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ABSTRACT 

Strawberry Detection Under Various Harvestation Stages 

Yavisht Fitter 

 

This paper analyzes three techniques attempting to detect strawberries at various stages in 

its growth cycle. Histogram of Oriented Gradients (HOG), Local Binary Patterns (LBP) and 

Convolutional Neural Networks (CNN) were implemented on a limited custom-built dataset. The 

methodologies were compared in terms of accuracy and computational efficiency. Computational 

efficiency is defined in terms of image resolution as testing on a smaller dimensional image is 

much quicker than larger dimensions. The CNN based implementation obtained the best results 

with an 88% accuracy at the highest level of efficiency as well (600x800). LBP generated 

moderate results with a 74% detection accuracy at an inefficient rate (5000x4000). Finally, HOG’s 

results were inconclusive as it performed poorly early on, generating too many misclassifications.           
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                Chapter 1 

         INTRODUCTION 

Object detection is the ability for a machine to automatically extract and distinguish data from 

the environment around it. It is a crucial aspect of Computer Vision as it gives the system a sense 

of perception. Object detection is the second step in the image analysis category as it builds on 

top of the first step, image classification. Unlike image classification which simply classifies a 

given image, object detection requires the system to be able to localize the object(s) within the 

environment while classifying it. Object detection has vastly progressed over the last decade and 

thus has resulted in multiple techniques being established. Each technique has its unique 

advantages therefore some tend to perform better under certain environmental conditions over 

the others. In this paper, three popular techniques will be analyzed; a gradient/angular based 

feature extractor in Histogram of Oriented Gradients, a texture-based method in Local Binary 

Patterns, and finally, a neural network-based approach employing a variation of a Convolutional 

Neural Network. The three techniques will be applied in the agricultural setting, specifically 

strawberry detection and compared amongst each other in terms of performance.       

1.1 Statement of Problem 

      Computer vision has had an exponential resurgence over the last decade and hence it’s 

being applied into a variety of industries for the primary purpose of improving productivity and 

safety [1]. The agriculture industry, primarily within the state of California depends heavily on farm 

workers to constantly look after their crops throughout the year, as California accounts for over 

13% of the nation’s agricultural value [2]. A shift in the demographic landscape overtime has 

begun taking its toll on farmers as there has been a significant labor shortage in California [1]. 

This labor shortage is not cost efficient either and has thus provoked the farmers to double their 

workers’ pay within the last 10 years [1]. Workers are also expected to harvest throughout the 

year which usually includes in-humane conditions during certain periods of the year [1]. It is key 

for farmers to have consistent labor crew especially during these extreme weather periods of the 

year otherwise significant crop loss can occur. Strawberries are the second most popular fruit 

grown in California however almost 10% of strawberry crops can go unharvested in a single year 
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resulting in massive strawberry wastage [3]. This is a large percentile given the fruit is grown at 

an astounding rate of over 3 billion per year [2].  

To prevent the farming industry from being crippled any further, the primary issue this paper 

proposes to tackle is detecting the strawberries in its natural bed setting at various stages which 

can be invaluable for fruit counting and predicting optimal harvest times. The technical challenge 

this task deals with is small object recognition. In complex environments as this, smaller objects 

can easily blend in with the background therefore making it difficult to isolate it.   

1.2 Data Collection 

1.2.1 Plot and Bed Locations 

      The images were taken at Verticillium Field 25 at the Cal Poly strawberry fields. The specific 

section of the field where the images were taken was named 90 cv; trial planted on October 23, 

2017. The specific region can be seen on the bottom left of the map layout in Figure 1.   

      Figure 1: Entire Layout of the Strawberry Beds Part of Field 25 at Cal Poly, SLO 

Five beds were chosen in total for data collection; each bed had a total of 20 plants. The beds 

chosen were the following: 
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• Bed: Festival (Row 4) 

• Bed: Enchante (Row 5) 

• Bed: Osceola (Row 5) 

• Bed: LC-2(77) (Row 8) 

• Bed: BG(4.367) (Row 11)  

1.2.2 Images Captured 

      The data collection process started from November 2017 and ended in June 2018. Images 

were taken twice a week to witness a consistent growth cycle, primarily Tuesdays and Fridays. 

Figure 2 displays a time-lapse of a sample bed set taken on the first data collection day of each 

month from January to June. A standard smartphone (Samsung galaxy s8) was employed to 

capture all the images at an average height between 4 to 5 ft. The images were taken at a 

resolution of 3042x4032, where out of the total 600 images collected, 452 were employed for 

training and 148 for testing, hence resulting in a 75:25 data split. The images were captured in a 

specific order each time to maintain consistency. On average each bed within this sector of field 

25 contained 20 strawberry plants. The images were captured in sets of 5 for each bed instead of 

taking the picture of the entire bed at once. However, before any of the images were taken, a 

picture of the bed name tag was taken as well to prevent any confusion towards labeling each 

picture. The bright red strawberries are considered the ripe strawberries while the yellow/green 

strawberries are unripe strawberries. A local folder containing two classes of labeled images was 

employed to train the model. The labels were “strawberry” and “non-strawberry” thus representing 

a binary data set. The training data was created by manually cropping out each strawberry from 

the original training data. There wasn’t enough strawberry images collected to split the 

strawberries into separate folders of ripe and unripe strawberries, so all the strawberries were 

stored in a single folder. There were 924 strawberry and 1259 not images. A small blue penny 

was placed in the image for two primary reasons; gauge the distance from the camera to the 

plants and given the distance determine the size of the strawberries given the penny’s relative 

size. The blue penny can be seen in most of Figure 2’s images. The goal of this project is to 

detect ripe/unripe strawberries and the white flowers (white flowers can be seen in Figure 2e).  
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a) January stage  

 

b) February stage  
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c) March stage  

 

d) April stage  
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e) May stage  

 

f) June stage 

   Figure 2: Time Lapse of Enchante Bed 1 from January to June  
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1.3 Challenges  

The challenges faced during the data collection period were two-fold:                 

Heavy amounts of rain would fall during the months of January till March in San Luis Obispo and 

therefore this would at times destroy some of the strawberries due to high levels of flooding. The 

plants would then take another few weeks to grow the strawberries again and hence adding 

inconsistencies to the data set as this would result in more immature strawberries than mature for 

those months. The second issue involved the ripe strawberries being picked off the beds without 

notice. This would prevent us from seeing the entire life cycle of the strawberry, including its 

decay stage. This is vital information for one attempting to implement a robust harvest prediction 

model.  
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                  Chapter 2 

  LITERATURE REVIEW 

2.1 Automated Visual Fruit Detection for Harvestation Estimation and Robotic Harvesting (S. 

Puttermans et al., 2016) 

This paper tackles automated fruit harvestation by applying machine learning and image 

processing techniques. The fruits employed in this paper were strawberries and apples as they 

both have similar color characteristics. Due to my work focusing primarily on strawberry detection 

I will only focus on the strawberry implementation and results discussed within this paper [4].  

2.1.2 Procedure 

In the paper, the authors generated their own strawberry dataset as there were none 

available for their application. The strawberry bed images were captured at a resolution of 

1292x964. 205 positive and 200 negative images were gathered for training each at a constant 

dimension of 35x38. To distinguish between strawberries from the background, strawberry and 

background leaf images were taken as part of the dataset. To detect the strawberries, Local 

Binary Patterns (LBP) [5] were used as the primary feature descriptor and a cascade classifier 

using adaboost was employed to deal with the classification task. Before the training step, a 

preprocessing technique in histogram equalization was applied to deal with the lighting. The 

training images were then converted to grayscale as LBP’s only take in 2D data thus making 

color (RGB) images invalid inputs. Since LBP’s are unable to distinguish objects with color both 

unripe and ripe strawberries features were extracted simultaneously. The LBP feature points 

were then passed into the adaboost classifier [6]. To isolate the ripe strawberry detections, a post 

image processing technique in channel subtraction was applied where the following equation was 

employed.  

            

The equation states to keep the pixel values greater than zero if the red channel is the dominant 

channel when subtracting the green channel from it. This ensures a “red object” is present within 

the proposed region. Once the green channel pixels have been subtracted, global binary 
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thresholding was applied upon the proposed region. Upon thresholding, the total pixels were 

calculated and if more than 50% of the resulting pixels were white, this detection was kept as a 

ripe strawberry. This post processing method allowed them to get rid of any unripe strawberries 

or false positives detected and box only the ripe strawberries. Some of the detected strawberries 

were at times boxed as a single detection due to their close proximity to each other. To deal with 

this the paper applied watershed segmentation on the detected region.   

2.1.3 Results and Analysis 

Unfortunately, the paper does not seem to provide concrete results for their strawberry 

detection techniques stating that the accuracy can be objective due to the lack of ground truths 

determining what can and cannot be considered a ripe strawberry as the strawberry growth 

process is not binary. However, the techniques used in this paper seem very useful and have 

great potential in strawberry detection. Hence, I will be employing several techniques discussed 

in this paper as part of my project as well. Their technique does have one limiting factor, as their 

primary goal did not include unripe strawberry detection as well and thus this technique does not 

guarantee success for immature strawberries. While attempting to employ their paradigm for 

unripe strawberry recognition, several misclassifications in the form of background leaves is 

possible.     

2.2 A Deep Learning Method for Recognizing Elevated Mature Strawberries (X. Li et al., 2018)   

Two approaches are taken in this paper to detect ripe strawberries, first HOG+SVM was 

employed as a gradient based feature descriptor and thereafter a convolutional neural network-

based approach was implemented to classify mature strawberries [7]. 

2.2.1 Procedure 

A total of 2000 training images were utilized, where 1000 represented positive ripe 

strawberries and the remaining 1000 were background/non-strawberry images. For the HOG 

technique [8] [9], the training images were then converted to grayscale and passed into the HOG 

descriptor which returns a multi-dimensional vector representing the shape of the object. 

However, due to HOG not being able to extract color features from the object, the paper 

discusses an alternative method to deal with this issue. The image was then separately converted 
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to the HSV color space. Thereafter, the variance of the H channel was taken which gave it 

information about the strawberry’s color. This additional vector was then concatenated onto the 

multi-dimensional shape vector returned by the HOG descriptor. This led to a final shape and 

color feature vector being generated which was then passed into the classifier for training. The 

classifier leveraged in this case was an SVM [10]. The sliding window technique was applied on 

the test images to extract the ROI and perform ripe strawberry classification. The ROI’s HOG + 

variance vector would get passed into the SVM classifier and if the feature points resided in the 

strawberry class a bounding box would then get placed on that respective ROI.     

The CNN procedure was implemented thereafter, the network architecture employed in their 

paper was CaffeNet [11]. The network consists of 8 layers, where the first 5 layers are 

convolutional layers and the remaining 3 are fully connected layers. The images were trained in 

batches of 64 and the model ran for 20,000 iterations. Figure 3 displays the network structure 

employed as per their paper.  

 

Figure 3: CaffeNet Network Architecture Used for Mature Strawberry Classification  

2.2.2 Results and Analysis 

The detection criteria were broken down into 3 types for both models; single strawberry, leaf 

shelter and fruit overlap. Under the HOG+H+SVM model the best results came when employing a 

Radial Basis Function kernel for the SVM classifier. Single strawberries had an accuracy rate of 

99.05%, leaf sheltered was approximately 83.84% while fruit overlap was at 74.26%. When 

employing CaffeNet the results improved significantly as under the same constraints the 

accuracies were 99.05%, 92.9% and 95.05% respectively. 

The results were relatively positive and specific techniques will certainly be used as part of 

my methodology as well. However, there are still three major drawbacks from their testing data; 

their detection process occurred at elevated farms and hence all the strawberries were hanging 
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off the branches. This meant that the background in their testing image set primarily consisted of 

the tarp with few leaves. Even under the “leaf overlap” constrain, only couple leaves were 

involved in front or behind the strawberry which is much fewer than in my dataset. Figure 4 

displays the scene under which the image was taken. The second issue was in the distance at 

which the strawberries were detected at. The strawberry images were taken at a relatively close 

proximity, no more than a foot away from each strawberry at most as seen in Figure 5. Finally, 

their goal was to only detect ripe/red strawberries and hence if any false positives were detected 

on the leaves, they could simply segment it out as the green strawberries were not of their 

concern in this project. These problems will prove to be challenging when dealing with my dataset 

and hence additional image processing techniques will have to be added into the detection 

algorithms to prevent these issues from occurring.     

 

 

Figure 4: Elevated Strawberry Scene Provided in the Paper  

  

Figure 5: Strawberry Images Taken at Close Distances 
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2.3 DeepFruits: A Fruit Detection System Using Deep Neural Networks (I. Sa et al., 2016) 

This paper tackled fruit detection using only deep convolutional neural networks. Three 

different classes were used for detection, which included sweet pepper, rock melon and 

background [12]. While strawberries were not specifically part of their fruit dataset, much of the 

techniques should still be applicable for my implementation. Their training data was produced in 

RGB and infrared channels and since RGB images cannot simply be converted to the infrared 

spectrum, the focus in this section will be on the techniques involving the RGB data as my 

dataset consists of RGB images as well. To learn more about the infrared based training 

procedure, refer to the paper [12]. The R-CNN architecture was employed as the detection 

model; the architecture involves 2 networks, first a regular convolutional network followed by a 

region-based network. The general steps taken to detect objects using a R-CNN is as follows: 

(1) Pass an input image into a CNN which will output a feature map from the last layer. 

(2)  Run a sliding window across the feature maps, each siding window is generated at multiple 

aspect ratios.  

(3) The sliding window regions are then passed into the region-based network which produces 

two outputs; a bounding box prediction and a class probability prediction. 

4) The classification output returns the probability of the object detected while the regression 

output returns the bounding box of that respective object.  

The specifics of the network architecture is beyond the scope of this section, refer to the 

original R-CNN paper for more details [13].   

2.3.1 Procedure  

The authors of the paper only had 100 training data images to work with and therefore 

training a network from scratch was not a viable option. A pre-built R-CNN network was employed 

which was trained on the PASCAL VOC dataset which consisted of 20 different objects. However, 

to detect their specific fruits, fine-tuning was performed where the 2 fruits were trained using the 

features generated from the original network. The initial generated features from the pre-trained 

network helped deal with the lack of training data. Off the 2 networks discussed earlier for the R-
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CNN architecture, the VGG16 model was used as the first network to generate the feature maps. 

The VGG model was chosen as it did well in generalizing to the dataset provided.     

2.3.2 Results and Analysis 

Only 22 images were supplied as part of the testing dataset. However, with such a limited 

training dataset the network still achieved an average accuracy of 81.6%. This was the best 

results even over the infrared input images. Fine tuning played a major role in the process. This 

network is definitely an option to consider as well along with the previous techniques reviewed so 

far. R-CNN’s are unique as they run the sliding window on the CNN produced feature map 

instead of just the raw image as done in the past papers. There are two limitations to keep in 

mind prior to using this method. Fine-tuned models are usually trained on much larger image 

dimensions. The strawberries in my dataset are originally cropped to a much smaller size, 60x60 

pixels on average. Hence, resizing the strawberries to forcefully fit the models larger input size 

will cause major discrepancies as this is too significant of a change. The fruits they used to detect 

are much larger than strawberries and therefore their original image sizes while not provided 

seem to be close to the pre-trained models input size. The second issue pertains to my dataset 

having a limited number of training data as well and thus not being able to take advantage of fine-

tuning will hurt my case even more. R-CNN usually consist of deep networks and not having 

enough data can cause overfitting or false positive detections. Their results had quite a few false 

positives even after fine tuning due to their limited dataset and thus my custom CNN will likely 

detect a few false positives of its own. Unfortunately, they did not provide a specific metric to 

determine the number of their false positives. Figure 6 displays the false positives shown in their 

paper.  
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Figure 6: False Positive Detections as a Result from the R-CNN Network   

2.4 Deep Convolutional Neural Network for Automatic Discrimination between Fragaria x 

Ananassa Flowers and Other Similar White Wild Flowers in Fields (P. Lin et al., 2018)  

This paper focuses on flower detection for four different white petal species. Their database 

composed of distinct white flower species in Androsace umbellata Merr, Bidens Pilosa L., 

Trifolium repens L. and Fragaria x ananassa. This publication was selected for review as 

strawberry flowers are part of my dataset as well. Before the strawberry growth cycle occurs, they 

are represented as small white flowers similar to the ones described in this paper [14]. Three 

different techniques were applied to classify the flowers; Pyramid Histogram of Oriented 

Gradients (PHOG) , Scale Invariant Feature Transform descriptor (SIFT) and Convolutional 

Neural Network (CNN).  

PHOG is a derivation of HOG with the major difference being once the gradient image is split 

into cells, the histogram of those cells are taken at several pyramid levels. Applying spatial 

pyramids enables the descriptor to consider features at different scales which was not possible 

before with general HOG. Refer to [15] for more details pertaining to PHOG.  

SIFT is a key point descriptor which employs the Difference of Gaussian filter to obtain these 

interest points. Details on SIFT out of this sections scope, refer to [16] for more information.  

2.4.1 Procedure 

      Unfortunately, the paper did not discuss the implementation procedures for the PHOG or 

SIFT techniques in much detail and therefore only a quick overview of the CNN implementation 

will be focused upon. A total of 400 images were part of their dataset, where each flower specie 

was allocated 100 images. Out of the 100 images provided for each specie, a 60:40 ratio was 
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used for the training and testing set. The CNN composed of 5 convolutional layers followed by 3 

fully connected layers where the networks input size was 227x227. The activation function used 

throughout the network was “ReLU”.  

2.4.2 Results and Analysis 

      The testing dataset was limited to a total of 160 images, 40 for each specie. Despite this the 

CNN performed well with a total accuracy of 95%. Due to CNN’s possessing deep feature 

extraction layers, they can still perform well at times even with limited datasets. The confusion 

matrix provided by the paper for the CNN results can be seen in Figure 7. However, the PHOG 

and SIFT descriptors clearly required more training data as they were only able to achieve an 

accuracy of 63.1% and 55.6% respectively.  

      Limitations: I will not have the luxury to resize my images to a 227x277 input size as the 

strawberries in my testing images are much smaller. Furthermore, when applying object detection 

over classification, one tends to run into more challenges, as the model is being exposed to 

variety of background environments through the windows which were potentially not part of the 

initial training dataset.     

 

Figure 7: Confusion Matrix Representing the CNN Results 
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2.5 Deep Fruit Detection in Orchards (S. Bargoti & J. Underwood, 2016) 

Three types of fruit detection were attempted in this paper; mangoes, almonds and apples 

[17]. The primary technique employed was an R-CNN. The general procedure for R-CNN’s can 

be reviewed again in an earlier discussed paper.             

2.5.1 Procedure 

      The CNN employed as the feature extraction network in the R-CNN was the VGG16 network. 

While VGG networks are known for their accuracy and ability to generalize to the dataset well, 

two issues prevented them from training the network from scratch. 

(1)  Very limited training data was available to them; 729 apples, 1154 mangoes and 385 

almonds.  

(2) VGG Networks are notoriously slow for training due to their architectural design.  

This issue was dealt by applying transfer learning/fine-tuning to the training process. The original 

image dimensions for the apple, mangoes and almond  were 1616x1232, 3296x2472 and 

3456x5184 respectively.    

2.5.2 Results and Analysis 

      480 images in total were used for testing. 90.4%, 90.8% and 77.5% of apple, mangoes and 

almonds were detected respectively. However, even after fine-tuning their results had a large 

amount of false positive and false negatives as seen in Figure 8. Once again, one must take note 

of the simple fact, if a large enough dataset is not provided, the probability of false positives being 

detected are very likely.     
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Figure 8: False Positives Represented in Red and False Negatives in Blue Bounding Boxes  

Unfortunately, the paper did not provide exact numbers as to how many false positives or 

negatives were detected in total or on average per image. This proved once again if one wants to 

employ state of the art detection networks such as R-CNNs, lots of data will have to be available 

to them.   

2.6 Detection and Counting of Immature Green Citrus Fruit Based on the Local Binary Patterns 

(LBP) Feature Using Illumination-Normalized Images (C. Wang et al., 2018)  

This paper discusses three methodologies for detecting unripe citrus fruits; the first method 

involves applying k-means clustering [18], and circular Hough Transform (CHT) [19] to the pre-

processed illuminated images. The second method was using LBP as a feature extractor followed 
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by an adaboost classifier on just the RGB images. Finally, the third method employs the same 

procedure as method 2 but after applying an illumination enhancement technique to the training 

images. 

2.6.1 Procedure 

200 citrus and non-citrus samples were employed for training. For the first method, prior to 

extracting any of the citrus texture or applying k means segmentation [18] to the images a pre-

processing step was implemented which essentially dealt with increasing the brightness of the 

image. The general steps to enhance image illumination were as follows: 

(1) Resize RGB image to 800x600. 

(2) Apply fast bilateral filtering-based retinex to enhance the images illumination. 

(3) Thereafter, apply 2D discrete wavelet transform to fragment each R, G, B channel into low. 

and high frequency components.  

(4) Apply Histogram Equalization and Contrast Enhancement on all frequency components.      

(5) Convert 2D frequency components back to RGB space and recombine the channels. 

(6) Normalize the illuminated image obtained. 

Reviewing each step, in complete detail is out of the scope of this section, however one can 

refer to the paper for more details [20].  The pre and post illumination results on a citrus orchard 

can be seen in Figure 9.  

 

a) Original Image 
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Figure 9: Images Results after Pre-Processing  

      Thereafter, two training stages took place; the initial involved extracting the texture features 

from the raw RGB cropped samples while the second stage involved extracting the texture 

features from the cropped samples of the illuminated version. The LBP extraction technique was 

discussed briefly when reviewing an earlier paper in a previous section.   

 

 

 

 

 

 

 

b) After Illumination enhancement 

 

c) After normalizing image b 
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2.6.2 Results and Analysis 

 

  Table 1: Citrus Detection Results from all Three Methods 

Methods Total Fruit True Positives False Positives Missed 

K-Means + CHT 458 329 (71.8%) 113 (24.8%) 129 (28.2%) 

LBP (RGB) 458 351 (76.6%) 121 (26.4) 107 (23.4%) 

LBP (Illuminated) 458 392 (85.6%) 54 (11.8) 66 (14.4%) 

 

      This paper showed the importance of applying pre-processing to the training data as it can 

have a significant improvement on the results. The pre-processing technique will definitely be 

used as inspiration on my training samples through data normalization and segmentation. 

However, the k-means and CHT techniques will not be employed as one of the techniques on my 

project as this and previous papers reviewed have proven better results are achievable using 

other state of the art techniques specific to object detection. LBP will be one of the techniques 

employed, but a common theme when applying LBP seems to be the high false positive rates, 

this will prove to be a challenging issue to tackle when implementing it on my testing dataset 

especially with the strawberries being much smaller and the background being more complicated. 

      The publications reviewed in this section provided valuable information in understanding a 

variety of techniques implemented in academia so far for fruits detection. HOG and LBP were 

commonly used feature extraction algorithms which performed relatively well and hence I will start 

by implementing those techniques. CNN’s have been the go-to architecture in recent years. The 

results from CNN based architectures were robust even under limited datasets. Therefore, after 

HOG and LBP, I will proceed to employ a CNN based strawberry detector.  
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      Chapter 3 

          TECHNICAL BACKGROUND 

Before going into the implementation, a quick technical overview will be covered on the 

techniques which will be employed. This should give the reader a much better intuition on the 

specifics when analyzing the implementation section.    

3.1 Histogram of Oriented Gradients 

      Histogram of Oriented Gradients (HOG) are feature descriptors which are known for their 

ability to understand objects by calculating the gradient magnitude and direction [8] [9]. The 

general steps taken to obtain the gradient based histogram are as follows: 

(1) Extract the region of interest.  

(2) Apply Sobel operator on the ROI to obtain gradients and angles. 

Magnitude and angle are determined using the equations seen in Figure 10b. 

     

a) Sobel filters to extract the x and y 

gradients 

 

b) Magnitude and angular equations 

Figure 10: Filter and Equations Employed to Derive the Magnitude and Angle  

 

(3) Split image into multiple cells and calculate the histogram of each cell. 
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      Figure 11: Gradients Being Extracted from Each Cell for a Sample Image 

 

(4) Group a block of cells and normalize the histograms respectively. 

(5) Generate the feature vector by concatenating the histograms.    

The feature vectors can then be employed to learn the shape of the object. HOG is simply a 

feature extractor and therefore the features must be past into a classifier for it to be trained upon 

and eventually create a model.   
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3.2 Scale and Rotation Invariant Local Binary Patterns 

Local Binary Patterns (LBP) are another type of feature extractor which have the ability to 

extract texture from the image. LBP’s are processed by iterating a window operator across the 

image. The general overview of the original LBP algorithm is as follows:  

for each image pixel in 3x3 filter window      

if a surrounding pixel is greater than the central pixel  

threshold that respective pixel to a 1 

 else   

threshold to 0  

Array = Mat2Array(thresholded_window)   

Decimal_val = Array2Dec(Array)  

Output_Mat(i,j) = Decimal_val  

 

The  texture-based features extracted from the original algorithm had one major flaw; it lacked 

invariance. A simple 3x3 window can only extract 2^8 bits worth of features and cannot be 

adjusted to deal with the original images size.  

      This issue was dealt by T. Ojala et. al [5] by introducing circular windows which could be 

expanded to any scale based on the number of points and radius parameters. This small change 

proved to be instrumental as LBP’s originally were not scale and rotation invariant. Beyond the 

initial parameter change the remainder of the algorithm is generally the same. The circular 

windows at different scales can be seen in Figure 12.  

 

   Figure 12: Scale and Rotation Invariant LBP Windows 

One must keep in mind that similar to HOG, LBP’s are just feature extractors and therefore the 

features must be passed into classifier for a training model to be built from it.  
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3.3 Neural Networks 

3.3.1 Artificial Neural Networks 

      Neural Networks are algorithms loosely modeled around the human brain, designed to 

recognize patterns. However, before getting into the details pertaining to how the entire network 

functions, one must understand how a single neuron works first. A single neuron is labeled a 

perceptron. A perceptron takes in multiple inputs and produces an output [26]. The inputs are 

connected to a neuron through a synaptic link. The synapses are represented as weights. 

Weights are simply factors expressed as real numbers which determine the importance of the 

input in respect to the output. A linear transformation between the inputs and their respective 

weights are performed upon arrival at the neuron. The linear transformation can be expressed as 

𝑤 ∙ 𝑥 + 𝑏. The variable b represents bias, which simply enables the points to fit around the model 

better by shifting it in the vertical direction, preventing it from fitting around the origin at all times. 

A single perceptron can be seen in Figure 13. 

   

       Figure 13: A General Three Input Perceptron  

Then the linear equation is passed into an activation function. The activation function 

determines if the neuron should “fire” its output. Many mathematical functions are employed to 

represent the activation function, most commonly used functions are Sigmoid and Relu which are 

expressed as 1 1 + 𝑒−𝑥⁄  and   

𝑓(𝑥) = {
0, 𝑥 < 0
1, 𝑥 ≥ 0

 respectively.  

A single perceptron isn’t strong enough to recognize patterns from complicated datasets and thus 

an entire network of them is employed to serve this purpose. Figure 14 displays the general 

layout of a multi-layered perceptron. 
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Figure 14: A General Two Layered Artificial Neural Network  

Each perceptron works together to make complex decisions; in the first layer raw input values are 

passed in and hence simple decisions are made and into the hidden layers more abstract 

decisions are made by utilizing the information giving by the previous layer [26]. However, simply 

feeding data forward through the network doesn’t train the network. The weights must be 

adjusted from its errors for the network to truly learn. The back-propagation methodology 

performs weight training and thus decreasing the error rate.  

3.3.2 Back Propagation 

      The weight training process begins after the input has gone through the all the layers in the 

forward direction and the error is calculated at the end of the output layer [27]. The weights are 

trained during the backward pass using gradient descent which attempts to decrease the loss as 

much as possible by improving the weights. Gradient descent involves taking the derivative of the 

error is respect to the weights 
𝑑𝐸

𝑑𝑊
. However, due to the network involving multiple layers and thus 

having multiple weights, chain rule derivation must be applied to calculate the new weights δW.  

A quick mathematical explanation of the back-propagation procedure on neurons 8,4,1 from 

Figure 14 will be demonstrated for additional clarity. 

   
𝑑𝐸

𝑑W84
 = 

𝑑𝐸

𝑑𝑂8
∙

𝑑𝑂8

𝑑𝜑8
∙ 

𝑑𝜑8

𝑑𝑊84 
   [Layer 3] 

   
𝑑𝐸

𝑑W41
 = 

𝑑𝐸

𝑑𝑂8
∙

𝑑𝑂8

𝑑𝜑8
∙ 

𝑑𝜑8

𝑑𝑂4 
∙ 

𝑑𝑂4

𝑑𝜑4
∙ 

𝑑𝜑8

𝑑𝑊41 
   [Layer 2] 

The two equations above represent the chain rule procedure required to update the weights, 

where 𝜑 represents the neurons respective activation function. The same format would follow for 

all the weights when iterating backwards to update them individually. The training algorithm 
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occurs for n number of epochs where n is supplied by the user. An epoch simply represents the 

forward and backwards pass for all samples in the training dataset. Multiple epochs cycles are 

performed to generate strong results.  

3.3.3 Convolutional Neural Networks 

      A Convolutional Neural Network (CNN) is a specific type of neural network. It is designed to 

train on image type data [28]. It involves iterating a convolutional filter over each input image data 

and thus generating feature/activation maps. Figure 15 displays a filter in respect to its input 

image data.   

 

Figure 15: Convolutional Kernel in Respect to Image 

Each layer consists of a variety of kernels which represent different types of feature extractors. 

Iterating a new filter over an image each time results in a stack of feature maps for each 

respective filter. Each filter can represent different feature extractors. Due to the first layer 

receiving raw pixel data, earlier layers tend to detect low level features such as edges and texture 

while deeper hidden layers generate much more abstract features. The feature map build up for 6 

different filters after a single convolutional layer can be seen in Figure 16.        
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Figure 16: 6 Unique Feature Maps Generated from 6 Different Kernels on the Input Image  

A pooling layer usually follows the convolutional layer to reduce the spatial size, however, the 

layer ordering is dependent on the network architecture. Reducing the feature map dimensions 

significantly decreases the number of parameters and thus increases computational efficiency as 

well. Dimension reduction through pooling can be seen in Figure 17.  

 

 

Figure 17: Result of Applying Pooling Layer     

3.3.4 CNN vs MLP 

      In terms of multi-layered perceptron networks, CNN’s function in a very similar manner where 

𝑤 ∙ 𝑥 +b is followed as well, x is the input image or feature map (depending on the layer) and w is 

the filter. Upon performing the linear transformation, the feature maps are passed through an 

activation function as well where the function determines which pixel values stay and which get 

subdued. The back-propagation algorithm is implemented in a similar manner as well, where the 

filter values/weights are updated to train the network. 

Despite much similarities, there are two key difference between CNN’s and MLP’s.  
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• All the weight connections are independent in MLP’s while weights are shared for each 

feature map in CNN’s due to the same filter being employed for the entire image.  

• Due to the convolutional process, CNN’s are spatially invariant and hence each neuron can 

only contain a single filters information not the entire images. This is unlike MLP’s where 

each neurons in the next layer receive all the information from the previous layer.   

 

      In summary, Neural Networks are extremely powerful techniques over previously discussed 

feature extractors in this section for three major reasons. First, they can function as end to end 

optimizers and thus extract features while being able to classify the data as well. Second, multiple 

features can be extracted from each input data unlike single feature extractors such as LBP or 

HOG. In CNN’s multiple filters can be employed to extract a variety of low- and high-level features 

to better train the network. Finally, neural networks have the ability to represents its data in much 

higher non-linear dimensions and thus is able to group the sample points easily for accurate 

classifications.    
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       Chapter 4 

         IMPLEMENTATION & RESULTS 

4.1 Ripe Strawberry Detection 

4.1.1 HSV Color Segmentation 

      The HSV color space was selected as the color channel to isolate the ripe strawberries. 

Attempting to isolate the red strawberries under the RGB color space can cause 

misclassifications since RGB images tend to generate strong glares over the objects. The HSV 

color space was tested upon, where HSV represents Hue, Saturation and Value. The Hue 

channel defines the color of the image, where each color is represented in terms of angles 

between 0-360. All the general colors and their respective ranges can be seen in Figure 18.  

 

 

Figure 18: Angle Ranges of the H Channel 

 

The S channel represents the “purity” of the color, lowering the number gives the image a much 

more faded effect.  

Finally, the Value channel represents the intensity or brightness of the image, where 0 is 

essentially black and 255 is white.   

Employing the HSV color space, proved to be very effective for the following reasons:  
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(1) dealt with light better than the original RGB color space and thus reduces the reflectance and 

shadow effects casted upon the objects, which was caused by the sun in this dataset.  

(2) The robust angular range representing the colors reduced the challenge of isolating the 

strawberries based on their color.  

This can be very effective for isolating ripe strawberries as the images in the dataset don’t 

contain much red in it besides the ripe strawberries themselves.     

To prevent repetition, the figures displaying the HSV images and the strawberry isolation can be 

seen directly in the Ripe Strawberry Implementation section below.  

4.1.2 Manual Training 

      The strategy taken to localize the ripe strawberries within the test image revolved around HSV 

color space segmentation. The HSV color space was selected because Hue and Saturation To 

determine the appropriate range which works well with the test images a manual training 

methodology was applied. This methodology consisted of multiple trial and error experimentations 

where various HSV segmentation values were tested on a smaller training set. The 

experimentation was straightforward as the ripe strawberries were the only red colored objects in 

the entire image, making it quite simple to distinguish the ripe strawberries form the background.  

      The segmentation steps taken were as follows: 

First, convert the original image from RGB to HSV color space. Figure 19 displays the original 

image compared to the converted HSV image.  

#convert image color channels 

hsv = RGB2HSV(im) 
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Figure 19: Original RGB Image vs HSV Image 

      Then, isolate the red color space within the HSV image. After multiple trail and errors, the 

range of values were determined and then stored into an array. Two range sets were chosen due 

to red being represented twice, the beginning and end of the hue color spectrum as seen earlier 

in Figure 18.       

 



 
32 

 

#range1   

lower = array([0,90,85]) 

upper = array([5,255,255])   

#range2 

lower = array([165,90,85]) 

upper = array([180,255,255])   

Thereafter, threshold the pixel values representing only the red colored objects in binary form. 

Given the specific range of values, the pixels on the HSV image were isolated.   

#determine pixel ranges to threshold upon   

mask1 = Range(hsv, lower, upper) 

mask2 = Range(hsv, lower, upper) 

mask = mask1+mask2 

Besides simply displaying the binary version of the isolated red pixels, the   colored version was 

displayed as well by applying a bitwise AND between the binary mask and the original image to 

only display the red colored pixels (Figure 20).  

#apply AND operation to threshold the color space 

out = bitwise_and(im, mask) 

  

 Figure 20: Ripe Strawberries Isolated Based on Red Color Segmentation 
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      As a precautionary step, morphological operations were applied onto the images to reduce 

minor noise grains. The operations applied were erosion followed by dilation. While erosion got 

rid of any small noisy pixels, dilation restored the objects that might have gotten damaged due to 

the erosion. The structuring elements applied onto the binary images were 3x3 and 5x5 elliptical 

shapes, for erosion and dilation respectively. Figure 21 displays the before and after results of 

applying morphological operations respectively.   

 

a) Before image consisting of small pixels along with the larger ones 
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b) After image primarily including the larger pixels 

Figure 21: Binarized Images Before and After Applying Morphological Operations 

#structuring elements  

se1 = StructuringElement(ellipse,(3,3))  

se2 = StructuringElement(ellipse,(5,5)) 

#morphological operations applied 

clean_im = erode(mask, se1) 

clean_im = dilate(clean_im, se2)  

The contours of the binarized objects (similar concept as connected components)  were then 

determined to localize the objects within the image.  

#determine the contours of the isolated “objects” 

contours = findContours(clean_im) 

Once the contours were found, an area threshold limit was set on the objects detected to prevent 

detecting extremely small objects. Extremely small detections are unlikely to be strawberries.  

#find pixel area of contour object 

area = contourArea(contours) 
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Given the contour coordinates from the binarized objects, place bounding boxes on those same 

locations in the original image for a cleaner visualization.    

#get box coordinates around the contours and draw them onto the respective objects 

(x, y, w, h) = boundingRect(contours) 

rectangle(im, (x,y),(x+w,y+h), (255, 255, 0), 2) 

4.1.3 Results 

Table 2: Detection Performance of Ripe Strawberries  

Test data True Positives False Positives Clutter boxes Total Berries Accuracy (%)  

1-21 48 2 2 56 86 

22-43 97 5 1 101 96 

44-65 99 6 3 109 91 

66-87 40 1 0 42 95 

88-109 91 6 0 95 96 

110-131 37 4 1 39 95 

132-148 108 5 0 117 92 

 

      Implementing simple color segmentation resulted in being an extremely effective technique as 

it achieved the goal of not only maximizing most of the true positives but also minimizing much of 

the false positives. This was primarily due to the ripe strawberries being the only red objects 

within the test images. Due to its primitive procedure the computation was also extremely efficient 

displaying each test result instantaneously. The average accuracy of the entire testing data set 

was at 93% as inferred from Table 2. A sample result can be seen in Figure 22.  
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      Figure 22: Bounding Boxes Applied on the Original Image (Final Result) 

4.1.4 Flaws 

While this implementation was primarily successful, there were still three minor flaws that 

arose. First, some of the test images had a few false positives at the dirt/soil region as brown 

gravitates closely to red on the hue color spectrum and thus overlapping between the two colors 

can occur (Figure 23a). Second, the edge of the tarp on a few test images were misclassified as 

the sun would cause a strong reflection off the red strawberries onto the tarp, giving that specific 

region a red tint and thus confusing the system (Figure 23b). As displayed from Table 2 only 29 

false positives were detected out of 148 test images; well below even 1 per image. The third and 

final flaw occurred where two red strawberries grew alongside each other thus classifying them 

as one strawberry. Figure 23c displays samples of the cluttering bounding boxes. However, this 

was not a major issue either as this occurred only a total of 7 times within the entire dataset.  
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a) Brown dirt and soil at the bottom being misclassified as a red strawberry 

 

b) Red reflection off the tarp being misclassified as a red strawberry   
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c) Two red strawberries (top-left) beside each other being classified as one  

         Figure 23: Sample Test Images with False Positives 

4.2 Resolution  

Key modifications in terms of accuracy and efficiency can be done under the appropriate 

image resolution. Flower and strawberry detections were attempted under three different 

resolution sizes to determine the lowest resolution at which maximum accuracy can be achieved. 

This also allows one to calculate the maximum height at which images can be captured for data 

collection purposes. To determine the best resolution, the conspicuous criteria would have to be 

met of detecting the most flowers or strawberries within the image. These experiments were 

attempted by applying the appropriate window dimensions for the respective image size to 

prevent disrupting the accuracy. Figure 24 displays the detection results under various resolution 

dimensions for flower detection. The lowest resolution size performed the worst as it missed most 

of the flowers and strawberries. The augmented image dimension performed the best as it 

detected most of the flowers. An important observation to note; even though 4000x5000 had 

better results, a resolution of 2000x3000 might be a suitable option as well as the computation 

would be more efficient but at the expense of fewer detections. This decision would depend on 
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the user and their application. In conclusion, in terms of pure accuracy increasing the image 

resolution will improve the accuracy percentile.              

 

a) Image size: (1000,2000) 

 

b) Image size: (2000,3000) 
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c) Original Image size: (3024,4032)  

 

d) Augmented Image size: (4000,5000)  

   Figure 24: Flower Detection Under Various Resolutions 
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4.3 Unripe Strawberry Detection  

4.3.1 Local Binary Patterns 

4.3.1.1 Training Procedure 

      Before testing the performance of the LBP, training must occur on the strawberry dataset 

using the feature descriptor and then fitted into a classifier to generate a model. Each previously 

cropped image would get extracted from the training folder and then get resized to a 180x180 

dimension. After multiple experimentations, this dimension was determined as the optimal size for 

extracting the strawberry’s texture. A significant decrease in dimension size would be too small 

for the descriptor to extract good features from, thus decreasing accuracy and increasing the 

false positive rate. The image was then converted into a single channel (grayscale) as LBP only 

works on 2D images.  

#convert each training data to grayscale 

im = RGB2GRAY(im) 

Thereafter, the image would pass into the LBP function. LBP’s consist of three primary 

parameters to take note off, numPoints, radius, method. NumPoints represents the size of the 

window which will traverse over the image matrix to perform texture analysis at that respective 

region. A radius parameter is also present due to rotation-invariant LBP functions utilizing a 

circular shaped window instead of square per usual. Finally, method determines the type of LBP 

pattern applied. There are various types of patterns, but the most commonly used type is 

“uniform”. This was also the type that produces the best results.     

#image and respective parameters passed into LBP function 

lbp = local_binary_pattern(image, numPoints, radius, method="uniform")     

The LBP function returns a matrix representing the specific texture pattern of the 

respective training image. The pattern representation must then be converted into a histogram, so 

it can be passed into the classifier. This was done by converting the matrix into a 1D array. 

Thereafter, the array was then represented as a histogram. The histograms were also normalized 

for increased accuracy and computational efficiency.  



 
42 

 

Once a descriptor is created for each image, the images’ descriptor and its respective label are 

fitted into the Support Vector Machine classifier. The transformational kernel for this SVM 

classifier was linear and its primary parameter usually represents the weighted margin separating 

both classes. 

#define SVM model and then fit data and its respective labels into the model 

model = LinearSVM(C=5) 

model.fit(features, labels) 

4.3.1.2 Testing Procedure 

      This task deals with object detection not simply image classification and thus a sliding window 

approach will be applied on the testing images. The testing data will consist of images 

representing the entire plant bed with multiple strawberries within it, as displayed earlier in Figure 

2. To deal with this issue, the sliding window method creates a MxN window that iterates across 

the image horizontally given a step size.  

#sliding window looping over entire image 

for win_coordinates in slidingWindow(im, stride, windowSize=(W, H)) 

Each window iteration is extracted and passed into a pre-processing function which checks if the 

object within that window is bright yellow-greenish under the HSV color space which represents 

the first feature extracted to distinguish unripe strawberries. This preprocessing stage was 

implemented to increase computation efficiency. Most of the windows will initially be green due to 

the leaves in the background and thus, instead of running those irrelevant objects through the 

model, they can be filtered out initially. A sample yellow segmented window can be seen in figure 

25.   

hsv = RGB2HSV(window) 

#apply yellow segmentation  

lower = array([20,195,100])  

upper = array([30,255,255]) 

mask = Range(hsv, lower, upper) 
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a) Original window  

 

b) Yellow segmentation 

 

c) Blue channel filtering 

Figure 25: Individual Sample Window  

Connected components was then used to determine if an object existed within the window once 

segmentation was applied.  

#connected components applied on binary image 

blob = connectedComponents(mask, 4) 

      Then the object was binarized under the LAB color space. The LAB color space was 

employed as lighter colored objects tend to have high valued pixels under the Luminance channel 

of LAB and thus ensuring a bright unripe strawberry would get passed on once thresholding was 

applied, not just a leaf with light reflection over it. Figure 26 displays an unripe strawberry under 

the L channel of the LAB color space.   

#threshold applied on LAB’s luminance channel 

lab = RGB2LAB(window) 

l,a,b = SplitChannel(lab) 

thresh = BinaryThreshold(l, 180, 255) #pixel value 180 or larger becomes 255    

        

Figure 26: Unripe Strawberry Under L Color Channel 
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      After thresholding the pixels, the area of the luminance channel and the variance of the HSV 

binary image was taken. Segmenting the window within such a specific range and checking 

additional statistical features early on saves time and computational complexities by simply 

moving on to the next window iteration. If the requirement is met then the LBP descriptor of that 

window is then passed into the SVM model to predict which class it belongs too. Due to LBP’s 

employing histograms to describe the feature patterns, the testing windows dimension size can 

be different from the training if both histograms consist of the same range (0-255 or 0-1). The 

testing windows were set to a smaller dimension than the training windows due to the size of the 

testing image. The testing images were (4000,5000) and consequently if a testing window of 

(180,180) was applied on the testing images it would cover more than simply the strawberries. 

This would prevent quality feature extractions and thus disrupt the prediction process and result 

in misclassifications. To have equal training and testing window dimensions, the testing image 

would have to be significantly larger which is extremely computationally inefficient. Hence, the 

testing windows are set at (107,107) for the strawberries. 

      Finally, if the prediction is “strawberry” then another post-processing step is applied to that 

window. This post-processing step involves taking the average of the yellow segmented pixels 

within the window and the average of the pixels under the blue channel of the original RGB 

window image. An unripe strawberry under the blue channel can be seen in Figure 27.  

 

 

Figure 27: Blue Channel Representation 

This final processing step gets rid of even more misclassifications. If the object falls within the 

specified range for both averages, then that window coordinates can be saved, and it is officially 
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classified as a strawberry. Before boxes can be drawn given those saved coordinates on the 

original image, non-maximum suppression must be applied onto those coordinates as a single 

detected object can have multiple boxes drawn over it due to the object being detected multiple 

times as the sliding window slides over it in small step sizes.  

#applying non-maximum suppression on initial detections  

detections = NonMaxSuppression(detections, 0.01) 

Figure 18a displays the detection result before applying non-maximum suppression. The detected 

coordinates are usually passed along with a box overlap threshold parameter into the non-

maximum function. The overlap threshold value represents the ratio at which every overlapping 

bounding box should be removed for that region. The post image can be seen in Figure 28b.   

   

 

a) Multiple bounding boxes around few strawberries 
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b) Only a single box around each detected strawberry 

Figure 28: Detection Before and After Applying Non-Maximum Suppression 

4.3.1.3 Results  

Table 3: Unripe Strawberry Detection Accuracy Under Dimension Size of (4000,5000)   

Test data True Positives False Positives Total berries  Accuracy (%)  

1-21 73 37 95 77  

22-43 75 103 100 75 

44-65 100 73 124 81 

66-87 45 89 72 62 

88-109 95 120 113 84 

110-131 79 43 97 81 

132-148 84 90 140 60 

 

      First the experiments with successful results will be analyzed thereafter, the failures will be 

described. A detection criterion was set initially to validate the accuracy metric. The criteria simply 

stated, extremely small strawberries just past their flower stage should not be counted as true 
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positives if not detected as those immature strawberries will grow into larger unripe strawberries 

eventually. Under the LBP implementation, the results were adequate especially given the limited 

data set. Approximately, 74.3% unripe strawberries were detected under a dataset of 928 

strawberries to 1259 non-strawberry images. Table 3 displays the accuracy values for test data in 

sets of 21 excluding the last set which included the remaining samples. As stated earlier, the two 

primary parameters for the LBP descriptor are the number of points and radius to describe the 

texture window size.  After multiple experimentations 64 points with a radius of 32 and an SVM 

marginal value of 5 were determined to be the optimal parameter values. Setting the margin (C) 

to 5 compared to higher values such as 100 tightens the margin between both classes and thus 

preventing the respective data points from overlapping between the two class. However, if C was 

lowered too much then true positives would get eliminated as well therefore lowering the 

algorithms accuracy. This is not worth the loss in this application as it would be beneficial to 

detect many unripe strawberries at the expense of a few false positive leaves detected in the 

background, in compared to less leaves being detected but less strawberries being detected as 

well. The true positive comparison between SVM parameters C=5 and C=3 can be seen in Figure 

29. 

 

a) Results with C=3 
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  b) Results with C=5 

Figure 29: SVM Marginal Boundary Comparison on the Same Test Data  

While the results predicted by the LBP texture analyzer under the C=5 parameters were 

reasonable, there were still some obvious false positives that could be eliminated with some 

additional post processing by dealing with the pixels through various statistical properties under 

different color channels as explained above in the implementation section. Despite, all the 

additional pre and post processing applied, few false positives remained as their features were 

deemed similar in respect to the strawberries. As inferred from Table 3, each image had an 

average of 4 false positives. The test images during the early stages of the strawberry growth 

cycle had much fewer false positives compared to the images much further along the growth 

cycle where the images were much more complex as the plants had completely grown all over 

the bed and hence covering few of the strawberries as well. Another key factor to recognize is the 

images during the latter stages were also taken at a higher viewpoint to cover all 5 beds within a 

single image. This can hurt the accuracy of the detection algorithm as the resolution of the 

strawberries are lower. Figure 30 displays the optimal results under these circumstances after all 

the fine tuning and feature boosting. 
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Figure 30: Optimal Results After Final Post-Processing  

      The LBP technique did not perform as well under certain circumstances. 64 points along with 

a radius of 24 and a C parameter of 100 was selected initially. This resulted in many more false 

positives compared to (64,32) as this texture window couldn’t accurately distinguish the 
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strawberries from the background object even in the earlier stages under less complex 

environments. Figure 31 displays this prediction failure. 

Figure 31: LBP Analysis with Window Size of (64,24), C=100 trained on 924 Strawberries Images    

Due to the limited number of original strawberry images in the dataset, the training image set was 

increased by generating artificial data. Data augmentation was applied to the strawberry training 

data set in terms of rotating various image at an angled step size of 30 degrees for 360 degrees, 

therefore generating multiple additional images for each image. Sample rotations can be seen in 

Figure 32. This significantly increased the data set to 2252 strawberries, adding over 1000 

additional strawberry training images. The supplementary background class also had to be 

increased to prevent any bias predications from occurring for one class over the other. The 

background non-strawberry class was increased to 2270.       
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Figure 32: Sample training images rotated   

This resulted in having a negative effect on the testing data by dramatically decreasing the total 

number of true positives. There are two primary reasons as to why data augmentation did not 

work; first the rotated images generated created a basic black background where the original 

image was placed which disrupted the texture analysis.  Second, rotating the data is not very 

useful because in this situation as rotational-invariant LBP is already being employed, therefore 

rotating the data even further simply causes over-fitting within the data set. The negative effect 

data augmentation had on the test images can be seen in Figure 33.  
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        Figure 33: Test Images after Data Augmentation was Applied 
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4.3.2 K-NN Classifier  

      K-nearest neighbor was chosen as another model chosen to classify the LBP features. The K-

NN classifier replaced the SVM classifier in the algorithm to determine if the true positives would 

be maximized or decreasing the false positives. After multiple experimentations, k=7 produced 

the best results for this classifier but as seen in Figure 34, K-NN did not out-perform the SVM 

classifier. This entails that in the multi-dimensional feature space many of the background 

features were within proximity to the strawberry features, resulting in more false positives than 

SVM. Thus, distance is not a good metric for separating features.          
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Figure 34: Sample K-NN Results Where K=7 

4.4 Flower Detection 

4.4.1 Local Binary Patterns  

Flowers were also detected as part of the strawberry detection system. Flowers within the 

image represents the earliest stage of the strawberry growth cycle. Before the strawberry grows 

into a fruit, it begins as a plant with white petals and a yellow core as shown in Figure 35.  

 

Figure 35: Flower Stage 
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4.4.2 Training & Testing Procedure 

The major difference between the unripe strawberry and flower detection algorithms are four-

fold: 

First, the training data did not consist of binary classes as seen before in the unripe 

strawberry algorithm. The flower training dataset consisted of three classes; “flower”, “non-flower” 

and “strawberry”. Three classes were used over two as employed by the unripe strawberry 

algorithm as this prevented any strawberries from being classified as flowers, therefore improving 

the accuracy. The classifier employed was still the SVM classifier. Even though the SVM 

classifier functions as a binary classifier, it can be modified to employ a “one vs all” strategy in 

terms of classes. When distinguishing for flowers, it treats the other classes as a single opposing 

class. 

Second, the LBP parameters and window sizing had to be adjusted to learn the flower 

patterns accurately. The window size used on the test data was (95,95). The same LBP class 

format was employed from the unripe strawberry detection algorithm to distinguish the flowers. 

After multiple experimentations, 10 points with a radius of 4 was concluded as the optimal points 

to extract the flower’s texture efficiently.     

#parameters being passed into the LBP class 

desc = LocalBinaryPatterns(10,4) 

Third, the post processing function was simplified to only isolate the flower taking 

advantage of its yellow core.   

function pre_check(window): 

hsv = RGB2HSV(window) 

#isolate yellow pixels  

lower = array([23,200,100])  

upper = array([30,255,255])   

mask = Range(hsv, lower, upper) 

Finally, image pyramids were introduced, to maximize the detection accuracy. Unlike normal 

convention of pyramids which involve down sampling the image, up sampling was applied 
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instead. If the flowers are too small, this will limit the model’s ability to extract the information 

accurately thus increasing the small flower sizes were necessary. The images resolution was 

increased from its original size of (3042, 4032) to (4000,5000). Apart from those four changes 

everything else was precisely the same as explained in the strawberry detection algorithm above.  

4.4.3 Results 

Table 4: Metrics Representing the Performance of Flower                                                                

Detection Under (4000, 5000) Dimension Size 

Test Data True Positives False Positives Total flowers Accuracy (%) 

1-21 40 45  51 78 

22-43 115 83 130 88 

44-65 89 66 105 84 

66-87 58 70 68 85 

88-109 98 76 118 83 

110-131 68 53 86 79 

132-148 84 59 109 77 

 

      The flower training data was gathered in similar fashion as the strawberry training data. 

However, naturally there will always be less flowers than strawberries in most images due to 

strawberries having a much longer growth cycle than flowers. This led to a very limited data set of 

788 flowers. No initial criteria were established for their sizes as done earlier for the strawberries 

due to flowers being the earliest stage within the strawberry cycle. All these complications made 

the flower detection technique more complicated than the earlier strawberry detection techniques.  

Multiple experimentations were attempted to determine the best possible parameters at which 

texture could be extracted from the flower data. 10 points with a radius of 4 proved to be the best 

LBP values to train and test upon. Figure 36 displays the effect various LBP parameters had.    
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a) LBP parameters of (10,4) 

 

b) LBP parameters of (24,8) 
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c) LBP parameters of (64,32)  

   Figure 36: Results Under Various LBP Parameters  

      Once the appropriate parameters were determined, attempting to detect the flowers under the 

original image’s dimension proved to be insufficient as many of the flowers were too small to 

extract its texture. Up sampling the image dealt with this issue quite well. After employing up 

sampling the average accuracy for detecting flowers regardless of size was at 82% as seen in 

Table 4. Figure 37 displays the detection accuracy for much smaller flowers under the original 

image resolution vs the up sampled image resolution.  
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a) Result under image original resolution of (3042, 4032)  

 

b) Result under up sampled image resolution of (4000,5000) 

Figure 37: Comparison of Small Flower Detection Under Original vs Up Sampled Resolution   
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      While the accuracy improvement after up sampling the images were remarkable, it did come 

with two drawbacks. First, the computation speed was slower as well as the prediction window 

had more pixels to cover now. Two, due to the window size remaining the same even after the 

image was up sampled it detected the larger flowers’ multiple times thus bounding the large 

flowers with 2 boxes instead of one. This issue can be seen in Figures 38a and 38b. Given the 

limited amount of training data texture analysis performed very well. Figure 39 exhibits successful 

sample test images for flower detection. 

 

a) Lower large flower detected twice  
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b) Central large flower detected twice 

Figure 38: Large Single Flower Bounded with 2 Boxes Under Up Sampled Resolution   
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Figure 39: Sample Test Images Displaying Successful Flower Detection Under Up Sampled Resolution 

4.5 Histogram of Oriented Gradients  

4.5.1 Training & Testing Procedure  

The algorithm for the HOG technique followed a very similar architecture as the LBP 

methodology. The differences occurred in one key area; the image and window dimensions for 

training and testing must be the same as HOG returns a feature vector and thus both vectors in 

the classifier must be the same size when being compared. It’s not possible to compare feature 

vectors of different lengths.     

#image passed into the HOG descriptor function 

hog_features = hog(im, Orientations=9, PixelsPerCell=(n,n), CellsPerBlock=(m,m)) 

After that each image extracted from the training folder would need to be converted into a single 

channel (grayscale) due to HOG only working on 2D images as well. Sample HOG features from 

the training images are shown in Figure 40.  
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a. Strawberry 

 

b. Flower  

 

c. Not  

Figure 40: HOG Gradient Extraction on Training Data  

The function has multiple parameters, however the primary ones to take note off are orientations, 

‘PixelsPerCell’ and ‘CellsPerBlock’. ‘Orientations’ are the number of the bins in the histogram to 

insert the magnitude values, ‘PixelsPerCell’ states the pixel dimension required for each cell as 

HOG will be performed within those cells instead of the entire image at once. The ‘CellPerBlock’ 

parameter represents how many cells should be covered by this additional overlaying window. 

This window is where the normalization step occurs.   

The remainder of the steps taken for training and testing were very similar to the LBP procedure 

for training and testing.  

4.5.2 Results 

      The HOG feature descriptor function has multiple parameters associated within it and thus 

various combination and changes were applied to them to witness if any significant changes 

occurred in its accuracy. Despite all the experimentation this approach ended up performing 

poorly as it resulted in high false positives. Many false positives were eliminated through post 

processing however, a large portion of the misclassifications remained and that is not acceptable 

as there should be a limit. Many of the HOG’s false positives consistently fell upon the yellow 

stems unlike LBP’s detections and those are difficult to eliminate even with post processing due 

to color similarities. HOG would simply classify a large variety of objects within the image as 

strawberries or flowers respectively making it not a robust technique. Additionally, HOG did not 

end up performing well because strawberries and flowers do not have a definitive shape as they 

all morph into unique sizes and forms. Thus, the descriptor was unable to determine a concrete 
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shape to describe either and HOG heavily relies on those features. The unsuccessful HOG 

results can be seen in Figure 41.   
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Figure 41: Sample Results of Applying HOG Descriptor 
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4.6 CNN based Strawberry Detection 

CNN’s require a relatively large amount of data to build a robust feature extractor and due to 

only a limited number of strawberries being available, both unripe and ripe strawberry images 

were combined together to maximize the dataset. Hence, detecting strawberries in general were 

the primary goal of the CNN based feature extractor.    

4.6.1 Training Procedure 

The same training data set employed from the LBP and HOG techniques, 928 “strawberry” 

and 1024 “non-strawberry” images. The data was trained on a custom CNN model which was 

derived by the VGG Net architecture [21]. The VGG network was chosen as inspiration due its 

simple yet effective design. VGGNet’s are known for their ability to generalize to datasets since 

the architecture follows two primary patterns:  

1. Stacking multiple sets of 3 convolutional layers on top of each other followed by a max 

pooling layer  

2. The number of filters double for each new convolutional set   

Stacking smaller filters on top of each other over having one large filter enables the network to 

better learn complex features as it increases the depth of network. The number of feature 

parameters increase deeper into the network and thus by doubling the number of filters, the 

layers ahead can appropriately encode the previous layer features past into it. The specifics on 

the VGG network architecture can be found in its original paper [21]. The actual network was too 

large (19 layers) for the size of the data set on hand and hence a smaller version was designed. If 

only a small proportion of training samples are provided into a large network, then significant 

overfitting can occur. First the images had to be resized into a constant dimension as CNN’s 

require all its data follow the same dimensional format. Next, the data labels are converted to a 

one-hot encoded format. This helps keep the labels binary and increases efficiency within the 

network. 

#one-hot encoding 

training_labels = one_hot(training_labels) 
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Thereafter, the network is constructed. The VGG inspired architecture consists of two 

blocks; block one covers the convolutional and pooling layers while the second includes the final 

fully connected layers. The Keras framework was employed to create the neural network 

architecture to train the data upon.   

#BLOCK-1 

Conv2D(filters=32, kernel=(3,3), input=(w,h)) 

Activation(‘Relu’) 

Conv2D(filters=32, kernel=(3,3)) 

Activation(‘Relu’) 

MaxPooling(size=(2,2)) 

Dropout(0.25)   

Conv2D(filters=64, kernel=(3,3), input=(w,h)) 

Activation(‘Relu’) 

Conv2D(filters=64, kernel=(3,3)) 

Activation(‘Relu’) 

MaxPooling(size=(2,2)) 

Dropout(0.25)   

#BLOCK-2 

Flatten(previous layer) 

FullyConnected(channels=512) 

Activation(‘Relu’) 

Dropout(0.50) 

FullyConnected(outputs=num_classes) 

Activation(‘Sigmoid Function’) 

Due to the limited number of training data in the set, data augmentation is applied to artificially 

increase the training data. Hence, the parameters to augment the data were defined, which would 

eventually be passed into the network once the model was defined.   

#Data Augmentation set up 
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data = DataGenerator(rotation_range, width_shift, height_shift, zoom_range, horizontal_flip) 

Sample augmentations generated for a single training data is represented in Figure 42.   

Note that these augmentations are applied on every training sample and hence this technique 

can significantly increase the dataset.  

 

a) original 

 

b) augment 1 

 

c) augment 2 

 

d) augment 3  

 

e) augment 4  

 

f) augment 5 

Figure 42: Various Augmentations of a Single Data Point 



 
77 

 

Finally, the model is compiled using “binary crossentropy” as only two classes are involved in this 

training set. Thus, sigmoid is employed as the activation function as it treats both classes as an 

independent probability distribution.  

4.6.2 Testing Procedure 

The sliding window method previously mentioned earlier sections was utilized again to 

localize the strawberries within the test image. The major difference for the neural network 

approach however was sliding windows retrieved had to be stored as batches before being 

passed into the network for prediction.  

#sliding over testing image and passing window batches for prediction  

for (x, y, window) in sliding_window(test_image, step_size, window_size)  

     predictions = model_prediction(window_region) 

   for p in predictions 

   if p == ‘strawberry’: 

       box coordinates.append(x,y)   

return box coordinates  

Thereafter, the strawberry detected coordinates could then be applied onto the test image and 

non-maximum suppression can be applied if needed.   

4.6.3 Results  

Table 5: CNN Strawberry Detection Results Under Resolution (600,800) 

Test data True Positives False Positives Total Berries Accuracy (%)  

1-21 137 70 154 89 

22-43 140 73 168 83 

44-65 172 152 192 90 

66-87 95 114 110 86 

88-109 212 115 232 91 

110-131 136 78 143 95 

132-148 185 79 216 86 
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      Employing a convolutional neural network proved to be extremely effective compared to the 

previous texture and gradient extraction techniques. It performed better in two primary ways; the 

first and most noticeable metric it outperformed in was accuracy. The average accuracy when 

using a CNN was 88.5%. This was a significant increase of 14.2% from the previous benchmark 

(LBP+SVM). Table 5 displays the accuracy in intervals of 21. Figure 43 displays some sample 

results when employing a CNN.    
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     Figure 43: CNN Strawberry Detection Results Under a (600,800) Image Resolution  

      The second instance under which it excelled in was strong detections regardless of image 

resolution. This was remarkable as it proves the strength of the networks feature extractors. Due 

to the neural network being able to extract several features over just one as in the previous 

techniques, it can generate a stronger “understanding” for what represents a strawberry. To 

present this, feature maps were extracted at various layers as shown in Figure 44. The initial 

layers are much more general as it extracts essentially the entire image and uses various forms 

of edge detectors. As you go deeper into the network, the features become less visually 

representable. The filters in those layers are in charge of determining the images’ class and thus 

is seeking much more specific features. Few of the results under the (2000,3000) resolution can 

be seen in Figure 45. When being compared to the images under the (600,800) resolution, the 

detections are consistent hence establishing the robust nature of the network. The small 

dimension size is also much more computationally efficient process.  
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a) original  

 

b) layer 1 

 

c) layer 3 

 

d) layer 5 

 

e) layer 7  

 

f) layer 9  

Figure 44: Feature Maps Extracted at Various Layers of the Network  
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Figure 45: Strawberry Detection Results Under the (2000,3000) Image Resolution 
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4.6.4 Flaws 

The primary flaw that occurred while employing this technique was the false positive 

detections. An average of 4.6 false positives were detected for each test image as inferred from 

the Table 5. While this is almost 1 extra false positive per image than the LBP technique, the LBP 

results were generated under a much larger resolution of (5000,4000) so one must keep in mind 

the tradeoffs. Due to the limited data set it was not possible to hard mine the false positives. Only 

adding non-strawberries to the training set severely biased the network towards the “non-

strawberry” class and thus in the process decreased the true positive classifications as well. If 

more data was available at the time, I am confident the false positives would decrease while 

possibly improving the true positive results as well.      

4.7 Coin Distance Measurement 

An additional coin detection algorithm was implemented. One of the reasons for placing the 

coin was to determine the height at which the images were taken by the camera. However, the 

height had to be displayed using the image information itself not manual measurement. The 

pinhole technique was applied to measure the height [25]. Before the distance could be 

measured, the coin was first detected. The coin was detected using a rudimentary color 

segmentation technique like the one explained earlier for ripe strawberry detection. The primary 

difference being the color isolation which in this application was blue. Thereafter a binary 

threshold was taken of the isolated pixels to localize the object. 

Finally, the contours of the binary image were taken so the coordinates could be retrieved 

and used to box the coin for clear visualization. Details of how color segmentation can be 

employed to leverage to detect objects can be seen under the ripe strawberry section. The 

purpose of this section is to determine the coin’s distance. The pinhole technique began once the 

coin’s coordinates were found. Focal Length (F) was the first variable required to be determined. 

The focal length had to initialized only once for calibration purposes and thereafter the process 

could be automated. Without initializing the focal length, it’s not possible to employ this 

methodology to determine distance as the initial focal length value serves as a base position for 



 
85 

 

the pixel changes. Focal length can be determined given the parameters pixel width, object 

distance and object width.   

#Focal Length calibration formula  

F = (pixW * objDist) / objWidth 

Once the focal length was initialized with a set constant, the distance deltas can be easily 

measured using  

#distance per detected coin  

Distance = (objWidth * F) / pixW 

Due to the coin’s width and focal length remaining constant always the distance change is only 

affected by the increase or decrease in the coin’s pixel width. Determining the image height and 

size of the coin can be very useful as the coin can then be used as a reference object to 

determine the approximate size of the strawberries within the image.   

4.7.1 Results 

The pinhole technique performed well as the distance measurements were reasonably 

accurate given the approximate height at which the images were captured. Figure 46 displays 

samples of the distance measurements. Issues arose more towards the detection aspect of the 

implementation as only color segmentation was applied and therefore it was not as robust of a 

technique to isolate the coin in every frame. If the coin was slightly detected and the pixel width 

was not accurately representing the entire coin, the distance measurement would be much further 

than its actual measurement. As the pixel width ends up being very small thus fabricating the coin 

to seem much smaller and at an even greater distance than its original position. Figure 47a and 

47b represents how the detection issues disrupted the distance measurements. Another issue 

occurred under certain conditions due to strong lighting glares. In this scenario, the algorithm did 

not view the coin under the blue channel in the HSV spectrum, thus preventing it from even 

having the ability to determine the coin’s distance as seen in Figure 47c and 47d. While this 

methodology had strong results, one must note this is a relatively simple method towards 

approaching this problem and hence is sensitive to factors such as lighting, angle and initial pixel 

calibration.   
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a) Coin measured at a distance at approximately 5 ft 

 

b) Binary coin detected  
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c) Coin measured at approximately 4 ft  

 

d) Binarized image  

  Figure 46: Coins Detected with Appropriate Measurements 
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a) Miscalculated coin distance  

 

b) Threshold image not well binarized  
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c) HSV range not able to capture this specific shade of blue 

 

d) No coin detected to determine distance   

          Figure 47: Issues with the Coin Measurement Algorithm  
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     Chapter 5 

       CONCLUSION & FUTURE WORKS 

5.1 Conclusion 

Farmers in the agriculture industry have been struggling within the past decade to find 

consistent number of workers [1]. This can have a negative impact on crop management. Three 

well-known computer vision techniques in Histogram of Oriented Gradients (HOG), Local Binary 

Patterns (LBP) and Convolutional Neural Networks (CNN) were applied specifically to detect 

strawberries at different stages of its growth cycle. All three have performed well in the past for 

object detection purposes [5] [8] [21]. However, the two major challenges in this situation was the 

strawberry size, which are very small in relation to most objects detected in the past by these 

algorithms and the limited data set available. Computer Vision is a very data driven process and 

thus the larger the data set the higher one’s chance of improving their accuracy. HOG performed 

very poorly under all experimented parameters as the shape of the strawberries were very 

inconsistent for each image. This prevented HOG from creating a consistent training model given 

the training data. 

The LBP methodology performed quite well under the appropriate parameters especially 

given the limited data set. However, it required up-sampling the testing images above the original 

size to determine the objects texture. Increasing the image dimension compromised the 

computation efficiency, this was the byproduct of improving accuracy. Along with the feature 

descriptors a classifier was also required to determine which class the test data belong too. Two 

classifiers were experimented with and Support Vector Machines (SVM) proved to perform better 

than the K-Nearest Neighbor classifier (K-NN). Finally, a CNN inspired from the VGGNet 

architecture [21] was employed to classify and detect the strawberries. This proved to be the best 

methodology as it detected 88% of the strawberries in the testing images. It was able to achieve 

this accuracy under an extremely low resolution of 600x800 thus being the fastest run-time test 

algorithm of all the algorithms implemented. The accuracy was similar even under high 

resolutions as well, therefore being the most consistent detector of the three. The deep network 

architecture enabled it to learn many more features than the single featured descriptors. An 
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average of 4 false positives were detected per image but it can be reduced with more available 

training data. Overall, the CNN performed the best between the three techniques as a multi-

feature extraction enabled the algorithm to distinguish strawberries from the other objects in the 

background.       

5.2 Future Works 

A lot was accomplished as part of this strawberry detection project, three unique 

methodologies were implemented and compared against each other with the CNN structure being 

the most effective. However, more models can be implemented to compare with such as the R-

CNN technique. Due to lack of time and data this technique was not attempted but given much 

more data, the R-CNN might prove to be the most effective methodology yet. Ripe and Unripe 

strawberry detections can also be part of the CNN based object detector given a larger amount of 

data. Once detection is completed, it would be beneficial to implement a prediction-based 

algorithm which can potentially determine the amount of time before the strawberry has ripened. 

This can be very beneficial to farmers as they can prepare, and plan beforehand and thus prevent 

major crop wastage. 
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