
1

State of Runtime Adaptation in Service-oriented Systems: What, Where, When,
How and Right

Leah Mutanu 1, Gerald Kotonya 2*

1 School of Science and Technology, United States International University, P.O. Box 14634-00800, Nairobi,
Kenya
2 School of Computing and Communication, Lancaster University, Lancaster LA1 4WA, United Kingdom
*lmutanu@usiu.ac.ke

Abstract: Software	as	a	Service	reflects	a	“service-oriented”	approach	to	software	development	that	is	based	on	the	notion	of	
composing	applications	by	discovering	and	 invoking	network-available	services	 to	accomplish	some	task.	However,	as	more	
business	organizations	adopt	 service-oriented	 solutions	and	 the	demands	on	 them	grow,	 the	problem	of	ensuring	 that	 the	
software	 systems	 can	 adapt	 fast	 and	 effectively	 to	 changing	 business	 needs,	 changes	 in	 their	 runtime	 environment	 and	
failures	in	provided	services	has	become	an	increasingly	important	research	problem.	Dynamic	adaptation	has	been	proposed	
as	a	way	to	address	the	problem.	However,	for	adaptation	to	be	effective	several	other	factors	need	to	be	considered.	This	
paper	 identifies	the	key	factors	that	 influence	runtime	adaptation	 in	service-oriented	systems,	and	examines	how	well	 they	
are	addressed	in	29	adaptation	approaches	intended	to	support	service-oriented	systems.	

1. Introduction
Service-Oriented Architecture (SOA) provides the

conceptual framework for realizing service-oriented systems
(SOS’s) by supporting dynamic composition and
reconfiguration of software systems from networked
software services [1]. Rosen [2] identifies the key
motivations for SOA as agility, flexibility, reuse, integration
and reduced cost. However, the need to ensure that the
systems can adapt quickly and effectively to changing
business needs, changes in system quality and changes in
their runtime environment is an increasingly important
research problem [3]. Effective adaptation ensures the
system remains relevant in a changing environment and is
an accurate reflection of user expectations.

Taylor [4] defines dynamic adaptation as the ability
of a software system’s functionality to be changed at
runtime without requiring a system reload or restart. Taylor
points out that there is an increasing demand for non-stop
systems, as well as a desire to avoid annoying users.
However, current approaches for supporting runtime
adaptation in service-oriented systems differ widely with
respect to the nature of systems they support, the types of
system changes they support and their underlying model of
adaptation [5][6]. In addition, it is also unclear how these
approaches address the important issue of ensuring the
adaptation is effective. A growing consensus amongst
researchers is that runtime adaptation in SOA should
incorporate a validation element [16][18].

In their research roadmap for self-adaptive systems,
Lemos et al. [7] emphasize the need for feedback control in
the life cycle of self-adaptive systems, and the need to
perform traditional design-time verification and validation at
runtime. In another survey, Salehie et al. [45] note that
testing and assurance are probably the least focused phases
in the engineering of self-adaptive software. Papazoglou et
al. [18] echo this view. They note that the bulk of research
in adaptive service-oriented systems has focused largely on
dynamic compositions. Adaptation validation goes beyond

verifying that the adaptation conforms to its operational
specification. Validation is concerned with verifying the
acceptability of an adaptation, often from the point of view
of the system user – i.e. is it the right adaptation for the
problem as opposed to whether it is specified right?
Validation assesses the effectiveness of an adaptation.
Because user requirements are constantly changing, a self-
validation process would enable the adaptation system to
self-assess and self- evolve in order to remain relevant.

This paper identifies the key research challenges and
the factors that influence runtime adaptation in service-
oriented systems. The influencing factors are used as basis
for reviewing 29 approaches intended to support runtime
adaptation in service-oriented systems. The survey
compliments existing surveys and extends our earlier survey
[72] to include an in-depth review of runtime validation in
service-oriented systems.

Notable additions in this survey include a detailed
review of the different models and techniques used to
support runtime validation in service-oriented systems,
when they are applied, their primary focus and the different
strategies employed. Eighteen service-oriented approaches
that support runtime validation are reviewed in this context.
This survey has three objectives (i) to provide an overview
of the key challenges in runtime adaptation for service-
oriented systems; (ii) to propose a simple, but effective
scheme for assessing runtime adaptation approaches in
service-oriented systems; (ii) to provide an overview of the
state of runtime adaptation approaches in service-oriented
systems.

The paper is organised as follows, Section 2 outlines
the key research challenges for runtime adaptation in
service-oriented systems. Section 3 identifies the key factors
that influence runtime adaptation in service-oriented
systems and review how well they are supported in 29
service-oriented approaches. Section 4 provides some
concluding thoughts and a look ahead.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lancaster E-Prints

https://core.ac.uk/display/224767738?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

2. Research Challenges
A number of research initiatives are investigating

effective ways to improve on runtime adaptation in service-
oriented systems. These initiatives are however inadequate
for addressing the issues identified in Section 1 for the
following reasons:
• Static adaptation rules. Current approaches for

supporting runtime adaptation in service-oriented
systems are based on rules that reconfigure systems
based on fixed decision points which do not take into
account the dynamic nature of the factors that influence
adaptation[45] [7]. Indeed, Di Nitto et al. [76] attribute
the dynamic nature of software to the fact that
requirements cannot be fully gathered upfront and
cannot be “frozen”. Thus while various studies have
been conducted to address the challenge of adapting
software to address the ever changing requirements,
currently, no single solutions to this problem exists.
Existing research revolves around the “local” adaptation
of specific cases. Di Nitto et al. highlight the need for
research to devise technologies and methods to enable
crosscutting adaptations.

• Poor support for validation. Current approaches for
supporting runtime adaptation in service-oriented
systems offer poor support for validation [16] [7]. Like
most autonomic systems, runtime adaptation in service-
oriented systems is based on IBM’s Monitoring,
Analysis, Planning, and Execution model (MAPE)[47].
However, MAPE does not support validation. The lack
of mechanisms for validating adaptation make it difficult
to gauge the appropriateness and effectiveness of
adaptation decisions, and limit our understanding of the
nature of problems for which they are suited. Validation
provides an avenue for adaptation rules to evolve and
remain relevant because the factors that influence
adaptation are constantly changing[72]. Validating
adaptation goes beyond verifying that the adaptation
conforms to its operational specification. Validation is
concerned with verifying the acceptability of an
adaptation [77], often from the point of view of the
system user, i.e. “is it the right adaptation for the
problem?” as opposed to “is it specified right?”
Validation assesses the effectiveness of an adaptation.

• Poor support for diversity. Current approaches for
runtime adaptation are built around predefined changes
requests and adaptations, and are often embedded
within the applications they support. This limits their
extensibility, portability and the quality of adaptation
they offer. For example Cubo et al. [6] and Tanaka and
Ishida [32] describe approaches that are concerned with
specific application contexts. Swaminathan [5] and
Cardellini [16] propose models that promote context
variability, however the author provides no information
about the implementation or evaluation of the models.
There is no evidence that the approaches support
diversity.

• Poor support for proactive adaptation. Most approaches
to adaptation in service-oriented systems are reactive
[50] [74]. They recompose the system as a reaction to
change rather than anticipate change. While reactive
adaptation has the advantage of requiring only a small
set of recent system conditions to select an adaptation,
allowing for a timely decision, it has a number of

limitations. First, reactive adaptation is based largely on
static system properties and conditions that do not take
into account previous aspects of system behaviour that
may inform better adaptation selection. Secondly,
reactive adaption lags behind current system conditions,
which may be short-lived or change as the adaptation is
being carried out resulting in unnecessary adaptations
that may impact system quality. Lastly, the inability to
anticipate change makes it difficult to address disruptive
system changes such as service and quality failures in a
timely manner.

These key challenges represent the gaps in the runtime
adaptation of service-oriented systems and are highlighted in
this paper through a review of existing work in this area. This
paper aims at highlighting the importance of addressing these
gaps when developing dynamic self-adaptive service oriented
applications.

3. Factors that influence adaptation
Most of the work on self-adapting software systems

takes inspiration from control theory and machine learning.
Control-theory splits the world into a controller and a plant.
The controller is responsible for sending signals to the plant,
according to a control law, so that the output of the plant
follows a reference (the expected ideal output). Figure 1
shows a typical control loop. Although it is difficult to
anticipate when and how change occurs in software systems,
it is possible to control when and how the adaptation should
react to change.

Fig. 1. Dynamic physical system

Dynamic adaptive systems require information about

the running application as well as control protocols to be
able to reconfigure a system. For example, keeping web
services up and running for a long time requires collecting
of information about the current state of the system,
analyzing that information to diagnose performance
problems or to detect failures, deciding how to resolve the
problem (e.g., via dynamic load-balancing or healing), and
acting on those decisions. Figure 2(a) shows the control
process for a software system equivalent of the physical
system shown in Figure 1. The controller maps onto an
adaptation process that reconfigures the runtime system to
address the changing needs in its application context. Figure
2(b) show how the adaptation process can be improved
using validation. Validation tracks, assesses and adjusts
adaptations to ensure that they reflect user expectations.

Lemos et al. [7] highlight the importance of
understanding the factors that influence adaptation. They
posit that this helps in the comprehension of how software
processes change when developing self-adaptive systems.
They describe these factors as design decisions pertinent to
self-adaptive systems. These are: observation,
representation, control, identification, and adaptation
mechanism. These decisions however do not include
validation, which they state is key the key to ensuring that
the software system satisfies functional requirements and

3

meets their expected quality attributes. The key challenges
with current approaches include defining models that can
represent a wide range of system properties and the need for
feedback control loops in the life cycle of self-adaptive
systems and self-validation. The nature and quality of
runtime adaptation in service-oriented systems is influenced
by system changes (i.e. adaptation triggers), the nature of
the application and the logical area where it executes (i.e.
application context), the strategy used to reconfigure the
system in a particular change context (i.e. adaptation model),
and the effectiveness of the adaptation (i.e. validation).
Together, these factors, represent the what, where, when and
how, and right of runtime adaptation. It is also important to
note that these factors constantly shift and evolve making it
difficult to specify adequate adaptation rules in advance.

Fig. 2. Dynamic software system

Hirschfeld et al. [38] suggest that runtime adaptation

in service-oriented systems should address the what, when,
and how of adaptation (Figure 3). In Hirschfeld et al. [38],
the what distinguishes between the basic properties of the
system’s computation, state, and communication. The when
addresses the time when adaptations can be made
operational in the system during software development i.e.
at development time, compile-time, load-time, or runtime.
The how studies tools and techniques that allow for
adaptations to become effective. The what, when and how
defined by Hirschfield et al. relate adaptation to system
properties, software development stages, and tools to effect
adaptation. This is different from our classification, which
relates what, where, when and how, and right to change
triggers, application context, adaptation model and
validation [72]. Our classification is supported by a recent
review of the state of runtime adaptation in service-oriented
systems reveal that there are other important factors
(dimensions) such as the application context, adaptation
triggers, and validation.

Fig. 3. Adaptation dimensions

Paktinat et al. [75] present a similar taxonomy of

adaptation strategies for service-based systems. They
classify adaptation according to what should be monitored,
when the change should occur, where the problem is located,
how adaptation is delivered, why adaptation should occur
and who should be involved. Paktinat et al. do not
distinguish triggers, provide no distinction between the
different implementation models and do not support
validation. Like [38] they also do not examine the
effectiveness of the adaptation process. A comparison
between the terminology and scope of our approach, and
Hirschfeld et al. [38] and Paktinal et al. [75] is shown in
Table 1. The elements of our approach are discussed in
detail next.

Table 1. Runtime Adaptation Taxonomies

R
ef

er
en

ce

T
ri

gg
er

(c

au
se

)

L
og

ic
al

ex

ec
ut

io
n

ar
ea

W
he

n
ca

rr
ie

d
ou

t

St
ra

te
gy

V
al

id
at

io
n

Fo
cu

s

[38] - What When How -
Develop

ment
process

[75] What Where When
How,
Why,
Who

- System

This
work What Where When How Right System

3.1. Change Trigger (What)

A change trigger represents what causes adaptation

and the reason for it. Change triggers are a function of
changes in the business environment, service failure, and
changes in the system quality and its runtime environment.
• Business Environment Triggers. Changes in the business

environment that the system supports may trigger
adaptation. This may be caused by changes in user
requirements, business rules or platform. Zeng [8]
describes an adaptation approach that accepts changes in
user requirements and business rules on the fly and
composes services to address them. Similarly Cubo [6]
describes an approach that uses changes in the system
context and platform to trigger adaptation. Because user
requirements are not static and constantly change at
runtime, any adaptation solution should monitor the
business environment and adapt the system accordingly.

• Service Provision Trigger. Failures in provided services,
for example, incompabilities that impact on service
composition, network outages and poor service quality,

4

could trigger adaptation. The quality of a service-
oriented system depends not only on the quality of the
provided service, but on the interdependencies between
services and resource constraints imposed by the runtime
environment. This type of corrective adaptation is
typical of self-healing systems. Robinson et al., [10]
describes an approach that uses a consumer-centred,
pluggable brokerage model to track and renegotiate
service faults and changes. The framework provides a
service monitoring system, which actively monitors the
quality of negotiated services for emergent changes,
SLA violations and failure. A similar approach, The
Personal Mobility Manager, described in [29]
emphasizes the need for automatic system diagnosis to
detect runtime errors. It helps car drivers find the best
route in or between towns, by suggesting optimal
combinations of transportation according to local
situations, such as traffic level, weather conditions and
opening hours. These examples demonstrate that in
addition to changes in functional requirements, service-
oriented systems should also be monitored for failures in
service quality to ensure that they meet the expected
service level agreements.

• Runtime Environment Triggers. Changes in the runtime
system can also trigger adaptation. Interacting services
may impose dependability as well as structural
constraints on each other (e.g. performance, availability,
cost, and interface requirements). Dustdar et al. [9]
describe a self-adaptation technique for managing the
runtime integration of diverse requirements arising from
interacting services, such as time, performance and cost.
Swaminathan et al. [5] propose an adaptation approach
based on self-healing as a means for addressing runtime
system errors. Runtime resource contentions between
services in the orchestration platform can result in
significant falls in service quality. This emergent quality
of service is difficult to anticipate before system
composition, as resource demands are often dynamic
and influenced by many factors. Newman and Kotonya
[11] proposes a resource-aware framework that
combines resource monitoring with dynamic service
orchestration to provide a runtime architecture that
mediates resource contentions in embedded service-
oriented systems. Embedded systems typically operate in
resource-constrained environments and often find
application in isolated locations. Small resource changes
in their operating environment can have significant
impact on the system quality hence making them
difficult to manage. It is therefore important to monitor
the runtime environment and dynamically adapt to
ensure embedded systems run smoothly.

Effective adaptation must address the real cause rather
than the symptom. Taiani [13] describes this as a key
challenge in adaptive fault tolerant computing. Moyano et al.
[14] describe a system that monitors service failure and
runtime environment triggers. These are changes in hardware
and firmware, including the unpredictable arrival or
disappearance of devices and software component. For
example, a low memory trigger may be the result of an SLA
violation or runtime environment resource failure. The
resolution to the problem might involve replacing the service
with a more efficient alternative or optimizing the runtime
environment, or both. It is important that the adaptation

process is not only able to find a good fit for the problem, but
the right fit.

It is worth noting that adaptation triggers are not
mutually exclusive; there is often significant overlap between
them. For example, when a user is trying to access a travel
assistant the user’s environment acts as the source of the
trigger. Additionally if the user is using a mobile device,
which has limited memory resources, then the runtime
environment acts as the source of another trigger. A service
provision trigger will arise from the quality of service
required by the user. Triggers can also invoke other triggers
and therefore overlap. For example a user accessing the
application from an urban, industrial, or affluent geographic
location will often require services of high reputation and
may not have devices with resource constrains. The users
environment (geographic location) then invokes the runtime
and service provision triggers. A change or failure may be
the symptom of an unseen change or failure. Effective
adaptation must therefore address the real cause rather than
the symptom.

3.2. Application context (Where)
An application context defines nature of the

application and the logical area where it executes. It helps us
understand where adaptation takes place and the constraints
involved. Cubo et al. [6] discuss the importance of creating
adaptive systems sensitive to their application context (i.e.
domain, location, time and activity). Tanaka and Ishida [32]
identify an input language and a target language as the
application context for a language translation application.
They however do not provide evidence that their approach
can be used in a different application context. Most of the
approaches surveyed in this paper were concerned with
specific application contexts. Zeng et al. [8], for example,
describe a runtime approach for supporting business change
in the automotive industry. Similarly Newman et. al. [11]
describes an adaptation framework specifically for
embedded resource-constrained environments. Baresi et al.
[15] describes an adaptation framework specifically for a
smart home system. Specific application contexts contain
few data which is easy to process for decision making.
Generic application contexts however contain a lot of
information beyond what is actually needed and this is
difficult to process. Most of the work that addresses specific
application contexts does not provide insight into how such
systems would work in a different application or where
different triggers existed.

In their description for the DigiHome architecture
Romero et al. [41] discuss the integration of multi-scale
entities where different application contexts are addressed.
In the DigiHome scenario, they consider several
heterogeneous devices that generate isolated events, which
can be used to obtain valuable information and to make
decisions accordingly. They make use of Complex Event
Processing (CEP), to find relationships between a series of
simple and independent events from different sources, using
previously defined rules. CEP is useful in getting better
information at real time in generic applications. A few other
approaches, including Swaminathan et al. [5], Cardellini et
al. [16], and Zeng et al. [17] propose generic application
contexts, but they only provide sketchy implementation
details. Some approaches promote context variability. For
example, Swaminathan et al. describe a context-independent,
self-configuring, self-healing model for web services.

5

However, the author provides no information about the
implementation or evaluation of the model. Huang et al. [20]
describe an approach for developing self-configuring
services using service-specific knowledge. They evaluate
their approach on three different systems (i.e. a video
streaming service, an interactive search service, and a video-
conference service). However, it is evident from their
discussion that the context needs to be known before the
application is deployed.

The survey distinguished between dynamic

adaptation approaches that are intended to support specific
application contexts and generic solutions that can tailored
for different application contexts. Examples of approaches
intended for specific application contexts include Zeng et al
[8] and Autili et al [28] whose work target automotive and
manufacturing domains. Examples of generic approaches
included Swaminathan [5] and Cardellini et al [16]. Most
approaches surveyed are designed for specific application
contexts.

3.3. Adaptation model (When and How)
An adaptation model indicates when the adaptation

process is carried out and how the model is implemented in
relation to the system it manages. A decision on when to
conduct adaptation is arrived at depending on when the
adaptation requirements are known as well as the
availability of the requirements for adaptation.

This survey focuses runtime adaptation. This
corresponds to situations where the requirements are only
known after the system has started executing. This is the
typical situation in ubiquitous and mobile computing
scenarios. The availability of the requirements for
adaptation, such as system resources can also determine
when to conduct adaptation. For example, if the resources
are available online then dynamic adaptation can be
conducted; otherwise it can be pushed to a later time when
they will be available. Table 1 provides a summary of
current approaches for runtime adaptation. Papazoglou et al.
[18] and Baresi et al. [3] identify the key techniques that can
be used to achieve runtime adaptation as self-configuring,
self-healing, and self-optimizing techniques.
• Self-Configuring is the automatic re-composition of

services to adapt to changes in the service environment.
The work of [19], [8] and [21] describe self-configuring
adaptation techniques.

• Self-Optimizing is the automatic re-composition of
services to improve quality of a service. The work of [9],
[17], and [13] describes self-optimizing adaptation
techniques.

• Self-Healing is the automatic re-composition of services
to address a service failure. Self-healing techniques
detect system malfunctions and initiate policy based
corrective actions without disrupting the runtime
environment [18].

Romay’s [21] review of self-adaptation techniques in
SOA reveals that current research focuses largely on self-
configuring techniques. There is very little research on self-
optimizing or self-healing techniques. Bucchiarone et al. [22]
note that focusing on only one technique limits the
effectiveness of the approach. Our survey focuses on two
aspects of the Adaptation Model - the nature of its
implementation (i.e. pluggable vs. embedded) and the
strategy adopted to effect the implemented technique (i.e.
reactive vs. predictive). An implementation may be

associated with any of the many adaptation techniques. We
believe that this high-level view provides a more
transferrable and reusable description of the underlying
adaptation model.

3.3.1. Adaptation strategy – Predictive vs. reactive:
Adaptation can occur in response to anticipated changes
(predictive) or in response to change trigger (reactive).
Reactive adaptation controls and adapts the environment
according to the users’ situation. The system perceives its
environment through sensors and reacts to changes as they
occur. An ideal predictive approach does not take into
account the reactions of the system under control, but only
the environment under which it operates. The control of the
environment is not pegged on observing the reactions of the
user. As a result such an approach should offer quick
response and high performance with few sensors required.

Tanaka and Ishida [32] propose a model that focuses
on predicting the executability of services (i.e. if a message
request will cause execution failure). Unfortunately they
provide limited detail on the implementation and evaluation
of their approach. In their event-driven quality of service
prediction approach, Zeng et al. [8] point out that most
adaptation approaches focus on monitoring Quality of
Service (QoS) constraints and as such cannot provide early
warning to prevent QoS degradation. They describe a model
that makes use of data mining and prediction scoring to
anticipate change. However, they provide only limited
information on its evaluation. Wang et al. [24] proposes a
predictability model based on the Q-Learning algorithm
using the Markov Decision Processes. They explain that
human oriented services are rarely predictable. They point
out that many service properties keep changing in a manner
that prior knowledge of these changes may not be available.
Instead they suggest incorporating reinforced learning in
adaptation techniques to ensure that adaptation techniques
remain relevant. Their model uses a decision process that
maximizes the expected sum of rewards. While predictive
adaptation shows some promise, there is very little research
on them and even less information on their evaluation. Most
of the research is reactive with adaptation taking place after
triggers have occurred, making it difficult to mitigate
unforeseen catastrophic results.

3.3.2. Model implementation: An adaptation model can
be implemented as an intrinsic part of the system it manages
or as a pluggable framework that monitors change variables
and effects re-composition from outside the system. Garlan
et al. [23] depict a pluggable approach where the adaptation
module is plugged on to legacy systems. In their work an
external model is used to monitor and modify a system
dynamically.

Most of the initiatives surveyed however adopted an
embedded approach. Zeng et al. [8] and Cubo et al. [6] are
typical of this approach. However, there is growing
acknowledgement amongst researchers that a pluggable
approach offers a better engineering solution. Pathan et al.
[63] propose a generic approach to context aware modeling
through the use a separate component for context reasoning.
Garlan et al. [23] state that, the use of external control
mechanisms for self-adaptivity is a more effective
engineering solution than localizing the solution. A
pluggable engine can be analyzed, modified, extended, and

6

reused across different systems. Most solutions presented in
existing literature were embedded which limits their
reusability and portability.

3.4. Summary
Table 2 shows our results of surveying 29 approaches

that provide runtime adaptation for SOS’s. It is important to
mention that the survey was intended to be representative
rather than exhaustive. The approaches were carefully
selected to provide a good coverage of current adaptation in
service-oriented systems. To ensure representative coverage
all selected approached support runtime adaptation and
provide some level of support for at least two factors that
influence runtime adaptation.

 Each approach is reviewed in terms of the nature and
extent of support for change triggers, adaptation model,
validation and application context. Most of the approaches
provide limited support for runtime and service quality

triggers. However, they provide comparatively good support
for business environment triggers. Only Ivanovic et al. [12]
describes an approach for supporting all the three adaptation
triggers. In their work they talk of the computational cost of
service networks as being dependent on internal and external
factors. They recognize that triggers for adaptation are due to
overlapping factors that are both internal and external to the
service. Of the approaches reviewed, only a few provide
support for adaptation validation. However, the support is
very limited. There is poor support for diversity with most
approaches designed to support specific application contexts.
This limitation may be related to the fact that most of the
approaches are embedded. Of the approaches surveyed only
Zeng et al. [17] provides a detailed discussion of the
adaptation techniques used to address quality of service
issues that arise from interacting services (i.e. system
concerns).

Table 2. Summary of adaptation approaches

 Adaptation Trigger Adaptation Model

Approach

 Strategy Implementation

Application
Context

(G= Generic
S= Specific)

R
un

tim
e

en

vi
ro

nm
en

t

Se
rv

ic
e

pr
ov

is
io

n

B
us

in
es

s
en

vi
ro

nm
en

t

R
ea

ct
iv

e
(R

)
Pr

ed
ic

tiv
e

(P
) Embedded (E)

Pluggable (P)

Zeng et al [8] � � ½ R E S
Swaminathan [5] � ½ ½ R N/A G
Cubo et al [6] � � � R E S
Huang et al [20] � � ½ R E S
Dustdar et al [9] ½ � ½ R E S
Autili et al [28] ½ � ½ R E S

Cardellini et al [16] ½ ½ ½ R P G
Lorenzoli et al [29] � ½ � R P S
He et al [30] � ½ � R E S
Mateescu et al [31] � � ½ R P S
Zeng et al [17] � ½ � P E G
Robinson et al [10] � � � R P S
Tanaka et al [32] � � � P E S
Siljee et al [33] � � � R E S
Orriens et al [34] � � � R E S
Wang et al [24] � � � R E S
Sliwa et al [35] � � � R E S
Lin et al [36] � � � R E S
Ivanovic et al [12] � � � P E S
Hussein et al [37] � ½ � R P S
Hirschfield et al [38] � � � R E S
Tosic et al [39] � ½ � R P S
Maurer et al [40] � � � R P S
Romero et al [41] � � � R P S
Li et al [42] ½ ½ � R P S
Newman et al [11] � � � R P S
Motahari-Nezhad et al [43] � � � R E S
Cugola et al [44] � � � R E S
Andre et al. [46] ½ ½ ½ R P G

Key
� - Supported
½ - Weakly Supported
� - Not Supported N/A - Not Applicable

7

Most of the approaches surveyed provide strong
support for dynamic adaptation, which is not surprising as
they are intended to support runtime change. However, most
of them are implemented as part of the application they
manage (i.e. embedded) rather than pluggable. Pluggable
approaches include [16], [29], [31], [32] and [36]. The
approach proposed by Swaminathan at al. [5] does not
provide adequate implementation details, so it is unclear how
it is implemented (i.e. as a pluggable or embedded solution).

3.5. Support for runtime validation (Right)

A typical adaptation process uses a predefined
decision model to select an appropriate adaptation in
response to a change trigger. This relationship is often
predefined and stored as a set of adaptation rules. However,
the dynamic nature of service-oriented systems means these
factors are constantly changing, which makes it difficult to
specify adequate adaptation rules a priori. This is further
complicated by the likelihood of competing adaptation
requests. This means that rules used to inform adaptation
decisions cannot be static and must constantly evolve to
remain relevant. Most approaches that support runtime
adaptation are based on rules that reconfigure systems based
on fixed decision points. This means that most adaptations in
service-oriented systems are responses to change rather than
anticipation. One way to address the problem is through the
validation of adaptation decisions. As mentioned earlier
validation refers to building the right product based on the
user’s product acceptance [77]. The most challenging
concern for validation is uncertainty. This highlights the need
to conduct it at runtime unlike conventional approaches that
focus on conducting it before deployment. Because self-
adaptation targets environments with hard to predict, highly
dynamic, and comparatively resource-constrained conditions,
a more inclusive validation approach would address this
challenge. Such an approach should perform validation for
the entire control loop against some optimization objective.
This would include validating the reconfiguration process,
the executability of the reconfiguration process, and the new
configuration, against the business, application and runtime
environment.

Validation serves two key roles. First, it provides a
mechanism for assessing the effectiveness of an adaptation
decision i.e. how well a recommended adaptation addresses
the concerns for which the system is reconfigured. Secondly
it provides us with insights into the nature of problems for
which different adaptations are suited. Most autonomic
systems are underpinned by IBM’s Monitoring, Analysis,
Planning, and Execution model (MAPE) [47]. Figure 4
illustrates a typical MAPE-K cycle.

Fig. 4. MAPE-K Architectural Model for Autonomic

Computing

MAPE model for autonomic computing intelligent control
loop works as follows:
• The monitor function provides the mechanisms that

collect, aggregate, filter and report details on adaptation
triggers. To detect the triggers sensors are used. For
example a sensor could be used to detect the client device
used and provide a report. Baresi and Guinea [27]
describe service-monitoring approach as the support for
the dynamic selection and execution of monitoring rules
at runtime.

• The analyze function provides the mechanisms that
correlate and model complex situations. To do this it
analyses the report provided by the monitor and issues an
alert if certain thresh hold values are reached based on
preexisting rules. For most approaches surveyed, this is a
simple process as it addresses only one type of change.
The process however would become complex where
multiple changes have to be monitored. Psaier et al [36]
attribute the difficulty in management of adaptation of
service-oriented applications to the changing interaction
and behavior patterns that possibly contradict and result
in faults from varying conditions and misbehavior in the
network.

• The plan function provides the mechanisms that construct
the actions needed to achieve goals and objectives. Most
approaches surveyed focus on the identification of a
suitable alternative service as can be seen in the work of
Cervantes et al [34]. He et al [14] however propose the
adaptation of web service composition based on
workflow patterns re-composition.

• The execute function provides the mechanisms that
control the execution of a plan with considerations for
dynamic updates. It invokes the adaptation technique. For
example it would call for the re-orchestration of the
service-oriented application to make use of the suggested
workflow pattern.

While the MAPE model is evident in many self-
adaptive frameworks for SOA, it lacks a runtime mechanism
for supporting validation. This is also evident in the survey
we conducted as most researchers do not consider validation
as part of the adaptation process. Kephart et al. [81]
highlight the importance of continuously validating an
autonomic system to gauge its effectiveness. A separate
survey of current research in validating service-oriented
systems reveals that various verification and validation
techniques are used to support adaptation. These include
formal methods, model-based, and machine-learning
techniques. The next section discusses these techniques and
some of the challenges faced.

3.5.1. Formal methods: Salehie et al. [45] suggest that
formal methods can be used for verification and validation
of self-adaptive software to ensure its correct functionality,
and to understand its behavior. Weyns et al.[49] state that
formal methods set out to show that a system has some
desired properties by proving that a model of that system
satisfies those properties. The use of formal methods can
also be seen in the work of Fiadeiro et al. [82] who set out to
develop models through which designers can validate
properties of composite services. Assembly and binding
techniques such as the ones provided by Service Component
Architecture can then be used to put together heterogeneous
service components. They define a mathematical model of
computation and an associated logic for service-oriented

8

systems which preserves correctness. In their work
semantics of service modules are defined after which they
formulate a property of correctness that guarantees services
programmed and assembled (as specified in a module)
provide the business functionality advertised by that module.
However, the model does not take into account shifting user
requirements, the changeability of services and
unpredictable runtime environments that are continuously
evolving.

Armando et al. [83] propose a platform for the Automated
Validation of Trust and Security of Service-Oriented
Architectures. They emphasize that deploying services in
network infrastructures such as SOAs entails a wide range of
trust and security issues. Modeling and reasoning about these
issues is complex because SOAs use different technology,
can interfere with each other and run on unpredictable
environments. They propose the use of a validator that takes
any model of a system and its security goals and
automatically checks whether the system meets its goals
under the assumption that the network is controlled by a
Dolev-Yao intruder (a formal model used to prove properties
of interactive cryptographic protocols). As proof of concept
they formalize ten application scenarios of SOAs from the e-
Business, e-Government and e-Health application areas.
While this work provides some good insight into the
modeling of dynamic aspects of service-oriented systems, it
is very closely concerned with validating aspects of security
and trust. It is not easy to port the model to address other
quality and system aspects in SOAs.

Another example of how formal methods are used can be
seen in the work of Arcaini et al. [47] who model and
validate a distributed self-adaptive service-oriented
application. They design a traffic monitoring system with a
number of intelligent cameras along a road and apply a
formal modeling approach for self-validation. In their work a
frame work for formal modeling, validating, and
verifying distributed self-adaptive systems based on the
multi-agent Abstract State Machines (ASM) formalism is
presented. They state that formal methods can be used as
a rigorous means for specifying and reasoning about
self-adaptive systems’ behavior, both at design time and at
runtime. They however note that over-specification is a
challenge with the formal approach due to the rigidity of the
formalisms Timed Automata. This challenge can be avoided
through separation of concerns where by one adaptation
concern is handled at a time. Lemos et al. [7] also agree
that this approach can be challenging to use at runtime. They
state that formal methods can be too expensive to be
executed regularly at run-time when the system adapts, due
to their time and space complexity.

3.5.2. Model-based approaches: In this approach
models check the behavior of a self-adaptive system during
design and are later used to test the implementation during
and after development. Gomaa et al. [50] use patterns to
model how the components that make up an architecture
pattern cooperate to change the software configuration at
run-time. They propose a model-based run-time adaptation
pattern for distributed hierarchical service coordination in
service-oriented systems, in which multiple service
coordinators are organized in a distributed hierarchical
configuration.

Based on interpretations of UML Models as graphs and
graph transformation systems, Baresi et al.[51], posit that
the consistency between platform and application can be
validated using model based approaches. In order to reason
about planned or unanticipated reconfigurations of
architectures, they use graph transformation rules to capture
the dynamic aspects of architectural styles. As a case study
they make use of the reference architecture for a supply
chain management system that involves a consumer
component, a retailer service, a warehouse service, a
shipping service, and a manufacturer service. Their model of
the architectural style supports the architect when deciding
whether the style is suitable for his application.

However many researchers agree that the use of model
based techniques on their own is inadequate. Fleurey et al.
[54] combine model driven and aspect oriented techniques
when validating dynamic adaptation. Aspect orientation
provides modularization mechanisms to separate the
crosscutting concern at the programming level. Model
Driven Engineering (MDE) techniques on the other hand
consider models as the primary development artefact and
use them as a basis for obtaining an
executable system in different ways. Fleurey combines
both techniques by designing a base model and different
variant architecture models at design time that are processed
to produce a correct system configuration at runtime. The
actual configurations of the application are built at runtime
by selecting and composing the appropriate variants. Their
work however looks at validating adaptation rules at design-
time. Calinescu et al. [52] advocate for the use of both
modeling techniques and mathematically based techniques
to plan the adaptation steps necessary to identify
requirement violations at runtime. They however point out
model learning as a key challenge of their work. In their
discussion on the use of models at runtime for self-assurance,
Cheng et al. [53] highlight some key challenges with the
approach. A key issue in this approach is to keep the run-
time models synchronized with the changing system. They
recommend the use of probability distribution functions, the
attribute value ranges, or using the analysis of historical
attribute values. More advanced and predictive models of
adaptation are needed for systems that could fail to satisfy
their requirements due to side effects of change.

3.5.3. Machine learning: In order to assess the
effectiveness of an adaptation decision a self-adapting
system needs to learn. The learning process can yield results
that can be used to update the adaptation process with a goal
of remaining relevant. Alpaydin [27] defines Machine
learning as programming computers to optimize a
performance criterion using example data or past experience.
He further explains that machine learning is used where
human expertise does not exist and the solution changes
with time. Learning occurs by building models that are good
and useful approximations from examples of data provided.
To achieve this statistics are used to make inferences from
the examples of data provided and efficient algorithms are
used to solve optimization problems as well as represent and
evaluate generalized models.

Machine learning algorithms can generally be
categorised as supervised, unsupervised and reinforced
learning. Supervised learning algorithms make predictions

9

based on a set of examples. Classifiers, Decision trees,
Neural Networks, and regression are some examples of
supervised learning that can be seen in the work of Hoffert
et al [58]. Unsupervised learning occurs where labelled
examples are not available. The goal is to organize the data
in some way or to describe its structure. This can mean
grouping it into clusters using algorithms such as k-mean
clustering or Expectation-maximization (EM) clustering.
For the unsupervised approach EM clustering is often
considered because it provides better optimization than
distance-based or hard membership algorithms, such as k-
Means. EM easily accommodates categorical and
continuous data fields making it the most effective
technique available for proper probabilistic clustering.
Skałkowski et al. [25], recommend the dynamic adaptation
of services using machine learning. They show how a
clustering algorithm can be used to provide automatic
recognition of similar system states and grouping them into
subsets (called clusters), based on information provided by
the Monitoring element interface. Reinforced learning
provides a method for the machine to quantify its
performance in the form of a reward signal. Markov
decision Processes are used to model the problem to be
solved as seen in the work of Jureta et al. [59] and Wang et
al. [24].

Experiments with EM clustering however show some
gaps that are typical of natural data. In order to reinforce
unsupervised learning, a supervised learning approach can
be used such as neural network classification. Roohi [55]
point out that most of the problems that prop up in all the
fields of human operations pertain to organizing objects or
data in different categories or classes. The challenge
therefore is to assign an object or data item to a class based
on a number of observed attributes (features) related to that
object. Reinforced learning on the other hand is based on
exploration that relies on a trial and error process. This
presents safety challenges in risky application contexts as
well as learning challenges where rewards are sparse.
According to Cybenko [56] and Hornik et al. [57] artificial
neural networks are good classification options as they have
been able to approximate any function with good accuracy.
Artificial neural networks, being nonlinear models, can be
used to model any real world complex process.

Hoffert et al. [58] supports the idea of supervised
machine learning in dynamic environments in maintaining
of Quality of Service. They list possible supervised
machine learning techniques to include decision trees,
neural networks, and linear logistic regression classifiers
that can be trained on existing data to interpolate and
extrapolate for new data. Jureta et al. [59], in a similar study
state that parameters such as quality of service, deadline,
reputation, cost, and user preferences can be used as criteria
in learning algorithms. Bayesian probabilities have also
been used to express evidence about stakeholders’
satisfaction in terms of degrees of belief. Schumann and
Gupta [60] proposed a validation method to calculate safety
regions for adaptive systems around the current state of
operation based on a Bayesian statistical approach.

Many experiments have shown that deep neural
networks are particularly good with natural data such as
speech, vision, or language, which exhibit highly nonlinear
properties, [61]. Najafabadi et al. [62] state that stacking up
non-linear feature extractors (as in Deep Learning) often

yield better machine learning results, e.g., improved
classification modelling, better quality of generated samples
by generative probabilistic models, and the invariant
property of data representations. However they also point
out that a downside of adaptive deep belief network is the
requirement for constant memory consumption.
Additionally the slow learning process associated with a
deep layered hierarchy of learning data abstractions and
representations from a lower-level layer to a higher-level
layer makes it challenging to use at runtime.

In addition to the foregoing validation techniques, the
nature of involvement, control mechanism and strategy
adopted are also important. The next section reviews these
three factors.

3.5.4. Involvement – online vs. offline validation:
Validation can be performed at design-time, runtime or
during system maintenance. Traditionally this has been
conducted offline at design-time. However at this stage
validation can only address requirements that were known
during development. The shift towards self-adaptive systems
called for validation to be performed dynamically at runtime
– i.e. online validation. This however introduces the
challenge of ensuring that that the recommended adaptation
is timely, right and has adequate system resources available
to support it. This section examines some representative
involvements.

There have been attempts to use self-test mechanisms
at runtime to validate the changes. King et al. [64],
recommend that dynamically adaptive behavior in autonomic
software should include rigorous off-line and on-line testing.
They propose an in-built test manager in autonomic systems
to support this. Zhang et al. [65] propose a run-time model
checking approach for the verification of adaptation. Salehie
et al. [45] identifies a key challenge posed by the online
approach as the presence of several alternatives for adaptable
artifacts and parameters in the system. They note that this
leads to several paths of execution in different scenarios.
Further the dynamic decision-making approach makes it
even more complex. Cardellini et al. [16] present an
architecture that calls for the validation of the adaptation
decision off-line. This can be achieved by collecting statistics
based on past adaptation decisions.

Autili et al. [28] propose a model-based solution for
self-adapting context-aware services. They provide
methodologies to generate adaptable code from UML service
models during development. Model-To-Code
transformations are performed by means of a code generator
offline. They perform both online validations (to generate
test cases, before the service execution, by taking into
account both the service model and the service code) and off-
line validation (whilst the service is running and uses the
generated test cases). They however only give an overall
description but no real world case studies that would validate
the whole framework.

The sole use of design time (model based approaches)
for self-validation is not adequate. Dustdar et al. [9]
recommend combining both design time and runtime
management to build evolvable systems. In their work,
model-driven development techniques are first adopted and
adapted to support the modeling and design of compliant
Web services and processes at design time. They conclude
that Online and/or offline monitoring components must be

10

introduced as well as tools such as a dashboard to allow the
human users to observe the system and react on problems
and critical situations. However, the goal of autonomic
computing is to eliminate human intervention. A self-
learning approach could provide one solution.

3.5.5. Control mechanism: Control mechanisms have
been at the heart of engineering practice for several decades
now. The purpose of a controller is to produce a signal that
is suitable as input to the controlled plant or process, [66].
A key requirement for any self-adaptive system is to make
use of control values that tell the system how to adapt. A
self-validating system signals the need to take corrective
action whenever the output of the adapter deviates from
expectations. This deviation is referred to as the tracking
error.

Tamura et al. [67] describe feedback control loops as
validation that depends on online measurements on past
performance from the target system and the adaptation
mechanism. They posit that measured outputs are important
for making adaptive system quality decisions at runtime.
Dustdar et al. [9] present a solution that incorporates a
model-driven compliance support, runtime interaction
mining, run-time management of requirements, and explicit
control-loop architecture for self-validation. They develop a
Web service information model to provide a holistic view of
past and present requirements associated with services. Then,
based on these requirements explicit feedback-control
techniques are used to perform adaptation strategies.

Feed-forward control techniques on the other hand
take environmental or external context into account i.e. the
current situation. This can also provide validation
information of the adaptation process. Cardozo et al. [68]
propose a feed forward approach to validate the dynamic
adaptation of software. Their approach uses a symbolic
execution engine to reason about the reachable states of the
system, whenever contexts are activated or deactivated.
Context activation and deactivation requests are allowed
depending on the presence of erroneous states within
reachable states. Fredericks et al. [69] point out that
traditional testing techniques treat inputs and expected
outputs as fixed, static values throughout the testing process.
However, requirements specification, and the environment
can change and thereby cause input and expected output
values to no longer be representative test cases. This would
make a feed forward approach inadequate.

3.5.6. Strategy: The strategies used for validation in self-
adaptive service-oriented systems are either reactive or
proactive as shown on Table 3, with reactive strategies
being most common. Hielscher et al. [70] describe reactive
approaches as those that trigger validation based on
monitored events. Consequently validation occurs after
monitoring. In a proactive approach validation occurs before
monitoring, and is based a predictive model trained on
historical data. The objective of a proactive approach to
validation is to avoid the cost of an unsatisfactory adaptation
process. Achieving this however is not a simple task as it
calls for dealing with uncertainty. A more common
approach to validation is the reactive approach, which is
easier to implement, but may need the adaptation process to
iterate severally before an acceptable decision is arrived at.

The reactive and proactive adaptation processes discussed in
section 3.3.1 are independent of the validation strategies
discussed in this section. For example a reactive adaptation
approach that occurs before triggers are fired can be
validated proactively or reactively. It is validated
proactively if past validation behaviour is used to determine
the acceptable action before a trigger is detected. The
validation decision then waits for the trigger. On the other
hand it could be validated reactively after if validation
occurs after the trigger is detected. This process waits for the
adaptation decision to be arrived at, after which user
feedback could be used to validate adaptation. Most of the
work reviewed provided implementation details on either
adaptation (Table 2) or validation (Table 3) making it
difficult to compare the relationship between both strategies.

Fleurey et al. [54] propose a reactive model-based
approach to self-validation, which includes invariant
properties, and constraints that allow the validation of the
adaptation rules at design time. During runtime, the
adaptation model is processed to produce a correct system
configuration that can be executed. This is achieved through
monitoring of the system state and the execution context
(such as memory, or CPU usage, or available network
bandwidth, or battery level) after which adaptation rules are
triggered. Validation then occurs by comparing the woven
model with the reference model. It is worth noting that
validation is reactive because it occurs after monitoring.
Similarly Baresi et al. [51] also proposal a reactive approach
to validating the adaptation of service oriented systems.
However they recommend runtime validation rather than
design time validation. They state that in the dynamic world
of service-oriented architectures, what is guaranteed at
development time may not be true at run time. They advocate
for a reactive approach by arguing that it is virtually
impossible to predict all the evolutions and changes that
might occur in the services we use, and the same is true for
the environment. Therefore, monitoring allows them to take
notice of infringements of expectation and react to them.

Hielscher et al. [70] outline some of these
consequences as loss of money, unsatisfied users, and
reduced system performance. Autili et al. [28] propose a
proactive strategy that explores how to validate extra-
functional issues during the service development and
execution. They state that Bayesian Reliability Models and
Queuing Networks can be analyzed at development time to
validate the Service Model characteristics and a decision
made available at run-time on how adaptation of the service
will occur for the detected execution context. Validation at
design time is therefore performed to generate test cases,
before the service execution, by taking into account
contextual information and possible changes of the user
needs. When a service is invoked, a run-time analysis is
performed (on the available models) and, based on the
validation results; a new set of models is selected. Validation
then occurs before adaptation is triggered based on past
performance.

Another proactive approach is presented by Hoffert et
al. [58] who point out the difficulty in maintaining the
Quality of Service (QoS) properties (such as reliability and
latency) in dynamic environments such as disaster relief
operations or power grids. They state that the challenge
arises from the slow human response times, and the
complexity of managing multiple interrelated QoS settings.

11

Table 3. Support for self-validation in service-oriented systems

Approach Technique/mechanism Involvement (when
applied)

Primary
focus

Control
mechanism Strategy

 O
ff

 li
ne

O
nl

in
e

V
er

ifi
ca

tio
n

V
al

id
at

io
n

Fe
ed

ba
ck

Fe
ed

 fo
rw

ar
d

King et al. [64] Regression testing � � � � � � Reactive
Fleurey et al. [54] Model Based Techniques � � � � � � Reactive
Baresi et al. [51] Model based � � � � � � Reactive

Autili et al. [28] Model Based - Bayesian
Reliability Models ½ ½ � ½ ½ ½ Reactive

Arcaini et al. [47] Formal Modeling � � � � � � Proactive
Dustdar et al. [9] Model-driven approach ½ ½ � ½ ½ � Reactive
Morin et al. (2009) Model Based Techniques � � � � � � Reactive
Salehie et al. [45] Formal methods � ½ ½ ½ � ½ Reactive

Hoffert et al. [58]
Decision tree, Artificial Neural
Net-work, and Linear Logistic
Regression Classifier

� � � � � � Proactive

Skałkowski et al. [25] Clustering algorithm � � � � � � Reactive
Jureta et al. [59] Markov Decision Processes � � � � � � Reactive

Cardellini et al. [16] Model-Based, Linear
programming � � � � � � Reactive

Gomaa et al. [50] Model-based � � � � � � Reactive
Cardozo et al. [68] Static symbolic exploration � � � � � � Proactive

Wang et al. [24] State monitoring & Formal
Specification � ½ ½ � � ½ Reactive

Bartolini et al. [73] Statistical metric � � � � � � Reactive
Hielscher et al. [70] Regression Testing ½ � � � ½ � Proactive
Weyns et al. [74] Model based � � � � � � Reactive

Huber et al. [71] also emphasize the need for a
proactive approach to self-validation. They state that in
order to provide QoS guarantees (e.g, availability and
performance) for virtualization and Cloud Computing
environments; the ability to predict at run-time how the
performance of running applications would be affected is
required. They refer to it as online performance prediction,
which allows for the proactive adaptation of the system to the
new workload conditions, thereby avoiding SLA violations
or inefficient resource usage. Their work describes how they
use software performance models to predict the effect of
changes and to decide which actions to take.

From our survey of self-validating techniques conducted
it is evident that very few researchers use machine-learning
techniques to evaluate the effectiveness of an adaptation
solution. Further, the work on machine learning techniques
does not evaluate several algorithms to improve on accuracy.
Additionally, most of the research work on dynamic
adaptation does not integrate both runtime and static
validation. There is also very little evidence to show that the
validation techniques can work for different adaption triggers
or different adaptation techniques.

Additionally the survey of self-validation techniques
for adaptation in service-oriented systems presented in Table
3 shows that majority of the work on validation does not
provide adequate details on how adaptation occurs. As a
result most of the work shown in Table 3 is not presented in
Table 2, which reviews work on self-adaptation. This
observation reinforces the widely held view that validation is

poorly supported in service-oriented adaptation [18], [16],
[45], [7]. King et al. [64] for example, provide details of a
self-validating approach for testing adaptive Autonomic
computing systems. They however do not describe how the
adaptive system works and simply refer to the MAPE
architectural blue print for Autonomic Computing put
forward by IBM. This makes it challenging to adequately
review the adaptation aspect of their work in order to
understand how adaptation works. As a result they do not
appear in Table 2, which focuses on dynamic adaptation.
However they provide adequate details for a Self-Testing
Framework. This is expected because self-testing is the focus
of their work and as a result we review them in Table 2.

Only a handful of approaches tackle the issue of
validation in self-adaptation. Dustdar et al. [9] describe a
self-adaptation technique for managing the runtime
integration of diverse requirements arising from interacting
services, such as time, performance and cost. They also
recommend combining both design time and runtime
management to build evolvable systems. They note that
current work in adaptive systems provides no integrated
support for validating design rules, which affect both the
design time and runtime of a system. Although they describe
both adaptation and validation they do not provide adequate
implementation details on how they work. Cardellini et al.
[16] propose an approach to adaptation and validation,
however only sketchy details are provided on adaptation.
They emphasize the importance of service failure and
changes in system quality as triggers for adaptation but only

12

provide a general plan of how their proposed adaptation
should work. On the other hand they provide detailed
descriptions of an architecture that calls for the validation of
the adaptation decision off-line. This can be achieved by
collecting statistics based on past adaptation decisions.

4. Conclusions
The paper has discussed the importance of runtime

adaptation in SOS’s and identified the design decisions that
must be made when developing these systems. These
decisions describe the what, where, when and how and right
of adaptation. Specifically adaptation triggers tell us what
cause adaptation, the application context tells us where to
adapt, the adaptation models tell us when and how to adapt
and validation tells us how effective the adaptation is.

We have used these factors to review the current state
of runtime adaptation in service-oriented systems. Our
survey reveals that most of the approaches provide patchy
support for the key factors that influence adaptation. Most
adaptation approaches are tied to particular application
contexts, focus on specific aspects changes and are
embedded in the application they manage. It is also clear
that there is limited empirical evidence to indicate the
effectiveness of the approaches reviewed. Lastly, we have
provided a possible solution that integrates and extends the
strengths of current approach to support validation. We
believe this paper makes a significant contribution towards
understanding and addressing a challenging problem.

5. References
[1] Erl, T.: ‘SOA Principles Of Service Design‘, Prentice

Hall, 2008
[2] Rosen, M., Lublinsky, B. K., Smith, T., and Balcer, M.

J.: ‘Applied SOA: service-oriented architecture and
design strategies‘, Wiley Publishing, Inc., 2008

[3] Baresi, L.: ‘Self-adaptive Systems, Services, and
Product Lines‘, SPLC. In Proc. of the 18th
International Software Product Line Conference,
Florence, Italy, September 15-19, 2014, pp. 2-4

[4] Taylor, R. N., Medvidovic, N., and Oreizy, P.:
‘Architectural Styles For Runtime Software
Adaptation‘, European Conference on Software
Architecture, Joint Working IEEE/IFIP Conference
European Conference on Software Architecture, ,
Cambridge, 2009, pp. 171 – 180

[5] Swaminathan, R. K.: ‘Self-Configuring And Self-
Healing Web Services In Complex Software Systems‘,
CECS IT project report, Part of the Special Projects
Group: University of Waterloo, Waterloo, 2008

[6] Cubo, J., Canal, C., and Pimentel, E.: ‘Supporting
context awareness in adaptive service composition‘,In
Proc. of 1st Workshop on Autonomic and SELF-
Adaptive Systems (WASELF'08), Gijón (Spain) 2008
(JISBD'08), Sistedes, 2008, pp. 64-73

[7] Lemos, R. de. et al.: ‘Software Engineering for Self-
Adaptive Systems: A Second Research Roadmap‘,
Lecture Notes In Computer Science, Vol. 7475.
Springer-Verlag, 2013, pp.1-26

[8] Zeng, L., Benatallah, B., Lei, H., Ngu, A., Flaxer, D.,
and Chang, H.: ‘Flexible composition of enterprise
web services‘, Electronic Markets, Volume 13,
Number 2 (12)., 2003, pp. 141-152

[9] Dustdar, S., Goeschka, K., Truong, H., Zdun, U.: ‘Self-
Adaptation techniques for complex service-oriented
systems’, 5th Intl. Conf. Next Generation Web Services
Practices, 2009, pp. 37-43

[10] Robinson, D., and Kotonya, G.: ‘A runtime quality
architecture for service-oriented systems’, In Proc. of
the 6th International Joint Conference on Service-
Oriented Computing, Sydney, Australia, 2008, pp.
468-482

[11] Newman, P., and Kotonya, G.: ‘Managing Resource
Contention in Embedded Service-Oriented Systems
with Dynamic Orchestration’, In Proc of 10th
International Conference on Service Oriented
Computing, 2012, pp. 435-449.

[12] Ivanovic, D., Carro, M., and Hermenegildo, M.:
‘Towards Data-Aware QoS-driven Adaptation for
Service Orchestrations’, IEEE International
Conference on Web Services, 2010, pp. 107-114

[13] Taiani, F., and Fabre, J.: ‘Some Challenges in
Adaptive Fault Tolerant Computing’, 12th European
Workshop on Dependable Computing, Toulouse,
France, 2009, pp. 3-pages

[14] Moyano, F., Baudry, B., Lopez, J.: ‘Towards Trust-
Aware and Self-Adaptive Systems’, In Proc. of
IFIPTM, 2013, pp. 255-262

[15] Baresi, L., Guinea, S., and Pasquale, L.: ‘Service-
Oriented Dynamic Software Product Lines’, Computer,
vol. 45, 2012, pp. 42-48

[16] Cardellini, V., Casalicchio, E., Grassi, V., Presti, F. L.,
Mirandola, R.: ‘Towards self-adaptation for
dependable service oriented systems’, ICSOC LNCS
vol. 5835, 2009, pp. 24-48

[17] Zeng, L., Lingenfelder, C., Lei, H., and Chang, H.:
‘Event-Driven quality of service prediction’, In Proc.
of the 6th International Conference on Service-
Oriented Computing, Sydney, 2008, pp. 147-161,

[18] Papazoglou, M. P., Traverso, P., Distar, S., and
Leymann, F.: ‘Service oriented computing: state of the
art and research challenges’, IEEE Computer Society.
Vol. 40, 2007, pp. 38-45

[19] Madkour, M., El Ghanami, D., Maach, A., and Hasbi,
A.: ‘Context-aware service adaptation: An approache
based on fuzzy sets and service composition’,
Information Science and Engineering, 2013, pp. 1-16

[20] Huang, A., and Steenkiste, P.: ‘Building self-configuring
services using service specific knowledge’, In Proc of the
IEEE International Symposium on High Performance
Distributed Computing, IEEE Computer Society:
Washington DC, USA, 2004, pp.45-54

[21] Romay, M., Fernández-Sanz, L., and Rodríguez, D.: ‘A
Systematic Review of Self-adaptation in Service-oriented
Architectures’, In Proc. The Sixth International Conference
on Software Engineering Advances. Barcelona, Spain, 2011,
pp. 331-337

[22] Bucchiarone, A., Marconi, A., Mezzina, C., Pistore, M.,
Raik, H.: ‘On-the-Fly Adaptation of Dynamic Service-Based
Systems: Incrementality, Reduction and Reuse’, International
Conference on Service Oriented Computing, Berlin, 2013,
pp. 146-161

[23] Garlan, D., Schmerl, B., and Chang, J.: ‘Using Gauges for
Architecture-Based Monitoring and Adaptation’, In Proc.
Working Conference on Complex and Dynamic System
Architecture. Brisbane, Australia, 2001

13

[24] Wang, H., Zhou, X., Zhou, X., Liu, W., Li, W., Bouguettaya,
A.: ‘Adaptive service composition based on reinforcement
learning’. In Proc. of 8th International Conference on
Service-Oriented Computing, San Francisico, California,
2010, pp. 92-107

[25] Skałkowski, K., and Zieliski, K.: ‘Automatic adaptation of
soa systems supported by machine learning’. In Techno-
logical Innovation for the Internet of Things, volume 394 of
IFIP Advances in Information and Communication
Technology, pp. 61-68. Springer Berlin Heidelberg, 2013

[26] Schumann, J., Gupta, P., Jacklin, S.: ‘Toward Verification
And Validation Of Adaptive Aircraft Controllers’ In: Proc.
IEEE Aerospace Conference, IEEE Press, 200)

[27] Alpaydin E.: ‘Introduction to Machine Learning’. The MIT
Press, (2004).

[28] Autili, M., Berardinelli, L., Cortellessa, V., Marco, A.,
Ruscio, D., Inverardi, P., and Tivoli, M.: ‘A development
process for self-adapting service oriented applications’,
ICSOC, Springer, Heidelberg, 2007, pp. 442-448

[29] Lorenzoli, D., Mussino, M. P., Sichel A., and Tosi, D.: ‘A
SOA based self-adaptive personal mobility manager’, In
Proc. of IEEE International Conference on Services
Computing, 2006, pp. 479 – 486

[30] He, Q., Yan, J., Jin, H., and Yang, Y.: ‘Adaptation of web
service composition based on workflow patterns’, In Proc. of
the 6th International Conference on Service-Oriented
Computing, Sydney, Australia, 2008, pp. 22-37

[31] Mateescu, R., Poizat, P., and Salaün, G.: ‘Adaptation of
service protocols using process algebra and on-the-fly
reduction techniques’, In Proc. International Conference on
Service-Oriented Computing, 2008, pp. 84-99,

[32] Tanaka, M., and Ishida, T.: ‘Predicting and learning
executability of composite web services’, In Proc. of the 6th
International Conference on Service-Oriented Computing,
Sydney, Australia, 2008, pp. 572-578,

[33] Siljee, J., Bosloper, I., Nijhuis J., and Hammer, D.: ‘DySOA:
making service systems self-adaptive’, In Proc. 3rd
International Conference on Service-Oriented Computing,
Amsterdam, The Netherlands, 2005, pp. 255-268

[34] Orriens, B., and Yang, J.: ‘A rule driven Approach for
Developing Adaptive Service Oriented Business
Collaborations’, In Proc. of the IEEE International
Conference on Services Computing, Chicago, 2005, pp 182-
189,

[35] Śliwa, J., Gleba, K., Amanowicz, M.: ‘Adaptation
Framework foR web services provision in tactical
environment. Military Communications and Information
Systems Conference’, Wrocław, Poland, 2010, pp. 52-67

[36] Lin, K., Zhang, J., Zhai Y., and Xu. B.: ‘The design and
implementation of service process reconfiguration with end-
to-end QoS constraints in SOA’, Service Oriented
Computing and Application, 2010 , pp. 157-168

[37] Hussein, M., and Gomaa, H.: ‘An Architecture-Based
Dynamic Adaptation Model and Framework for Adaptive
Software Systems’, 9th IEEE/ACS International Conference,
2011, pp. 165-172

[38] Hirschfeld, R., and Kawamura, K.: ‘Dynamic Service
Adaptation’, In Proc. of Distributed Computing Systems
Workshops’, 2004, pp. 290-297

[39] Tosic , V., Ma, W., Pagurek, B., Esfandiari, B.: ‘Web Service
Offerings Infrastructure (WSOI) -A Management
Infrastructure’, In Proc. of NOMS (IEEE/IFIP NETWORK
OPERATIONS AND MANAGEMENT SYMPOSIUM),
Seoul, South Korea, 2004, pp. 817-830

[40] Maurer, M., Brandic, I., Emeakaroha, V., Dustdar, S.:
‘Towards knowledge management in self-adaptable clouds’,
Fourth International Workshop of Software Engineering for

Adaptive Service-Oriented Systems (SEASS '10), Miami,
Florida, USA, 2010, pp. 527-534

[41] Romero, D., Hermosillo, G., Taherkordi, A., Nzekwa, R.,
Rouvoy, R., and Eliassen, F.: ‘The DigiHome
Service-Oriented Platform’, Software: Practice and
Experience, Wiley-Blackwell, . (2013).pp. 1205-1218

[42] Li, G., Liao, L., Song, D., Wang, J., Sun, F., and Liang, G.:
‘A Self-healing Framework for QoS-Aware Web Service
Composition via Case-Based Reasoning’, In Proc. of
APWeb, 2013, pp. 654-661

[43] Motahari-Nezhad, H., Bartolini, C., Graupner, S., and
Spence, S.: ‘Adaptive case management in the social
enterprise’, In Service-Oriented Computing. Springer, 2012,
pp. 550-557

[44] Cugola, G., Ghezzi, C., Sales Pinto, L., and Tamburrelli, G.:
‘Adaptive Service-Oriented Mobile Applications: A
Declarative Approach’, In Proc. of the 10th international
conference on Service-Oriented Computing, 2012, pp. 607-
614

[45] Salehie, M., and Tahvildari, L.: ‘Self-adaptive software:
Landscape and research challenges’, ACM Trans. Auton.
Adapt. Syst. , New York, NY, USA, 2009, pp. 14

[46] Andre, F., Daubert, E., and Gauvrit, G.: ‘Towards a Generic
Context-aware Framework for Self-Adaptation of Service-
Oriented Architectires’, Intl Conf. on Internet and Web
Applications abd Services (ICIW’2010), 2010, pp. 309-314,

[47] Arcaini, P., Riccobene, E., Scandurra, P.: ‘Modeling And
Analyzing MAPE-K Feedback Loops For Self-Adaptation’,
In Proc. of the 10th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems,
SEAMS ’15, IEEE Press, 2015, pp. 13-23,

[48] Mutanu L. and G. Kotonya, G.: ‘Consumer-centred
Validation for Runtime Adaptation in Service-Oriented
Systems’, IEEE 9th International Conference on Service-
Oriented Computing and Applications (SOCA’2016), 2016,
pp.16-23,

[49] Weyns, D.: ‘Towards an Integrated Approach for Validating
Qualities of Self-Adaptive Systems’, Workshop on Dynamic
Analysis, 2012

[50] Gomaa H., and Hashimoto, K.: ‘Model-Based Run-Time
Software Adaptation For Distributed Hierarchical Service
Coordination’, In ADAPTIVE 2014, The Sixth International
Conference on Adaptive and Self-Adaptive Systems and
Applications pp. 1-6, 2014

[51] Baresi, L., Heckel, R., Thöne, S., Varró, D.: ‘Modeling And
Validation Of Service-Oriented Architectures: Application
Vs. Style’, In: Proc. ESEC/FSE and ACM SIGSOFT, ACM
Press, 2003, pp. 68–77

[52] Calinescu, R., Grunske, L., Kwiatkowska, M., Mirandola,
R., and Tamburrelli. G.: ‘Dynamic Qos Management And
Optimization In Service-Based Systems’, IEEE Transactions
on SoftwareEngineering, 2011

[53] Cheng, B. H. C., De Lemos, R. et al.: ‘Software Engineering
for Self-Adaptive Systems: A Research Road Map’,
Springer-Verlag, 2009

[54] Fleurey, F., Dehlen, V., Bencomo, N., Morin, B., and
Jézéquel. J.-M.: ‘Modeling and Validating Dynamic
Adaptation’, In 3rd International Workshop on
Models@Runtime (MODELS'08), France, 2008

[55] Roohi, F.: ‘Artificial Neural Network Approach to
Clustering’, The International Journal Of Engineering And
Science (Ijes), Volume 2, Issue 3, 33-38 Issn: 2319 – 1813
Isbn: 2319 – 1805, 2013

[56] Cybenko, G.: ‘Approximation by superpositions of
sigmoidal functions’, Math. Control, Signals, Syst., vol. 2,
no. 4, 1989, pp.303-314,

14

[57] Hornik, K., Stinchcombe, M., and White, H.: ‘Multilayer
feedforward networks are universal approximators’, Neural
Networks, 1989, pp.359-368,

[58] Hoffert, J., Mack, D., and Schmidt, D. C.: ‘Using Machine
Learning To Maintain Pub/Sub System Qos In Dynamic
Environments’, In Proc. of the 8th International Workshop
on Adaptive and Reflective Middleware, 2009

[59] Jureta, I. J., Faulkner, S., and Thiran, P.: ‘Dynamic
Requirements Specification For Adaptable And Open Service
Systems’, Requirements Engineering Conference, 2007

[60] Schumann, J., Gupta, P., Jacklin, S.: ‘Toward Verification
And Validation Of Adaptive Aircraft Controllers’, In: Proc.
IEEE Aerospace Conference, IEEE Press, 2005

[61] Le, Q. V.: ‘A Tutorial on Deep Learning: Nonlinear
Classifiers and The Back propagation Algorithm’,
http://robotics.stanford.edu/~quocle/tutorial1:pdf, accessed
on 11th August 2016, 2015

[62] Najafabadi, M. M., Villanustre, F, Khoshgoftaar, T. M,
Seliya N, Wald, R, Muharemagic, E.: ‘Deep learning
applications and challenges in big data analytics’, Journal of
Big Data;2(1), 2015, pp. 1–21,

[63] Pathan, K. J., Reiff-Marganiec, S., Shaikh, A. A., and
Channa, N.: ‘Reaching Activities by Places in the
Context-Aware Environments Using Software
Sensors’, Journal of Emerging Trends in Computing
and Information Sciences, VOL. 2, NO. 12, ISSN,
2011, pp. 2079-8407

[64] King, T. M., Ramirez, A. E., Cruz, R. and Clarke. P. J.:
‘An Integrated Self-Testing Framework For
Autonomic Computing Systems’, Journal of
Computers, 2(9), 2007, pp. 37-249.

[65] Zhang, J., Goldsby, H., and Cheng. B. H. C.: ‘Modular
Verification Of Dynamically Adaptive Systems’, In
Proc. 8th International Conference on Aspect Oriented
Software Development, 2009, pp. 161-172.

[66] Janert P. K.: ‘Feedback Control for Computer Systems:
Introducing Control Theory to Enterprise
Programmers’, O'Reilly Media, 2013

[67] Tamura, G., Villegas, N., M"uller, H. et al.: ‘Towards
Practical Runtime Verification and Validation of Self-
Adaptive Software Systems’, LNCS, vol. 7475,
Springer, 2013, pp. 108-132

[68] Cardozo, N. Christophe, L. De Roover, C. and De
Meuter, W.: ‘Run-Time Validation Of Behavioral
Adaptations’, in International Workshop on Context-
Oriented Programming , USA, 2014

[69] Fredericks, E. M., Ramirez, A. J., and Cheng, B. H. C.:
‘Towards Run-Time Testing of Dynamic Adaptive
Systems’, In Software Engineering for Adaptive and
Self-Managing Systems (SEAMS), ICSE, 2013, pp.
169–174.

[70] Hielscher, J. Kazhamiakin, R. Metzger A. and Pistore,
M.: ‘A Framework For Proactive Self-Adaptation Of
Service-Based Applications Based On Online Testing’,
In Proc. First European Conf. Towards a Service-
Based Internet, 2008

[71] Huber, N., Brosig, F., & Kounev, S.: ‘Model-based
self-adaptive resource allocation in virtualized
environments’, In Proc. of the 6th International
Symposium on Software Engineering for Adaptive and
Self-Managing Systems, ACM, 2011, pp. 90-99

[72] Mutanu, L., Kotonya G.: 'What, Where, When, How
and Right of Runtime Adaptation in Service-Oriented
Systems', 2nd Workshop on Adaptive Service-Oriented

and Cloud Applications, In Proc of 15th ICSOC
Conference, Spain, Malaga, 2017

[73] Bartolini N, Bongiovanni G, Silvestri S.: 'Self-∗
through self-learning: Overload control for distributed
web systems', Computer Networks, 2009, pp. 727-43.

[74] Weyns D, Iftikhar MU.: 'Model-based simulation at
runtime for self-adaptive systems', In Autonomic
Computing (ICAC), 2016 IEEE International
Conference, 2016, pp. 364-373

[75] Paktinat S, Salajeghe A, Seyyedi MA, Rastegari Y.
Service-based application adaptation strategies: a
survey. International Journal of Computer, Electrical,
Automation, Control and Information Engineering.
2014 Aug 1;8(8):1416-20.

[76] Di Nitto E, Ghezzi C, Metzger A, Papazoglou M, Pohl
K. A journey to highly dynamic, self-adaptive service-
based applications. Automated Software Engineering.
2008 Dec 1;15(3-4):313-41

[77] Sommerville, I.: ‘Software Engineering’, Pearson
Education Limited, 2016, 10th Edition.

[78] Baresi L, Guinea S. Towards dynamic monitoring of
WS-BPEL processes. In International Conference on
Service-Oriented Computing 2005 Dec 12 (pp. 269-
282). Springer, Berlin, Heidelberg.

[79] Psaier H, Dustdar S. A survey on self-healing systems:
approaches and systems. Computing. 2011 Jan
1;91(1):43-73.

[80] Cervantes F, Ramos F, Gutiérrez LF, Occello M,
Jamont JP. A new approach for the composition of
adaptive pervasive systems. IEEE Systems Journal.
2018 Jun;12(2):1709-21.

[81] Kephart JO, Chess DM. The vision of autonomic
computing. Computer. 2003 Jan;36(1):41-50.

[82] Fiadeiro J, Lopes A, Abreu J. A formal model for
service-oriented interactions. Science of Computer
Programming. 2012 May 1;77(5):577-608.

[83] Armando A, Arsac W, Avanesov T, Barletta M, Calvi
A, Cappai A, Carbone R, Chevalier Y, Compagna L,
Cuéllar J, Erzse G. The AVANTSSAR platform for the
automated validation of trust and security of service-
oriented architectures. InInternational Conference on
Tools and Algorithms for the Construction and
Analysis of Systems 2012 Mar 24 (pp. 267-282).
Springer, Berlin, Heidelberg.

