The whole genome contains six coding genes: nucleocapsid (N), 

phosphoprotein (P), matrix (M), fusion (F), haemagglutinin-neuraminidase (HN) and large 

polymerase (L) protein. These are encoded in the order 3′-NP-P/V/W-M-F-HN-L-5′ (Aldous et 

al. 2003). Based on pathogenicity, the virus is categorized into three major pathotypes 

including velogenic, mesogenic and lentogenic (Alexander 1998). 



Phylogenetic analyses classified the viruses of AAvV 1 into two distinct classes; class-I and 

class-II. Class-I contains nine distinct genotypes (I-IX) of avirulent strains that share a 15198 

nt long genome, while class-II contains at least eighteen distinct genotypes (I-XVIII) of high 

virulent, low virulent and avirulent strains that have a 15186 and/or 15192 nt long genome 

(Aldous et al. 2003; Kim et al. 2007). Based on partial sequencing of F genes (375bp between 

4597-4972 nts), avualviruses of genotypes I, II, VI, VII, XIII are further divided into different 

sub-genotypes of both virulent and avirulent strains isolated from a wide range of avian species 

(Shabbir et al. 2012a, b, 2013, 2016; Munir et al. 2012a, b; Miller et al. 2015; Akhtar et al. 

2016; Nath and Kumar 2015; Das and Kumar 2017, Xue et al. 2017; Barman et al. 2017; Habib 

et al. 2018; Aziz-ul-Rahman et al. 2018a, 2019). 

ND is endemic to many parts of the globe including Pakistan. Similar to any other developing 

country, there exists a mixed poultry production system in Pakistan comprising of a large 

population of commercial and domestic poultry. Such a production system, which includes 

many birds being raised in backyard poultry farms and live bird markets, may favour the 

emergence of novel avulaviruses that may be divergent enough to be regarded as new sub-

genotypes or escape mutants. This is evident from the fact that despite exhaustive application 

of classical vaccines and biosecurity measures, a number of disease outbreaks are reported each 

year in multiple avian hosts. In this regard, a vast majority of studies in Pakistan have reported 

the epidemiology and surveillance of ND in commercial and domestic poultry and wild 

susceptible avian hosts. Historically, beginning in the 1990s, these studies were limited to sero-

surveillance (Numan et al. 2005; Aziz-ul-Rahman et al. 2017); whereas in recent years, partial 

genome-based studies have been conducted to investigate strain genotyping (Shabbir et al. 

2012a, 2013; Munir et al. 2012b; Farooq et al. 2014; Akhtar et al. 2016, 2017; Wajid et al. 

2018) while few studies involved in complete genome sequencing and biologic characterization 



of field circulating AAvV 1 strains (Munir et al. 2012a; Shabbir et al. 2012b, 2016, 2018; Habib 

et al. 2018; Aziz-ul-Rahman et al. 2018a, 2019). 

Notably, each of these isolates are individually characterized based on a comparison of their 

genomic characteristics with avulaviruses reported elsewhere in the world, instead of 

countrywide reported complete genome sequences of avulaviruses originating from multiple 

hosts. Such analysis could provide baseline knowledge in understanding genetic diversity and 

evolutionary potential of circulating avulaviruses in a particular geographical setting over time. 

The resulting analysis may not only be used to inform the appropriate intervention for disease 

control and management, but may also be replicated for other settings across the globe with 

similar poultry-rearing systems. 

Materials and Methods 

Database information 

To date (April, 2019), a total of 287 genome sequences corresponding to AAvV 1 from 

Pakistan are publicly available (http://www.ncbi.nlm.nih.gov/). These include complete 

genome (n = 35) and partial F gene (n=252) sequences including the hypervariable region 

reported from multiple avian hosts including commercial and backyard poultry, pigeons, 

captive- and migratory wild birds. All essential and relevant information about the complete 

genome were retrieved from these individual studies for the evolutionary and phylogenomic, 

comparative residue, and putative recombination analyses (Table 1). 

Phylogenetic analysis and evolutionary distance estimation 

The whole genome and partial F gene sequences were aligned to corresponding sequences of 

avulaviruses representing different genotypes and sub-genotypes across the globe (GenBank) 

using ClustalW methods in BioEdit® version 5.0.6 (Hall 1999) for subsequent phylogenetic 

analysis, estimation of evolutionary distances and prediction of deduced amino acid 
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substitution sites. To describe the topology of the phylogenetic tree, an analysis of the best fit 

substitution model was performed in MEGA® version 6.0 software, and the goodness of fit of 

the individual model was measured by corrected Akaine Information Criterion (AICc) and 

Bayesian Information Criterion (BIC) (Tamura et al. 2013). To reveal evolutionary dynamics 

of sub-genotypes, a time calibrated phylogenetic analysis was performed using two different 

models:  the General Time Reversible model (GTR) with discrete gamma distribution (+G) and 

the Real-Time-Maximum Likelihood model for invariant sites (+I) in sequences. The 

evolutionary history was inferred by relative divergence time, and the statistical analysis was 

based on 1000 replication bootstrap values in MEGA® version 6.0 (Tamura et al. 2013). In this 

analysis, all positions containing gaps and/or missing codon were eliminated with codon 

positions as 1st, 2nd, 3rd and non-coding. 

To determine the nucleotide identity and divergence, Pairwise Sequence Comparisons (PASC) 

analysis was performed using whole genome sequences in MEGA® version 6.0 (Tamura et al. 

2013). The mean inter-population evolutionary diversity (mean evolutionary distance) between 

sub-genotypes was estimated through PASC analysis using the maximum composite likelihood 

method (d: Transitions + Transversions model). The rate and pattern of substitutions among 

sites was modelled with gamma distribution (parameter=1 with homogenous lineage pattern) 

(Tamura and Kumar 2002). A few partial F gene sequences representing different sub-

genotypes were used in this analysis. To further assess the evolutionary network of partial F 

genes and, for identification of ancestor isolate and genotype, Splits Tree4 program (version 

4.95) was employed using the Neighbour-Net graph method based on pairwise distances 

estimated by uncorrected p-distance and angle split transformation setting (Huson and Bryant 

2006). 

Comparative residue analysis and selective pressure analysis 



ORF Finder and BioEdit were used to predict deduced amino acid sequences of all coding 

genes. A comparative residue alignment for identification of residue substitutions in conserved 

and functional motifs of all proteins of isolates from different genotypes (VI, VII, XIII) was 

created using graphic view option in BioEdit® version 5.0.6 (Hall 1999). Similarly, compared 

to vaccine strains (LaSota; AF077761, Mukteswar; EF201805), sub-genotype-based residue 

substitutions were also identified in partial F gene sequences containing the hypervariable 

region using BioEdit. The Datamonkey adaptive evolution server 

(http://www.datamonkey.org/) was used to evaluate the nature of selection among coding DNA 

sequences (CDS) of all isolates (Delport et al. 2010). The positive and negative selection sites 

under natural selection were determined through three different genetic algorithms including 

Single Likelihood Ancestor Counting (SLAC), Fixed Effect Likelihood (FEL) and Fast 

Unbiased Bayesian Approximation (FUBAR) at Bayer factor p = 0.05. 

Genetic diversity and genome based analysis for vaccine efficacy 

The genetic diversity among CDS of avulaviruses included in the study was assessed for 

genome polymorphism on the basis of variable sites and mutations and the average number of 

pairwise nucleotide differences identified using DnaSP version 5.10.01 

(http://www.ub.es/dnasp) (Librado and Rozas 2009). To demonstrate the departure from 

neutrality in all isolates, Tajima’s D statistical method was used (Tajima 1989). For estimation 

of synonymous and non-synonymous substitution rates among CDS of all known NDV strains 

in genotype VI, VII and XIII against vaccine strains (LaSota, Mukteswar), synonymous and 

non-synonymous analysis program (SNAP v2.1.1) was used via an online webserver available 

at https://www.hiv.lanl.gov/content/sequence/SNAP/SNAP.html. The ratio and proportion of 

observed synonymous and non-synonymous substitutions was calculated by a statistical tool 

integrated into the webserver. 

Detection of putative recombination event 
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For identification of putative breakpoints, recombination analysis was performed on all 

complete genome sequences of 35 AAvV 1 isolates using four different software, including 

SimPlot (Ray 2003), GARD (http://www.datamonkey.org/GARD), DAMBE (Xia 2001) and 

RDP4 version 4.95 (Martin et al. 2015). Initially, all isolates were used at once in order to 

check the possibility of the occurrence of recombination events. Later on, in order to exclude 

influence or ambiguousness of sequences shared among strains isolated from the same bird 

species at a time and reliability of analysis, individual isolates representing each species were 

used for each possible parental type at a time. Owing to the enhanced accuracy, clarity and 

reliability of the analysis, outcomes identified by RDP4 were considered conclusive for further 

interpretation. The RDP4 was preferred because it employs a combination of seven different 

algorithms (RDP, GENECONV, BootScan, MaxChi, Chimaera, SiScan and 3Seq) to better 

unleash putative recombinant and parent isolates at p<0.001. Putative recombination events 

were assumed to have occurred only when they were consistently identified by at least five of 

the above-mentioned seven algorithms at a probability threshold of 0.05.  

Results 

Genome characterization of all known Avian avulavirus 1 

A total of 35 whole genome sequences of AAvV 1 from multiple avian species [Chicken (n=9), 

Pigeon (n=8), Parrot (n=5), Duck (n=5), Peacock (n=3), and Pheasant (n=2)] and human (n = 

3) were acquired from a public database (Table 1) and analysed. As is typical for virulent 

strains, all isolates showed an identical cleavage motif (112RRQKR↓F117) in the F gene except 

for one isolate (KX236100), which contained a K to R residue substitution at position 115 

(112RRQRR↓F117). All avian-originated isolate genomes were 15,192 nt in length except for 

one pigeon-originated isolate (KU885949), which was 15189 nt long and contained deletions 

at positions 2125, 7103 and 8330 positions. Although these isolates had the same genome 

length, however, several insertions and deletions at different positions were observed in five 

http://www.datamonkey.org/GARD


different isolates, including KX236100 (pigeon, genotype VI), JX532092 (peacock, genotype 

VII), JX854452 (pheasant, genotype VII), JN682210 (chicken, genotype XIII) and JN682211 

(chicken, genotype XIII). Important to note is that three of them originated from humans and 

had genome lengths ranging from 15146 to 15179 nt with several insertions and deletions 

(Table 1). The PASC analysis for the entire genome revealed 0.01%-15.33% divergence among 

isolates from genotype VI, VII and XIII. This estimation revealed that avulaviruses of genotype 

VI and VII had maximum percent divergence (13.99%-15.33%) followed by 14.58%-14.73% 

between genotype VI and XIII, and 11.5%-12.02% between genotypes VII and XIII (Table 2). 

Phylogenetic analysis and evolutionary distance estimation 

Based on the whole genome sequences, the phylogenetic analysis clustered all isolates into 

three distinct genotypes; genotype VI, VII and XIII. Of 35 AAvV 1 isolates, 26 isolates were 

clustered in genotype VII with those reported from Indonesia (HQ697254), 4 isolates were 

clustered in genotype VI with those reported from China, and 5 isolates clustered in genotype 

XIII with isolates from India (Fig. 1). Furthermore, based on partial F gene (375 bp) sequences, 

the phylogenetic analysis revealed that AAvV strains from genotype VII showed continuous 

evolution and clustered into five distinct sub-genotypes (VIIa, VIIb, VIIe, VIIf, VIIi) (Fig. 2A). 

The AAvVs from genotype VI were clustered into two distinct sub-genotypes (VIg and VIm) 

(Fig. 2B), whereas the avulaviruses from genotype XIII (n =5) clustered into two sub-genotypes 

(XIIIb and XIIId) (Fig. 2C). The evolutionary network pattern of under study-isolates revealed 

distinct genetic diversity and diverse evolutionary relationships among sub-genotypes VI, VII 

and XIII (Fig. 3). 

In Pakistan, all known avulaviruses of genotype VI belonged to only two sub-genotypes (VIg, 

VIm) and demonstrated 7.7% genetic distance with an overall range of 8.4%-11.3% and 7.7%-

11.9% with other sub-genotypes, respectively (Table 3). Avulaviruses from VIIa revealed a 

high genetic distance (40.1%) with viruses from VIIe followed by 35.4% between viruses from 



VIIe and VIIi, 33.9% between viruses from VIIe and VIIf, 30.6% between viruses from VIIb 

and VIIe, 25.1% between viruses from VIIa and VIIb, 21.5% between viruses from VIIa and 

VIIf, 19% between viruses from VIIb and VIIf, 16.2% between viruses from VIIf and VIIi, 

15.2% between viruses from VIIb and VIIi and 6.8% between viruses from VIIa and VIIi 

(Table 4). Similar to genotype VI, avulaviruses of genotype XIII also belong to two sub-

genotypes (XIIIb, XIIId) and shared 3.9% genetic distance to each other (Table 5). 

Comparative residue analysis 

Comparative residue analysis of all proteins of avulaviruses from genotype VI, VII and XIII 

revealed conservation in all functional motifs at the protein level. Few substitutions among 

strains from three genotypes were also found with the maximum number of substitutions in the 

L-gene (n=48), followed by the F gene (n=32), HN gene (n=28), P gene (n=16), M gene (n=13) 

and NP gene (n=11) (Table 6). The inter-genotype comparative residue analysis revealed close 

relatedness between isolates from genotypes VII and XIII as compared to isolates from 

genotype VI. Using LaSota and Mukteswar as reference strains, partial F gene sequences of 

avulaviruses included in this study representing different sub-genotypes were compared to each 

other and numerous substitutions were found at different positions. The cleavage site for all 

the strains was found to be identical except for a pigeon-originated isolate (KY042139, sub-

genotype VIg) which was identical to a mesogenic vaccine strain (EF201805) (Table 7). 

Genetic diversity and genome-based analysis for vaccine efficacy 

Based on individual coding genes, the DnaSP analysis revealed a high mutation rate in AAvVs 

isolates of genotype VII but high haplotype diversity was observed in CDS of isolates 

belonging to the VI genotype. Nucleotide diversity was found to be relatively higher in CDS 

of isolates belonging to genotype VI as compared to VII and XIII. For estimation based on the 

theory of neutrality in all CDS of isolates from individual genotypes, the Tajima’s D value was 

found to be negative for all genes with p > 0.10 except P and F genes of genotype XIII (Table 



8). An investigation of the synonymous and non-synonymous substitution rate against the 

vaccine strains revealed that CDS of isolates from all genotypes showed high synonymous and 

non-synonymous substitution rates when the LaSota strain was used a query compared to the 

Mukteswar strain (Table 9 and 10). 

Selective pressure analysis 

In the selective pressure analysis, none of coding genes from genotype VI had a mean dN/dS 

greater than 1 at p < 0.05 where the highest mean was observed for the P gene (0.37830) 

followed by the HN (0.24668), L (0.13024), F (0.10890), M (0.10332) and NP (0.05012) genes. 

Using three different statistical approaches (SLAC, FEL and IFEL), two positive selection sites 

were inferred by SLAC in the P gene, whereas one was found in the F gene. The FEL algorithm 

revealed three positive selection sites in the F gene, two in the P gene and one in the NP gene. 

Similarly, using the IFEL algorithm, three positive sites were found in the P gene, two in the 

F gene and one in the L gene. All coding genes of avulaviruses from genotype VII had a mean 

dN/dS less than 1 at p < 0.05 in the order of F (0.38894) > HN (0.29408) > P (0.28340) > L 

(0.13761) > P (0.098717) and > M (0.01944). Using three different statistical algorithms, 

SLAC revealed two positive selection sites in the F gene and only one in the NP gene. The 

FEL algorithm revealed seven positive selection sites in the F gene, five in the L gene and one 

each in the HN and P genes. In comparison, using the IFEL algorithm, numbers of positive 

selection sites as high as eleven in the L gene, nine in the F gene, three in the HN gene, two in 

the M gene, and one in the P gene were observed. Similar to genotype VI and VII, none of the 

coding genes from isolates belonging to XIII had a mean dN/dS greater than 1 at p < 0.05 in 

the order P (0.35729) > M (0.16906) > HN (0.16462) > F (0.14771) > L (0.10332) > NP 

(0.09096). Thus, only one positive selection site was found in the F gene using the SLAC 

algorithm, while eleven positive sites were observed in the L gene, five in the F gene, three in 

the HN and one in each the NP and P genes using the FEL algorithm. On the other hand, thirteen 



positive sites in L gene, seven in F gene, three in HN gene, two in NP gene and one in each P 

and M gene were inferred using the IFEL algorithm (Table 11). 

Recombination Analysis 

To identify novel recombinant events among isolates, all existing whole genomes of AAvVs 

were subjected to a detailed recombination analysis. However, only two putative recombination 

events (between 1008-3474 and 8818-9592 nt) (Fig. 4A, B) were observed in pheasant-

originated isolate (JX854452) with chicken-originated isolates. Noteworthy, both putative 

recombination events were observed in the same isolate sharing genomic sequence with same 

potential major parent (KP776462) from genotype VII and potential minor parent (JN682210) 

from genotype XIII. All seven recombination algorithm methods revealed the occurrence of 

recombination events in this isolate at p<0.001 value. The detailed information of inferred 

breakpoint and p-value of algorithm approaches are provided in Table 12. 

Discussion 

Given the importance of the F gene in determining virulence of avulaviruses and conferring 

the major viral antigen, as well as the fact that current classification systems rely upon 

phylogenetic analysis of the same gene (Aldous et al. 2003; de Leeuw et al. 2003, 2005; Tsai 

et al. 2004; Kim et al. 2007), a large number of partial F gene sequences from multiple avian 

hosts were available in GenBank and other public domains. Since F-gene-based analysis is 

insufficient to predict the true evolution of viruses, we performed the first-ever analysis 

highlighting the genomic and evolutionary aspects of whole genomes of countrywide 

circulating Avian avulavirus 1 strains. We performed this analysis because a specific gene 

might not evolve at the same rate as does the whole genome (Miller et al. 2009), and, therefore, 

our analysis can provide more comprehensive information to unleash virus evolution to serve 

as the basis for designing epidemiological investigations in the future. Additionally, the 

emergence of new strains in global epizootics and continuous evolution by year-to-year 



changes in genomic sequences can be investigated by complete genome analysis of 

avulaviruses isolated from different susceptible hosts. Because the vast genetic diversity may 

be favoured by the large variety of susceptible avian species and by the availability of highly 

mobile, wild/migratory waterfowl as natural reservoirs, continuous monitoring of viral 

evolution and molecular epidemiology of countrywide circulating avulaviruses is imperative 

for disease endemic countries such as Pakistan. 

Across Pakistan, Avian avulavirus 1 strains of genotype VI (Akhtar et al. 2016; Shabbir et al. 

2016), VII (Shabbir et al. 2012a, b, 2013, 2016; Munir et al., 2012a, b; Abbas et al. 2014; 

Farooq et al. 2014; Akhtar et al. 2016; Wajid et al. 2017; Habib et al. 2018; Aziz-ul-Rahman 

et al. 2018a, 2019) and XIII (Miller et al. 2015; Shabbir et al. 2018) have been reported 

previously from a wide range of hosts. Among these, avulaviruses of genotype XIII have not 

only been found responsible for outbreaks in poultry (Khan et al. 2010), but also have been 

implicated in mild respiratory infections in poultry workers (Shabbir et al. 2018). Apart from 

clinical infection, highly virulent avulaviruses of genotype VII were isolated from clinically 

healthy backyard poultry birds (Munir et al. 2012b), and asymptomatic wild- and water- fowl 

(Akhter et al. 2016, 2017; Habib et al. 2018; Aziz-ul-Rahman et al. 2018a, 2019). 

Previous studies have suggested that the replacement of genotype XIII by genotype VII 

occurred between 2010 and 2013 (Khan et al. 2010; Miller et al. 2015). However, this claim is 

not convincing as new evidence suggests that the re-emergence of genotype XIII viruses 

isolated from humans is linked with poultry production settings (Shabbir et al. 2018). Such 

findings highlight the existence of genotype XIII viruses in the field and may suggest the need 

for revision of diagnostic assays that fail to detect these circulating viruses. The phylogenetic 

and evolutionary comparison of whole genome and partial F gene sequences of human-

originated genotype XIII to genotype XIIId, which is distinct from the previously reported 

genotype XIIIb from poultry, suggests continuous evolution of avulaviruses. For genotype VII, 



phylogenetic analyses of whole genome and partial F gene sequences revealed that the current 

prevailing strains (since 2015) belong to sub-genotype VIIi and are evolutionarily similar to 

strains circulating in Israel, China and Indonesia (Shabbir et al. 2013a, b, 2016; Akhtar et al. 

2016, 2017; Habib et al. 2018; Aziz-ul-Rahman et al. 2018a, 2019). The clustering of Pakistani 

avulaviruses originating from birds with isolates originating from Israel, China and Indonesia, 

highlight a continuous evolution and epizootic nature across the boundaries. It is important to 

note that equally virulent and genetically identical avulaviruses have also been isolated from 

multiple symptomatic and asymptomatic wild and captive avian species from Pakistan (Shabbir 

et al. 2012; Munir et al. 2012a, Qamar-un-Nisa et al. 2017, Akhtar et al. 2017), Israel and a 

public zoo in Mexico (Panshin et al. 2002; Miller et al. 2009). Therefore, the role of wild birds 

as natural reservoirs in dissemination of the virus cannot be overlooked. Recently, a spillover 

of AAvV 1 from wild to poultry and vice versa was investigated (Cardenas et al. 2013; Wajid 

et al. 2018). Most studies have reported outbreaks that occurred over short periods of time and 

were considered to be caused by accidental spillover of viruses (Vijayarani et al. 2010; Kumar 

et al. 2013; Dimitrov et al. 2016). Such an evidence of spill-over facilitates further evolution 

resulting in subsequent emergence of novel variant or escape mutant. These studies point out 

the significant role of different avian species, kept in captivity in poultry production settings in 

Pakistan, in virus dissemination. Although the current genetic diversity and evolutionary 

analyses reveal strong relationships among viruses originating from different avian species 

including poultry, limited information is available concerning the potential role of these avian 

species in the dissemination of virus. 

The genetic diversity of avulaviruses, evidenced by synonymous and non-synonymous 

substitutions in residues of coding genes, has a crucial role in their evolution and subsequent 

adaptation to a wide range of hosts (Aziz-ul-Rahman et al. 2018b). Besides, previous studies 

showed evidence of evolution in AAvV 1 under vaccine-induced immune pressure (Chong et 



al. 2010; Orabi et al. 2017). Considering the influence of vaccination on evolution, the genome 

sequence of vaccine strains commonly used in the field (LaSota; AF077761 and Mukteswar; 

EF201805) in Pakistan were selected for investigation of synonymous and non-synonymous 

substitutions in the current study. Comparative residue analysis of each gene of avulaviruses 

included in the study of genotype (VI, VII and XIII) with vaccine strains (genotype II and III) 

showed a number of synonymous and non-synonymous substitutions at varying substitution 

rates. However, a higher rate of non-synonymous substitution was more evident in avulaviruses 

of genotype VII and therefore, subsequent protection-challenge experiments are needed. This 

is important because the emergence of escape mutants over a period of time pose a major threat 

to the control of avulaviruses using classical vaccine due to decreased protection from 

challenge (Perozo et al. 2012; Ali et al. 2014; Farooq et al. 2014; Abbas et al. 2014; Umar et 

al. 2015). In fact, a high rate of non-synonymous substitutions in coding genes may alter the 

structural and biological function of viral proteins and the virus’ subsequent virulence (Reitter 

et al. 1995). In this regard, a massive or irrational vaccine effort in the field may play a crucial 

role in the emergence of escape mutants such as those reported previously from vaccinates 

(Rehmani et al. 2015). The presence of virulent viruses in vaccinates in commercial farms 

(Rehmani et al. 2015) and their constant evolution over time (Miller et al. 2009) suggests the 

existence of a high environmental viral load with continuous replication in endemic countries. 

In addition, vaccine failure is correlated with substantial changes at the nucleotide level and 

genotype mismatching, which cause differences at essential immunodominant epitopes (Liu et 

al. 2018). Recently, a few studies on F and HN genes in avulaviruses of Pakistan revealed 

substitutions at both nucleotide and amino acid level at biologically and functionally important 

motifs (Shabbir et al. 2013a, b, 2016; Abbas et al. 2014; Akhtar et al. 2016, 2017; Habib et al. 

2018; Aziz-ul-Rahman et al. 2018a, 2019).  



Besides residue substitutions, natural pressure selection sites in the genome are influenced by 

the environment and play a key role in virus evolution. High positive selection sites in CDS 

may affect the structure and function of the corresponding protein. The statistical calculation 

of non-synonymous and synonymous (dN/dS) mutations is significant in understanding the 

molecular evolution of CDS across closely related yet divergent strains. Datamonkey, in this 

regard, is a well-known web-server for rapid detection of positive (dN>dS) and negative 

(dN<dS) selection sites in aligned CDS (Pond and Frost, 2005). Evidence of positive selection 

sites in all coding genes of inter- (genotype VI, VII and XIII) and intra-avulaviruses (AAvV 1-

20) identified by SLAC, FEL and IFEL statistical approaches highlighted the underlying 

mechanism of virus evolution (Aziz-ul-Rahman et al. 2018b). Therefore, the emergence of 

strains representing novel sub-genotypes is possible in the near future. In our analysis, the mean 

dN-dS were found to be non-significant with a minimum number of positive selection sites. 

While this seldom happens in structural domains of the genome, the impact of the combination 

of such positive selection sites with lower level sequence diversity may cause the emergence 

of variants (Yang et al. 2000). According to the neutral theory of molecular evolution, types of 

molecular variation that arise via spontaneous mutations have no influence on the virus’ fitness 

(Fay and Wu 2003). Indeed, such substitutions might represent potential positive selection sites 

that could shape the virulence and evolution of new strains. However, the biological 

significance of these sites is still unknown, and it would be an area of interest to investigate the 

role of substitutions in pathogenicity using a reverse genetics approach. 

The occurrence of recombination between strains may also potentially influence the evolution 

of avulaviruses (Qin et al. 2008; Satharasinghe et al. 2016) and, therefore may facilitate the 

emergence of novel/new mutant strains (Yin et al. 2011). In the present study, recombination 

analysis identified two potential recombination events in an avulavirus originating from 

pheasants with potential major (genotype VII) and minor parent strain (genotype XIII) of 



chicken origin. This is not surprising because recombination within avulaviruses of the same 

genotype (VII) (Han et al. 2008) and between two different genotypes (II and VII) (Qin et al., 

2008) has previously been identified. The possibility of recombination between strains of the 

same and different genotypes highlights the potential impact of recombination on the 

emergence and evolution of novel avulaviruses. While the occurrence of natural recombination 

may facilitate the emergence of a novel/new mutant virus (Han et al. 2008; Qin et al., 2008), 

there is controversy in the interpretation of natural recombination. Previous studies suggested 

that recombination may play a vital role in AAvV 1 evolution (Zhang et al. 2010; Yin et al. 

2011), while others concluded otherwise, referring to it as a sequencing artefact due to proof-

reading errors of the polymerase enzyme (Afonso 2008). That being said, recombination-based 

evolution in AAvVs is an on-going discussion and further studies are needed to understand its 

significance. 

Based on all essential analyses, the current study concluded the concurrent evolution and 

circulation of avulaviruses of different sub-genotypes (VIg, VIm, VIIa, VIIb, VIIe, VIIf, VIIi, 

XIIIb and XIIId) in Pakistan, highlighting its evolutionary potential over a period of time. 

Evidences of positive selection sites and putative recombination events suggest increased 

genetic diversity among avulaviruses originating from multiple avian hosts. Taken together, 

this evidence may not only suggest the potential for the emergence of novel variants, but also 

the possibility of failure in diagnostics and vaccines. The evolutionary knowledge of genetic 

diversity of field prevailing avulaviruses impacts many aspects, from the broadest 

investigations of virus taxonomy, to the finest details of molecular epidemiology and vaccine 

design. Therefore, continuous monitoring and surveillance of viral evolution with necessary 

periodic updates should be ascertained for disease control interventions in disease-endemic 

countries. 
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Figure legends 

Fig. 1 Phylogenetic analysis of so-far reported complete genome sequences of Avian avulavirus 

1 (highlighted with blue colour) from Pakistan. The neighbour-joining method with 1000 

bootstraps was used for analysis of evolutionary relationship between and within isolates from 

different genotypes and representative isolates from worldwide using MEGA 6 software. 

Fig. 2 Phylogenetic analysis based on partial F gene sequences of so-far reported Avian 

avulavirus 1 (highlighted with blue colour) from Pakistan with representative isolates from 

worldwide using MEGA 6 software. The phylogeny analysis was conducted for classification 

of sub-genotypes within genotype VI (A), VII (B) and XIII (C).  

Fig. 3 Partial F gene sequence based evolutionary network of so-far reported Avian avulavirus 

1 from Pakistan representing sub-genotypes-wise distribution of isolates. 

Fig. 4 The plot display graphically illustrating the evidences underlying the detection of 

individual user-selected recombination event. The display depicting the coloured coded line 

representation of recombinant, major parent and minor parent isolates for the recombinant 

event 1 (A) and event 2 (B). 
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Table 1: Detailed information of whole genomes sequences of Avian avulavirus 1 isolated 
from different birds in Pakistan 

Sr. 
No. 

Accession 
numbers 

Year of 
isolation Host Location 

Genome 
length 
(bp) 

Insertion and deletion 
of nucleotides in 

genome 

Cleavage site 
pattern Genotype Sub-

genotype 

1 KX268690 2016 Parakeet Lahore 15192 NO 112RRQKR↓F117 VII VIIi 
2 KX268691 2016 Parakeet Lahore 15192 NO 112RRQKR↓F117 VII VIIi 
3 KX791183 2016 Parakeet Rawalpindi 15192 NO 112RRQKR↓F117 VII VIIi 
4 KX791184 2016 Backyard poultry Lahore 15192 NO 112RRQKR↓F117 VII VIIi 
5 KX791185 2016 Backyard poultry Lahore 15192 NO 112RRQKR↓F117 VII VIIi 
6 KX791186 2016 Backyard poultry Lahore 15192 NO 112RRQKR↓F117 VII VIIi 
7 KX791187 2016 Backyard poultry Lahore 15192 NO 112RRQKR↓F117 VII VIIi 
8 KX791188 2016 Backyard poultry Lahore 15192 NO 112RRQKR↓F117 VII VIIi 
9 KY697611 2016 Mallard Mianwali 15192 NO 112RRQKR↓F117 VII VIIi 

10 KY697612 2016 Mallard Mianwali 15192 NO 112RRQKR↓F117 VII VIIi 

11 MH019281 2015 Human Lahore 15167 Deletion at (1-14, 8329, 
15182-15192) position 112RRQKR↓F117 XIII XIIId 

12 MH019282 2015 Human Lahore 15179 

Insertion at (1724-1735) 
deletion at (1-9, 1724-

1735, 8329, 15182-
15192) position 

112RRQKR↓F117 XIII XIIId 

13 MH019283 2015 Human Lahore 15146 
Deletion at (1-14, 1697-

1716, 8329, 15182-
15192) position 

112RRQKR↓F117 XIII XIIId 

14 KX268688 2015 Parakeet Rawalpindi 15192 NO 112RRQKR↓F117 VII VIIi 
15 KX268689 2015 Parrot Lahore 15192 NO 112RRQKR↓F117 VII VIIi 
16 KY290560 2015 Peacock Lahore 15192 NO 112RRQKR↓F117 VII VIIi 
17 KY290561 2015 Pheasant Lahore 15192 NO 112RRQKR↓F117 VII VIIi 
18 KU845252 2015 Duck Lahore 15192 NO 112RRQKR↓F117 VII VIIi 

19 MF437286 2015 Green-winged 
teal Mianwali 15192 NO 112RRQKR↓F117 VII VIIi 

20 MF437287 2015 Green-winged 
teal Mianwali 15192 NO 112RRQKR↓F117 VII VIIi 

21 KX236100 2015 Pigeon Lahore 15192 
Insertion at 1631 

position and deletion at 
2015 position 

112RRQRR↓F117 VI VIm 

22 KX496962 2015 Pigeon Lahore 15192 NO 112RRQKR↓F117 VII VIIi 
23 KX496963 2015 Pigeon Lahore 15192 NO 112RRQKR↓F117 VII VIIi 
24 KX496964 2015 Pigeon Lahore 15192 NO 112RRQKR↓F117 VII VIIi 
25 KX496965 2015 Pigeon Lahore 15192 NO 112RRQKR↓F117 VII VIIi 
26 KY042135 2015 Pigeon Lahore 15192 NO 112RRQKR↓F117 VI VIm 
27 KX236101 2015 Pigeon Lahore 15192 NO 112RRQKR↓F117 VI VIm 

28 KU885949 2014 Pigeon NA 15189 Deletion at 2125, 7103 
and 8330 position 112RRQKR↓F117 VI VIm 

29 KP776462 2014 Commercial 
Poultry NA 15192 NO 112RRQKR↓F117 VII VIIi 

30 KU885948 2014 Peacock NA 15192 NO 112RRQKR↓F117 VII VIIi 

31 KM670337 2013 Vaccinated 
Chicken NA 15192 NO 112RRQKR↓F117 VII VIIi 

32 JX532092 2012 Peacock Lahore 15192 

Insertion at 2130 and 
7057 position, deletion 

at 2125 and 7103 
position 

112RRQKR↓F117 VII VIIa 

33 JX854452 2011 Pheasant NA 15192 

Insertion at 7057 and 
8329 position, deletion 

at 2125 and 7103 
position 

112RRQKR↓F117 VII VIIa 

34 JN682210 2010 Commercial 
Poultry Rawalpindi 15192 

Insertion at (1686-1690, 
8336) and deletion at 
(1649-1653, 8330) 

position 
112RRQKR↓F117 XIII XIIIb 

35 JN682211 2010 Commercial 
Poultry Rawalpindi 15192 

Insertion at 8336 
position and deletion at 

8330 position 
112RRQKR↓F117 XIII XIIIb 
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Table 2: Estimation of percent divergence for complete genomes sequences of so-far reported Avian avulavirus 1 from Pakistan 1 
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KX268690                                   

KX268691 0.01                                  

KX791183 0.48 0.48                                 

KX791184 1.32 1.32 1.17                                

KX791185 1.35 1.35 1.20 0.07                               

KX791186 1.33 1.33 1.18 0.05 0.06                              

KX791187 1.32 1.32 1.17 0.03 0.05 0.03                             

KX791188 1.33 1.33 1.18 0.05 0.06 0.00 0.03                            

KY967611 1.76 1.76 1.65 1.08 1.08 1.08 1.08 1.08                           

KY967612 1.77 1.77 1.65 1.08 1.08 1.09 1.08 1.09 0.03                          

MH019281 11.91 11.8 11.79 11.92 11.95 11.93 11.92 11.93 11.99 12.00                         

MH019282 11.91 11.9 11.8 11.93 11.96 11.94 11.93 11.94 12.00 12.01 0.01                        

MH019283 11.91 11.8 11.79 11.92 11.95 11.93 11.92 11.93 11.99 12.00 0.00 0.01                       

KX268688 0.51 0.51 0.03 1.15 1.18 1.16 1.15 1.16 1.63 1.63 11.79 11.80 11.79                      

KX268689 0.10 0.10 0.43 1.28 1.30 1.28 1.28 1.28 1.71 1.72 11.87 11.88 11.87 0.44                     

KY290560 1.17 1.17 1.04 1.1 1.12 1.10 1.1 1.10 1.45 1.46 11.76 11.76 11.76 1.02 1.12                    

KY290561 1.14 1.14 1.02 1.06 1.09 1.07 1.06 1.07 1.42 1.42 11.73 11.73 11.73 1.00 1.10 0.14                   

KU845252 0.66 0.66 0.32 1.24 1.26 1.24 1.24 1.24 1.58 1.58 11.82 11.83 11.82 0.30 0.60 0.00.92 0.88                  

MF437286 1.75 1.75 1.64 1.07 1.10 1.08 1.07 1.08 0.13 0.11 12.01 12.02 12.01 1.62 1.71 1.44 1.41 1.57                 

MF437287 1.74 1.74 1.63 1.06 1.06 1.06 1.06 1.06 0.11 0.09 12.01 12.02 12.01 1.60 1.69 1.43 1.4 1.56 .07                

KX236100 14.32 14.32 14.25 14.41 14.45 14.41 14.39 14.41 14.42 14.43 14.65 14.66 14.65 14.25 14.30 14.21 14.21 14.25 14.45 14.45               

KX496962 0.76 0.76 0.64 0.9 0.93 0.91 0.90 0.91 1.16 1.17 11.54 11.55 11.54 0.62 0.72 0.64 0.62 0.64 1.16 1.14 14.00              

KX496963 01.69 1.69 1.56 1.62 1.65 1.63 1.62 1.63 1.95 1.95 12.01 12.02 12.01 1.54 1.65 1.02 0.99 1.53 1.93 1.92 14.45 1.12             

KX496964 0.76 0.76 0.38 1.37 1.40 1.38 1.37 1.38 1.71 1.72 11.79 11.79 11.79 0.36 0.70 1.24 1.22 0.37 1.71 1.69 14.27 0.64 1.7            

KX496965 0.76 0.76 0.38 1.37 1.40 1.38 1.37 1.38 1.71 1.72 11.79 11.79 11.79 0.36 0.70 1.24 1.22 0.37 1.71 1.69 14.27 0.64 1.7 0.00           

KY042135 14.29 14.28 14.25 14.44 14.48 14.44 14.42 14.44 14.38 14.4 14.72 14.73 14.72 14.25 14.27 14.24 14.24 14.25 14.42 14.41 1.81 14.00 14.41 14.31 14.31          

KX236101 14.28 14.26 14.19 14.31 14.35 14.31 14.29 14.31 14.40 14.41 14.47 14.48 14.47 14.18 14.24 14.18 14.15 14.22 14.41 14.40 3.83 13.94 14.38 14.19 14.19 3.89         

KU885949 14.29 14.29 14.24 14.45 14.48 14.45 14.43 14.45 14.38 14.41 14.58 14.58 14.58 14.23 14.27 14.20 14.20 14.22 14.43 14.42 1.34 13.99 14.44 14.25 14.25 1.85 3.80        

KP776462 1.08 1.08 0.95 1.02 1.04 1.02 1.02 1.02 1.36 1.36 11.67 11.68 11.67 0.93 1.03 0.14 0.11 0.82 1.35 1.34 14.16 0.55 0.98 1.15 1.15 14.18 14.11 14.16       

KU885948 1.43 1.43 1.28 1.36 1.39 1.37 1.36 1.37 1.72 1.73 11.91 11.91 11.91 1.26 1.38 0.74 0.72 1.27 1.71 1.69 14.25 0.89 0.9 1.46 1.46 14.23 14.19 14.25 0.72      

KM670337 1.12 1.12 0.98 1.08 1.11 1.09 1.08 1.09 1.41 1.42 11.70 11.7 11.70 0.96 1.07 0.34 0.31 0.89 1.40 1.39 14.11 0.58 0.82 1.16 1.16 14.16 14.10 14.10 0.3 0.56     

JX532092 5.52 5.52 5.40 5.49 5.51 5.49 5.49 5.49 5.58 5.59 11.60 11.61 11.60 5.38 5.47 5.18 5.17 5.37 5.60 5.60 15.4 4.89 5.62 5.41 5.41 15.3 15.33 15.32 5.1 5.44 5.19    

JX854452 5.33 5.33 5.21 5.26 5.29 5.27 5.26 5.27 5.37 5.38 11.50 11.51 11.50 5.19 5.28 5.01 5.00 05.19 5.37 5.37 15.27 4.69 5.43 5.22 5.22 15.17 15.19 15.19 4.94 5.26 5.01 0.35   

JN682210 12.76 12.74 12.68 12.78 12.81 12.79 12.78 12.79 12.91 12.92 4.57 4.58 4.57 12.68 12.70 12.61 12.59 12.7 12.92 12.92 15.15 12.41 12.82 12.7 12.7 15.19 15.01 15.18 12.53 12.73 12.59 9.36 9.28  

JN682211 12.92 12.91 12.84 12.86 12.89 12.87 12.86 12.87 13.0 13.01 4.43 4.44 4.43 12.84 12.87 12.76 12.74 12.84 13.01 13.02 15.27 12.52 12.98 12.85 12.85 15.26 15.04 15.23 12.67 12.86 12.69 9.85 9.77 2.81 
 2 
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Table 3: Estimation of mean inter-populational evolutionary diversity per site among sub-genotypes of genotype VI Avian avulavirus 1 using 4 
partial sequences of F gene. The genetic distance of viruses from Pakistan origin is bold  5 

Sub-genotype VIa VIb VIc VId VIe VIf VIg VIh VIi VIj VIk VIl VIm VIn 
VIa (n = 2)               
VIb (n = 3) 0.099              
VIc (n = 3) 0.101 0.096             
VId (n = 2) 0.114 0.118 0.104            
VIe (n = 5) 0.080 0.088 0.093 0.110           
VIf (n = 4) 0.088 0.094 0.104 0.124 0.067          
VIg (n = 5) 0.103 0.098 0.084 0.091 0.101 0.106         
VIh (n = 3) 0.092 0.105 0.117 0.139 0.092 0.101 0.113        
VIi (n = 3) 0.129 0.127 0.116 0.024 0.122 0.136 0.099 0.148       
VIj (n = 2) 0.121 0.128 0.106 0.119 0.106 0.117 0.096 0.134 0.122      
VIk (n = 3) 0.012 0.096 0.097 0.111 0.075 0.082 0.100 0.084 0.126 0.120     
VIl (n = 2) 0.047 0.094 0.093 0.114 0.073 0.084 0.099 0.080 0.126 0.114 0.040    

VIm (n = 6) 0.114 0.119 0.106 0.106 0.116 0.110 0.077 0.119 0.117 0.089 0.113 0.112   
VIn (n = 5) 0.057 0.093 0.097 0.116 0.0772 0.084 0.089 0.078 0.124 0.117 0.053 0.051 0.116  

 6 
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Table 4: Estimation of mean inter-populational evolutionary diversity per site among sub-genotypes of genotype VII Avian avulavirus 1 using 8 
partial sequences of F gene. The genetic distance of viruses from Pakistan origin is bold  9 
 10 

Sub-genotype VIIa VIIb VIIc VIId VIIe VIIf VIIg VIIh VIIi VIIj VIIk 
VIIa (n = 2)            
VIIb (n = 7) 0.251           
VIIc (n = 3) 0.300 0.187          
VIId (n = 3) 0.176 0.147 0.231         
VIIe (n = 6) 0.401 0.306 0.312 0.296        
VIIf (n = 8) 0.215 0.019 0.231 0.160 0.339       
VIIg (n = 4) 0.407 0.306 0.317 0.301 0.002 0.345      
VIIh (n = 4) 0.187 0.172 0.255 0.127 0.367 0.175 0.373     
VIIi (n = 8) 0.068 0.152 0.244 0.114 0.354 0.162 0.360 0.136    
VIIj (n = 4) 0.199 0.213 0.278 0.074 0.343 0.209 0.349 0.169 0.148   
VIIk (n = 3) 0.186 0.212 0.263 0.133 0.342 0.192 0.348 0.149 0.135 0.137  

 11 
Table 5: Estimation of mean inter-populational evolutionary diversity per site among sub-genotypes of genotype XIII Avian avulavirus 1 using 12 
partial sequences of F gene. The genetic distance of viruses from Pakistan origin is bold  13 
 14 

Sub-genotype XIIIa XIIIb XIIIc XIIId 
XIIIa (n = 4)     
XIIIb (n = 4) 0.057    
XIIIc (n = 3) 0.068 0.079   
XIIId (n= 3) 0.045 0.039 0.098  

 15 
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Table 6: Comparative residue analysis of all coding genes of so-far reported Avian avulavirus 1 from Pakistan 17 

Proteins Conserved and Functional Motifs Genotype Comparative residue substitutions 

NP N-N self-assembly motif (322FAPAEYAQLYSFAMG336) 
VI 21A, 110N, 142S, 146I, 203V, 288T, 341I, 406V, 421N, 464S, 480T 
VII 21T, 110S, 142G, 146V, 203I, 288A, 341L, 406M, 421D, 464P, 480S 
XIII 21T, 110N, 142G, 146V, 203V, 288T, 341L, 406M, 421D, 464P, 480S 

P RNA editing motif (GGGAAAAA) 
VI 10E, 66S, 67E, 83I, 90T, 103G, 126S, 138S, 146P, 159N, 163R, 209S, 258I, 323T, 333N, 343I 
VII 10D, 66P, 67D, 83A, 90A, 103E, 126N, 138G, 146Q, 159S, 163E, 209N, 258M, 323A, 333H, 343A 
XIII 10D, 66P, 67D, 83A, 90A, 103E, 126N, 138G, 146Q, 159S, 163E, 209N, 258M, 323A, 333H, 343A 

M M late domain (23FPIV26), Bipartite nuclear localization motif 
(247KKGKKVTFDKIEEKIRR263) 

VI 36K, 53K, 75V, 77M, 105K, 136Q, 142T, 143A, 196I, 213E, 353R, 355T, 363R 
VII 36Q, 53R, 75A, 77V, 105E, 136R, 142M, 143V, 196V, 213D, 353K, 355A, 363K 
XIII 36Q, 53K, 75V, 77V, 105E, 136R, 142M, 143V, 196V, 213E, 353R, 355T, 363R 

F 
Single peptide (1MGSKPSIRIPVPLMLITRI19), Cleavage motif 

(112RRQK/RR117), Fusion peptide 
(117FIGAVIGSIVALGVATAAQITAAAALI142) 

VI 
14S, 25C, 90N, 107S, 121I, 124G, 132S, 176A, 179I, 208I, 246I, 255I, 270A, 272H, 304G, 321R, 342N,  

337H, 385A, 402V, 411H, 425S, 445Q, 448V, 452E, 487R, 492D, 494K, 506V, 509A, 522S, 537M 

VII 
14M, 25Y, 90S, 107A, 121V, 124S, 132A, 176S, 179V, 208V, 246M, 255V, 270T, 272Y, 304E, 321K, 342D, 

337Y, 385T, 402A, 411N, 425N, 445L,  448I, 452D, 487K, 492N, 494R, 506A, 509V, 522A, 537L 

XIII 
14S, 25C, 90S, 107S, 121V, 124S, 132A, 176A, 179V, 208V, 246M, 255V, 270A, 272Y, 304E, 321K, 342N, 

337Y, 385A, 402A, 411N, 425S, 445Q, 448I, 452E, 487K, 492N, 494R, 506V, 509A, 522S, 537L 

HN 
Hydrophobic signal anchor (25FRIAVLLLMIMILAISAAAL44), Hexapeptide 

motif (234NRKSCS239), Haemagglutinin active motif-I (314FPVYGGL320), 
Haemagglutinin active motif-II (399GAEGRI204) 

VI 
2D, 6R, 7K, 9V, 27V, 36T, 39F,46H, 56I, 57A, 62M, 65R, 75N, 102M, 112H, 182A, 218R, 263R, 289A, 

293R, 304S, 323S, 333N, 353Q, 390V, 395V, 431V, 495E 

VII 
2S, 6N, 7R, 9M, 27I,36I, 39I, 46Y, 56L, 57T, 62A,  65K, 75S, 102I, 112Y, 182T, 218K, 263K, 289T, 

293K, 304G, 323N, 333K, 353R, 390I, 395I, 431I, 495G 

XIII 
2D, 6N, 7R, 9V, 27V, 36I, 39F, 46Y, 56L, 57T, 62M, 65K, 75S, 102I, 112Y, 182T, 218R, 263K, 289T, 

293K, 304G, 323N, 333K, 353Q, 390I, 395V, 431I, 495E 

L 

Domain interact with P protein (13IILPESHLSSPLV25), Domain-I 
(637FITTDLQYCLNWRYQT653), Domain-II 

(709YIVSARGGIEGLCQKCWTMISIAAI733), Domain-III 
(746CMVQGDNQVIAVTR759), Domain-IV (816KDGAILSQVLKNSSKL831), 
ATP binding motif (K21AXGXG), Polymerase associated motif in domain-III 

(QGDNQ) 

VI 

12Q, 46I, 99S, 103V, 122A, 149L, 155N, 156T, 206T, 295S, 320N, 337V, 341I, 438D, 497V, 626L, 740S, 
759K, 892S, 974S, 1032A, 1079T, 1102P, 1110N, 1174N, 1226V, 1291I, 1371T, 1410K, 1511A, 1523S, 1524G, 

1564D, 1579S, 1636V, 1695R, 1701K, 1726R, 1732L, 1757V, 1771R, 1852S, 1998R, 2008I, 2120R, 2127D, 
2130G, 2195A 

VII 

12R, 46T, 99A, 103I, 122T, 149P, 155S, 156S, 206V, 295G, 320D, 337A, 341V, 438E, 497I, 626P, 740A, 
759R, 892P, 974N, 1032V, 1079M, 1102S, 1110T, 1174S, 1226I, 1291V, 1371M, 1410L, 1511T, 1523N, 

1524A, 1564N, 1579N, 1636L, 1695K, 1701Q, 1726L, 1732P, 1757A, 1771H, 1852A, 1998K, 2008T, 2120K, 
2127N, 2130S, 2195T 

XIII 

12Q, 46T, 99A, 103V, 122T, 149P, 155S, 156S, 206V, 295G, 320D, 337A, 341V, 438D, 497V, 626P, 740S, 
759R, 892P, 974N, 1032V, 1079M, 1102S, 1110N, 1174S, 1226I, 1291I, 1371M, 1410L, 1511T, 1523S, 1524A, 
1564N, 1579N, 1636L, 1695K, 1701Q, 1726L, 1732P, 1757A, 1771H, 1852A, 1998K, 2008T, 2120K, 2127D, 

2130S, 2195A 

 18 
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Table 7: Comparative residue analysis of all sub-genotypes of Avian avulavirus 1 with respect of field used vaccine strains (LaSota; AF077761 19 
and Mukteshwar; EF201805) 20 

Genotype Representative isolates Amino acid position and substitutions 
12 16 27 31 33 35 38 40 43 46 47 48 50 54 65 68 71 76-81 85 88 89 96 109 

II Vaccine strain (AF077761) K I V P L K E C A D A Y R T R E T GRQGRL I G V A K 
III Vaccine strain (EF201805) - - - - M - - - - E - - - - - - - R--R-F - S - - N 

VI VIg  - - I - M - - - - E - - - A - G S R-KK-F - S - S N 
VIm  - - - - M - - - - E - - - - - G S R--K-F - - - S N 

VII 

VIIa - - - - M - G - P E G C S P K G A R--K-F V S - - N 
VIIb - V - L M R - - - E - - - - K G S R--K-F V S - - N 
VIIe - V - - M - - - - E - - - - K G S R--K-F V S - - N 
VIIf  R - - - M - - - - E - - - - - G S R--K-F V S - - N 
VIIi  - V - - M - - - - E - - - - K G A R--K-F V S I - N 

XIII XIIIb  - - - - M - K/Q G - E - - - - - G S R--K-F V S - - N 
XIIId - - - - M - - - - E - - - - - G A R--K-F V S - - N 

Note: The consensus sequences of each sub-genotype was constructed for comparative residue analysis against vaccine strain 21 

  22 
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Table 8: Polymorphism results for nucleotide diversity of all coding genes (CDS analysis) of Avian avulavirus 1 belongs to different genotypes 23 

Parameters G-VI G-VII G-XIII 
NP P M F HN L NP P M F HN L NP P M F HN L 

Total no. of Mutation 75 69 50 74 89 264 126 179 121 101 87 396 48 98 41 45 80 383 
Total number of sites 1470 1188 1095 1629 1715 6615 1470 1187 1095 1629 1714 6614 1470 1188 1095 1629 1715 6614 
Invariable Monomorphic 
sites 1396 1119 1045 1555 1626 6352 1346 1011 974 1528 1627 6229 1423 1090 1054 1584 1635 6233 

Variable Polymorphic Sites 74 69 50 74 89 263 124 176 121 101 87 385 47 98 41 45 80 381 
Singleton Variable Sites 69 69 48 71 81 246 15 9 7 26 18 90 33 0 25 1 66 226 
Parsimony Informative Sites 5 5 2 3 8 17 109 167 114 75 69 295 14 98 16 44 14 155 
No. of Haplotypes (h) 4 4 4 4 4 4 17 10 13 16 15 22 3 2 3 3 3 4 
Nucleotide Diversity (Pi) 0.02596 0.02974 0.02314 0.02302 0.02672 0.02036 0.01511 0.02479 0.02043 0.01440 0.01178 0.01210 0.01490 0.04949 0.01790 0.01645 0.02029 0.02782 
Average no. of pairwise 
nucleotide difference (k) 38.167 35.333 25.333 37.500 45.833 134.667 22.212 29.422 22.372 23.458 20.185 80.025 21.900 58.800 19.600 26.800 34.800 184.000 

Tajima’ D -0.7001 -0.6387 -0.7401 -0.7409 -0.5841 -0.6803 -1.2868 -1.4740 -1.1567 -0.4449 -0.4470 -0.9118 -0.3732 1.8997* -0.0306 1.8139* -0.7112 0.0066 
Note: The intraspecific polymorphism divergence time for whole genome sequences was estimated as T= 1.856 for genotype VI, T= 4.944* for 24 
genotype VII and T= 2.245 for genotype XIII (* 0.01< p <0.05, **0.001< p <0.01, *** p <0.001). 25 
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Table 9: Estimation of synonymous and non-synonymous substitutions rate in coding genes of so-far reported Avian avulavirus 1 using LaSota 27 
vaccine strain  28 

Parameters G-VI G-VII G-XIII 
NP P M F HN L NP P M F HN L NP P M F HN L 

ds 1.0209 0.6064 0.0861 0.7914 0.6011 0.1686 0.9698 0.6089 0.1109 0.8022 0.6004 0.1647 0.8371 0.5373 0.0916 0.7766 0.5833 0.1405 
dn 0.0456 0.1106 0.1901 0.0577 0.1081 0.1559 0.0442 0.0920 0.2242 0.0568 0.1247 0.1591 0.0465 0.0840 0.2061 0.0527 0.1262 0.1500 
ds/dn 22.3883 5.4842 0.4530 13.7208 5.5600 1.0814 21.9689 6.6048 0.4938 14.1531 4.8165 1.0352 17.9967 6.3635 0.4447 14.7523 4.6290 0.9340 
Variance (ds) 0.016500 0.005286 0.000393 0.006032 0.003413 0.000143 0.014460 0.005442 0.000499 0.007238 0.003817 0.000138 0.009550 0.003647 0.000435 0.006409 0.003383 0.000104 
Std Deviation (ds) 0.128453 0.072704 0.019826 0.077667 0.058420 0.011972 0.120248 0.073770 0.022339 0.085076 0.061779 0.011733 0.097723 0.060388 0.020851 0.080055 0.058167 0.010219 
Variance (dn) 0.000646 0.000496 0.000166 0.000356 0.000340 0.000031 0.000495 0.000435 0.000193 0.000359 0.000390 0.000031 0.000389 0.000315 0.000163 0.000330 0.000360 0.000028 
Std Deviation (dn) 0.025424 0.022262 0.012902 0.018877 0.018437 0.005587 0.022242 0.020863 0.013910 0.018960 0.019752 0.005585 0.019719 0.017744 0.012760 0.018162 0.018985 0.005291 
ps/pn 12.6040 4.0435 0.4844 8.8034 4.1070 1.0726 12.6930 4.8061 0.5310 9.0242 3.5974 1.0311 11.1802 4.8101 0.4787 9.5153 3.4950 0.9383 
Variance (ps) 0.001080 0.001046 0.000312 0.000731 0.000687 0.000091 0.001089 0.001045 0.000372 0.000852 0.000769 0.000089 0.001024 0.000818 0.000341 0.000808 0.000714 0.000071 
Std Deviation (ps) 0.032867 0.032348 0.017677 0.027038 0.026210 0.009561 0.032998 0.032322 0.019274 0.029188 0.027739 0.009410 0.031999 0.028609 0.018453 0.028426 0.026720 0.008442 
Variance (pn) 0.000042 0.000098 0.000132 0.000043 0.000068 0.000020 0.000495 0.000083 0.000144 0.000042 0.000079 0.000020 0.000042 0.000070 0.000128 0.000042 0.000076 0.000019 
Std Deviation (pn) 0.006506 0.009908 0.011503 0.006561 0.008272 0.004462 0.022242 0.009114 0.012005 0.006503 0.008869 0.004482 0.006451 0.008346 0.011293 0.006447 0.008722 0.004380 

Abbreviations: ds = synonymous substitutions per synonymous site, dn= non-synonymous substitutions per non- synonymous site, ds/dn = 29 
proportion of ds and dn differences, ps/pn = proportion of synonymous (ps) and non-synonymous (pn) differences 30 

Table 10: Estimation of synonymous and non-synonymous substitutions rate in coding genes of so far reported Avian avulavirus 1 using 31 
Mukstewar vaccine strain 32 

Parameters G-VI G-VII G-XIII 
NP P M F HN L NP P M F HN L NP P M F HN L 

ds 0.7490 0.4066 0.1050 0.6606 0.4617 0.1463 0.7929 0.5250 0.1034 0.6290 0.4396 0.1391 0.6755 0.4534 0.1007 0.6775 0.4558 0.1365 
dn 0.0286 0.1056 0.1460 0.0482 0.0872 0.1268 0.0278 0.0863 0.1788 0.0409 0.1011 0.1314 0.0360 0.0911 0.1612 0.0415 0.1034 0.1329 
ds/dn 26.2265 3.8508 0.7199 13.7010 5.3007 1.1538 28.6792 6.0923 0.5770 15.4478 4.3496 1.0595 18.7682 4.9767 0.6253 16.3237 4.4137 1.0268 
Variance (ds) 0.006991 0.002514 0.000494 0.004296 0.002105 0.000123 0.008341 0.004186 0.000466 0.004134 0.002024 0.000115 0.005695 0.002768 0.000483 0.004772 0.002107 0.000102 
Std Deviation (ds) 0.083615 0.050140 0.022221 0.065545 0.045885 0.011097 0.091331 0.064696 0.021592 0.064298 0.044984 0.010702 0.075465 0.052607 0.021988 0.069080 0.045906 0.010102 
Variance (dn) 0.000172 0.000293 0.000145 0.000213 0.000193 0.000025 0.000200 0.000339 0.000166 0.000168 0.000210 0.000026 0.000205 0.000288 0.000149 0.000210 0.000216 0.000025 
Std Deviation (dn) 0.013117 0.017110 0.012056 0.014591 0.013907 0.005020 0.014140 0.018410 0.012874 0.012981 0.014504 0.005108 0.014333 0.016980 0.012217 0.014490 0.014694 0.004992 
ps/pn 16.9039 3.1866 0.7392 9.4039 4.1915 1.1393 18.0230 4.6320 0.6057 10.7451 3.5178 1.0541 12.6676 3.9618 0.6502 11.0464 3.5407 1.0245 
Variance (ps) 0.000945 0.000850 0.000373 0.000738 0.000614 0.000083 0.001004 0.001021 0.000354 0.000772 0.000627 0.000079 0.000939 0.000820 0.000370 0.000783 0.000625 0.000071 
Std Deviation (ps) 0.030738 0.029159 0.019318 0.027162 0.024779 0.009129 0.031693 0.031950 0.018821 0.027793 0.025031 0.008890 0.030646 0.028633 0.019225 0.027985 0.025000 0.008420 
Variance (pn) 0.000023 0.000099 0.000110 0.000037 0.000056 0.000017 0.000024 0.000083 0.000126 0.000031 0.000065 0.000018 0.000034 0.000086 0.000114 0.000034 0.000064 0.000017 
Std Deviation (pn) 0.004819 0.009950 0.010481 0.006047 0.007512 0.004130 0.004910 0.009096 0.011224 0.005610 0.008071 0.004243 0.005821 0.009257 0.010681 0.005872 0.008002 0.004161 

Abbreviations: ds = synonymous substitutions per synonymous site, dn= non-synonymous substitutions per non- synonymous site, ds/dn = 33 
proportion of ds and dn differences, ps/pn = proportion of synonymous (ps) and non-synonymous (pn) differences 34 
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Table 11: A brief summary of the Datamonkey-derived natural pressure selection site/s analysis for individual complete genes (CDS) of so-far 37 
reported Avian avulavirus 1 38 

Parameters G-VI G-VII G-XIII 
NP P M F HN L NP P M F HN L NP P M F HN L 

Mean dN/dS 0.050124 0.37830 0.01818 0.10890 0.24668 0.13024 0.09871 0.28340 0.01944 0.38894 0.29408 0.13761 0.09096 0.35729 0.16906 0.14771 0.16462 0.10332 
Single Likelihood Ancestor Counting (SLAC) 

No. of positive 
and negative 
selection sites 
along with 
codon position 

0 positive 
site and 59 
negative 

sites 

2 positive 
sites (28, 
147) and 

33 negative 
sites 

0 positive 
site and 

45 
negative 

sites 

1 positive 
site (179) 

and 48 
negative 

sites 

0 positive 
site and 42 
negative 

sites 

0 positive 
site and 

61 
negative 

sites 

1 
positive 

site 
(124) 

and 49 
negative 

sites 

0 
positive 
site and 

62 
negative 

sites 

0 
positive 
site and 

51 
negative 

sites 

2 
positive 
sites (48, 
342) and 

64 
negative 

sites 

0 
positive 
site and 

48 
negative 

sites 

0 
positive 
site and 

109 
negative 

sites 

0 
positive 
site and 

43 
negative 

sites 

0 
positive 
site and 

60 
negative 

sites 

0 
positive 
site and 

59 
negative 

sites 

1 
positive 

site 
(202) 

and 81 
negative 

sites 

0 
positive 
site and 

89 
negative 

sites 

0 positive 
site and 

101 
negative 

sites 

Fixed Effect Likelihood (FEL) 

No. of positive 
and negative 
selection sites 
along with 
codon position 

1 positive 
site (401) 

and 65 
negative 

sites 

2 positive 
sites (28, 

85)  and 36 
negative 

sites 

0 positive 
sites and 

47 
negative 

sites 

3 positive 
sites (10, 
179, 509) 

and 55 
negative 

sites 

2 positive 
sites (213, 

338) and 76 
negative 

sites 

0 positive 
site and 

109 
negative 

sites 

1 
positive 
site (21) 
and 61 

negative 
sites 

0 
positive 
site and 

55 
negative 

sites 

0 
positive 
site and 

67 
negative 

sites 

7 
positive 
site (34, 
48, 299, 

287, 
295, 
302, 

342) and 
89 

negative 
sites 

1 
positive 

site 
(267) 

and 79 
negative 

sites 

5 
positive 
sites (89 
237 569, 

1191, 
1723) 

and 159 
negative 

sites 

1 
positive 

site 
(168) 

and 32 
negative 

sites 

1 
positive 
site (57) 
and 93 

negative 
sites 

0 
positive 
site and 

31 
negative 

sites 

5 
positive 

sites 
(114, 
202, 
356, 
378, 

400) and 
104 

negative 
sites 

3 
positive 
sites (46, 

199, 
351) and 

86 
negative 

sites 

11 positive 
sites (61, 
387, 560, 
598, 623, 
645, 666, 
848, 900, 

1191,1565) 
and 112 
negative 

sites 

Internal Branch Fixed Effect Likelihood (IFEL) 

No. of positive 
and negative 
selection sites 
along with 
codon position 

0 positive 
site and 14 
negative 

sites 

3 positive 
sites (28, 
85, 181) 

and 9 
negative 

sites 

0 positive 
site and 

15 
negative 

sites 

2 positive 
sites 

(10,457) 
and 13 

negative 
sites 

1 positive 
site (390) 

and 88 
negative 

sites 

1 positive 
site 

(1261) 
and 159 
negative 

sites 

0 
positive 
site and 

80 
negative 

sites 

1 
positive 

site 
(203) 

and 63 
negative 

sites 

2 
positive 
sites (12, 
299) and 

88 
negative 

sites 

9 
positive 
sites (34, 
48, 154, 

299, 
287, 
295, 
299, 
302, 

342) and 
97 

negative 
sites 

3 
positive 

sites 
(201, 
267, 

399) and 
85 

negative 
sites 

11 
positive 
sites (64, 
89 167, 

237, 
401, 

569,784, 
982, 

1191, 
1534, 
1723) 

and 181 
negative 

sites 

2 
positive 

sites 
(168, 

296) and 
62 

negative 
sites 

1 
positive 
site (57) 
and 57 

negative 
sites 

1 
positive 

site 
(111) 

and 69 
negative 

sites 

7 
positive 
sites (17, 
68, 114, 

202, 
356, 
378, 

400) and 
73 

negative 
sites 

3 
positive 
sites (46, 

199, 
351) and 

90 
negative 

sites 

13 positive 
sites (61, 
387, 560, 
598, 623, 
645, 666, 
848, 900, 

1191,1243, 
1406, 

1565) and 
167 

negative 
sites 
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Table 12: The statistical outcomes and detailed information of two recombinant events which observed in recombination analysis of so far 41 
reported Avian avulavirus 1 42 

Analysis Breakpoint 1 Breakpoint 2 
Potential recombinant isolate JX854452 (Pheasant/MM20/Pakistan/ 2011) JX854452 (Pheasant/MM20/Pakistan/ 2011) 

Potential major parent KP776462 (chicken/NDV/Pak/AW-14)  KP776462 (chicken/NDV/Pak/AW-14) 
Similarity with major parent 97.4% 98.3% 

Potential minor parent JN682210 (Chicken/BY/Pakistan/2010) JN682210 (Chicken/BY/Pakistan/2010) 
Similarity with minor parent 99% 99.5% 

Region derived from major parent 1-1007 nt, 3475-15233 nt 1-8817 nt, 9593-15219 nt 
Region derived from minor parent 1008-3474 nt 8818-9592 nt 

Beginning breakpoint 1006 nt 8793 nt 
Beginning breakpoint 99% C.I 974-1038 nt 8764-8808 nt 

Ending breakpoint 3448 nt 9566 nt 
Ending breakpoint 99% C.I 3368-3511 nt 9548-9654 nt 

Length of recombination event 2442 nt 774 nt 
Probability (MC corrected) 8.733 E-160 3.529 E-84 

Indication of true recombination 
Methods Average p-value Average p-value 

RDP 1.729X 10-164 5.719X 10-83 
GENECONV 5.924X 10-158 4.769X 10-86 

BootScan 3.884X 10-161 9.267X 10-84 
MaxChi 1.023X 10-43 6.312X 10-20 

Chimaera 6.108X 10-45 1.743X 10-20 
SiScan 8.836X 10-52 5.074X 10-22 
3Seq 2.247X 10-13 8.988X 10-13 
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