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ABSTRACT

Analysis of Hardware Sorting Units in Processor Design

Carmelo Furlan

Sorting is often computationally intensive and can cause the application in which it

is used to run slowly. To date, the quickest software sorting implementations for an

N element sorting problem runs at O(nlogn). Current techniques, beyond developing

better algorithms, used to accelerate sorting include the use of multiple processors or

moving the sorting operation to a GPU. The use of multiple processors or a GPU can

lead to increased energy consumption and heat produced by the device as compared

to a single-core GPU-less implementation. To address these problems, specialized in-

structions and hardware units can be added to the processors to accelerate the sorting

operation directly. This thesis studies and records the performance implications from

implementing a sorting accelerator into a modern RISC-V processor pipeline. This

thesis also explores the additional energy and area costs of implementing such hard-

ware units in the processor.
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Chapter 1

INTRODUCTION

Sorting is an important function in a number of applications, including pattern recog-

nition [20], image processing [19], multi-media processing (video, audio, etc.) [14],

signal processing [14], and high-energy physics [16]. Sorting is computationally inten-

sive with the fastest software implementations running at O(nlogn). Current solutions

to speed up the sorting process include moving the sorting algorithm to multiple pro-

cessors or onto a GPU [31]. The use of a GPU or multiple processors can cause an

increase in the energy consumption and the heat produced by a device. Along with

the energy and heat caused by GPUs and multiple processors, users often need to

refactor the code for sorting applications in such a way that allows the compiler to

efficiently divide sections of the code between the multiple processors or GPU.

A hardware sorting unit has the potential to significantly improve the run time of

sorting without the need of additional cores or a GPU. This thesis created a hardware

sorting unit which was added into a RISC-V processor pipeline. A specialized vector

instruction was added to the instruction set which uses the hardware sorting unit

to perform sort operations. This ”SIMD” implementation decision promises lower

energy and higher performance for sorting operations, without the need for significant

code-refactoring.

This thesis produced a hardware sorting unit that is capable of outperforming the

current sorting algorithms on a modern processor. This thesis also discusses how the

hardware was implemented into a RISC-V processor core and ISA. Using a commercial

Xilinx FPGA-based test platform [3], we document the performance, area, and energy

implications of the hardware sorting unit running a sample application. The final
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results show that the hardware sort engine is able to obtain a speedup of 17x and an

energy reduction of 93% on a 64x64 median filter operation.
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Chapter 2

BACKGROUND

2.1 Related Work

The work in this thesis uses several previous published papers as building blocks to

develop the final hardware sorting unit and specialized sort instructions. The paper

Modular High-throughput and Low-latency Sorting Units for FPGAs in the Large

Hadron Collider describes the techniques for designing high-throughput, low-latency

sorting units for FPGAs [16]. In the paper the researchers discuss the creation of the

hardware sorting algorithms. The main design of the paper’s sorting units are based

on the widely used Batcher’s bitonic sorting algorithm described in the paper Sorting

Networks and Their Applications [8].

A bitonic sequence is the juxtaposition of two monotonic sequences in which one is

an ascending monotonic sequence and the other is a decreasing monotonic sequence

[8]. A monotonic sequence is one in which the numbers in a sequence are constantly

increasing (an ≤ an+1) or decreasing (an ≥ an+1). A bitonic sequence can be made

by arranging any two monotonic sequences in such a way that the combination of the

two monotonic sequences is either first increasing then decreasing or first decreasing

then increasing. Since any two monotonic sequences may be used to create a bitonic

sequence an algorithm can be created that rearranges a bitonic sequence into mono-

tonic order. This algorithm can then be used as a merging network. The iterative

nature of bitonic sorters allows for large bitonic sorters to be made of smaller bitonic

sorters with the smallest bitonic sorter (2 number sorter) simply being a comparison
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element. The bitonic sorting network recursively merges the monotonic sequences of

length N/2 to form a bitonic sequence of length N.

The Modular High-throughput and Low-latency Sorting Units for FPGAs in the Large

Hadron Collider paper discusses the creation of modular sorting units that return

only the M largest values (in no particular order) in a list of N elements [16]. The

paper first describes the process of creating an 8-4 Max Selection Unit in which the

four largest elements of a list of 8 are returned. In order to use these 8-4 Max

Selection Units as building blocks for larger units their outputs need to be put in

either ascending or descending order. The 8-4 Units with ordered outputs can then

be used to create even larger Max Selection Units by using a combination of 8-4 Units

to obtain the desired number of elements to return.

Max Selection Units of various sizes ranging from 16-to-4 to 256-to-4 were synthesized

on a Virtex-5 FPGA device to obtain hardware resource requirements, overall latency,

and the maximum frequency of the different units. The paper compared the results

of the Max Selection Units to results gathered when using a full sorting network and

proceeded to take the number of max values desired from that full network. Although

this is not the exact functionality we are trying to obtain in this thesis their concepts

can be adapted to fully sort a list. The results show that their approach beat the full

network not only in the latency for results, but also in terms of resources required to

perform the computations. The work in the paper by produces a top-M sorter but

by adding additional hardware the ideas used to create a top-M sorter can be used

to create a full sorter , which is what is desired for this thesis.

In the paper A Comparison of Three Representative Hardware Sorting Units three

different types of sorting units are designed and then tested against each other to find

the most efficient hardware sorting unit [24]. The three types of hardware sorting
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units designed and tested in the paper are an Insertion Sorting Unit, a FIFO-based

Merge Sorting Unit, and a Sorting Network Unit.

The Insertion Sorting Unit is composed of an array of comparison/insert cells. These

comparison/insert cells are created using comparators, multiplexers, registers to hold

data, and control logic. The array contains the same number of comparison/insert

cells as the number of elements that need to be sorted. The unit also contains control

tags that drive the control logic of the cells to find the location where the new data

needs to be placed [26]. When a new element needs to be sorted it is broadcast to all

the cells and the comparison takes place to find the correct location in which the new

element needs to be placed. This makes the computational complexity of the sorting

unit O(N).

The Sorting Network Unit proposed in this paper is based on the traditional approach

to sorting networks, but, attempts to reduce the hardware cost that most sorting

network implementations have. The sorting network is constructed by iteratively

using a single row in the sorting network algorithm to create a one level pipeline where

the hardware is reused every clock cycle. This means that all the computing stages of

the sorting network use the same hardware, resulting in a need for significantly fewer

hardware resources. Using this solution, the system only needs X comparator-swap

components and a simple switch network as compared to Xlog2(X) comparator-swap

components required by most hardware sorting networks, where X is equal to the size

of the sorting unit [32]. The system works by switching a pair of elements every clock

cycle until all the elements are sorted. Although, the sorting network is implemented

using an iterative approach the computational complexity is O(N).

The final sorting unit proposed in the paper is a FIFO Based Merge Sorting Unit.

This sorting unit consists of two input FIFO queues where the merge is implemented

by presenting the data from the two input FIFOs to a comparator-multiplexer block
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[27]. The comparator-multiplexer block indicates which element is greater and that

element is then written into the output FIFO. The FIFO Based Merge Sorting Unit

requires much less hardware resources and has a computational complexity of O(N).

The drawback to this system, however is that the data in the two input FIFOs are

required to be sorted. This requires either the software to presort the two input lists

to the FIFOs or for a dedicated sorting unit be added to perform the sort on the two

inputs before passing them to the two FIFOs.

The paper then discusses the results obtained by implementing the three sorting units

on a Xilinx Virtex-5 SXT FPGA. The results taken from the paper show that all three

units can easily be scaled up or down depending on the need and the hardware re-

sources available. The Sorting Network Unit best performed in systems where several

data elements could be loaded and stored simultaneously and in these environments

was shown to run at up to 194 MHz. The Insertion Sorting Unit performed best in

systems with serial data loading and either serial or parallel data storing and was

shown to run up to 265 MHz. The drawback to both of these sorting units is the fact

that both require a lot of hardware resources to implement. The FIFO Based Merge

Sorting Unit required the least amount of hardware resources but also performed the

worst running at a max clock frequency of 156 MHz.

The previous papers focused on the top level design of sorting units and did not

look into the details of the building blocks to help improve the latency that these

sorting networks have. The takeaways from the first two related papers are ideas and

techniques that can be used to build hardware sorting units.

A high-performance comparator design can have a significant impact on the perfor-

mance of an entire sorting hardware block [11]. In the paper High Speed Comparator

Architectures for Fast Binary Comparison two different comparison architectures are

proposed and compared to the traditional implementation [13]. The baseline design
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that the two proposed architectures are tested against is a traditional magnitude

comparator [22].

The first proposed architecture has two outputs H(A > B) and S(A < B) and takes

a parallel approach to comparing the two numbers A and B. In the first stage of the

architecture it identifies and extracts the 1’s of A which have a 0 in the corresponding

spot in B. This process is done in parallel with one side performing the operation

previously described and the other side performing the identical operation but with

B in respect to A. After stage 1, two numbers (A’ and B’) have been formed each

containing only the 1’s that make that number greater than the other number in their

corresponding positions. The second stage then zeros all 1’s in both A’ and B’, except

for the 1 in the most significant position. Stage two creates two new numbers A” and

B” with zeros except for the 1 in the most significant position of A’ and B’ (the logic

used in this stage is similar to the priority logic of a priority encoder). The final stage

takes A” and B” finds which number has the 1 in the most significant position and

then creates the two output signals H and S accordingly.

The second proposed architecture uses look-ahead-logic along with a parallel archi-

tecture design. This architecture works by using compare look-ahead-logic to create

compare signals for each bit position. For each two number input pair into the look-

ahead-logic only one of the compare signals will go high. The compare signal will go

high if either the ith bit of A and B are unequal or the most significant bits are equal

but the next most significant bit of A and B are unequal. These compare signals are

then used to create the two outputs of the compare unit (H(A > B) and S(A < B)).

Verilog and the Xilinx ISE 8.2i platform were used to create a 32-bit implementation of

all three of the architectures discussed in the paper. Only the results for performance

was published in the paper, the results for energy and area were not listed. The results

from the implementation proved that both proposed architectures outperformed the
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traditional architecture, with the compare look-ahead-logic outperforming the first

proposed architecture. The first proposed architecture was shown to have a simulation

decrease of 23.77% in path delay when compared to the traditional architecture. The

compare look-ahead-logic was shown to have a decrease of 35.22% over the traditional

architecture. The fast compare unit design proposed in this paper will be used in the

work in this thesis to be speed up the components of the hardware sorting units.

2.2 RISC-V Instruction Set

For the work in this thesis the RISC-V instruction set architecture was chosen. RISC-

V is a relatively new instruction set architecture with some aspects that differ it from

many of the other instruction set architectures.

RISC-V is an open source instruction set architecture (ISA) developed at the Uni-

versity of California at Berkeley. RISC-V is based on the reduced instruction set

computer (RISC) design. The RISC-V ISA also has significant open source doc-

umentation, compiler tool chains, operating system ports, reference software sim-

ulators, cycle-accurate FPGA emulators, high-performance softcores, efficient ASIC

implementations of various target platform designs, configurable processor generators,

architecture test suites, and teaching materials to accompany it [17].

The RISC-V ISA is defined as a base integer ISA with two types of optional extensions

(standard and nonstandard) to extend the instruction-set. Standard extensions are

useful in most cases and should not conflict with other standard or nonstandard

extensions, while nonstandard extensions are usually specialized for specific purposes

and may conflict with other extensions. Although these extensions can be added to

the instruction set the base instructions can never be redefined. The base instruction

set also has two variants, RV32I and RV64I. These variants are characterized by the
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width of the registers and the size of the user address space, RV32I provides a 32-bit

user-level address space while RV64I provides a 64-bit address space.

The RISC-V ISA comes with numerous benefits over other instruction set architec-

tures. One of the main differences between RISC-V and the other ISAs is that RISC-V

is a frozen ISA [17, 29]. What this means is that the base instructions for RISC-V

are frozen in time and are not going to be changed. These base instructions are also

kept to a minimal set of instructions that provide a reasonable target for compilers,

linkers, and assemblers. The base instructions can be viewed as the foundation to

which extensions can be added to help customize the ISA for each situation [29].

Other instruction set architectures typically treat their ISA as a single entity with

needed instructions being added to the instruction set. This often results in those

ISAs becoming bloated with unnecessary and outdated instructions that still require

support. RISC-V avoids this issue with their base instruction being a fully supported

standalone ISA with additional instructions being added to optional extensions.
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Chapter 3

DESIGN AND IMPLEMENTATION

To test the performance and costs of implementing a hardware sorting unit along

with an added instruction to the RISC-V ISA, a RISC-V processor was set up to

be both the baseline for results and the foundation for implementing the hardware

sorting units. This chapter documents how the RISC-V baseline processor design.

The chapter also documents the construction and implementation of the hardware

sorting unit and corresponding instruction into the RISC-V processor.

3.1 Processor Design

The processor for this work is based on the Phelmino processor [5] and was adapted

and modified to fit the needs of this project. The processor is a 4-stage in-order

RISC-V CPU with support for the RV32I (Base Integer Instruction Set), RV32C

(Standard Extension for Compressed Instructions), multiplication support only for

RV32M (Standard Extension for Integer Multiplication and Division), RV32V (Stan-

dard Extension for Vector Operations), and PULP instruction extensions [5]. The

processor’s stages are: instruction fetch, instruction decode, execute, and write-back.

Each pipeline stage takes two control inputs, enable and clear. The enable activates

the pipeline stage and moves to the next instruction while the clear empties the in-

struction from the stage when the instruction is completed. Figure 1 shows the basic

processor overview along with the signals connecting the various stages.

10



Figure 1: Overview of the Processor

3.1.1 Instruction Fetch

The instruction fetch stage supplies a single instruction per cycle. The instruction

fetch stage makes use of a prefetch buffer to provide optimal performance. The

prefetch buffer stores the fetched words from memory in a three entry FIFO.

3.1.2 Instruction Decode

The instruction decode stage is where the current instruction is decoded and various

signals are set for the next stages.

The instruction decode stage contains a decoder unit and two sets of registers; general

purpose registers and vector registers. The decoder unit is responsible for taking

11



in the current instruction and constructing the appropriate signals to execute that

instruction.

The general purpose register file contains 32 registers of 32 bits, although register 0

is bound to 0 and can only be read (the processor will throw in a zero whenever it

sees the zero register being used). Since the processor has a register that constantly

contains a zero the processor really only contains 31 hardware registers. A vector

register file was added to the processor design to help support the sorting hardware

units. The vector register file contains 32-bit vector registers and also contains 32

registers of size 16 bits, containing the type of each of the vector registers. Each vector

register is capable of holding a configurable type of data. This data type does not

have to be identical to the other vector registers. The length of the vector registers

can be altered by changing the value of the vector length register. The vector length

register is a global register for the entire vector register file. Specific vector operations

can then be performed on these vector registers.

Once the signals are produced from the decoder unit and the needed values are taken

from the register files they are passed to the execute stage.

3.1.3 Execute Stage

The execute stage takes the control signals and values from the instruction decode

stage and executes the instruction. The signals and values from the decode stage

indicate to the various components in the execute stage what needs to be done. The

execute stage contains the Arithmetic Logic Unit (ALU), Control Status Registers

(CSR), and Multiply unit. The custom hardware sorting units proposed in this work

were also added to the execute stage.
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3.1.4 Write-Back Stage

The write-back stage accesses the data memory for the processor. The write-back

stage contains the Load-Store-Unit (LSU). The LSU loads and stores words in mem-

ory; it is capable of handling words (32 bits), half words (16 bits), and bytes (8 bits).

The LSU is capable of performing misaligned data access. However, by perform-

ing two separate word-aligned accesses internally, for misaligned load and stores, the

write-back stage requires two cycles.

3.2 Sorting Units

Three different sized sorting units are created to perform sort operations on data of

various sizes.

3.2.1 32-Bit Sorting Unit

The smallest and most basic sorting unit that can be created is a two-element sorting

unit (this will be the building block for all the other sorting units). These basic

sorting units take as inputs two N-bit numbers and output the two numbers in an

ordered sequence. These two-element sorting units are composed of a comparator and

two multiplexers. The output of the comparator is connected to the data selection

input of the multiplexers and the two inputs to the sorting unit are fed as inputs to

the two multiplexers. The circuit for the two-element sorting unit is shown in Figure

2.

A number of these two-element sorting units can then be used to produce larger

hardware sorting units as shown in Figure 3. The four inputs to the four-element

13



Figure 2: Circuit Diagram for Two Element Hardware Sorting Unit

sorting unit are first split into two different groups of two numbers. We then use two

two-element sorting units to put the groups into two ordered sequences. The largest

number of each sequence is compared with the largest number of the other sequence;

the same is done for the smallest numbers. The smaller number of the larger group

is put into the fifth two element sorting unit with the larger number of the smaller

group to find the second largest number in the input. Through the above process,

we can transform four random inputs into an ordered sequence of outputs. Figure 4

shows the hardware circuit required to construct the four element sorting unit.

Hardware sorting units of any size can be made by using the same type of logic

that made it possible to extend the two element sorting unit into a four element

sorting unit. For example, a sorting unit of size 2N (2N elements need to be sorted)

would require the use of five sorting units of size N. These five sorting units would

be arranged in the same way that the 5 two element sorting units are arranged. The

first two sorting units serve the purpose of putting the 2N inputs into two ordered

sequences of size N. Then one of the next two sorting units then takes the largest half

14



Figure 3: Four Element Sorting Unit Block Diagram

of each ordered sequence to put the largest N/2 inputs in order. The other sorting

unit takes the smallest half of each ordered sequence of size N to put the smallest

N/2 inputs in order. The last sorting unit is then used to put the remaining N inputs

in order. A block diagram showing the configuration for a sorting unit of size 2N is

shown in Figure 5.

The largest sorting unit size used in this thesis was a 32 element sorting unit. This

choice was made since the RISC-V architecture uses 32 registers, so the use of a 32

element sorting unit allows for all 32 registers to be sorted without having unnecessary

hardware. The sorting unit was placed in the execute stage of the processor and

receives its inputs from the vector registers. The decision to use the vector registers

as inputs to the sorting unit was made based on a few different factors. One of the

primary factors was that in a RISC-V processor some of the regular registers are

required to contain particular values (e.g. register 0 contains a value of 0 and other

registers contain the PC, stack pointer, etc.). This means that not all 32 registers

could be used in a sorting unit since this can cause undesired results if those values are

used as inputs to the sorting unit. Another advantage to using the vector registers
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Figure 4: Circuit Diagram for a Four Element Hardware Sorting Unit

as inputs to the sorting unit is that the RISC-V Standard Vector Extension has

instructions to load values into registers in particular patterns.

3.2.2 16-Bit and 8-Bit Sorting Units

The 16-bit and 8-bit sorting units both take in 32 elements and use the same format

as the 32 bit sorting unit. The only difference between the sorting units is that the 16

bit and 8 bit sorting units take as inputs 32 elements of size 16 and 8 bits respectively

instead of 32 elements of size 32 bits. Since the registers of the RISC-V processor

are 32 bits wide using a single 16-bit or single 8-bit sorting unit will leave at least

half of the bits in the register unused. For the systems proposed in this work, two

16-bit sorting units and four 8-bit sorting units are used in parallel to maximize the

throughput of the systems. For example if 16-bit data is required to be sorted, two

sets of data can be loaded into the vector registers with the first set using bits 31

down to 16 and the second set using bits 15 down to 0. The output from each sorting

unit will be one sorted set of data, this would then be stored in the vector registers
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Figure 5: Block Diagram for a Sorting Unit of Size 2N

in the corresponding bit locations in which it was taken from. Figure 6 shows how

multiple sorting units are used in parallel to maximize the throughput of the system

when dealing with data of size 8 and 16 bits.

Figure 6: Multiple Sorting Unit Design
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3.2.3 Sort Instruction

To use the implemented hardware sorting units, instructions need to be added to the

processor. The RISC-V Instruction Set Architecture (ISA) allows for custom exten-

sions to be made to help processors function most efficiently in their various applica-

tions. The RISC-V ISA has instruction encoding spaces and optional variable-length

instruction encoding that were designed to make it easier to extend the ISA toolchain

when building more customized processors [29]. The RISC-V Base Instruction Set has

four core instruction formats (R,I,S,U) all of which have a fixed length of 32 bits. All

of these instruction formats are shown in Figure 7. R-type instructions use 3 register

opcode

opcode

opcode

opcode

rd

rd

imm[4:0]

rd

funct3

funct3

funct3

imm[31:12]

rs1

rs1

rs1

rs2

rs2

imm[11:0]

funct7

imm[11:5]

31 25 24 20 19 15 14 12 11 7 6 0

R-Type

I-Type

S-Type

U-Type

Figure 7: RISC-V Base Instruction Format

inputs. I-type instructions have immediates while U-type instructions use the upper

bit values from the immediates. S-type are store instructions. The instructions are

composed of five or fewer fields (opcode, rd — destination register, funct3/funct7 —

type of operation, rs1/rs2 — source registers 1/2, imm — immediate value).

To extend the RISC-V ISA to have instructions that use our hardware sorting units

only one op-code needs to be added to the instruction set. This can be done by using

a single opcode to specify the SORT instruction and then by using the funct3 field

to specify the type of operation that needs to be applied.
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For the implementation of the sort instruction the I-type instruction format was

used with the destination register and source register values left as ”don’t cares”.

These values are not used because the sort instruction takes as input all the vector

registers and stores the results back into all the vector registers. Each of the three

sort instruction types (8-bit, 16-bit, and 32-bit) have a unique funct3 value to specify

to the processor which operation needs to be performed.

3.3 Fast Compare Unit

The sorting unit improves the performance of the processor on instructions that result

in sorting but, due to its complexity, will slow the overall maximum clock frequency

the processor can run at. To help improve the logic delay of the sorting unit, various

components of the sorting unit were redesigned. This section discusses the creation

of a fast compare unit that reduces the delay of the sorting unit.

The design of the fast compare unit is based on the the second proposed architecture

in the paper High-speed Comparator Architecture for Fast Binary Comparison by

Deb and Chaudhury [13] as discussed in Chapter 2.1. Figure 8a shows the block level

diagram of the compare look ahead stage of this architecture. To generate the signals

(called CMPi) for each bit position (i), the logic compares the bits of each input (A

and B). The compare signals are set high if:

• the bit of A and B are unequal

• the most significant bits are equal and the more significant position of A and B

are unequal.
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This means that for any two inputs A and B only one of the compare signals can be

high. The compare look ahead logic is comprised of XOR, AND, and Inverters. The

circuit diagram for a four bit compare look ahead logic is shown in Figure 8.

(a) Block Diagram
(b) Circuit Diagram

Figure 8: Block Diagram and Circuit Diagram for 4 Bit Compare Look
Ahead Logic

The second stage takes the compares signals from the look ahead stage and combines

it with logic to produce two output signals ((A > B) and (A < B)). The second

stage logic is comprised of AND gates, inverters, and two OR gates. The first set

of AND gates tests to see if the ith bit of A and B are unequal. If the two bits are

unequal then it produces a high signal, if not, the signal goes low. The second set of

AND gates takes the output of the first set of AND gates and the compare signals

from the compare look ahead stage. The output of the second set of AND gates is

then summed in one of the two OR gates to produce the two output signals. Figure

9 shows the complete circuit for a four bit fast compare unit.

My implementation of the 32, 16, and 8 element compare units uses a four element

compare unit and a two element compare unit as building blocks. The decision to

use four and two element compare units as building blocks instead of expanding the

compare logic was made to help reduce the design complexity.
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Compare Look
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Figure 9: Circuit Design for 4-Bit Fast Compare Unit

In the designs for the 8,16, and 32 bit compare units the two element compare unit will

only be receiving its inputs from the output of the four element compare units. The

four element output bits ((A > B) and (A < B)) can never be high at the same time.

This means that the input to the two element compare unit can never have particular

combinations as inputs. The following combinations are a list of the inputs that
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the two element compare units can never receive: (10,10), (10,11), (11,10), (11,01),

(01,11), and (01,01). Due to the restriction of particular input combinations, the logic

for the two element compare unit can be reduced. The new Boolean expression for

the reduced two element compare unit becomes:

(A < B) = A1 + A1A0B1B0

. The circuit logic for the two element compare unit is shown in Figure 10.

Figure 10: Two Element Compare Unit Logic

3.3.1 8-Bit Fast Compare Unit

The 8-Bit Fast Compare Unit is comprised of two stages. The first stage uses two four

element fast compare units to compare every 4 bits of the input numbers. The second

stage is comprised of a single two element fast compare unit and takes in the result

of the 2 sets of 2-bit numbers and computes the final result for the 8-bit numbers.

Figure 11 shows the block diagram for the 8-bit Fast Compare Unit.
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Figure 11: Block Level Diagram For 8-Bit Fast Compare Unit

3.3.2 16-Bit Fast Compare Unit

The 16-Bit Fast Compare Unit is comprised of two stages. The first stage uses four

four-element fast compare units to compare every 4-bits of the input numbers. The

second stage is comprised of a single four element fast compare unit and takes in the

result of the four sets of 2-bit numbers and computes the final result for the 16-bit

numbers. Figure 12 shows the block diagram for the 16-bit Fast Compare Unit.

Figure 12: Block Level Diagram For 16-Bit Fast Compare Unit
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3.3.3 32-Bit Fast Compare Unit

The 32-Bit Fast Compare Unit is comprised of three stages. The first stage uses

eight four-element fast compare units to compare every 4-bits of the input numbers.

The second stage is comprised of two four-element fast compare units and takes in

the result of the four sets of 2-bit numbers and computes the result for the 16-bit

numbers. The third and final stage takes the output of the second stage and puts it

through a single two element fast compare unit to compute the final result for the

32-bit numbers. Figure 13 shows the block diagram for the 32-bit Fast Compare Unit.

Figure 13: Block Level Diagram For 32-Bit Fast Compare Unit

3.4 Pipelined Sorting Unit

The addition of the hardware sorting units to the execute stage causes the system

to run at a slower frequency than the 167 MHz frequency of the unaltered processor.

This is caused by the fact that the hardware sorting units adds logic delay to the

execute stage. For applications that are heavily dependent on the sorting instruc-

tion, the reduction of the maximum frequency is a small price to pay for the overall
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performance the sorting unit provides. However, in applications that do not use the

sorting instruction heavily, the reduction of the maximum frequency can offset the

performance increase the sorting unit provides. For example a 3x3 median filter appli-

cation on a 512x512 image uses about 52,540,000 instructions to perform the median

filter on the original RISC-V processor, which runs at a maximum frequency of 166.6

MHz. Of the 52,540,000 instructions 95.8% of the instructions are used to perform

the sorting application. This means that when using a hardware sorting unit it would

require 2,863,000 instructions to run the same application. For this example, to see

an overall speedup in the application run time the slowest max frequency possible

would be 8.7 MHz. Not all applications will be as dependent on sorting operations as

median filtering is. If an application only has 10% of its instructions as sort instruc-

tions the reduction in the clock frequency caused by the hardware sorting units will

outweigh the benefits that they provide.

Pipelining can be used to combat the clock frequency problem that is caused by

the addition of the hardware sorting units. Pipelining is the process of breaking a

large hardware block into multiple stages in order to speed up the maximum clock

frequency of the processor. The hardware unit is broken into multiple stages by

inserting flip-flop registers in between combinational logic blocks.

Using the pipelining technique on the hardware sorting units proposed in this work,

the clock frequency can remain unchanged from the RISC-V reference design. To

pipeline the sorting units, flip-flops were added to the sorting units in the 2-element

compare blocks. The flip-flops were then placed in their optimal locations using the

Vivado Synthesis Retiming Tool. The Retiming Tool is an automated process built

in to the Vivado Tool Chain that finds the optimized locations to place the flip-flops

in order to maximize the clock frequency of the design and minimize the hardware

resources the flip-flops require. By adding the flip-flops and using the Vivado Retiming
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Tool the hardware sorting units were broken into 28 stages. By breaking the hardware

sorting units into 28 stages the maximum frequency for all the designs was increased

from their unpipelined frequencies. The pipelined designs’ maximum frequencies were

all increased to 167 MHz (the clock frequency of the unaltered processor). The

increase of the clock frequency, however, did not come without cost. The addition of

the flip-flop registers to the hardware sorting units increased the resources required

for the systems, in particular the added flip-flop registers used an additional 1500

flip-flops out of the 19730 flip-flops required to implement the entire unpipelined

processor.
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Chapter 4

RESULTS AND ANALYSIS

The proposed systems were synthesized using Vivado 2018.1 and placed on a Digilent

Nexys 4 DDR Development board with a Xilinx Artix-7 FPGA. To collect the timing

measurements for each system, signals were output to pins on the board and the

timing measurements were taken using an oscilloscope. The benchmark used to test

the performance for all the systems was a 3x3 median filter on various image sizes

(with the size of the data being 8 bits) ranging from 16x16 to 64x64. For the unaltered

RISC-V processor (no sorting unit/instruction) the sorting algorithm used was an

Insertion Sort algorithm. All other processors used the added sort instruction to

perform the sort operation required for median filtering. Adequate testing for each

design was done to verify that the system was performing as designed. The naming

convention used in the results and analysis is as follows: original RISC-V processor

with no sorting unit or sorting instruction (unaltered processor), 32-Bit Sorting Unit

with basic VHDL comparator (32-Bit VHDL Compare), 32-Bit Sorting Unit with

fast compare unit (32-Bit Fast Compare), 16-Bit Sorting Unit with basic VHDL

comparator (16-Bit VHDL Compare), 16-Bit Sorting Unit with fast compare unit (16-

Bit Fast Compare), 8-Bit Sorting Unit with basic VHDL comparator (8-Bit VHDL

Compare), and 8-Bit Sorting Unit with fast compare unit (8-Bit Fast Compare).

4.1 Results

The timing results were measured by outputting a start signal to a pin on the board

when the code first begins. Once the code has finished a done signal is then output to

a pin. The oscilloscope measures the time difference between when the two signals go
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high, to determine the time the code runs on each system. Table 1 shows the timing

results for all the unpipelined systems. Figure 14 shows the timing results for all the

unpipelined systems in a graph format while Figure 15 shows the timing results for

the systems normalized with respect to the timing results for the unaltered processor.

Table 1: Timing Results of Unpipelined Systems

Processor Type Max Freq 16x16 32x32 64x64

Unaltered Processor 167 MHz 742 us 2.51 ms 9.72 ms
32-Bit VHDL Compare 9.1 MHz 119 us 544 us 2.17 ms
32-Bit Fast Compare 9.34 MHz 107.4 us 532.1 us 2.15 ms

16-Bit VHDL Compare 10 MHz 64.5 us 255 us 1.352 ms
16-Bit Fast Compare 10.2 MHz 62.2 us 253.7 us 1.338 ms
8-Bit VHDL Compare 11.76 MHz 52.0 us 147.2 us 576.4 us
8-Bit Fast Compare 11.76 MHz 52.0 us 147.0 us 577.0 us
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Figure 14: Timing Results of Unpipelined Systems
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Figure 15: Normalized Timing Results of Unpipelined Systems

The addition of the hardware sorting units have been proven to improve the perfor-

mance of the system on sorting applications, however, this improvement comes at a

cost. The addition of sorting units require the use of additional hardware resources to

implement. The fast compare units also improve the performance of the systems but

they too come at a hardware cost. These hardware resource costs are measured in

look-up table (LUTs) slices used as reported by Vivado after implementation. Table

2 and Figure 16 show the hardware cost of the various sorting unit implementations.

For a more detailed break down of the hardware resources required for the various

processor components see Appendix A. Figure 17 shows a graph of the normalized

LUT usage of the sorting units with the fast compare units. The sorting units with
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the fast compare units are normalized with respect to the sorting units of the same

size with the basic compare.

Table 2: Area Usage of Sorting Units

Sorting Unit Type LUTs Used

32-Bit VHDL Compare 7028
32-Bit Fast Compare 25546

16-Bit VHDL Compare 3520
16-Bit Fast Compare 9827
8-Bit VHDL Compare 1762
8-Bit Fast Compare 2777
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Figure 16: Area Usage of Sorting Units

The proposed systems that use the 16-bit and 8-bit sorting units use multiple (two

and four respectively) sorting units each in their designs. Therefore, the systems that

utilize these units require additional hardware resources to accommodate the parallel
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Figure 17: Normalized Area Usage of Sorting Units

sorting units. The total hardware resources required to implement the each system

are shown in Table 3 and Figure 18. The normalized area used with respect to the

area used by the unaltered processor is shown in Figure 19.

Table 3: Area Usage of Processors

Processor Type LUTs Used Normalized LUTs Used

Unaltered Processor 31321 1
32-Bit VHDL Compare 40765 1.301
32-Bit Fast Compare 59754 1.907

16-Bit VHDL Compare 39854 1.272
16-Bit Fast Compare 50753 1.620
8-Bit VHDL Compare 39875 1.273
8-Bit Fast Compare 46761 1.492

4.1.1 Pipelined Sorting Units

The timing results for the systems that use the pipelined sorting units were gathered

identically to how the other timing results were captured. The pipelined systems were
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implemented on the same in-order processor as the other systems with the hazard

unit stalling the processor for the sort instructions. Each time a sort instruction

was received by the processor the processor would stall all future instructions while it

waited for the sort instruction to complete. Table 4 shows the timing results for all the

pipelined systems and the unaltered processor. Figure 20 shows the timing results for

all the pipelined systems in a graph format while Figure 21 shows the timing results for

the pipelined systems normalized with respect to the timing results for the unaltered

processor. The systems with the fast compare units were also tested but were shown

to run at the same time as the systems that use the VHDL compare. This can be

attributed to both systems requiring the sorting units to be broken into 28 stages.

This means that the additional timing benefits the fast compare units gained were
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Figure 19: Normalized Area Usage of Processors

lost when the entire sorting units were pipelined. The hardware resources required

to implement the pipelined systems were identical to their unpipelined counterparts

in the number of LUTs required, however, the number of flip-flops differed. The

pipelined systems used an additional 1500 flip-flops versus the unpipelined systems.

Table 4: Timing Results of Pipelined Systems

Processor Type Max Freq 16x16 32x32 64x64

Unaltered Processor 167 MHz 742 us 2.51 ms 9.72 ms
32-Bit Pipelined 167 MHz 184 us 838 us 3.35 ms
16-Bit Pipelined 167 MHz 147 us 784 us 2.07 ms
8-Bit Pipelined 167 MHz 109.4 us 677 us 1.63 ms
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4.1.2 Estimated Power Consumption

Along with the timing results and area usage of the systems the power consumption

of each system was also recorded. The power consumption for each system however,

is only the estimated power consumption. The estimated power consumption for each

of the systems was recorded using the Vivado Power Analysis Tool. Table 5 shows

the estimated power consumption of each design along with the normalized power

consumption with respect to the unaltered processor. Figure 22 shows a graphical

representation of the estimated power of the systems while Figure 23 shows the nor-

malized power consumption of each system with respect to the unaltered processor.

34



0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

16x16 Median Filter 32x32 Median Filter 64x64 Median Filter

N
o

rm
al

iz
ed

 T
im

e 
w

it
h

 R
es

p
ec

t 
to

 t
h

e 
U

n
al

te
re

d
 P

ro
ce

ss
o

r 
Ti

m
e

Median Filter Image Size

32-Bit Pipelined

16-Bit Pipelined

8-Bit Pipelined

Figure 21: Normalized Timing Results of Pipelined Systems

Table 5: Power Consumption of Systems

Processor Type Power Consumption (W) Normalized Power

Unaltered Processor 0.523 1
32-Bit VHDL Compare 0.682 1.30
32-Bit Fast Compare 0.786 1.50

16-Bit VHDL Compare 0.681 1.30
16-Bit Fast Compare 0.760 1.45
8-Bit VHDL Compare 0.679 1.29
8-Bit Fast Compare 0.734 1.40

32-Bit Pipelined 1.507 2.88
16-Bit Pipelined 1.319 2.52
8-Bit Pipelined 1.027 1.96
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Figure 23: Normalized Power Consumption of Systems
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4.2 Analysis

4.2.1 32-Bit VHDL Compare Unpipelined

The 32-bit sorting unit with the basic VHDL compare performed well against the

unaltered processor. The implementation of the sorting unit caused a 5x to 7x increase

in speed at which the code ran. Although, the median filter code saw a large decrease

in the runtime the implementation of the 32-bit sorting unit caused a 18.35x reduction

in the maximum frequency of the processor. This means that the sorting unit will

reduce the performance on code that does not rely heavily on sorting. The 32-bit

sorting unit with the basic VHDL compare also increased the hardware resources

required for the processor by 130%.

4.2.2 32-Bit Fast Compare Unpipelined

The 32-bit sorting unit with the fast compare unit performed slightly better than the

32-bit sorting unit with the VHDL compare. The 32-bit fast compare ran at 9.34

MHz, which is .24 MHz faster than the VHDL compare but still 17.88x slower than

the unaltered processor. The fast compare unit gave the 32-bit sorting unit a slight

advantage over the basic VHDL compare, but, it came at a steep hardware resources

cost. The 32-bit fast compare unit used 3.6x the LUTs that the VHDL compare used.

This means that when implemented into the processor the 32-bit fast compare sorting

unit used nearly 2x the hardware resources that the unaltered processor used. If

performance is the only measurement important to a design or the hardware resources

are abundant, the 32-bit fast compare unit can be used, otherwise the steep hardware

resource cost may make it impractical to implement into a processor design.
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4.2.3 16-Bit VHDL Compare Unpipelined

The 16-bit sorting unit with the basic VHDL compare was shown to outperform both

the unaltered processor and both the 32-bit sorting units. The implementation of

the sorting unit caused a 7x to 11.5x increase in speed at which the code ran. The

16-bit sorting unit not only was able to run at a faster max frequency (10 MHz) than

the 32-bit processor but the ability to use two sorting units in parallel improved the

performance of the design. The 16-bit sorting unit still has the same problem as the

32-bit sorting units with the max frequency being 16.7x slower than the unaltered

processor. Although two 16-bit sorting units were implemented in the design, the

hardware resource cost was still less than the 32-bit sorting units. The 16-bit sorting

unit saw a 127% increase in hardware resources when compared to the unaltered

processor.

4.2.4 16-Bit Fast Compare Unpipelined

The 16-bit sorting unit with the fast compare unit had a slightly smaller performance

increase compared to the 16-bit sorting unit with the VHDL compare than its 32-bit

counterparts. The decrease in the performance increase between the fast compare unit

and VHDL compare in the 16-bit sorting unit is most likely caused by the fact that

there were less bits to work with. With the 32-bit units there were 2x the number

of bits to optimize when switching from the VHDL compare to the fast compare

unit. This is a common occurrence when optimizing hardware, the more hardware to

optimize the larger the percent yield of those optimizations. The 16-bit fast compare,

however, still saw an increase in the max frequency of .2 MHz when compared to the

VHDL compare. Similar to the 32-bit sorting units the 16-bit fast compare came at a

steep hardware resource cost. The 16-bit fast compare unit used 2.79x the LUTs that
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the 16-bit VHDL compare used. When implemented into the processor the 16-bit fast

compare sorting unit used 1.6x the hardware resources that the unaltered processor

used.

4.2.5 8-Bit VHDL Compare Unpipelined

The 8-bit sorting unit with the basic VHDL compare was shown to outperform all

previous processor designs. The implementation of the sorting unit caused a 14.27x to

16.86x increase in speed at which the code ran. The 8-bit sorting unit was able to run

at the fastest frequency (11.76 MHz) of any of the processors with an implemented

sorting unit. The 8-bit sorting unit was not only able to run at the fastest max

frequency but because the benchmark’s data size was 8 bits the four sorting units

working in parallel also allowed the processor to perform multiple operations during

a single clock cycle. This size of the benchmark data and the multiple sorting units

allowed the 8 bit sorting unit to have a performance advantage over its 16 and 32 bit

counterparts. The 8-bit sorting unit saw a similar LUT usage as the 16-bit sorting

unit, with the 8-bit sorting unit using 1.27x the hardware resources as the unaltered

processor.

4.2.6 8-Bit Fast Compare Unpipelined

The 8-bit sorting unit with the fast compare unit was shown to perform nearly identi-

cally to the 8-bit sorting unit with the VHDL compare. Both designs had a maximum

clock frequency of 11.76 MHz and ran the median filter benchmarks in nearly identi-

cal times. Similar to how we saw a decrease in the performance increase between the

fast compare unit and VHDL compare when going from 32-bit to 16-bit systems a de-

crease in the performance increase occurred when going from 16-bit to 8-bit systems.
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This decrease caused the 8-bit systems to perform nearly identically. This non-change

in performance between the two systems is most likely caused by the fact that the

optimizations to the hardware were so minuscule that the overall performance did not

change. The addition of the fast compare unit did result in an increase in the hard-

ware resources the sorting unit requires. The 8-bit fast compare sorting unit requires

1.57x the LUT resources that the 8-bit sorting unit with the VHDL compare uses.

This means that the system with the 8-bit fast compare sorting unit uses 1.49x the

LUTs that the unaltered processor uses while the 8-bit sorting unit with the VHDL

compare uses only 1.27x the LUTs. Due to the increase in the LUTs required to

implement the 8-bit fast compare sorting unit and the identical performance to the

8-bit sorting unit with the VHDL compare there is no reason to use the fast compare

unit in the designs with 8 bits.

4.2.7 Pipelined Sorting Units

The pipelined sorting units were shown to outperform the unaltered processor but

had a decrease in performance when compared to their unpipelined equivalents. The

decrease in performance can be attributed to the implementation of the pipelined

sorting units and the type of benchmark being used. The pipelined sorting units

were implemented by adding flip-flop registers into the sorting unit to break the

sorting unit into 28 different stages. Each of these stages then takes 6ns to run.

Since the pipelined sorting units were implemented in an in-order processor, holds

were added to the hazard unit to accommodate the extra stages in the execute stage

caused by the multi-stage sorting units. These holds were added to the hazard unit

to stop the pipeline until the sort instruction has completed in the execute stage.

This would cause every sort instruction to take 168ns (28 stages x 6ns per stage =

168ns) to run while all other instructions take 6ns. While this pipelining caused all
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other instructions to run at a much faster rate when compared to the unpipelined

systems it reduced the speed at which sort instructions can be run. The addition

of pipelining would then be a great alternative to the unaltered processor or the un-

pipelined systems when an application uses sort instructions but does not heavily

rely on them. However, the benchmark used in testing was heavily reliant on sort

instructions which made the pipelined systems perform worse than the unpipelined

systems. Although the pipelined systems did not outperform their unpipelined coun-

terparts on this benchmark they still were shown to have a significant performance

advantage over the unaltered processor without the significant clock frequency re-

duction the unpipelined systems had. The clock frequency improvement caused by

pipelining the sorting units also did not come at a high hardware resource cost. The

flip-flop registers required to meet the unaltered processor clock frequency came at a

cost of only 1500 flip-flops. When compared to the nearly 20,000 flip-flops required

to implement the entire system, the additional flip-flops is less than 10% additional

overhead for timing elements.
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Chapter 5

CONCLUSION

This work demonstrates that an addition of a hardware sorting unit to a RISC-

V processor has the potential to increase the overall performance of the processor.

With the addition of the fast compare units described by Deb and Chaudhury the

hardware sorting units can be improved upon to increase the performance of the

sorting operations even further. The addition however, of the fast compare units

required a large number of hardware resources to implement and provided only a

slight performance advantage. This means that the sorting units with fast compares

are only practical to use in situations where the speed is of the utmost importance

or where the design has extra unused area that can accommodate the fast compare

units.

The proposed designs were not only shown to work in simulation but the work was

extended to show the results carried over when implemented on the Xilinx Artix-

7 FPGA. The sorting units were shown to reduce the runtime of a median filter

application by a factor of between 5 and 16 when compared to the original RISC-V

processor. The increased speed at which the median filter application was able to

run did not come without costs. The maximum clock frequencies of the processors

with the implemented hardware sorting units were up to 18x slower than the original

processor. The only exception to this was the pipelined processor that was shown to

run at the same frequency as the original processor. To see how the various design

components proposed in this work compared to the components mentioned in the

related work see Appendix B.
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5.1 Future Work

A natural next step to the work presented is to keep extending the median filter

benchmark to larger image sizes. With image sizes always expanding and current

images of size 4096x2160, logging the performance of the proposed designs on larger

image sizes would be beneficial. Expanding the benchmarks to larger images requires

the use of more hardware resources and longer synthesis and implementation times.

The pixel values of the image are stored in a RAM module for the processor to access

when needed. So as the image sizes increase, so too does the RAM module which

increases the hardware resources required and increases the time Vivado needs to

synthesize/implement the design. Currently the benchmarks shown in this work used

all the hardware resources the Xilinx Artix-7 FPGA could provide. Given a larger

FPGA and a more powerful computer to reduce the compile times, larger images can

be benchmarked on the proposed designs.

Another possible addition to the work presented would be to implement the pipelined

hardware sorting units on a RISC-V processor that uses out-of-order execution. The

processor used in this work was an in-order processor. An in-order processor does

not allow for the pipelined hardware sorting unit to be run on the side while other

instructions are being run (the optimal way to use the pipelined sorting unit). In order

to implement the pipelined sorting unit the processor would need to be converted to

an out-of-order processor. This would allow for the pipelined hardware sorting unit

to be used to its full potential.
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APPENDICES

Appendix A

AREA USAGE OF COMPONENTS

Table 6 shows the number of Look-Up-Table used to implement a few of the compo-

nents in the processor.

Table 6: Area Usage of Processor Components

Processor Component Look-Up-Table Usage

32-Bit Fast Compare Unit 18514
32-Bit Hardware Sorting Unit 9145

16-Bit Fast Compare Unit 6307
16-Bit Hardware Sorting Unit 4132

Vector Register File 3054
8-Bit Hardware Sorting Unit 2884

General Purpose Register File 1665
8-Bit Fast Compare Unit 1015

Prefetch Buffer 209
Arithmetic Logic Unit (ALU) 19

Decoder Unit 18
32-Bit VHDL Compare 4
16-Bit VHDL Compare 2
8-Bit VHDL Compare 1
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Appendix B

RELATED WORK RESULTS COMPARISON

Table 7 shows the various metrics of the hardware sorting unit designs proposed in

this paper and the metrics of the similar components from the papers discussed in

the related work. Table 8 shows the metrics of the proposed fast compare units

compared to the results achieved in the papers discussed in the related work. Not all

metrics were listed in the related work papers so only the information posted will be

compared.

Table 7: Hardware Sorting Metrics Compared to Results in the Related
Works

Sorting Unit LUT Usage Total Latency

32-to-4 Sorting Units [16] 2714 40 ns
16-to-4 Sorting Units [16] 1199 25.2 ns

Folded Sorting Units (128 Elements) [24] 14923 Not Provided
Insertion Sorting Units (128 Elements) [24] 16420 Not Provided

Balanced FIFO Sorting Units (1k Elements) [24] 362 Not Provided
32-Bit Sorting Unit (Proposed) 7024 110 ns

32-Bit Fast Compare Sorting Unit (Proposed) 25546 107 ns
16-Bit Sorting Unit (Proposed) 3420 100 ns

16-Bit Fast Compare Sorting Unit (Proposed) 9827 99 ns
8-Bit Sorting Unit (Proposed) 1762 85 ns

8-Bit Fast Compare Sorting Unit (Proposed) 2777 85 ns

Table 8: Fast Compare Unit Metrics Compared to Results in the Related
Works

Processor Component Latency Improvement Over Traditional

32 Bit Fast Compare Unit [13] 7 ns reduction
32 Bit Fast Compare Unit (Proposed) 3 ns reduction
16 Bit Fast Compare Unit (Proposed) 1 ns reduction
8 Bit Fast Compare Unit (Proposed) 0 ns reduction
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