
FIFTH AEON - A.I COMPETITION AND BALANCER

A Thesis

presented to

the Faculty of California Polytechnic State University,

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Computer Science

by

William Ritson

June 2019

c© 2019

William Ritson

ALL RIGHTS RESERVED

ii

COMMITTEE MEMBERSHIP

TITLE: Fifth Aeon - A.I Competition and Balancer

AUTHOR: William Ritson

DATE SUBMITTED: June 2019

COMMITTEE CHAIR: Foaad Kosmood, Ph.D.

Professor of Computer Science

COMMITTEE MEMBER: Franz J. Kurfess, Ph.D.

Professor of Computer Science

COMMITTEE MEMBER: Alexander M. Dekhtyar, Ph.D.

Professor of Computer Science

iii

ABSTRACT

Fifth Aeon - A.I Competition and Balancer

William Ritson

Collectible Card Games (CCG) are one of the most popular types of games in both

digital and physical space. Despite their popularity, there is a great deal of room

for exploration into the application of artificial intelligence in order to enhance CCG

gameplay and development. This paper presents Fifth Aeon a novel and open source

CCG built to run in browsers and two A.I applications built upon Fifth Aeon. The

first application is an artificial intelligence competition run on the Fifth Aeon game.

The second is an automatic balancing system capable of helping a designer create

new cards that do not upset the balance of an existing collectible card game. The

submissions to the A.I competition include one that plays substantially better than

the existing Fifth Aeon A.I with a higher winrate across multiple game formats. The

balancer system also demonstrates an ability to automatically balance several types

of cards against a wide variety of parameters. These results help pave the way to

cheaper CCG development with more compelling A.I opponents.

iv

ACKNOWLEDGMENTS

Thanks to:

• My parents Lark and Marc Ritson for their unfaltering love and support.

• My advisor Foaad Khosmood for guiding me along each step in the process of

writing this thesis.

• Andrew Guenther, for uploading this template

v

TABLE OF CONTENTS

Page

LIST OF TABLES . ix

LIST OF FIGURES . x

CHAPTER

1 Introduction . 1

1.1 Introduction to Automatic Balancing 2

2 Background . 5

2.1 Artificial Intelligence Competitions 5

2.1.1 Purpose and Goals . 5

2.1.2 Organization . 6

2.1.3 Games . 7

2.1.4 Brief Survey of Tournaments 8

2.1.5 Board Games . 9

2.1.6 Real Time Strategy Games . 14

2.1.7 Classic Computer Games . 16

2.1.8 Physics Games . 19

2.2 Collectible Card Games . 21

2.3 Automated Balancing . 25

3 System Design . 28

3.1 The Fifth Aeon Collectible Card Game 28

3.1.1 Rules Engine . 30

3.1.2 Networking . 30

3.1.3 Server . 33

vi

3.1.4 Client . 35

3.2 The Bot Toolkit . 41

3.2.1 Creating Bots . 41

3.2.2 Running Tournaments . 41

3.2.3 A.I. Server . 43

3.3 DefaultAI . 43

3.3.1 Architecture . 43

3.3.2 Deciding What to Block With 47

3.3.3 Deciding What to Attack With 48

3.3.4 Deciding What Resource to Play 48

3.3.5 Deciding How to Make a Choice 48

3.3.6 Building on Top of DefaultAI 49

3.4 The Auto Balancer System . 51

4 Usage . 53

4.1 Playing the Fifth Aeon Game . 53

4.1.1 Winning the Game . 53

4.1.2 Resources and Cards . 53

4.1.3 Spells . 54

4.1.4 Units . 54

4.1.5 Items . 55

4.1.6 Enchantments . 55

4.1.7 Attacking and Blocking . 55

4.1.8 Attacking . 56

4.1.9 Blocking . 56

4.1.10 Stages of a Turn . 57

vii

4.2 Using the Fifth Aeon Bot Toolkit . 57

4.3 Running a Fifth Aeon Competition 57

4.4 Using the Automatic Balancer . 58

5 Experiments and Results . 59

5.1 A.I Competition . 59

5.1.1 Experiment Design . 59

5.1.2 Results . 60

5.1.3 Analysis of Sunpraiser . 60

5.1.4 Analysis of VII . 61

5.1.5 User Feedback . 63

5.2 Automatic Balancer . 65

5.2.1 Automatic Balancer Experiment Design 65

5.2.2 Automatic Balancer Results 66

5.2.3 Varying Attack Power . 68

6 Future Work . 72

6.1 Future Work in Automatic Balancing 72

6.2 Future Work in Fifth Aeon Competitions 73

BIBLIOGRAPHY . 75

viii

LIST OF TABLES

Table Page

1 Properties of Various Games . 8

2 World Chess Competition Results [7] 11

3 Go Competition Results [3] . 13

4 StarCraft Brood War Competition Results [33] 16

5 2009 Mario Competition Results [39] 18

6 Mrs Pac-Man Competition Results [4] 20

7 2018 Angry Birds Competition Results [1] 22

8 Tournament Results . 23

9 Fifth Aeon Tournament Winrates 60

ix

LIST OF FIGURES

Figure Page

1 Chess Pieces . 9

2 A Game of Go in Progress . 12

3 StarCraft Screenshot . 15

4 Infinite Mario Screenshot . 17

5 Ms. Pac-Man Initial Setup . 19

6 A.I Birds Screenshot . 21

7 A Screenshot from MTG Arena, a Digital Adaption of MTG 24

8 A Screenshot of Hearthstone a popular digital CCG 24

9 An Example of Fifth Aeon Gameplay 28

10 Fifth Aeon Deck Building . 30

11 How Actions are Synchronized in Fifth Aeon 32

12 Front Page of the Fifth Aeon Client 35

13 Creating a New Account . 36

14 The Main Lobby Where a Player Decides What Mode to Play. . . . 36

15 Selecting a Deck to Play With . 37

16 Creating a Card in the Editor . 38

17 Information about the Tournament Available through the Client . . 39

18 UI to Create a Team to Submit to the Tournament 40

19 UI to Submit a Bot . 40

20 Bot Tool Kit Tournament Multiprocessing 42

21 Minotaur a Simple Unit With no Abilities 45

x

22 Flame Ifrit a Unit With a Situational Ability 46

23 The Process of Deciding Whether to Make a Block 47

24 Balancer System . 52

25 Overwhelming Radiance the core of Sunpraiser’s strategy 61

26 The Change in Score as Energy Cost is Changed. 69

27 The Change in Winrate as Energy Cost is Changed. 70

28 The Change in Score as Attack Damage is Changed. 70

29 The Change in Winrate as Attack Power is Changed. 71

xi

Chapter 1

INTRODUCTION

This paper concerns the application of Artificial Intelligence to electronic card games,

using the collectible card game Fifth Aeon for the research. Fifth Aeon is an open-

source, multiplayer, browser-based, collectible card game written in Typescript by

the author. It is intended to be both an enjoyable game and an open platform for

researches to utilize to study games, A.I., and any other subject to which it might be

applicable. The full source code for the game is available under the Apache-2 license

at https://github.com/Fifth-Aeon. The games rules are similar to those found in

popular games like Magic The Gathering and Hearthstone, but Fifth Aeon rules have

been adjusted to address popular complaints about the overuse of randomness.

The first major application of Fifth Aeon is providing a platform for a game A.I.

competition. The Fifth Aeon game was used as a platform for hosting an open

competition where contestants could submit various A.I. agents that would play the

game against each other in a tournament environment. It serves as an open, non-

IP-laden platform to compete at one of the most popular types of games. In doing

so, Fifth Aeon hopes to contribute to the goals of Game A.I. tournaments, which are

discussed later in the paper.

The second major application of the platform is to balance cards procedurally. Col-

lectible card games are very content driven and usually receive regular batches of

new content referred to as sets. The process of creating new sets is very expensive

and each new release threatens to dramatically upset the balance of the game, which

can render it unappealing and cause users to leave. Thus, it is important to make

1

sure new cards fit well with existing ones. This may require extensive play-testing

by experts and be very costly in terms of time and money. In order to expedite the

process, this paper puts forth a mechanism for using A.I. to automatically balance a

card against a set of existing cards.

1.1 Introduction to Automatic Balancing

This paper proposes a system that attempts to make the process of introducing

balanced cards to a collectible card game easier. It does this by allowing designers

to search for the most promising version of a card’s potential parameters to ensure it

has the desired amount of impact on the metagame.

The term balance can refer to several different properties of a game. This paper

is primarily concerned with one specific meaning, the balance between asymmetric

elements of a game. An asymmetric element is any part of the game that makes

the game different for one player than another prior to the start of the game. For

example, what race a player plays as in StarCraft will have a major effect on how

they play the game even though it is chosen before the game starts. This definition of

asymmetric game elements does not include differing game stats that result from the

actions of players within the game itself, such as a different board state in chess after

playing for several turns. Asymmetric elements are important because they may give

one player an advantage over another before the game starts making it unfair. If the

game is too unfair, it can hinder players ability to enjoy it, so designers must control

for this.

Many classical games have little to no asymmetry. In Chess, both players have exactly

the same pieces and options, however, a small amount of asymmetry arises from one

player getting to go first. Newer games often have far more asymmetry. For example,

2

letting a player choose their faction, character, or starting location before a game

begins. These additional differences between a player’s initial game stats are added

because they can make the game more fun. By allowing players to more choices,

each of which creates a unique way of playing the game, game designers can create

additional replay value and appeal to more players individual play-styles. The trade-

off is that it makes the game harder to balance.

This balancing of asymmetric content becomes more and more complicated as the

number of different configurations available to players increases. For example, Chess

provides only two possible configurations, with players having either the first or second

turn. Beyond this difference, all other options available to the players are the same.

In a game like Starcraft, the designer must worry about three different factions giving

six distinct match-ups [19]. In League of Legends, there are more than 100 characters

and teams are composed of up to five characters each, giving billions of combinations

[20] of characters. Ideally, a game designer would want to be able to show that

none of these configurations give an advantage to one team so that the game remains

balanced. But this becomes more and more difficult the more different configurations

they have to test are balanced.

The size of the configuration space is most prominent in collectible card games. In

these games, players form decks that typically contain somewhere between 30 and 100

cards, selected from a pool of hundreds or thousands of options. This results in mind-

boggling vast numbers of possible combinations. The huge configuration space makes

balancing individual cards, while accounting for all of the potential combinations, a

huge amount of work for designers.

Understandably then, most collectible card games do not aim to be entirely balanced.

Rather, they aim to reward a player’s ability to strategically pick powerful combi-

nations of cards through the process of “deck-building.” This, in turn, encourages

3

players to collect additional cards to complete their decks. However, even when the

goal is not to have all cards or decks be equally powerful, it is important that there

are no “God tier” decks, which are so strong that they prevent any other decks from

being competitively viable. Instead, designers seek to create a dynamic meta-game in

which there are several viable deck archetypes, and in which each of the archetypes

might have several versions. This meta-game is generally discovered by the game’s

community of high-level players experimenting with available decks to find the best

combinations available. However, most collectible card games frequently release new

cards in order to encourage purchases and remain fresh. It is therefore important to

be able to verify that adding new cards to an existing game won’t result in any deck

becoming too powerful and creating an unhealthy meta.

The task of determining the effect of new cards is typically accomplished through

a combination of applied designer knowledge and a large amount of play-testing.

However, this play-testing may be prohibitively expensive for a small team. Due

to the cost requirement, there is a need for an automated system that can help

designers balance new cards that they plan to introduce into a collectible card game.

This system must be able to work with any of the different cards a designer might

create. For instance, it should be able to balance a card containing a newly designed

mechanic. Therefore, the A.I. must be limited in what types of changes it can make to

a card. The goal is to balance the card without erasing the essential design elements

the designer created to accomplish ludic goals.

4

Chapter 2

BACKGROUND

2.1 Artificial Intelligence Competitions

An Artificial Intelligence (A.I.) competition is an event in which competitors submit

computer programs referred to as “bots” or “A.I.s” which will play a digital game.

These bots play a game and are ranked based on performance. Sometimes, as with

Chess, the game involves direct competition between the A.I.s. Other times, as with

Mario, the bots compete independently to see which one can get the highest score on

a shared task.

2.1.1 Purpose and Goals

Game A.I. competitions provide several benefits to the A.I community. These include

providing a fair means to benchmark algorithms, providing an opportunity to educate

students, and making results easily understood by those outside of the industry [38].

The advantage of a competition for benchmarking is that it provides an impartial,

easily replicated test by which multiple teams can compare their results. The benefit

for education is that being able to build on top of a ”real” game may make the prospect

of A.I. more fun and palatable for students. Finally, the advantage to understanding

is that, unlike academic benchmarks, laymen, who likely have played them, can easily

understand and assess the games’ difficulty.

5

2.1.2 Organization

When hosting a Game A.I. tournament, there are multiple questions about how the

tournament will be organized that must be answered. These include, how will par-

ticipants interface with the game, how will the competition be scored, and how the

participants will report what they have accomplished. [38]

The first step in participating in any competition is for the contestant to understand

the rules of the game. There are several ways to learn the rules of a game, including

reading the rule book. However, games are often quite complicated, and certain rules

may not be intuitive until they are experienced. Therefore, it is a good idea to make

sure that the game can be easily played by humans. It is a best practice for A.I

competitions to ensure their games can easily be played by human contestants [38].

This means the competitions must have human-usable user interface and graphics.

Once contestants understand the game, they need to be able to interface with it

through some programming language. Previous competitions have provided interfaces

for C++ [13], Java [39] [27] [10], and other programming languages. In addition to

interfaces for specific languages, some systems can also be interfaced through standard

I.O. [10] or networking [39]. This allows the construction of agents in arbitrary

languages but requires programmers do extra work to implement the communication

in their chosen language.

Competition organizers must also specify how they will run their tournament and

how it will be scored. For example, a tournament may be organized into a single

round-robin pool or many brackets. The type of organization is a trade-off between

the time it takes to run the tournament and how much data the organizers collect.

A bracketed elimination system reduces the number of games needed to determine

which A.I. is best. However, if victory is non-deterministic, it may be more prone to

6

random fluctuation. It also gives less information about which A.I.s and techniques

are strongest against each other.

Finally, once the contestants have submitted their A.I.s, and the tournament has been

run and scored, the techniques that have been used need to be written into a paper.

Togelius suggests four categories of how this might be done, which he names Sophist,

Dictator, Anarchist, and Big Hippie Family approaches. In the Sophist approach,

nothing about the tournament is documented. The Sophist approach is strongly dis-

couraged as it negates much of the scholarly value of running the tournament in the

first place. In the Dictator approach, the tournament organizer writes a paper which

documents all of the techniques used by the contestants. In the Anarchist approach,

the organizers write a paper on the tournament’s organization and encourage the

contestants to write papers on their submissions. Finally, in the Big Hippie Family

approach, the tournament organizer works together with the authors of each submis-

sion to write a single large paper covering the organization of the competition and

the techniques of the submissions [38].

2.1.3 Games

One of the major advantages of Game A.I. tournaments is that we can use different

games to simulate different challenges for A.I. systems. Each game can encapsulate

a different part of the complexity of the real world while ignoring other parts.

• Adversarial: Is there one or more other agents trying to foil the A.I.s plans?

• Symmetry: Do both players have the same abilities and resources?

• Observability: Is some information hidden from one or more of the players?

7

Table 1: Properties of Various Games

Name Timing Observability Randomness Asymmetry Complexity Strength

Chess Turn Based Full Deterministic First Turn Medium Superhuman

Go Turn Based Full Deterministic First Turn High Superhuman

StarCraft Real Time Partial Deterministic 3 Factions Very High Subhuman 1

Mario Real Time Partial Deterministic PvE 2 Medium Superhuman

Fifth Aeon Turn Based Partial Stochastic Decks, Shuffling High Subhuman

Angry Birds Turn Based 3 Full Deterministic PvE High Subhuman

Ms Pac Man Real Time Partial Deterministic PvE Medium Unknown

• Determinism: Is the game fully deterministic, or are some parts random (stochas-

tic)?

• Turn Based/Real Time: Must players make decisions continuously or at discrete

time points?

• Complexity: How large is the state space of the game?

2.1.4 Brief Survey of Tournaments

A.I. competitions have been run with a wide variety of games and formats. A sub-

section of these games and formats will be presented in this paper.

1AlphaStar may have superhuman StarCraft 2 performance but no bot has done the same for
StarCraft Brood war. In addition AlphaStar is currently limited to one match up and one map.

2Player Vs Environment. A game in which the player does not compete against other agents
3Angry Birds runs its physics simulations in real time but players have an unlimited amount of

time to decide where to fire.

8

2.1.5 Board Games

Some of the first games to be addressed by A.I.s were traditional board games. These

include Chess, Checkers, Go, and many others. Board games have several advantages

for A.I. competitions. First, the rules are relatively simple and often in the public

domain. This means it’s easy for the organizers and the participants to implement

them in code. Second, these games are often relatively simple, as they must be

playable by humans without digital assistance. This has allowed A.I.s to more easily

achieve a higher level of play and more impressive results. However, this can also

limit their usefulness as analogs for the real world.

Chess

Chess is an ancient and popular board game. Two players take turns sequentially

moving pieces across the board. When one player’s piece moves on top of their

opponent’s piece, that piece is captured. When a player’s king piece is threatened (in

danger of being captured) and cannot escape, that player loses the game 4.

Figure 1: Chess Pieces

4Full Rules http://www.uschess.org/content/view/7324/

9

http://www.uschess.org/content/view/7324/

Interest in computer Chess has been around since at least 1951 when Claude Shannon

published the paper ”Programming a Computer for Playing Chess.” A great deal of

interest focused on the problem of playing Chess at a human level. This was eventually

attained by the Deep Blue Chess system, which defeated Garry Kasperov in 1996 [14]

Despite Chess A.I achieving superhuman results over 20 years ago, Chess is not a

solved game. Solved games are games where the optimal strategy has been computed,

such as Tic Tac Toe or Checkers. There is still room for better computer vs. computer

play. The World Computer Chess Championship is run periodically to help find the

current state of the art Chess engine, with the latest competition being run in 2018

in Stockholm.

10

Table 2: World Chess Competition Results [7]

Event # Year Location Participants Winner

1 1974 Stockholm 13 Kaissa

2 1977 Toronto 16 Chess 4.6

3 1980 Linz 18 Belle

4 1983 New York 22 Cray Blitz

5 1986 Cologne 22 Cray Blitz

6 1989 Edmonton 24 Deep Thought

7 1992 Madrid 22 ChessMachine

8 1995 Hong Kong 24 Fritz

9 1999 Paderborn 30 Shredder

10 2002 Maastricht 18 Deep Junior

11 2003 Graz 16 Shredder

12 2004 Bar-Ilan University, Ramat Gan 14 Deep Junior

13 2005 Reykjavk 12 Zappa

14 2006 Torino 18 Junior

15 2007 Amsterdam 12 Zappa

16 2008 Beijing 10 HIARCS

17 2009 Pamplona 10 Junior

18 2010 Kanazawa 10 Rondo, Thinker

19 2011 Tilburg 9 Junior, Shredder, Sjeng

20 2013 Yokohama 6 Junior

21 2015 Leiden 9 Jonny

22 2016 Leiden 6 Komodo

23 2017 Leiden 4 Komodo

24 2018 Stockholm 8 Komodo

11

Go

Go is another ancient and popular game. Two players alternate placing stones on a

grid. When one player surrounds another players stones, they are captured, granting

the capturing player points. The player with the most points at the end of the game

wins. The player who goes second is usually awarded some points at the start of the

game to make up for the disadvantage of getting the second turn 5.

Figure 2: A Game of Go in Progress

Go is harder than Chess for computers due to its larger search space. A.I. systems

did not achieve professional-level play until 2016 when the AlphaGo system defeated

Lee Sedol a 9 dan professional Go player (9 dan is the highest rank) [35].

5Full rules https://www.britgo.org/intro/intro2.html

12

https://www.britgo.org/intro/intro2.html

Table 3: Go Competition Results [3]

Event Date Place Entrants Winner

AI Ryusei December 9th-10th 2017 Akihabara, Tokyo 18 FineArt

132nd KGS tournament November 5th 2017 KGS 6 Zen

Slow KGS tournament September 3rd-6th 2017 KGS 2 Zen

1st World AI Go Open August 16 - 17 Ordos City, China 12 Zen

131st KGS tournament July 9th 2017 KGS 4 Zen

130th KGS tournament May 7th 2017 KGS 6 AyaMC

10th UEC Cup March 18th-19th 2017 Tokyo 30 Fine Art

Slow KGS March 5th-8th KGS 4 Zen

129th KGS tournament January 14th 2017 KGS 4 Zen

128th KGS tournament December 4th 2016 KGS 2 AyaMC

127th KGS tournament November 13th 2016 KGS 4 AyaMC

126th KGS tournament October 9th 2016 KGS 4 AyaMC

2016 Slow KGS September 3rd-7th KGS 4 AyaMC

125th KGS tournament 7-Aug 2016 KGS 4 Zen

124th KGS tournament 10-Jul 2016 KGS 4 Zen

13

2.1.6 Real Time Strategy Games

A Real-Time Strategy game or RTS is a game in which players control a group of

entities, often representing an army or civilization, in real time. RTS are useful games

for researchers because they allow us to study essential problems common in dynamic

systems, such as decision making with uncertainty and real-time adversarial planning

[33].

Real Time Strategy (RTS) A.I. competitions have mainly focused on two games.

The first game, OpenRTS, is an open-source RTS game built for research. However,

following the release of an API for StarCraft: Brood War [19], a popular commercial

RTS, StarCraft has received much of the community’s attention [13].

StarCraft

StarCraft is a game in which players select one of three species: the Terran, Protoss

or Zerg. They then use the unique abilities of their faction to gather resources, build

armies and eventually destroy their opponent. The game is played in real time over a

variety of maps with different terrain. Players can only see areas of the map within a

certain distance of units that they control, making the game only partially observable.

The rest of the map is hidden by “fog of war.”

14

Figure 3: StarCraft Screenshot

Starcraft has consistently been one of the most popular games. Researchers have

attempted to solve the problem of creating high-quality StarCraft agents using a

variety of strategies. The first type of strategies were hard-coded ones. These were

often organized around finite state machines that organize the A.I. into a number of

states, such as gathering resources, building, attacking, and defending. Each of these

behaviors was hard-coded, based on human knowledge. [33].

Another approach to developing StarCraft A.I.s is to use search methods to explore

the game’s state space to find good strategies. This approach has been employed

very successfully with board games like Chess and Checkers; however, its application

to StarCraft is far more limited. Researchers have constructed planners that use

Hierarchical Task Networks (HTN) to cut the search space down to a more tractable

level. HTN divide complex tasks into subtasks, which are then independently planned.

HTNs reduces the complexity of the search problem, but may also reduce the quality

of the results. [33].

Researchers have also applied machine learning based techniques to StarCraft. Early

researchers applied ML techniques to specific parts of the game, such as determining

15

Table 4: StarCraft Brood War Competition Results [33]

Name 1st place 2nd place 3ed place Winrate 1 Winrate 2 Winrate 3

AIIDE 2010 Overmind Karsi0 Chronos Unknown Unknown Unknown

AIIDE 2011 Skynet Ualbera AIUR 88.9 79.4 70.3

AIIDE 2012 Skynet AIUR Ualbera 84.4 72.2 68.6

AIIDE 2018 SAIDA CherryPi CSE 96.15 90.84 88.37

2011 CIG Skynet Ualbera Xelnaga 86.7 73.3 36.7

2012 CIG Skynet Ualbera AIUR 78.3 65.2 60.4

build orders and openings.

2.1.7 Classic Computer Games

A.I. researchers have adopted several classic computer games. These games differ

from board games in that they often incorporate physics and real-time simulation.

However, they are much simpler than modern computer games. In addition, they

are all very popular and well known within the gaming community, which helps draw

interest to them.

Mario

Mario is a platforming game in which the player guides a character (the titular Mario)

across a series of platforms. Players must avoid enemies, obstacles, and pits while

also trying to collect power-ups and coins.

16

Figure 4: Infinite Mario Screenshot

In 2009 Julian Togelius, Sergey Karakovskiy and Robin Baumgarten ran a tournament

using the Infinite Mario platformer [39]. The goal was to see which agent could make it

the furthest through a procedurally generated level before dying. The most successful

agent was Robin Baumgarten’s A* agent.

Ms. Pac-Man

Ms. Pac-Man is a classic arcade game in which the player navigates a maze collecting

pellets and avoiding ghosts.

17

Table 5: 2009 Mario Competition Results [39]

Competitor Progress ms/step

Robin Baumgarten 17264 5.62

Peter Lawford 17261 6.99

Andy Sloane 16219 15.19

Sergio Lopez 12439 0.04

Mario Perez 8952 0.03

Rafael Oliveira 8251 ?

Michael Tulacek 6668 0.03

Erek Speed 2896 0.03

Glenn Hartmann 1170 0.06

Evolved neural net 7805 0.04

ForwardJumpingAgent 9361 0.0007

18

Figure 5: Ms. Pac-Man Initial Setup

In the Ms. Pac-Man tournament, agents are given a limited view of the environment.

They know the layout of the maze, but can only see other agents when they are

within eyesight; they cannot see through walls. User-submitted agents control both

the ghosts and the player. The goal of the player is to survive and collect as many

pellets as possible. The goal of the ghost is to eliminate the player as quickly as

possible. [5]

2.1.8 Physics Games

Physics games are games in which the player must interact with a simulation of real-

world physics in order to play the game. They play strongly into human intuition

about physics, which makes these games challenging for A.I.s to surpass humans.

19

Table 6: Mrs Pac-Man Competition Results [4]

Player Agents

Agent Average Score

Squillyprice01 7736.63

GiangCao 7516.63

thunder 6733.13

PacMaas 6275

Starter PacMan 5865.5

StarterPacManOneJunction 1134.25

StarterNNPacMan 535

user76 120

Ghosts Agents

StarterGhostComm 3859.13

StarterGhost 4288.25

thunder 4864.81

user76 4948.88

20

Angry Birds

Angry Birds is a physics-based game in which players launch birds out of a slingshot

to destroy pigs. Levels consist of targets (pigs) placed among a variety of physics-

based obstacles such as boxes and explosives. Players must calibrate their shot and

predict the interactions of the physics system to destroy all the pigs with as few shots

as possible. Angry Birds has become immensely popular since its inception in 2009

and has garnered interest in the A.I community.

Figure 6: A.I Birds Screenshot

As of the 2018 A.I. Birds Competition, humans are still considerably better than A.I.

players at Angry Birds. [1]

2.2 Collectible Card Games

A collectible card game (CCG) is a card game in which players do not start with all of

the available cards. Instead, they collect more over time. In conventional CCG these

cards are then used to form decks, which are used to compete against other players.

The decks are shuffled each time the game is played; then players draw cards without

knowing the order of their deck or the contents of their opponent’s deck. This means

21

Table 7: 2018 Angry Birds Competition Results [1]

Bot Round Reached

Eagle’s Wing 2017 Final (won)

BamBirds Final

Eagle’s Wing 2018 Semi-Final

IHSEV Semi-Final

PlanA+ Quarter Final

DQ-Birds Quarter Final

MetaBirds Quarter Final

AngryHex Quarter Final

MYTBirds Quarter Final

CCGs have a number of interesting properties, including a large degree of asymmetry,

variance, and uncertainty.

The first generally recognized CCG is Magic the Gathering, which was released in

1993 [6]. In Magic the Gathering’s standard format, players form decks of 60 cards

out of a pool of thousands of cards. A deck may repeat any individual card up to

four times, except for land cards, which may have any number of repetitions. This

means that there are a vast number of possible decks that can be played, potentially

resulting in a very high degree of asymmetry between players.

22

Table 8: Tournament Results

Name Game Participants Winner

AIIDE 2010 StarCraft Overmind

AIIDE 2011 StarCraft 15 Skynet

AIIDE 2012 StarCraft 10 Skynet

AIIDE 2018 StarCraft 25 SAIDA

Mario 2009 Mario 9 Robin Baumgarten

CIG 2018 Pac-Man 8 Eagle’s Wing 2017

AI Ryusei 2017 Go 18 FineArt

132nd KGS tournament Go 6 Zen

Autumn 2017 Slow KGS Go 2 Zen

1st World AI Go Open Go 12 Zen

131st KGS tournament Go 4 Zen

130th KGS tournament Go 6 AyaMC

10th UEC Cup Go 30 Fine Art

Spring 2017 Slow KGS Go 4 Zen

129th KGS tournament Go 4 Zen

128th KGS tournament Go 2 AyaMC

127th KGS tournament Go 4 AyaMC

2010 WCCC Chess 10 Rondo, Thinker

2011 WCCC Chess 9 Junior

2013 WCCC Chess 6 Junior

2015 WCCC Chess 9 Jonny

2016 WCCC Chess 6 Komodo

2017 WCCC Chess 4 Komodo

2018 WCCC Chess 8 Komodo

23

Figure 7: A Screenshot from MTG Arena, a Digital Adaption of MTG

Following Magic, a wide variety of collectible card games have been released. One of

the most popular ones is Blizzard’s digital CCG, Hearthstone [18]. Hearthstone uses

many of the same rules as Magic but simplifies the game by streamlining resource

costs and reducing the number of cards in a deck from 60 to 30.

Figure 8: A Screenshot of Hearthstone a popular digital CCG

24

2.3 Automated Balancing

In recent years, a significant amount of work has been put into procedural content

generation. A large amount of this effort has been directed towards the generation

of peripheral assets, such as trees, buildings, race-tracks, and other structures [23].

Comparatively, the area of content generation for card games has remained somewhat

underdeveloped. The research that currently exists is largely centered around the

implementation of balancing systems. This push for good automatic balancing is

supported by the research of Andrade et al., the research shows that game balance

has a significant impact on player satisfaction [8]. In most of these systems, the focus

is put on generating new balanced cards from scratch, rather than working with a

designer to manipulate specific aspects of a design.

In the paper, ‘Evolving Card Sets Towards Balancing Dominion”, Mahlmann, To-

gelius, and Yannakakis lay out a method for evolving sets of cards for the deckbuilder

game Dominion [31]. That work differs from this one in three important ways. The

first difference is that it focuses on a deckbuilder game, rather than a collectible card

game. This lowers the amount of asymmetry between players, as they are unable to

enter into the game with pre-made decks. Second, the system works in a vacuum,

generating an entirely new set that is not expected to interact with any previously

existing cards. The system aims to focus on integrating new cards into an existing set

of cards while being able to control how much of an impact the new cards are likely to

have on the games’ metagame. Finally, the system works purely autonomously. While

this can be very beneficial in saving labor, it limits a designer’s ability to interact

with the game to inject fun or thematic elements.

The paper ‘Evolving Maps and Decks for Ticket to Ride” details the authors’ attempts

to generate two kinds of content for the game Ticket to Ride: cards and maps [17].

25

The authors’ goal is to generate maps that resemble real-world locations but are also

balanced. However, similar to Dominion, Ticket to Ride does not involve a deck-

building phase before starting the game. As such, certain aspects that apply to this

paper, such as a competitive metagame formed of top-tier decks, are not relevant.

Another effort towards the study of automatic game balancing was put forth by Volz

et al. [43]. Using a comparison of manual and automated deck balancing techniques,

these researchers demonstrated the feasibility of automatic balancing in the card

game Top Trumps. A similar example of this strategy is shown in the research done

by Bhatt et al. towards evolving decks in the collectible card game, Hearthstone,

developed by Blizzard [18, 12]. Through the use of a consistent aggro-style, utilizing

differing decks, Bhatt et al. demonstrated the possibility of improving win-rate by

modifying deck composition. They also noted a distinct difference in win-rate for each

of the decks, depending upon the deck style of their opponent. Prior research was

done by Mahlmann et. al. also demonstrated the separation between card balance

and player skill [31]. Their tests set three agents of varying skill levels against each

other using a series of different decks. In this manner, they were able to determine

that regardless of the player’s skill, individual decks lent themselves more favorably

towards game balance.

Automatic balancing systems have seen implementation in other genres of games as

well. The paper ”Automatic Design of Balanced Board Games‘ generates entire games

based on game-definition language and balances them using a general game player

[24]. However, the complexity of these games is limited, and as such, the system is

not very useful for balancing complex existing games such as collectible card games.

In Automatic Playtesting for Game Parameter Tuning via Active Learning, Zook et.

al. show a method for tuning the parameters of a space shooter game [47]. This

work is similar but creates a system that can deal with the unique complexities of

26

collectible card games, such as a multitude of different decks.

Additionally, in the realm of fighting games, Zuin et. al. explore an evolutionary

method for attempting to find unbalanced combinations of abilities [26]. Similar

work could eventually be applied to finding combinations of cards in CCG that might

be overpowered. However, the search space of CCG is much larger due to the number

of cards and card combinations in existence.

Philipp Beau and Sander Bakkes examined a more general view of game balancing.

In their work, they attempt to create a general method for balancing asymmetric

games using Monte Carlo simulation [11]. However, such a general solution cannot

be trivially applied to all games in a practical manner. This is especially true of

collectible card games, which have a vast number of possible match-ups due to the

nature of deckbuilding. It is, therefore, necessary to apply some specialized technique

to reduce this vast number of to a manageable level.

In addition to competitive balance, Lankveld et. al. explore the theory of incongruity

as it applies to balancing games [42]. According to the authors, ‘Incongruity is de-

fined as is the difference between the complexity of a context and the complexity of

the internal human model of the context.” Using that theory, they attempt to use

an automatic balancing system to make the level of incongruity within their game

constant, adapting to the player’s changing mental model. This shows the potential

of automatic balancing systems not only to be used to attain fairness in multiplayer

games, as this paper works towards but also in obtaining specific emotional goals.

27

Chapter 3

SYSTEM DESIGN

3.1 The Fifth Aeon Collectible Card Game

Fifth Aeon is a collectible card game in which two players attempt to defeat each

other by reducing the opponent’s health pool to zero, using customizable decks of

cards. The players may create any deck they like out of the 140 existing cards in the

game, with no limits placed upon the availability of cards from differing factions. The

only constraint that must be followed to obtain a legal deck is to include 40 cards,

with no more than four copies of any single card present.

Figure 9: An Example of Fifth Aeon Gameplay

Cards are split into four types, spells, units, enchantments, and items, each with

varying costs, special abilities, and statistics. For example, spells have a cost and an

arbitrary number of effects, such as destroying a target unit or drawing more cards for

their owner. Units carry all of the functionality present in spells, but also have attack

28

and defense values. These allow them to interact with other units and players in the

combat phase. Cards may also be customized through the addition of mechanics,

which alter how they behave. For example, the Immortal mechanic causes a unit that

dies to return to the battlefield at the end of the turn. Other mechanics, such as the

deal damage mechanic, can be further customized by specifying parameters including

options such as: how much damage should be dealt, what should be targeted, what

the trigger will be, and when the effect should be applied. This system allows a very

large number of cards to be specified in data without any additional programming.

In order to play a card, a player must have enough energy remaining to meet its

energy cost. Any energy spent to play a card will be depleted until that player’s

next turn. The card’s owner must also have the prerequisite amount of Fifth Aeon’s

four resources, synthesis, growth, renewal, and decay. Every card specifies its energy

cost, as well as its resource prerequisites. At the start of each turn, a player must

choose one of the four resources, giving them one more maximum energy and one

more resource of that type. Thus, as in many other collectible card games, every card

may be played in any deck and the player will eventually have enough resources to

play it. However, playing cards of different factions has the potential to make a deck

less efficient and cause it to take longer to assemble its resources than a deck that

places a focus on one faction.

29

Figure 10: Fifth Aeon Deck Building

3.1.1 Rules Engine

The implementation of Fifth Aeon’s core rules, aka the rule engine, is kept separate

from any client or server code in the repository https://github.com/Fifth-Aeon/

CCG-Model. The rules engine is only responsible for computing the internal model of

a Fifth Aeon game and does not control user interface (U.I.), rendering, etc. The rule

engine is the model in the Model View Controller design pattern.

3.1.2 Networking

When writing a networking layer for a collectible card game, there are several issues

to consider. First, we must keep both players in sync with one another. If one player

takes an action, the other should be alerted of it. If either client’s game falls out of

sync, they may unintentionally take actions which are not legal, causing the game

to become unplayable. Second, we must prevent players from cheating. A player

should not be able to make illegal moves, even if they modify their client. Third,

some information must be hidden from players. Players should not know the order

of cards in their deck, what cards are in their opponents deck, or what cards are in

30

https://github.com/Fifth-Aeon/CCG-Model
https://github.com/Fifth-Aeon/CCG-Model

their opponent’s hand. Finally, we want to make the game fast and responsive, even

on slow connections. That requires reducing the amount of information we send over

the network and doing operations locally as often as possible.

There are several different paradigms to achieve these goals of maintaining synchro-

nization, preventing cheating, reducing latency, and hiding secret information. One

method is to keep only one game model on the Server, which would compute all the

game rules. The clients would only have dumb models that could display information,

but would not be able to compute the results of any actions. Whenever an action

was taken, the Server would send all the changes to the model as well as a list of

what actions are legal after the action resolves. This model is referred to as Server

Simulation.

Another model is to have both the client and the Server understand the full set of

game rules. Whenever an action is taken, the clients and the Server communicate only

the minimum amount of information needed to synchronize the changes. Because all

parties understand the rules, they only need to share what actions were taken, not

the consequences of those actions. This results in less network traffic and a more

responsive game over poor connections.

31

Figure 11: How Actions are Synchronized in Fifth Aeon

Fifth Aeon uses the synchronized simulation paradigm to reduce network traffic. For

each game, three models of the game are kept. The Server has the canonical model,

and each client has their model. Whenever a client takes an action, it first attempts

to apply that action to its local model. If the action is entirely deterministic, and

its outcome does not rely on any hidden information, this will succeed. If it relies

on secret information, such as what cards will be drawn in response to a card draw

effect, the client will have to wait for more information from the Server before being

able to update its model fully. The result of this is that deterministic actions will

appear instantaneous to the user, even over very slow connections. Once the client

32

has applied the action, it will send it to the Server. The Server will check if its legal,

which would imply the client had been modified. If it is legal, it will apply it to

its canonical model, and relay it to the other client. It will also release any secret

information revealed by the action such as what cards were drawn. The second client

will receive this information and use it to update its model, so all three models are

in sync.

There are downsides to the synchronized simulation paradigm. The largest one is

that its harder to keep all three models in sync. All three models need to be able

to deterministically apply each action with the information they are given. The pro-

grammer must figure out the minimum set of information needed for this to happen.

If the programmer makes a mistake and send insufficient information, or apply that

information incorrectly, it will result in a desynchronization. These kinds of bugs can

be particularly tricky to find and debug, because they often do not cause an imme-

diate failure, but rather, cause the game to fail at some point in the future when the

client attempts to do something illegal. The second major issue is that it is more

challenging to hide secret information. In the dumb client model, only the Server

ever needs to do any computation on secrets; thus the only additional logic needed

to handle secrets is to know how to limit what information is sent to a client. In the

synchronized simulation model, a client must know that it can compute some actions,

but in other cases, it will have to request additional information from the Server.

3.1.3 Server

Fifth Aeon’s Server is written in TypeScript and runs on the Node.JS platform. It

provides several services to the client, including data storage, authentication, and

server-authoritative multiplayer gaming. The Server is responsible for storing the

majority of the data associated with an account. It stores a player’s email, password,

33

and collection of cards in a PostgreSQL database. The passwords are salted with 32-

character random strings, then hashed with pbkdf2 in order to make it more difficult

to convert passwords back into plain text.

The Server also provides the API and storage for the tournament system. Regular

Fifth Aeon accounts can be used to sign up for the A.I. competition. The backend

can then store teams and submissions. It enforces permissions to ensure that only

the owners of a submission or an admin can see it.

One of the primary purposes of the Server is to allow players to play multiplayer games

against each other via the internet. Unlike most of the Server’s other functions, this

is done via WebSockets rather than with standard HTTP requests. This is because

WebSockets, unlike HTTP requests, allow two-way communication, meaning that

both the client and the Server can send information to one another without first

having to receive a request. During a multiplayer game, the Server holds the canonical

server-model of a game. Whenever a client takes an action, it must send it to the

Server, which validates it. If the action is legal, it will be run and passed on to the

other client, otherwise, the action will be rejected and an error message will be sent

to the client attempting to take the illegal action.

Notably, in Fifth Aeon, the Server is only required for online games. The client is

capable of running offline games (vs. the A.I.) without connecting to the Server. This

greatly reduces the load on the Server but means the Server cannot verify who won

a player vs. A.I. game. That would be a problem if the game were built on a Free

to Play model and offline games granted rewards. In that case, the game would first

have to be altered to run all games on the Server, which would not require any major

architectural changes, but would use more resources.

34

3.1.4 Client

Fifth Aeons client is built to run in a web browser. It is written in TypeScript using

the Angular framework. The web client provides access to all the functionality of the

base game, but not the Bot Tool Kit, which is only accessible as a command line tool.

The web client runs on modern browsers and is tested on Chrome, Firefox, and Edge.

Figure 12: Front Page of the Fifth Aeon Client

When a player opens the game, the client checks to determine if it has a valid session.

Sessions are stored as JSON Web Tokens (JWTs) so the Server can efficiently check

them without having to access the database. If the user does not have a valid session

they will get the new/returning player screen. From there, the user can either log

into an account, register a new account, or play a guest. These options are intended

to minimize the amount of time it takes to resume playing the game for both existing

and new players.

35

Figure 13: Creating a New Account

Figure 14: The Main Lobby Where a Player Decides What Mode to Play.

36

Figure 15: Selecting a Deck to Play With

In addition to the U.I. to play the game, the client also contains a card editor where

users can create custom cards. Users use any of the existing mechanics, targeters,

and triggers to create a vast number of potential custom cards.

37

Figure 16: Creating a Card in the Editor

38

Figure 17: Information about the Tournament Available through the
Client

39

Figure 18: UI to Create a Team to Submit to the Tournament

Figure 19: UI to Submit a Bot

40

3.2 The Bot Toolkit

The Fifth Aeon Bot Toolkit is a command line tool used for running games or tour-

naments between A.I. bots. It can be given various parameters, such as what decks to

use, what bots should participate, and how many games should be played. The sys-

tem is then able to run the specified games in parallel using multiple system processes.

It also contains code for recovering from errors and restarting failed processes.

3.2.1 Creating Bots

The Bot Tool Kit has the ability to create a template bot for a user. The user

enters in the name of the bot then the BTK will create a source code file for it and

automatically import it. From there, the user can edit their bots source code in an

editor of their choice.

3.2.2 Running Tournaments

The main function of the bot tool kit is to run tournaments. This functionality is used

both by competitors to test their bots against others and to run the final tournament

and decide the winner.

The BTK can run different variations of tournaments based on JSON configuration

files. These files are stored in the data/tournaments file. By default, the BTK has

configuration files to run the three standard tournaments that are used to evaluate

the winner of the tournament. Users may also create their own configurations for

testing. For example, they could create a configuration with a minimal number of

trials to make sure their bot runs in a short amount of time. They could customize

what bots will be included in a tournament to see what matchups their bot is or is

41

not good at.

A user will be given a list of all the configurations that are known to the BTK and

may select one to run. After that, the system will run the tournament using process

per logical CPU core. The system will print out the results when the tournament

runs, or if the user terminates the process early, it will display the results it has

already finished running.

Bot Tool Kit tournaments are run in using multiple processes in order to promote

isolation and efficiently utilize all a machines hardware.

Figure 20: Bot Tool Kit Tournament Multiprocessing

42

3.2.3 A.I. Server

When creating an A.I., it is often helpful to be able to play against the A.I. using

the client’s GUI. This allows users to get more intuition about how their bot plays

as well as to trigger specific scenarios that might help them find issues. Ideally, they

should be able to do this without having to build and run a copy of the client on

their local machine. In order to accommodate this feature, the BTK supports the A.I

server mode.

An A.I server is a WebSockets-based server that the game client can connect to in

order to play against a bot. From the BTKs menu, a user may select the A.I. server

mode. They then have to select which A.I. they want to the server to run and the

deck it should use. Once that is done, the server will start and run on localhost

port 4236. The user can then open the client at fifthaeon.com (a local copy is not

necessary). The client will detect the A.I. server and connect to it, allowing the user

to play against their A.I. using the standard WebClient GUI.

3.3 DefaultAI

Fifth Aeon includes an A.I. player called DefaultAI which serves as both the opponent

when playing in single-player mode and as a platform for other bots to be built off of

during the A.I. competition.

3.3.1 Architecture

DefaultAI is based on a series of heuristics and utility calculations. It employs a

standard plan for a turn and customizes it based on what actions give it the best

43

utility.

The source code for DefualtAI is available at https://github.com/Fifth-Aeon/

CCG-Model/blob/master/ai/defaultAi.ts with full comments.

DefaultAI’s standard plan is as follows.

1. Play a resource.

2. Play cards and/or empower enchantments.

3. Attack.

4. Play cards and/or empower enchantments.

In addition to its plan for a turn, DefaultAI must also act when the opponent attacks

it or when it has a choice. These do not require plans as in either case it must

immediately block or make a choice without being able to do anything else first.

Deciding What Card to Play

The most significant problem for DefaultAI is deciding what cards to play in a turn.

Every card in Fifth Aeon has a non-zero energy cost which limits how many cards

may be played in a turn. For example, if a player has 6 energy and cards which cost

2, 4, and 5 energy, then the player could play the 2 cost card and the 4 cost card, or

it could play the 5 cost card. However, it could not play all three. Thus, DefaultAI

must decide some subset of the cards in it’s hand it wants to play. In addition, the

value of playing a certain card will change significantly depending on the current state

of the game. It would not be a good idea for DefaultAI to play a board clear (a spell

that destroys all the units currently in play) when it has many units in play and its

44

https://github.com/Fifth-Aeon/CCG-Model/blob/master/ai/defaultAi.ts
https://github.com/Fifth-Aeon/CCG-Model/blob/master/ai/defaultAi.ts

opponent has none. Therefore, DefaultAI’s card evaluation strategy needs at least

some level of situations awareness to be competent.

DefaultAI achieves this by having a combination of evaluator functions built into all

the games mechanics, triggers, and targeters. An evaluator is a function that the A.I.

can use to gain an estimation of the value of some mechanic based on the current

state of the game. The basic unit of evaluation is 1 evaluation point, which represents

a single stat point of a unit. So, Minotaur, a 4/5 unit with no abilities is worth 9

evaluation points. The evaluation of units and items take into account both the stats

the unit will add to the battlefield and the effects of the unit’s ability.

Figure 21: Minotaur a Simple Unit With no Abilities

Some abilities such as Flying multiply the value of the unit they are attached to. Other

abilities add to it. Abilities that have targets must consider what targets they will

currently be applied to. For example, Flame Ifrit is an 8/4 unit with the ability ‘Play:

Deal 3 damage to all other units”. Flame Ifrit’s stats give it a base evaluation score of

12, but its ability must be taken into account. The ability is created by combining the

OnPlay trigger with the DealDamge mechanic and the AllUnits targeter, all of which

contribute to how it is evaluated, The DealDamage mechanic’s evaluator checks if

it will do enough damage to kill a target. If it does, then it returns that units own

evaluation score as its value, or if that unit is allied to the mechanic’s owner, minus

45

that score. It does this for all its targets, which, when combined with AllUnits, will

be all the units currently in play. Finally, this has to be multiplied by the triggers

value, which estimates how many times the effect will occur. With OnPlay this is

simply 1, but with more complex triggers it might be more or less. The final result of

all of these factors is that DefaultAI will consider Flame Ifrit more valuable to play

if its effect will kill the A.I.’s opponent’s units, but less valuable if it will kill its own

units. If it will kill both, it will consider the relative value of the units lost.

Figure 22: Flame Ifrit a Unit With a Situational Ability

If DefaultAI has a choice of targets, it will enumerate over all of them and check

which one gives it the highest score. It will then consider the score of the card to be

equal to the score of the card given its best target.

Once DefaultAI has assigned numeric scores to each of the cards in its hand, it will use

the Dynamic programming in-advance Knapsack algorithm to create a subset of those

cards that have total cost less than or equal to its energy and maximize total utility.

It will then cast one of the cards in that subset, then reevaluate the board and do it

again. It might seem natural to cast all the cards in the set instead of reevaluating,

but in some cases, casting a card causes new information to become available, for

example, casting a spell might cause DefaultAI to draw new cards which are even

better than what DefaultAI had previously planned to play.

46

3.3.2 Deciding What to Block With

When its opponent attacks it, DefaultAI must decide how to block. To do this, it

enumerates every possible block that each of its units could make. It then categorizes

these blocks into four cases. Those cases are only the attacking unit will die, only the

blocking unit will die, both units will die, or neither unit will die. DefaultAI always

makes blocks in the first or third cases, and in the fourth case, where both units

die, it evaluates the relative power of both units (using the card evaluation method

described above) and only makes the block if its unit is less valuable than the one

it will be trading for. DefaultAI will only make blocks where its unit dies, and the

attacker survives if it would otherwise take lethal damage. Notably, DefaultAI does

not consider blocking a single unit with multiple units, despite the fact that this is

legal. This is a known flaw and has been left as an exercise for A.I. tournament

contestants.

Figure 23: The Process of Deciding Whether to Make a Block

47

3.3.3 Deciding What to Attack With

Fifth Aeon’s attack logic is the reciprocal of its defense logic. When deciding if it

should attack with a particular unit, it enumerates all the enemy units that could

block that unit. If it would not choose to make any of those blocks, then it makes

the attack. This strategy is rather conservative and does not allow DefaultAI to

strategically sacrifice attackers in order to damage its opponent, even if they are low

in health.

3.3.4 Deciding What Resource to Play

DefaultAI decides which of the four resources to play based on which will unlock the

most possible plays. To do this, it calculates how many of each resource it would need

to play any cards in its hand that it does not already meet the requirements for. It

then chooses the card that will get it closest to being able to play the largest number

of them, favoring cards which it can play soon. If DefaultAI can already play every

card in its hand, it instead uses the same algorithm to maximize how many cards it

can play in its deck based on its decklist. Finally, if it already has the right resources

to play every card in its hand and deck, it plays whatever resource its deck has the

highest average total of.

3.3.5 Deciding How to Make a Choice

There are several situations in which a player in Fifth Aeon has to select a number

of card from a set. This is referred to by the engine as a choice. Choices are used

in several different situations. For example, at the beginning of the game, a player

gets the choice to replace any of the cards in their starting hand. If they choose to

48

replace a card, that card is shuffled into their deck then they draw a new card. A

different type of choice is a deck searching ability. These abilities let a player search

their entire deck for any card they want.

DefaultAI handles these diffident kinds of choices by having a heuristic for each type.

The main heuristic it uses is the draw-heuristic which estimates how much it would

like to draw a given card. It estimates this by calculating the distance between its

current energy pool and the cost of the given card. Cards which are dramatically

higher or lower than DefaultAI’s current energy are unlikely to be good because they

are probably will either take too long to become playable or are already irrelevant.

DefaultAI uses the draw-heuristic to handle several kinds of choices. It will mulligan

a card if that draw-heuristic is less than the draw-heuristic of the average card in its

deck. When DefaultAI is forced to discard cards, it will discard ones with the lowest

draw-heuristic value. Finally, when DefaultAI gets to search for a card, it will choose

the one with the highest draw-heuristic value.

3.3.6 Building on Top of DefaultAI

DefaultAI can be used as a based for creating new A.I. players to submit to the

competition. The cleanest way to do this is by creating a new class which extends

DefaultAI. Then, override the functions of DefaultAI to customize its behavior. For

example, BerserkerAI is a simple modification of DefaultAI that always attacks with

everything it can, and never blocks. It does this by overriding DefaultAI’s standard

attack and block functions.

import { DefaultAI } from ’../game_model/ai/defaultAi’ ;

/**

49

* Berserker is a version of the default A.I. that always makes every available attack and never blocks.

*

* As a consequence , this A.I. is unlikely to be very competent.

*

* Otherwise it is identical to DefaultAI

*/

export class BerserkerAI extends DefaultAI {

/** Attack with all legal units */

protected attack () {

l et p o t e n t i a l A t t a c k e r s = this . game . getBoard ()

. ge tP layerUni t s (this . playerNumber)

. f i l t e r (un i t => uni t . canAttack ()) ;

for (l et a t tacke r of p o t e n t i a l A t t a c k e r s) {

this . game . dec l a r eAt tacke r (a t ta cke r) ;

}

return true ;

}

/** Never block anything */

protected block () {}

}

50

3.4 The Auto Balancer System

The auto balancer is a system that attempts to balance a new proposed ”Target” card

against an existing ”Goal” card, modifying the selected cared until it becomes equally

as powerful as the Goal card. In order to achieve this, the balancer is given both the

Target and Goal cards as input, along with a list of parameters for the Target card

that it is allowed to modify.

For example, depending on designated parameters, the balancer may be permitted to

modify the cost of a unit, but not its attack or defense. Conversely, it could be asked

to modify the attack and defense, but not the cost. This allows the designer to adapt

the system to fit their needs. If they notice that a particular faction lacks sufficient

six cost creatures, they could ask the balancer to fit a card into that slot.

Once the system has been given these inputs, it attempts to search for the set of

parameters which best balances the target card against the goal card. In order to do

this, the system applies a search method to determine what combination of parame-

ters to try next. It then applies the scoring method to try to determine how balanced

that particular combination of cards is, with lower scores being judged as better. It

does this until the search method tells it to terminate, at which point, it returns the

n-best parameter sets as well as their scores. Currently, the system has one search

method, a comprehensive search, which tests every possible combination of param-

eters. Comprehensive search is simple and works well, but can become intractable

when there are a large number of parameters.

The current scoring method is full injection. This scoring method takes a list of decks

as its input. It then proceeds to inject four copies of the target card, with the given

parameters, into a clone of each of the decks it receives. After this, the same process

51

is replicated using the goal card. Then, a tournament is run between the decks with

the target card and the goal card. The score is the difference between the target

card’s win rate and 50%. This method is good for testing how strong the target card

is in a wide range of decks and circumstances. This method is especially useful for

indicating how strong the constructed card might be in a limited environment where

players don’t have full control over their decklists.

Figure 24: Balancer System

52

Chapter 4

USAGE

4.1 Playing the Fifth Aeon Game

Fifth Aeon is a browser-based game and does not require any installation. It can

be played on a modern browser at https://fifthaeon.com (Chrome is recommended).

The game features a tip system that explains each element of the game as it appears.

4.1.1 Winning the Game

The standard Fifth Aeon game’s goal is to defeat your opponent before they defeat

you. The normal way to do this is to reduce their life total from its starting point

of 25 health, to zero or less. You must also keep your life total above zero as your

opponent’s goal is the same as yours. There are a few additional ways to win via

special card effects, but these are much rarer.

4.1.2 Resources and Cards

In order to progress towards victory, you will need to play cards. Cards do many

different things, but they are all designed to help you win the game.

In order to play a card, you must first have the right resources. There are four faction

resources synthesis, growth, renewal, and decay as well as one additional resource,

energy. During each turn, you may choose one of the four faction resources. This

will increase your resource of that type by one. It will also increase your maximum

53

energy pool by 1. All cards require energy to play, but most require only one of the

four faction resources. The faction resources act as prerequisites to playing a card

and are not used up by playing cards. energy, on the other hand, is consumed when

you play a card and will recharge during the next turn.

Cards that are currently playable are brighter than those you cannot play. You can

play them by clicking on them. If the card requires targets, you will also be required

to select a valid target. Once this is done, the card will be played and any energy you

used to play it will be depleted until your next turn.

There are four types of cards in the game, spells, units, items, and enchantments.

4.1.3 Spells

The simplest type of card is a spell. When a spell is cast it has an immediate effect

based on the rules in its text box. As soon as its effect is done, it goes to the crypt

and cannot be used again.

4.1.4 Units

The next type of cards is units. Units, like spells, may have immediate effects upon

being played. In addition, they remain on the board where they can attack, block,

and have reoccurring triggered effects. Attacking is the primary means of dealing

damage to your opponent, and will be covered on the next section.

In addition to their special abilities, all units have an amount of attack and life, which

are displayed at the bottom of the card. These statistics affect how effective they are

at attacking and blocking.

54

4.1.5 Items

Items are a type of card that must be attached to a unit. In order to play an item,

you must have a valid unit that it may attach to. When an item is attached to a

unit, it will increase its attack and life by the item’s attack and life. It will also grant

its host unit any special abilities it has.

4.1.6 Enchantments

Enchantments are cards that remain on the board like units. However, they cannot

attack or block. Instead, they have lasting effects that modify the game over time.

Enchantments cannot be killed in the same way units can be. Instead every enchant-

ment has a level of power, as well as an empower cost. During their turn, the owner

of the enchantment may pay its empower cost to increase its power by one. Similarly,

the owner’s opponent may pay the empower cost to diminish its power by one. When

an enchantment has no power left, it is dispelled and goes to the crypt.

You can empower or diminish an enchantment on the board by clicking on it during

your turn if you have enough energy to pay the empower cost.

4.1.7 Attacking and Blocking

The primary way to damage your opponent and thus move closer to winning the

game is by attacking them with units. The primary way to avoid attack damage is by

assigning units to block your opponent’s attackers. Both have specific prerequisites.

55

4.1.8 Attacking

In order to attack, a unit must be ready and not be exhausted. Units do not become

ready to attack until the turn after they are played (units cannot attack the unit they

are played). When a unit attacks, it becomes exhausted, and cannot attack or block

until it refreshes, at the start of its owner’s next turn.

You cannot choose what target a unit attacks. That choice is up to your opponent

when they assign blockers. If a unit is not blocked it will deal damage equal to its

attack power to your opponent’s life total.

4.1.9 Blocking

When a player is attacked, that player may use their own units to block the attackers.

In order to block, a unit must not be exhausted or under a special ability that prevents

it from blocking. Each valid unit may block one attacker, however, a player can also

use multiple units to block a single attacker.

When all blockers are declared, the defending player must pass. Then the attack will

be resolved. Any attackers that have been blocked will fight with the unit or units

blocking them. Both attackers and defenders will deal damage to each other equal

to their attack. Any units reduced to, or below zero, life will die. Non-lethal damage

will remain on units until they refresh at the beginning of their owner’s turn. At that

point, the Units will regenerate to maximum life.

If a unit is not blocked it will deal damage the defending player instead. If the

defending player’s life total is reduced to zero or less, they will lose the game.

Some units have evasion abilities, and cannot be blocked normally.

56

4.1.10 Stages of a Turn

At the start of a player’s turn, that player’s units refresh and they draw a card.

Then they enter their first play stage. During this stage, they may gain resources,

play cards, or declare attackers. When they are finished they can pass the phase.

If the active player declared any attackers, and their opponent has valid blockers, then

the block stage will begin. During the block phase, the defending player can assign

blockers. Once they are done, combat resolves, and the second play stage begins. If

the active player did not declare any attackers, their turn will end immediately.

The second play stage is identical to the first play phase, except that attackers cannot

be declared. There is only one combat stage per turn. After the active player is done,

they can pass and their opponent’s turn will begin.

A player can only play one resource per turn and must do so during either the first or

second play phase. Players are not allowed to end their turn until they have played

a resource.

4.2 Using the Fifth Aeon Bot Toolkit

The BTK can be installed from its Github repository at https://github.com/Fifth-

Aeon/Bot-Tool-Kit. Full instructions are available in the readme.

4.3 Running a Fifth Aeon Competition

Most of the tools needed to run a Fifth Aeon Competition are in the BTK. The

same tools that are used to do a test run as a contestant can be used to run the

57

final tournament. In addition, the Fifth Aeon client and server contain a tournament

admin panel which allows an organizer to see all the current teams and download

their latest submissions.

4.4 Using the Automatic Balancer

The automatic balancer is deployed as a component of the Bot Tool Kit repository,

as they share a large portion of code. It can be used by running the command ‘npm

run balance‘. Configurations to test can be edited in the testBalancer.ts file.

58

Chapter 5

EXPERIMENTS AND RESULTS

5.1 A.I Competition

5.1.1 Experiment Design

The Fifth Aeon tournament results were decided by running the three standard tour-

naments as defined in the Bot Tool Kit on all of the A.I. agents submitted through

the website.

1. All of the latest submissions from each team were downloaded through the

admin page.

2. All the zip files were extracted.

3. All deck.json files were moved to the data/decks folder.

4. All bots.ts were moved to the src/bots folder.

5. The importBots.ts file was modified to include all the submitted bots.

6. The Bot Tool Kit was run three times, each time with a different one of the

standard configurations. The results were copied into a text file.

7. The average winrate for each bot was computed across all three types of tour-

naments to decide the overall winner.

59

5.1.2 Results

The final round of the 2019 Fifth Aeon A.I. competition was run on May 24th and

included submissions from two participants known by the pseudonyms Tiggy and N8.

They submitted bots known as VII and Sunpraiser respectively. The A.I. packaged

with the game (DefaultAI) was also included in the competition for comparison. As

you can see from Table 5.1, VII came in first, followed by Sunpraiser in second and

DefaultAI in third place. Both VII and Sunpraiser were built on top of DefaultAI

and both were able to improve it, but VII was stronger in all three formats.

Table 9: Fifth Aeon Tournament Winrates

Constructed Limited Preconstructed Total

VII 55.86% 70.75% 59.50% 62.04%

Sunpraiser 47.70% 41.00% 39.00% 46.73%

DefaultAI 46.44% 38.25% 51.50% 41.23%

5.1.3 Analysis of Sunpraiser

Sunpraiser is a modification of DefaultAI that attempts to fine tune it to be more

skilled at using its two constructed decks, ‘Praise the Sun” and ‘Secondary Praise,”

Both of these decks employ the same basic strategy: to play defensively, gain a large

amount of life, and then use a card called named ”Overwhelming Radiance” to win

the game. Sunpraiser mostly uses the same code as DefaultAI adding about 100 extra

lines to optimize its unique strategy.

60

Figure 25: Overwhelming Radiance the core of Sunpraiser’s strategy

Sunpraiser was optimized towards the goal of attaining a high life total in several

ways. It avoids attacking with units that are key to its strategy, even if it might be

advantageous to do so. It is generally more conservative about attacking because it

does not aim to win by damaging the opponent. Sunpraiser will only attack if it has

many attackers or one very powerful one.

Sunpraiser was more successful than the DefaultAI in the constructed tournament,

showing that its strategy and optimizations were beneficial. However, it did not do

better than DefaultAI in preconstructed as it was not built to do so.

5.1.4 Analysis of VII

VII is more of a generalist than Sunpraiser. It aims to improve upon DefaultAI

in a variety of ways by fixing various flaws, dealing with edge cases, and making

improvements based on empirical testing against other bots. VII is a substantial

modification of DefaultAI and approximately doubles the number of lines of code.

61

Here is a list of changes from the author’s comments with my comments in brackets:

1. Improves limited deck building by considering the faction types and resource

costs of cards to build a proper curve.

2. Values attack more highly than health in trades. [Presumably, this was better

in empirical tests.]

3. Changes the value of unit based on enemy or allied lichs. [Liches are units

that get stronger when a unit dies, the DefaultAI does not consider this when

making trades.]

4. Takes more global effects into play such as the effect of Death’s Ascendancy.

[Death’s Ascendancy is an enchantment that makes some units stronger and

others weaker. Again the DefaultAI doesn’t consider it.]

5. Attacks if the A.I. can guarantee lethal damage regardless of trades.

6. Considers whether it is best to leave a unit on defense, even if its a good attacker.

7. Considers chump attacks. (These are attack where the player will lose a unit in

a bad trade, but some damage is guaranteed.)

8. Considers chump blocking if its health is more valuable than the unit it would

sacrifice.

Overall these changes made the A.I better across all modes, but especially in the

limited format where VII performed dramatically better than its competitors.

62

5.1.5 User Feedback

The contestants were asked to fill out a survey about their experience with the com-

petition. The questions and their responses are listed below.

• Please describe your goals in entering the competition.

– Try to make an ai that plays a deck based around not attacking.

– 1: Learn a new language. 2. Win. 3. Have fun.

• The Bot Tool Kit (BTK) was easy to use.

– Agree

– Neither agree nor disagree

• The Bot Tool Kit had sufficient features for the competition.

– Agree

– Strongly Agree

• Please describe any aspect of the BTK that you especially liked or disliked.

– I liked figuring out how to make a ai that plays a bad deck better than

other ais can.

– Like: How easy it was to set up different kinds of tournaments against

the default bot. Disliked: How sometimes the tournament would error out

and I would lose hours worth of testing time without showing me what the

results were so far.

• If you could add one feature to the BTK what would it be?

63

– Being able to physically see the hands and board of each player in some

form of GUI then being able to watch and replay parts of the game.

• I was successful in fulfilling my goals for the competition

– Agree

– Agree

• Please describe what goals you were not able to fulfill.

– I was unable to figure out how to change the general turn actions outside

of attacking.

– My bot uses way to many arbitrary constants set specifically by me and

not mathematically or experimentally the best. It also has a lot of ‘ “jerry-

rigged” portions that are meant to solve one particular edge case. It also

has next to zero comments aside from what features I have completed.

• What aspects of the competition contributed to your successes?

– Nearly instant answering of my questions on discord, how well documented

and commented the default bot is, and tournament testing.

• I was provided with plenty of educational materials (tutorials, discord assis-

tance, etc) to help me write my bot.

– Agree

– Strongly agree

• If you could have one additional educational resource, what would it be?

– A 15min video or website with pictures that details the entire process from

downloading, to installing, to creating a new bot, to making one small

64

change to the bot, to setting up a new tournament, to actually running

the tournament.

5.2 Automatic Balancer

5.2.1 Automatic Balancer Experiment Design

In order to test the Automatic Balancer system, we first construct a target card with

specific traits or mechanics. For example, our initial tests featured a unit with ten life,

ten attack, and no abilities, but with an unspecified cost. For the sake of simplicity,

we chose various cards where we had a reasonable idea of what they should cost and

asked the balancer to choose that cost. The system is also capable of other balancing

tasks, such as changing a unit’s attack power.

Once the target card has been declared, we must supply the system with a set of

decks to test it in. Ideally, this would be the set of tier-one decks, determined by

a competitive gaming community. Because Fifth Aeon does not have a competitive

community, the game’s list of standard A.I. opponent decks is used instead. These

decks encompass all four factions, as well as a number of strategies such as aggression

(to try to win quickly) and control (to avoiding losing in the early game, then win

using powerful-late game cards).

Following the construction of the template decks, we select the goal card to balance

the target against. By balancing against an existing card with a relatively known

strength, we are able to tailor the power of the generated card. One of the more

powerful cards in the game may be selected if a large impact on the meta is the

desired outcome, or alternatively, an average or weak card may be selected for the

purpose of adding simple diversity.

65

Next, we designate the search parameters. These must be adjusted to ensure the

system runs in a reasonable amount of time. Ideally, the system would do a com-

prehensive search over all parameters with a large number of trials. However, this

approach often takes requires too much time to be practical. Thus, it is useful to

be able to limit the search space when using this method. This can be done using

designer knowledge, or by running the search with a small number of trials to get an

initial impression of what ranges of values are likely to be correct. The system can

then be rerun on that range with a larger number of trials to ensure that any results

obtained are not the result of chance. For our experiments, we ran experiments with

ten decks, and ten repetitions. This lead to a total of 2,000 games per tournament

(102 [from decks] × 2 [from first or second] × 10 [from repetitions]), which allowed

the balancer to run on an I7-4720HQ in approximately an hour and a half.

Once the system has been run we then see if it converges to a low score. If it does,

this indicates that the target card has been successfully balanced. If it does not, then

this suggests that the balancer was unable to find any parameters to make the card

appropriately powerful. This result, in turn indicates that the designer may need to

give the balancer more parameters to work with. The system then outputs a final

card design, which has the lowest score among the tested options. We then judge if

this card seems balanced according to our qualitative knowledge as designers to see

if the score assigned by the system is reasonable.

5.2.2 Automatic Balancer Results

While the system is capable of adjusting any numeric parameter of a card, we fo-

cused on trying to find the best energy cost for a card among the common energy

costs, which range from zero to ten energy. In every case, the test card used was

‘Decapitate”. This card is a four energy, three decay cost card with the effect ‘kill

66

target unit.” We did this for several cards, including: a ten attack, ten life unit with

no abilities; a three attack, three life unit with no abilities; a five attack, five life unit

with the ”flying” ability which makes it harder for the opponent to block it; a spell

that has the effect ”kill target unit” and also requires three decay, making it exactly

the same as the goal card; and finally a spell that draws its controller three cards.

For the 10/10 unit the balancer was able to determine that, at low costs, the unit was

very overpowered with a starting win-rate of 80%. As the energy cost is increased,

the win-rate became close to 50%, at seven cost, and remained close at eight cost

then dipped below it at nine cost. The best score for this card was attained at eight

cost, so that was the final cost the balancer assigned.

The next test was the 5/5 flying unit, which had a very similar pattern. While it has

significantly lower stats, the flying ability is very powerful and considerably increases

the usefulness of the unit. The balancer actually considered it to be more powerful

than the 10/10 unit, assigning the flyer a final cost of nine energy.

The 3/3 unit gave a > 50% win-rate at zero, one, and two cost before dropping

below 50 at three, which was the final cost it was assigned. This unit continued

a general trend of getting worse as the cost was increased above three. However,

notably that the win-rate doesn’t decrease that much as it becomes highly over-

costed. This is probably because, at some point, the A.I. stops playing it most of the

time. Therefore, the difference between being over-costed by three or four energy is

not very significant. Similarly, this result explains why its easier to get significantly

above 50% win-rates than it is to get significantly below them. Having four copies of

a terrible card does not hurt a deck as much as having four copies of an overpowered

card helps it. Due to this effect, a weak card at worst is equivalent to having one less

draw.

67

The next test was run using the kill spell. It had exactly the same ability and decay

prerequisite as the goal card. Thus, we expected the system to give it the same

energy cost as that card (4). It did eventually reach this value, achieving a 50%

winrate (score of 0) at cost zero. This result served to verify the sanity of the system.

Finally, we tested a spell with the effect ‘draw three cards”. The balancer thought this

was only slightly overpowered at zero energy cost and close to balanced at one energy

cost. This assignment made it similar to the Magic the Gathering card Ancestral

Recall, one of the strongest cards ever printed. It then believed that for any cost

above two the card was too weak. Unlike the other tests, which mirrored our insight

as designers, this result seemed very off. We would have expected it to be assigned a

cost of at least 4 energy.

5.2.3 Varying Attack Power

In the next set of experiments, we assigned each of four Units a fixed cost of seven

energy, then changed their attack power. We saw a general trend of increased winrate

increasing along with attack power, as was expected. However, there was some noise

in this trend, with some higher attack powers giving units lower win-rates. This might

indicate that the balancer system needs more trials to give the most accurate results.

The most significant changes occurred within the range of 3-5 attack power. This

trend may be indicative of the relative value of the attack stat within Fifth Aeon.

While dealing damage to the opponent’s cards and health are necessary to achieve

victory, most of the combat in the game relies upon board-clearing and defensive

mechanics. Since these mechanics often function independently of a card’s statistics,

the ability to remove cards through unit combat is devalued. This interaction would

seem to be supported by the win-rate of the flying unit tested. Since flying units are

68

well suited to bypassing player defenses, the card would most likely not be engaging

in direct combat with other units. As player damage is a less common mechanic

than those used for board control, this would grant attack placed on a flying unit

much higher value within the game space. In a different game, where a higher value

is placed on aggressive unit interactions, a card’s attack value may show a higher

impact on game results.

The final results were the X/10 unit was assigned to be at 6/10 (with a 7/10 being

considered equally good). The X/3 unit was assigned to be a 9/3. The X/5 flying unit

was assigned to be a 3/5 and the 5/X relentless unit a 5/8. The two most suppressing

results are the X/3 where it never managed to accomplish even a 50% win-rate but

nonetheless chose nine instead of ten attack. This is probably due to some noise in

the system causing higher attack powers not to always result in higher win-rates. The

X/5 flier is also somewhat surprising in that it ended up with very low stats for a

7 cost unit at only X/5. This might indicate the ”Flying‘ keyword in Fifth Aeon is

very powerful.

−1 0 1 2 3 4 5 6 7 8 9 10 11

0

0.1

0.2

0.3

0.4

0.5

Energy Cost

S
co

re
(l

ow
er

is
b

et
te

r)

10/10 Unit
5/5 Flying Unit

3/3 Unit
Kill Spell (Mirror of Target)

Draw Spell

Figure 26: The Change in Score as Energy Cost is Changed.

69

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Energy Cost

R
at

io
of

d
ec

k
s

w
on

b
y

ta
rg

et
d
ec

k 10/10 Unit
5/5 Flying Unit

3/3 Unit
Kill Spell (Mirror of Target)

Draw Spell
50% Win Rate

Figure 27: The Change in Winrate as Energy Cost is Changed.

0 1 2 3 4 5 6 7 8 9 10

0.1

0.2

0.3

0.4

0.5

Attack Damage

S
co

re
(l

ow
er

is
b

et
te

r)

X/10 Unit
X/3 Unit

X/5 Flying Unit
X/5 Relentless Unit

Figure 28: The Change in Score as Attack Damage is Changed.

70

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Attack Damage

R
at

io
of

d
ec

k
s

w
on

b
y

ta
rg

et
d
ec

k X/10 Unit
X/3 Unit

X/5 Flying Unit
X/5 Relentless Unit

50% Win Rate

Figure 29: The Change in Winrate as Attack Power is Changed.

71

Chapter 6

FUTURE WORK

6.1 Future Work in Automatic Balancing

The Automatic Balancing System put forth in this paper has several limitations on

which future papers could improve. The first is the A.I. player used to run games

known as DefaultAI. That A.I. is based on a series of heuristics that attempt to model

the game’s mechanics mathematically. However, in practice, it is weaker than skilled

human players. Thus any future work on creating stronger, and potentially superhu-

man, Fifth Aeon A.I.’s could be applied to make the balancing System stronger.

The System could also be improved by adding additional methods of scoring (deciding

when a card is balanced) and searching (strategically exploring the parameter space).

The current scoring method places the target and goal cards into a wide variety of

decks and measures their average strength across them. But in some cases, the av-

erage strength of a card across many decks is less relevant than its strength in the

most powerful deck that can use it. Therefore, another scoring metric that measured

this strength would be useful. Similarly, the comprehensive parameter search used by

this paper works well as long as the parameter space is small, but becomes compu-

tationally intractable as it grows too large. Therefore, more advanced methods, such

as evolutionary search, could be applied to make the system work with larger inputs.

Another limitation is the requirement to have a preexisting set of decks to test with.

Future work into the automatic balancing of collectible card games could look into

trying to automatically determine a deck-list that would be a compliment to a target

card. Automatically determining deck lists could be very difficult because the space

72

of potential deck-lists is vast. However, if this problem could be solved, it would

eliminate the need to have expert players determine the most powerful decks. This

would also mean that there would be no chance of being blindsided by a novel deck

that was previously not competitive but became very strong with the introduction of

a new card. This would make the System far more practical to apply to collectible

card games that release entire sets of cards at a time, which is currently the paradigm

for most commercial games.

Finally, there is room for the System to be applied to procedural generation. It could

be used to balance the output of any system which outputs valid Fifth Aeon cards

to make them balanced. It is important to note that while the System can detect

imbalances in card power using win-rate, it does not account for the novelty of the

cards. Since no testing was done employing user studies, it was not possible to verify

whether the cards generated might be considered interesting or useful by players.

Under this metric, it may be that the cards generated have no good position within

the game, regardless of balance. However, if a system was able to produce cards that

lead to enjoyable gameplay, it could be combined with this System to produce fun

and balanced cards. As noted in our experiment design, far more opportunity for

card modification is available. The intent behind this project was to provide a proof

of concept for the viability of procedural generation in card design.

6.2 Future Work in Fifth Aeon Competitions

Consistency is a crucial aspect of successful competitions, and thus running annual

Fifth Aeon competitions might lead to greater success [38]. A great deal of ground-

work has been laid for this in the creation of the Bot Tool Kit and the tournament

section of the client and server. However, additional work could be done to improve

73

future tournaments.

First, an end to end video should be created that explains how to install all required

software and create a contestant’s first Bot could be created, as requested by the

users.

Second, new GUI integration should be added to the BTK to allow users to see Bot

vs. Bot matches in real time. Currently, they can only use the GUI in A.I vs. human

mode.

Third, the speed and reliability of the BTK should be improved to make testing less

tedious. Ideally, each completed match would be saved into a database so that an

aborted tournament can quickly be restarted, and the results of each game can be

reviewed at any time.

74

BIBLIOGRAPHY

[1] Angry birds 2018 results. https://aibirds.org/angry-birds-ai-

competition/previous-results.html.

[2] Cal Poly Github. http://www.github.com/CalPoly.

[3] Computer go results. http://www.computer-go.info/events/.

[4] Ms. Pac-Man results. http://www.pacmanvghosts.co.uk/results.html.

[5] Ms. Pac-Man rules. http://www.pacmanvghosts.co.uk/problem.html.

[6] The history of magic. https://magic.wizards.com/en/content/history.

[7] Wccc results. https://icga.org/?page_id=2469/.

[8] G. Andrade, G. Ramalho, A. Sandro Gomes, and V. Corruble. Dynamic game

balancing: An evaluation of user satisfaction. In Proceedings of the Second

Artificial Intelligence and Interactive Digital Entertainment Conference,

AIIDE ’06, Palo Alto, California, USA, 2006. AAAI.

[9] G. Andrade, G. Ramalho, H. Santana, and V. Corruble. Automatic computer

game balancing: A reinforcement learning approach. In Proceedings of the

fourth international joint conference on Autonomous agents and multiagent

systems, AAMAS ’05, pages 1111–1112, New York, NY, USA, 2005. ACM.

[10] T. Atkinson, H. Baier, T. Copplestone, S. Devlin, and J. Swan. The text-based

adventure ai competition. IEEE Transactions on Games, 2019.

[11] P. Beau and S. Bakkes. Automated game balancing of asymmetric video

games. In Proceedings of the 2016 IEEE Conference on Computational

Intelligence and Games, CIG ’16, Piscataway, NJ, USA, 2016. IEEE.

75

https://aibirds.org/angry-birds-ai-competition/previous-results.html
https://aibirds.org/angry-birds-ai-competition/previous-results.html
http://www.github.com/CalPoly
http://www.computer-go.info/events/
http://www.pacmanvghosts.co.uk/results.html
http://www.pacmanvghosts.co.uk/problem.html
https://magic.wizards.com/en/content/history
https://icga.org/?page_id=2469/

[12] A. Bhatt, S. Lee, F. de Mesentier Silva, C. W. Watson, J. Togelius, and A. K.

Hoover. Exploring the hearthstone deck space. In Proceedings of the 13th

International Conference on the Foundations of Digital Games Article No.

18, FDG ’18, New York, NY, USA, 2018. ACM.

[13] M. Buro and D. Churchill. Real-time strategy game competitions. AI

Magazine, 33(3):106–106, 2012.

[14] M. Campbell, A. J. Hoane Jr, and F.-h. Hsu. Deep blue. Artificial intelligence,

134(1-2):57–83, 2002.

[15] P. I. Cowlin, C. D. Ward, and E. J. Powley. Ensemble determinization in

monte carlo tree search for the imperfect information card game magic:

The gathering. Piscataway, NJ, USA. IEEE.

[16] P. I. Cowlin, C. D. Ward, and E. J. Powley. Ensemble determinization in

monte carlo tree search for the imperfect information card game magic:

The gathering. IEEE Transactions on Computational Intelligence and AI

in Games, 4(4):241–257, Dec. 2012.

[17] F. de Mesentier Silva, S. Lee, J. Togelius, and Andy Nealen. Evolving maps

and decks for ticket to ride. In Proceedings of the 13th International

Conference on the Foundations of Digital Games Article No. 48, FDG ’18,

New York, NY, USA, 2018. ACM.

[18] B. Entertainment. Hearthstone, 2018.

[19] B. Entertainment. Starcraft remastered, 2018.

[20] R. Games. League of legends, 2017.

[21] M. Genesereth, N. Love, and B. Pell. General game playing: Overview of the

aaai competition. AI magazine, 26(2):62–62, 2005.

76

[22] A. E. Gerevini, P. Haslum, D. Long, A. Saetti, and Y. Dimopoulos.

Deterministic planning in the fifth international planning competition:

Pddl3 and experimental evaluation of the planners. Artificial Intelligence,

173(5-6):619–668, 2009.

[23] M. Hendrikx, S. Meijer, J. van der Velden, and A. Iosup. Procedural content

generation for games: A survey. ACM Trans. Multimedia Comput.

Commun. Appl., 9(1):22, February 2013.

[24] V. Hom and J. Marks. Automatic design of balanced board games. In

Proceedings of the Third AAAI Conference on Artificial Intelligence and

Interactive Digital Entertainment, AIIDE ’07, pages 25–30, Palo Alto,

California, USA, 2007. AAAI.

[25] A. Jaffe, A. Miller, E. Andersen, Y.-E. Liu, A. Karlin, and Z. Popovic.

Evaluating competitive game balance with restricted play. In Proceedings of

the Eighth AAAI Conference on Artificial Intelligence and Interactive

Digital Entertainment, AIIDE ’12, pages 26–31, Palo Alto, California, USA,

2012. AAAI.

[26] G. L. Zuin, Y. P. A. Macedo, L. Chaimowicz, and G. L. Pappa. Discovering

combos in fighting games with evolutionary algorithms. In Proceedings of

the Genetic and Evolutionary Computation Conference 2016, GECCO ’16,

pages 277–284, New York, NY, USA, 2016. ACM.

[27] F. Lu, K. Yamamoto, L. H. Nomura, S. Mizuno, Y. Lee, and R. Thawonmas.

Fighting game artificial intelligence competition platform. In 2013 IEEE

2nd Global Conference on Consumer Electronics (GCCE), pages 320–323.

IEEE, 2013.

[28] F. Lu, K. Yamamoto, L. H. Nomura, S. Mizuno, Y. Lee, and R. Thawonmas.

77

Fighting game artificial intelligence competition platform. In 2013 IEEE

2nd Global Conference on Consumer Electronics (GCCE), pages 320–323,

Oct 2013.

[29] S. M. Lucas. Ms Pac-Man competition. ACM SIGEVOlution, 2(4):37–38, 2007.

[30] J. Ludwig and A. Farley. A learning infrastructure for improving agent

performance and game balance. Proceedings of the AIIDE, 7:7–12, 2007.

[31] T. Mahlmann, J. Togelius, and G. N. Yannakakis. Evolving card sets towards

balancing dominion. In Proceedings of the 2012 IEEE Congress on

Evolutionary Computation, IEEE ’12, Piscataway, NJ, USA, 2012. IEEE.

[32] J. McCarthy. Ai as sport. Science, 276(5318):1518–1519, 1997.

[33] S. Ontanón, G. Synnaeve, A. Uriarte, F. Richoux, D. Churchill, and M. Preuss.

A survey of real-time strategy game ai research and competition in

starcraft. IEEE Transactions on Computational Intelligence and AI in

games, 5(4):293–311, 2013.

[34] J. Renz. Aibirds: The angry birds artificial intelligence competition. In

Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015.

[35] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez,

M. Lanctot, L. Sifre, D. Kumaran, T. Graepel, T. Lillicrap, K. Simonyan,

and D. Hassabis. A general reinforcement learning algorithm that masters

chess, shogi, and go through self-play. Science, 362(6419):1140–1144, 2018.

[36] A. Stiegler, K. P. Dahal, J. Maucher, and D. Livingstone. Symbolic reasoning

for hearthstone. IEEE Transactions on Games, 10(2):113–127, June 2018.

[37] G. Sutcliffe. The cade atp system competitioncasc. AI Magazine, 37(2):99–101,

2016.

78

[38] J. Togelius. How to run a successful game-based ai competition. IEEE

Transactions on Computational Intelligence and AI in Games, 8(1):95–100,

2016.

[39] J. Togelius, S. Karakovskiy, and R. Baumgarten. The 2009 mario ai

competition. In IEEE Congress on Evolutionary Computation, pages 1–8,

July 2010.

[40] J. Togelius, S. Karakovskiy, and R. Baumgarten. The 2009 mario ai

competition. In IEEE Congress on Evolutionary Computation, pages 1–8.

IEEE, 2010.

[41] J. Togelius, S. Lucas, H. D. Thang, J. M. Garibaldi, T. Nakashima, C. H. Tan,

I. Elhanany, S. Berant, P. Hingston, R. M. MacCallum, et al. The 2007 ieee

cec simulated car racing competition. Genetic Programming and Evolvable

Machines, 9(4):295–329, 2008.

[42] G. van Lankveld, P. Spronck, H. J. van den Herik, and M. Rauterberg.

Incongruity-based adaptive game balancing. In Advances in Computer

Games, 12th International Conference, ACG 2009, Pamplona, Spain, May

11-13, 2009. Revised Papers, pages 208–220, 2009.

[43] V. Volz, G. Rudolph, and B. Naujoks. Demonstrating the feasibility of

automatic game balancing. In Proceedings of the Genetic and Evolutionary

Computation Conference 2016, GECCO ’16, pages 269–276, New York, NY,

USA, 2016. ACM.

[44] C. D. Ward and P. I. Cowling. Monte carlo search applied to card selection in

magic: The gathering. In Proceedings of the 2009 IEEE Symposium on

Computational Intelligence and Games, CIG ’09, Piscataway, NJ, USA,

2009. IEEE.

79

[45] G. N. Yannakakis and J. Togelius. Artificial Intelligence and Games. Springer,

2018. http://gameaibook.org.

[46] S. Zhang and M. Buro. Improving hearthstone ai by learning high-level rollout

policies and bucketing chance node events. In Proceedings of the 2017 IEEE

Conference on Computational Intelligence and Games, CIG ’17,

Piscataway, NJ, USA, 2017. IEEE.

[47] A. Zook, E. Fruchter, and M. O. Riedl. Automatic playtesting for game

parameter tuning via active learning. In Proceedings of the 9th

International Conference on the Foundations of Digital Games, FDG 2014,

Liberty of the Seas, Caribbean, April 3-7, 2014., 2014.

80

http://gameaibook.org

	LIST OF TABLES
	LIST OF FIGURES
	1 Introduction
	1.1 Introduction to Automatic Balancing

	2 Background
	2.1 Artificial Intelligence Competitions
	2.1.1 Purpose and Goals
	2.1.2 Organization
	2.1.3 Games
	2.1.4 Brief Survey of Tournaments
	2.1.5 Board Games
	2.1.6 Real Time Strategy Games
	2.1.7 Classic Computer Games
	2.1.8 Physics Games

	2.2 Collectible Card Games
	2.3 Automated Balancing

	3 System Design
	3.1 The Fifth Aeon Collectible Card Game
	3.1.1 Rules Engine
	3.1.2 Networking
	3.1.3 Server
	3.1.4 Client

	3.2 The Bot Toolkit
	3.2.1 Creating Bots
	3.2.2 Running Tournaments
	3.2.3 A.I. Server

	3.3 DefaultAI
	3.3.1 Architecture
	3.3.2 Deciding What to Block With
	3.3.3 Deciding What to Attack With
	3.3.4 Deciding What Resource to Play
	3.3.5 Deciding How to Make a Choice
	3.3.6 Building on Top of DefaultAI

	3.4 The Auto Balancer System

	4 Usage
	4.1 Playing the Fifth Aeon Game
	4.1.1 Winning the Game
	4.1.2 Resources and Cards
	4.1.3 Spells
	4.1.4 Units
	4.1.5 Items
	4.1.6 Enchantments
	4.1.7 Attacking and Blocking
	4.1.8 Attacking
	4.1.9 Blocking
	4.1.10 Stages of a Turn

	4.2 Using the Fifth Aeon Bot Toolkit
	4.3 Running a Fifth Aeon Competition
	4.4 Using the Automatic Balancer

	5 Experiments and Results
	5.1 A.I Competition
	5.1.1 Experiment Design
	5.1.2 Results
	5.1.3 Analysis of Sunpraiser
	5.1.4 Analysis of VII
	5.1.5 User Feedback

	5.2 Automatic Balancer
	5.2.1 Automatic Balancer Experiment Design
	5.2.2 Automatic Balancer Results
	5.2.3 Varying Attack Power

	6 Future Work
	6.1 Future Work in Automatic Balancing
	6.2 Future Work in Fifth Aeon Competitions

	BIBLIOGRAPHY

