
Labeling Paths with Convolutional Neural Networks

Kyle Wuerch and Sean Wallace

Abstract— With the increasing development of autonomous
vehicles, being able to detect driveable paths in arbitrary
environments has become a prevalent problem in multiple
industries. This project explores a technique which utilizes a
discretized output map that is used to color an image based
on the confidence that each block is a driveable path. This was
done using a generalized convolutional neural network that was
trained on a set of 3000 images taken from the perspective of
a robot along with matching masks marking which portion of
the image was a driveable path. The techniques used allowed
for a labeling accuracy of over 95%.

I. INTRODUCTION
The goal of this project was to create a reliable method

for predicting a path around the Cal Poly computer science
building using a hand-labeled dataset distinguishing geomet-
ric boundaries. We created a graphical user interface that
assisted in the process for hand-labeling data and used the
dataset to generate a machine learning model by training a
convolutional neural network.

A. Problem Statement

The goal of this senior project was to develop a convolu-
tional neural network that could quickly and effectively label
portions of an image as either driveable or not driveable.
As a starting point, the project was provided with a set of
3000 labeled images collected around the Cal Poly Computer
Science building.

II. DATA

One of the major components of this project was the data
used for training and testing our neural network’s ability to
recognize driveable paths.

A. Data Collection

A set of over 3000 images were collected from the
viewpoint of a robot by our advisor. An example image
is shown in fig. 1. The data was collected using a small
cart with an attached HDR camera and laptop. Images were
collected around the Computer Science Building at Cal Poly
in a variety of weather conditions.

After the images were collected, pixels in the image were
labeled as being either driveable or not driveable. This was
done by drawing polygon masks over the image to cover
the path. The mask was saved as a set of points stored in a
an XML file, which is visualized by fig. 2. This data formed
the ground truth data for training of our neural network. This
process was also completed by our advisor.

B. Preprocessing

The raw data went through multiple steps to simplify the
process of training our neural network.

Fig. 1. Example image utilized in training set

Fig. 2. Mask polygon utilized as ground truth data for fig. 1

1) XML to Masks: The raw XML files representing the
ground truth for each individual image were parsed via
a Python script, then drawn out to a PNG image using
OpenCV. This allowed us to visualize the data, and it made
it easy to augment the masks in the same fashion as the input
images.

2) Image Size Conversion: The collected image set con-
tained images of size 480x270 and 640x360. A program was
written to convert all of the images to 480x270. These resized
images were then used in the training process. This simplified
the training process by not requiring the resizing of images
during training.

3) Data Augmentation: The image set was augmented to
a set of 10000 images. The augmentations used are shown
in table I.

Additionally, the data was split into three sections: train-
ing, validation, and testing with percentages 80%, 10%, and
10% respectively. This split ensured that data in the training
set were not utilized when verifying the accuracy of our
model.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@CalPoly

https://core.ac.uk/display/224767671?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

TABLE I
DATA AUGMENTATION TECHNIQUES APPLIED TO SET OF 3000 IMAGES

Image Modification Arguments Probability
Skew None 10%
Rotate Max Left Rotation = 10 20%

Max Right Rotation = 10
Zoom Min Factor = 1.1 20%

Max Factor = 1.2
Left Right Flip None 20%

III. MODEL

In our project, we solved the problem of path labeling by
using a convolutional neural network (CNN). The CNN takes
in an image as input and outputs a mask of ones and zeros
that represent which part of the input image is driveable, and
which part is driveable. The CNN is generic enough that the
output size can be modified to be multiple scalar outputs of
the original input image. For example, the CNN, with an
input image of 480 x 270, can be trained to output a mask
with shape 16 x 9, 32 x 18, 64 x 36, etc. The output space
can go as high as the original input image resolution of 480
x 270. Most of the testing of this CNN was done at either
an output space of 480 x 270 or of 160 x 90. The full model
that we developed is included in table II. Additionally, the
section of Python code describing the model is included in
section VI-D.

TABLE II
MODEL USED FOR DRIVEABLE PATH LABELING

Layer Function Argument Value
1 MaxPool2D input shape (270, 480)

padding same
pool size 3

2 Conv2D filters 8
kernel size 5
activation relu

3 Dropout percentage 10%
4 MaxPool2D pool size 3

padding same
5 Conv2D filters 8

kernel size 5
activation relu

6 Dropout percentage 25%
7 Flatten
8 Dropout percentage 25%
9 Dense number outputs 512

activation relu
kernel initializer glorot uniform

10 Dropout percentage 50%
11 Dense number outputs 256

activation relu
kernel initializer glorot uniform

12 Dropout percentage 50%
13 Dense number outputs 128

activation relu
kernel initializer glorot uniform

14 Dense number outputs factor of
(270 x 480)

A. Development

When we were initially posed with the challenge of
labeling the driveable portions of paths, we focused on
determining the inputs and outputs to our solution. For us,
based of the data set we were provided, the input was a 480
x 270 color image, but we were not sure on exactly what
the output would be. In order to solve the problem, it would
need to accurately represent what parts of the image were
driveable, but it would also need to be discrete. We thus
spent time discussing possible ways of doing this.

One of our initial thoughts was to use a spline that
would encompass the area that was driveable. This would
be possible since our dataset had contiguous driveable paths.
The only challenge with this solution is that a spline does not
have a discrete set of coefficients that describe any spline.

We then came up with the idea of splitting the image
up into a set of equal sized subsections that could then be
labeled as driveable or not driveable. Increasing the number
of subsection would then allow us to increase or decrease
the resolution of our output with little extra work. Since this
idea would work for the input image and still have a discrete
output, we moved forward with it.

We were already planning on using a CNN to take our
input and convert it to the output space, and thus at this
point, we needed to design the CNN such that it would
accurately do so. Since this was our first time working with
CNNs we used a Tensorflow tutorial with the MNIST data
set a starting point for our neural network. As we continued
working on modifying the tutorial to match our input and
output we quickly found that Tensorflow had a much simpler
library called Keras that greatly simplified the process for
implementing CNNs. We then modified our code to utilize
Keras.

Our initial model utilized two convolutional layers a hid-
den layer and a 16x9 output layer. When initially attempting
to train the model on the dataset, we had trouble approaching
any reasonable accuracy. Regardless of the number of epochs
trained on, the loss and accuracy barely changed. This issue
turned out to be an issue with the learning rate. A couple
of attempts with different learning rates led us to settle at
a learning rate of 1e-4. After training for 50 epochs, this
initial model produced a training accuracy of 99.09% and
a validation accuracy of 93/56%, but utilized 25,000,000
trainable parameters to achieve such results. From this point,
be began working to improve the model.

B. Design Decisions

Ultimately, there were two factors driving the design
decisions for the model used in this project: accuracy and
efficiency.

1) Accuracy: In this project, accuracy was measured as
the average of the difference from the confidence of each
output of the neural network from the actual ground truth
value for the output. Thus, a perfectly accurate model would
predict the same output as our labeled ground truth. To drive
a higher accuracy for the model, multiple techniques were
used.

The first strategy used for improving accuracy was chang-
ing the data input that the neural network was trained on.
This included a variety of augmentations to the dataset to
produce a more general neural network. Using the augmen-
tation listed in table I when compared to the unaugmented
image set on an output space of 160x90 and training for 200
epochs led to a validation accuracy of 95.15% compared to
a 94.81% validation accuracy. Additionally, this lowered the
training accuracy from 96.15% to 95.44%, showing reduced
effects of overfitting.

The second strategy used for improving accuracy was
adding one dropout layer after each convolutional or dense
layer. Using the dropout percentages listed in table II and
augmented data as explained in table I with an output
space of 160x90 had a validation accuracy of 95.15% and a
training accuracy of 95.44% after 200 epochs. Using only
one dropout layer of 40% before the last dense layer of
the network led to a validation accuracy of only 94.81%
but with a training accuracy of 97.24% after 200 epochs.
While the validation accuracy was not significantly different,
dropout appeared to minimize the effects of overfitting, since
the training accuracy more closely matched the validation
accuracy after 200 epochs for the model with more dropouot
layers.

2) Efficiency: To achieve the maximum efficiency, the
solution for this project needed to minimize the size of the
model used for path labeling while still maintaining a high
accuracy. The process of achieving this included multiple
tests using various layer size and mostly consisted of a guess
and check strategy where certain layers would be reduced or
removed from our original model. The measurement used
for model size in this project was total parameters, while the
accuracy used was validation accuracy.

The most effective improvement came from decreasing
the size of the dense layers used in the model. The first
model used two convolutional layers and 512 neuron hidden
layer before a 144 output layer. This relatively simple model
for a 16x9 output space contained 25,261,648 parameters
and only produced a validation accuracy 93.56% with sig-
nificant overfitting. By halving the number of filters on the
convolutional layers and splitting the hidden layer into two
128 neuron dense layers, the total number of parameters
was decreased down to 350,064 trainable parameters with
a validation accuracy of 91.27%.

As we desired to increase the output space of our neural
network to 160x90 and 480x270, we needed to add more
hidden layers to account for the additional complexity of
problem. This was done by using three hidden dense layers of
size 128, 256, and 512 placed after the convolutional layers
and before the output layer. This ultimately increased the size
of the model, but also allowed for higher accuracy when a
large output space was used. With a 480x270 output space
the model achieved a validation accuracy of 95.26%, and
a validation accuracy of 95.12% for and output space of
160x90.

The final model as shown in table II had a variable
number of trainable parameters depending on the specified

output size. For a 160x90 output space, the model had
3,205,408 trainable parameters, and for 480x270, the model
had 18,066,208.

An example of a successful run of the neural network with
an output space of 480x270 is included in fig. 3.

Fig. 3. A generated path mask for a given input image passed to the neural
network with output space 480x270

C. Generality Testing

The dataset used for training the neural network in the
project was significantly limited in that it only contained
images from a specific part of campus. In order to test the
effectiveness of our model in a more generalized environ-
ment, we took pictures at some different locations on campus
and ran them through the same neural network. A semi-
successful example of these tests can be seen in fig. 5 while
an unsuccessful one is shown in fig. 4.

Fig. 4. Path mask applied to image significantly different from image set
with signifcant error

Fig. 5. Path mask effectively applied to image from outside of image set

From these images, we believe that the network correctly
was able to identify objects that rise out of the image as
being non-driveable, but has difficult when the objects are
the same height as the driveable path. Thus, in order to make
this network more effective, additional data containing flat
non-driveable path next to a driveable path would need to be
collected and used in the training of the network to improve
the overall generality of this network.

IV. GRAPHICAL USER INTERFACE

The ability to visualize the output of our neural network
turned out to extremely valuable to the development of our
neural network. We made revisions to the model iteratively.
Initially, we would make a code change and observe during
training the metrics for loss and accuracy. While these
heuristics were sufficient for determining whether a specific
iteration was effective, these simple metrics didn’t allow us
to gain any further insight into the behavior of the network to
understand why it labelled a certain portion of the image the
way it did. We needed to visualize the output of our network
in order to understand what kinds of images that our network
had difficulty with, and the development of a lightweight
graphical user interface allowed us to better understand the
effectiveness of the network such that we could make better
decisions in keeping or discarding revisions to our network.

Fig. 6. An overview of our graphical user interface’s control panel.

A. Grid-based interface

Initially, we wanted to simplify our neural network in order
to both improve our understanding of its behavior as well
as create a consistent baseline that we could improve from.
Instead of working to classify parts of an image that could
be a path from the get-go, we started small and in our first

milestone we aimed to classify subsections of an image that
were either red or black with a grid-like level of granularity.

Fig. 7. An example of one of the earliest images used in our early neural
network to distinguish between black and red in a grid-like fashion.

After we created red-black grid images such as the one
shown in fig. 7, it was then necessary to hand label them
to describe which areas of the grid would be considered red
blocks. We developed our network until we could confirm
that it could learn to identify a specific feature in an image
and create a generalized model to output correct predictions
in our desired grid-like granularity.

Once we were happy with the results, we abstracted our
network to be relatively agnostic to input and output image
size, making them have a variable sized input and output
shape such that they could be easily configured. This allowed
us to replace the black and red grid images with the actual
images from the dataset we intended to use in the long term.
As we increased the possible resolutions in our efforts for
variable input and output sizes, the grid-based architecture
still remained central to our application. For instance, a full-
scale output space where the output size is the same as the
input size was still represented internally with a 1x1 grid
size.

B. Initial Revision

Since we developed our own GUI, we had the freedom
to add new capabilities to aid in the development of our
neural network as we deemed necessary. OpenCV functions
were leveraged throughout the project to manipulate data
input and output from the neural network, we chose to also
leverage it for its basic UI capabilities. However, as our
GUI became a little more complex we decided to migrate
away from OpenCV entirely. The library wasn’t made for
creating production-ready interfaces. Instead, OpenCV’s GUI
capabilities are intended to just be used as a handy tool
for quickly testing or visualizing OpenCV-related functions.
Thus, some simple UI components would have needed to

been made from scratch, and since the GUI was becoming
more expensive to maintain as we tested new capabilities,
continuing to use OpenCV would have distracted us too
much from the actual development of the neural network.

C. Final Revision

Thus, we chose to rewrite the user interface without the
use of OpenCV and instead chose to utilize Qt. At a high
level, the entire interface is comprised of one major window
component and smaller functionalities are split into subcom-
ponents within the Qt architecture. We re-implemented all
of the previous features that aided in both the development
and visualization of our neural network. The neural network
outputs values representing the confidence it has that each
part of an image is a path with values between 0 and 1.
The GUI’s confidence threshold slider allows the user to
display this confidence output dynamically, visualizing at
what point the confidence drops off. This allowed us to better
compare the accuracy between different models, it made it
easy to understand which features in an image caused the
confidence levels to drop off significantly from one image
to another. Finally, we added the capability to save samples
of the masked output in reference to the original image in
order to document the evolution of our model as we made
improvements.

V. CONCLUSIONS

A. Viability

With just a few thousand images, the neural network
learned to identify paths around the Cal Poly computer
science building with an accuracy over 95%. However, it
is worth mentioning that the strength of the neural is in part
limited by the quality of the dataset used to train it.

Fig. 8. An example of a straight path in which the neural network excels.

The neural network tended to excel in straight paths as
shown in fig. 8. This is largely due to the fact that it is
easier to obtain and hand-label images in this scenario in
contrast to the difficulty of labeling images with people and
accurately creating a polygon around their feet. Additionally,
if a new image is significantly different from anything that
the network has ever seen as shown earlier in fig. 4.

However, the network was able to effectively generalize
a process for labeling paths in images that were similar to
the ones it trained on. Consider the image shown in fig. 9.

Fig. 9. An example of an output with features forming a curved path.

Although it lightly clipped the feet to the person walking on
the left hand-side, it avoided the person on the right entirely.
In the dataset used for training, similar images to this one
were likely labeled such that the small segment to the person
on the right were not included. Yet, the neural network was
able to successfully correctly distinguish that portion as part
of the path.

B. Lessons Learned

1) Tooling: In the context of our overall project timeline,
a large portion of our time was spent developing tools for
ourselves such that we could increase the speed at which we
developed our neural network. Although we spent a lot of
time up front to ensure a good development workflow, this
allowed us to quickly make iterations to our model. Spending
this time greatly improved both the quality of our project as
well as the ease in developing it.

2) Data Collection: Our final result utilized the hand
labelled dataset provided to us by our advisor. However,
we did initially spend some time developing our own
methodology for labeling images with the intention of aiding
in our understanding of the end-to-end development of a
convolutional neural network. In our first major revision for
training our neural network, we created our own hand-labeled
dataset using a 30x30 gridsize given images with a resolution
of 480x270. Although we considered our GUI to be relatively
well developed for the task of hand-labeling images in this
grid-like fashion, it still took the two of us over 4 hours to
hand-label just 1000 images.

3) Development Platform: We began development on our
own laptops, but as the size of our model increased, the
time spent training started to be long enough to slow down
our iterative development cycles as we waited for training
to complete. Some time was then spent experimenting with
training on Cal Poly’s high performance computer science
servers. While this was an improvement over training on
laptops, we eventually settled on developing in the Google
Cloud Compute Platform. We used a virtual machine that
utilized Nvidia’s Tesla K80 video card for tensor computa-
tion, making it possible to train a hundred epochs in the
time it would have taken to train a single epoch on our
own laptops. This allowed us to determine the accuracy of
new changes to our model much more quickly, and allowed

for quick experimentation that would not have been possible
otherwise.

C. Extending the Project
1) Real-time computation: After the model is generated, it

is used on the fly to generate an output for each test image as
it is requested from the graphical user interface. The model
is fast enough to be used dynamically, and could feasibly
input a video feed and display augmented video with the
computed path in real time. This would increase the usability
of the neural network in applications involving autonomous
vehicles for dynamic pathfinding, and would also have the
added benefit of reducing the risk of error in the network by
spreading the decision making process in pathfinding across
the result of multiple images.

2) Data Labeling Bootstrapper: The process for collect-
ing then labeling data is extremely time consuming. Thou-
sands of images were captured and polygons distinguishing
the path were created manually for all of the images captured.
However, it takes a surprisingly small amount of data (poten-
tially less than 200 images) for the trained model to have an
accuracy that beats random with few false positives. With this
in mind, the network could feasibly be utilized in the creation
of training data for either this application or even an entirely
different application. Instead of creating entire polygons from
scratch, the network could train simultaneously as more data
is added to the dataset. Then, it could add suggestions for
polygons that could be accepted or modified to speed up
the data collection and labeling process. Especially since we
have achieved an accuracy over 95%, this could be valuable
as a tool whose primary purpose is to assist in labeling data.

3) Integrating Odometry: The dataset utilized in this
project specified sections of each image that could be
considered a path. Thus, the output of our neural network
functions only as a classifier for determining drivable paths
in an image. One way of improving upon this functionality
is to add another data input layer into our neural network
consisting of a robot’s odometry data as it collects images
while navigating the surrounding environment. The inclusion
of this data would allow the neural network to provide esti-
mations regarding its spatial position as well as its distance
from parts of the image. This would greatly increase the
usability of this neural network in a real world setting as
it could then be used to not only determine directionality
of a path, but provide insight into how the robot’s actuators
should behave in order to safely travel on the path.

D. Related Applications
The same convolutional neural network we developed

could be used in a variety of applications involving bi-
nary classification without modification to the design of the
network itself. Since our convolutional neural network is
capable of learning features of images at a high level, it
only requires a new labeled dataset in the same grid-based
format to be used in another application.

In a completely different application, we have successfully
applied our convolutional neural network without modifica-
tion to the model itself to identify birds in images. Although

Fig. 10. The output of our convolutional neural network after being trained
to recgonize birds in images.

the raw image dataset we used comprised of relatively high
quality images taken by photographers, it was still able to
distinguish the location of birds in images with an accuracy
of over 90% for images it has never seen before. For
the output shown here, only 200 images were utilized for
training as well as an output space delimited by a 30x30
grid resolution. It should also be noted that not all of the
images were successful in accuracy depicting the shape of
the birds, but the neural network was still able to correctly
detect at least some part of the bird without false positives.

VI. APPENDIX

A. Prerequisites for Installation

Our project was developed using Python 3.6 and has major
dependencies on Tensorflow (1.1.12) for the development of
the convolutional neural network and OpenCV(3.4.4) for im-
age processing utilities in manipulating the raw input data as
well as the raw output data from the neural network. Qt(5.11)
was utilized for the lightweight graphical user interface for
the creation of input data as well as the visualization of
output data for testing or debugging the neural network.

B. Training the Model

The model was trained using a dataset collected around the
Cal Poly computer science building. Images were captured
and were labeled manually to describe the polygon bounding
the path within each respective image. In the dataset, the
polygons were described in an XML format. At a minimum,
a dataset of images and data annotating which portions of
the image are a path is necessary to train a new model. To
increase the effectiveness of the network, images should be
captured of as many different situations as possible. Although
we have had some success in training the model for certain
applications with just 200 images, the accuracy in our path
labeling only started to become extremely effective after
utilizing over 1000 images for training. Especially since we
split up the data and only 10% ends up being used for testing,
it makes sense to have enough data to be able determine the
effectiveness of the convolutional neural network. Training
can be executed by running the training script with the path
of both the input and desired output directories as shown
below:

python3 net/train.py
--data_in my_data_input_directory
--data_out my_data_output_directory

It is worth noting that the training script that is run is
primarily a scaffolding script that stitches together and runs
our neural network. Thus, high level modifications such as
the number of epochs to train for or the desired the output
shape should be configured in that script.

C. Testing the Model

The training process generates a new folder containing all
of the necessary information to run the model, and it can then
be used repeatedly on different input images for testing. The
effectiveness of the model can be visualized by running the
model against test images in our graphical user interface. To
do so, simply execute the testing script with the path of the
generated directory as an argument. An example command
for running the test script is shown below:

python3 net/test.py logs/SNETZ-00033/

D. Code

The source code for this project is hosted on GitHub
[1]. Comprehensive instructions for installing and running
the model are included in the repository’s README file.
Included below is the code describing the model used for
this project.

model = Sequential([
MaxPool2D(pool_size=3,

padding=’same’, input_shape=shape),
Conv2D(filters=8, kernel_size=5,

activation=’relu’),

Dropout(0.10),
MaxPool2D(pool_size=3, padding=’same’),
Conv2D(filters=16, kernel_size=5,

activation=’relu’),

Dropout(0.25),
MaxPool2D(pool_size=3, padding=’same’),
Flatten(),

Dropout(0.25),
Dense(512, activation=tf.nn.relu,

kernel_initializer=’glorot_uniform’,
bias_initializer=’zeros’),

Dropout(0.50),
Dense(256, activation=tf.nn.relu,

kernel_initializer=’glorot_uniform’,
bias_initializer=’zeros’),

Dropout(0.50),
Dense(128, activation=tf.nn.relu,

kernel_initializer=’glorot_uniform’,
bias_initializer=’zeros’),

Dense(output_shape[0] * output_shape[1],
activation=tf.nn.sigmoid)

])

model.compile(
optimizer=Adam(lr=0.0001),
loss=’mean_squared_error’,
metrics=[acc_meas])

ACKNOWLEDGMENT
We gratefully acknowledge the contribution of our advisor

for allowing us to utilize his personal dataset of the Cal Poly
computer science building. Over 3000 images were manually
collected and painstakingly hand-labeled over the course of
a year. The success of this project would not have been
possible without this contribution.

REFERENCES

[1] Wallace. Wuerch, Labeling Paths with Convolutional Neural Networks,
(2019), GitHub repository, https://github.com/heatsink/SNetZ

