
STRAWBERRY DETECTION UNDER VARIOUS HARVESTATION STAGES

A Thesis

presented to

the Faculty of California Polytechnic State University,

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Electrical Engineering

by

Yavisht Fitter

March 2019

ii

© 2019

Yavisht Fitter

ALL RIGHTS RESERVED

iii

COMMITTEE MEMBERSHIP

TITLE: Strawberry Detection Under Various Harvestation

Stages

AUTHOR:

Yavisht Fitter

DATE SUBMITTED:

March 2019

COMMITTEE CHAIR:

Jane Zhang, Ph.D.

Professor of Electrical Engineering

COMMITTEE MEMBER: Helen Yu, Ph.D.

Professor of Electrical Engineering

COMMITTEE MEMBER:

John Saghri, Ph.D.

Professor of Electrical Engineering

iv

ABSTRACT

Strawberry Detection Under Various Harvestation Stages

Yavisht Fitter

This paper analyzes three techniques attempting to detect strawberries at various stages in

its growth cycle. Histogram of Oriented Gradients (HOG), Local Binary Patterns (LBP) and

Convolutional Neural Networks (CNN) were implemented on a limited custom-built dataset. The

methodologies were compared in terms of accuracy and computational efficiency. Computational

efficiency is defined in terms of image resolution as testing on a smaller dimensional image is

much quicker than larger dimensions. The CNN based implementation obtained the best results

with an 88% accuracy at the highest level of efficiency as well (600x800). LBP generated

moderate results with a 74% detection accuracy at an inefficient rate (5000x4000). Finally, HOG’s

results were inconclusive as it performed poorly early on, generating too many misclassifications.

Keywords: Histogram of Oriented Gradients, Local Binary Patterns, Convolutional Neural

Networks

v

TABLE OF CONTENTS

 Page

LIST OF TABLES ... viii

LIST OF FIGURES .. ix

CHAPTER

1. INTRODUCTION…………………………………………………………………………………1

1.1 Statement of Problem…………………………………………………………………….…1

1.2 Data Collection…………………………………………………………………………….…2

1.2.1 Plot and Bed Locations…………………………………………………………….2

1.2.2 Images Captured…………………………………………………………………...3

1.3 Challenges………………………………………………………………………………...….7

2. LITERATURE REVIEW………………………………………………………………………………....8

2.1 Automated Visual Fruit Detection for Harvestation Estimation and Robotic

Harvesting (S. Puttermans et al., 2016)……………………………….……………….….8

2.1.1 Procedure………………………..….………………………………….…...………8

2.1.2 Results and Analysis……………..….…………………………………...………..9

2.2 A Deep Learning Method for Recognizing Elevated Mature Strawberries

(X. Li et al., 2018)……………….…………………….……………………………………..9

2.2.1 Procedure……………………………………………………………………….…..9

2.2.2 Results and Analysis…………………………………………………………...…10

2.3 DeepFruits: A Fruit Detection System Using Deep Neural Networks

(I. Sa et al., 2016)….….…………………………………………………………………….12

2.3.1 Procedure……………………………………………………...…………………...12

2.3.2 Results and Analysis………………………………………...…………………....13

2.4 Deep Convolutional Neural Network for Automatic Discrimination between

Fragaria x Ananassa Flowers and Other Similar White Wild Flowers in Fields

(P. Lin et al., 2018) ………………………………………………………………...............14

vi

2.4.1 Procedure…………………………………………………………………………..14

2.4.2 Results and Analysis……………………………………………………………...15

2.5 Deep Fruit Detection in Orchards (S. Bargoti & J. Underwood, 2016) ……….………16

2.5.1 Procedure……………………………………………………………………….….16

2.5.2 Results and Analysis……………………………………………………………...16

2.6 Detection and Counting of Immature Green Citrus Fruit Based on the Local

Binary Patterns (LBP) Feature Using Illumination-Normalized Images

(C. Wang, et al, 2018)………....……………………………………………………………17

2.6.1 Procedure………………………………………………………………………......18

2.6.2 Results and Analysis………………………………………………………….......20

3. TECHNICAL BACKGROUND…… .………………………………………………………..…..21

3.1 Histogram of Oriented Gradients……………………………………………………..…...21

3.2 Scale and Rotation Invariant Local Binary Patterns……………………………….........23

3.3 Neural Networks……………………………………………………………………….........24

3.3.1 Artificial Neural Networks…………………………………………………...…….24

3.3.2 Back Propagation……………………………………………………………….....25

3.3.3 Convolutional Neural Networks…………………………………………………..26

3.3.4 CNN vs MLP………………………………………………………………………..27

4. IMPLEMENTATION & RESULTS………….....………………………………………………..29

4.1 Ripe Strawberry Detection………………………………………………………………....29

4.1.1 HSV Color Segmentation………………………………………………………...29

4.1.2 Manual Training…………………………………………………………………....30

4.1.3 Results………………………………………………………………………………35

4.1.4 Flaws………………………………………………………………………………...36

4.2 Resolution………………………………………………………………………………….....38

4.3 Unripe Strawberry Detection……………………………………………………………......41

4.3.1 Local Binary Patterns…………………………………………….…………………41

4.3.1.1 Training Procedure………………………………………….………………....41

vii

4.3.1.2 Testing Procedure…………………………………………...………………...42

4.3.1.3 Results…………………………………………………………………………..46

4.3.2 K-NN Classifier……………………………………………………………………...56

4.4 Flower Detection……………………………………………………………………....…......59

4.4.1 Local Binary Patterns…………………………………………………………...….59

4.4.2 Training & Testing Procedure……………………………………………………..60

4.4.3 Results……………………………………………………………………………….61

4.5 Histogram of Oriented Gradients………………………………………………………......70

4.5.1 Training & Testing Procedure……………………………………………………..70

4.5.2 Results……………………………………………………………………………….71

4.6 CNN based Strawberry Detection…………………………………………………………..74

4.6.1 Training Procedure………………………………………………………………….74

4.6.2 Testing Procedure…………………………………………………………………..77

4.6.3 Results………………………………………………………………………….........77

4.6.4 Flaws……………………………………………………………………………........84

4.7 Coin Distance Measurement………….………………………...…………………………...84

4.7.1 Results…………………………………………………………………………..........85

5. CONCLUSION & FUTURE WORKS…….………………………….…………………………...90

5.1 Conclusion……………………………………………………………………………..……....90

5.2 Future Works……………………………………………………………………………….….91

BIBLIOGRAPHY……………………………………………………………………………………………….92

viii

LIST OF TABLES

Table Page

1. Citrus Detection Results from all Three Methods...……………………………………………………..20

2. Detection Performance of Ripe Strawberries…………………………………………..…………….....35

3. Unripe Strawberry Detection Accuracy Under Dimension Size of (4000,5000)……..…………...……46

4. Metrics Representing the Performance of Flower Detection Under (4000, 5000)

Dimension Size…………………………………………………………………………………....61

5. CNN Strawberry Detection Results Under Resolution

(600,800)………………………………………………………………………….;…….………...77

ix

LIST OF FIGURES

Figure Page

1. Entire Layout of the Strawberry Beds Part of Field 25 at Cal Poly, SLO…………………………....2

2. Time Lapse of Enchante Bed 1 from January to June……………………………………………....4

3. CaffeNet Network Architecture Used for Mature Strawberry Classification………………………..10

4. Elevated Strawberry Scene Provided in the Paper……………………………………......11

5. Strawberry Images Taken at Close Distances……………………………………………..11

6. False Positive Detections as a Result from the R-CNN Network………………………...14

7. Confusion Matrix Representing the CNN Results……………………………………........15

8. False Positives Represented in Red and False Negatives in Blue Bounding Boxes.....17

9. Images Results after Pre-Processing…………………………………………………..…...18

10. Filter and Equations Employed to Derive the Magnitude and Angle…………………….21

11. Gradients Being Extracted from Each Cell for a Sample Image…………………………22

12. Scale and Rotation Invariant LBP Windows………………………………………………..23

13. A General Three Input Perceptron…………………………………………………………..24

14. A General Two Layered Artificial Neural Network………………………………………….25

15. Convolutional Kernel in Respect to Image………………………………………………….26

16. 6 Unique Feature Maps Generated from 6 Different Kernels on the Input Image….…..27

17. Result of Applying Pooling Layer………………………………………………….…………27

18. Angle Ranges of the H Channel…...………………………………………………………...29

19. Original RGB Image vs HSV Image………………………………………………………....31

20. Ripe Strawberries Isolated Based on Red Color Segmentation………………………….32

21. Binarized Images Before and After Applying Morphological Operations…………..…….33

22. Bounding Boxes Applied on the Original Image (Final Result)…………………………...36

23. Sample Test Images with False Positives……………………………………………….….37

24. Flower Detection Under Various Resolutions………………………………………………39

25. Individual Sample Window…………………………………………………………….……...43

x

26. Unripe Strawberry Under L Color Channel……………………………………………………43

27. Blue Channel Representation…………………………………………..…………………...…44

28. Detection Before and After Applying Non-Maximum Suppression….………………….…..45

29. SVM Marginal Boundary Comparison on the Same Test Data ...……………………….…47

30. Optimal Results After Final Post-Processing………………………………………………....49

31. LBP Analysis with Window Size of (64,24), C=100 trained on 924 Strawberries Images..53

32. Sample Training Images Rotated…………………………………...……………………….…54

33. Test Images after Data Augmentation was Applied………………..……………….………..54

34. Sample K-NN Results Where K=7……………………………………………….……….…....56

35. Flower Stage……………………………………...………………………………………..……..59

36. Results Under Various LBP Parameters………………………………………………...…….62

37. Comparison of Small Flower Detection Under Original vs Up Sampled Resolution.....…..64

38. Large Single Flower Bounded with 2 Boxes Under Up Sampled Resolution…….…….….65

39. Sample Test Images Displaying Successful Flower Detection Under Up Sampled

Resolution………...67

40. HOG Gradient Extraction on Training Data……………………………………….………......71

41. Sample Results of Applying HOG Descriptor…………………………………………….......72

42. Various Augmentations of a Single Data Point…………………………………………….....76

43. CNN Strawberry Detection Results Under a (600,800) Image Resolution..……………....78

44. Feature Maps Extracted at Various Layers of the Network……………………….…………81

45. Strawberry Detection Results Under the (2000,3000) Image Resolution………………….82

46. Coins Detected with Appropriate Measurements……………………………………………..86

47. Issues with the Coin Measurement Algorithm..88

1

 Chapter 1

 INTRODUCTION

Object detection is the ability for a machine to automatically extract and distinguish data from

the environment around it. It is a crucial aspect of Computer Vision as it gives the system a sense

of perception. Object detection is the second step in the image analysis category as it builds on

top of the first step, image classification. Unlike image classification which simply classifies a

given image, object detection requires the system to be able to localize the object(s) within the

environment while classifying it. Object detection has vastly progressed over the last decade and

thus has resulted in multiple techniques being established. Each technique has its unique

advantages therefore some tend to perform better under certain environmental conditions over

the others. In this paper, three popular techniques will be analyzed; a gradient/angular based

feature extractor in Histogram of Oriented Gradients, a texture-based method in Local Binary

Patterns, and finally, a neural network-based approach employing a variation of a Convolutional

Neural Network. The three techniques will be applied in the agricultural setting, specifically

strawberry detection and compared amongst each other in terms of performance.

1.1 Statement of Problem

 Computer vision has had an exponential resurgence over the last decade and hence it’s

being applied into a variety of industries for the primary purpose of improving productivity and

safety [1]. The agriculture industry, primarily within the state of California depends heavily on farm

workers to constantly look after their crops throughout the year, as California accounts for over

13% of the nation’s agricultural value [2]. A shift in the demographic landscape overtime has

begun taking its toll on farmers as there has been a significant labor shortage in California [1].

This labor shortage is not cost efficient either and has thus provoked the farmers to double their

workers’ pay within the last 10 years [1]. Workers are also expected to harvest throughout the

year which usually includes in-humane conditions during certain periods of the year [1]. It is key

for farmers to have consistent labor crew especially during these extreme weather periods of the

year otherwise significant crop loss can occur. Strawberries are the second most popular fruit

grown in California however almost 10% of strawberry crops can go unharvested in a single year

2

resulting in massive strawberry wastage [3]. This is a large percentile given the fruit is grown at

an astounding rate of over 3 billion per year [2].

To prevent the farming industry from being crippled any further, the primary issue this paper

proposes to tackle is detecting the strawberries in its natural bed setting at various stages which

can be invaluable for fruit counting and predicting optimal harvest times. The technical challenge

this task deals with is small object recognition. In complex environments as this, smaller objects

can easily blend in with the background therefore making it difficult to isolate it.

1.2 Data Collection

1.2.1 Plot and Bed Locations

 The images were taken at Verticillium Field 25 at the Cal Poly strawberry fields. The specific

section of the field where the images were taken was named 90 cv; trial planted on October 23,

2017. The specific region can be seen on the bottom left of the map layout in Figure 1.

 Figure 1: Entire Layout of the Strawberry Beds Part of Field 25 at Cal Poly, SLO

Five beds were chosen in total for data collection; each bed had a total of 20 plants. The beds

chosen were the following:

3

• Bed: Festival (Row 4)

• Bed: Enchante (Row 5)

• Bed: Osceola (Row 5)

• Bed: LC-2(77) (Row 8)

• Bed: BG(4.367) (Row 11)

1.2.2 Images Captured

 The data collection process started from November 2017 and ended in June 2018. Images

were taken twice a week to witness a consistent growth cycle, primarily Tuesdays and Fridays.

Figure 2 displays a time-lapse of a sample bed set taken on the first data collection day of each

month from January to June. A standard smartphone (Samsung galaxy s8) was employed to

capture all the images at an average height between 4 to 5 ft. The images were taken at a

resolution of 3042x4032, where out of the total 600 images collected, 452 were employed for

training and 148 for testing, hence resulting in a 75:25 data split. The images were captured in a

specific order each time to maintain consistency. On average each bed within this sector of field

25 contained 20 strawberry plants. The images were captured in sets of 5 for each bed instead of

taking the picture of the entire bed at once. However, before any of the images were taken, a

picture of the bed name tag was taken as well to prevent any confusion towards labeling each

picture. The bright red strawberries are considered the ripe strawberries while the yellow/green

strawberries are unripe strawberries. A local folder containing two classes of labeled images was

employed to train the model. The labels were “strawberry” and “non-strawberry” thus representing

a binary data set. The training data was created by manually cropping out each strawberry from

the original training data. There wasn’t enough strawberry images collected to split the

strawberries into separate folders of ripe and unripe strawberries, so all the strawberries were

stored in a single folder. There were 924 strawberry and 1259 not images. A small blue penny

was placed in the image for two primary reasons; gauge the distance from the camera to the

plants and given the distance determine the size of the strawberries given the penny’s relative

size. The blue penny can be seen in most of Figure 2’s images. The goal of this project is to

detect ripe/unripe strawberries and the white flowers (white flowers can be seen in Figure 2e).

4

a) January stage

b) February stage

5

c) March stage

d) April stage

6

e) May stage

f) June stage

 Figure 2: Time Lapse of Enchante Bed 1 from January to June

7

1.3 Challenges

The challenges faced during the data collection period were two-fold:

Heavy amounts of rain would fall during the months of January till March in San Luis Obispo and

therefore this would at times destroy some of the strawberries due to high levels of flooding. The

plants would then take another few weeks to grow the strawberries again and hence adding

inconsistencies to the data set as this would result in more immature strawberries than mature for

those months. The second issue involved the ripe strawberries being picked off the beds without

notice. This would prevent us from seeing the entire life cycle of the strawberry, including its

decay stage. This is vital information for one attempting to implement a robust harvest prediction

model.

8

 Chapter 2

 LITERATURE REVIEW

2.1 Automated Visual Fruit Detection for Harvestation Estimation and Robotic Harvesting (S.

Puttermans et al., 2016)

This paper tackles automated fruit harvestation by applying machine learning and image

processing techniques. The fruits employed in this paper were strawberries and apples as they

both have similar color characteristics. Due to my work focusing primarily on strawberry detection

I will only focus on the strawberry implementation and results discussed within this paper [4].

2.1.2 Procedure

In the paper, the authors generated their own strawberry dataset as there were none

available for their application. The strawberry bed images were captured at a resolution of

1292x964. 205 positive and 200 negative images were gathered for training each at a constant

dimension of 35x38. To distinguish between strawberries from the background, strawberry and

background leaf images were taken as part of the dataset. To detect the strawberries, Local

Binary Patterns (LBP) [5] were used as the primary feature descriptor and a cascade classifier

using adaboost was employed to deal with the classification task. Before the training step, a

preprocessing technique in histogram equalization was applied to deal with the lighting. The

training images were then converted to grayscale as LBP’s only take in 2D data thus making

color (RGB) images invalid inputs. Since LBP’s are unable to distinguish objects with color both

unripe and ripe strawberries features were extracted simultaneously. The LBP feature points

were then passed into the adaboost classifier [6]. To isolate the ripe strawberry detections, a post

image processing technique in channel subtraction was applied where the following equation was

employed.

The equation states to keep the pixel values greater than zero if the red channel is the dominant

channel when subtracting the green channel from it. This ensures a “red object” is present within

the proposed region. Once the green channel pixels have been subtracted, global binary

9

thresholding was applied upon the proposed region. Upon thresholding, the total pixels were

calculated and if more than 50% of the resulting pixels were white, this detection was kept as a

ripe strawberry. This post processing method allowed them to get rid of any unripe strawberries

or false positives detected and box only the ripe strawberries. Some of the detected strawberries

were at times boxed as a single detection due to their close proximity to each other. To deal with

this the paper applied watershed segmentation on the detected region.

2.1.3 Results and Analysis

Unfortunately, the paper does not seem to provide concrete results for their strawberry

detection techniques stating that the accuracy can be objective due to the lack of ground truths

determining what can and cannot be considered a ripe strawberry as the strawberry growth

process is not binary. However, the techniques used in this paper seem very useful and have

great potential in strawberry detection. Hence, I will be employing several techniques discussed

in this paper as part of my project as well. Their technique does have one limiting factor, as their

primary goal did not include unripe strawberry detection as well and thus this technique does not

guarantee success for immature strawberries. While attempting to employ their paradigm for

unripe strawberry recognition, several misclassifications in the form of background leaves is

possible.

2.2 A Deep Learning Method for Recognizing Elevated Mature Strawberries (X. Li et al., 2018)

Two approaches are taken in this paper to detect ripe strawberries, first HOG+SVM was

employed as a gradient based feature descriptor and thereafter a convolutional neural network-

based approach was implemented to classify mature strawberries [7].

2.2.1 Procedure

A total of 2000 training images were utilized, where 1000 represented positive ripe

strawberries and the remaining 1000 were background/non-strawberry images. For the HOG

technique [8] [9], the training images were then converted to grayscale and passed into the HOG

descriptor which returns a multi-dimensional vector representing the shape of the object.

However, due to HOG not being able to extract color features from the object, the paper

discusses an alternative method to deal with this issue. The image was then separately converted

10

to the HSV color space. Thereafter, the variance of the H channel was taken which gave it

information about the strawberry’s color. This additional vector was then concatenated onto the

multi-dimensional shape vector returned by the HOG descriptor. This led to a final shape and

color feature vector being generated which was then passed into the classifier for training. The

classifier leveraged in this case was an SVM [10]. The sliding window technique was applied on

the test images to extract the ROI and perform ripe strawberry classification. The ROI’s HOG +

variance vector would get passed into the SVM classifier and if the feature points resided in the

strawberry class a bounding box would then get placed on that respective ROI.

The CNN procedure was implemented thereafter, the network architecture employed in their

paper was CaffeNet [11]. The network consists of 8 layers, where the first 5 layers are

convolutional layers and the remaining 3 are fully connected layers. The images were trained in

batches of 64 and the model ran for 20,000 iterations. Figure 3 displays the network structure

employed as per their paper.

Figure 3: CaffeNet Network Architecture Used for Mature Strawberry Classification

2.2.2 Results and Analysis

The detection criteria were broken down into 3 types for both models; single strawberry, leaf

shelter and fruit overlap. Under the HOG+H+SVM model the best results came when employing a

Radial Basis Function kernel for the SVM classifier. Single strawberries had an accuracy rate of

99.05%, leaf sheltered was approximately 83.84% while fruit overlap was at 74.26%. When

employing CaffeNet the results improved significantly as under the same constraints the

accuracies were 99.05%, 92.9% and 95.05% respectively.

The results were relatively positive and specific techniques will certainly be used as part of

my methodology as well. However, there are still three major drawbacks from their testing data;

their detection process occurred at elevated farms and hence all the strawberries were hanging

11

off the branches. This meant that the background in their testing image set primarily consisted of

the tarp with few leaves. Even under the “leaf overlap” constrain, only couple leaves were

involved in front or behind the strawberry which is much fewer than in my dataset. Figure 4

displays the scene under which the image was taken. The second issue was in the distance at

which the strawberries were detected at. The strawberry images were taken at a relatively close

proximity, no more than a foot away from each strawberry at most as seen in Figure 5. Finally,

their goal was to only detect ripe/red strawberries and hence if any false positives were detected

on the leaves, they could simply segment it out as the green strawberries were not of their

concern in this project. These problems will prove to be challenging when dealing with my dataset

and hence additional image processing techniques will have to be added into the detection

algorithms to prevent these issues from occurring.

Figure 4: Elevated Strawberry Scene Provided in the Paper

Figure 5: Strawberry Images Taken at Close Distances

12

2.3 DeepFruits: A Fruit Detection System Using Deep Neural Networks (I. Sa et al., 2016)

This paper tackled fruit detection using only deep convolutional neural networks. Three

different classes were used for detection, which included sweet pepper, rock melon and

background [12]. While strawberries were not specifically part of their fruit dataset, much of the

techniques should still be applicable for my implementation. Their training data was produced in

RGB and infrared channels and since RGB images cannot simply be converted to the infrared

spectrum, the focus in this section will be on the techniques involving the RGB data as my

dataset consists of RGB images as well. To learn more about the infrared based training

procedure, refer to the paper [12]. The R-CNN architecture was employed as the detection

model; the architecture involves 2 networks, first a regular convolutional network followed by a

region-based network. The general steps taken to detect objects using a R-CNN is as follows:

(1) Pass an input image into a CNN which will output a feature map from the last layer.

(2) Run a sliding window across the feature maps, each siding window is generated at multiple

aspect ratios.

(3) The sliding window regions are then passed into the region-based network which produces

two outputs; a bounding box prediction and a class probability prediction.

4) The classification output returns the probability of the object detected while the regression

output returns the bounding box of that respective object.

The specifics of the network architecture is beyond the scope of this section, refer to the

original R-CNN paper for more details [13].

2.3.1 Procedure

The authors of the paper only had 100 training data images to work with and therefore

training a network from scratch was not a viable option. A pre-built R-CNN network was employed

which was trained on the PASCAL VOC dataset which consisted of 20 different objects. However,

to detect their specific fruits, fine-tuning was performed where the 2 fruits were trained using the

features generated from the original network. The initial generated features from the pre-trained

network helped deal with the lack of training data. Off the 2 networks discussed earlier for the R-

13

CNN architecture, the VGG16 model was used as the first network to generate the feature maps.

The VGG model was chosen as it did well in generalizing to the dataset provided.

2.3.2 Results and Analysis

Only 22 images were supplied as part of the testing dataset. However, with such a limited

training dataset the network still achieved an average accuracy of 81.6%. This was the best

results even over the infrared input images. Fine tuning played a major role in the process. This

network is definitely an option to consider as well along with the previous techniques reviewed so

far. R-CNN’s are unique as they run the sliding window on the CNN produced feature map

instead of just the raw image as done in the past papers. There are two limitations to keep in

mind prior to using this method. Fine-tuned models are usually trained on much larger image

dimensions. The strawberries in my dataset are originally cropped to a much smaller size, 60x60

pixels on average. Hence, resizing the strawberries to forcefully fit the models larger input size

will cause major discrepancies as this is too significant of a change. The fruits they used to detect

are much larger than strawberries and therefore their original image sizes while not provided

seem to be close to the pre-trained models input size. The second issue pertains to my dataset

having a limited number of training data as well and thus not being able to take advantage of fine-

tuning will hurt my case even more. R-CNN usually consist of deep networks and not having

enough data can cause overfitting or false positive detections. Their results had quite a few false

positives even after fine tuning due to their limited dataset and thus my custom CNN will likely

detect a few false positives of its own. Unfortunately, they did not provide a specific metric to

determine the number of their false positives. Figure 6 displays the false positives shown in their

paper.

14

Figure 6: False Positive Detections as a Result from the R-CNN Network

2.4 Deep Convolutional Neural Network for Automatic Discrimination between Fragaria x

Ananassa Flowers and Other Similar White Wild Flowers in Fields (P. Lin et al., 2018)

This paper focuses on flower detection for four different white petal species. Their database

composed of distinct white flower species in Androsace umbellata Merr, Bidens Pilosa L.,

Trifolium repens L. and Fragaria x ananassa. This publication was selected for review as

strawberry flowers are part of my dataset as well. Before the strawberry growth cycle occurs, they

are represented as small white flowers similar to the ones described in this paper [14]. Three

different techniques were applied to classify the flowers; Pyramid Histogram of Oriented

Gradients (PHOG) , Scale Invariant Feature Transform descriptor (SIFT) and Convolutional

Neural Network (CNN).

PHOG is a derivation of HOG with the major difference being once the gradient image is split

into cells, the histogram of those cells are taken at several pyramid levels. Applying spatial

pyramids enables the descriptor to consider features at different scales which was not possible

before with general HOG. Refer to [15] for more details pertaining to PHOG.

SIFT is a key point descriptor which employs the Difference of Gaussian filter to obtain these

interest points. Details on SIFT out of this sections scope, refer to [16] for more information.

2.4.1 Procedure

 Unfortunately, the paper did not discuss the implementation procedures for the PHOG or

SIFT techniques in much detail and therefore only a quick overview of the CNN implementation

will be focused upon. A total of 400 images were part of their dataset, where each flower specie

was allocated 100 images. Out of the 100 images provided for each specie, a 60:40 ratio was

15

used for the training and testing set. The CNN composed of 5 convolutional layers followed by 3

fully connected layers where the networks input size was 227x227. The activation function used

throughout the network was “ReLU”.

2.4.2 Results and Analysis

 The testing dataset was limited to a total of 160 images, 40 for each specie. Despite this the

CNN performed well with a total accuracy of 95%. Due to CNN’s possessing deep feature

extraction layers, they can still perform well at times even with limited datasets. The confusion

matrix provided by the paper for the CNN results can be seen in Figure 7. However, the PHOG

and SIFT descriptors clearly required more training data as they were only able to achieve an

accuracy of 63.1% and 55.6% respectively.

 Limitations: I will not have the luxury to resize my images to a 227x277 input size as the

strawberries in my testing images are much smaller. Furthermore, when applying object detection

over classification, one tends to run into more challenges, as the model is being exposed to

variety of background environments through the windows which were potentially not part of the

initial training dataset.

Figure 7: Confusion Matrix Representing the CNN Results

16

2.5 Deep Fruit Detection in Orchards (S. Bargoti & J. Underwood, 2016)

Three types of fruit detection were attempted in this paper; mangoes, almonds and apples

[17]. The primary technique employed was an R-CNN. The general procedure for R-CNN’s can

be reviewed again in an earlier discussed paper.

2.5.1 Procedure

 The CNN employed as the feature extraction network in the R-CNN was the VGG16 network.

While VGG networks are known for their accuracy and ability to generalize to the dataset well,

two issues prevented them from training the network from scratch.

(1) Very limited training data was available to them; 729 apples, 1154 mangoes and 385

almonds.

(2) VGG Networks are notoriously slow for training due to their architectural design.

This issue was dealt by applying transfer learning/fine-tuning to the training process. The original

image dimensions for the apple, mangoes and almond were 1616x1232, 3296x2472 and

3456x5184 respectively.

2.5.2 Results and Analysis

 480 images in total were used for testing. 90.4%, 90.8% and 77.5% of apple, mangoes and

almonds were detected respectively. However, even after fine-tuning their results had a large

amount of false positive and false negatives as seen in Figure 8. Once again, one must take note

of the simple fact, if a large enough dataset is not provided, the probability of false positives being

detected are very likely.

17

Figure 8: False Positives Represented in Red and False Negatives in Blue Bounding Boxes

Unfortunately, the paper did not provide exact numbers as to how many false positives or

negatives were detected in total or on average per image. This proved once again if one wants to

employ state of the art detection networks such as R-CNNs, lots of data will have to be available

to them.

2.6 Detection and Counting of Immature Green Citrus Fruit Based on the Local Binary Patterns

(LBP) Feature Using Illumination-Normalized Images (C. Wang et al., 2018)

This paper discusses three methodologies for detecting unripe citrus fruits; the first method

involves applying k-means clustering [18], and circular Hough Transform (CHT) [19] to the pre-

processed illuminated images. The second method was using LBP as a feature extractor followed

18

by an adaboost classifier on just the RGB images. Finally, the third method employs the same

procedure as method 2 but after applying an illumination enhancement technique to the training

images.

2.6.1 Procedure

200 citrus and non-citrus samples were employed for training. For the first method, prior to

extracting any of the citrus texture or applying k means segmentation [18] to the images a pre-

processing step was implemented which essentially dealt with increasing the brightness of the

image. The general steps to enhance image illumination were as follows:

(1) Resize RGB image to 800x600.

(2) Apply fast bilateral filtering-based retinex to enhance the images illumination.

(3) Thereafter, apply 2D discrete wavelet transform to fragment each R, G, B channel into low.

and high frequency components.

(4) Apply Histogram Equalization and Contrast Enhancement on all frequency components.

(5) Convert 2D frequency components back to RGB space and recombine the channels.

(6) Normalize the illuminated image obtained.

Reviewing each step, in complete detail is out of the scope of this section, however one can

refer to the paper for more details [20]. The pre and post illumination results on a citrus orchard

can be seen in Figure 9.

a) Original Image

19

Figure 9: Images Results after Pre-Processing

 Thereafter, two training stages took place; the initial involved extracting the texture features

from the raw RGB cropped samples while the second stage involved extracting the texture

features from the cropped samples of the illuminated version. The LBP extraction technique was

discussed briefly when reviewing an earlier paper in a previous section.

b) After Illumination enhancement

c) After normalizing image b

20

2.6.2 Results and Analysis

 Table 1: Citrus Detection Results from all Three Methods

Methods Total Fruit True Positives False Positives Missed

K-Means + CHT 458 329 (71.8%) 113 (24.8%) 129 (28.2%)

LBP (RGB) 458 351 (76.6%) 121 (26.4) 107 (23.4%)

LBP (Illuminated) 458 392 (85.6%) 54 (11.8) 66 (14.4%)

 This paper showed the importance of applying pre-processing to the training data as it can

have a significant improvement on the results. The pre-processing technique will definitely be

used as inspiration on my training samples through data normalization and segmentation.

However, the k-means and CHT techniques will not be employed as one of the techniques on my

project as this and previous papers reviewed have proven better results are achievable using

other state of the art techniques specific to object detection. LBP will be one of the techniques

employed, but a common theme when applying LBP seems to be the high false positive rates,

this will prove to be a challenging issue to tackle when implementing it on my testing dataset

especially with the strawberries being much smaller and the background being more complicated.

 The publications reviewed in this section provided valuable information in understanding a

variety of techniques implemented in academia so far for fruits detection. HOG and LBP were

commonly used feature extraction algorithms which performed relatively well and hence I will start

by implementing those techniques. CNN’s have been the go-to architecture in recent years. The

results from CNN based architectures were robust even under limited datasets. Therefore, after

HOG and LBP, I will proceed to employ a CNN based strawberry detector.

21

 Chapter 3

 TECHNICAL BACKGROUND

Before going into the implementation, a quick technical overview will be covered on the

techniques which will be employed. This should give the reader a much better intuition on the

specifics when analyzing the implementation section.

3.1 Histogram of Oriented Gradients

 Histogram of Oriented Gradients (HOG) are feature descriptors which are known for their

ability to understand objects by calculating the gradient magnitude and direction [8] [9]. The

general steps taken to obtain the gradient based histogram are as follows:

(1) Extract the region of interest.

(2) Apply Sobel operator on the ROI to obtain gradients and angles.

Magnitude and angle are determined using the equations seen in Figure 10b.

a) Sobel filters to extract the x and y

gradients

b) Magnitude and angular equations

Figure 10: Filter and Equations Employed to Derive the Magnitude and Angle

(3) Split image into multiple cells and calculate the histogram of each cell.

22

 Figure 11: Gradients Being Extracted from Each Cell for a Sample Image

(4) Group a block of cells and normalize the histograms respectively.

(5) Generate the feature vector by concatenating the histograms.

The feature vectors can then be employed to learn the shape of the object. HOG is simply a

feature extractor and therefore the features must be past into a classifier for it to be trained upon

and eventually create a model.

23

3.2 Scale and Rotation Invariant Local Binary Patterns

Local Binary Patterns (LBP) are another type of feature extractor which have the ability to

extract texture from the image. LBP’s are processed by iterating a window operator across the

image. The general overview of the original LBP algorithm is as follows:

for each image pixel in 3x3 filter window

if a surrounding pixel is greater than the central pixel

threshold that respective pixel to a 1

 else

threshold to 0

Array = Mat2Array(thresholded_window)

Decimal_val = Array2Dec(Array)

Output_Mat(i,j) = Decimal_val

The texture-based features extracted from the original algorithm had one major flaw; it lacked

invariance. A simple 3x3 window can only extract 2^8 bits worth of features and cannot be

adjusted to deal with the original images size.

 This issue was dealt by T. Ojala et. al [5] by introducing circular windows which could be

expanded to any scale based on the number of points and radius parameters. This small change

proved to be instrumental as LBP’s originally were not scale and rotation invariant. Beyond the

initial parameter change the remainder of the algorithm is generally the same. The circular

windows at different scales can be seen in Figure 12.

 Figure 12: Scale and Rotation Invariant LBP Windows

One must keep in mind that similar to HOG, LBP’s are just feature extractors and therefore the

features must be passed into classifier for a training model to be built from it.

24

3.3 Neural Networks

3.3.1 Artificial Neural Networks

 Neural Networks are algorithms loosely modeled around the human brain, designed to

recognize patterns. However, before getting into the details pertaining to how the entire network

functions, one must understand how a single neuron works first. A single neuron is labeled a

perceptron. A perceptron takes in multiple inputs and produces an output [26]. The inputs are

connected to a neuron through a synaptic link. The synapses are represented as weights.

Weights are simply factors expressed as real numbers which determine the importance of the

input in respect to the output. A linear transformation between the inputs and their respective

weights are performed upon arrival at the neuron. The linear transformation can be expressed as

𝑤 ∙ 𝑥 + 𝑏. The variable b represents bias, which simply enables the points to fit around the model

better by shifting it in the vertical direction, preventing it from fitting around the origin at all times.

A single perceptron can be seen in Figure 13.

 Figure 13: A General Three Input Perceptron

Then the linear equation is passed into an activation function. The activation function

determines if the neuron should “fire” its output. Many mathematical functions are employed to

represent the activation function, most commonly used functions are Sigmoid and Relu which are

expressed as 1 1 + 𝑒−𝑥⁄ and

𝑓(𝑥) = {
0, 𝑥 < 0
1, 𝑥 ≥ 0

 respectively.

A single perceptron isn’t strong enough to recognize patterns from complicated datasets and thus

an entire network of them is employed to serve this purpose. Figure 14 displays the general

layout of a multi-layered perceptron.

25

Figure 14: A General Two Layered Artificial Neural Network

Each perceptron works together to make complex decisions; in the first layer raw input values are

passed in and hence simple decisions are made and into the hidden layers more abstract

decisions are made by utilizing the information giving by the previous layer [26]. However, simply

feeding data forward through the network doesn’t train the network. The weights must be

adjusted from its errors for the network to truly learn. The back-propagation methodology

performs weight training and thus decreasing the error rate.

3.3.2 Back Propagation

 The weight training process begins after the input has gone through the all the layers in the

forward direction and the error is calculated at the end of the output layer [27]. The weights are

trained during the backward pass using gradient descent which attempts to decrease the loss as

much as possible by improving the weights. Gradient descent involves taking the derivative of the

error is respect to the weights
𝑑𝐸

𝑑𝑊
. However, due to the network involving multiple layers and thus

having multiple weights, chain rule derivation must be applied to calculate the new weights δW.

A quick mathematical explanation of the back-propagation procedure on neurons 8,4,1 from

Figure 14 will be demonstrated for additional clarity.

𝑑𝐸

𝑑W84
 =

𝑑𝐸

𝑑𝑂8
∙

𝑑𝑂8

𝑑𝜑8
∙

𝑑𝜑8

𝑑𝑊84
 [Layer 3]

𝑑𝐸

𝑑W41
 =

𝑑𝐸

𝑑𝑂8
∙

𝑑𝑂8

𝑑𝜑8
∙

𝑑𝜑8

𝑑𝑂4
∙

𝑑𝑂4

𝑑𝜑4
∙

𝑑𝜑8

𝑑𝑊41
 [Layer 2]

The two equations above represent the chain rule procedure required to update the weights,

where 𝜑 represents the neurons respective activation function. The same format would follow for

all the weights when iterating backwards to update them individually. The training algorithm

26

occurs for n number of epochs where n is supplied by the user. An epoch simply represents the

forward and backwards pass for all samples in the training dataset. Multiple epochs cycles are

performed to generate strong results.

3.3.3 Convolutional Neural Networks

 A Convolutional Neural Network (CNN) is a specific type of neural network. It is designed to

train on image type data [28]. It involves iterating a convolutional filter over each input image data

and thus generating feature/activation maps. Figure 15 displays a filter in respect to its input

image data.

Figure 15: Convolutional Kernel in Respect to Image

Each layer consists of a variety of kernels which represent different types of feature extractors.

Iterating a new filter over an image each time results in a stack of feature maps for each

respective filter. Each filter can represent different feature extractors. Due to the first layer

receiving raw pixel data, earlier layers tend to detect low level features such as edges and texture

while deeper hidden layers generate much more abstract features. The feature map build up for 6

different filters after a single convolutional layer can be seen in Figure 16.

27

Figure 16: 6 Unique Feature Maps Generated from 6 Different Kernels on the Input Image

A pooling layer usually follows the convolutional layer to reduce the spatial size, however, the

layer ordering is dependent on the network architecture. Reducing the feature map dimensions

significantly decreases the number of parameters and thus increases computational efficiency as

well. Dimension reduction through pooling can be seen in Figure 17.

Figure 17: Result of Applying Pooling Layer

3.3.4 CNN vs MLP

 In terms of multi-layered perceptron networks, CNN’s function in a very similar manner where

𝑤 ∙ 𝑥 +b is followed as well, x is the input image or feature map (depending on the layer) and w is

the filter. Upon performing the linear transformation, the feature maps are passed through an

activation function as well where the function determines which pixel values stay and which get

subdued. The back-propagation algorithm is implemented in a similar manner as well, where the

filter values/weights are updated to train the network.

Despite much similarities, there are two key difference between CNN’s and MLP’s.

28

• All the weight connections are independent in MLP’s while weights are shared for each

feature map in CNN’s due to the same filter being employed for the entire image.

• Due to the convolutional process, CNN’s are spatially invariant and hence each neuron can

only contain a single filters information not the entire images. This is unlike MLP’s where

each neurons in the next layer receive all the information from the previous layer.

 In summary, Neural Networks are extremely powerful techniques over previously discussed

feature extractors in this section for three major reasons. First, they can function as end to end

optimizers and thus extract features while being able to classify the data as well. Second, multiple

features can be extracted from each input data unlike single feature extractors such as LBP or

HOG. In CNN’s multiple filters can be employed to extract a variety of low- and high-level features

to better train the network. Finally, neural networks have the ability to represents its data in much

higher non-linear dimensions and thus is able to group the sample points easily for accurate

classifications.

29

 Chapter 4

 IMPLEMENTATION & RESULTS

4.1 Ripe Strawberry Detection

4.1.1 HSV Color Segmentation

 The HSV color space was selected as the color channel to isolate the ripe strawberries.

Attempting to isolate the red strawberries under the RGB color space can cause

misclassifications since RGB images tend to generate strong glares over the objects. The HSV

color space was tested upon, where HSV represents Hue, Saturation and Value. The Hue

channel defines the color of the image, where each color is represented in terms of angles

between 0-360. All the general colors and their respective ranges can be seen in Figure 18.

Figure 18: Angle Ranges of the H Channel

The S channel represents the “purity” of the color, lowering the number gives the image a much

more faded effect.

Finally, the Value channel represents the intensity or brightness of the image, where 0 is

essentially black and 255 is white.

Employing the HSV color space, proved to be very effective for the following reasons:

30

(1) dealt with light better than the original RGB color space and thus reduces the reflectance and

shadow effects casted upon the objects, which was caused by the sun in this dataset.

(2) The robust angular range representing the colors reduced the challenge of isolating the

strawberries based on their color.

This can be very effective for isolating ripe strawberries as the images in the dataset don’t

contain much red in it besides the ripe strawberries themselves.

To prevent repetition, the figures displaying the HSV images and the strawberry isolation can be

seen directly in the Ripe Strawberry Implementation section below.

4.1.2 Manual Training

 The strategy taken to localize the ripe strawberries within the test image revolved around HSV

color space segmentation. The HSV color space was selected because Hue and Saturation To

determine the appropriate range which works well with the test images a manual training

methodology was applied. This methodology consisted of multiple trial and error experimentations

where various HSV segmentation values were tested on a smaller training set. The

experimentation was straightforward as the ripe strawberries were the only red colored objects in

the entire image, making it quite simple to distinguish the ripe strawberries form the background.

 The segmentation steps taken were as follows:

First, convert the original image from RGB to HSV color space. Figure 19 displays the original

image compared to the converted HSV image.

#convert image color channels

hsv = RGB2HSV(im)

31

Figure 19: Original RGB Image vs HSV Image

 Then, isolate the red color space within the HSV image. After multiple trail and errors, the

range of values were determined and then stored into an array. Two range sets were chosen due

to red being represented twice, the beginning and end of the hue color spectrum as seen earlier

in Figure 18.

32

#range1

lower = array([0,90,85])

upper = array([5,255,255])

#range2

lower = array([165,90,85])

upper = array([180,255,255])

Thereafter, threshold the pixel values representing only the red colored objects in binary form.

Given the specific range of values, the pixels on the HSV image were isolated.

#determine pixel ranges to threshold upon

mask1 = Range(hsv, lower, upper)

mask2 = Range(hsv, lower, upper)

mask = mask1+mask2

Besides simply displaying the binary version of the isolated red pixels, the colored version was

displayed as well by applying a bitwise AND between the binary mask and the original image to

only display the red colored pixels (Figure 20).

#apply AND operation to threshold the color space

out = bitwise_and(im, mask)

 Figure 20: Ripe Strawberries Isolated Based on Red Color Segmentation

33

 As a precautionary step, morphological operations were applied onto the images to reduce

minor noise grains. The operations applied were erosion followed by dilation. While erosion got

rid of any small noisy pixels, dilation restored the objects that might have gotten damaged due to

the erosion. The structuring elements applied onto the binary images were 3x3 and 5x5 elliptical

shapes, for erosion and dilation respectively. Figure 21 displays the before and after results of

applying morphological operations respectively.

a) Before image consisting of small pixels along with the larger ones

34

b) After image primarily including the larger pixels

Figure 21: Binarized Images Before and After Applying Morphological Operations

#structuring elements

se1 = StructuringElement(ellipse,(3,3))

se2 = StructuringElement(ellipse,(5,5))

#morphological operations applied

clean_im = erode(mask, se1)

clean_im = dilate(clean_im, se2)

The contours of the binarized objects (similar concept as connected components) were then

determined to localize the objects within the image.

#determine the contours of the isolated “objects”

contours = findContours(clean_im)

Once the contours were found, an area threshold limit was set on the objects detected to prevent

detecting extremely small objects. Extremely small detections are unlikely to be strawberries.

#find pixel area of contour object

area = contourArea(contours)

35

Given the contour coordinates from the binarized objects, place bounding boxes on those same

locations in the original image for a cleaner visualization.

#get box coordinates around the contours and draw them onto the respective objects

(x, y, w, h) = boundingRect(contours)

rectangle(im, (x,y),(x+w,y+h), (255, 255, 0), 2)

4.1.3 Results

Table 2: Detection Performance of Ripe Strawberries

Test data True Positives False Positives Clutter boxes Total Berries Accuracy (%)

1-21 48 2 2 56 86

22-43 97 5 1 101 96

44-65 99 6 3 109 91

66-87 40 1 0 42 95

88-109 91 6 0 95 96

110-131 37 4 1 39 95

132-148 108 5 0 117 92

 Implementing simple color segmentation resulted in being an extremely effective technique as

it achieved the goal of not only maximizing most of the true positives but also minimizing much of

the false positives. This was primarily due to the ripe strawberries being the only red objects

within the test images. Due to its primitive procedure the computation was also extremely efficient

displaying each test result instantaneously. The average accuracy of the entire testing data set

was at 93% as inferred from Table 2. A sample result can be seen in Figure 22.

36

 Figure 22: Bounding Boxes Applied on the Original Image (Final Result)

4.1.4 Flaws

While this implementation was primarily successful, there were still three minor flaws that

arose. First, some of the test images had a few false positives at the dirt/soil region as brown

gravitates closely to red on the hue color spectrum and thus overlapping between the two colors

can occur (Figure 23a). Second, the edge of the tarp on a few test images were misclassified as

the sun would cause a strong reflection off the red strawberries onto the tarp, giving that specific

region a red tint and thus confusing the system (Figure 23b). As displayed from Table 2 only 29

false positives were detected out of 148 test images; well below even 1 per image. The third and

final flaw occurred where two red strawberries grew alongside each other thus classifying them

as one strawberry. Figure 23c displays samples of the cluttering bounding boxes. However, this

was not a major issue either as this occurred only a total of 7 times within the entire dataset.

37

a) Brown dirt and soil at the bottom being misclassified as a red strawberry

b) Red reflection off the tarp being misclassified as a red strawberry

38

c) Two red strawberries (top-left) beside each other being classified as one

 Figure 23: Sample Test Images with False Positives

4.2 Resolution

Key modifications in terms of accuracy and efficiency can be done under the appropriate

image resolution. Flower and strawberry detections were attempted under three different

resolution sizes to determine the lowest resolution at which maximum accuracy can be achieved.

This also allows one to calculate the maximum height at which images can be captured for data

collection purposes. To determine the best resolution, the conspicuous criteria would have to be

met of detecting the most flowers or strawberries within the image. These experiments were

attempted by applying the appropriate window dimensions for the respective image size to

prevent disrupting the accuracy. Figure 24 displays the detection results under various resolution

dimensions for flower detection. The lowest resolution size performed the worst as it missed most

of the flowers and strawberries. The augmented image dimension performed the best as it

detected most of the flowers. An important observation to note; even though 4000x5000 had

better results, a resolution of 2000x3000 might be a suitable option as well as the computation

would be more efficient but at the expense of fewer detections. This decision would depend on

39

the user and their application. In conclusion, in terms of pure accuracy increasing the image

resolution will improve the accuracy percentile.

a) Image size: (1000,2000)

b) Image size: (2000,3000)

40

c) Original Image size: (3024,4032)

d) Augmented Image size: (4000,5000)

 Figure 24: Flower Detection Under Various Resolutions

41

4.3 Unripe Strawberry Detection

4.3.1 Local Binary Patterns

4.3.1.1 Training Procedure

 Before testing the performance of the LBP, training must occur on the strawberry dataset

using the feature descriptor and then fitted into a classifier to generate a model. Each previously

cropped image would get extracted from the training folder and then get resized to a 180x180

dimension. After multiple experimentations, this dimension was determined as the optimal size for

extracting the strawberry’s texture. A significant decrease in dimension size would be too small

for the descriptor to extract good features from, thus decreasing accuracy and increasing the

false positive rate. The image was then converted into a single channel (grayscale) as LBP only

works on 2D images.

#convert each training data to grayscale

im = RGB2GRAY(im)

Thereafter, the image would pass into the LBP function. LBP’s consist of three primary

parameters to take note off, numPoints, radius, method. NumPoints represents the size of the

window which will traverse over the image matrix to perform texture analysis at that respective

region. A radius parameter is also present due to rotation-invariant LBP functions utilizing a

circular shaped window instead of square per usual. Finally, method determines the type of LBP

pattern applied. There are various types of patterns, but the most commonly used type is

“uniform”. This was also the type that produces the best results.

#image and respective parameters passed into LBP function

lbp = local_binary_pattern(image, numPoints, radius, method="uniform")

The LBP function returns a matrix representing the specific texture pattern of the

respective training image. The pattern representation must then be converted into a histogram, so

it can be passed into the classifier. This was done by converting the matrix into a 1D array.

Thereafter, the array was then represented as a histogram. The histograms were also normalized

for increased accuracy and computational efficiency.

42

Once a descriptor is created for each image, the images’ descriptor and its respective label are

fitted into the Support Vector Machine classifier. The transformational kernel for this SVM

classifier was linear and its primary parameter usually represents the weighted margin separating

both classes.

#define SVM model and then fit data and its respective labels into the model

model = LinearSVM(C=5)

model.fit(features, labels)

4.3.1.2 Testing Procedure

 This task deals with object detection not simply image classification and thus a sliding window

approach will be applied on the testing images. The testing data will consist of images

representing the entire plant bed with multiple strawberries within it, as displayed earlier in Figure

2. To deal with this issue, the sliding window method creates a MxN window that iterates across

the image horizontally given a step size.

#sliding window looping over entire image

for win_coordinates in slidingWindow(im, stride, windowSize=(W, H))

Each window iteration is extracted and passed into a pre-processing function which checks if the

object within that window is bright yellow-greenish under the HSV color space which represents

the first feature extracted to distinguish unripe strawberries. This preprocessing stage was

implemented to increase computation efficiency. Most of the windows will initially be green due to

the leaves in the background and thus, instead of running those irrelevant objects through the

model, they can be filtered out initially. A sample yellow segmented window can be seen in figure

25.

hsv = RGB2HSV(window)

#apply yellow segmentation

lower = array([20,195,100])

upper = array([30,255,255])

mask = Range(hsv, lower, upper)

43

a) Original window

b) Yellow segmentation

c) Blue channel filtering

Figure 25: Individual Sample Window

Connected components was then used to determine if an object existed within the window once

segmentation was applied.

#connected components applied on binary image

blob = connectedComponents(mask, 4)

 Then the object was binarized under the LAB color space. The LAB color space was

employed as lighter colored objects tend to have high valued pixels under the Luminance channel

of LAB and thus ensuring a bright unripe strawberry would get passed on once thresholding was

applied, not just a leaf with light reflection over it. Figure 26 displays an unripe strawberry under

the L channel of the LAB color space.

#threshold applied on LAB’s luminance channel

lab = RGB2LAB(window)

l,a,b = SplitChannel(lab)

thresh = BinaryThreshold(l, 180, 255) #pixel value 180 or larger becomes 255

Figure 26: Unripe Strawberry Under L Color Channel

44

 After thresholding the pixels, the area of the luminance channel and the variance of the HSV

binary image was taken. Segmenting the window within such a specific range and checking

additional statistical features early on saves time and computational complexities by simply

moving on to the next window iteration. If the requirement is met then the LBP descriptor of that

window is then passed into the SVM model to predict which class it belongs too. Due to LBP’s

employing histograms to describe the feature patterns, the testing windows dimension size can

be different from the training if both histograms consist of the same range (0-255 or 0-1). The

testing windows were set to a smaller dimension than the training windows due to the size of the

testing image. The testing images were (4000,5000) and consequently if a testing window of

(180,180) was applied on the testing images it would cover more than simply the strawberries.

This would prevent quality feature extractions and thus disrupt the prediction process and result

in misclassifications. To have equal training and testing window dimensions, the testing image

would have to be significantly larger which is extremely computationally inefficient. Hence, the

testing windows are set at (107,107) for the strawberries.

 Finally, if the prediction is “strawberry” then another post-processing step is applied to that

window. This post-processing step involves taking the average of the yellow segmented pixels

within the window and the average of the pixels under the blue channel of the original RGB

window image. An unripe strawberry under the blue channel can be seen in Figure 27.

Figure 27: Blue Channel Representation

This final processing step gets rid of even more misclassifications. If the object falls within the

specified range for both averages, then that window coordinates can be saved, and it is officially

45

classified as a strawberry. Before boxes can be drawn given those saved coordinates on the

original image, non-maximum suppression must be applied onto those coordinates as a single

detected object can have multiple boxes drawn over it due to the object being detected multiple

times as the sliding window slides over it in small step sizes.

#applying non-maximum suppression on initial detections

detections = NonMaxSuppression(detections, 0.01)

Figure 18a displays the detection result before applying non-maximum suppression. The detected

coordinates are usually passed along with a box overlap threshold parameter into the non-

maximum function. The overlap threshold value represents the ratio at which every overlapping

bounding box should be removed for that region. The post image can be seen in Figure 28b.

a) Multiple bounding boxes around few strawberries

46

b) Only a single box around each detected strawberry

Figure 28: Detection Before and After Applying Non-Maximum Suppression

4.3.1.3 Results

Table 3: Unripe Strawberry Detection Accuracy Under Dimension Size of (4000,5000)

Test data True Positives False Positives Total berries Accuracy (%)

1-21 73 37 95 77

22-43 75 103 100 75

44-65 100 73 124 81

66-87 45 89 72 62

88-109 95 120 113 84

110-131 79 43 97 81

132-148 84 90 140 60

 First the experiments with successful results will be analyzed thereafter, the failures will be

described. A detection criterion was set initially to validate the accuracy metric. The criteria simply

stated, extremely small strawberries just past their flower stage should not be counted as true

47

positives if not detected as those immature strawberries will grow into larger unripe strawberries

eventually. Under the LBP implementation, the results were adequate especially given the limited

data set. Approximately, 74.3% unripe strawberries were detected under a dataset of 928

strawberries to 1259 non-strawberry images. Table 3 displays the accuracy values for test data in

sets of 21 excluding the last set which included the remaining samples. As stated earlier, the two

primary parameters for the LBP descriptor are the number of points and radius to describe the

texture window size. After multiple experimentations 64 points with a radius of 32 and an SVM

marginal value of 5 were determined to be the optimal parameter values. Setting the margin (C)

to 5 compared to higher values such as 100 tightens the margin between both classes and thus

preventing the respective data points from overlapping between the two class. However, if C was

lowered too much then true positives would get eliminated as well therefore lowering the

algorithms accuracy. This is not worth the loss in this application as it would be beneficial to

detect many unripe strawberries at the expense of a few false positive leaves detected in the

background, in compared to less leaves being detected but less strawberries being detected as

well. The true positive comparison between SVM parameters C=5 and C=3 can be seen in Figure

29.

a) Results with C=3

48

 b) Results with C=5

Figure 29: SVM Marginal Boundary Comparison on the Same Test Data

While the results predicted by the LBP texture analyzer under the C=5 parameters were

reasonable, there were still some obvious false positives that could be eliminated with some

additional post processing by dealing with the pixels through various statistical properties under

different color channels as explained above in the implementation section. Despite, all the

additional pre and post processing applied, few false positives remained as their features were

deemed similar in respect to the strawberries. As inferred from Table 3, each image had an

average of 4 false positives. The test images during the early stages of the strawberry growth

cycle had much fewer false positives compared to the images much further along the growth

cycle where the images were much more complex as the plants had completely grown all over

the bed and hence covering few of the strawberries as well. Another key factor to recognize is the

images during the latter stages were also taken at a higher viewpoint to cover all 5 beds within a

single image. This can hurt the accuracy of the detection algorithm as the resolution of the

strawberries are lower. Figure 30 displays the optimal results under these circumstances after all

the fine tuning and feature boosting.

49

50

51

52

Figure 30: Optimal Results After Final Post-Processing

 The LBP technique did not perform as well under certain circumstances. 64 points along with

a radius of 24 and a C parameter of 100 was selected initially. This resulted in many more false

positives compared to (64,32) as this texture window couldn’t accurately distinguish the

53

strawberries from the background object even in the earlier stages under less complex

environments. Figure 31 displays this prediction failure.

Figure 31: LBP Analysis with Window Size of (64,24), C=100 trained on 924 Strawberries Images

Due to the limited number of original strawberry images in the dataset, the training image set was

increased by generating artificial data. Data augmentation was applied to the strawberry training

data set in terms of rotating various image at an angled step size of 30 degrees for 360 degrees,

therefore generating multiple additional images for each image. Sample rotations can be seen in

Figure 32. This significantly increased the data set to 2252 strawberries, adding over 1000

additional strawberry training images. The supplementary background class also had to be

increased to prevent any bias predications from occurring for one class over the other. The

background non-strawberry class was increased to 2270.

54

Figure 32: Sample training images rotated

This resulted in having a negative effect on the testing data by dramatically decreasing the total

number of true positives. There are two primary reasons as to why data augmentation did not

work; first the rotated images generated created a basic black background where the original

image was placed which disrupted the texture analysis. Second, rotating the data is not very

useful because in this situation as rotational-invariant LBP is already being employed, therefore

rotating the data even further simply causes over-fitting within the data set. The negative effect

data augmentation had on the test images can be seen in Figure 33.

55

 Figure 33: Test Images after Data Augmentation was Applied

56

4.3.2 K-NN Classifier

 K-nearest neighbor was chosen as another model chosen to classify the LBP features. The K-

NN classifier replaced the SVM classifier in the algorithm to determine if the true positives would

be maximized or decreasing the false positives. After multiple experimentations, k=7 produced

the best results for this classifier but as seen in Figure 34, K-NN did not out-perform the SVM

classifier. This entails that in the multi-dimensional feature space many of the background

features were within proximity to the strawberry features, resulting in more false positives than

SVM. Thus, distance is not a good metric for separating features.

57

58

59

Figure 34: Sample K-NN Results Where K=7

4.4 Flower Detection

4.4.1 Local Binary Patterns

Flowers were also detected as part of the strawberry detection system. Flowers within the

image represents the earliest stage of the strawberry growth cycle. Before the strawberry grows

into a fruit, it begins as a plant with white petals and a yellow core as shown in Figure 35.

Figure 35: Flower Stage

60

4.4.2 Training & Testing Procedure

The major difference between the unripe strawberry and flower detection algorithms are four-

fold:

First, the training data did not consist of binary classes as seen before in the unripe

strawberry algorithm. The flower training dataset consisted of three classes; “flower”, “non-flower”

and “strawberry”. Three classes were used over two as employed by the unripe strawberry

algorithm as this prevented any strawberries from being classified as flowers, therefore improving

the accuracy. The classifier employed was still the SVM classifier. Even though the SVM

classifier functions as a binary classifier, it can be modified to employ a “one vs all” strategy in

terms of classes. When distinguishing for flowers, it treats the other classes as a single opposing

class.

Second, the LBP parameters and window sizing had to be adjusted to learn the flower

patterns accurately. The window size used on the test data was (95,95). The same LBP class

format was employed from the unripe strawberry detection algorithm to distinguish the flowers.

After multiple experimentations, 10 points with a radius of 4 was concluded as the optimal points

to extract the flower’s texture efficiently.

#parameters being passed into the LBP class

desc = LocalBinaryPatterns(10,4)

Third, the post processing function was simplified to only isolate the flower taking

advantage of its yellow core.

function pre_check(window):

hsv = RGB2HSV(window)

#isolate yellow pixels

lower = array([23,200,100])

upper = array([30,255,255])

mask = Range(hsv, lower, upper)

Finally, image pyramids were introduced, to maximize the detection accuracy. Unlike normal

convention of pyramids which involve down sampling the image, up sampling was applied

61

instead. If the flowers are too small, this will limit the model’s ability to extract the information

accurately thus increasing the small flower sizes were necessary. The images resolution was

increased from its original size of (3042, 4032) to (4000,5000). Apart from those four changes

everything else was precisely the same as explained in the strawberry detection algorithm above.

4.4.3 Results

Table 4: Metrics Representing the Performance of Flower

Detection Under (4000, 5000) Dimension Size

Test Data True Positives False Positives Total flowers Accuracy (%)

1-21 40 45 51 78

22-43 115 83 130 88

44-65 89 66 105 84

66-87 58 70 68 85

88-109 98 76 118 83

110-131 68 53 86 79

132-148 84 59 109 77

 The flower training data was gathered in similar fashion as the strawberry training data.

However, naturally there will always be less flowers than strawberries in most images due to

strawberries having a much longer growth cycle than flowers. This led to a very limited data set of

788 flowers. No initial criteria were established for their sizes as done earlier for the strawberries

due to flowers being the earliest stage within the strawberry cycle. All these complications made

the flower detection technique more complicated than the earlier strawberry detection techniques.

Multiple experimentations were attempted to determine the best possible parameters at which

texture could be extracted from the flower data. 10 points with a radius of 4 proved to be the best

LBP values to train and test upon. Figure 36 displays the effect various LBP parameters had.

62

a) LBP parameters of (10,4)

b) LBP parameters of (24,8)

63

c) LBP parameters of (64,32)

 Figure 36: Results Under Various LBP Parameters

 Once the appropriate parameters were determined, attempting to detect the flowers under the

original image’s dimension proved to be insufficient as many of the flowers were too small to

extract its texture. Up sampling the image dealt with this issue quite well. After employing up

sampling the average accuracy for detecting flowers regardless of size was at 82% as seen in

Table 4. Figure 37 displays the detection accuracy for much smaller flowers under the original

image resolution vs the up sampled image resolution.

64

a) Result under image original resolution of (3042, 4032)

b) Result under up sampled image resolution of (4000,5000)

Figure 37: Comparison of Small Flower Detection Under Original vs Up Sampled Resolution

65

 While the accuracy improvement after up sampling the images were remarkable, it did come

with two drawbacks. First, the computation speed was slower as well as the prediction window

had more pixels to cover now. Two, due to the window size remaining the same even after the

image was up sampled it detected the larger flowers’ multiple times thus bounding the large

flowers with 2 boxes instead of one. This issue can be seen in Figures 38a and 38b. Given the

limited amount of training data texture analysis performed very well. Figure 39 exhibits successful

sample test images for flower detection.

a) Lower large flower detected twice

66

b) Central large flower detected twice

Figure 38: Large Single Flower Bounded with 2 Boxes Under Up Sampled Resolution

67

68

69

70

Figure 39: Sample Test Images Displaying Successful Flower Detection Under Up Sampled Resolution

4.5 Histogram of Oriented Gradients

4.5.1 Training & Testing Procedure

The algorithm for the HOG technique followed a very similar architecture as the LBP

methodology. The differences occurred in one key area; the image and window dimensions for

training and testing must be the same as HOG returns a feature vector and thus both vectors in

the classifier must be the same size when being compared. It’s not possible to compare feature

vectors of different lengths.

#image passed into the HOG descriptor function

hog_features = hog(im, Orientations=9, PixelsPerCell=(n,n), CellsPerBlock=(m,m))

After that each image extracted from the training folder would need to be converted into a single

channel (grayscale) due to HOG only working on 2D images as well. Sample HOG features from

the training images are shown in Figure 40.

71

a. Strawberry

b. Flower

c. Not

Figure 40: HOG Gradient Extraction on Training Data

The function has multiple parameters, however the primary ones to take note off are orientations,

‘PixelsPerCell’ and ‘CellsPerBlock’. ‘Orientations’ are the number of the bins in the histogram to

insert the magnitude values, ‘PixelsPerCell’ states the pixel dimension required for each cell as

HOG will be performed within those cells instead of the entire image at once. The ‘CellPerBlock’

parameter represents how many cells should be covered by this additional overlaying window.

This window is where the normalization step occurs.

The remainder of the steps taken for training and testing were very similar to the LBP procedure

for training and testing.

4.5.2 Results

 The HOG feature descriptor function has multiple parameters associated within it and thus

various combination and changes were applied to them to witness if any significant changes

occurred in its accuracy. Despite all the experimentation this approach ended up performing

poorly as it resulted in high false positives. Many false positives were eliminated through post

processing however, a large portion of the misclassifications remained and that is not acceptable

as there should be a limit. Many of the HOG’s false positives consistently fell upon the yellow

stems unlike LBP’s detections and those are difficult to eliminate even with post processing due

to color similarities. HOG would simply classify a large variety of objects within the image as

strawberries or flowers respectively making it not a robust technique. Additionally, HOG did not

end up performing well because strawberries and flowers do not have a definitive shape as they

all morph into unique sizes and forms. Thus, the descriptor was unable to determine a concrete

72

shape to describe either and HOG heavily relies on those features. The unsuccessful HOG

results can be seen in Figure 41.

73

Figure 41: Sample Results of Applying HOG Descriptor

74

4.6 CNN based Strawberry Detection

CNN’s require a relatively large amount of data to build a robust feature extractor and due to

only a limited number of strawberries being available, both unripe and ripe strawberry images

were combined together to maximize the dataset. Hence, detecting strawberries in general were

the primary goal of the CNN based feature extractor.

4.6.1 Training Procedure

The same training data set employed from the LBP and HOG techniques, 928 “strawberry”

and 1024 “non-strawberry” images. The data was trained on a custom CNN model which was

derived by the VGG Net architecture [21]. The VGG network was chosen as inspiration due its

simple yet effective design. VGGNet’s are known for their ability to generalize to datasets since

the architecture follows two primary patterns:

1. Stacking multiple sets of 3 convolutional layers on top of each other followed by a max

pooling layer

2. The number of filters double for each new convolutional set

Stacking smaller filters on top of each other over having one large filter enables the network to

better learn complex features as it increases the depth of network. The number of feature

parameters increase deeper into the network and thus by doubling the number of filters, the

layers ahead can appropriately encode the previous layer features past into it. The specifics on

the VGG network architecture can be found in its original paper [21]. The actual network was too

large (19 layers) for the size of the data set on hand and hence a smaller version was designed. If

only a small proportion of training samples are provided into a large network, then significant

overfitting can occur. First the images had to be resized into a constant dimension as CNN’s

require all its data follow the same dimensional format. Next, the data labels are converted to a

one-hot encoded format. This helps keep the labels binary and increases efficiency within the

network.

#one-hot encoding

training_labels = one_hot(training_labels)

75

Thereafter, the network is constructed. The VGG inspired architecture consists of two

blocks; block one covers the convolutional and pooling layers while the second includes the final

fully connected layers. The Keras framework was employed to create the neural network

architecture to train the data upon.

#BLOCK-1

Conv2D(filters=32, kernel=(3,3), input=(w,h))

Activation(‘Relu’)

Conv2D(filters=32, kernel=(3,3))

Activation(‘Relu’)

MaxPooling(size=(2,2))

Dropout(0.25)

Conv2D(filters=64, kernel=(3,3), input=(w,h))

Activation(‘Relu’)

Conv2D(filters=64, kernel=(3,3))

Activation(‘Relu’)

MaxPooling(size=(2,2))

Dropout(0.25)

#BLOCK-2

Flatten(previous layer)

FullyConnected(channels=512)

Activation(‘Relu’)

Dropout(0.50)

FullyConnected(outputs=num_classes)

Activation(‘Sigmoid Function’)

Due to the limited number of training data in the set, data augmentation is applied to artificially

increase the training data. Hence, the parameters to augment the data were defined, which would

eventually be passed into the network once the model was defined.

#Data Augmentation set up

76

data = DataGenerator(rotation_range, width_shift, height_shift, zoom_range, horizontal_flip)

Sample augmentations generated for a single training data is represented in Figure 42.

Note that these augmentations are applied on every training sample and hence this technique

can significantly increase the dataset.

a) original

b) augment 1

c) augment 2

d) augment 3

e) augment 4

f) augment 5

Figure 42: Various Augmentations of a Single Data Point

77

Finally, the model is compiled using “binary crossentropy” as only two classes are involved in this

training set. Thus, sigmoid is employed as the activation function as it treats both classes as an

independent probability distribution.

4.6.2 Testing Procedure

The sliding window method previously mentioned earlier sections was utilized again to

localize the strawberries within the test image. The major difference for the neural network

approach however was sliding windows retrieved had to be stored as batches before being

passed into the network for prediction.

#sliding over testing image and passing window batches for prediction

for (x, y, window) in sliding_window(test_image, step_size, window_size)

 predictions = model_prediction(window_region)

 for p in predictions

 if p == ‘strawberry’:

 box coordinates.append(x,y)

return box coordinates

Thereafter, the strawberry detected coordinates could then be applied onto the test image and

non-maximum suppression can be applied if needed.

4.6.3 Results

Table 5: CNN Strawberry Detection Results Under Resolution (600,800)

Test data True Positives False Positives Total Berries Accuracy (%)

1-21 137 70 154 89

22-43 140 73 168 83

44-65 172 152 192 90

66-87 95 114 110 86

88-109 212 115 232 91

110-131 136 78 143 95

132-148 185 79 216 86

78

 Employing a convolutional neural network proved to be extremely effective compared to the

previous texture and gradient extraction techniques. It performed better in two primary ways; the

first and most noticeable metric it outperformed in was accuracy. The average accuracy when

using a CNN was 88.5%. This was a significant increase of 14.2% from the previous benchmark

(LBP+SVM). Table 5 displays the accuracy in intervals of 21. Figure 43 displays some sample

results when employing a CNN.

79

80

 Figure 43: CNN Strawberry Detection Results Under a (600,800) Image Resolution

 The second instance under which it excelled in was strong detections regardless of image

resolution. This was remarkable as it proves the strength of the networks feature extractors. Due

to the neural network being able to extract several features over just one as in the previous

techniques, it can generate a stronger “understanding” for what represents a strawberry. To

present this, feature maps were extracted at various layers as shown in Figure 44. The initial

layers are much more general as it extracts essentially the entire image and uses various forms

of edge detectors. As you go deeper into the network, the features become less visually

representable. The filters in those layers are in charge of determining the images’ class and thus

is seeking much more specific features. Few of the results under the (2000,3000) resolution can

be seen in Figure 45. When being compared to the images under the (600,800) resolution, the

detections are consistent hence establishing the robust nature of the network. The small

dimension size is also much more computationally efficient process.

81

a) original

b) layer 1

c) layer 3

d) layer 5

e) layer 7

f) layer 9

Figure 44: Feature Maps Extracted at Various Layers of the Network

82

83

Figure 45: Strawberry Detection Results Under the (2000,3000) Image Resolution

84

4.6.4 Flaws

The primary flaw that occurred while employing this technique was the false positive

detections. An average of 4.6 false positives were detected for each test image as inferred from

the Table 5. While this is almost 1 extra false positive per image than the LBP technique, the LBP

results were generated under a much larger resolution of (5000,4000) so one must keep in mind

the tradeoffs. Due to the limited data set it was not possible to hard mine the false positives. Only

adding non-strawberries to the training set severely biased the network towards the “non-

strawberry” class and thus in the process decreased the true positive classifications as well. If

more data was available at the time, I am confident the false positives would decrease while

possibly improving the true positive results as well.

4.7 Coin Distance Measurement

An additional coin detection algorithm was implemented. One of the reasons for placing the

coin was to determine the height at which the images were taken by the camera. However, the

height had to be displayed using the image information itself not manual measurement. The

pinhole technique was applied to measure the height [25]. Before the distance could be

measured, the coin was first detected. The coin was detected using a rudimentary color

segmentation technique like the one explained earlier for ripe strawberry detection. The primary

difference being the color isolation which in this application was blue. Thereafter a binary

threshold was taken of the isolated pixels to localize the object.

Finally, the contours of the binary image were taken so the coordinates could be retrieved

and used to box the coin for clear visualization. Details of how color segmentation can be

employed to leverage to detect objects can be seen under the ripe strawberry section. The

purpose of this section is to determine the coin’s distance. The pinhole technique began once the

coin’s coordinates were found. Focal Length (F) was the first variable required to be determined.

The focal length had to initialized only once for calibration purposes and thereafter the process

could be automated. Without initializing the focal length, it’s not possible to employ this

methodology to determine distance as the initial focal length value serves as a base position for

85

the pixel changes. Focal length can be determined given the parameters pixel width, object

distance and object width.

#Focal Length calibration formula

F = (pixW * objDist) / objWidth

Once the focal length was initialized with a set constant, the distance deltas can be easily

measured using

#distance per detected coin

Distance = (objWidth * F) / pixW

Due to the coin’s width and focal length remaining constant always the distance change is only

affected by the increase or decrease in the coin’s pixel width. Determining the image height and

size of the coin can be very useful as the coin can then be used as a reference object to

determine the approximate size of the strawberries within the image.

4.7.1 Results

The pinhole technique performed well as the distance measurements were reasonably

accurate given the approximate height at which the images were captured. Figure 46 displays

samples of the distance measurements. Issues arose more towards the detection aspect of the

implementation as only color segmentation was applied and therefore it was not as robust of a

technique to isolate the coin in every frame. If the coin was slightly detected and the pixel width

was not accurately representing the entire coin, the distance measurement would be much further

than its actual measurement. As the pixel width ends up being very small thus fabricating the coin

to seem much smaller and at an even greater distance than its original position. Figure 47a and

47b represents how the detection issues disrupted the distance measurements. Another issue

occurred under certain conditions due to strong lighting glares. In this scenario, the algorithm did

not view the coin under the blue channel in the HSV spectrum, thus preventing it from even

having the ability to determine the coin’s distance as seen in Figure 47c and 47d. While this

methodology had strong results, one must note this is a relatively simple method towards

approaching this problem and hence is sensitive to factors such as lighting, angle and initial pixel

calibration.

86

a) Coin measured at a distance at approximately 5 ft

b) Binary coin detected

87

c) Coin measured at approximately 4 ft

d) Binarized image

 Figure 46: Coins Detected with Appropriate Measurements

88

a) Miscalculated coin distance

b) Threshold image not well binarized

89

c) HSV range not able to capture this specific shade of blue

d) No coin detected to determine distance

 Figure 47: Issues with the Coin Measurement Algorithm

90

 Chapter 5

 CONCLUSION & FUTURE WORKS

5.1 Conclusion

Farmers in the agriculture industry have been struggling within the past decade to find

consistent number of workers [1]. This can have a negative impact on crop management. Three

well-known computer vision techniques in Histogram of Oriented Gradients (HOG), Local Binary

Patterns (LBP) and Convolutional Neural Networks (CNN) were applied specifically to detect

strawberries at different stages of its growth cycle. All three have performed well in the past for

object detection purposes [5] [8] [21]. However, the two major challenges in this situation was the

strawberry size, which are very small in relation to most objects detected in the past by these

algorithms and the limited data set available. Computer Vision is a very data driven process and

thus the larger the data set the higher one’s chance of improving their accuracy. HOG performed

very poorly under all experimented parameters as the shape of the strawberries were very

inconsistent for each image. This prevented HOG from creating a consistent training model given

the training data.

The LBP methodology performed quite well under the appropriate parameters especially

given the limited data set. However, it required up-sampling the testing images above the original

size to determine the objects texture. Increasing the image dimension compromised the

computation efficiency, this was the byproduct of improving accuracy. Along with the feature

descriptors a classifier was also required to determine which class the test data belong too. Two

classifiers were experimented with and Support Vector Machines (SVM) proved to perform better

than the K-Nearest Neighbor classifier (K-NN). Finally, a CNN inspired from the VGGNet

architecture [21] was employed to classify and detect the strawberries. This proved to be the best

methodology as it detected 88% of the strawberries in the testing images. It was able to achieve

this accuracy under an extremely low resolution of 600x800 thus being the fastest run-time test

algorithm of all the algorithms implemented. The accuracy was similar even under high

resolutions as well, therefore being the most consistent detector of the three. The deep network

architecture enabled it to learn many more features than the single featured descriptors. An

91

average of 4 false positives were detected per image but it can be reduced with more available

training data. Overall, the CNN performed the best between the three techniques as a multi-

feature extraction enabled the algorithm to distinguish strawberries from the other objects in the

background.

5.2 Future Works

A lot was accomplished as part of this strawberry detection project, three unique

methodologies were implemented and compared against each other with the CNN structure being

the most effective. However, more models can be implemented to compare with such as the R-

CNN technique. Due to lack of time and data this technique was not attempted but given much

more data, the R-CNN might prove to be the most effective methodology yet. Ripe and Unripe

strawberry detections can also be part of the CNN based object detector given a larger amount of

data. Once detection is completed, it would be beneficial to implement a prediction-based

algorithm which can potentially determine the amount of time before the strawberry has ripened.

This can be very beneficial to farmers as they can prepare, and plan beforehand and thus prevent

major crop wastage.

92

 BIBLIOGRAPHY

[1] S. Smith, C. Garcia, “Worker Shortage Hurts California’s Agriculture Industry”, Planet Money,

2018.

[2] CDFA, “California Agricultural Production Statistics”, CA.gov, 2018.

[3] N. Pullman, “Almost 10 per cent of strawberry crops go to waste”, Fresh Produce Journal,

2017.

[4] S. Puttemans et al., “Automated visual fruit detection for harvest estimation

and robotic harvesting”, IEEE IPTA, 2016.

[5] T. Ojala, M. Pietikainen, T. Maenpaa, “Multiresolution Gray Scale and Rotation Invariant

Texture Classification with Local Binary Patterns”, IEEE PAMI, 2002.

[6] R. Schapire, “Explaining AdaBoost”, Springer: Empirical Inference, 2013.

[7] Xin Li et al., “A Deep Learning Method for Recognizing Elevated Mature Strawberries”, IEEE

YAC, 2018.

[8] N. Dalal, B. Triggs, “Histogram of Oriented Gradients for Human Detection”, IEEE CVPR,

2005.

[9] S. Mallick, “Histogram of Oriented Gradients”, Learn OpenCV, 2016.

[10] C. Cortes, V. Vapnik, “Support-Vector Networks”, Bell Labs, 1995.

93

[11] Yangquing Jia et al., “Caffe: Convolutional Architecture for Fast Feature Embedding”, ACM

MM, 2014.

[12] Inkyu Sa et al., “DeepFruits: A Fruit Detection System Using Deep Neural Networks”,

Sensors, 2016.

[13] Shaoqing Ren et al., “Faster R-CNN: Towards Real-Time Object Detection with Region

Proposal Networks”, IEEE PAMI, 2017.

[14] Ping Lin et al., “Deep convolutional neural network for automatic discrimination between

Fragaria × Ananassa flowers and other similar white wild flowers in fields”, BioMed Central: Plant

Methods, 2018.

[15] A. Bosch et al., “Representing Shape with A Spatial Pyramid Kernal”, ACM CIVR, 2007.

[16] D. Lowe, “Distinctive Image Features from Scale-Invariant Keypoints”, ACM Journal of

Computer Vision, 2004.

[17] Suchet Bargoti & James Underwood, “Deep Fruit Detection in Orchards”, IEEE ICRA, 2017.

[18] Tapas Kanungo et al., “The analysis of a simple k-means clustering algorithm”, ACM

Symposium on Computational Geometry, 2000.

[19] S. Pedersen, “Circular Hough Transform”, Semantic Scholar, 2007.

[20] C. Wang et al., “Detection and counting of immature green citrus fruit based on Local Binary

Patterns (LBP) feature using illumination-normalized images”, Springer: Precision Agriculture,

2018.

94

 [21] K. Simonyan & A. Zisserman, “Very Deep Convolutional Networks for Large-Scale Image

Recognition, arXiv: CVPR, 2014.

[22] A. Rosebrock, “Histogram of Oriented Gradients for Object Detection”, Pyimagesearch, 2014.

[23] A. Rosebrock, “Sliding Window for Object Detection”, Pyimagesearch, 2015.

[24] T. Malisiewicz, “Blazing Fast NMS”, ComputerVisionBlog, 2011

[25] R.C. Gonzalez, R.E Woods, “Digital Image Processing”, Pearson Prentice hall, 2008.

[26] M. Nielsen, “Using Neural Networks to recognize hand written digits”, Neural Networks and

Deep Learning, 2018.

[27] M. Nielsen, “How Back Propagation works”, Neural Networks and Deep Learning, 2018.

[28] H. Pokharna, “The best Convolutional Neural Network explanation on the internet”, Medium,

2016.

[29] “Color Models: RGB, HSV, HSL”, WikiBooks, 2018.

[30] T. Malisiewicz, A. Gupta, A. Efros, “Ensemble of Exemplar-SVM’s for Object Detection and

Beyond”, ICCV, 2011.

[31] S. Van Der Walt et al., “Scikit-Image: Image Processing in Python”, Scikit-Image, 2014.

