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ABSTRACT 

 
Evaluation of Tensile Properties for Selective Laser Melted 316L Stainless Steel and the 

Influence of Inherent Process Features on Static Performance  

 
Paul Swartz 

 

Optimal print parameters for additively manufacturing 316L stainless steel using selective 

laser melting (SLM) at Cal Poly had previously been identified. In order to further support the 

viability of the current settings, tensile material characteristics were needed. Furthermore, reliable 

performance of the as-printed material had to be demonstrated. Any influence on the static 

performance of parts in the as-printed condition inherent to the SLM manufacturing process itself 

needed to be identified. Tensile testing was conducted to determine the properties of material in the 

as-printed condition. So as to have confidence in the experimental results, other investigations were 

also conducted to validate previous assumptions. Stereological relative density measurements 

showed that the as-printed material exhibited relative density in excess of 99%. Optical dimensional 

analysis found that the as-printed tensile specimens met ASTM E8 dimensional requirements in 14 

out of 15 parts inspected. Baseline tensile tests indicated that the yield stress of the as-printed 

material is 24% higher than a cold-rolled alternative, while still achieving comparable ductility. 

The location of a tensile specimen on the build plate during the print was not found to have a 

significant effect on its mechanical properties. Theoretical behavior of notched tensile specimens 

based on finite element models matched experimental behavior in the actual specimens. Unique 

fracture behavior was found in both the unnotched reference and the most severe notch after 

microscopic inspection, and a root cause was proposed. Finally, extrapolating from previous studies 

and observing that experimental results matched theoretical models, it was determined that features 

inherent to SLM parts were not detrimental to the static performance of the as-printed material. 

Keywords: additive manufacturing, AM, selective laser melting, SLM, 316L, as-printed, tensile 
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1. INTRODUCTION 

1.1 Additive Manufacturing 

1.1.1 Technology Overview 

Additive manufacturing (commonly referred to as 3D printing) is a novel manufacturing 

method that has been growing for several decades. As opposed to subtractive manufacturing, which 

removes material from stock material to form the part geometry, additive manufacturing involves 

continuously adding constitutive material to itself in order to form the part geometry. 

The process for making an engineering part with additive manufacturing is straightforward. 

Generally, a computer-aided design (CAD) file is created by an engineer, and a solid modeling 

program such as Solidworks or Creo is used to convert it from a CAD file to a stereolithography 

(STL) file. In this step, the part’s smooth surfaces are divided into discrete triangles of a resolution 

defined by the engineer. Next, the STL file is opened in yet another software package that is used 

to define parameters specific to the particular 3D printing process. From there, depending on the 

process, the print job may be saved in yet another format to be imported by the printer, or may be 

sent to it directly. 

There are several general types of additive manufacturing that can be applied to all kinds 

of materials [1]. Among the most popular are fused deposition modeling, stereolithography (SL), 

and various powder bed fusion (PBF) processes. Fused deposition modeling heats a polymer 

filament and extrudes it through a moving print head onto the build plate. SL uses UV-cure resin 

and a controlled UV light source to build a part on the build plate. PBF uses metallic powder and a 

laser to create a part on the build plate. 

A popular type of PBF technology is selective laser melting (SLM), which uses a strong 

laser to provide enough heat to melt and fuse the powder together. The SLM125HL machine at Cal 

Poly (the SLM), made by SLM Solutions, uses this technology. Thus, the research conducted in 

this study should be regarded within the context of SLM additive manufacturing technology. 
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A common alternative to SLM is electron beam melting (EBM or e-beam). The main 

difference between e-beam and SLM is that the energy source is a powerful electron beam as 

opposed to a laser. Due to the high energy density of the e-beam, finer features can be produced 

than those made with SLM, and higher temperature alloys can be used. 

A schematic of the SLM build chamber made by Sun, et. al [2] is shown below in Figure 

1 next to a photo of the actual SLM125HL build chamber at Cal Poly. The available print area is 

defined by the size of the build plate and the maximum depth that it is designed to travel. Initially, 

the top surface of the build plate is level with the bottom surface of the build chamber. With each 

layer that is built, the build plate will descend by the defined layer thickness. The printing process 

begins when powder, enough for two layers’ worth, is deposited from a large reservoir in the back 

of the machine, through a chute, and into the recoater. The recoater travels from one end of the 

chamber to the other, spreading powder along the build area with a rubber blade. After the powder 

has been spread, the fiber laser will trace the layer geometry on the powder, melting the particles 

together. Once the first pass is completed, the build plate will descend by one layer thickness and 

the recoater will return to its original position, depositing the remaining powder onto the build 

plate, followed by another pass of the laser. This process repeats until the complete part geometry 

has been created. At the beginning of the printing process, argon gas floods the build chamber while 

any existing air is evacuated. Then the argon is cycled continuously during the print to maintain 

the inert atmosphere. Overflow chutes allow extra powder to collect in receptacles placed beneath 

the build chamber. This powder can be recycled and used again in future prints. 
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 Figure 1. SLM Schematics. Left: selective laser melting build chamber, from Sun, et. al [2]. 
Right: Photo of the build chamber for Cal Poly’s SLM125HL, with coordinate system added. 

 

1.1.2 Powder Morphology 

In any manufacturing process, it is important to consider the resulting product in the context 

of the initial material used. With SLM, the initial material is metallic powder. There are two main 

methods for manufacturing metallic powders: gas atomization and water atomization. Examples of 

both from work done by Li, et. al [3] are provided below in Figure 2. Gas atomized particles are 

more uniform in size and shape than those atomized by water. The material used with the SLM at 

Cal Poly is gas atomized 316L manufactured by LPW. 
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Figure 2. SEM Photos of Powder Morphologies. Left: gas atomized powder. Right: water 
atomized powder. Photos from Li, et. al [3]. 

 

1.1.3 Advantages and Limitations 

Selective laser melting offers many opportunities that are not available using traditional 

manufacturing techniques. Complex part geometries are achievable due to the absence of any 

physical machine tools. Instead, the only tool interacting with the material is the laser beam. This 

also means that a production facility can create countless parts without needing to keep an inventory 

of specialty tooling. Furthermore, SLM has little consumable tooling, such as machining inserts, 

which can also pose significant financial challenges at production scale. 

From a production standpoint, perhaps the most valuable benefit of SLM is the 

improvement in efficiency that it affords. It is possible for an operator to begin a print with several 

parts simultaneously on the same build plate, then continue working on other tasks while waiting 

for the print to finish. In order to produce the same quantity using traditional methods, the operator 

has to be present more often during the process. To magnify this benefit, a manufacturing facility 

might incorporate several SLM machines for still increased throughput. 

When compared to alternative methods, SLM also offers reduced waste. Powder that is not 

used to form the finished product can be collected in overflow containers and sieved to separate 

agglomerated particles from usable ones. Powder that is small enough to pass through the sieving 
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machine is recycled for the next print. Only a small fraction of the powder left over from the print 

process is rendered non-recyclable. Reduced waste in manufacturing is less money spent per part, 

which translates to higher profits in production. 

For all the advantages that SLM possesses, it is not without its limitations. Perhaps the 

most apparent of which is the need for use of support material. The central mechanism of SLM 

production is the layering of melted metallic powder to build a monolithic part. When the time 

comes for the laser to melt a new layer, powder that sits directly above the previous layer is rigidly 

supported by the substrate and layers can easily be built. Powder in an area where no prior layer 

exists is not rigidly supported by the part, but is only supported by the unmelted powder below it 

(see Figure 3 below). This presents issues in print quality on surfaces that overhang from the part 

below it. To combat this issue, the user can add structures that provide mechanical support for 

overhanging features. 

 

 
Figure 3. Support Illustration. Layers supported by 
loose powder are unstable, unlike those supported by a 
rigid substrate. Image from Kruth, et. al [4]. 

 

The challenge with adding support structures is identifying a method to remove it without 

affecting the main part in some way. In some cases, as with support material used only to offset 
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parts from the build plate, the solution is relatively simple: parts are removed from the build plate 

using a band saw, and the remaining support material is sanded off the bottom of the part. 

Depending on the resources available, wire electrical discharge machining (EDM) can also be used 

to provide a more elegant alternative to a band saw cut. In other cases, the solution is not as 

straightforward. Photos of different support material applications appear below in Figure 4. 

 

 
 
Figure 4. Support Material Photos. Left: Lattice unit cells where support material is used 
only to offset the bottom plane of the part from the build plate, and is removed relatively easily. 
Right: Chess pieces where support material removal is not straightforward and requires more 
attention. Photos courtesy of Julia Rios, Cal Poly. 

 

Another complication of SLM is the presence of residual stresses. Residual stresses arise 

from the thermal effects related to the cyclic heating and cooling of the topmost layers of powder 

during each pass of the laser. Kruth, et. al [5] showed that the mechanism for residual stress 

development is the plastic compression (aided by decreased yield stress at high temperature) of the 

material directly adjacent to the laser during heating. Upon cooling, recently heated layers will 

begin to shrink. Unconstrained, the plastically compressed (and consequently, shorter) layers would 

cause the upper surface of the part to deflect in a convex manner in order to reconcile the size 

discrepancy. However, since the material is fully constrained to the bottom of the build plate, it is 

unable to warp, thus creating the residual stress state in as-printed parts. Figure 5 below illustrates 

this mechanism and its effect on the final geometry of a part. 
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Figure 5. Residual Stress Mechanisms. Left: Schematic illustrating material responses to 
heating and cooling during SLM, from Kruth, et. al [5]. Right: Experimental results of Wu, et. 
al [6], showing warpage induced by residual stresses created during SLM. 

  

1.2 Objective 

Previous work was conducted to begin optimizing print parameters for the SLM125HL 

machine at Cal Poly. This was a crucial step toward producing SLM parts with consistent build 

quality, as preliminary investigation suggested that the material properties of parts in the as-printed 

condition might be comparable to commercially available 316L material. In order to further support 

the viability of the current SLM settings, tensile material characteristics are needed. Furthermore, 

it must be demonstrated that the performance of the as-printed material is reliable. Having these 

results on hand will be useful when designing SLM parts for future research and engineering 

applications. Finally, any influence on the static performance of parts in the as-printed condition 

inherent to SLM manufacturing must be identified.  
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2. LITERATURE REVIEW 

2.1 Powder Morphology 

Kamath, et. al [7] performed a powder morphology study for the material used in their 

study, which happened to include 316L powder from LPW. Their characterization is presented 

below in Figure 6. Note that the distributions are centered about 30-40µm and 50µm when 

measuring distribution by diameter and volume, respectively. This discrepancy would suggest that 

the powder is not uniformly spherical. For the purposes of this research, the morphology of the 

powder used will be assumed to exhibit similar distributions. 

 

 
 

Figure 6. Powder Measurements. Measured size distributions of 316L powder 
manufactured by LPW, from Kamath, et. al [7]. Left: Distribution based on measured 
diameter. Right: Distribution based on measured volume. 

 

2.2 Research at Cal Poly 

Much research has been done at Cal Poly since the installation of the SLM125HL machine, 

including a number of undergraduate senior projects and master’s theses. None have been more 

impactful than the work done by Sebastian Pohl [8] to identify optimal machine parameters for 

print quality optimization. 

The central experiment in Pohl’s work involved printing several 316L cubes arranged in a 

matrix. On one axis of the matrix, laser power (in Watts) was varied linearly, and on the other axis, 

scanning speed (in mm/s) was also varied linearly. Combined, a wide design space of linear energy 

density terms (in J/mm) were sampled and the results inspected. With each iteration of the 
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experiment, the range of sampled energy densities was refined based on the results from the 

previous test. In total, three trials were conducted (pictured below in Figure 7). After the third trial 

was completed, an optimal combination of laser power and scan speed was determined by 

evaluating relative density, hardness, surface roughness, and visual inspection. 

 
 
Figure 7. Settings Iterations. Photos from Pohl’s [8] SLM parameter optimization trials at 
Cal Poly. Input settings were refined between the first trial (left), and the final trial (right). 

 

The optimal settings, as determined by Pohl, are 150W laser power and 1000mm/s 

scanning speed. All other settings in those trials were held constant, including the 70μm laser spot 

size, so it is worth noting that print quality could potentially be improved further by refining more 

settings. For the purposes of the research presented in this thesis, all settings were left unchanged 

from Pohl’s work, which are listed below in Table 1. 

Table 1. SLM Settings. Optimal settings for the 
SLM125HL at Cal Poly, taken directly from Pohl [8]. 
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3. TESTING 

3.1 Test Design 

When it comes to characterizing the mechanical properties of a material, one of the most 

useful methods is arguably also the most fundamental: the tensile test. The procedure involves 

placing a test coupon in a machine that pulls on the material until the test is completed, which is 

usually when the test coupon fractures. The machine records time, load, and displacement data, 

which can be used to create an engineering stress-strain curve, given the geometry of the test 

coupon. 

All baseline tensile testing in this research was conducted within the specification of ASTM 

E8, Standard Test Methods for Tension Testing of Metallic Materials [9]. Figure 8 below shows 

the geometry of the subsize plate-type tensile specimen used. The complete drawing is also 

included in Appendix A. 

 
 
Figure 8. Schematic of Subsize Tensile Specimen. All dimensions are in millimeters and 
follow ASTM E8 specification [9]. The complete drawing is included in Appendix A. 

 

Liverani, et. al [10] demonstrated that there are differences in tensile test results related to 

the build orientation of the test coupons. There are two main challenges with printing parts with 

large dimensions in the XY-plane, such as tensile bars printed in a flat, horizontal orientation, or at 

45° from vertical. The first is that there is more support material required to build these parts. More 

support material used also means that more support material must be removed, and it can be 

difficult to remove support material completely without affecting the geometry or mechanical 

properties of the final part. Second, Wu, et. al [6] found that layers with large melt pools create 
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residual stresses in AM parts, which will result in warpage upon removal from the build plate. 

Therefore, in order to minimize both support material removal and residual stresses, tensile bars 

were arranged so that they would be printed vertically, in the Z-direction (see Figure 9 below). 

 
 

Figure 9. As-Printed Tensile Specimens. 
Printing in the Z-direction minimizes the amount 
of support material required. 

 
Further testing beyond baseline tensile trials was needed to observe whether the SLM 

process affected the ductility of as-printed parts. One way to do this is by conducting notched tensile 

tests to observe the static notch sensitivity. Introducing a stress concentration will lower the load at 

which an otherwise unchanged tensile bar will fail. If the failure in the notched section is ductile, 

then it can be concluded that there is not any mechanism inherent to the SLM process that affects 

ductility. However, if the notched failure is brittle, then it could be possible that some feature of 

SLM parts, such as porosity or the surface condition, contributes to adverse failure characteristics. 

Therefore, baseline ASTM E8 tensile specimens are modified to include notches of various sizes. 

Several notches are needed so that, in the event of brittle failure, a ductility limit may be identified 

for design. 

Notches are commonly introduced to parts via machining, as is common with dynamic 

testing, in order to control the precision of the notch geometry and the sharpness of the root radius 
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where a crack is likely to begin. In the case of this research, the purpose was to observe the static 

notch sensitivity for a geometry more closely resembling a stress concentration that might 

realistically appear in design. Thus, the notches used for testing needed to be printed into the test 

specimens. 

In addition to selecting a notch geometry representing a realistic stress concentration factor, 

the notch’s viability for 3D printing needed to be considered. After surveying different types of 

notch geometry, shallow, double-edged notches were selected. Based on the 40° critical self-

supporting angle determined by Pohl, this notch geometry lends itself to unsupported printing in 

the Z-direction. Dimensions for five notch geometries are provided below in Table 2 and illustrated 

in Figure 10. Note that the root radius, the radius of the notch, is constant. The reduced width is 

defined as the width of the specimen at the root of the notch. 

 

Table 2. Notch Dimensions. Specimen 0 is the 
unnotched baseline from ASTM E8 [9]. 
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Figure 10. Test Specimen Solid Models. Solid models of tensile specimens 
created with Solidworks. Top row: Specimens 0-2. Bottom row: Specimens 3-5. 

 

3.2 Test Procedure 

Tensile testing was performed according to ASTM E8 specification with the help of Cal 

Poly’s Materials Engineering Department. The machine used for all trials was an Instron model 

5584 equipped with a 150kN load cell and flat grips. During the elastic portion of a test trial, strain 

was applied at a rate of 3mm/min and measured using an Epsilon model 3542-012M-010-ST 

extensometer. Once the trial eclipsed 1.5% strain, the strain rate was programmed to automatically 

change to 8mm/min. The test concluded when the measured stress dropped by more than 40%, 

indicating the fracture of the test specimen. Figure 11 below shows the experimental setup prior to 

commencing a test. 
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Figure 11. Experimental Setup. An Instron model 
5584 was equipped with flat grips and an Epsilon 
extensometer was used to record elastic strain.  
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4. RESULTS 

4.1 Optical Microscopy 

In order to evaluate the viability of SLM tensile bars, the process parameters employed 

must first demonstrate the capability to produce near-full density parts. Pohl [8] performed 

rudimentary relative density measurements, using a micrometer to measure dimensions and a scale 

to measure weight, en route to identifying ideal print settings. He notes, however, that his 

determination of processing parameters was based on the relative maximum value for measured 

relative density, since his measurement technique was not appropriate for quantitative density 

evaluation, given the surface roughness of the parts. Spierings, et. al [11] investigated several 

techniques for determining the relative density of SLM parts, and found that, at low porosities, 

microscopy can yield results similar to the Archimedes method approach outlined by ASTM B311-

17, Standard Test Method for Density of Powder Metallurgy (PM) Materials Containing Less Than 

Two Percent Porosity [12]. In the absence of the equipment necessary for conducting the 

Archimedes procedure, microscopy analysis was conducted using resources readily available 

through Cal Poly’s Materials Engineering department. 

A single cube of side length 10mm, shown in Figure 12, was printed in the center of the 

build plate using the settings determined by Pohl. Following the recommendation of Spierings, et. 

al [11], the cube was sectioned vertically, mounted, and polished to a 0.5µm finish. 
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Figure 12. Photo of a Density Cube with Side 
Length 10mm. As-printed density cube shown. 

 

After polishing, the section was examined using an Olympus BX41 microscope. 

Photographs were taken at 50x magnification at multiple locations across the surface of the polished 

section. Then, using ImageJ, a free software program developed by the National Institutes of 

Health, these photos were converted to binary black and white images, where the black regions are 

the pores. Using these images, shown below in Figure 13 along with the original photos, ImageJ 

was able to determine the area fraction of pores in the image. This value is interpreted to reflect the 

porosity of the image, and relative density of the image is obtained by subtracting this value from 

100%. Calculated values for the relative density of each image are listed below in Table 3. Note 

that the contrast settings for images 1 and 5 were set manually because ImageJ was unable to 

automatically convert the photos with the default black and white settings. Thus, it is likely that the 

area fraction of porosity calculated by ImageJ for these images is slightly affected. 
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Figure 13. Relative Density Images. Images show how ImageJ was used to determine relative 
density. Top two rows: original microscope photos, taken at 50x magnification. Bottom two 
rows: Results of ImageJ processing.  

 

Table 3. Results of Relative Density Calculations. Area fraction values are 
left exactly as calculated by ImageJ and subtracted from 100% to obtain relative 
densities. Binary thresholds for images 1 and 5 were determined manually. 

 

The mean relative density value obtained from these images was 99.6%, with a standard 

deviation of 0.24%. A photo with 99.6% relative density and the corresponding binary image are 

displayed in Figure 14. If it is assumed that the relative density of the cross section is stereologically 

equivalent to that of the whole part, then the build parameters specified by Pohl are able to 

consistently produce parts in excess of 99% relative density. 
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Figure 14. Average Relative Density. Left: Microscope image no. 9, which had a relative 
density of 99.6%. Right: ImageJ binary conversion provided for reference. 

 

Pohl’s parameter optimization findings have been used in conjunction with both striped 

and chess board/island scan patterns. Although the density measurements discussed were 

conducted using a stripe pattern, Kamath, et. al [7] demonstrated that an island pattern is capable 

of producing similar results. Wu, et. al [6] found that parts printed flat (i.e. major axis in the XY-

plane) are susceptible to residual stress-induced deflection upon removal from the build plate, and 

that using a small island scan pattern helps mitigate this issue. Since all tensile bars in this research 

were printed with the major axis in the vertical (Z) direction, residual stress effects are assumed to 

be negligible. Therefore, it is assumed that the results presented in this research are not affected by 

the scan pattern selected. 

 

4.2 As-Printed Dimensional Accuracy 

Pohl [8] demonstrated that when SLM parameters are not optimized, the resulting geometry 

is severely affected. What had not been demonstrated, however, was the accuracy to which 

dimensional tolerances are achievable with the tuned print settings. An investigation into the print 

accuracy of SLM parts was conducted for this research in the interest of meeting ASTM E8 

requirements. Using a Micro-Vu VERTEX 312UC optical measuring machine, 15 unnotched 

tensile bars were inspected for their dimensional accuracy according to ASTM E8 specification for 
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subsize specimens. The results of the dimensional inspection are summarized below in Figure 15 

and Table 4. Complete results generated by the Micro-Vu machine are also included for reference 

in Appendix B. 

 
 

Figure 15. Schematic of Optically Measured Dimensions. 
Flatness K and Distance L, the part thickness, are not shown. 

 

Table 4. Optical Measurement Results. Note that there is no nominal flatness callout. 
 

 

These results indicate the SLM’s ability to consistently achieve most straight features 

within 0.1mm. The standard deviations for most of these features were within 0.040mm, or 40µm, 

which is on the order of a single particle diameter. The largest deficiency of the SLM is its inability 

to produce continuously changing geometries in the Z-direction, such as shoulder radii. In the case 

of tensile bars, all four radii are undersized, with the standard deviation reaching up to 0.36mm, or 
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a coefficient of variation of 6.1% for a nominal value of 6mm. Furthermore, straight features 

dependent upon the accuracy of the shoulder radii, such as Distance G, the gauge length, are also 

affected. Several times, the Micro-Vu machine was unable to determine the intersection point of 

the radius and the gauge length edges, illustrated in Figure 16, which was a crucial feature for 

defining Distance G. 

 
 
Figure 16. Optical Measurement Challenges. Example of an instance in which the Micro-
Vu machine was unable to determine the intersection of the shoulder radius and the gauge 
length. Left: Camera view. Right: Calculated geometry. 

 

Since the program was occasionally unable to detect the actual intersection, the points used 

to calculate Distance G, illustrated by the dashed line in Figure 17, had to be located manually apart 

from the automated program. Thus, the standard deviation of Distance G, the gauge length, was 

nearly 0.2mm. 

 
 
Figure 17. Geometry Calculated by the Micro-Vu Machine. Note that the 
gauge length, shown by the dashed line, must be calculated indirectly. 

 

Another area of interest in this investigation, while not crucial to determining the tensile 

properties, was the flatness of the tensile bars made with the SLM. Measured by averaging the 
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maximum differences in contrast of various locations across one XZ face of each specimen, the 

average flatness of the tensile bars was 0.2909mm, and the standard deviation was 0.0162mm, or 

16.2μm. Given that Kamath, et. al [7] found that the powder particle size can vary widely up to 

50μm in diameter, the resulting surface flatness is surprisingly consistent. 

Figure 18 summarizes the trends observed from the dimensional analysis. Each data point 

represents one of the dimensions listed in Table 4. The closer a dimension is to the middle of the 

graph, the closer, on average, it is to its nominal value. Data that is closer to the bottom of the graph 

has a lower standard deviation, and therefore the dimension is achieved more consistently. The 

SLM is able to consistently generate straight features that are somewhat oversized, with the average 

differences and standard deviations both on the order of one or two particle diameters. 

 
 

Figure 18. Optical Dimensional Analysis Trends. Straight features are 
generally more easily achievable than round ones. 

 

The dimensions that are most oversized are Distance J and Flatness K. Distance J is 

understandably oversized as a result of the manual sanding process employed to remove the support 
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material that attached the bottom of the samples to the build plate. There is no specification in 

ASTM E8 for specimen flatness, so the measurements of Flatness K were taken only in hopes of 

gaining further insight into the quality of SLM parts. 

All four radii were undersized and exhibited variability on an order well above several 

particle diameters. As a result, Distance G also exhibited undersized behavior with wide variability. 

Per ASTM E8, the only dimension with a critical tolerance is the section width (Distance H in 

Table 4), which is to be within ±0.1mm. Fortunately, the SLM is able to meet this requirement with 

a standard deviation of 0.0176mm, or 17.6μm. Of the 15 samples inspected, only one did not meet 

this requirement. 

 

4.3 Tensile Test Data 

4.3.1 Baseline Testing 

Plots of tensile responses for seven samples are shown in Figure 19. An average 

engineering stress-strain curve was composed from those seven trials, from which the true stress-

strain curve was obtained using equations (1) and (2). Both curves are presented in Figure 20, while 

the average tensile properties useful for design that arose from those seven trials are also presented 

alongside reference values summarized in Table 5. 
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Figure 19. Baseline Stress-Strain Trials. Data from all trials 
exhibited consistent strength and ductility. 
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Figure 20. True and Engineering Stress-Strain Curves. 
Average curves were derived from the seven baseline trials. 
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Table 5. Summary of Tensile Test Results. Values of comparable alternative materials 
are provided for reference. 

 

 

Baseline results for tensile tests proved to be promising. A summary of relative differences 

from the published data are listed in Table 6. For cold drawn 316L bar [14], as-printed SLM 

material shows a 24% increase in yield stress while maintaining comparable elongation. 

 
Table 6. Relative Differences in Material Properties. Values represent the difference 
of the as-printed SLM material from commercially available alternatives. 

 

 

 The properties of the as-printed material were compared to an existing survey of achievable 

316L properties presented in the work published by Wang, et. al [15] in Figure 21. The graph 

includes conventional properties as well as those achieved with other powder bed fusion 

techniques. Note that the “Our work” annotation refers to the work conducted by the original 

authors, whereas the results of this study are represented by the hexagon and dashed lines. 
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Figure 21. 316L Property Map. Tensile properties 
achieved by various conventional and PBF techniques 
[15], superimposed with results observed in this study. 

 

4.3.2 Location Influence Testing 

Further testing was performed to investigate whether the tensile properties are skewed by 

the specimen’s location on the build plate, and/or if printing several parts simultaneously in close 

proximity would affect the experimental results. A photo of the build plate configuration used is 

shown in Figure 22. 
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Figure 22. Build Plate with Tensile Specimens 
Used for Location Influence Testing. 

 

Fitzgerald and Everhart [16] found that “an effect of the spacing between parts in a build 

had an effect on tensile properties if the spacing was large enough, but below 40 mm there was no 

significant difference in performance.” This finding is confirmed by the results shown below in 

Figure 23, which illustrates the distribution of yield stresses for 15 tensile bars. There is a slight 

trend along the X-axis, but the total range of values is within 5% of the average. Fitzgerald and 

Everhart also observed this trend, and suggested that the argon gas flowing from positive to 

negative X could create nonuniform convection and thus play a minor role in the resulting 

distribution of yield stresses. 
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Figure 23. Distribution of Yield Stresses across the Build Plate. Note that 
the total range of values spans less than 5% of the average. 

 

A summary of the results is presented in Table 7, and full results are provided in Appendix 

C. Data for Young’s modulus and yield stress are remarkably similar to the previous baseline data. 

 
Table 7. Summary of Results from Location Influence Testing. While plastic data 
was widely variable due to a printing fault, the elastic results are similar to previous 
baseline data. 

 

 
 
Results for tensile stress and elongation were negatively affected by a manufacturing error 

when the SLM ran out of 316L powder, pausing the print overnight. The consequence of this 

interruption was that the samples fractured at the exact location where the print had stopped, 

producing a wide variation in measured tensile stresses and elongations. Upon closer inspection, it 
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was observed that after resuming the print, the remaining part geometry continued building at a 

slight offset from the previous geometry. Photos of both the fracture and the offset are displayed in 

Figure 24. The sharp geometric discontinuity, which generates a stress concentration, as well as 

any local metallurgical changes, must have been what made the plastic data for these trials 

unusable. However, based on the agreement of the elastic data and the consistency of the plastic 

results for the baseline trials in Figure 19, it is reasonable to assume that the plastic data would 

likely have also been similar to the previous baseline. 

 
 
Figure 24. Printing Error in Location Influence Samples. Left: A failed specimen after 
tensile testing. Right: The root cause of the failure was a subtle offset between the geometries 
printed before and after the machine paused. 

 

4.3.3 Notch Testing 

Once the baseline was established and verified, the next phase of tensile testing involved 

specimens with various notches printed in the middle of the gauge length. These tests posed a 

unique challenge: determining a method to accurately evaluate the stress-strain behavior in the 

notch, where the distributions of both were non-uniform due to the continuously varying area. 

One potential solution investigated was an indirect measurement of stress by using the 

load-displacement curve. The idea was that, using the load cell data and the corresponding 

crosshead displacement recorded by the testing machine, a load-displacement curve could be 

determined. Then, using the reduced notch area, load data could be converted to stress and 

compared to baseline results. 
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The main issue with this approach is that the output from the crosshead displacement is not 

suitable for comparison with the baseline data, which was acquired by using an extensometer in the 

elastic region of the stress-strain curve. Furthermore, if the elastic portions of the resulting curves 

for the notched specimens are not viable for comparison to the baseline, they in turn negatively 

impact the interpretation of the plastic data, as shown in Figure 25. 

 
 

Figure 25. Load-Displacement Curves Using Crosshead 
Displacement. Crosshead displacement produces curves that 
cannot be adequately compared to the baseline. 

 

In the interest of obtaining results for the notched samples that could be compared to the 

baseline, an extensometer was employed again to measure elastic displacement. The extensometer 

was placed in the middle of each tensile bar, with the prongs on either side of the notch, as shown 

below in Figure 26. 
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Figure 26. Experimental Setup for Notched 
Specimens. Similar to the baseline, an 
extensometer was used to measure elastic 
displacement. 

 

This method is effective for high resolution elastic extension measurement of the notched 

samples, but converting from load-displacement to stress-stain is not straightforward. In the 

presence of a nonuniform cross-sectional area, a uniform stress-strain distribution in the notch 

region cannot be identified. 

At first, it seemed intuitive that the appropriate area to use for stress determination would 

be the minimum reduced area at the notch, since the maximum local stress at that area is what 

drives the response of the sample. However, when that method is employed, the stress-strain curves 

shown in Figure 27 are produced as a result. 
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Figure 27. Stress-Strain Curves Created Using the Reduced 
Notch Area. Increased yield strengths are not consistent with the 
mechanics of stress concentrations in metals. 

 

These curves suggest that an increase in strength should be expected from samples with 

notches included. Furthermore, this behavior suggests that the part becomes progressively stronger 

with deeper notches. However, such behavior would be illogical given the mechanics of stress 

concentrations. Thus, the minimum area was not used to determine the stress in the notched 

samples. 

The next area investigated was the baseline area of the unnotched sample, 36mm2. While 

this is not reflective of the actual geometry of the notched samples, it does have both qualitative 

and quantitative advantages. Since all measured loads were scaled by the same area, and the gauge 

length remained unchanged, the resulting stress-strain behavior was identical to the load-

displacement behavior (both shown in Figure 28). 
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Figure 28. Comparison of Baseline Dimension Stress-Strain Curves with Load-
Displacement Curves for Notched Specimens. Left: Curves derived using the baseline area 
for stress and the baseline gauge length for strain. Right: As-measured load-displacement 
curves for all specimens. 

 

This approach makes possible a straightforward determination of the global yield loads 

using the 0.2% offset yield strength as calculated automatically by the tensile test program. These 

loads, listed below in Table 8, were later used as inputs to FEA models to understand the stress 

state for each notch at the onset of global yield. Load-displacement curves annotated with the yield 

point for each specimen are shown in Figure 29. 

 
Table 8. Global Yield Loads. Loads correspond to 
the onset of global yield observedfor each sample. 
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Figure 29. Annotated Load-Displacement Curves. Curves 
for baseline and notched tensile specimens shown, with the 
0.2% offset global yield point indicated for each. 

 

Examining this data, two overall trends can be identified. First, the load supported by each 

specimen is reduced with increasing notch depth. Second, as the net area of the notch is reduced, 

so is the total extension of the specimen. 

 

4.4 FEA Results 

4.4.1 Low Load Behavior 

Using the tensile properties previously determined (Table 5) in conjunction with the 

plasticity behavior presented in Figure 20, Abaqus finite element models were employed to gain 

insight into the ideal yield stress state for each notch geometry. Stress visualization limits were set 

from 0 to 470MPa, the experimentally determined yield stress. Plastic deformation, i.e. stress in 

excess of 470MPa, is indicated in gray. Figure 30 demonstrates that, using a relatively low load, 

the models behave as expected. At roughly 8kN, which is just below 50% of the unnotched yield 

load determined from tensile testing, the unnotched model exhibits uniform stress on the order of 
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half the yield stress. Then, as the load is left unchanged but the notch geometry becomes 

progressively more severe, the local stress at the notch root also becomes more severe. 

 
 
Figure 30. Low Load FEA. Finite element models with the same applied load for each 
specimen, generated with Abaqus. Front views indicate that the local stress concentration 
should grow as the notch deepens. 

 

For the same load as shown in Figure 30 above, Figure 31 reveals the stress distribution in 

each model by observing a section view at an isometric angle. Note that for the load that produces 

only half the yield stress in the baseline sample, local plastic deformation is already developing in 

notches 4 and 5. This suggests that, for the ideal material, the global strength of the specimen should 

decrease as the notch severity increases. 
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Figure 31. Isometric section FEA. Finite element models with the same applied load for each 
specimen, generated with Abaqus. Isometric section views reveal local yield, suggesting that 
global yield should occur at lower loads for deeper notches. 

 

4.4.2 Global Yield Load Behavior 

After examining the models with a low load, the global yield load for each geometry, 

determined through tensile testing, was applied (results shown in Figure 32). As with the low load 

application, the unnotched model again validates the approach, exhibiting uniform stress on the 

order of 470MPa, the empirically determined yield stress. 

 
 
Figure 32. Global Yield Load FEA. Models with the respective global yield load applied for 
each specimen were generated with Abaqus. Shrinking elastic volume in the notched region 
suggests that the total remaining extension after global yield should diminish with notch depth. 
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As the notch grows deeper and the global yield load reduces, the FEA models produce 

interesting results. First, the amount of localized plastic deformation present at the onset of global 

yield is gradually increased, as indicated by the gray region surrounding the center of each sample. 

The increasing local plastic deformation occurs even as the global yield load decreases. The second 

observation of the FEA is the reduction in volume of elastic material available at the onset of global 

yield. This suggests that as the notch deepens, less additional strain energy can be retained at the 

reduced area beyond global yield. Taken together, these observations suggest that for the ideal 

material, the deeper the notch is, the less extension can be sustained by the specimen prior to 

fracture. 

FEA results for the global yield loads are overlaid with the load-displacement curves from 

Figure 29 to create the juxtaposition in Figure 33. Observing them together, both of the trends in 

the experimental data are validated by the stress distributions observed in the FEA models. The 

notched SLM tensile bars exhibited plastic behavior congruent with the baseline plastic behavior 

of the unnotched specimen. That is, when the baseline true stress-strain constitutive relation from 

Figure 20 was applied to the finite element models, the predictions based on theoretical stress state 

at the global yield load matched the actual behavior in the test specimens. Thus, the static 

performance of the material is not inherently impacted by the porosity, surface condition, or other 

features of the as-printed state. 
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Figure 33. Theoretical and Experimental Behaviors. Experimental load-
displacement curves with 0.2% offset global yield loads indicated, overlaid with 
FEA results for the stress state of each specimen at its respective yield load. 

 

4.5 Fracture Behavior 

4.5.1 Unnotched Failure 

Ductile fracture was observed across all unnotched tensile bars geometries upon conclusion 

of the tests. Figure 34 shows an unnotched tensile bar that fractured following necking in the gauge 

length, characteristic of typical ductile failure. 
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Figure 34. Conclusion of a Baseline Tensile 
Test. Necking exhibited in the gauge length is 
indicative of ductile failure. 

 

Upon further examination, the fracture surface of the unnotched tensile bars exhibited 

unusual behavior. The macroscopic observations were checked by microscopic investigation, using 

a scanning electron microscope (SEM). Figure 35 shows images captured with a Thermo Scientific 

Quanta 200 SEM. Note the uniform distribution of porous features in the middle region of the 

fracture surface. A different fracture mechanism is observed at the outside border of the part, where 

there is a separate SLM laser scan pattern, but the global fracture appears to be dominated by the 

behavior at the center. 
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Figure 35. SEM Images of a Fractured Baseline Specimen. Uniform porous features suggest 
that the fracture mechanics are artificial. Left: The entire fracture surface. Right: Detail view 
of porous features. 

 

4.5.2 Notched Failure 

Roughly the same behavior was observed in the notched tensile bars as in the unnotched 

samples. Figure 36 shows images of fractures that occurred as expected in the notches at the 

locations where the area is most reduced, corresponding to high localized stress. 

 
 
Figure 36. Conclusions of Notched Tensile Tests. Note that failure occurred in the notched 
region, as expected. Top row: Notches 1-3. Bottom row: Notches 4 and 5. 
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An SEM investigation of notch 5, which was the most severe notch geometry, revealed that 

the notch fracture behavior was somewhat similar to the unnotched behavior. The images included 

below in Figure 37 show that the fracture surface of notch 5 demonstrates the same porous features 

seen on the unnotched fracture surface. Note that the edges near the notch root appear to exhibit 

porosity with shape and distribution resembling the unnotched behavior, whereas the middle of the 

fracture surface appears to distinctly reveal the laser scan pattern, which is somewhat less 

discernible in the unnotched specimen. 

 
Figure 37. SEM Images of the Fracture Surface in a Notch 5 Specimen. Ductile behavior 
similar to the baseline is observed again in the notch. Left: The entire fracture surface, which 
appears to reveal the laser scan pattern. Right: Detail view of ductile features. 

 

4.5.3 Defect-Driven Failure 

Other than the parts that experienced the print interruption previously mentioned, only one 

tensile specimen was conclusively defective. Below in Figure 38, a photo of a notched tensile bar 

that failed prematurely away from the notch is shown. Further inspection using the SEM revealed 

the presence of unmelted powder at the fracture surface. Several others, such as Liverani, et. al 

[10], have also observed this binding defect, which provides an internal material discontinuity 

whereby the premature failure begins. It is not known why this defect was witnessed in this 

particular sample only and not others from the same build, nor is the mechanism well understood 
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by which partial melting occurs while near-full density is also observed for identical SLM 

parameters. 

 
 

Figure 38. Images of the Only Conclusively Defective Specimen. Left: Failure occurred away 
from the notch. Right: SEM investigation revealed that unmelted powder was likely the root 
cause of failure. 

 

4.6 Further Investigation of Non-Defective Fractures 

4.6.1 Mechanism for Ductile Pore Formation 

 While the necking behavior of the unnotched test specimens suggested that the failure was 

ductile, the fracture surface did not appear to resemble traditional ductile failure. Song, et. al [17] 

demonstrated that ductile failure of 316L should exhibit a somewhat random distribution of 

interconnected parabolic dimple features, shown in Figure 39. 
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Figure 39. Ductile Fracture Structures. SEM images of ductile fracture structures in 316L 
stainless steel, published by Song, et. al [17]. Left: hot rolled. Right: Solution-treated. 

 

Following the observation of this discrepancy, the apparent porosity revealed after fracture 

was examined further to investigate possible explanations. Cooper, et. al [18] observed similar 

porous structures in 316L tension specimens treated by hot isostatic pressing (HIP). Their research 

suggested that the mechanism for the formation of such voids was the presence of non-metallic 

oxide inclusions, which provide microscopic stress concentration sites whereby microvoids initiate 

during plastic deformation. An SEM image from their research is provided in Figure 40. Note that 

there does not appear to be any regularity to the distribution of voids. 
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Figure 40. SEM Image of Oxide Pores. Work published by 
Cooper, et. al [18] showed a fracture surface in hot isostatically 
pressed 316L containing large oxide pore features. 

  

An important finding from the work by Cooper, et. al was that the strength of the HIP-ed 

316L was not affected by the oxygen content in the base material. The presence of the non-metallic 

oxides, which provided the mechanism for ductile pore formation, was not found to have a negative 

impact on the tensile properties compared to a forged reference material. Furthermore, significant 

variance in the oxygen content of the 316L base material had little effect on the resulting yield and 

tensile strengths, as shown by their summary in Figure 41. The first set of columns represents the 

as-forged reference properties, while sets of columns to the right represent samples with increasing 

oxide content. Cooper, et. al note that the content of nitrogen, a strengthening element, in material 

HIP100A did not meet ASTM specification. 
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Figure 41. Strengths of HIP-ed 316L. Results from Cooper, et. al [18] 
showing that the strengths of hot isostatically pressed 316L tensile samples 
was not significantly affected by varying oxide content. 

 

4.6.2 Mechanism for Ductile Pore Distribution 

After identifying a potential mechanism for the creation of pores, identification of a 

separate mechanism for the apparent regular distribution of pores was pursued. Using ImageJ, the 

SEM image was converted to a binary image so that the spacing of the pores could be analyzed. 

The progression of the image processing is presented in Figure 42. After the pores were identified, 

the Nearest Neighbor Distance plugin for ImageJ was used to approximate the average spacing 

between pore centroids, which was calculated to be about 68μm. 

 
 
Figure 42. Unnotched ImageJ analysis. Left: original unnotched SEM image. Middle: binary 
black and white image. Right: pores in the unnotched binary image as identified by ImageJ. 
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The same image processing recipe was followed for the notched SEM image, and the 

progression of that analysis is shown in Figure 43. For that case, the approximate average distance 

between pore centroids was calculated to be 85μm. It was observed that the laser scan pattern had 

a larger influence on the pore geometry for the notched specimen, creating elongated pores in the 

direction of the laser scan, which in turn affected the calculated average spacing. Nevertheless, the 

distribution of the pores in the notched specimen was still roughly on the same order as that of the 

unnotched specimen, suggesting that they relied on the same mechanism for their formation. A 

summary of the porosity analysis is given in Table 9. Note that the SEM images for the unnotched 

and notched fracture surfaces were taken at 257x and 160x magnifications, respectively. 

 
 
Figure 43. Notch 5 ImageJ analysis. Left: original unnotched SEM image. Middle: binary 
black and white image. Right: pores in the notched binary image as identified by ImageJ. 

 

Table 9. Summary of ImageJ Porosity Analysis. 
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Recall from Pohl’s results in Table 1 that the hatching distance was set to 120μm, and the 

spot size of the laser was 70μm. Note that the average pore spacing in the unnotched sample was 

on the order of roughly half the hatching distance, and almost exactly equal to the laser spot size. 

Using these dimensions, a sketch was created in Solidworks to help visualize the scan pattern, 

which is shown in Figure 44. Note the scan direction for each layer, indicated by the colored arrows. 

 
 

Figure 44. Scan Pattern Illustration. Given the 
dimensions of the laser spot and the hatching distance 
(shown in mm), a uniform distribution of unmelted 
particles could be created. 

 

When subsequent layer scans are rotated by 90°, the current SLM parameters leave a 

uniform scatter of unmelted powder in squares 50μm wide and 120μm apart in both X and Y. An 

important caveat to note is that the scans illustrated in Figure 44 are offset at 90°, whereas Pohl’s 

settings rotate subsequent layers by 33°. Therefore the exact size and shape of the unmelted scatter, 

if any, is bound to be different from this approximation. Still, this visualization suggests that there 

might be a mechanism for regular or semi-regular distribution of internal print features created as 

a result of the combined laser spot size and hatching distance parameters. 
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Even if near-complete melting is achieved by the SLM settings, the scan pattern would still 

create a somewhat uniform distribution of weld pool interfaces, which could provide a mechanism 

for the scatter of non-metallic oxides in the part. More work will need to be done to characterize 

the chemistry of the 316L powder in the as-received and recycled conditions to quantify oxygen 

concentrations. A deeper investigation of the fracture surfaces is also needed in order to confirm 

that the ductile pores occur at locations where oxides have settled in the material. Furthermore, 

experimenting with different scan parameters could help identify any influence on the distribution 

of ductile pores in the fracture surfaces of as-printed specimens. 
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5. CONCLUSION AND RECOMMENDATIONS 

5.1 Conclusion 

Tensile testing was conducted to provide the material properties of as-printed 316L 

stainless steel samples produced using selective laser melting. In order to have confidence in the 

experimental results, other investigations also needed to be conducted to validate previous 

assumptions. Stereological relative density measurements showed that the as-printed material 

exhibited relative density in excess of 99%. Optical dimensional analysis found that the as-printed 

tensile specimens met ASTM E8 dimensional requirements in 14 out of 15 parts inspected. Baseline 

tensile tests indicated that the yield stress of the as-printed material is 24% higher than a cold-rolled 

alternative, while still achieving comparable ductility. The location of a tensile specimen on the 

build plate during the print was not found to have a significant effect on its mechanical properties. 

Notched tensile specimens of varying notch depths were tested to obtain experimental load-

displacement curves. A 0.2% offset global yield load was determined for each specimen and 

applied to their respective finite element models. Theoretical predictions based on the model 

behavior matched experimental behavior in the actual specimens. Unique fracture behavior was 

found in both the unnotched reference and the most severe notch after SEM inspection, and a root 

cause related to oxide distributions was proposed. After extrapolating from previous studies and 

observing that experimental results matched theoretical models, it was determined that features 

inherent to SLM parts were not detrimental to the static performance of the as-printed material. 

 

5.2 Recommendations 

During the location dependence testing, the print paused when the SLM ran out of powder, 

creating parts with a critical defect at that layer. It was theorized that if the SLM was configured to 

use less total powder per layer (i.e. less waste) while still demonstrating comparable material 

properties, then perhaps that type of printing error could be avoided for tall parts. Density 

measurements conducted for such a configuration revealed that relative densities above 99% were 
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still achievable, but no further testing has been pursued as of yet. Establishing a static baseline for 

these settings would still be useful for design even if the resulting properties are not comparable to 

the previous data. 

Preliminary work has already been done at Cal Poly by Andrew Yap to characterize the 

performance of the SLM material in the annealed condition, following post-print treatment. As was 

the case with the as-printed material, initial properties of annealed SLM 316L seem to provide a 

compelling alternative to other available options. A broad trade study that compares the SLM 

material treated with various traditional heat treatments to other known alternatives would be 

valuable. This information could be used to more comprehensively identify design spaces where 

current capabilities are inadequate, but SLM might be a viable solution. 

Further investigation of the fracture surfaces of SLM tensile samples is also warranted. To 

validate the proposed root cause of the ductile pore formation, further SEM analysis is required. 

Chemical composition analysis of the 316L powder in the as-received and recycled conditions is 

needed to quantify oxygen content. A thorough parametric study that varies laser spot size and 

hatching distance would confirm the mechanism that controls the distribution of the ductile pores. 

It has been demonstrated that features inherent to the as-printed SLM material are not 

detrimental to its static performance. However, additional investigation is required to evaluate the 

impact that these features will have on dynamic performance. Furthermore, it would be valuable 

for design to characterize the dynamic performance of material in the as-printed condition based 

on experimental data. The Materials Engineering department at Cal Poly has equipment capable of 

fully-reversed bending fatigue testing, and as-printed SLM coupons have already been proven to 

be compatible with the apparatus without the need for post-machining, shortening the feedback 

loop. Results could be used to supplement existing published data or for comparison to results for 

uniaxial tension fatigue and checked for agreement across methods. 
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Appendix A: Engineering Drawings of Tensile Specimens 
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Appendix B: Dimensional Analysis Raw Data 
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Appendix C: Full Location Influence Testing Results 
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