
Supported Programming for

Beginning Developers

A Thesis
presented to

the Faculty of California Polytechnic State University,
San Luis Obispo

In Partial Fulfillment
of the Requirements for the Degree

Master of Science in Computer Science

by
Andrew Gilbert

March 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@CalPoly

https://core.ac.uk/display/224767714?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

© 2019
Andrew Gilbert

ALL RIGHTS RESERVED

ii

COMMITTEE MEMBERSHIP

TITLE: Supported Programming for
Beginning Developers

AUTHOR: Andrew Gilbert

DATE SUBMITTED: March 2019

COMMITTEE CHAIR: John Clements, Ph.D.
Professor of Computer Science

COMMITTEE MEMBER: Aaron Keen, Ph.D.
Professor of Computer Science

COMMITTEE MEMBER: Hasmik Gharibyan, Ph.D.
Professor of Computer Science

iii

ABSTRACT

Supported Programming for Beginning Developers

Andrew Gilbert

Testing code is important, but writing test cases can be time consuming, partic-

ularly for beginning programmers who are already struggling to write an imple-

mentation. We present TestBuilder, a system for test case generation which uses

an SMT solver to generate inputs to reach specified lines in a function, and asks

the user what the expected outputs would be for those inputs. The resulting test

cases check the correctness of the output, rather than merely ensuring the code does

not crash. Further, by querying the user for expectations, TestBuilder encourages

the programmer to think about what their code ought to do, rather than assuming

that whatever it does is correct. We demonstrate, using mutation testing of student

projects, that tests generated by TestBuilder perform better than merely compiling

the code using Python’s built-in compile function, although they underperform the

tests students write when required to achieve 100% test coverage.

iv

ACKNOWLEDGMENTS

• Thanks to Andrew Guenther for uploading this template.

• GNU Parallel [49] was helpful in running many tests quickly.

• The 2018 paper “Soft Contract Verification for Higher-order Stateful Programs”
by Nguyễn et al. [31] was helpful in my analysis of TestBuilder. I only wish I
had time to implement some of the ideas presented there for TestBuilder.

v

TABLE OF CONTENTS

Page
LIST OF TABLES . viii
LIST OF FIGURES . ix
CHAPTER

Glossary . xi
1 INTRODUCTION . 1

1.1 Operation . 2
1.2 Thesis Layout . 4

2 BACKGROUND . 6
2.1 Concolic Testing . 6
2.2 Directed Test Case Generation . 7
2.3 SMT Solvers. 8

3 METHODS . 16
3.1 Python . 16
3.2 Types. 17

3.2.1 Z3 Types. 17
3.2.2 Python Types . 18
3.2.3 Type Mapping . 19

3.3 Cartesian Product Algorithm . 20
3.4 Type System. 21

3.4.1 No Type System . 22
3.4.2 Statically Checking Any Variants 22
3.4.3 Static Expression Extraction . 23
3.4.4 Type Checking . 24

3.5 Standard of Truth . 26
3.6 Function Substitution . 26
3.7 Preprocessor . 27

4 MODEL . 30
4.1 Overview . 30

4.1.1 SSA IR Reduction . 30
4.1.2 Compilation of SSA IR to Z3 Expressions 31

4.2 Examples . 37
4.2.1 Identity Function. 37
4.2.2 Basic Expression in Function . 38

4.2.2.1 What about passing type sets down? 39
4.2.3 Conditional . 40
4.2.4 Pairs and Mutation. 41

5 EVALUATION . 44
5.1 Grade Boosting . 45
5.2 Student Tests vs. TestBuilder Tests . 46
5.3 Refactoring Legacy Code . 47

vi

6 RESULTS . 48
6.1 Grade Boosting . 48
6.2 Student Tests vs. TestBuilder Tests . 48
6.3 Refactoring Legacy Code . 50

7 CAPABILITIES AND LIMITATIONS . 52
7.1 Capabilities . 52
7.2 Limitations . 54

8 TOOLS. 55
8.1 Libraries . 55

8.1.1 Dataclasses . 55
8.2 Testing . 56

8.2.1 pytest . 56
8.2.2 Hypothesis . 57
8.2.3 unittest.mock . 57

8.3 Typing . 62
8.3.1 mypy . 62
8.3.2 MonkeyType . 64

8.4 Debugging . 65
8.4.1 breakpoint(). 65
8.4.2 pdb . 65
8.4.3 Pdb++ . 65
8.4.4 Embedded IPython . 65

8.5 Formatting and Style. 66
8.5.1 Black. 66
8.5.2 isort . 67
8.5.3 flake8 . 67
8.5.4 Vulture . 67

8.6 CLI . 68
8.6.1 Docopt. 68

9 RELATED WORK . 69
9.1 Automatic Test Generation . 69
9.2 Concolic Testing . 74

10 FUTURE WORK . 76
10.1 Obvious Deficiencies. 76
10.2 Alternative Applications . 77

10.2.1 Property Proving. 77
10.2.2 Test Case Minimization . 77

10.3 Additional Capabilities . 77
10.3.1 Boundary Test Case Generation 77
10.3.2 Concolic-style Testing . 78
10.3.3 Mutation-Driven Test Generation 78

11 CONCLUSION . 79
REFERENCES . 80

vii

LIST OF TABLES

Table Page
3.1 Mapping from Python to Z3 types.. 20

5.1 Top three most common final lines of output from failed TestBuilder runs.. 45

6.1 Results of mutation testing. 51

viii

LIST OF FIGURES

Figure Page
1.1 Code under test. 3

1.2 TestBuilder interface. 3

1.3 Generated test cases. 4

2.1 Simplified grammar of Z3 terms . 15

3.1 Rules without typing information . 22

3.2 Rules for BinOp Add with static type checking 23

3.3 Rule for addition with static extraction of values from wrappers. 23

3.4 Typechecking rule for addition . 24

3.5 Additional typechecking rules for addition with Any typed variables. . . . 24

3.6 Using a variable as both of its parent types. 29

4.1 Grammar of SSA IR . 31

4.2 Reduction of SSA IR . 32

4.3 Reduction of SSA IR expressions . 33

4.4 Definition of 𝛿 for SSA IR . 33

4.5 Compilation of binary operator. 37

6.1 Project breakdown . 49

6.2 Mutation killing performance of student and TestBuilder tests. 50

7.1 Not-quite type error . 54

8.1 Example pytest run on a module with inline tests 58

8.2 Example Hypothesis test . 59

ix

8.3 Example Hypothesis inputs . 60

8.4 Example test using unittest.mock . 61

8.5 Example of Python class with PEP 484 type annotations 63

8.6 Stubs for golden master LinkedList implementation generated by Mon-
keyType . 64

8.7 The pdb++ user interface . 66

8.8 Example of Vulture catching an uncalled function 67

x

Glossary

Duck typing See definition in [38].

EAFP it is “easier to ask for forgiveness than permission [39]”.

MOOC Massive Open Online Course.

xi

Chapter 1

Introduction

“Why write comments?” “Why write unit tests?” “It works— if it ain’t broke, don’t

fix it.” While most programmers would agree on the importance of commenting or

unit testing or refactoring, students may not understand the importance of these

practices. Unit testing, in particular, seems like a waste of time, since running the

program often suffices to remove the obvious bugs. But obvious bugs are obvious.

The harder bugs to find are those caused by edge cases1 and unexpected inputs.

These require creativity and care on the part of the tester to catch. Computers are

supremely uncreative, but they are very good at carefully trying everything. By

applying computers to the problem of testing code, we can help students discover

the unexpected edge cases which cause their programs to fail.

What does it mean to say that software “fails” or “has a bug?” One meaning of

software “having a bug” is that the software crashes: it does an operation which

is illegal, such as division by zero, or it throws an exception because some part

of the code produces improper values. On the other hand, sometimes when we

say that software is incorrect we mean that it does not perform as the user desires:

perhaps a function which, instead of adding its inputs, multiplies them. How do we

convert these concepts into rules which a computer can apply? The simplest rule is
1Recall that there are two hard problems in computer science: cache invalidation, naming things,

and off-by-one errors [6].

1

to find valid inputs on which the software terminates unexpectedly. But software

can terminate correctly for every input and still never produce the desired result.

Automatically determining the desired result is challenging. It might seem that

if programmers wrote better specifications, we could compare the software with

them automatically. But Jack Reeves argues that software is itself the design which

results from the software engineering process [41], much like how a blueprint is the

result of a civil engineering process. The best documentation of how the software is

to work is in fact its own source code. Nevertheless, we still want to find the logical

inconsistencies or the incorrect behaviors that may be present in it.

This is the basis of software testing: providing a necessarily-incomplete specifi-

cation of the intended behavior of the program, with the goal of discovering both

logical inconsistencies and incorrect results. The programmer specifies that, given

these inputs, the program should produce this output. Much effort has gone into

finding ways to write more effective tests. Yet beginners struggle to do enough

testing [13].

By automatically generating test cases which exercise every line in the program,

we can assist beginning programmers in confirming that their code works, while

reducing the burden of manually finding inputs which result in execution following

a particular path. The program presented in this thesis, TestBuilder, is a small step

toward that goal. It is able to generate test cases for a limited subset of Python which

includes mutation but which does not include unbounded loops. The ideas in this

work should be extensible to a subset of Python suitable for beginning programmers.

1.1 Operation

As an introductory example, consider the code in fig. 1.1 on the following page.

TestBuilder will run on this code and attempt to create tests for lines 3, 4, 6, 7, and

10. Note that there is no way to reach line 10, as any time d > 0, c + 2will be a type

2

1 def func(a):
2 if a < 2:
3 c = "abc"
4 d = 3
5 else:
6 c = 4
7 d = -2
8 if d > 0:
9 if c + 2 > 4:

10 return True

Figure 1.1: Code under test.

Figure 1.2: TestBuilder interface.

error. Thus TestBuilder will fail to generate a test case for line 10, and will print out a

note to the user. For lines 3, 4, 5, and 6, however, TestBuilder will generate test cases.

The test cases for lines 3 and 4 and for lines 5 and 6 are expected to be duplicates of

one another, as each pair of lines has the same set of conditionals needed to reach it.

Running TestBuilder on the code in fig. 1.1, it produces a series of questions like

the one shown in fig. 1.2. In this case, note that I, as the user, have typed None at the

prompt, indicating that the expected output of the function is None when given the

input 𝑎 = 2.

3

func = import_module("clements_example").func
def test_func():

a = 2
actual = func(a)
expected = None
assert convert_result(actual) == expected

func = import_module("clements_example").func
def test_func_3():

a = 0
with pytest.raises(TypeError):

func(a)

Figure 1.3: Generated test cases.

The resulting test cases are shown in fig. 1.3.2 Note that the duplicate test cases

are omitted; there is an additional copy of each of the test cases shown for the other

line in the pair, as discussed above. Also note that the expected value in the first

test is exactly what we specified at the prompt in fig. 1.2 on the previous page. The

second test case confirms that a TypeError occurs when we try to run the code with

𝑎 = 0. Both test cases are in pytest style. The unusual import technique involving

import_module allows TestBuilder to handle files with names which are not valid

Python identifiers. This could be easily changed to use the from file import name

form, should that be considered more desirable.

1.2 Thesis Layout

Chapter 2 provides background information on the techniques we are using. Chap-

ter 3 describes our approach to test case generation, which draws heavily on concolic

testing. Chapter 4 presents a formal model of the compilation process we use. Chap-

ter 5 presents the evaluations conducted on TestBuilder, while chapter 6 describes the

results. Chapter 7 describes the specific abilities of TestBuilder. Chapter 8 presents
2The file-wide imports have been omitted for space.

4

a list of some additional tools which could be of use in helping beginning pro-

grammers write better code, while chapter 9 discusses the existing work in concolic

testing, test case generation, and similar techniques. Chapter 10 describes future

work which could potentially make TestBuilder more capable. Finally, chapter 11

concludes the thesis.

5

Chapter 2

Background

2.1 Concolic Testing

In their 2005 paper [23], Godefroid, Klarlund, and Sen present an early concolic

testing tool named DART. Their tool integrates three factors: “[automated] extrac-

tion of the interface of a program,” “[random] testing to simulate the most general

environment the program can operate in,” and “dynamic analysis of how the pro-

gram behaves under random testing and automatic generation of new test inputs to

[direct] systematically the execution along alternative program paths.”

A concolic testing tool initially runs the system under test with a random input. It

tracks symbolic and concrete values of every variable, and notes the symbolic value

of the conditionalswhich are reached until the system exits. The list of conditionals is

converted into inputs to a solver and the final conditional reached before termination

is inverted. The solver is used to find a result which satisfies all the conditionals,

if possible, including the new inverted final conditional. This finds inputs that are

expected to take a new path through the program. The program is then executed

once again using the new inputs. Previously unseen conditionals are tracked and

added to the list of conditionals. This repetition is continued until all the paths

6

found are exhausted. At this point, complete path coverage has been achieved on

the program, under optimal conditions.1

Notably lacking from the description above is any discussion of how a concolic

tester determines whether the system under test is behaving as expected. DART, for

example, looks for “program crashes, assertion violations, and non-termination.”

TestBuilder uses the concept of solving a list of conditionals with an SMT solver in

order to choose inputs to reach a point in a program. However, rather than generating

that list of conditionals dynamically during program execution, TestBuilder statically

analyzes the program and converts the required conditionals into constraints for

the SMT solver.

Due to the nature of the basic concolic algorithm, where all conditionals taken

to reach a point are solved, concolic testing seeks full path coverage. TestBuilder,

on the other hand, aims for full statement coverage. Thus, when constructing the

expression to pass to the SMT solver, it includes the conditionals from every path

which could lead to the desired statement. This allows the SMT solver to choose

any path it desires when constructing a solution. By being careful about how the

conversion is done, it avoids the exponential explosion of paths which might be

expected.

2.2 Directed Test Case Generation

In order to support the generation of tests on code with existing test coverage, we

designed TestBuilder to allow the user to choose specific lines to generate test cases

for. Requesting a test case for a specific line causes TestBuilder to find all code paths

that may reach that line and solve for inputs which follow one of them. The desire to
1One of the problems which can befall a concolic tester is if the code uses operations it cannot

model. In that case, it can approximate them by using the concrete value at that point in the
program [23]. This results in a loss of symbolic information and removes the guarantee that the
tester will cover every path, as it is possible it will be unsuccessful in attempting to trigger a run
down a desired direction.

7

support this use case makes concolic testing an extension of the current TestBuilder

system, as directing concolic testing to a specific part of the code would require

initial code analysis to determine the possible paths which would lead execution to

the desired line. As a potential future adaptation, TestBuilder could be extended to

support concolically executing one of the available paths. This would likely provide

many of the benefits of concolic testing, while still allowing the user to only generate

test cases for specific lines.

2.3 SMT Solvers

An SMT solver is used to solve for inputs which meet the required conditions to

navigate to the desired line. SMT solvers use a system of theories combined with

a SAT solver to find satisfying assignments of variables. Typically, SMT solvers

support theories such as “integers,” allowing them to reason about expressions on

integer values, rather than only the boolean logic SAT solvers are natively able to

work with. In TestBuilder, we use the Z3 SMT solver, initially described by Moura

and Bjørner [29].

One note on terminology: Z3 refers to the type of a variable as its sort. For

simplicity, I will use type to refer to Z3 sorts below.

As an example of what an SMT solver can do, suppose we wish to find an integer

that is less than fifty using Z3. We will need to do two things: declare a variable

to represent some integer, and then constrain that variable to be less than fifty. Z3

can then be instructed to find a value for the variable which satisfies the constraints

upon it. Using the Z3 bindings for Python, we would write2

import z3

x = z3.Int('x') # Create a new Z3 variable
2This merely prints out the solver results. In practical applications, we would use a Solver

instance, in order to have access to the results from within Python.

8

z3.solve(x < 50) # Find a value for x which meets this constraint

This will print a solution to the expression provided to solve, such as

𝑥 = 49

Notice that Z3 variables are declared with static types. Constructors like Int are

provided by Z3 for all of the built-in types. In Python, they will return special objects

that have some Python operators redefined to produce Z3 values representing the

symbolic result of the operations.

For example, the expression x < 50 is legal due to redefinition of the less-than

operator on instances of Z3 integers in Python. Thus, the Python expression x < 50

turns into an instance of a Z3 class representing the expression 𝑥 < 50.

If we have multiple constraints, we can create logical expressions using provided

Z3 logical operators:

z3.solve(z3.And(x > 38, x < 50))

This will require that 𝑥 > 38 and 𝑥 < 50. A satisfying value for 𝑥 will be printed,

such as

𝑥 = 49

Now suppose we also had some boolean constraints we wished to impose. Sup-

pose that we want to find a boolean 𝑏 and an integer 𝑥 such that either 𝑏 ∧ (𝑥 > 50)

or ¬𝑏. We could write something like this:

import z3

x = z3.Int('x')

b = z3.Bool('b')

z3.solve(z3.Or(z3.And(b, x > 50), z3.Not(b)))

9

Z3 might then produce a result such as

𝑏 = 𝑇𝑟𝑢𝑒 𝑥 = 51

which satisfies this set of constraints.

As mentioned above, Z3 also supports custom datatypes, which are tagged

unions. If we wish to describe a binary tree with integer leaves and no values on the

interior nodes, we might write the following:

import z3

mktree = z3.Datatype('tree')

The first argument is the name of the constructor, the other

arguments define the fields and their types. In this case, both

fields contain trees themselves.

mktree.declare('Node', ('left', mktree), ('right', mktree))

z3.IntSort() defines the val field to store Z3 integers.

mktree.declare('Leaf', ('val', z3.IntSort())

tree = mktree.create()

Functions like z3.IntSort(), used in the declaration of Leaf, are provided by

Z3 for all the built-in types it supports, allowing for the definition of fields that store

values of those types. When defining a datatype, the Datatype object used to define

it can also be used as the type of recursively defined fields, as seen in the definition

of Node.

The resulting type— tree—can be used to create variables. The Python class for

it also has methods which allow access to its various constructors. So, for example,

we can write

tree.Leaf(34)

10

which creates a new Leaf tree with 34 as its value.

The custom type also has methods to constrain variables of its type to only use

certain constructors. For example, suppose we want a tree which has a Node at the

root, rather than being a single Leaf. We would write

This declares a variable of type Tree, just like z3.Int declares a

variable of type Int

t = z3.Const('t', tree)

z3.solve(tree.is_Node(t))

and Z3 might return something like

𝑡 = Node(Leaf(0),Leaf(1))

It chooses values to satisfy the constraint presented— in this case, requiring that

the resulting value use the Node constructor of tree.

As mentioned above, Z3 is statically typed. However, custom datatypes offer a

way to provide a sort of dynamic typing for Z3. We can define a type which can

wrap values of various types, and then all the values can be treated as having one

type. This is rather reminiscent of the Any types used in typecheckers for dynamic

languages, such as the mypy typechecker for Python [30]:

import z3

mkany = z3.Datatype('Any')

Make a constructor named Int which has one field, i, which holds

an integer

mkany.declare('Int', ('i', z3.IntSort()))

Make another constructor

11

mkany.declare('Bool', ('b', z3.BoolSort()))

Any = mkany.create()

Using this, we can declare a variable3 of Any type:

a = z3.Const('a', Any)

and we can now write a Z3 query such as

define a new variable of Any type

a = z3.Const('a', Any)

z3.solve(Any.is_Int(a), Any.i(a) > 50)

to ask Z3 to choose a value for a which is an instance of the Int constructor

containing a value for the i field which is greater than 50. This might produce a

result like

𝑎 = Int(51)

which would mean that the expressions provided are satisfied if a is constructed

with the Int constructor and the i field of that constructor contains 51.

Notice that we used two constraints here: both that the value of the i field is

greater than 50, and that a itself is constructed with the Int constructor. If we omit

this latter constraint, as here:

z3.solve(Any.i(a) > 50)

then Z3 will only apply the constraint if it happens to choose the Int constructor

for a. Running this, we get the result
3Z3 refers to variables as “constants;” for Z3, variables are the things quantified in first-order

logic.

12

𝑎 = Bool(𝐹𝑎𝑙𝑠𝑒)

which clearly is not the integer we would like to get. Thus, when using this

technique to define dynamically-typed values, we need to add constraints on the

constructors used for the result, as well as the constraints on the fields of those

constructors.4

We use this form of definition for dynamic values extensively throughout Test-

Builder. Thus, for the rest of this thesis, we will use the grammar defined in fig. 2.1

on page 15 to write the Z3 expressions involved.

Note that, in Z3, equality is defined between all types. This has been omitted

from the grammar for clarity.

A few examples should clarify the use of this grammar.

First, consider our original example of searching for an integer less than 50.

Using Python and our Any type, along with the a variable from before, we could

express this as

z3.And(Any.is_Int(a), Any.i(a) < 50)

Running a solve on this in Z3 produces the result

𝑎 = Int(0)
4This appears to arise from the SMT-LIB specification, which Z3 supports as one of its input

formats. The specification reads

[Remark 11] (Partiality of selectors). As in classical first-order logic, all function
symbols in a signature Σ are interpreted as total functions in a Σ-structure A. This
means in particular that if 𝑔 ∶ 𝜎𝜎𝑖 ∈ Σ is a selector, the function 𝑔A returns a value
even for inputs outside the range of 𝑔’s constructor. Definition 8 imposes no constraints
on that value, other than it belongs to 𝜎A

𝑖 . For instance, in a structure A with a sort
for integer lists with constructors nil and insert and selectors head and tail for insert,
the function headA maps nilA to some integer value. Similarly, tailA maps nilA to some
integer list. This is consistent with the general modeling of partial functions in SMT-LIB
as underspecified total functions—which requires a solver to consider all possible
(well-sorted) ways to make a partial function total.

13

which is a zero wrapped in the Int constructor of the Any type, a result which

does indeed fulfill our constraints.

Using our new grammar, we can rewrite the input expression as

isInt? (𝑎) ∧ 𝑎 i < 50

Notice the shorthand 𝑎 i to represent field extraction of the i field of the Int

constructor, and the isInt function to express the constraint that 𝑎 is an integer. All

variables in this grammar are of Any type, thus we can assume that 𝑎 has Any type.

The Any.Int constructor is elided in this grammar. It can be inferred from the

context: when an expression is applying an operation which can only be done on

an instance of Any, such as assigning a value to a variable, assume the appropriate

wrapper constructor is present.

For another example, consider how to write the expression 𝑏 ∧ (𝑎 > 50) ∨ ¬𝑏

using our new Any type. We will need two variables, a and b. They will both be of

Any type, but b will need to be constrained to use the Bool constructor and a will

need to be constrained to use the Int constructor. Thus, our expression will look

like

isInt? (𝑎) ∧ isBool? (𝑏) ∧ ((𝑎 i > 50 ∧ 𝑏 b) ∨ ¬𝑏 b)

14

𝐸𝑥𝑝𝑟 ∶∶= 𝐵𝑜𝑜𝑙 ∣ 𝛼 = 𝐴𝑛𝑦 ∣ 𝑠𝑡𝑜𝑟𝑒 = 𝑆𝑡𝑜𝑟𝑒 ∣ 𝐸𝑥𝑝𝑟 ∧ 𝐸𝑥𝑝𝑟 ∣ 𝐸𝑥𝑝𝑟 ∨ 𝐸𝑥𝑝𝑟
| isInt? (𝐴𝑛𝑦) ∣ isBool? (𝐴𝑛𝑦) ∣ isString? (𝐴𝑛𝑦) ∣ isReference? (𝐴𝑛𝑦)

𝐴𝑛𝑦 ∶∶= 𝛼 ∣ 𝐵𝑜𝑜𝑙 ∣ 𝐼𝑛𝑡 ∣ 𝑅𝑒𝑎𝑙 ∣ 𝑆𝑡𝑟𝑖𝑛𝑔 ∣ 𝑅𝑒𝑓 ∣ Nil
| 𝑃𝑎𝑖𝑟.left ∣ 𝑃𝑎𝑖𝑟.right

𝐵𝑜𝑜𝑙 ∶∶= 𝐴𝑛𝑦 b ∣ 𝑏𝑜𝑜𝑙 ∣ 𝐵𝑜𝑜𝑙 ∧ 𝐵𝑜𝑜𝑙 ∣ 𝐵𝑜𝑜𝑙 ∨ 𝐵𝑜𝑜𝑙 ∣ ¬𝐵𝑜𝑜𝑙 ∣ 𝐴𝑛𝑦 = 𝐴𝑛𝑦
| 𝐼𝑛𝑡 < 𝐼𝑛𝑡 ∣ 𝐼𝑛𝑡 ≤ 𝐼𝑛𝑡 ∣ 𝐼𝑛𝑡 > 𝐼𝑛𝑡 ∣ 𝐼𝑛𝑡 ≥ 𝐼𝑛𝑡

𝐼𝑛𝑡 ∶∶= 𝐴𝑛𝑦 i ∣ 𝑖𝑛𝑡 ∣ −𝐼𝑛𝑡 ∣ 𝐼𝑛𝑡 + 𝐼𝑛𝑡 ∣ 𝐼𝑛𝑡 − 𝐼𝑛𝑡 ∣ 𝐼𝑛𝑡 ∗ 𝐼𝑛𝑡 ∣ 𝐼𝑛𝑡/𝐼𝑛𝑡
𝑅𝑒𝑎𝑙 ∶∶= 𝐴𝑛𝑦 r ∣ 𝑟𝑒𝑎𝑙

𝑆𝑡𝑟𝑖𝑛𝑔 ∶∶= 𝐴𝑛𝑦 s ∣ 𝑠𝑡𝑟𝑖𝑛𝑔 ∣ Concat(𝑆𝑡𝑟𝑖𝑛𝑔, 𝑆𝑡𝑟𝑖𝑛𝑔)
𝑅𝑒𝑓 ∶∶= 𝐴𝑛𝑦 r ∣ 𝑖𝑛𝑡

𝑆𝑡𝑜𝑟𝑒 ∶∶= 𝑠𝑡𝑜𝑟𝑒 ∣ Empty ∣ 𝑆𝑡𝑜𝑟𝑒[𝑅𝑒𝑓 → 𝑃𝑎𝑖𝑟]
𝑃𝑎𝑖𝑟 ∶∶= Pair(𝐴𝑛𝑦,𝐴𝑛𝑦) ∣ 𝑆𝑡𝑜𝑟𝑒[𝑅𝑒𝑓]

𝛼 ∈ Names 𝑠𝑡𝑜𝑟𝑒 ∈ StoreNames 𝑖𝑛𝑡 ∈ ℤ 𝑟𝑒𝑎𝑙 ∈ ℝ 𝑠𝑡𝑟𝑖𝑛𝑔 ∈ Strings

𝑏𝑜𝑜𝑙 ∈ {true, false}

Figure 2.1: Simplified grammar of Z3 terms

15

Chapter 3

Methods

TestBuilder seeks to generate inputs to a Python function which will result in the

execution of a specified line of code. By doing this, we hope to create a series of

inputs which, when combined, will produce a test suite with complete line coverage.

3.1 Python

Python [61] is a well-known dynamic programming language. It is dynamically

typed, although a syntax is available for type annotations [32, 33, 34]. At runtime,

each value has a type. However, unlike amore strictly typed programming language,

the types of the values are not typically used to determine what operations are legal.

Instead, Python idiomatically uses duck typing [38] and believes that it is “easier

to ask for forgiveness than permission [39]” (EAFP). Duck typing is often expressed

by the saying “if it looks like a duck, and quacks like a duck, then it is a duck.” It

treats the operations and fields defined on an object as more important than the

concrete type of that object. This means that, as long as an operation is defined

on a value at runtime, it is legal to execute it. Python does not require that a class

providing a particular interface is known at compile time, only that, when run, the

objects provided do, in fact, have the methods which are called on them.

16

3.2 Types

In contrast, as we mentioned before, Z3 requires that values be typed. Thus, we

need to compare the types Python and Z3 use and determine the best mapping

between them.

3.2.1 Z3 Types

Z3 provides a helpful range of supported types, along with custom data types,

which are tagged unions. Of the built-in types, we use Int, Real, Bool, and String

values. The Z3 documentation does not seem to make it clear what the precise

semantics of its types are, but Moura and Bjørner’s original paper indicates that “the

SMT-LIB input format” is supported [29]. We assume, therefore, that the semantics

of Z3’s types are those described by the SMT-LIB standard, and experience seems to

confirm this.

For the Int type, the SMT-LIB spec requires that models interpret “the sort Int as

the set of all integer numbers [47]”1 It also requires that division be implemented

“according to Boute’s Euclidean definition” [9] (citation in original) and that nega-

tion, addition, subtraction, and multiplication be implemented “as expected [47]”.

Thus, we conclude that Z3’s Int type is intended to have the standard semantics of

the integers, with the definitions for integer division and modulus being spelled

out. Note that there are no bitwise operators defined for Int.

Similarly, for the Real type, the SMT-LIB spec requires that models interpret

“the sort Real as the set of all real numbers [48]”, division “as a total function

that coincides with the real division function for all inputs x and y where y is

non-zero [48]”, and “the other function symbols of Reals as expected [48]”.
1Recall that sort is the term used in logic for something like what is commonly called a type in

computer science [7].

17

For booleans, the SMT-LIB spec requires the set of values to be {𝑡𝑟𝑢𝑒, 𝑓 𝑎𝑙𝑠𝑒} [46],

and that “the other function symbols of Core denote the standard Boolean operators

as expected [46]”

There is not a theory for strings in SMT-LIB. The Z3 C API provides a function

Z3_mk_string_sort, which “creates a sort for ASCII strings. Each character is 8

bits [62].” This seems to indicate that Z3 strings are sequences of ASCII characters.

We support only length and concatenation on strings. The functions for those seem

to support the expected semantics of those operations: the Length function will

“Obtain the length of a sequence ‘s’ [63]”, and the C API function called to actually

execute concatenation is said to “Concatenate sequences [62].”

3.2.2 Python Types

Python has an extensive set of built-in types [54]. However, the only ones of interest

to us are None, integers, floats, booleans, and strings.

Python’s None value is a singleton of a unique type with one value [50].

Python’s Integer type provides “numbers in an unlimited range, subject to avail-

able (virtual) memory only [50].”

Python floats “represent machine-level double precision floating point num-

bers. You are at the mercy of the underlying machine architecture (and C or Java

implementation) for the accepted range and handling of overflow [50].”

In Python, “…Boolean values behave like the values 0 and 1, respectively, in

almost all contexts, the exception being that when converted to a string, the strings

”False” or ”True” are returned, respectively [50].”

Finally, Python strings are officially “immutable sequences of Unicode code

points [54].”

18

3.2.3 Type Mapping

We need to represent Python types with the appropriate types from Z3, in order to

be able to translate between the two languages. The mapping we chose is described

below and summarized in table 3.1 on the next page.

We chose to represent Python’s integerswith Z3 Ints. This is themost correct type

available from a theoretical standpoint, because Python integers, as noted above,

are of unlimited length, and therefore no overflow effects should be observable.

Having chosen Ints to represent Python integers, we were forced to model

Python floats with Z3 Reals. This is not ideal, as Z3 supports a true floating-point

type, which shouldmore closely align to the semantics of the Python implementation.

However, there are no functions available in Z3 to translate directly between integer

expressions and floating-point expressions. 2 Thus, we would be unable to intermix

the types in expressions, which would prevent us from translating some expressions

which are legal in Python. Z3 Reals seem like the best compromise, particularly as

we do not anticipate user code relying on the differences between floating-point

numbers and true reals.

Naturally, Python’s Boolean values were modeled with Z3’s Boolean values.

The None type is translated to a Nil constructor of no arguments which is

present on the Z3 datatype we use as an Any type, following the pattern described

in section 2.3 on page 8.

Python strings are translated to Z3’s String type. Since only two operations are

available for strings, concatenation and length, they are translated directly to their

Z3 equivalents. As mentioned before, Z3 strings are ASCII. If a string literal is used

which contains non-ASCII characters, it will crash TestBuilder. We accept this. If a
2There do exist functions to convert integer values to real values, and functions to convert real

values to floating-point values, but some basic testing suggests there may be problems with using
the composition of both, as Z3 was unable to find a solution to 𝑎 > 4 when 𝑎 was an integer value
converted to a floating-point value.

19

Table 3.1: Mapping from Python to Z3 types.

Python type Z3 Types

Integer ⇒ Int
Float ⇒ Real

Boolean ⇒ Bool
String ⇒ String
None ⇒ Nil

string were to somehow be constrained to contain non-ASCII characters without

using a literal, TestBuilder would simply be unable to find a test case.

3.3 Cartesian Product Algorithm

We do this inference using the Cartesian product algorithm for type inference, as

described by Agesen [1] and applied to Python by Cannon [11]. We restrict the

types of each variable to those given by the intersection of the type constraints placed

upon it by the operations executed on that variable. If no types remain, we have

found a bug in the user’s code. The Cartesian product type inference algorithm

begins with the insight that a value can only have one concrete type in our system.

Thus, while there may be several possible types for each argument to a function

or an operator, when the code actually runs, each of those arguments must have a

single type. It follows that the Cartesian product of the sets of possible types for each

variable is a complete listing of all possible type tuples for the function involved.

This allows us to determine the result type of a function or operator for each type

tuple independently. In our context, we restrict the potential types of the variables

based on which type tuples are implemented by the operator involved. For example,

in Python, the + operator is defined for both integers and strings. It is not defined

for an integer and a string. Thus, if we encounter code such as a+b, we can infer that

a and b are either both strings or both integers, but a cannot be a string while b is

an integer without causing a type error. Since we wish to reach a later line of code,

20

triggering a type error would be counter-productive. Thus, we choose only type

tuples such that no type errors will occur. By doing this, we are able to reduce the

number of possible cases from the square of the number of available types (currently

five, for a total of 52 possible type tuples) to two: a and b are integers and a and b

are strings.

3.4 Type System

As described in section 3.3 on the previous page, TestBuilder does Cartesian prod-

uct type inference in order to handle Python’s dynamic type system. In theory,

we could do Cartesian product inference separately for every partial expression,

returning values to Any type between operations, but by tracking the type of each

subexpression, we can generate much cleaner expressions. As we will show below,

this optimization is almost free.

Note that this type tracking is only necessary for optimization purposes. We do

not need to track types for correctness, as Z3 internally requires that variables have

consistent types throughout an expression.

Also note that the typing judgments presented below are non-standard. Rather

than indicating that an expression has a type, they indicate that an expression may

have a type. Because the goal of this type system is to allow solving for values which

satisfy all the type constraints upon an expression, this is sufficient information.

For this reason, variables of Any type behaves as unconstrained values. This

is different from the typical treatment of Any as a union of all possible types, but

arises naturally when one considers the concrete types which might be present in a

variable with Any type. Since any of the possible concrete types could be present,

any concrete type is a satisfactory value for a variable of Any type.

21

𝑖 ⇓ Int(𝑖)
𝑒1 ⇓ 𝑣1 𝑒2 ⇓ 𝑣2

BinOp(𝑒1,Add, 𝑒2) ⇓
⎧{
⎨{⎩

𝑣𝑖
1 + 𝑣𝑖

2 isInt? (𝑣1) ∧ isInt? (𝑣2)
Concat(𝑣𝑠

1, 𝑣𝑠
2) isString? (𝑣1) ∧ isString? (𝑣2)

Figure 3.1: Rules without typing information
Note: values are Any structures, as defined in fig. 2.1 on page 15 and the expressions are e

structures, as defined in fig. 4.1 on page 31.

3.4.1 No Type System

In the completely dynamic case, we would wrap each sub-expression in an Any type,

and then extract the correct type for the next operation. Simple addition, such as

1 + 2 would use the two rules shown in fig. 3.1 to generate an expression something

like this:

⎧{{
⎨{{⎩

Int ((Int(1))𝑖 + (Int(2))𝑖) isInt? (Int(1)) ∧ isInt? (Int(2))

String (Concat ((Int(1))𝑠 , (Int(2))𝑠)) isString? (Int(1)) ∧ isString? (Int(2))
(3.1)

The case for strings might surprise you, but because + is the concatenation

operator in Python, and we have no typing information, we are forced to generate

cases for both possible types which could be in the Any values (even though those

values are statically Int Any values).

Notice howwe’re forced to dynamically check the types of valueswe can statically

determine the type of.

3.4.2 Statically Checking Any Variants

An obvious optimization would change the rule for addition to that in fig. 3.2 on

the next page, resulting in the following expression:

22

𝑒1 ⇓ 𝑣1 𝑒2 ⇓ 𝑣2 isInt?(𝑣1) isInt?(𝑣2)
BinOp(𝑒1,Add, 𝑒2) ⇓ Int (𝑣𝑖

1 + 𝑣𝑖
2)

𝑒1 ⇓ 𝑣1 𝑒2 ⇓ 𝑣2 isString?(𝑣1) isString?(𝑣2)
BinOp(𝑒1,Add, 𝑒2) ⇓ String (Concat (𝑣𝑠

1, 𝑣𝑠
2))

Figure 3.2: Rules for BinOp Add with static type checking
Values are as in fig. 3.1 on the preceding page; the isInt? and isString? functions checks at

compile time that a value is an Any Int or String wrapper, respectively.

𝑒1 ⇓ 𝑣1 𝑒2 ⇓ 𝑣2 isInt?(𝑣1) isInt?(𝑣2) 𝑖1 = int(𝑣1) 𝑖2 = int(𝑣2)
BinOp(𝑒1,Add, 𝑒2) ⇓ 𝑖1 + 𝑖2

Figure 3.3: Rule for addition with static extraction of values from wrappers
Values and functions are as in fig. 3.2; the int function extracts an integer value from an Int

wrapper at compile time.

Int ((Int(1))𝑖 + (Int(2))𝑖) (3.2)

Notice that we are now able to omit the isInt? checks, because we can statically

determine that the values are integers.

3.4.3 Static Expression Extraction

We might want to execute the extraction from the 𝐼𝑛𝑡 wrapper at compile time

as well, by swapping our addition rule to that in fig. 3.3. This gives us the result

expression

Int(1 + 2) (3.3)

23

⊢ 𝑖 ∶ 𝑖𝑛𝑡
⊢ 𝑒1 ∶ 𝑖𝑛𝑡 ⊢ 𝑒2 ∶ 𝑖𝑛𝑡

⊢ BinOp(𝑒1,Add, 𝑒2) ∶ 𝑖𝑛𝑡
⊢ 𝑒1 ∶ 𝑠𝑡𝑟 ⊢ 𝑒2 ∶ 𝑠𝑡𝑟

⊢ BinOp(𝑒1,Add, 𝑒2) ∶ 𝑠𝑡𝑟

Figure 3.4: Typechecking rule for addition

⊢ 𝛼 ∶ 𝑎𝑛𝑦
⊢ 𝑒 ∶ 𝑎𝑛𝑦
⊢ 𝑒 ∶ 𝑖𝑛𝑡

Figure 3.5: Additional typechecking rules for addition with Any typed variables

3.4.4 Type Checking

From here, it is a simple observation to note that we could omit the wrapper and

check the type of the subexpressions directly using the typechecking rule in fig. 3.4,

obtaining this expression:

1 + 2

We started with no types and built a simple type system in order to reduce clutter

in the generated expressions. Introducing variables of indeterminate type, such

as function arguments, causes an interesting wrinkle. We can no longer statically

check which form of addition is intended by the author, so we need to maintain

two possible interpretations of the expression, one for strings and one for integers.

In addition, we need to constrain the type of the variables to be in accord with the

interpretation used in the expression. By adding the rule shown in fig. 3.5 to the

rules in fig. 3.4, we enable type checking of expressions with Any type:

⎧{{
⎨{{⎩

Int (𝑎𝑖 + 𝑏𝑖) isInt? (𝑎) ∧ isInt? (𝑏)

String (Concat (𝑎𝑠, 𝑏𝑠)) isString? (𝑎) ∧ isString? (𝑏)
(3.4)

24

Recall that isInt and isString are Z3 constraints as in eq. (3.1) on page 22, rather

than compile-time checks.

Now we have two possible expressions, and we need to carry them around

together and handle both possibilities when compiling. If we are assigning the

result of this expression to a variable, as in 𝑐 = 𝑎 + 𝑏, we would get the expression

(𝑐 = Int (𝑎𝑖 + 𝑏𝑖) ∧ 𝑖𝑠𝐼𝑛𝑡(𝑎) ∧ 𝑖𝑠𝐼𝑛𝑡(𝑏))∨

(𝑐 = String (Concat (𝑎𝑠, 𝑏𝑠)) ∧ 𝑖𝑠𝑆𝑡𝑟𝑖𝑛𝑔(𝑎) ∧ 𝑖𝑠𝑆𝑡𝑟𝑖𝑛𝑔(𝑏))
(3.5)

Suppose, on the other hand, that the entire line was 𝑐 = 1 + (𝑎 + 𝑏). Now we

can tell that only the integer solution will be well-typed, and we can generate the

following:

{𝑐 = Int (1 + (𝑎𝑖 + 𝑏𝑖)) 𝑖𝑠𝐼𝑛𝑡(𝑎) ∧ 𝑖𝑠𝐼𝑛𝑡(𝑏) (3.6)

There is no other possible value. Since, as explained above, we need to avoid

generating type errors, we cannot use the String interpretation.

One additional optimization is used in our code. When making an assignment

such as the 𝑐 = 1 + (𝑎 + 𝑏) shown in eq. (3.6), we associate the variable with the

set of types we are assigning into it. This allows later uses of the variable to have a

more limited set of types available to them. For example, if we were to have both

the line 𝑐 = 1 + (𝑎 + 𝑏) from eq. (3.6) and the line 𝑒 = 𝑐 + 𝑑, without any typing

information for 𝑐 or 𝑑, we would have to assume that, as in eq. (3.5), 𝑐 could be an

integer or a string. But since the previous assignment to 𝑐 could only be of type int,

we are able to conclude that 𝑐 is an integer and the only type which 𝑐 + 𝑑 can have is

integer. Thus, we can eliminate an entire case we would otherwise have to generate.

25

3.5 Standard of Truth

As described in section 9.2, many concolic testing tools rely on crashes to determine

the correct result of user code. In our case, we want to generate test cases for the

user. Further, we would like to identify incorrect code which doesn’t crash. Thus,

we need a stronger standard of truth than merely “does the code crash.” We chose to

ask the user for the expected results of each test case. This allows us to generate test

cases which are based on examples and check that the code produces the expected

result. By asking the user what the expected output is, we encourage them to think

about what their code is actually expected to do in a concrete context. We hope that

this will help them discover even more bugs, via a similar process to rubber duck

debugging [26]. In addition, even though we don’t have any way to generate test

cases for missing conditions, there is a possibility that, by automatically generating

test cases, we will hit upon values which the user would not have considered and

will expose unknown bugs.

3.6 Function Substitution

Some preliminary testing suggested that defining functions in Z3 led to significantly

longer solving times than substituting their definitions into the result expressions.

It would be preferable to define the functions in Z3, as this would allow proper

support for recursive functions (at the cost of no longer being a decision procedure,

since it seems function definitions require universal quantification). In the interest

of execution speed, however, TestBuilder does substitution of called functions to a

depth of one.3 When a function is encountered which has not been substituted with

its definition, either because of the depth limit or because of a lack of a definition,
3I.e., it substitutes known functions in the code under test, but not functions appearing within

the substituted code.

26

TestBuilder treats the function as producing whatever return value is desirable.

Note that this is not treating the function as returning an arbitrary value; to do so

would result in type errors which would only be present in TestBuilder when the

real function implementation does not produce some values. An alternative to this

would be to refuse to generate tests for functions with missing definitions, but, due

to the limitation on substitution depth, this would result in TestBuilder being unable

to generate test cases for recursive functions.

3.7 Preprocessor

TestBuilder provides support for a Pair class which stores two values. This Pair

has two attributes: left and right. Student code, however, may use internally-

consistent but different names for its equivalent data structures. In order to support

testing such code, we provide a preprocessor. This preprocessor is able to rewrite

parts of the AST of the user’s code before test case generation, in order to adjust it to

the configuration used by TestBuilder. For example, the user may define a rewrite

rule which specifies that any attribute named “first” is to be rewritten to “left”,

and that any attribute named “rest” is to be rewritten to “right.” Adding these as

preprocessor rules means that the preprocessor will rewrite the code before tests

are generated.

One potential problem exists: if the user used two classes in their code which

were both mapped to pairs, TestBuilder will be unable to distinguish between the

two. This could lead to incorrect results if the original code would have crashed

due to an error where it treated the same value as both classes. TestBuilder will

analyze the code as though there was one type present. This is a problem in one

sense, but unless the programmer’s expectation of multiple types was made clear

through the use of the type function, it may not be possible to confirm that the code

would not work as expected. This is due to the potential for a user to provide the

27

code with an object with answers to all the methods which are called on it, perhaps

by subclassing both the classes the value is treated as. Such as subclass would pass

even isinstance tests. See fig. 3.6 on the following page for an example.

As a result, the preprocessor should be viewed as a stop-gap measure designed

to increase compatibility with user code, rather than as a permanent solution. It

does not map attributes semantically, changing the internal name of the attribute

in TestBuilder. Rather, it modifies code on-the-fly to follow TestBuilder’s expected

conventions, without permanent changes, allowing semantically-equivalent con-

structions to be unified to the format supported by TestBuilder. Ultimately, support

for custom objects would eliminate the need for this preprocessor.

While TestBuilder generates tests using its built-in Pair class, the Pair class has

been designed with many common names available as aliases to its own attributes.

Thus, it is able to be used in contexts where the user’s Pair class used different names

than TestBuilder.

28

Code

class TypeA:
def __init__(self, a):

self.a = a

class TypeB:
def __init__(self, b):

self.b = b

def uses_both(val):
if isinstance(val, TypeA):

print(val.a)
if isinstance(val, TypeB):

print(val.b)

class TypeBoth(TypeA, TypeB):
def __init__(self, a, b):

super().__init__(a)
self.a = a
self.b = b

val = TypeBoth(1, 2)
uses_both(val)

Result

python3 multireference.py

1
2

Figure 3.6: Using a variable as both of its parent types.

29

Chapter 4

Model

4.1 Overview

We convert a Python AST into a loop-free SSA [42, 2] IR, adding phi nodes at join

points and substituting functions with their definitions. The resulting IR grammar

is defined in fig. 4.1 on the next page.

4.1.1 SSA IR Reduction

Reduction on the IR is defined by 𝐯, as defined in fig. 4.2 on page 32 using 𝐞 as

defined in fig. 4.3 on page 33. 𝐯 is a mapping from a basic block, a list of basic

blocks, a store (𝜎), and an environment (𝜌) to a basic block, a list of basic blocks, a

store, and an environment. 𝐞 is a mapping from an expression, a store (𝜎), and an

environment (𝜌) to modified versions. Note that the environment is never modified

by an expression, although the store may be. This occurs when a Pair is created,

which requires allocation from the store.

TestBuilder takes a program in this SSA IR form, alongwith a desired line number

to execute, and computes a set of inputs such that the specified line will be executed

when the inputs are provided to the function.

30

𝐵𝑎𝑠𝑖𝑐𝐵𝑙𝑜𝑐𝑘 ∶∶= BB([𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡,…], 𝑛𝑒𝑥𝑡) ∣ Result(𝑣)
𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡 ∶∶= Set(𝑖𝑑, 𝑒) | Assert(𝑒)| Setattr(𝑒, 𝑎𝑐𝑐𝑒𝑠𝑠, 𝑒)

𝑛𝑒𝑥𝑡 ∶∶= Next(𝑖) ∣ ReturnExpr(𝑒) ∣ Return ∣ Conditional(𝑒, 𝑖, 𝑖)
𝑒 ∶∶= 𝑣 ∣ BinOp(𝑒, 𝑜𝑝, 𝑒) ∣ USub(𝑒) ∣ (𝑒) ∣ 𝛼

| Attr(𝑒, 𝑎𝑐𝑐𝑒𝑠𝑠)
𝑣 ∶∶= 𝑖 ∣ 𝑠 ∣ 𝑏 ∣ 𝑓 ∣ None ∣ Pair(𝑒, 𝑒)
𝑜𝑝 ∶∶= Add ∣ Sub ∣ Mult ∣ Div ∣ Lt ∣ LtE ∣ Gt ∣ GtE ∣ Eq ∣ And ∣ Or

𝑎𝑐𝑐𝑒𝑠𝑠 ∶∶= left ∣ right

𝛼 ∈ 𝑖𝑑 𝑖 ∈ ℤ 𝑠 ∈ 𝑙𝑜𝑛𝑔𝑠𝑡𝑟𝑖𝑛𝑔𝑖𝑡𝑒𝑚∗ 𝑏 ∈ {true, false} 𝑓 ∈ Float

Figure 4.1: Grammar of SSA IR
Definitions:
𝑖𝑑 is the set of valid Python identifiers, as defined by [51].
𝑙𝑜𝑛𝑔𝑠𝑡𝑟𝑖𝑛𝑔𝑖𝑡𝑒𝑚 is the set of valid characters in a Python triple-quoted string, as defined by
[52].
Next and Conditional use indices into the list of basic blocks to indicate the block to jump
to.

4.1.2 Compilation of SSA IR to Z3 Expressions

During compilation, the enclosing function for the specified line is converted into

the language of the Z3 SMT solver. Z3 is then used to solve the resulting expression,

and the variables representing the function arguments are extracted. A simplified

grammar of Z3 expressions was presented in fig. 2.1 on page 15 and will be reused

here.

For the purposes of exposition in this section, all sub-expressions have been

treated as being executed and converted immediately back into Z3 Any types. This

leads to many small assignments and avoids the need to model a type system. In

addition, this means that larger expressions become a chain of assignments, all

Anded together.

Unlike the model, the actual implementation uses a type system, as described in

section 3.4 on page 21.

31

⟨[𝛽1,…], [], [], []⟩ 𝐯 ⟨𝛽1, [𝛽1,…], [], []⟩
⟨BB([Set(𝑖𝑑, 𝑒), 𝑠,…], 𝑛𝑒𝑥𝑡), 𝛽, 𝜎, 𝜌⟩ 𝐯 ⟨BB([𝑠,…], 𝑛𝑒𝑥𝑡), 𝛽, 𝜎, 𝜌[𝑖𝑑 → 𝑣]⟩

if ⟨𝑒, 𝜎, 𝜌⟩ 𝐞 ⟨𝑣, 𝜎1, 𝜌⟩
⟨BB([Setattr(𝑡, left, 𝑒), 𝑠,…], 𝑛𝑒𝑥𝑡), 𝛽, 𝜎, 𝜌⟩ 𝐯 ⟨BB([𝑠,…], 𝑛𝑒𝑥𝑡), 𝛽, 𝜎2[𝑟 → 𝑣], 𝜌⟩

if
⟨𝑒, 𝜎, 𝜌⟩ 𝐞 ⟨𝑣, 𝜎1, 𝜌⟩
⟨𝑡, 𝜎1, 𝜌⟩ 𝐞 ⟨𝑡𝑣, 𝜎2, 𝜌⟩

⟨BB([Setattr(𝑡, right, 𝑒), 𝑠,…], 𝑛𝑒𝑥𝑡), 𝛽, 𝜎, 𝜌⟩ 𝐯 ⟨BB([𝑠,…], 𝑛𝑒𝑥𝑡), 𝛽, 𝜎2[𝑟 → 𝑣], 𝜌⟩

if
⟨𝑒, 𝜎, 𝜌⟩ 𝐞 ⟨𝑣, 𝜎1, 𝜌⟩
⟨𝑡, 𝜎1, 𝜌⟩ 𝐞 ⟨𝑡𝑣, 𝜎2, 𝜌⟩

⟨BB([Assert(𝑒), 𝑠,…], 𝑛𝑒𝑥𝑡), 𝛽, 𝜎, 𝜌⟩ 𝐯 ⟨BB([𝑠,…], 𝑛𝑒𝑥𝑡), 𝛽, 𝜎1, 𝜌⟩
if ⟨𝑒, 𝜎, 𝜌⟩ 𝐞 ⟨true, 𝜎1, 𝜌⟩

⟨BB([Assert(𝑒), 𝑠,…], 𝑛𝑒𝑥𝑡), 𝛽, 𝜎, 𝜌⟩ 𝐯⊥ if ⟨𝑒, 𝜎, 𝜌⟩ 𝐞 ⟨false, 𝜎1, 𝜌⟩
⟨BB([],Next(𝑖)), 𝛽, 𝜎, 𝜌⟩ 𝐯 ⟨𝛽𝑖, 𝛽, 𝜎, 𝜌⟩

⟨BB([],ReturnExpr(𝑒)), 𝛽, 𝜎, 𝜌⟩ 𝐯 ⟨Result(𝑣), 𝛽, 𝜎1, 𝜌⟩
if ⟨𝑒, 𝜎, 𝜌⟩ 𝐞 ⟨𝑣, 𝜎1, 𝜌⟩

⟨BB([],Return), 𝛽, 𝜎, 𝜌⟩ 𝐯 ⟨Result(None), 𝛽, 𝜎, 𝜌⟩
⟨BB([],Conditional(𝑒, 𝑖, 𝑗)), 𝛽, 𝜎, 𝜌⟩ 𝐯 ⟨𝛽𝑖, 𝛽, 𝜎1, 𝜌⟩ if ⟨𝑒, 𝜎, 𝜌⟩ 𝐞 ⟨true, 𝜎1, 𝜌⟩
⟨BB([],Conditional(𝑒, 𝑖, 𝑗)), 𝛽, 𝜎, 𝜌⟩ 𝐯 ⟨𝛽𝑗, 𝛽, 𝜎1, 𝜌⟩

if ⟨𝑒, 𝜎, 𝜌⟩ 𝐞 ⟨false, 𝜎1, 𝜌⟩

Figure 4.2: Reduction of SSA IR
Note: Values are as defined in fig. 4.1 on the preceding page; 𝐞 is defined in fig. 4.3 on the

next page. See text for description of 𝐯, 𝐞, 𝜎 and 𝜌.

32

⟨𝑃𝑎𝑖𝑟(𝑙𝑒𝑓 𝑡, 𝑟𝑖𝑔ℎ𝑡), 𝜎, 𝜌⟩ 𝐞 ⟨𝑘, 𝜎2[𝑘 → 𝑃𝑎𝑖𝑟(𝑙𝑣, 𝑟𝑣)], 𝜌⟩ if
⟨𝑙𝑒𝑓 𝑡, 𝜎, 𝜌⟩ 𝐞 ⟨𝑙𝑣, 𝜎1, 𝜌⟩∧

⟨𝑟𝑖𝑔ℎ𝑡, 𝜎1, 𝜌⟩ 𝐞 ⟨𝑟𝑣, 𝜎2, 𝜌⟩∧
𝑘 is a fresh index

⟨𝛼, 𝜎, 𝜌⟩ 𝐞 ⟨𝜎[𝛼], 𝜎, 𝜌⟩

⟨BinOp(𝑙, 𝑜𝑝, 𝑟), 𝜎, 𝜌⟩ 𝐞 ⟨𝛿(𝑜𝑝, 𝑙𝑣, 𝑟𝑣), 𝜎2, 𝜌⟩ if
⟨𝑙, 𝜎, 𝜌⟩ 𝐞 ⟨𝑙𝑣, 𝜎1, 𝜌⟩∧

⟨𝑟, 𝜎1, 𝜌⟩ 𝐞 ⟨𝑟𝑣, 𝜎2, 𝜌⟩
⟨USub(𝑒), 𝜎, 𝜌⟩ 𝐞 ⟨𝛿(−, 𝑣), 𝜎1, 𝜌⟩ if ⟨𝑒, 𝜎, 𝜌⟩ 𝐞 ⟨𝑣, 𝜎1, 𝜌⟩

⟨ (𝑒), 𝜎, 𝜌⟩ 𝐞 ⟨𝛿(not, 𝑣), 𝜎1, 𝜌⟩ if ⟨𝑒, 𝜎, 𝜌⟩ 𝐞 ⟨𝑣, 𝜎1, 𝜌⟩
⟨Attr(𝑒, left), 𝜎, 𝜌⟩ 𝐞 ⟨𝑙, 𝜎1, 𝜌⟩ if ⟨𝑒, 𝜎, 𝜌⟩ 𝐞 ⟨Pair(𝑙, 𝑟), 𝜎1, 𝜌⟩

⟨Attr(𝑒, right), 𝜎, 𝜌⟩ 𝐞 ⟨𝑟, 𝜎1, 𝜌⟩ if ⟨𝑒, 𝜎, 𝜌⟩ 𝐞 ⟨Pair(𝑙, 𝑟), 𝜎1, 𝜌⟩

Figure 4.3: Reduction of SSA IR expressions

Note: 𝛿 is defined in fig. 4.4. Values are as defined in fig. 4.1 on page 31. See text for
description of 𝐯, 𝐞, 𝜎 and 𝜌.

𝛿(Add, ⌜𝑚⌝, ⌜𝑛⌝) = ⌜𝑚 + 𝑛⌝
𝛿(Sub, ⌜𝑚⌝, ⌜𝑛⌝) = ⌜𝑚 − 𝑛⌝

𝛿(Mult, ⌜𝑚⌝, ⌜𝑛⌝) = ⌜𝑚 ⋅ 𝑛⌝
𝛿(Div, ⌜𝑚⌝, ⌜𝑛⌝) = ⌜𝑚/𝑛⌝
𝛿(Lt, ⌜𝑚⌝, ⌜𝑛⌝) = ⌜𝑚 < 𝑛⌝

𝛿(LtE, ⌜𝑚⌝, ⌜𝑛⌝) = ⌜𝑚 ≤ 𝑛⌝
𝛿(Gt, ⌜𝑚⌝, ⌜𝑛⌝) = ⌜𝑚 > 𝑛⌝

𝛿(GtE, ⌜𝑚⌝, ⌜𝑛⌝) = ⌜𝑚 ≥ 𝑛⌝
𝛿(Eq, ⌜𝑚⌝, ⌜𝑛⌝) = ⌜𝑚 = 𝑛⌝

𝛿(And, ⌜𝑚⌝, ⌜𝑛⌝) = ⌜𝑚 ∧ 𝑛⌝
𝛿(Or, ⌜𝑚⌝, ⌜𝑛⌝) = ⌜𝑚 ∨ 𝑛⌝

Figure 4.4: Definition of 𝛿 for SSA IR
⌜⋅⌝ denotes the value resulting from the expression inside.

33

𝜖 ⟦𝑥⟧ is a function mapping the location tag ⟦𝑥⟧ to a variable. At times, this

location tag will be represented with Python syntax, which is to be understood to

refer to the tag on that expression after conversion to SSA form.

The 𝛾(𝛼) function maps from a Python name to a Z3 name. To distinguish

variable names deriving from Python from those added by TestBuilder, the imple-

mentation adds a prefix of pyname_ to each of the original variables when converting

to the SSA IR. 𝛾(𝛼) may be considered to add such a prefix.

Compilation of reference types into the SMT domain requires a store, in order

to handle aliasing of references. If we model a mutable reference type without a

store, mutation of the referenced value in one aliased variable will not mutate the

value referenced by its alias. For the current version of TestBuilder, we have only

implemented support for pairs, although it should be possible to extend to tuples of

other lengths.

The store is modeled as a Z3 array indexed by an integer 𝑖. Allocation of store

indices occurs statically at compile time for variables with store accesses: those

where one of the subscripts is referenced. Variables for which no type restriction

prevents them from being references, but which also do not have store accesses, will

not have store locations allocated. As the store is never accessed, this does not affect

the result of the computation.

We begin with function compilation. Function compilation is the result of com-

piling the first basic block in the function and following labels from it to other basic

blocks, which are then also compiled.

𝐶𝐹𝑛([𝛽1,… , 𝛽𝑛] = 𝐶𝐵𝐵(𝛽1, [𝛽1,… , 𝛽𝑛]) (4.1)

34

Several forms of basic block exist. We can have a simple code block, which also

holds the label of the next block:

𝐶𝐵𝐵(BB(𝑠𝑡𝑚𝑡𝑠,Next(𝑗)), [𝛽1,… , 𝛽𝑛]) =
𝐶𝐵𝑜𝑑𝑦(𝑠𝑡𝑚𝑡𝑠)

∧𝐶𝐵𝐵(𝛽𝑗, [𝛽1,… , 𝛽𝑛])
(4.2)

Or we can have a return expression block, which terminates the function and

returns a value:

𝐶𝐵𝐵(BB(𝑠𝑡𝑚𝑡𝑠,ReturnExpr(𝑒)), [𝛽1,… , 𝛽𝑛]) = 𝐶𝐵𝑜𝑑𝑦(𝑠𝑡𝑚𝑡𝑠) ∧ (𝑟𝑒𝑡 = 𝜖 ⟦𝑒⟧) ∧ 𝐶𝐸(𝑒)

(4.3)

Or the simple return block, which terminates the function and does not return a

value:

𝐶𝐵𝐵(BB(𝑠𝑡𝑚𝑡𝑠,Return), [𝛽1,… , 𝛽𝑛]) = 𝐶𝐵𝑜𝑑𝑦(𝑠𝑡𝑚𝑡𝑠) (4.4)

Finally, we may have a conditional block, which evaluates an expression and

goes to one of two labels depending on its value. The conditional block is converted

into a disjunction, with one expression for each of its branches:

𝐶𝐵𝐵(BB(𝑠𝑡𝑚𝑡𝑠,Conditional(𝑒, 𝑖, 𝑗)), [𝛽1,… , 𝛽𝑛]) =

𝐶𝐵𝑜𝑑𝑦(𝑠𝑡𝑚𝑡𝑠)

∧𝐶𝐸(𝑒)

∧
⎛⎜⎜⎜⎜
⎝

(𝜖 ⟦𝑒⟧ ∧ 𝐶𝐵𝐵(𝛽𝑖, [𝛽1,… , 𝛽𝑛]))

∨ (¬𝜖 ⟦𝑒⟧ ∧ 𝐶𝐵𝐵(𝛽𝑗, [𝛽1,… , 𝛽𝑛]))

⎞⎟⎟⎟⎟
⎠

(4.5)

35

To compile the body of a basic block, we form a conjunction of all the assignment

statements in it, along with the assertions in it:

𝐶𝐵𝑜𝑑𝑦(𝑠𝑡𝑚𝑡𝑠) = ⋀
𝑠𝑒𝑡∈𝑠𝑡𝑚𝑡𝑠

𝐶𝑆𝑒𝑡(𝑠𝑒𝑡) ∧ ⋀
𝐴𝑠𝑠𝑒𝑟𝑡(𝑒)∈𝑠𝑡𝑚𝑡𝑠

𝐶𝐸(𝑒) ∧ 𝜖 ⟦𝑒⟧ (4.6)

The right hand side of each assignment statement is compiled:

𝐶𝑆𝑒𝑡(Set(𝛼, 𝑒)) = (𝛼 = 𝜖 ⟦𝑒⟧ ∧ 𝐶𝐸(𝑒)) (4.7)

Compilation of simple values proceeds as expected: Integers, strings, and booleans

all compile to their corresponding Z3 objects:

𝐶𝐸(𝑖) = (𝜖 ⟦𝑖⟧ = 𝑖) (4.8)

𝐶𝐸(𝑠) = (𝜖 ⟦𝑠⟧ = 𝑠) (4.9)

𝐶𝐸(𝑏) = (𝜖 ⟦𝑏⟧ = 𝑏) (4.10)

𝐶𝐸(𝛼) = (𝜖 ⟦𝛼⟧ = 𝛾(𝛼)) (4.11)

𝛼 ∈ 𝑆𝑡𝑟𝑖𝑛𝑔𝑠

Binary operators compile to the equivalent operations in Z3, as shown in fig. 4.5

on the following page.

In effect, we compile each sub-expression to an assignment to a variable de-

termined by a call to 𝜖 with the code location. This assignment is Anded with

any constraints required to make it valid—such as a requirement that the left and

right values both be integers—and then the resulting expression is Ored with any

alternative expressions resulting from other interpretations of the component parts.

36

𝐶𝐸(BinOp(𝑙, +, 𝑟)) =

⋁⎡⎢
⎣

(𝜖 ⟦BinOp(𝑙, +, 𝑟)⟧ = 𝜖 ⟦𝑙⟧ i + 𝜖 ⟦𝑟⟧ i) ∧ isInt? (𝜖 ⟦𝑙⟧) ∧ isInt? (𝜖 ⟦𝑟⟧)
(𝜖 ⟦BinOp(𝑙, +, 𝑟)⟧ = Concat(𝜖 ⟦𝑙⟧ s , 𝜖 ⟦𝑟⟧ s)) ∧ isString? (𝜖 ⟦𝑙⟧) ∧ isString? (𝜖 ⟦𝑟⟧)

⎤⎥
⎦

∧ 𝐶𝐸(𝑙) ∧ 𝐶𝐸(𝑟)
(4.12)

Figure 4.5: Compilation of binary operator.

4.2 Examples

4.2.1 Identity Function

Consider the identity function defined in Python:

def ident(x):

return x

Translating this function into the SSA IR results in the following list of basic

blocks:

[BB([],ReturnExpr(𝑥))] (4.13)

Conversion of this SSA IR to an expression in the Z3 language is very direct:

(𝑟𝑒𝑡 = 𝜖 ⟦𝑥⟧) ∧ (𝜖 ⟦𝑥⟧ = 𝛾(𝑥)) (4.14)

This is an exceptionally simple example, as no typechecking need occur for

this assignment. In the next example, we will show how the conversion from

dynamically-typed Python to statically typed Z3 is achieved.

37

4.2.2 Basic Expression in Function

We now demonstrate the conversion of the following simple function into a Z3

expression:

def twothings(a, b):

return a + b

Translating this function into the SSA IR results in the following expression:

[BB([], 𝑅𝑒𝑡𝑢𝑟𝑛𝐸𝑥𝑝𝑟(𝐵𝑖𝑛𝑂𝑝(𝑎, Add, 𝑏)))] (4.15)

We now begin the conversion process to Z3 expressions. This proceeds in a depth-

first fashion. Thus, we first convert both the variables, then convert the addition

operation on them. The variable conversions looks like this:

(𝜖 ⟦𝑎⟧ = 𝛾(𝑎)) ∧ (𝜖 ⟦𝑏⟧ = 𝛾(𝑏)) (4.16)

Each Python variable is converted to a Z3 constant of Any type. Any is a Z3

datatype which defines wrapper constructors for each possible datatype in Python.

This allows us to represent a value for which the current type constraints are not

sufficiently strong to restrict it to a single type. Abstract interpretation across the

possible types of an input expression could in theory produce enormous expressions:

every element of the Cartesian product of the possible types of the input variables

could need to be represented. But because assignments are always into variables of

Any type, every expression will be reduced to a constant number of potential value

accesses from a variable. Thus, no exponential growth in the number of expressions

occurs.

38

Having converted the variables, we now convert the addition operation:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎛⎜⎜⎜⎜
⎝

(𝜖 ⟦𝑎 + 𝑏⟧ = 𝜖 ⟦𝑎⟧ i + 𝜖 ⟦𝑏⟧ i)

∧ isInt? (𝜖 ⟦𝑎⟧) ∧ isInt? (𝜖 ⟦𝑏⟧)

⎞⎟⎟⎟⎟
⎠

∨
⎛⎜⎜⎜⎜
⎝

(𝜖 ⟦𝑎 + 𝑏⟧ = Concat (𝜖 ⟦𝑎⟧ s , 𝜖 ⟦𝑏⟧ s))

∧ isString? (𝜖 ⟦𝑎⟧) ∧ isString? (𝜖 ⟦𝑏⟧)

⎞⎟⎟⎟⎟
⎠

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∧ (𝜖 ⟦𝑎⟧ = 𝛾(𝑎)) ∧ (𝜖 ⟦𝑏⟧ = 𝛾(𝑏))

(4.17)

We have now processed the entire expression which is supposed to be returned.

Thus, we now produce a non-deterministic return of the possible values from the

result. Each expression is wrapped in the constructor for the Any wrapper of its

type:

𝑟𝑒𝑡 = 𝜖 ⟦𝑎 + 𝑏⟧ ∧ (eq. (4.17)) (4.18)

4.2.2.1 What about passing type sets down?

Rather than initially allowing variables to take on any type and then restricting the

types according to the definition of the operation, it might seem we could restrict

the variables to the types for which the operation is defined. This would reduce the

number of Cartesian products required, as it would reduce the number of potential

types for the variable. However, it would not eliminate the potential need for further

restriction on the available variable types. Consider the case where one of the two

arguments to the addition operator is an integer literal. Then it must have type

𝑖𝑛𝑡. If we pass the possible argument types from the addition operation to the

arguments, we will pass both 𝑖𝑛𝑡 and 𝑠𝑡𝑟 to each argument. But the instantiation of

+ as 1 + 𝑏 s ∶ 𝑏 ∶ 𝑠𝑡𝑟 is impossible in this case, as 1 will never be a string; thus, the

formerly-unconstrained variable 𝑏 can now be constrained to 𝑖𝑛𝑡. To do this, we still

require the Cartesian product algorithm, as described above. Thus, restricting the

39

initial instantiation types of the variables falls into the category of optimizations,

rather than alternative solutions.

4.2.3 Conditional

Consider this code:

def conditional(a, b):

if a < 3:

c = a + 2

else:

c = a + 3

return c

Translating this to SSA IR results in this:

[BB([],Conditional(𝑎 < 3, 2, 3)),

BB([𝑐 = 𝑎 + 2],Next(4)),

BB([𝑐 = 𝑎 + 3],Next(4)),

BB([],ReturnExpr(𝑐))]

(4.19)

Expression evaluation over BB(…) proceeds as standard:

𝜖 ⟦𝑎⟧ = 𝛾(𝑎) (4.20)

and the addition:

(𝜖 ⟦𝑎 + 2⟧ = 𝜖 ⟦𝑎⟧ i + 2) ∧ isInt? (𝜖 ⟦𝑎⟧)

∧ (𝜖 ⟦𝑎⟧ = 𝛾(𝑎))
(4.21)

Note that, because we are adding an integer to 𝑎, the only valid interpretation of

𝑎 is as an 𝑖𝑛𝑡, so we only have one possible expression.

40

The compilation of the test expression proceeds as follows:

(𝜖 ⟦𝑎 < 3⟧ = (𝜖 ⟦𝑎⟧ i < 3)) ∧ isInt? (𝜖 ⟦𝑎⟧) ∧ (𝜖 ⟦𝑎⟧ = 𝛾(𝑎)) (4.22)

Compilation of the conditional to Z3 results in the following:

⎛⎜⎜⎜⎜
⎝

𝜖 ⟦𝑎 < 3⟧ ∧ 𝛾(𝑐) = 𝜖 ⟦𝑎 + 2⟧∨

¬𝜖 ⟦𝑎 < 3⟧ ∧ 𝛾(𝑐) = 𝜖 ⟦𝑎 + 3⟧

⎞⎟⎟⎟⎟
⎠

∧ 𝜖 ⟦𝑎 + 2⟧ = 𝜖 ⟦BinOp(𝑎, Add, 2)⟧

∧ 𝜖 ⟦𝑎 + 3⟧ = 𝜖 ⟦BinOp(𝑎, Add, 3)⟧

∧(𝜖 ⟦𝑎 < 3⟧ = (𝜖 ⟦𝑎⟧ i < 3)) ∧ isInt? (𝜖 ⟦𝑎⟧)

∧ (𝜖 ⟦𝑎⟧ = 𝛾(𝑎))

(4.23)

Finally, compilation of the return statement yields

𝑟𝑒𝑡 = 𝜖 ⟦𝛾(𝑐)⟧ (4.24)

4.2.4 Pairs and Mutation

Support for a Pair datatype is present. Consider this Python code:

a = Pair(1, 2)

b = a

a.left += 1

assert b.left == 2

41

Translating the Python above into SSA IR results in the following list of expres-

sions:

[BB([

Set(𝑎,Pair(1, 2)),

Set(𝑏, 𝑎),

Set(Attr(𝑎, left), 𝐴𝑡𝑡𝑟(𝑎, left) + 1)

Assert(Attr(𝑏, left) = 2)

])]

(4.25)

We compile the pair creation into an assignment of the store index to the 𝑎

variable and a mutation of the store array to assign a new pair to that index. The

pair itself is a Z3 datatype.

(𝜖 ⟦𝑎⟧ = 0)

∧ (𝑠𝑡𝑜𝑟𝑒1 = Store (𝑠𝑡𝑜𝑟𝑒, 0, 𝜖 ⟦𝑃𝑎𝑖𝑟(1, 2)⟧))

∧ (𝜖 ⟦𝑃𝑎𝑖𝑟(1, 2)⟧ = Pair (𝜖 ⟦1⟧ , 𝜖 ⟦2⟧))

∧ (𝜖 ⟦1⟧ = 1)

∧ (𝜖 ⟦2⟧ = 2)

(4.26)

The assignment into the left field of the 𝑎 variable is converted into a replace-

ment of the pair currently in the store with a new pair which has been mutated

42

appropriately. It is worth noting that the value in 𝑎 does not change, because only

the referenced value changes.

isReference? (𝜖 ⟦𝑎⟧)

∧𝜖 ⟦𝑎⟧ = 𝛾(𝑎)

∧𝜖 ⟦𝑎.𝑙𝑒𝑓 𝑡⟧ = (𝑠𝑡𝑜𝑟𝑒[𝜖 ⟦𝑎⟧ r]) .𝑙𝑒𝑓 𝑡 ∧ isReference? (𝜖 ⟦𝑎⟧)

∧𝜖 ⟦𝑎.𝑙𝑒𝑓 𝑡 + 1⟧ = 𝜖 ⟦𝑎.𝑙𝑒𝑓 𝑡⟧ + 1 ∧ isInt? (𝜖 ⟦𝑙𝑒𝑓 𝑡1⟧)

∧

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑠𝑡𝑜𝑟𝑒2 = Store

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑠𝑡𝑜𝑟𝑒1, 𝜖 ⟦𝑎⟧ r ,

Pair

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝜖 ⟦𝑎.𝑙𝑒𝑓 𝑡 + 1⟧ ,

(𝑠𝑡𝑜𝑟𝑒[𝜖 ⟦𝑎⟧ r]) .𝑟𝑖𝑔ℎ𝑡

∧ isReference? (𝜖 ⟦𝑎⟧)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(4.27)

As compilation occurs, the current 𝑠𝑡𝑜𝑟𝑒𝑛 variable is tracked, and the appropriate

one is written. Because all loops are unrolled, the current store can be determined

statically.

43

Chapter 5

Evaluation

In order to determine the effectiveness of TestBuilder, three evaluations were un-

dertaken. For all of these assignments, a “golden master” implementation of the

assignment was used which was produced by the author. In practice, the “golden

master” might be the implementation created by the instructor in developing the

assignment.

Mutation testing is a technique for evaluating the quality of a test suite. It involves

modifying the code of a program to deliberately insert errors, and then counting

how many of the errors are caught by the test suite. For the evaluations conducted

in this thesis, a mutation testing tool was written which implements a variant of the

deletion mutation operator presented by Deng, Offutt, and Li [15].

For testing purposes, we used a collection of 347 anonymous student projects

from the Spring 2017 edition of CSC 202 (officially 103 at the time). We ran Test-

Builder against each project, and the ones which successfully ran without crashes

were gathered as the sample code for this evaluation.

The cases in which TestBuilder does not run are caused by several factors. We

gathered the output from the failing runs, and table 5.1 on the next page presents a

table of the top three most common final lines of the output, along with a probable

cause of the error.

44

Table 5.1: Top three most common final lines of output from failed TestBuilder
runs.

74 RuntimeError: Don't know what to do with a
For(<class '_ast.For'>); no such attribute exists
TestBuilder does not support Python For (see chapter 7 on page 52)

37 Timeout!
TestBuilder was stopped if it ran for more than 5 minutes on a file.

11 RuntimeError: Unknown target type <class '_ast.Call'>
These appear to be assignments to tuples. The Call in the error is due to the pre-
processor we applied, which converts Python tuples into Pair instances, including
when they are the targets of assignments.

5.1 Grade Boosting

We ran TestBuilder on submitted student code with the goal of discovering bugs

which were also found by the professor’s grading test suite. To simulate a professor’s

grading system, we used the test suite from our “golden master” implementation of

the students’ project.

We began with 347 student projects. Only 343 of those had a linked_list.py

file, which was our target file for this experiment. Due to limitations or bugs in

the current implementation of TestBuilder, not all student submissions could be

processed without crashes. We removed 185 student submissions which caused

TestBuilder to crash while attempting to generate tests. We ran TestBuilder on the

remaining 158 student submissions, providing correct answers to its queries by

running our golden master implementation on the requested inputs. This simulates

a student giving correct answers to the questions posed by TestBuilder. We run the

resulting test cases against the student’s code and find any failing tests. We then run

the grading test suite against the same code and compare the bugs it finds. Each

bug found by both TestBuilder and the grading suite represents an opportunity for

the student to lose fewer points by running TestBuilder on their code.

45

We compared the bugs found by our grading test suite and TestBuilder. In those

cases where both test suites found the same bug, we can conclude that running

TestBuilder on the student’s code could have saved them the points they lost due to

the bugs found by our simulated grading suite. This quantifies TestBuilder’s direct

benefit to the student. Potentially, this kind of test could also be run on submissions

regularly, with the results reported upon assignment submission.1

To implement this technique in an educational setting would require the inter-

faces to the tested methods to exist in both the student’s and professor’s code, but

as this limitation already exists with grading test suites it is not expected to pose a

problem.

5.2 Student Tests vs. TestBuilder Tests

In order to compare the quality of hand-written tests written by students and test

cases generated by TestBuilder, we ran a mutation testing procedure on each of ten

student linked list projects. We selected the student projects by shuffling the list of

projects on which TestBuilder ran successfully and selecting the top ten working

projects from the shuffled list. If the student’s tests did not run as submitted, we

omitted that project and chose the next project on the shuffled list.

For one run of the mutation testing, we used the TestBuilder generated test suite

to attempt to kill the mutants. For the other run, we used the student’s handwritten

tests to do the same. This allowed us to compare the relative performance of the

two test suites in killing mutants.
1For example, as a message of the form “If you use TestBuilder, you could find errors that may

lose you five points!”

46

5.3 Refactoring Legacy Code

Rather than attempting to write tests around legacy code, TestBuilder can be used

to canonize2 the current behavior of the program in order to prepare for refactoring.

To test its effectiveness in generating a test suite for code, a test suite was generated

for the golden master program, treating the current behavior of the code as correct.

Mutation testingwas then applied to each program, and the number ofmutations not

caught by the test suite was counted. This number, as a fraction of the total number

of mutations generated, quantifies the performance of the generated test suite in

catching potential regressions. This is a valid measurement, as every mutation is by

definition a potential regression from the previous behavior of the program.

2To make canonical [14]; c.f. differences - “Normalization” vs. “canonicalization” - English Language
& Usage Stack Exchange [16]

47

Chapter 6

Results

6.1 Grade Boosting

We ran the tests written for the golden master across all the student projects in our

list of 158 working student projects. We then gathered the 22 projects which failed

the golden master’s tests,1 and ran TestBuilder on each of them, using the golden

master linked list implementation to determine expected outputs. Only three of

the resulting test cases failed (two from one project and one from another), and all

of them failed due to a difference in implementation of the empty list between the

project they were testing and the golden master. Thus, they would not have failed if

the user had given the correct expected output. See fig. 6.1 on the next page for a

table of project counts.

6.2 Student Tests vs. TestBuilder Tests

We shuffled the list of student projects which work with TestBuilder and selected

projects from the top of the list until we had ten which had both tests and student

code and worked well with TestBuilder. We then ran mutation tests on both sets of
1This does not include projects which broke the test runner. Typically, this seemed to happen due

to missing functions which the golden master tests expected.

48

347 projects
343 with linked_list.py
185 crash TestBuilder
158 build successfully
22 failed golden master tests
2 failed master-driven TestBuilder tests

Figure 6.1: Project breakdown

tests: the tests written by the students as part of the course requirements and the tests

generated by TestBuilder. The percentage of mutations which were caught by each

test suite was calculated for each project, and the results may be seen summarized

in fig. 6.2 on the following page.

A Shapiro-Wilk normality test was performed on the results for each test suite,

but the results were not normally distributed (𝑝 < 0.0002). A Wilcoxon signed-rank

test was used to determine that the mean fraction of mutations2 killed by each test

suite differed (𝑝 < 0.002) with a 95% confidence interval of 24 to 39 percentage

points difference. We conclude that the tests written by students are better at killing

mutants than those written by TestBuilder, at least in its current configuration.

Python includes a built-in compile function which catches some basic errors in

code and converts it into a Python code object [53].3 To confirm that TestBuilder

tests were doing more than merely eliminating the mutations with such basic errors,

we gathered data on the total number of mutations which were eliminated by failure

to compile. A Wilcoxon signed-rank test was used to confirm that the mean fraction

of mutations killed by compile differed from the mean fraction of mutations killed

by running the TestBuilder tests (𝑝 < 0.002) with a 95% confidence interval of 36 to

49 percentage points difference. We conclude that TestBuilder tests are better than
2I.e., for each project, we divide the number of mutations killed by the total number of mutations,

producing a percentage. The test is on the mean of these percentages.
3I believe this is similar to the operations which are executed when a file is loaded by the Python

interpreter.

49

0.00

0.25

0.50

0.75

1.00

Code Errors Student TestBuilder

Test case source

P
e

rc
e

n
t

o
f

m
u

ta
ti
o

n
s
 k

il
le

d

Figure 6.2: Mutation killing performance of student and TestBuilder tests.

merely running compile on the code.4 The number of mutations eliminated by the

compile function is shown in fig. 6.2 under the name “Code Errors”.

While reviewing these results, we wondered what effect the lack of statement

coverage by TestBuilder was having on the results. We found that the median

coverage of the TestBuilder test suites used in this section was 78%, whereas the

median coverage of the students’ test suites was 100%.

6.3 Refactoring Legacy Code

We ran a mutation test using the generated test suite for our golden master linked

list implementation. The results are presented in table 6.1 on the following page.
4To the best of my understanding, this should be equivalent to saying, TestBuilder is better than

loading the code and executing nothing, because, as mentioned before, I believe Python does the
equivalent of running the built-in compile function on code as it is loaded from files.

50

Table 6.1: Results of mutation testing.

Test suite Percent of mutations killed

TestBuilder 76.1
Golden master 94.3

In order to give a better standard for comparison of the results, we also ran a

mutation test using the test cases which were written for the golden master linked

list implementation. This test suite had full coverage.

We also ran coverage tests on both test suites. As mentioned above, the hand-

written tests had full coverage. The generated test suite had 76% coverage, which

was surprising, as its statement-by-statement technique for generating tests would

have been expected to result in full coverage. Further investigation revealed two

factors which contributed to this surprisingly low result. First, TestBuilder does

not generate tests which trigger errors, leaving all but one of the lines which raise

IndexErrors untested.5 This accounted for three out of eleven of the uncovered lines.

Second, TestBuilder does not understand functions with higher-order arguments.

Two of the functions—foreach and sort—both involved a higher-order function,

and in both cases TestBuilder provided an integer instead of a function. As a result,

the test cases it generated for those parts of the functions merely assert that an error

is thrown, rather than executing the code meaningfully. Finally, four of the lines

which were not covered were in the remove function. This seems to have been due

to the recursive call in remove, which, after the first substitution, would have been

treated as an arbitrary return value (see section 3.6 on page 26).

5It is unclear why one of the test cases was generated to trigger an IndexError; I believe it is due
to TestBuilder not tracking the conditions of conditionals for the code following them.

51

Chapter 7

Capabilities and Limitations

7.1 Capabilities

TestBuilder currently supports the following constructs from Python (this listing is

derived from [56]):

Builtins: int, string, bool

Python treats booleans as a subtype of ints; we currently treat them as a

distinct type. If the user intentionally uses a boolean as an integer, TestBuilder

will find a type error. However, it seems more likely that in student code,

booleans used as integers are a mistake. This decision could be revisited at a

later point if desired.

Singletons: True, False, None

Statement: FunctionDef, Return, Assign, AugAssign, While, If, Pass, Raise, Expr,

Assert

We allow bare expressions, referred to in the Python AST as Exprs, although

if they are not involved in the computation of the target for a particular test

case, they are likely to be ignored.

52

Expression: BoolOp, BinOp, UnaryOp,Compare, Call, Num, Str, NameConstant, Attribute,

Name

BoolOps are not short-circuiting.

BinOp is only defined for the operations listed in section 7.1.

UnaryOp is only defined for the operations listed in section 7.1.

Calls to names are ignored if the called function is unknown, and the return

value is treated as an unknown Any value, as with a function argument. This

may seem imprecise, but just as we must infer the type of function arguments

from their use and must assume that the author does not intend type errors,

so we must assume that the function will, in fact, return a desirable value.

For recursive calls, the call is only expanded to a depth of one. Keyword

arguments are not supported.

Compare is supported for all the comparison operators other than In and NotIn.

Boolean Operators: And, Or

Operators: Add, Sub, Mult, Div, FloorDiv, Mod

Unary Operators: Not, USub

Comparison Operators: Eq, NotEq, Lt, LtE, Gt, GtE, Is, IsNot

In addition, some Python syntax is ignored without triggering an error:

Statement: ClassDef, Import, ImportFrom

TestBuilder supports integers, booleans, and Pairs, which have left and right

accessors. A limited amount of support is available for floating-point values: floating-

point constants may be defined, floating-point values may be assigned to variables,

and division results in floating-point values (following Python 3 semantics), but no

53

val = None
if val == None:

a = True
else:

a = val.left

Figure 7.1: Not-quite type error

operations are currently supported on floating-point values. Similarly, strings are

available for definition and assignment, but the only operation available on them is

concatenation.

7.2 Limitations

TestBuilder does not support reference types other than a pair, which is indexed

with a left and right attribute.

TestBuilder does not currently support closures. It is likely that support could

be added using the techniques presented by Nguyễn et al. [31].

An obscure corner case exists which currently prevents TestBuilder from gener-

ating a test case. If a user writes code which has the form shown in fig. 7.1, it will

confuse TestBuilder, because the “else” portion is a static AttributeError. It does

not cause an AttributeError at runtime, of course, due to the conditional prevent-

ing the execution of the false branch. Since we do not evaluate the conditionals at

compile time, we are not currently able to detect these cases and react reasonably.

Instead, TestBuilder gives up on writing tests for this function.1

1Actually, we crash with an assertion failure, but when running Python code with the Python
optimizer turned on, assertions are removed.

54

Chapter 8

Tools

Our goal with TestBuilder was to help beginning programmers write better tests.

While TestBuilder has not been as successful in generating test cases as I wish, I have

come across a number of tools during the process of development which I believe

might be of use to beginning programmers. This chapter is a list of tools which I

hope might be of use in helping beginning programmers write better code. Most of

these have been used in the construction of some part or other of TestBuilder.

8.1 Libraries

8.1.1 Dataclasses

Python 3.7 added the dataclasses library, which helps in creating classes for data

storage. In its simplest application, the resulting classes are something like JavaBeans

or structs from other languages. Nevertheless, they are still full Python classes and

can have arbitrary methods added.

The dataclass library provides a decorator, @dataclass, which generates appro-

priate special methods to implement various operations on a classwith fields defined

by the PEP526 syntax for variable annotations[36, 34]. By default, this includes

55

initialization, equality, and string representation [36]. It also supports immutable

classes or classes with ordering, as well as additional features.

A Lisp-style cons class could be defined as follows:

from __future__ import annotations

from dataclasses import dataclass

from typing import Any, Optional

@dataclass

class Cons:

car: Any

cdr: Optional[Cons]

We can create Cons instances like so:

from dataclass import Cons

print(Cons(3, Cons(4, None)))

Running the program prints

Cons(car=3, cdr=Cons(car=4, cdr=None))

See [25] for a more complete summary and [57] for full documentation.

8.2 Testing

8.2.1 pytest

pytest is a test runner for Python. Tests are defined as ordinary functions with names

beginning with test and which may be intermixed with other code. pytest gathers

56

such functions and runs them, printing a standard pass/fail summary, as seen in

fig. 8.1 on the next page. Rather than a specialized assert library, it uses Python’s

built-in assert statement with introspection to provide better information on why

tests fail.

pytest supports skipping tests or marking them as expected to fail, which pro-

vides flexibility in implementation order.

8.2.2 Hypothesis

Hypothesis is a QuickCheck implementation for Python. It allows the user to

annotate tests with the format of desired values and it then generates inputs of that

form and provides them as arguments to the function. See fig. 8.2 on page 59 for an

example implementation of tree depth computation with a Hypothesis-driven test

case, and see fig. 8.3 on page 60 for some example inputs generated by Hypothesis

with the configuration from the test case.

8.2.3 unittest.mock

Python has a built-in mocking library. It supports an “action → assertion” style [55]

where the user defines a mock, runs the code using the mock, and then asserts that

the expected methods were called on the mock. An example is shown in fig. 8.4 on

page 61. The create_autospec function demonstrated there accepts a real-world

object to mock, and refuses to allow the user to mock non-existent attributes, helping

to ensure the mock and the real interface do not diverge.

57

pytestexample.py

def double(a):
return a * 2

def triple(a):
return a * 3

def test_double():
assert double(0) == 0
assert double(1) == 2
assert double(9) == 18

def test_triple():
assert triple(3) == 9
assert triple(0) == 0

pytest pytestexample.py
====================== test session starts ======================
platform linux -- Python 3.7.2, pytest-4.2.1, py-1.7.0, pluggy-0.8.1
hypothesis profile 'default' -> database=DirectoryBasedExampleDatabase('/home/andrew/Education/masters/thesis/examples/.hypothesis/examples')
rootdir: /home/andrew/Education/masters/thesis/examples, inifile:
plugins: cov-2.6.1, hypothesis-4.6.0
collected 2 items

pytestexample.py .. [100%]

=================== 2 passed in 0.01 seconds ====================

Figure 8.1: Example pytest run on a module with inline tests

58

from hypothesis import given
from hypothesis.strategies import builds, deferred, integers, one_of

from dataclass import Cons

pair_tree = deferred(
lambda: one_of(integers(), builds(Cons, pair_tree, pair_tree))

)

@given(pair_tree)
def test_pair(tree):

assert breadth_depth(tree) == rec_depth(tree)

Implementation of the system under test follows

def breadth_depth(tree):
total = 0
todo = [(tree, 0)]
while len(todo) > 0:

item, depth = todo.pop()
if isinstance(item, int):

total = max(total, depth + 1)
else:

todo.insert(0, (item.car, depth + 1))
todo.insert(0, (item.cdr, depth + 1))

return total

def rec_depth(tree):
if isinstance(tree, Cons):

return 1 + max(rec_depth(tree.car), rec_depth(tree.cdr))
else:

return 1

Figure 8.2: Example Hypothesis test

59

0

-5271882463388798187

-1838109540

Cons(car=39, cdr=Cons(car=-45, cdr=77))

Cons(
car=Cons(

car=Cons(
car=Cons(

car=Cons(
car=-7481887819142686162,
cdr=Cons(car=0, cdr=0),

),
cdr=Cons(car=965705312, cdr=Cons(car=0, cdr=0)),

),
cdr=Cons(car=14, cdr=-841895590),

),
cdr=Cons(

car=82201542168895823290416849619829073407,
cdr=Cons(

car=-80,
cdr=84924153051237575165043362870992218977,

),
),

),
cdr=Cons(car=13, cdr=21),

)

Cons(car=-20383, cdr=-1916)

Figure 8.3: Example Hypothesis inputs
(such as might be passed to the test in fig. 8.2 on the preceding page)

60

from unittest.mock import create_autospec

from dataclass import Cons

def test_with_mock():
mockbox = create_autospec(Box(None, None))
mockbox.length.return_value = 3

box = Box(2, mockbox)
assert box.length() == 4

mockbox.length.assert_called_once()

class Box(Cons):
def length(self):

if isinstance(self.cdr, Box):
return 1 + self.cdr.length()

else:
return 1

Figure 8.4: Example test using unittest.mock

61

8.3 Typing

8.3.1 mypy

mypy is an optional static typechecker for Python [30] which implements static

typechecking of the annotations defined by [33]. It supports mixing typed and

untyped code: functions without types are not typechecked [22].1 Using the typing

module built in to Python 3.5, the user can define more complex types, including

union and generic types. It understands most of standard Python, including the

new dataclasses discussed in section 8.1.1 on page 55.

Unfortunately, the support of generics in mypy is not as good as could be wished.

Basic generics, such as the type of a list, are supported and work fine. However,

typing for more complex functions, such as partial, from the standard library

functools module, is messy: the current implementation [58] does not check that

the arguments provided are of the expected type, which means that it is possible

for some of the inputs to be the wrong type without a static error.

In addition, recursive types such as

tree = Union[int, Tuple[tree, tree]]

are not supported properly. Instead, the type must be defined as

tree = Union[int, Tuple[Any, Any]]

An example of an annotated class is shown in fig. 8.5 on the next page. The Cons

class defined there is slightly different from that shown in section 8.1.1 on page 55,

as it is generic in the type of its car, rather than being completely dynamically typed

for the car field. The Stack class is generic in the type of the values it contains, with

the push and pop operations being defined as expected.
1It is possible to require types to be present everywhere, if this is desired.

62

from __future__ import annotations

from dataclasses import dataclass
from typing import Generic, Optional, TypeVar

This __future__ import enables annotations to include types which
will be defined later

E = TypeVar("E")
This defines a type variable which can be used by any generics
present.

@dataclass
class Cons(Generic[E]):

"""Defines a Cons pair which is generic in the type of its car, in
order to type it in the manner of a standard Lisp list. `None` is
used as the empty list value.

"""

car: E
cdr: Optional[Cons[E]]

class Stack(Generic[E]):
def __init__(self) -> None:

self.lst: Optional[Cons[E]] = None

def push(self, val: E) -> None:
self.lst = Cons(val, self.lst)

def pop(self) -> Optional[E]:
if self.lst is None:

return None
else:

val = self.lst.car
self.lst = self.lst.cdr
return val

Figure 8.5: Example of Python class with PEP 484 type annotations

63

from helper import Pair
from typing import Callable, Optional

def add(lst: Optional[Pair], idx: int, val: int) -> Pair:
...

def empty_list() -> None:
...

def foreach(lst: Optional[Pair], f: Callable) -> None:
...

def get(lst: Optional[Pair], idx: int) -> int:
...

def length(lst: Optional[Pair]) -> int:
...

def remove(lst: Optional[Pair], idx: int) -> Pair:
...

def set(lst: Optional[Pair], idx: int, val: int) -> Pair:
...

def sort(lst: Optional[Pair], compare: Callable) -> Optional[Pair]:
...

Figure 8.6: Stubs for golden master LinkedList implementation generated by
MonkeyType

8.3.2 MonkeyType

Instagram has released a type annotation generator for Python named MonkeyType.

It monitors a run of the program and gathers information about the types of the

values involved. It can then generate stubs for the functions in a module of the

program or annotate the module itself with typing information.

64

8.4 Debugging

8.4.1 breakpoint()

Python 3.7 introduced the breakpoint() built-in function [35]. This causes Python

to drop to a debugger when it is executed, making it easy to mark breakpoints di-

rectly in code without the need to import any particular modules. Further, the action

on execution is configurable: by setting the environment variable PYTHONBREAKPOINT

it is possible to run any desired function at breakpoints, including alternative de-

buggers [35].

8.4.2 pdb

Python provides a built-in debugger named pdb. It is basic but adequate, and it does

not require installing anything besides Python. It can be launched by passing -m

pdb to the Python interpreter. This will drop into the debugger, rather than running

the program directly. The debugger can catch exceptions and allow inspection of

the broken state as well.

8.4.3 Pdb++

This is an enhanced version of pdb; when installed, it generally replaces pdb. One

of its most useful features is sticky mode, which provides a continuous view of the

code being debugged as it’s being run (almost like running l after every step). See

fig. 8.7 on the next page for an example of pdb++ running.

8.4.4 Embedded IPython

IPython is a Python REPL similar to the one provided with Python. Unlike the

built-in REPL, however, it includes colorized output, syntax highlighting, and tab

completion. It can be very helpful to drop to a REPL fromwithin a program, allowing

65

Figure 8.7: The pdb++ user interface

experimentation with the current state without having to manually reproduce the

state in an external REPL. IPython provides an embed function which can be used to

produce a REPL at any point in a program.

This code will drop to an IPython REPL in the middle of a program:

from IPython import embed

embed()

8.5 Formatting and Style

8.5.1 Black

Black is a Python formatter which is designed to have almost no configuration. Poten-

tially this makes it more suitable for student use, as it does not require configuration

files and cannot be configured incorrectly.

According to the documentation [8], Black follows a PEP-8 like style. The Python

examples in this document are formatted with Black, typically to 65 columns, to

keep them fitting well on the page.

66

Code:

def forgot_to_call():
print("All the results!")

Vulture Output:

vultureexample.py:1: unused function 'forgot_to_call' (60% confidence)

Figure 8.8: Example of Vulture catching an uncalled function

8.5.2 isort

isort sorts Python imports into a sensible order. Running it and Black on code almost

completely eliminates any formatting decisions.

8.5.3 flake8

flake8 combines several other Python linters and style checkers. It is very config-

urable, and when combined with the flake8-bugbear package, can be configured

to be more cooperative with Black’s formatting, which does not quite meet its re-

quirements.

8.5.4 Vulture

Vulture is able to detect unused code. Ordinarily, this would not seem helpful

on a project as small as most student projects. However, integrating Vulture into

a standard tool set could help alert beginning programmers to code they have

unintentionally failed to call. An example of Vulture’s use is shown in fig. 8.8.

67

8.6 CLI

8.6.1 Docopt

Docopt is a library which significantly simplifies writing CLI tools which take

arguments. While less-related to the topic of this thesis than many of the other tools

in this section, like other libraries this can be helpful in reducing the amount of code

which needs to be written and tested to achieve a goal.

68

Chapter 9

Related Work

9.1 Automatic Test Generation

Zhang et al. showed how tests could be generated based on a short trace of program

use [64]. They demonstrated the value of combined static and dynamic analysis to

achieve higher coverage from the generated tests. By watching an example execution

sequence, their tool was able to learn legal call sequences, which it combined with

static analysis results to generate method call sequences which could result in

properly initialized objects. In our work, we do not attempt to handle generation of

test cases for stateful classes, as the target audience are not authoring general classes

which rely on multiple method calls for correct instantiation.

Saff, Boshernitsan, and Ernst worked on a more general form of test case which

they termed a theory [44]. “A theory generalizes a (possibly infinite) set of example-

based tests [44].” In the same paper, they describe an additional tool they developed

to work with theories, which they called “Theory Explorer.” This tool generates

inputs to theories in an attempt to find a case for which the theorem does not hold.

While our work involves input generation for test cases, we attempt to increase test

coverage, rather than explicitly searching for failing examples.

69

In [10], Cadar, Dunbar, Engler, et al. present klee, a tool for test case generation.

It relies on abstract interpretation of LLVM IR, combined with some concrete inter-

action with the environment. For example, when a program under test attempts to

open a file with a concrete name, the existing file on disk will be opened. However,

if the program attempts to open a file with an abstract value as the name, klee will

instead create a simulated, abstract file, allowing it to continue operating abstractly.

Ultimately, klee tracks symbolic values and creates path constraints, which enable it

to construct proofs about the program. TestBuilder does not do abstract execution

of the user’s code, rather, it translates the user’s code entirely to the SMT solver’s

domain and allows the solver to construct any desired path conditions. This has

the disadvantage of not allowing klee’s techniques for handling the environment,

but it has the advantage of allowing proofs to be constructed for all possible paths

through the program, modulo loop unrolling.

Cannon, in his master’s thesis [11], implemented a type inference system for

Python using the Cartesian Product type inference algorithm. One of the restrictions

placed on this work was that it be implemented “without any semantic changes to

the compiler or language.” As the rest of the thesis demonstrates, this is an onerous

restriction, as Python is a very dynamic language; the net result is that only the local

control flow in the file currently being compiled can be depended on.

Ceccato et al. present a series of experiments on the effectiveness of manually

written versus automatically generated tests in debugging [12]. They found that, for

less-experienced developers, automatically generated tests enabled more effective

debugging, while for the most experienced developers, the type of test did not have

any significant effect. They suggest that this may be due to the less-experienced de-

velopers tending to attempt to understand the test code, while the more-experienced

developers did not. These results are encouraging for the present project, as they

70

suggest that automatically generated tests, such as the ones we produce, can be

more helpful to beginning programmers than manually written tests.

Dybjer, Haiyan, and Takeyama present an automatic test generation system

integrated into the Agda theorem prover [17]. This enables the user to choose

between proving and testing theorems depending on which is most appropriate.

This approach enables annoying-to-prove but obvious theorems to be tested rather

than proved. Lemmas can be tested before a proof attempt is made, in order to

reduce the timewasted attempting to prove an incorrect lemma. The counterexample

resulting from a failed test case can provide guidance in refining the lemma to make

it valid.

Feng et al. propose conducting program synthesis via a CDCL-like algorithm

which attempts to generate programs which meet user-provided examples [19].

Using the grammar of a DSL and an abstract semantics of its terminals, it searches

for contradictions between a partial program and the user’s example. Any contra-

dictions which are found allow it to eliminate the program and similar alternative

programs which share the conflicting characteristics.

Gulwani, Radiček, and Zuleger present Clara, a tool for finding repairs to

student programs to make them correct, particularly designed for use in the context

of a MOOC [24]. It compares an incorrect student program to clusters of correct

programs from previous student submissions. Using a cluster which structurally

matches the incorrect program, it determines a set of changes which make the

program equivalent under renaming. Fundamentally, Clara relies on the availability

of correct student programs from which to derive corrections.

Khurshid, Păsăreanu, andVisser describe symbolic execution via amodel checker

of a program containing complex data structures [27]. They instrument a program

written in Java to create a modified version which can be run via a model checker

which runs Java source. Inputs to the program are created lazily, only instantiating

71

the input data structure as needed. They demonstrate how their system can be used,

with suitable constraints, for test case generation in order to achieve various coverage

metrics. Unlike TestBuilder, they seem to rely on constraining the symbolic execution

to take desired paths, rather than choosing a path and computing a symbolic path

condition for it as TestBuilder does.

Might [28] presents a number of improvements to the basic kCFA developed

by Shivers [45]. First, he presents abstract garbage collection, which allows the

elimination of unreferenced abstract values in order to prevent them muddying

later analyses. Second, he presents abstract counting semantics, which tracks the

number of concrete values which abstract to a given abstract value in a given state.

The goal is to discover abstract values which are equal to one another, and whose

sets of concrete values only contain one element. This then proves that their concrete

values are equal.

Nguyễn et al. present a technique for statically checking the validity of contracts

on code written in an untyped, higher-order language with mutation [31]. They

statically execute the program, tracking the conditionals passed at any given point,

and confirm that either there is no way a particular path could run, or that no action

it could take would violate the function’s contract. Having shown this, they can

confirm that a function is never at fault for crashes, allowing blame to be redirected

to other functions.

The tool presented in this paper uses an SMT solver for checking feasibility of

path conditions. If a path condition is infeasible, all code controlled by it is dead

and will never be executed, thus guaranteeing that it cannot cause problems.

Our tool differs from that of Nguyễn et al. in its use of an SMT solver. While

their tool searches for execution paths which are infeasible, our tool seeks to find

inputs to execute a given path.

72

Pike introduced SmartCheck, a property testing tool capable of automatically

shrinking discovered counterexamples and generalizing across parts of the example,

including both generalizing out subexpressions and determining that a counterex-

ample exists for every constructor of a sum type [37]. Like other property-based

testing tools, SmartCheck differs from our work in its use of properties to define

correct behaviour, rather than concrete test cases. It is potentially better able to

discover bugs than TestBuilder, but it requires the user to know and be able to state

properties of the code they have written.

Ryu proposes a design aid for beginning programmers based on both the design

recipies proposed by Felleisen et al. [18] and an outlining process derived from

that used in the language arts [43]. As part of this, Ryu proposes a tool known as

DRCOP which can convert design recipies into function stubs and test suites. It

generates test suites using the input–output pairs provided by the student in the

design outline. Whereas DRCOP relies on the student to generate the inputs and

outputs for all the tests it will generate, Testbuilder generates inputs and prompts

the student for the expected output only.

Vorobyov and Krishnan present a test generation tool called Batg which uses a

static analyzer to determine potentially-buggy parts of a program and generate test

cases to expose those bugs [59]. They focus on buffer overflows in C code, using

Valgrind to confirm during test case execution that the buffer overflow actually

exists.

Static analysis allows the test case generation to focus on those parts of the

program likely to contain bugs. Test case generation allows the automatic verification

of the potential bugs detected by the static analysis.

Wang, Singh, and Su present sarfgen, a tool to correct programs submitted

to a MOOC [60]. Minimal changesets for repair are generated by comparing the

incorrect program to correct submissions and choosing a minimal set of changes

73

which make the program pass the tests. As with Clara, this tool relies on correct

submissions to provide a golden master.

Multiple papers have been written on automatically generating test cases.

Rayadurgam and Heimdahl present a test-generation method using model checkers,

along with a theoretical model of programs suitable for specifying testing require-

ments. They also cite two other groups which are doing similar work (Gargantini

and Heitmeyer [20] and Ammann, Black, and Majurski [4, 3])

9.2 Concolic Testing

In 2015, Ball andDaniel presented a technique for concolic testing of Python code [5].

By subclassing the standard Python types, they are able to create instances of those

types which can track their execution history and compile a set of conditionals

that affect execution flow. When operations are applied to them, they can return

specialized instances of the ordinary result type, allowing them to handle more

complex cases.

Concolic testing as presented in [23] uses code crashes to determine buggy

behavior. This is somewhat less applicable in Python. Python code can crash due to

type errors. But as mentioned in section 3.1 on page 16, Python idiom makes strong

use of Duck typing. This means that there are an enormous number of possible

type errors in every Python function, but that it is idiomatic to expect the user of

a function not to trigger them by supplying incorrectly-typed data. Thus, type

error crashes due to violating the implicit interface of the code are not particularly

interesting. On the other hand, plain Python should not suffer from buffer overflows

or segfaults. Thus, there are fewer available ways for a Python program to crash

dangerously. In addition, as TestBuilder is intended to work with student code from

beginning programmers, the complexity of that code is expected to be low, and the

anticipated number of places where the code dereferences a None is expected to

74

be low. Thus, basic concolic testing of functions seems unlikely to expose many

bugs. Finally, as mentioned above, we wanted to support the generation of test cases

which could reach specific lines in a user’s code. For all these reasons, we chose not

to use a concolic testing system.

75

Chapter 10

Future Work

10.1 Obvious Deficiencies

The current version of TestBuilder only supports a subset of Python. It would be

desirable to add support for the rest of the language, along with support for proper

function calls and recursive functions (perhaps via better support for functions in

the SMT solver). Notable challenges include support for custom classes and custom

operators. Perhaps we can reimplement the standard operators in terms of custom

operators, to unify their implementation. It would also be desirable to use some

library to abstract over SMT solvers1 so that we can potentially swap out SMT solvers

for the best performing one.

It would also be good to convert target lines to target basic blocks, in order to

reduce the number of test cases that are generated. Further, if two test cases are

identical, the system should omit one.

Finally, any type annotations present on the user’s code should be used to force

type inference in a particular direction. This would enable users to avoid having

their code tested with unintended types and could potentially reduce the size of the

SMT expressions generated by TestBuilder.
1E.g., pySMT [21]

76

10.2 Alternative Applications

10.2.1 Property Proving

Potentially we can use the generated expressions to allow us to prove properties of

the user’s code. This is particularly interesting as it makes the Python source the

single source of truth, rather than proving properties in terms of a prover language

and then translating to Python.

10.2.2 Test Case Minimization

The decision to ask the user about the expected results means that we want to

generate a minimal number of test cases. In order to achieve this, it would be

desirable to add a system which generated an excess of test cases and kept a set

which covered all the lines of the program. Of course, set cover is an NP-complete

problem, but an approximation which overcovers is not a problem.

It would also be interesting to look into the work that has been done in choosing

test vectors for IC designs using SAT solvers. I think this work is interested in

minimizing the number of vectors required; if so, perhaps we can use a similar

technique to choose a minimal set of test inputs.

10.3 Additional Capabilities

10.3.1 Boundary Test Case Generation

In order to better support users in discovering problems with their code, it would

be desirable to support type-specific boundary testing: for example, when finding a

range of integers which satisfy a path, choose a few different integers around the

boundaries of that range and make sure the code behaves as expected in those cases.

77

How to avoid asking the user for expected outputs for a huge number of these is

not clear. Perhaps they can be safely combined (see test case minimization above)

10.3.2 Concolic-style Testing

It would be nice to incorporate elements of some of the concolic testing work that

has been done, in order to allow better handling of library code, without having to

convert everything to SMT expressions. Could such handling be integrated into a

solver as a theory, where code is run to determine whether a proposed solution is

valid?

10.3.3 Mutation-Driven Test Generation

Rather than simply solving for inputs which reach a point in the program, we could

solve for inputs which result in different outputs from the original and a mutated

version of the program. This would be expected to increase the strength of the

generated test suites, as it guarantees that they will kill certain mutants, rather than

hoping that the examples which are generated will happen to be the ones on which

the mutant differs from the correct code.

78

Chapter 11

Conclusion

TestBuilder solves constraints generated by control structures in order to direct exe-

cution in a desired direction. We presented a model of its operation, demonstrating

how a dynamic language such as Python can be converted into typed expressions

which an SMT solver can work with. Although we were unable to show that Test-

Builder would help students avoid losing points, the tests generated by TestBuilder

required almost no work to write, and were still able to catch 61% of mutations on

average. We anticipate that, with more work, TestBuilder could potentially improve

in performance.

79

Bibliography

[1] Ole Agesen. “The Cartesian Product Algorithm”. In: ECOOP’95—Object-Oriented

Programming, 9th European Conference, Åarhus, Denmark, August 7–11, 1995.

Ed. by Mario Tokoro and Remo Pareschi. Berlin, Heidelberg: Springer Berlin

Heidelberg, 1995, pp. 2–26. isbn: 978-3-540-49538-3.

[2] B. Alpern, M. N. Wegman, and F. K. Zadeck. “Detecting Equality of Variables in

Programs”. In: Proceedings of the 15th ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages. POPL ’88. San Diego, California, USA:

ACM, 1988, pp. 1–11. isbn: 0-89791-252-7. doi: 10.1145/73560.73561. url:

http://doi.acm.org/10.1145/73560.73561.

[3] P. E. Ammann and P. E. Black. “A specification-based coverage metric to evaluate

test sets”. In: Proceedings 4th IEEE International Symposium on High-Assurance

Systems Engineering. 1999, pp. 239–248. doi: 10.1109/HASE.1999.809499.

[4] P. E. Ammann, P. E. Black, and W. Majurski. “Using model checking to generate

tests from specifications”. In: Proceedings Second International Conference on

Formal Engineering Methods (Cat.No.98EX241). Dec. 1998, pp. 46–54. doi: 10.

1109/ICFEM.1998.730569.

[5] Thomas Ball and Jakub Daniel. Deconstructing Dynamic Symbolic Execution. Tech.

rep. Proceedings of the Sixth Conference on Uncertainty in Artificial Intel-

ligence, Boston, MA. Jan. 2015. url: https://www.microsoft.com/en-us/

research/publication/deconstructing-dynamic-symbolic-execution/.

80

https://doi.org/10.1145/73560.73561
http://doi.acm.org/10.1145/73560.73561
https://doi.org/10.1109/HASE.1999.809499
https://doi.org/10.1109/ICFEM.1998.730569
https://doi.org/10.1109/ICFEM.1998.730569
https://www.microsoft.com/en-us/research/publication/deconstructing-dynamic-symbolic-execution/
https://www.microsoft.com/en-us/research/publication/deconstructing-dynamic-symbolic-execution/

[6] Leon Bambrick. Jan. 1, 2010. url: https://twitter.com/secretGeek/status/

7269997868.

[7] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The SMT-LIB Standard: Version

2.6. Tech. rep. Department of Computer Science, The University of Iowa,

2017. url: http://smtlib.cs.uiowa.edu/language.shtml (visited on

03/08/2019).

[8] Black: The uncompromising Python code formatter. url: https://github.com/ambv/

black (visited on 02/18/2019).

[9] Raymond T. Boute. “The Euclidean Definition of the Functions Div and Mod”. In:

ACM Trans. Program. Lang. Syst. 14.2 (Apr. 1992), pp. 127–144. issn: 0164-0925.

doi: 10.1145/128861.128862. url: http://doi.acm.org/10.1145/128861.

128862.

[10] CristianCadar, Daniel Dunbar, DawsonREngler, et al. “KLEE:Unassisted andAu-

tomatic Generation of High-Coverage Tests for Complex Systems Programs.”

In: OSDI. Vol. 8. 2008, pp. 209–224.

[11] Brett Cannon. “Localized type inference of atomic types in Python”. MS. Cal-

ifornia Polytechnic State University, 2005. url: https://cpslo-primo.hosted.

exlibrisgroup.com/primo-explore/fulldisplay?docid=01CALS_ALMA71375747800002901&context=

L&vid=01CALS_PSU&search_scope=EVERYTHING&tab=everything&lang=en_

US.

[12] Mariano Ceccato et al. “Do Automatically Generated Test Cases Make Debug-

ging Easier? An Experimental Assessment of Debugging Effectiveness and

Efficiency”. In: ACM Trans. Softw. Eng. Methodol. 25.1 (Dec. 2015), 5:1–5:38.

issn: 1049-331X. doi: 10.1145/2768829. url: http://doi.acm.org/10.1145/

2768829.

[13] “Conversation with David Parkinson”. Feb. 13, 2018.

81

https://twitter.com/secretGeek/status/7269997868
https://twitter.com/secretGeek/status/7269997868
http://smtlib.cs.uiowa.edu/language.shtml
https://github.com/ambv/black
https://github.com/ambv/black
https://doi.org/10.1145/128861.128862
http://doi.acm.org/10.1145/128861.128862
http://doi.acm.org/10.1145/128861.128862
https://cpslo-primo.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=01CALS_ALMA71375747800002901&context=L&vid=01CALS_PSU&search_scope=EVERYTHING&tab=everything&lang=en_US
https://cpslo-primo.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=01CALS_ALMA71375747800002901&context=L&vid=01CALS_PSU&search_scope=EVERYTHING&tab=everything&lang=en_US
https://cpslo-primo.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=01CALS_ALMA71375747800002901&context=L&vid=01CALS_PSU&search_scope=EVERYTHING&tab=everything&lang=en_US
https://cpslo-primo.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=01CALS_ALMA71375747800002901&context=L&vid=01CALS_PSU&search_scope=EVERYTHING&tab=everything&lang=en_US
https://doi.org/10.1145/2768829
http://doi.acm.org/10.1145/2768829
http://doi.acm.org/10.1145/2768829

[14] Definition of Canonize by Merriam-Webster. url: https://www.merriam-webster.

com/dictionary/canonize (visited on 03/21/2019).

[15] L. Deng, J. Offutt, and N. Li. “Empirical Evaluation of the Statement Deletion

Mutation Operator”. In: 2013 IEEE Sixth International Conference on Software

Testing, Verification and Validation. Mar. 2013, pp. 84–93. doi: 10.1109/ICST.

2013.20.

[16] differences - “Normalization” vs. “canonicalization” - English Language & Usage Stack

Exchange. url: https://english.stackexchange.com/questions/35860/

normalization-vs-canonicalization (visited on 03/21/2019).

[17] Peter Dybjer, Qiao Haiyan, and Makoto Takeyama. “Verifying Haskell programs

by combining testing, model checking and interactive theorem proving”. In:

Information and Software Technology 46.15 (2004). Third International Confer-

ence on Quality Software: QSIC 2003, pp. 1011–1025. issn: 0950-5849. doi:

https://doi.org/10.1016/j.infsof.2004.07.002. url: http://www.

sciencedirect.com/science/article/pii/S0950584904001077.

[18] M. Felleisen et al. How to Design Programs, Second Edition. MIT Press, 2014.

[19] Yu Feng et al. “Program Synthesis Using Conflict-driven Learning”. In: Proceed-

ings of the 39th ACM SIGPLAN Conference on Programming Language Design

and Implementation. PLDI 2018. Philadelphia, PA, USA: ACM, 2018, pp. 420–

435. isbn: 978-1-4503-5698-5. doi: 10 . 1145 / 3192366 . 3192382. url: http :

//doi.acm.org/10.1145/3192366.3192382.

[20] Angelo Gargantini and Constance Heitmeyer. “Using Model Checking to Gener-

ate Tests from Requirements Specifications”. In: Proceedings of the 7th European

Software Engineering Conference Held Jointly with the 7th ACM SIGSOFT In-

ternational Symposium on Foundations of Software Engineering. ESEC/FSE-7.

82

https://www.merriam-webster.com/dictionary/canonize
https://www.merriam-webster.com/dictionary/canonize
https://doi.org/10.1109/ICST.2013.20
https://doi.org/10.1109/ICST.2013.20
https://english.stackexchange.com/questions/35860/normalization-vs-canonicalization
https://english.stackexchange.com/questions/35860/normalization-vs-canonicalization
https://doi.org/https://doi.org/10.1016/j.infsof.2004.07.002
http://www.sciencedirect.com/science/article/pii/S0950584904001077
http://www.sciencedirect.com/science/article/pii/S0950584904001077
https://doi.org/10.1145/3192366.3192382
http://doi.acm.org/10.1145/3192366.3192382
http://doi.acm.org/10.1145/3192366.3192382

Toulouse, France: Springer-Verlag, 1999, pp. 146–162. isbn: 3-540-66538-2. url:

http://dl.acm.org/citation.cfm?id=318773.318939.

[21] Marco Gario and Andrea Micheli. “PySMT: a solver-agnostic library for fast

prototyping of SMT-based algorithms”. In: SMT Workshop 2015. 2015.

[22] Getting started — Mypy 0.670 documentation. url: https://mypy.readthedocs.

io/en/stable/getting_started.html (visited on 02/20/2019).

[23] Patrice Godefroid, Nils Klarlund, and Koushik Sen. “DART: directed automated

random testing”. In: ACM Sigplan Notices. Vol. 40. 6. ACM. 2005, pp. 213–223.

[24] Sumit Gulwani, Ivan Radiček, and Florian Zuleger. “Automated Clustering and

Program Repair for Introductory Programming Assignments”. In: Proceedings

of the 39th ACM SIGPLAN Conference on Programming Language Design and

Implementation. PLDI 2018. Philadelphia, PA, USA: ACM, 2018, pp. 465–480.

isbn: 978-1-4503-5698-5. doi: 10.1145/3192366.3192387. url: http://doi.

acm.org/10.1145/3192366.3192387.

[25] Geir ArneHjelle. “TheUltimate Guide to Data Classes in Python 3.7”. In: (May 15,

2018). url: https://realpython.com/python-data-classes/.

[26] Andrew Hunt and David Thomas. The Pragmatic Programmer: From Journeyman to

Master. Addison-Wesley, 2000.

[27] SarfrazKhurshid, Corina S. Păsăreanu, andWillemVisser. “Generalized Symbolic

Execution for Model Checking and Testing”. In: Tools and Algorithms for the

Construction and Analysis of Systems. Ed. by Hubert Garavel and John Hatcliff.

Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 553–568. isbn: 978-3-

540-36577-8.

[28] Matthew Brendon Might. “Environment analysis of higher-order languages”.

PhD thesis. Georgia Institute of Technology, 2007.

83

http://dl.acm.org/citation.cfm?id=318773.318939
https://mypy.readthedocs.io/en/stable/getting_started.html
https://mypy.readthedocs.io/en/stable/getting_started.html
https://doi.org/10.1145/3192366.3192387
http://doi.acm.org/10.1145/3192366.3192387
http://doi.acm.org/10.1145/3192366.3192387
https://realpython.com/python-data-classes/

[29] Leonardo de Moura and Nikolaj Bjørner. “Z3: An Efficient SMT Solver”. In: Tools

and Algorithms for the Construction and Analysis of Systems. Ed. by C. R. Ramakr-

ishnan and Jakob Rehof. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008,

pp. 337–340. isbn: 978-3-540-78800-3.

[30] mypy — Optional Static Typechecking for Python. url: http://mypy-lang.org/

index.html (visited on 02/19/2019).

[31] Phúc C. Nguyễn et al. “Soft Contract Verification for Higher-order Stateful Pro-

grams”. In: Proc. ACM Program. Lang. 2.POPL (Dec. 2017), 51:1–51:30. issn:

2475-1421. doi: 10.1145/3158139. url: http://doi.acm.org/10.1145/

3158139.

[32] PEP 483 – The Theory of Type Hints. url: https://www.python.org/dev/peps/pep-

0483/.

[33] PEP 484 – Type Hints. url: https://www.python.org/dev/peps/pep-0484/.

[34] PEP 526 – Syntax for Variable Annotations. url: https://www.python.org/dev/

peps/pep-0526/.

[35] PEP 553 – Built-in breakpoint(). url: https://www.python.org/dev/peps/pep-

0553/ (visited on 02/21/2019).

[36] PEP 557 – Data Classes. url: https://www.python.org/dev/peps/pep-0557/.

[37] Lee Pike. “SmartCheck: Automatic and Efficient Counterexample Reduction and

Generalization”. In: SIGPLAN Not. 49.12 (Sept. 2014), pp. 53–64. issn: 0362-

1340. doi: 10.1145/2775050.2633365. url: http://doi.acm.org/10.1145/

2775050.2633365.

[38] Python Glossary; entry for “duck typing”. url: https://docs.python.org/3/

glossary.html#term-duck-typing.

84

http://mypy-lang.org/index.html
http://mypy-lang.org/index.html
https://doi.org/10.1145/3158139
http://doi.acm.org/10.1145/3158139
http://doi.acm.org/10.1145/3158139
https://www.python.org/dev/peps/pep-0483/
https://www.python.org/dev/peps/pep-0483/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0526/
https://www.python.org/dev/peps/pep-0526/
https://www.python.org/dev/peps/pep-0553/
https://www.python.org/dev/peps/pep-0553/
https://www.python.org/dev/peps/pep-0557/
https://doi.org/10.1145/2775050.2633365
http://doi.acm.org/10.1145/2775050.2633365
http://doi.acm.org/10.1145/2775050.2633365
https://docs.python.org/3/glossary.html#term-duck-typing
https://docs.python.org/3/glossary.html#term-duck-typing

[39] Python Glossary; entry for “EAFP”. url: https://docs.python.org/3/glossary.

html#term-eafp.

[40] S. Rayadurgam and M. P. E. Heimdahl. “Coverage based test-case generation

using model checkers”. In: Proceedings. Eighth Annual IEEE International Con-

ference and Workshop On the Engineering of Computer-Based Systems-ECBS 2001.

2001, pp. 83–91. doi: 10.1109/ECBS.2001.922409.

[41] Jack W Reeves. “What is software design”. In: C++ Journal 2.2 (1992), pp. 14–12.

[42] B. K. Rosen,M.N.Wegman, and F. K. Zadeck. “Global ValueNumbers andRedun-

dant Computations”. In: Proceedings of the 15th ACMSIGPLAN-SIGACT Sympo-

sium on Principles of Programming Languages. POPL ’88. San Diego, California,

USA: ACM, 1988, pp. 12–27. isbn: 0-89791-252-7. doi: 10.1145/73560.73562.

url: http://doi.acm.org/10.1145/73560.73562.

[43] Mike Dongyub Ryu. “Improving Introductory Computer Science Education with

DRaCO”. In: (2018).

[44] David Saff, Marat Boshernitsan, and Michael D. Ernst. “Theories in Practice:

Easy-to-Write Specifications that Catch Bugs”. In: (Jan. 2008). url: http:

//hdl.handle.net/1721.1/40090.

[45] Olin. Shivers. “Control-flowanalysis of higher-order languages: or taming lambda”.

en. PhD thesis. Pittsburgh, Pa, 1991.

[46] SMT-LIB: The Satisfiability Modulo Theories Library: Core. url: http://smtlib.cs.

uiowa.edu/theories-Core.shtml (visited on 03/08/2019).

[47] SMT-LIB: The Satisfiability Modulo Theories Library: Ints. url: http://smtlib.cs.

uiowa.edu/theories-Ints.shtml (visited on 03/08/2019).

[48] SMT-LIB: The Satisfiability Modulo Theories Library: Reals. url: http://smtlib.cs.

uiowa.edu/theories-Reals.shtml (visited on 03/08/2019).

85

https://docs.python.org/3/glossary.html#term-eafp
https://docs.python.org/3/glossary.html#term-eafp
https://doi.org/10.1109/ECBS.2001.922409
https://doi.org/10.1145/73560.73562
http://doi.acm.org/10.1145/73560.73562
http://hdl.handle.net/1721.1/40090
http://hdl.handle.net/1721.1/40090
http://smtlib.cs.uiowa.edu/theories-Core.shtml
http://smtlib.cs.uiowa.edu/theories-Core.shtml
http://smtlib.cs.uiowa.edu/theories-Ints.shtml
http://smtlib.cs.uiowa.edu/theories-Ints.shtml
http://smtlib.cs.uiowa.edu/theories-Reals.shtml
http://smtlib.cs.uiowa.edu/theories-Reals.shtml

[49] O. Tange. “GNU Parallel - The Command-Line Power Tool”. In: ;login: The

USENIX Magazine 36.1 (Feb. 2011), pp. 42–47. doi: http://dx.doi.org/

10.5281/zenodo.16303. url: http://www.gnu.org/s/parallel.

[50] The Python Language Reference: Data model. url: https://docs.python.org/3/

reference/datamodel.html (visited on 03/07/2019).

[51] The Python Language Reference: Lexical analysis. url: https://docs.python.org/

3/reference/lexical_analysis.html#identifiers.

[52] The Python Language Reference: Lexical analysis. url: https://docs.python.org/

3/reference/lexical_analysis.html#string-and-bytes-literals.

[53] The Python Standard Library: Built-in Functions. url: https://docs.python.org/

3/library/functions.html (visited on 03/21/2019).

[54] The Python Standard Library: Built-in Types. url: https://docs.python.org/3/

library/stdtypes.html (visited on 03/07/2019).

[55] The Python Standard Library: Development Tools: unittest.mock — mock object library.

url: https://docs.python.org/3/library/unittest.mock.html (visited

on 02/19/2019).

[56] The Python Standard Library: Python Language Services: ast — Abstract Syntax Trees.

url: https://docs.python.org/3/library/ast.html.

[57] The Python Standard Library: Python Runtime Services: dataclasses — Data Classes.

url: https://docs.python.org/3/library/dataclasses.html.

[58] typeshed/functools.pyi. url: https : / / github . com / python / typeshed / blob /

95eff73ab2092f2c3158198d404a921447172418/stdlib/3/functools.pyi#

L43 (visited on 02/19/2019).

86

https://doi.org/http://dx.doi.org/10.5281/zenodo.16303
https://doi.org/http://dx.doi.org/10.5281/zenodo.16303
http://www.gnu.org/s/parallel
https://docs.python.org/3/reference/datamodel.html
https://docs.python.org/3/reference/datamodel.html
https://docs.python.org/3/reference/lexical_analysis.html#identifiers
https://docs.python.org/3/reference/lexical_analysis.html#identifiers
https://docs.python.org/3/reference/lexical_analysis.html#string-and-bytes-literals
https://docs.python.org/3/reference/lexical_analysis.html#string-and-bytes-literals
https://docs.python.org/3/library/functions.html
https://docs.python.org/3/library/functions.html
https://docs.python.org/3/library/stdtypes.html
https://docs.python.org/3/library/stdtypes.html
https://docs.python.org/3/library/unittest.mock.html
https://docs.python.org/3/library/ast.html
https://docs.python.org/3/library/dataclasses.html
https://github.com/python/typeshed/blob/95eff73ab2092f2c3158198d404a921447172418/stdlib/3/functools.pyi#L43
https://github.com/python/typeshed/blob/95eff73ab2092f2c3158198d404a921447172418/stdlib/3/functools.pyi#L43
https://github.com/python/typeshed/blob/95eff73ab2092f2c3158198d404a921447172418/stdlib/3/functools.pyi#L43

[59] K. Vorobyov and P. Krishnan. “Combining Static Analysis and Constraint Solving

for Automatic Test Case Generation”. In: 2012 IEEE Fifth International Confer-

ence on Software Testing, Verification and Validation. Apr. 2012, pp. 915–920. doi:

10.1109/ICST.2012.196.

[60] Ke Wang, Rishabh Singh, and Zhendong Su. “Search, Align, and Repair: Data-

driven Feedback Generation for Introductory Programming Exercises”. In:

Proceedings of the 39th ACM SIGPLAN Conference on Programming Language

Design and Implementation. PLDI 2018. Philadelphia, PA, USA: ACM, 2018,

pp. 481–495. isbn: 978-1-4503-5698-5. doi: 10.1145/3192366.3192384. url:

http://doi.acm.org/10.1145/3192366.3192384.

[61] Welcome to Python.org. url: https://www.python.org/.

[62] Z3: C API. Feb. 8, 2019. url: http://z3prover.github.io/api/html/group_

_capi.html (visited on 03/08/2019).

[63] Z3: z3py Namespace Reference. Feb. 8, 2019. url: http://z3prover.github.io/

api/html/namespacez3py.html (visited on 03/08/2019).

[64] Sai Zhang et al. “Combined Static and Dynamic Automated Test Generation”. In:

Proceedings of the 2011 International Symposium on Software Testing and Analysis.

ISSTA ’11. Toronto, Ontario, Canada: ACM, 2011, pp. 353–363. isbn: 978-1-

4503-0562-4. doi: 10.1145/2001420.2001463. url: http://doi.acm.org/10.

1145/2001420.2001463.

87

https://doi.org/10.1109/ICST.2012.196
https://doi.org/10.1145/3192366.3192384
http://doi.acm.org/10.1145/3192366.3192384
https://www.python.org/
http://z3prover.github.io/api/html/group__capi.html
http://z3prover.github.io/api/html/group__capi.html
http://z3prover.github.io/api/html/namespacez3py.html
http://z3prover.github.io/api/html/namespacez3py.html
https://doi.org/10.1145/2001420.2001463
http://doi.acm.org/10.1145/2001420.2001463
http://doi.acm.org/10.1145/2001420.2001463

	List of Tables
	List of Figures
	Glossary
	Introduction
	Operation
	Thesis Layout

	Background
	Concolic Testing
	Directed Test Case Generation
	SMT Solvers

	Methods
	Python
	Types
	Z3 Types
	Python Types
	Type Mapping

	Cartesian Product Algorithm
	Type System
	No Type System
	Statically Checking Any Variants
	Static Expression Extraction
	Type Checking

	Standard of Truth
	Function Substitution
	Preprocessor

	Model
	Overview
	SSA IR Reduction
	Compilation of SSA IR to Z3 Expressions

	Examples
	Identity Function
	Basic Expression in Function
	What about passing type sets down?

	Conditional
	Pairs and Mutation

	Evaluation
	Grade Boosting
	Student Tests vs. TestBuilder Tests
	Refactoring Legacy Code

	Results
	Grade Boosting
	Student Tests vs. TestBuilder Tests
	Refactoring Legacy Code

	Capabilities and Limitations
	Capabilities
	Limitations

	Tools
	Libraries
	Dataclasses

	Testing
	pytest
	Hypothesis
	unittest.mock

	Typing
	mypy
	MonkeyType

	Debugging
	breakpoint()
	pdb
	Pdb++
	Embedded IPython

	Formatting and Style
	Black
	isort
	flake8
	Vulture

	CLI
	Docopt

	Related Work
	Automatic Test Generation
	Concolic Testing

	Future Work
	Obvious Deficiencies
	Alternative Applications
	Property Proving
	Test Case Minimization

	Additional Capabilities
	Boundary Test Case Generation
	Concolic-style Testing
	Mutation-Driven Test Generation

	Conclusion
	References

