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Introduction

In nonabelian groups, as well as in noncommutative associative algebras, one may measure

the degree of noncommutativity with the help of commutators. Based on these, one

de�nes in \both worlds" (the category of groups, and the category of associative algebras)

analogous concepts, such as (Lie) solvability, (Lie) nilpotence, : : : | here the question

arises whether one also obtains parallel properties in both categories. In this context we

take as the object of study the group algebra of a (�nite or in�nite) group over some �eld.

A \parallel property" would then be e.g. commutativity: A group is abelian, if and only

if the associated group algebra is commutative. For other, more complex concepts such

as the ones mentioned above, such a total correlation cannot be expected, although it

should be clear that the commutator properties of the group algebra are derived from the

commutator properties of the group we started with.

A complete qualitative description of this correlation has been given by I.B.S. Passi,

D.S. Passman, and S.K. Sehgal in [15, 1973], where they classify the Lie solvable and

the Lie nilpotent group algebras (theorem 1 below). Loosely speaking, they answer the

question posed above with \close to {but not quite{ parallel". (For an extensive treatment

of Lie solvability, Lie nilpotence, as well as further Lie properties of group algebras, see

also [19, chapter V].)

Based on this result, there have been quantitative examinations, such as towards the

determination of the Lie nilpotence class [1, 4, 10, 20], or the Lie derived length [9, 21, 22]

of Lie nilpotent, respectively Lie solvable, group algebras.

Another property of group algebras has also been studied, namely centre-by-metabelianity,

which is somewhat atypical in this context in that it is located somewhere between Lie

solvability of index 2 and 3, but also has a touch of Lie nilpotence (although it does not

imply the latter; see the de�nitions and the theorems 2{4 below).

We want to classify the centre-by-metabelian group algebras: If the underlying �eld has

characteristic 0, the centre-by-metabelian group algebras are known to be abelian; this is

easily derived from the Passi-Passman-Sehgal theorem. The case of characteristic greater

than 3 has been studied by R.K. Sharma and J.B. Srivastava in [23, 1992]. Their result is

that here there also are no centre-by-metabelian group algebras except the abelian ones. In

characteristic 3, the situation is more interesting since here there are centre-by-metabelian

group algebras which are neither metabelian nor Lie nilpotent. Their classi�cation actually

was published twice in the Journal of Algebra, namely by B. K�ulshammer and R.K. Sharma

in [7, 1996], and by M. Sahai and J.B. Srivastava in [17, 1997]; both parties were working

independently, using di�erent methods.

As very often in group or ring theory, the problem for the characteristic 2 case is the least

handy one. Its solution is the main result of the present thesis (cf. theorem 4).

A converse concept (more exactly: a right adjoined functor) to the construction of the

group algebra from a group is given by the determination of the unit group of an algebra.

We exploit our classi�cation theorem to study the unit groups of centre-by-metabelian
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INTRODUCTION iii

group algebras. In particular, we examine whether the unit group is centre-by-metabelian.

This is a natural question since this is true in odd characteristic, as is shown in [7]; the

question was �rst raised in [23]. Our result is that in characteristic 2, this is not necessarily

so, spotlighting once more the capriciousness of this characteristic.
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Language

Let F be a �eld of characteristic p � 0, and let L be a Lie algebra over F. Recall that an
ideal of L is an F-linear subspace U � L such that [x; y] 2 U for all x 2 L, y 2 U .

For subsets X;Y of L, we denote by [X;Y ] the F-span of all elements [x; y] with x 2 X,

y 2 Y . If X, Y are ideals of L, then so is [X;Y ] by the Jacobi identity.

One has the following descending chains of ideals: The lower central series of L, inductively

de�ned by 1(L) := L, i+1(L) := [L; i(L)] for i = 1; 2; : : : ; and the derived series of L,

inductively de�ned by �0(L) := L, �i(L) := [�i�1(L); �i�1(L)] for i = 1; 2; : : : . We say that

L is nilpotent of class c, if n+1(L) = 0 for some n 2 N, and c is the minimum over all such

n; and we call L solvable of derived length d, if �m(L) = 0 for some m 2 N, and d is the

minimum over all suchm. We use the common abbreviation L0 for �1(L) = [L;L] = 2(L),

and L00 for �2(L). Then L is called abelian (metabelian), if L0 = 0 (resp. L00 = 0).

The centre Z(L) := fz 2 L : [x; z] = 0 for all x 2 Lg of L clearly is an ideal as well.

If its factor Lie algebra L=Z(L) is metabelian, we say that L is centre-by-metabelian.

An equivalent description is to say that L00 � Z(L). Another equivalent condition is that

[a; [b; c]; [d; e]] = 0 for all a; b; c; d; e 2 L; note that we use right normed triple commutators,

de�ned via [a; b; c] := [a; [b; c]] for a; b; c 2 L. Obviously, centre-by-metabelian Lie algebras

are solvable of derived length at most 3.

Let A be an associative, unitary F-algebra. For subsets X;Y of A, denote by XY the F-
span of all elements xy with x 2 X, y 2 Y , and by F[X] or just FX the F-linear subspace
of A spanned by X.

As usual, the associated Lie algebra L(A) of A is de�ned to be the underlying vector

space of A together with the commutator bracket [:; :] de�ned via [x; y] := xy � yx for

all x; y 2 A. We call A Lie solvable, if L(A) is solvable; the attributes Lie nilpotent, Lie
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metabelian, and Lie centre-by-metabelian are de�ned accordingly.� An ideal of L(A) is

called a Lie ideal of A.

Since there is no danger of confusion, we simply call A metabelian (resp. centre-by-

metabelian), if it is Lie metabelian (resp. Lie centre-by-metabelian), and we write A0,

A00, �n(A), n(A) instead of L(A)0, L(A)00, �n(LA), n(LA), respectively.

Let G be a group. We use the \left versions" of conjugation and of the commutators in

G, i.e. for a; b 2 G, we de�ne ab := aba�1, and (a; b) := ab(ba)�1 = aba�1b�1 = abb�1.

Much as above, we de�ne the right normed triple commutator of a; b; c 2 G by (a; b; c) :=

(a; (b; c)).

For subsets X;Y of G we set XY = fxy : x 2 X; y 2 Y g and (X;Y ) := h(x; y) : x 2 X,

y 2 Y i. The centralizer of X in Y is CY (X) := fy 2 Y : (x; y) = 1 for all x 2 Xg.

In accordance with [5], we extend these de�nitions to the case where a group A acts on G,

i.e. where we have a group homomorphism ' from A to the automorphism group Aut(G)

of G. We set ag := ('(a)) (g), and (a; g) := agg�1 2 G for a 2 A, g 2 G. For subsets

B � A, H � G, we then de�ne (B;H); CH(B) � G, CB(H) � A in the obvious way.

Frequently, A will act on G by element inversion, i.e. we will have the situation that

jA : CA(G)j = 2 with ag = g�1 for all g 2 G, a 2 Ar CA(G). For convenience, we will say
that A acts dihedrally on G in this case. Note that this implies that G is abelian.

The lower central series, G = 1(G) D 2(G) D 3(G) D : : : , and the derived series,

G = �0(G) D G0 = �1(G) D G00 = �2(G) D : : : , of G are de�ned much as their Lie-

theoretic analogues, as well as the notion of nilpotence and solvability of G. We say that

G is metabelian, if G00 = 1, and we say that G is centre-by-metabelian, if G=Z(G) is

metabelian, or equivalently, if (G;G00) = 1.

All further notation is standard; check appendix A for details.

Results

As already mentioned, we are interested in the correlation between the commutator prop-

erties of the group G on the one hand, and the associated Lie algebra of the group algebra

FG on the other hand. Let us start by quoting some important previously known results.

In 1973, I.B.S. Passi, D.S. Passman, and S.K. Sehgal obtained the following classi�cation

of the Lie solvable and the Lie nilpotent group algebras:

1. Theorem ([15]): Let G be a group, and let F be a �eld of characteristic p � 0.

(i) If p = 0, then FG is Lie nilpotent or Lie solvable if and only if G is abelian.

(ii) If p > 0, then FG is Lie nilpotent if and only if G0 is a �nite p-group and G is

nilpotent.

(iii) If p > 2, then FG is Lie solvable if and only if G0 is a �nite p-group.

(iv) If p = 2, then FG is Lie solvable if and only if G contains a subgroup A of index at

most 2 such that A0 is a �nite 2-group.

�in [7, 17, 23], the term Lie centrally metabelian is preferred over Lie centre-by-metabelian.
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F. Levin and G. Rosenberger then focused on the Lie solvable group algebras of derived

length at most 2 in positivey characteristic:

2. Theorem ([9, 1985]): Let G be a group, and let F be a �eld of characteristic p > 0.

Then FG is metabelian if and only if it is Lie nilpotent of class at most 3, and this is the

case if and only if one of the following holds:

(i) p > 3 and G is abelian.

(ii) p = 3 and G0 is central of order dividing 3.

(iii) p = 2 and G0 is central and elementary abelian of order dividing 4.

The classi�cation of the centre-by-metabelian group algebras in positivey odd character-

istic, published by R.K. Sharma and J.B. Srivastava [23, 1992], B. K�ulshammer and

R.K. Sharma [7, 1996], M. Sahai and J.B. Srivastava [17, 1997], is given as:

3. Theorem: Let G be a group, and let F be a �eld of characteristic p > 2. Then FG is

centre-by-metabelian if and only if one of the following holds:

(i) p > 3 and G is abelian [23].

(ii) p = 3 and the order of G0 divides 3 [7, 17].

The paper on hand now closes the gap for even characteristic:

4. Theorem (main result): Let G be a group, and let F be a �eld of characteristic 2.

Then FG is centre-by-metabelian if and only if one of the following conditions is satis�ed:

(i) The order of G0 divides 4.

(ii) G0 is central and elementary abelian of order 8.

(iii) G acts dihedrally on G0 �= Z2 � Z4, and CG(G
0)0 � �(G0).

(iv) G contains an abelian subgroup of index 2.

The structure of the proof is as follows: After obtaining some basic formulas in section 1,

we show the \if"-direction in section 2, which is comparatively easy. To attack the \only

if"-direction, we have to study closely the action of G on G0 (by conjugation). The trivial

action is handled in section 3. For non-trivial actions, we �rst concentrate on the case

where G0 is elementary abelian, which then may be interpreted as a vector space over F2.
Thus we obtain a linear representation of G, which we will examine in section 4. Some

properties of the elementary abelian case carry over to the situation where G0 is not

elementary abelian; see section 5. Under the assumption that jG0j 2 f8; 16g, we construct

an algorithm that drastically reduces the number of actions we have to consider; this

algorithm may then be run through a computer. (The reader can �nd the commented

listing of a collection of routines designed for this job using the computer algebra system

GAP { Groups, Algorithms, and Programming [18], called actions.g, in appendix C.)

The \survivors" of this algorithm then have to be looked at more closely in sections 6

and 7. Finally, the cases where jG0j =2 f8; 16g are taken care of in section 8 by an inductive

argument.

yObviously, theorem 1 (i) includes the classi�cation of both the metabelian and the centre-by-

metabelian group algebras in characteristic 0.
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The last section then discusses commutator properties of the group of units U(A) of an

(associative) algebra A (notably we will discuss group algebras). A previously known result

by N. Gupta and F. Levin [4, 1983] is that Lie nilpotence of A implies nilpotence of U(A).

In the case that A is a group algebra in characteristic p 6= 2, a similar statement holds

for solvability [19, V.6.18]. For arbitrary A again, if A is metabelian, then also U(A)

is metabelian, as has been shown by R.K. Sharma and J.B. Srivastava in [23]. There

they also have raised the question whether U(A) is necessarily centre-by-metabelian, if

A is centre-by-metabelian. According to theorem 3 (i), this is clearly the case if A is a

group algebra of characteristic not dividing 6. B. K�ulshammer and R.K. Sharma show

in [7], that the same is true if A is a group algebra of characteristic 3. However, V. Tasi�c

presents in [24, 1992] a centre-by-metabelian F2-algebra A such that U(A) is not centre-

by-metabelian (his example is a factor algebra of a power series algebra). The answer to

what happens if A is a group algebra over a �eld of characteristic 2 is a second result of

this thesis:

5. Theorem (supplementary result): We adopt the notation of theorem 4.

If either (i) or (ii) is satis�ed, then U(FG) is centre-by-metabelian.

If (iii) is satis�ed, then U(FG) is solvable of derived length at most 3, but not necessarily

centre-by-metabelian.

There are groups G that satisfy (iv) such that U(FG) is not solvable.

For the actual examples and a slightly more detailed formulation, see section 9.

* * *

Before one continues reading, I would like to draw attention to a second, more extensive

and polished extension package for GAP called LAG { Lie Algebras of Group Algebras, that

emerged so to speak as a byproduct of my involvement with this classi�cation problem.

While it is not directly used in any proof, it was very helpful for the examination of a

large number of examples during an initial \experimental stage" of my work (apart from

\handmade" examples, the 2-groups library of M.F. Newman and E.A. O�Brien [11, 12,

13] that is included into GAP was an indispensable tool here). In general, LAG allows its

user to deal with group algebras in the same simple manner as one is used to with groups

in GAP (for the protocol of an example GAP session with LAG, see appendix B). It

complements P. Osterlunds extension package grupring.g [14] nicely, since both packages

use similar data structures but have a virtually disjoint functional scope. For the future,

it would be desirable to have a combined package | unless the new GAP version 4, which

will hopefully soon be available, makes this demand obsolete.

Both of my GAP �les, i.e. LAG and the previously mentioned actions.g, as well as the

full text of this dissertation, are available in the WWW under

http://www.mathematik.uni-jena.de/algebra/skripten/

Have fun.



1. Preliminaries

General premise: Let F be a �eld of characteristic 2 throughout this and all

following sections, until otherwise mentioned.

Let G be a group, and a; b; c 2 G. The most basic formulas for group commutators are

somewhat similar to bilinearity:

(a; bc) = (a; b) b(a; c);

(ab; c) = a(b; c)(a; c);
a(b; c) = ( ab; ac):

(1.1)

This may easily be checked by direct expansion, as well as theWitt identity [5, Satz III.1.4]:

b(a; b�1; c) c(b; c�1; a) a(c; a�1; b) = 1:(1.2)

Now let a 2 G, b; c 2 CG(G
0). The Witt identity then implies that (a; b; c) = 1. It follows

that

CG(G
0)
0
� G0 \ Z(G):(1.3)

For subgroups H;K < G it is easy to verify that [5, Hilfssatz III.1.6]

(H;K) E hH;Ki :(1.4)

If the group A acts on G, then, for all a 2 A,

(a;G) = (hai ; G)(1.5)

is an hai-invariant normal subgroup of G, since by 1.1, we have (a2; g) = a(a; g)(a; g) =

(a; ag)(a; g) 2 (a;G), and (a�1; g) = a�1(a; g)�1(a�1a; g) = (a; a
�1
g)�1 2 (a;G) for all

g 2 G; the rest follows by induction.

Suppose that N is a subgroup of �nite index in G that contains G0. Then N E G, and

G=N is abelian. We write G=N = ha1N; : : : ; anNi with elements a1; : : : ; an 2 G. We

claim that then

G0 = h(ai; aj) : 1 � i < j � ni (a1; N) : : : (an; N)N 0:(1.6)

One inclusion is trivial. To see the other one, consider �rst the case n = 1 with a := a1.

For all g; h 2 G, there are x; y 2 N and i; j 2 Z such that g = aix, h = ajy. By 1.1,

(g; h) = (aix; ajy) = ai(x; aj) � a
i+j
(x; y) � (ai; aj) � a

j
(ai; y) 2 ai(a;N) � a

i+j
N 0 � a

j
(a;N) =

(a;N)N 0. (Note that N 0 is normal in G, since it is a characteristic subgroup of N .)

Assume now that n > 1. Observe that for all subgroups U , V of G0, we have (U; V ) � G00 �

N 0, thus UV N 0 = V UN 0 also is a subgroup of G0. Set a := a1, H := ha2; : : : ; an; Ni. By

the case n = 1, we have G0 = (a;H)H 0. By induction,H 0 is contained in the right hand side

of 1.6. Furthermore, for x 2 N we have (a; a2x) = (a; a2)
a2(a; x) = (a; a2)(a2; a; x)(a; x),

which clearly is contained in the right hand side of 1.6, since (a2; a; x) 2 (a2; N). Arguing

again by induction, we �nd that all of (a;H) is contained in the right hand side of 1.6,

hence G0 is also.

1



2 1. PRELIMINARIES

Our next claim:

If G has an abelian subgroup A of index 2, then G acts dihedrally on G0.(1.7)

First note that g2 2 A, hence 1 = (g2; a) = g(g; a)(g; a), i.e. g(g; a) = (g; a)�1 for all a 2 A.

But G0 = (g;A)A0 = (g;A) by 1.6, and thus gh = h�1 for all h 2 G0.

A formula connecting the commutator of two elements a; b 2 G with their Lie commutator

in FG is given by

[a; b] = ab+ ba = (a; b)ba + ba = (1 + (a; b))ba:(1.8)

(Recall that F has characteristic 2.) Moreover,

[a; ba�1] = aba�1 + b = b+ ab;(1.9)

which easily implies that

(FG)0 = Ff[a; b] : a; b 2 Gg = Ffx+ y : x; y are conjugate elements of Gg:(1.10)

For any subset X of G, we denote by X+ 2 FG the sum over all elements of X. If X is a

subgroup of G, then X+x = X+ for all x 2 X, and

X+(1 + g) = 0 () g 2 X(1.11)

for all g 2 G.

In particular, if hx1; x2; : : : ; xni is a subgroup of exponent 2 in G, then

(1 + x1)(1 + x2) : : : (1 + xn) =

(
hx1; x2; : : : ; xni

+ if jhx1; : : : ; xnij = 2n;

0 otherwise:
(1.12)

Note also that then (1 + x1)(1 + x2) : : : (1 + xn) = (1 + x1x2)(1 + x2) : : : (1 + xn), etc.

Let now x1; : : : ; xn be any elements of G such that for all i = 1; : : : ; n, one has xi =2

hx1; : : : ; xi�1i. By an inductive argument, it is easy to see that

(1 + x1)(1 + x2) : : : (1 + xn) 6= 0(1.13)

in FG.

A basic property of the lower central series of the group G (resp. of any Lie algebra L) is

that

(i(G); j(G)) � i+j(G);

[i(L); j(L)] � i+j(L)
(1.14)

for all i; j 2 N (cf. [5, Hauptsatz III.2.11] for groups, and [2, section 1.3] for Lie algebras).

In particular, for any group (and any Lie algebra) H, and for all n 2 N, we have

�n(H) � 2n(H):(1.15)

This is easily veri�ed using 2(H) = H 0 = �1(H), equation 1.14, and induction.



2. The easy direction

2.1. Remark: For any group G we denote by !(FG) := Ff1 + g : g 2 Gg the augmenta-

tion ideal of FG. IfH E G, then !(FH)FG = FG !(FH) is the kernel of the canonical epi-

morphism FG! F[G=H] (cf. [16, lemma 1.1.8]). In particular, FG=!(FG0)FG �= F[G=G0]

is abelian, hence (FG)0 � !(FG0)FG. Then

(FG)00 � [!(FG0)FG; !(FG0)FG] � (!(FG0)FG)2 = !(FG0)2 FG:

Note moreover that

(G0)
+ FG � Z(FG);

since G0 E G obviously implies (G0)+ 2 Z(FG), and for all g; h 2 G, we have [(G0)+g; h] =

(G0)+[g; h] = (G0)+(1 + (g; h))hg = 0 by 1.11.

2.2. Lemma: Let G be a group with jG0j = 2. Then (FG)0 � (G0)+ FG. In particular,

FG is centre-by-metabelian.

Proof: We write G0 = hxi. Then (FG)0 � !(FG0)FG = (1 + x)FG = (G0)+ FG.

2.3. Lemma: Let G be a group with jG0j = 4. Then (FG)00 � (G0)+ FG. In particular,

FG is centre-by-metabelian.

Proof: Case 1: G0 �= Z2 � Z2. We write G0 = hx; yi. Since (1 + h)2 = 1 + h2 = 0 for

all h 2 G0, it is easy to see that !(FG0)2 FG = (1 + x)(1 + y)FG = (G0)+ FG, and hence

(FG)00 � (G0)+ FG by 2.1.

Case 2: G0 �= Z4. We write G0 = hxi, and consider the canonical epimorphism FG !

F[G=


x2
�
]. By 2.2, 3(F[G=



x2
�
]) = 0, so 3(FG) � !(F



x2
�
)FG = (1 + x2)FG. Check

that x2 2 Z(G) and that !(FG0)3 FG = (G0)+ FG. Then 4(FG) = [FG; 3(FG)] �
[FG; (1 + x2)FG] = (1 + x2) [FG;FG] = (1 + x)2 (FG)0 � !(FG0)3 FG � (G0)+ FG, and
�nally (FG)00 = �2(FG) � 4(FG) � (G0)+ FG by 1.15.

2.4. Lemma: Let G be a group of (nilpotence) class 2 with G0 �= Z2 � Z2 � Z2. Then

(FG)00 � (G0)+ FG. In particular, FG is centre-by-metabelian.

Proof: We have exp(G0) = 2 and G0 � Z(G). Then by Jennings [16, theorem 3.3.7], the

second dimension subgroup of G0 is trivial, so by [16, lemma 3.3.4],

!(FG0)n FG = f(1 + x1) : : : (1 + xn) : x1; : : : ; xn 2 G
0gFG

for all n 2 N. In particular, !(FG0)3 FG = (G0)+ FG. But then (FG)00 = [(FG)0; (FG)0] �
[!(FG0)FG;!(FG0)FG] = !(FG0)2 [FG;FG] � !(FG0)3 FG � (G0)+ FG.

2.5. Lemma: Let G be a group that acts dihedrally on G0 �= Z2 � Z4, and suppose that

CG(G
0)0 � �(G0). Then FG is centre-by-metabelian.

Proof: We write G0 = hx; yi with x2 = 1 = y4, and set C := CG(G
0). Then jG : Cj = 2

and C 0 � �(G0) =


y2
�
� Z(G). For a 2 GrC, we have ax = x, ay = y3.

3



4 2. THE EASY DIRECTION

By Jennings [16, theorem 3.3.7], the series of dimension subgroups of G0 is given as

hx; yi D


y2
�
D 1. By [16, lemma 3.3.4], !(FG0)5 = 0, and !(FG0)4 = F � (G0)+. Then 2.1

implies that

!(FG0)4 FG � Z(FG):

Note also that

1 + C 0 � !(FG0)2;

since C 0 is contained in the second dimension subgroup of G0.

Obviously (FG)0 is spanned by all elements of the form

[c; d] = cd+ d(cd); [b; a] = ba+ a(ba); [a; c] = ac+ c(ac);

with c; d 2 C, a; b 2 GrC. Hence it is also spanned by all elements of the form

c+ dc; c+ ac; a+ ca;

with c; d 2 C, a 2 Gr C.

Consequently (FG)00 is spanned by all elements of the form

[c+ dc; g + hg]; [c+ ac; d+ ead]; [a+ ca; da+ e(da)];(�)

[c+ ac; da+ e(da)];

with c; d; e 2 C, g; h 2 G, a 2 Gr C. (Note that if a; a0 2 Gr C, then a0 = da for some

d 2 C). Now

[c+ dc; g + hg] = [(1 + (d; c))c; (1 + (h; g))g]

= (1 + (d; c))(1 + (h; g))[c; g]

= (1 + (d; c))(1 + (h; g))(1 + (c; g))gc

2 !(FG0)4 FG;

and

[c+ ac; d + ead] = [(1 + (a; c))c; (1 + (ea; d))d]

= (1 + (a; c))(1 + (ea; d))[c; d]

= (1 + (a; c))(1 + (ea; d))(1 + (c; d))dc

2 !(FG0)4 FG;

and

[c+ ac; da + e(da)] = [(1 + (a; c))c; (1 + (e; da))da]

= (1 + (e; da))
�
(1 + (a; c))cda + (1 + (a; c)�1)dac

�
= (1 + (e; da))

�
1 + (a; c) + (1 + (a; c)�1)(da; c)

�
cda

= (1 + (e; da))
�
1 + (a; c) + (1 + (a; c)�1)(d; c)(a; c)

�
cda

= (1 + (e; da)) (1 + (a; c) + (d; c)(a; c) + (d; c)) cda

= (1 + (e; da))(1 + (a; c))(1 + (d; c))cda

2 !(FG0)4 FG:
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Moreover,

� := [a+ ca; da+ e(da)] = [(1 + (c; a))a; (1 + (e; da))da]

= (1 + (c; a))(1 + (e; da)�1)ada+ (1 + (e; da))(1 + (c; a)�1)da2

=(�(a; d) + a�)da2;

where � := (1+ (c; a))(1 + (e; da)�1) 2 !(FG0)2. We have to show that � is central in FG.
This is equivalent to showing that � commutes with the elements of C, and with a.

So let f 2 C. Observe that (1 + (f; da2)) at = (1+ (f; da2))t for all t 2 G0, since (f; da2) 2

C 0 �


y2
�
= (G;G0) �= Z2. It follows that

[f; � ] = (�(a; d) + a�)[f; da2]

= (�(a; d) + a�)(1 + (f; da2))da2f

= (1 + (f; da2))(�(a; d) + �)da2f

= (1 + (f; da2))(1 + (a; d))�da2f

2 !(FG0)5 FG = 0:

Finally, check that a� = ( a� a(a; d) + a2�) ada2 = ( a� (a; d)�1 + �)(a; d)da2 = � .

This shows that all elements of the form (�) are central. Therefore (FG)00 is central, and
FG is centre-by-metabelian.

2.6. Lemma: Let A be a commutative F-algebra (with unit). Then the algebra M =

Mat(2; A) of all 2� 2-matrices over A is centre-by-metabelian.

Proof: Let e11; e22; e12; e21 2 M denote the usual matrix units, i.e. eijekl = �jkeil for

i; j; k; l 2 f1; 2g. Then M 0 is spanned by e12, e21, e11 + e22, where e11 + e22 is obviously

central. Thus M 00 is spanned by [e12; e21] = e11 + e22 2 Z(M).

2.7. Lemma: Let G be a group with an abelian subgroup A of index 2. Then FG is

centre-by-metabelian.

Proof: By [15, lemma 1.3], there is an F-algebra monomorphism FG ,! Mat(2;FA).
By 2.6, FG is centre-by-metabelian.

2.8. Theorem (summary): Let G be a group such that one of the following assertions

holds:

(i) jG0j
�� 4.

(ii) G0 �= Z2 � Z2 � Z2 and cl(G) = 2.

(iii) G acts dihedrally on G0 �= Z2 � Z4, and CG(G
0)0 � �(G0).

(iv) G contains an abelian subgroup A of index 2.

Then FG is centre-by-metabelian.

2.9. Example: (i) Let B be an arbitrary �nite abelian group. We may write B �=
Zn1 � : : :�Znk with even integers n1; : : : ; nr, and odd integers nr+1; : : : ; nk. We set

A := Z2n1� : : :�Z2nr�Znr+1� : : :�Znk , and embed B into A. The map �: A! A,

x 7! x�1, is an automorphism of A of order 2 such that (�;A) = B. Set G := Aoh�i
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(or let G be any other extension of h�i with A). Then FG is centre-by-metabelian

by 2.8 (iv). By 1.6, G0 = (�;A)A0 = (�;A) = B. Obviously, the same construction is

possible (just more awkward to formulate) if B is an arbitrary in�nite abelian group.

This shows that every abelian group may appear as a commutator subgroup of the

groups in theorem 2.8. So the situation here in characteristic 2 is quite di�erent from

all other characteristics (cf. theorem 3).

(ii) If at least one of the ni in (i) is odd, then G is not nilpotent. Hence FG is Lie solvable

but not Lie nilpotent by theorem 1. Moreover, FG is centre-by-metabelian but not

metabelian by theorem 2.

(iii) Similarly, FA4 is centre-by-metabelian by 2.8 (i), since A0
4
�= V4, but neither met-

abelian nor nilpotent, since A4 is not nilpotent.

(iv) A group that satis�es 2.8 (iii), but not 2.8 (iv), is e.g. given by the following construc-

tion: Let H := hx; di �= Z2 � Z8, where x
2 = 1 = d8, and set y := d2. Then cx := x,

cd := d5 = dy2 de�nes an automorphism c of order 2 of H. Then C := H o hci is
a group of order 32. Obviously C 0 =



y2
�
�= Z2. It is easy to check that ax := x,

ad := d3 = dy, ac := cx de�nes an automorphism a of C. Then G := Cohai is a group
of order 64, and by 1.6, G0 = (a;C)C 0 = hx; yi �= Z2�Z4. Since

ay = ad2 = d6 = y3,

G acts dihedrally on G0, C centralizes G0, and C 0 =


y2
�
= �(G0).

(v) Note that the condition that CG(G
0)0 is contained in �(G0) is essential in 2.8 (iii).

This stems from the fact that �(G0) is the second dimension subgroup of G0, as is

mentioned in the proof of lemma 2.5. It is not enough to require
��CG(G0)0

�� � 2, as

the following example shows: Let H := hx; di �= Z2�Z8 and y := d2 as above. Then
cx := x, cd := dx de�nes an automorphism c of order 2 of H, and C := H o hci is a
group of order 32 with C 0 = hxi �= Z2. Now

ax := x, ad := d3 = dy, ac := cx again

de�nes an automorphism a of C. Then G := C o hai is a group of order 64 that acts

dihedrally on G0 = (a;C)C 0 = hx; yi �= Z2 � Z4. As above, we have CG(G
0) = C,

since cy = cd2 = (dx)2 = d2 = y. But this time we have C 0 = hxi * �(G0). It can

be checked that [d; d + cd; a + da] = (G0)+a 6= 0 (for the actual computation see the

proof of lemma 6.11). Hence FG is not centre-by-metabelian.

2.10. Remark: According to 1.7, the action of G on G0 is dihedral in 2.8 (iv). Moreover,

G=A is abelian, hence G0 � A, and thus A � CG(G
0).

In turn, this implies that

A = CG(G
0) () CG(G

0) < G () 9h 2 G0 : h�1 6= h () exp(G0) 6
�� 2:

Therefore the abelian subgroup A is uniquely determined, unless G0 is central (which is

equivalent to being elementary abelian in this case).

We will use this fact in the proof of the converse of theorem 2.8, when we study the action

of G on G0: If that action is not dihedral, we may already rule out the existence of an A as

above. On the other hand, if the action is dihedral, and if we want to show the existence

of such an A, we do not have to search very long for it; what we have to do is precisely to

show that A := CG(G
0) is abelian | unless G has class 2, but this case is special anyway

in view of 2.8 (ii), so it will be treated separately in the next section.



3. Groups of nilpotence class 2

3.1. Remark: (i) Let G be a group of class 2. Then the formulas in 1.1 reduce to

(ab; c) = (a; c)(b; c) and (a; bc) = (a; b)(a; c) for all a; b; c 2 G. It follows that (b; a) =

(a; b)�1 = (a; b�1) = (a�1; b), and that (a; bc) = (a; cb).

(ii) Suppose G = hXi for some subset X of G. A consequence of (i) is that G0 =

h(x; y) : x; y 2 Xi. In the particular case G = hg1; : : : ; gni, one obtains G
0 = h(gi; gj):

1 � i < j � ni.

(iii) The following de�nition (due to A. Shalev [21]) has proved to be useful for the study

of (FG)00: For x 2 G0 set

Sx := fa 2 G : (a; b) = x for some b 2 Gg:

Using (i), it is easy to check that Sx = S�1x = Sx�1 and fad; da; bc; cb : c 2 CG(a); d 2

CG(b)g � Sx for all a; b 2 G with (a; b) = x; note that especially c 2 hai and d 2 hbi

are allowed. The following lemmata state some further properties of Sx:

3.2. Lemma: Let G be a group of class 2, and let x; y 2 G0. Then

(i) (1 + x)Sx � [Sx; Sx],

(ii) [(1 + x)Sx; (1 + y)Sy] � (FG)00,
(iii) (1 + x)3Sx � (FG)00,

Proof: (i) For each b 2 Sx, there is an a 2 G with x = (b; a�1) = (a; b). Then (1 + x)b =

b+ (a; b)b = b+ aba�1 = [a�1; ab] 2 [Sx; Sx] by 3.1 (iii).

(ii) Follows immediately from (i).

(iii) (FG)00 � [(1 + x)Sx; (1 + x)Sx] = (1 + x)2[Sx; Sx] � (1 + x)3Sx:

3.3. Lemma: Let G be a group of class 2 such that FG is centre-by-metabelian. If G is

generated by two elements, then jG0j
�� 4.

Proof: We write G = hg; hi, and set x := (g; h). Then G0 = hxi by 3.1 (ii). By 3.2, we have

(1 + x)4g 2 (1 + x)4Sx � [(1 + x)3Sx; Sx] � [(FG)00;FG] = 0: Hence 0 = (1 + x)4 = 1+ x4,

and x4 = 1.

3.4. Lemma: Let G be a group of class 2 such that FG is centre-by-metabelian. If there

is an x 2 G0 with j hxi j � 4, then:

(i) (Sx; G) � hxi.

(ii) If y 2 G0 with Sx \ Sy 6= ;, then y 2 hxi.

Proof: (i) W.l.o.g. Sx 6= ;. Let a 2 Sx, g 2 G. Then, by 1.11 and 3.2 (iii),

hxi+(1 + (a; g)) = (1 + x)3[a; g](ga)�1

2 (1 + x)3[Sx;FG](ga)
�1 = [(1 + x)3Sx;FG](ga)

�1

� [(FG)00;FG](ga)�1 = 0

() (a; g) 2 hxi :

(ii) Let a 2 Sx \ Sy, b 2 G with y = (a; b). Then by (i), y = (a; b) 2 (Sx; G) � hxi.

7
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3.5. Lemma: Let G be a group of class 2. If FG is centre-by-metabelian, then G0 is an

elementary abelian 2-group, or G0 �= Z4.

Proof: By considering the two-generator subgroups of G, we have (g; h)4 = 1 for all

g; h 2 G by 3.3. If exp(G0) = 2 we are done.

Otherwise, there is a commutator of order 4 in G, say x = (a; b). Let y = (c; d) be an

arbitrary commutator in G. By 3.4, we know that (a; b); (a; d); (c; b) 2 hxi, so there is a

k 2 f0; 1; 2; 3g such that (ac; bd) = (a; b)(a; d)(c; b)(c; d) = xky.

Consider (ac; b) = (a; b)(c; b) = x(c; b) and distinguish the following cases:

Case 1: (c; b) = 1. Then (ac; b) = x, hence ac 2 Sx \ Sxky, and x
ky 2 hxi by 3.4.

Case 2: (c; b) = x. Then c 2 Sx \ Sy and y 2 hxi.

Case 3: (c; b) = x2. Then (ac; b) = x3 = x�1, i.e. (b; ac) = x and ac 2 Sx \ Sxky, so

xky 2 hxi.

Case 4: (c; b) = x3. Then (b; c) = x and c 2 Sx \ Sy, hence y 2 hxi.

In any case, we have y 2 hxi. Therefore G0 = hxi �= Z4.

3.6. Remark: The preceding lemma already comes very close to showing the classi�-

cation theorem 4 for groups G of class 2. All which remains to face are groups G with

elementary abelian, central commutator subgroups G0 of (2-)rank greater than 3. We

have to show that if FG is centre-by-metabelian, then G contains an abelian subgroup A

of index 2.

So suppose that G is a counterexample, and A is a maximal abelian subgroup of G (the

existence of A is guaranteed by Zorn's lemma). To make the proofs of the following

lemmata work, let us agree upon choosing A in such a way that jA : Z(G)j > 2, if at all

possible. In other words, we may assume that if jA : Z(G)j � 2, then jB : Z(G)j � 2 for

all maximal abelian subgroups B of G.

Then FG is centre-by-metabelian, and jG : Aj > 2, and jG0j � 16, and exp(G0) = 2, and

G0 � Z(G) � A (in particular A E G), and CG(A) = A (in particular A > Z(G)).

Let g; h 2 G, then (g2; h) = (g; h)2 = 1; i.e. all squares are central in G. Therefore G=Z(G)

and G=A are both elementary abelian 2-groups. Then jG : Aj > 2 implies that jG : Aj � 4.

We divide our examination of G into the following cases:

� jG0 : (G;A)j � 8 (handled by 3.7),

� jG0 : (G;A)j = 4 (handled by 3.8),

� jG0 : (G;A)j = 2 (handled by 3.9),

� jG0 : (G;A)j = 1 (handled by 3.10).

In each case we will show that FG is not centre-by-metabelian, in contradiction to our

assumption.

3.7. Lemma: Let G and A be as in 3.6, and suppose that jG0 : (G;A)j � 8. Then FG is

not centre-by-metabelian.

Proof: Assume that FG is centre-by-metabelian.

For �G := G=(G;A), we have exp( �G0) = 2, and j �G0j � 8.



3. GROUPS OF NILPOTENCE CLASS 2 9

Let us at �rst assume that there are �s; �t; �u; �v 2 �G with j h�s; �t; �u; �vi0 j � 8; w.l.o.g. (�s; �t) 6= 1.

If (�u; �v) 2 h(�s; �t)i, then there are elements �p 2 f�s; �tg, �q 2 f�u; �vg with (�p; �q) =2 h(�s; �t)i,

w.l.o.g. �p = �s, �q = �u. Then h�s; �t; �u; �vi = h�s; �t; �u; �s�vi and jh(�s; �t); (�u; �s�v)ij = 4 since (�u; �s�v) =

(�u; s)(�u; �v) 2 (�u; s) h(�s; �t)i 6= h(�s; �t)i. So by replacing �v by �s�v if necessary, we may assume

that jh(�s; �t); (�u; �v)ij = 4. Since j h�s; �t; �u; �vi0 j � 8, there must be �p 2 f�s; �tg, �q 2 f�u; �vg with

(�p; �q) =2 h(�s; �t); (�u; �v)i, w.l.o.g. �p = �s, �q = �u; i.e. jh(�s; �t); (�u; �v); (�s; �u)ij = 8.

We move back into G by choosing preimages s; t; u; v 2 G of �s; �t; �u; �v, respectively. We set

x := (s; t), y := (u; v), z := (s; u), then jhx; y; zij = 8, and hx; y; zi\ (G;A) = 1. Moreover,

su =2 CG(A) = A, for otherwise z = (u; s) = (s; su) 2 (G;A). Consequently there is an

a 2 A with w := (su; a) 6= 1. Because w 2 (G;A), we have jhx; y; z; wij = 16. But then

(1 + x)(1 + y)(1 + z)su = (1 + x)(1 + y)[s; u] = [(1 + x)s; (1 + y)u]

2 [(1 + x)Sx; (1 + y)Sy] � (FG)00;

and

0 6= (1 + x)(1 + y)(1 + z)(1 + w)asu = (1 + x)(1 + y)(1 + z)[su; a]

= [(1 + x)(1 + y)(1 + z)su; a] 2 [(FG)00;FG] = 0:

This means that our assumption at the beginning is rubbish, and we may conclude:

If �H � �G is generated by four elements, then j �H 0j � 4:(�)

In the following, we will reduce this conclusion to absurdum. For simplicity, and since we

will not switch back to G anymore, we will omit the bars � over the elements of �G in the

following.

Choose s; t; u; v 2 �G with jhx; yij = 4 for x := (s; t), y := (u; v). By (�), hs; t; u; vi0 = hx; yi.

In the case that hs; t; ui0 = hxi = hs; t; vi0 and hs; u; vi0 = hyi = ht; u; vi0 we obtain

(hs; ti ; hu; vi) � hxi \ hyi = 1, and it follows that (su; t) = (s; t) = x, (su; v) = (u; v) = y,

hence hsu; t; vi0 = hx; yi. In any case, there are three elements s; t; u 2 �G such that

jhx; yij = 4 with x := (s; t), y := (s; u).

Because of j �G0j � 8, there are g; h 2 �G with z := (g; h) =2 hx; yi. Conclusion (�) then

implies that

hs; t; u; gi0 = hx; yi = hs; t; u; hi0 ;

hs; t; g; hi0 = hx; zi ;

hs; u; g; hi0= hy; zi ;

=) (hg; hi ; s) � hx; yi \ hx; zi \ hy; zi = 1;

(hg; hi ; u) � hx; yi \ hy; zi = hyi ;

(hg; hi ; t) � hx; yi \ hx; zi = hxi :

If (hg; hi ; u) = hyi and (hg; hi ; t) = hxi, we would have hg; h; u; ti0 � hx; y; zi in contra-

diction to (�). So assume w.l.o.g. that (hg; hi ; t) = 1. If (g; u) = y and (h; u) = y, then

(gh; u) = y2 = 1. Moreover, z = (g; h) = (h; g) = (gh; g) = (g; gh) = (h; gh) = (gh; h).

Thus, by permuting fg; h; ghg in a suitable way, we may assume that (g; u) = 1. But then
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(gs; t) = (s; t) = x, (gs; u) = (s; u) = y, (gs; h) = (g; h) = z, and hgs; t; u; hi0 � hx; y; zi in

contradiction to (�).

3.8. Lemma: Let G and A be as in 3.6, and suppose that jG0 : (G;A)j = 4. Then FG is

not centre-by-metabelian.

Proof: Assume that FG is centre-by-metabelian.

Set �G := G=(G;A), then exp( �G0) = 2 and j �G0j = 4. As in the proof of 3.7, there are

�s; �t; �u 2 �G with �G0 = h�s; �t; �ui0 = h�x; �yi, where �x := (�s; �t), �y := (�s; �u). If (�t; �u) = �x then

(�t; �s�u) = �x2 = 1 and (�s; �s�u) = �y; if (�t; �u) = �y then (�s�t; �u) = �y2 = 1 and (�s; �s�t) = �x; and

if (�t; �u) = �x�y then (�s�t; �s�u) = 1 and (�s; �s�t) = �x and (�s; �s�u) = �y. Thus, by replacing �t

(respectively �u) by �s�t (respectively �s�u) if necessary, we may assume that (�t; �u) = 1.

Let now s; t; u; x; y 2 G be suitable preimages of �s; �t; �u; �x; �y, respectively, such that x =

(s; t) and y = (s; u). Certainly (t; u) 2 (G;A). If (t; u) = 1, let a 2 A r CA(t) 6= ;, then

(t; ua) 6= 1. Thus, by replacing u by ua if necessary, we may assume that w := (t; u) 2

(G;A)r f1g. Then (s; tu) = xy and

� := (1 + x)(1 + y)(1 + w)ttu = (1 + xy)(1 + x)(1 + w)ttu

=(1 + xy)(1 + x)[tu; t] = [(1 + xy)tu; (1 + x)t]

2 [(1 + xy)Sxy; (1 + x)Sx] � (FG)00:

If (u;A) * hwi, and z := (u; b) =2 hwi with b 2 A, then jhx; y; z; wij = 16 and therefore

0 = [b; �] = t2(1+x)(1+y)(1+w)[b; u] = t2(1+x)(1+y)(1+w)(1+z)bu 6= 0, contradiction

(recall that all squares are central in G, cf. 3.6). Hence (u;A) � hwi. Similarly one shows

that (t; A) � hwi; this implies (ht; ui ; A) = (t; A)(u;A) � hwi.

Now jG0j � 16 implies j(G;A)j � 4, so there is an element g 2 G with (g;A) * hwi.

The map � : A ! A, a 7! (g; a), is a homomorphism by 3.1 (i) with image (g;A), hence

��1(hwi) < A. Consequently A 6= CA(t) [ �
�1(hwi), so there exists an a 2 A such that

(t; a) 6= 1 (i.e. w = (t; a) = (ta; a)) and z := (g; a) 2 (G;A)r hwi.

Set ~x := (s; ta) = x(s; a) 2 x(G;A); then jh~x; y; z; wij = 16. By 3.2,

(1 + y)(1 + w)(1 + ~x)sta = (1 + y)(1 +w)[s; ta] = [(1 + y)s; (1 + w)ta] 2 (FG)00;

hence 0 = [g; (1+y)(1+w)(1+~x)sta] = (1+y)(1+w)(1+~x)(1+(sta; g))gsta. This implies

(st; g)z = (sta; g) 2 h~x; y; wi, i.e. (st; g) � z (mod h~x; y; wi). Let ~~x := (as; ta) = w~x � ~x

(mod hwi) and ~y := (as; u) = y(a; u) � y (mod hwi). We obtain (1 + w)(1 + y)(1 +

~x)ta2s = (1 + w)(1 + ~y)(1 + ~~x)ta � as = [(1 + w)ta; (1 + ~y)as] 2 (FG)00, which leads to the

contradiction 0 = [g; (1 +w)(1 + y)(1+ ~x)ta2s] = a2(1 +w)(1 + y)(1 + ~x)(1 + (st; g))gst =

a2(1 + w)(1 + y)(1 + ~x)(1 + z)gst 6= 0:

3.9. Lemma: Let G and A be as in 3.6, and suppose that jG0 : (G;A)j = 2. Then FG is

not centre-by-metabelian.

Proof: Assume that FG is centre-by-metabelian. We have j(G;A)j � 8.
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Suppose at �rst that there are s; t 2 G with (s; t) =2 (G;A) and j(hs; ti ; A)j � 8.Then argue

as follows:

8a; b 2 A : (1 + (s; a))(1 + (t; b))(1 + (s; t))ts = [(1 + (t; b))t; (1 + (s; a))s] 2 (FG)00

=) 8a; b; c 2 A : 0 = [c; (1 + (s; a))(1 + (t; b))(1 + (s; t))ts]

=) 8a; b; c 2 A : 0 = (1 + (s; a))(1 + (t; b))(1 + (s; t))(1 + (ts; c))cts

=) 8a; b; c 2 A : jh(s; a); (t; b); (ts; c); (s; t)ij � 8

=) 8a; b; c 2 A : jh(s; a); (t; b); (ts; c)ij � 4: (�)

Since (hs; ti ; A) = (s;A)(t; A), assume w.l.o.g. j(s;A)j � 4. Choose a; b 2 A such that

(t; b) 6= 1 and (s; a) =2 h(t; b)i. Then (�) implies that (ts; A) � h(s; a); (t; b)i. Hence

(s;A) * h(s; a); (t; b)i or (t; A) * h(s; a); (t; b)i.

If (s;A) \ (t; A) = 1, then (hs; ti ; A) = (s;A)(t; A) = (s;A) � (t; A). Let c 2 A, then

(s; c)(t; c) = (st; c) 2 h(s; a); (t; b)i, hence (s; c) 2 h(s; a)i and (t; c) 2 h(t; b)i. But this

implies that (hs; ti ; A) = (s;A)(t; A) � h(s; a); (t; b)i, contradiction.

So we may assume that (s;A)\(t; A) 6= 1. Then there are a; b; d 2 A with 1 6= (t; b) = (s; d)

and (s; a) =2 h(t; b)i, and (�) implies again that (ts; A) � h(s; a); (t; b)i = h(s; a); (s; d)i �

(s;A). It follows that (hs; ti ; A) = (s;A)(st; A) = (s;A). Conclusion (�) then implies that

jh(s; a); (t; b); (s; c)ij � 4 for all a; b; c 2 A, i.e. (t; A) is contained in all subgroups of (s;A)

of order 4. The intersection of all those subgroups is trivial, because j(s;A)j � 8, but

(t; A) cannot be trivial, because t =2 A = CG(A).

This shows that j(hs; ti ; A)j � 4 for all s; t 2 G with (s; t) =2 (G;A).

We now assume that there are s; t 2 G with z := (s; t) =2 (G;A) and j(hs; ti ; A)j = 4. Then

there is an element g 2 G with (g;A) * (hs; ti ; A).

If j(s;A)j = 4, then (hs; ti ; A) = (s;A). This implies j(hs; gi ; A)j � 8 and j(hs; tgi ; A)j � 8,

hence (s; g) 2 (G;A) and (s; tg) 2 (G;A) by the above. But then also (s; t) = (s; tg)(s; g) 2

(G;A), contradiction.

Consequently j(s;A)j = 2, and similarly j(t; A)j = 2, say (s;A) = hxi and (t; A) = hyi. Let

a 2 A. Then jhx; y; zij = 8, s 2 Sx, ta 2 Sy, (s; ta) = z(s; a) � z (mod hxi) and

(1 + x)(1 + y)(1 + z)tas = (1 + x)(1 + y)(1 + (s; ta))tas = [(1 + y)ta; (1 + x)s] 2 (FG)00:

It follows that 0 = [g; (1+x)(1+y)(1+ z)tas] = (1+x)(1+y)(1+ z)(1+(g; a)(g; st))tasg,

i.e. (g; st) 2 (g; a) hx; y; zi for all a 2 A. But this is ridiculous since
T
a2A(g; a) hx; y; zi = ;

because of (g;A) * hx; y; zi.

This shows that j(hs; ti ; A)j = 2 for all s; t 2 G with (s; t) =2 (G;A). On the other hand,

there surely are s; t 2 G with (s; t) =2 (G;A), since G0 6= (G;A). Then (s;A) = (hs; ti ; A) =

(t; A). Let g 2 G with (g;A) * (hs; ti ; A), then j(hg; ti ; A)j � 4 and j(hgs; ti ; A)j � 4.

This implies (g; t) 2 (G;A) and (gs; t) 2 (G;A), which leads to the contradiction (s; t) =

(gs; t)(g; t) 2 (G;A).

3.10. Lemma: Let G and A be as in 3.6, and suppose that jG0 : (G;A)j = 1. Then FG
is not centre-by-metabelian.
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Proof: Assume that FG is centre-by-metabelian. SinceG0 = (G;A), we have j(G;A)j � 16.

Let us at �rst make the additional assumption that j(s;A)j = 2 for all s 2 GrA.

We claim that in this case (r; s) 2 (r;A)(s;A) for all r; s 2 GrA with (r;A) 6= (s;A). If

not, then there are r; s 2 GrA such that j hx; y; zi j = 8, where (r;A) = hxi, (s;A) = hyi,

and z := (r; s). Since A 6= CA(r) [ CA(s), there is an a 2 A with x = (r; a), y = (s; a). By

hypothesis, j(G;A)j � 16, hence there are t 2 G, c 2 A with w := (t; c) =2 hx; y; zi. For

any d 2 A, we then have

� := [[s; dr]; [s; a]] = [(1 + (s; dr))drs; (1 + (s; a))as] = (1 + (s; dr))(1 + (s; a))[drs; as]

= (1 + (s; dr))(1 + (s; a))(1 + (drs; as))asdrs

=(1 + (s; d)| {z }
2hyi

(s; r))(1 + y)(1 + (ds; as)| {z }
2hyi

(r; a)(r; s))asdrs

=(1 + z)(1 + y)(1 + xz)asdrs = (1 + z)(1 + y)(1 + x)asdrs;

and

0 = [t; �] = (1 + z)(1 + y)(1 + x)(1 + (t; asdrs))asdrst

= (1 + z)(1 + y)(1 + x)(1 + (t; ar)(t; d))asdrst:

This implies that (t; ar) 2 (t; d) hx; y; zi for all d 2 A; in particular we have (t; ar) 2

(t; c) hx; y; zi \ (t; 1) hx; y; zi = w hx; y; zi \ hx; y; zi = ;. This contradiction proves our

claim.

We claim next that there are r; s 2 G r A with CA(r) 6= CA(s). Otherwise we have

CA(r) = CA(s) for all r; s 2 GrA, hence CA(s) = Z(G) for all s 2 GrA. Let s 2 GrA,
and consider the homomorphism A ! A, a 7! (s; a). Its image is (s;A) and its kernel

CA(s) = Z(G); in particular A=Z(G) �= (s;A), and therefore jA : Z(G)j = 2. By the choice

of A, this implies jB : Z(G)j � 2 for all maximal abelian subgroups B of G (cf. 3.6). Let

r 2 G r A with (r;A) 6= (s;A), then (r; s) 2 (r;A)(s;A) by the previous claim. Since

(r;A)(s;A) = (r;A) [ (s;A) [ (rs;A) (for order reasons) and (r; s) = (s; r) = (s; rs) =

(rs; s) = (r; rs) = (rs; r), we may permute fr; s; rsg in a suitable way and assume that

(r; s) 2 (r;A), i.e. (r; s) = (r; a) for some a 2 A. Then (r; sa) = 1, so we may replace s

by sa and assume (r; s) = 1. Certainly (r;A) 6= (s;A) =) rZ(G) 6= sZ(G) =) jB :

Z(G)j > 2, where B := hZ(G); r; si; but then B is abelian in contradiction to a previous

statement.

Now let r; s 2 GrA with CA(r) 6= CA(s). If (r;A) = (s;A), there is an element t 2 GrA
with (r;A) 6= (t; A). If CA(r) = CA(t), then CA(r) 6= CA(st) and (r;A) 6= (st; A). In any

case, there are r; s 2 GrA with (r;A) 6= (s;A) and CA(r) 6= CA(s), w.l.o.g. CA(r) 6� CA(s).

We choose such r; s and write (r;A) = hxi, (s;A) = hyi.

Since j(G;A)j � 16, we may moreover choose t; u 2 GrA such that j hx; y; z; wi j = 16 with

(t; A) = hzi and (u;A) = hwi. By the �rst claim, (su; t) 2 (su;A)(t; A) = hyw; zi, so there

is an e 2 A such that (su; te) = (su; t)(su; e) 2 hzi. We replace t by te and henceforth

assume that (su; t) 2 hzi. Let now a; b 2 A such that (t; b) = z and (su; ba) = wy. For
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c; d 2 A, we then have

� := [[cs; du]; [at; b]] = [(1 + (cs; du))ducs; (1 + (at; b))bat]

= (1 + (cs; du))(1 + (at; b))[ducs; bat]

= (1 + (cs; du))(1 + z)(1 + (ducs; bat))batducs

= (1 + (cs; du))(1 + z)(1 + (ducs; ba)| {z }
=wy

(ducs; t)| {z }
2hzi

)batducs

= (1 + (cs; du))(1 + z)(1 + wy)batducs;

and

0 = [r; �] =(1 + (cs; du))(1 + z)(1 + wy)(1 + (r; batducs))batducsr

=(1 + (u; c)(s; d)(s; u))(1 + z)(1 + wy)(1 + (r; batsu)(r; dc))batducsr:

This implies jEc;dj < 16 with Ec;d := hz; wy; (u; c)(s; d)(s; u); (r; batsu)(r; dc)i for all c; d 2

A by 1.12. Now (s; u) 2 hw; yi, so we have (s; u) � 1 or (s; u) � w (mod hwy; zi).

Furthermore, (r; batsu) = (r; ab)(r; stu) 2 hx;wyzi, hence (r; batsu) � 1 or (r; batsu) � x

(mod hwy; zi). Consider the following cases (all congruences modulo hwy; zi):

Case 1: (s; u) � 1 and (r; batsu) � 1. Set c := 1 and choose d 2 Ar (CA(s) [ CA(r)) 6= ;,

then Ec;d = hz; wy; y; xi.

Case 2: (s; u) � 1 and (r; batsu) � x. Set c := 1 and choose d 2 CA(r)r CA(s) 6= ;, then

Ec;d = hz; wy; y; xi.

Case 3: (s; u) � w and (r; batsu) � 1. Choose c 2 A r (CA(u) [ CA(r)) 6= ; and d 2

CA(r)r CA(s) 6= ;, then Ec;d =


z; wy;w2y; x

�
.

Case 4: (s; u) � w and (r; batsu) � x. Set c = d = 1, then Ec;d = hz; wy;w; xi.

In any case we obtain Ec;d = hx; y; z; wi, which leads to the contradiction jEc;dj = 16. This

shows that our additional assumption at the beginning of the proof was wrong, so there

is an element s 2 G such that j(s;A)j � 4.

Assume next that there is an element s 2 G such that even j(s;A)j � 16. Then since

jG : Aj � 4, there is a residue class tA (with t 2 G) distinct from both sA and A.

If there is an element c 2 A with 1 6= (s; c) 6= (t; c) 6= 1, there are a; b 2 A with

jh(s; a); (s; b); (s; c); (t; c)ij = 16 (because of j(s;A)j � 16). Then (s; c) = (s; sc), and

(sc; b) = (s; b), and 3.2 imply that

� := (1 + (s; a))(1 + (s; b))(1 + (s; c))s � sc = [(1 + (s; a))s; (1 + (sc; b))sc] 2 (FG)00;

and

[FG; (FG)00] 3 [t; �] = s2(1 + (s; a))(1 + (s; b))(1 + (s; c))[t; c]

= s2(1 + (s; a))(1 + (s; b))(1 + (s; c))(1 + (t; c))ct 6= 0;

contradiction.

Therefore, we may assume that

8a 2 A; t 2 Gr (A [ sA) : (s; a) 6= 1 6= (t; a) =) (s; a) = (t; a):(�)
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Let t 2 G r (A [ sA), a 2 A r (CA(s) [ CA(t)), then 1 6= (s; a) = (t; a) by (�). Set

Ba := fb 2 A : (s; b) =2 h(s; a)ig 6= ;.

If there is a b 2 Ba with (t; b) = 1, then st 2 Gr (A[ sA) and (st; ab) = (s; a)(t; a)(s; b) =

(s; a)2(s; b) 6= 1 and (s; ab) = (s; a)(s; b) 6= 1, but (s; ab) 6= (s; ab)(t; a) = (s; ab)(t; ab) =

(st; ab) in contradiction to (�). Consequently (t; b) 6= 1, i.e. (t; b) = (s; b), for all b 2 Ba.

Let now ~a 2 A with 1 6= (s; ~a) 6= (s; a), then a 2 B~a and ~a 2 Ba; in fact ArCA(s) = Ba[B~a.

Much as above it follows that (t; b) = (s; b) for all b 2 B~a. Together we obtain (t; b) = (s; b)

for all b 2 ArCA(s). But then also j(t; A)j � 16, so by symmetry, we �nd that (t; b) = (s; b)

for all b 2 Ar CA(t). It follows that (t; b) = (s; b) for all b 2 A, hence (st�1; b) = 1 for all

b 2 A, so st�1 2 CG(A) = A, in contradiction to tA 6= sA.

This shows that j(s;A)j � 8 for all s 2 G, and there does exist an s 2 G with j(s;A)j � 4.

With similar methods as earlier in the proof, we obtain an element t 2 G with (t; A) *
(s;A) < (G;A) = G0, an element b 2 A with y := (s; b) 6= 1, z := (t; b) =2 (s;A), and an

element a 2 A with x := (s; a) =2 hyi; in short: jhx; y; zij = 8.

Let d 2 A be arbitrary, and consider

� := (1 + x)(1 + z)(1 + y)ds � b = [(1 + x)ds; (1 + z)b] 2 [(1 + x)Sx; (1 + z)Sz] � (FG)00:

Let now r 2 G with (r;A) * hx; y; zi, then

0 = [r; �] = (1+x)(1+z)(1+y)(1+(r; dsb))dsbr = (1+x)(1+z)(1+y)(1+(r; d)(r; sb))dsbr:

This implies (r; sb) 2 (r; d) hx; y; zi for all d 2 A, but
T
d2A(r; d) hx; y; zi = ;.

This rather innocent contradiction �nishes our lengthy proof.

3.11. Theorem (summary): Let G be a group of class 2. Then FG is centre-by-met-

abelian, if and only if one of the following statements holds:

(i) G0 �= Z4,

(ii) exp(G0) = 2 and jG0j � 8,

(iii) G has an abelian subgroup A of index 2.

Remark: Note that both 1.7 and 3.5 imply that exp(G0) = 2 also in case (iii).



4. Elementary abelian commutator subgroups

4.1. Lemma: Let E be a normal subgroup of exponent 2 of the group G, and suppose

that FG is centre-by-metabelian. If we set C := CG(E), then:

(i) The element orders in G=C are 1, 2, 3, or 4.

(ii) If aC 2 G=C has order 3, then E = (a;E) � CE(a), and j(a;E)j = 4.

(iii) There is no subgroup of order 9 in G=C.

(iv) If G=C is abelian, then jG=Cj = 3, or exp(G=C)
�� 4.

Proof: We consider E as an F2[G]-module, and write the action of F2[G] on E as expo-

nentiation from the left, in order to distinguish it from addition and multiplication in

FG.

(i) Let x 2 E, a 2 G. Then (a; x) = axx = (1+a)x = (x; a), and

[[x; a]; [x; a2]] = [(1 + (1+a)x)xa; (1 + (1+a2)x)xa2]

= (1 + (1+a)x)(1 + (a+a3)x) axxa3 + (1 + (1+a2)x)(1 + (a2+a3)x)x a
2

xa3

=
�
(1 + (1+a)x)(1 + (a+a3)x) (1+a)x+ (1 + (1+a2)x)(1 + (a2+a3)x) (1+a

2)x
�
a3

=
�
(1+a)x+ 1 + (1+a3)x+ (a+a3)x+ (1+a2)x+ 1 + (1+a3)x+ (a2+a3)x

�
a3

=
�
(1+a)x+ (a+a3)x+ (1+a2)x+ (a2+a3)x

�
a3

=
�
1 + (1+a3)x+ (a+a2)x+ (1+a+a2+a3)x

�
(1+a)xa3

= (1 + (a+a2)x)(1 + (1+a3)x) (1+a)xa3:

Furthermore,

0 = [a; [x; a]; [x; a2]] = (1+ (a2+a3)x)(1+ (a+a4)x) (a+a
2)xa4+(1+ (a+a2)x)(1+ (1+a3)x) (1+a)xa4:

Multiplication by
�
(a�4) (1+a)x

�
from the right and expansion of the parentheses yields

0 = 1 + (a+a2)x+ (1+a+a2+a3)x+ (1+a2)x+ (1+a+a2+a4)x+ (1+a+a3+a4)x:

Consider the following cases:

� If 1 = (a+a2)x, then x = ax.

� If 1 = (1+a+a2+a3)x, then a3x = (1+a+a2)x, i.e. a
4

x = (a+a2+a3)x = (a+a2+1+a+a2)x =

x.

� If 1 = (1+a2)x, then x = a2x.

� If 1 = (1+a+a2+a4)x, then a4x = (1+a+a2)x. The remaining terms in the sum above

yield 0 = (a+a2)x+ (1+a+a2+a3)x+ (1+a2)x+ (1+a+a3+a4)x = (a+a2)x+ (1+a+a2+a3)x+
(1+a2)x+ (a3+a2)x. Multiply by (a+a2)x, and obtain 0 = 1+ (1+a3)x+ (1+a)x+ (a3+a)x.

Then x 2 f a
3

x; ax; a
2

xg.

15
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� If 1 = (1+a+a3+a4)x, then a4x = (1+a+a3)x. Furthermore, 0 = (a+a2)x+ (1+a+a2+a3)x+
(1+a2)x+ (1+a+a2+a4)x = (a+a2)x+ (1+a+a2+a3)x+ (1+a2)x+ (a2+a3)x, which is equiva-

lent to 0 = 1+ (1+a3)x+ (1+a)x+ (a+a3)x. This implies that again x 2 f a
3

x; ax; a
2

xg.

In any case, we have x 2 f ax; a
2

x; a
3

x; a
4

xg.

Hence the length of any orbit in E under a is at most 4. If all orbits have length 1, 2,

or 4, then a4 2 C, and jhaCij
�� 4, and we are done. If all orbits have length 1 or 3, then

a3 2 C, and jhaCij
�� 3, and we are done as well.

So assume that there are elements x; y 2 E such that x has orbit length 2 or 4, and y

has orbit length 3. Then a4(xy) = a4x � a
4

y = x � a
4

y 6= xy, and a3(xy) = a3x � y 6= xy,

contradiction.

(ii) We consider E as an F2[haCi]-module. By Maschke [5, Satz I.17.7], E is semisimple

and thus decomposes into a direct sum of simple modules. There are two nonisomorphic

simple F2[haCi]-modules: the trivial module of dimension 1, and a module of dimension 2,
on which haCi acts by cyclic permutation of the three nontrivial elements.

Assumption: There are two distinct nontrivial simple submodules V , W contained in

E. Then dimV = dimW = 2, and we may write V = hx; yi, W = hz; wi such that
ax = y; ay = xy; az = w; aw = wz: Then

[[x; a]; [z; a]] = [(1 + (a; x))xa; (1 + (a; z))za] = [(1 + xy)xa; (1 + wz)za]

= (1 + xy)(1 + z)xwa2 + (1 + wz)(1 + x)zya2

= (xw + xwz + wyz + yz + xyz + xyw)| {z }
=:�

a2;

and

0 = [x; �a2]a�2x = �[x; a2]a�2x = �(1 + (x; a2)) = �(1 + y) = z(1 +w)(1 + x)(1 + y) 6= 0;

contradiction.

This shows that there is at most one nontrivial simple submodule of E. On the other hand,

there is at least one nontrivial simple submodule V of E, for otherwise the action of haCi

on E would be trivial. Then E = V � CE(a), and (a;E) = (a; V ) = V has dimension 2,

i.e. order 4.

(iii) Suppose that U is a subgroup of order 9 in G=C. Since G=C does not contain elements

of order 9 by (i), U is elementary abelian.

We consider E as F2[U ]-module. Again, we may write E as a sum of simple submodules.

By [3, theorem 3.2.2], none of these simple modules is faithfuly, since U is abelian but

noncyclic. At least one of the simple submodules is nontrivial, say V . The kernel of V in

U must then have order 3, so we write CU (V ) = hbCi. Take an element a 2 G such that

U = haC; bCi. Then aC acts nontrivially on V . By (ii), aC acts trivially on all simple

submodules W 6= V of E.

yin the sense that the corresponding linear representation of U is faithful
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On the other hand, bC acts nontrivially on E, i.e. nontrivially on some simple submodule

W 6= V of E. But then abC is an element of order 3 in G=C which acts nontrivially on

both components of V �W . This contradicts (ii).

(iv) By (i), the element orders in G=C are bounded by 4. If G=C contains no element of

order 3, then exp(G=C) 2 f1; 2; 4g.

So suppose G=C does contain an element of order 3. If it also contains an element of

order 2, then there also is an element of order 6 since G=C is abelian, contradiction.

Hence G=C is an elementary abelian 3-group. Since there may not be a subgroup of

order 9 by (iii), G=C must have order 3.

4.2. Remark: Let G be a group with elementary abelian commutator subgroup G0 of

order 8. Let us suppose that cl(G) > 2, i.e. C := CG(G
0) < G. Since G0 � C, G=C is

a nontrivial abelian group. Now G0 is a 3-dimensional F2-vector space, so let us choose

a basis x; y; z. The faithful action of G=C on G0 then produces a faithful representation

G=C ! GL(3; 2), whose image is an abelian subgroup of GL(3; 2), i.e. conjugate to one of

the following (cf. [18]):

R :=
D�

0 0 1
1 0 0
0 1 0

�E
�= Z3; S :=

D�
0 0 1
1 0 0
0 1 1

�E
�= Z7;

T :=
D�

0 1 0
1 0 0
0 0 1

�E
�= Z2; U :=

D�
0 1 1
1 1 1
1 1 0

�E
�= Z4;

V :=
D�

0 0 1
0 1 0
1 0 0

�
;
�
0 0 1
1 1 1
1 0 0

�E
�= Z2 � Z2; W :=

D�
0 0 1
0 1 0
1 0 0

�
;
�
0 1 1
0 1 0
1 1 0

�E
�= Z2 � Z2:

(In fact, we may choose x; y; z in such a way that the image actually is one of these groups.)

In any of these cases, FG is not centre-by-metabelian. This is clear by 4.1 in the case that

G=C is mapped onto S. The other cases are handled by the following lemmata.

4.3. Lemma: Let the notation be as in 4.2, and assume that G=C is mapped onto R.

Then FG is not centre-by-metabelian.

Proof: We assume that FG is centre-by-metabelian, and construct a contradiction.

We write G=C = haCi. The action of a on G0 is given by 4.2 as the cyclic permutation

of x; y; z. This yields (a; x) = xy, (a; y) = yz, (a; z) = xz. Then hxy; yzi = (a;G0) =

(G;G0) = 3(G) = 4(G) = : : : , and G0 \ Z(G) = CG0(a) = hxyzi.

For all c; d 2 C, we then have

(FG)00 3 [x+ ax; ca+ d(ca)] = [x+ y; (1 + (d; ca))ca]

= (1 + (d; ca))c[x + y; a]

= (1 + (d; ca))c(x + y + y + z)a;

and

0 = [a; x+ ax; ca+ d(ca)]

= (1 + (d; ca))(x + z)ca2 + (1 + a(d; ca))(y + x)aca

= (1 + (ca; d))(1 + xz)xca2 + (1 + a(ca; d))(1 + xy)x(a; c)ca2:

(�)
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In particular, we obtain for c = 1 after multiplication with (xca2)
�1

from the right:

0 = (1 + (a; d))(1 + xz) + (1 + a(a; d))(1 + xy)

= (a; d) + xz + (a; d)xz + a(a; d) + xy + a(a; d)xy:

If (a; d) =2 hxy; yzi E G, then the projection of the last sum onto F[hxy; yzi] w.r.t. the
vector space decomposition FG =

L
g2G Fg is xz+xy 6= 0, contradiction. This shows that

(a; d) 2 hxy; yzi for all d 2 C, i.e. (a;C) = (a2; C) � hxy; yzi.

By 1.6, (a;C)C 0 = G0 * hxy; yzi, and by 1.3, C 0 � Z(G) \ G0 = hxyzi. Consequently

C 0 = hxyzi. Let c; d 2 C with (c; d) = xyz. Then (�) yields

0 = (1 + xyz(a; d))(1 + xz) + (1 + xyz a(a; d))(1 + xy)(a; c);

but the projection of the right hand side onto F[hxy; yzi] is (1 + xz) + (1 + xy)(a; c) =

1 + xz + (a; c) + xy(a; c), which cannot vanish for (a; c) 2 hxy; yzi = f1; xy; yz; xzg.

4.4. Lemma: Let the notation be as in 4.2, and assume that G=C is mapped onto U .

Then FG is not centre-by-metabelian.

Proof: By way of contradiction, assume that FG is centre-by-metabelian.

If we write G=C = haCi, we obtain ax = yz, ay = xyz, az = xy. The orbits of this action

are 1 7! 1, x 7! yz 7! z 7! xy 7! x, y 7! xyz 7! y, xz 7! xz. The lower central series

of G is G D hx; y; zi D hy; xzi D hxzi D 1: By 1.3, we have C 0 � G0 \ Z(G) = hxzi.

It su�ces to show that (a;C) � hy; xzi, since by 1.6, we then obtain the contradiction

G0 = (a;C)C 0 � hy; xzi.

So let c 2 C. We want to show that (a; c) 2 hy; xzi. Observe that ag � g (mod hy; xzi)

for all g 2 G0. Then

� := [[a; x]; [a; c]] = [(1 + (a; x))xa; (1 + (a; c))ca] = [(1 + xyz)xa; (1 + (a; c))ca]

= (1 + xyz)xa(1 + (a; c))ca + (1 + (a; c))ca(1 + xyz)xa

=(1 + xyz)(1 + a(a; c))x(a; c)ca2 + (1 + (a; c))(1 + y)yzca2:

Since FG is centre-by-metabelian, we have

0 = [a; �] = a(1 + xyz)(1 + a(a; c))x(a; c)ca2 + a(1 + (a; c))(1 + y)yzca2

+ (1 + xyz)(1 + a(a; c))x(a; c)ca3 + (1 + (a; c))(1 + y)yzca3

=(1 + y)(1 + a2(a; c))yz a(a; c)(a; c)| {z }
=(a2;c)

ca3 + (1 + a(a; c))(1 + xyz)z(a; c)ca3

+ (1 + xyz)(1 + a(a; c))x(a; c)ca3 + (1 + (a; c))(1 + y)yzca3

= (1 + y)y| {z }
=1+y

z
�
(1 + a2(a; c))(a2; c) + 1 + (a; c)

�
ca3

+ (1 + xyz|{z}
�y (mod hxzi)

)(1 + a(a; c)) (x+ z)| {z }
=(1+xz)z

(a; c)ca3
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= z(1 + y)
�
(a2; c) + (a3; c) + 1 + (a; c) + (1 + a(a; c)| {z }

�(a;c) (mod hy;xzi)

)(1 + xz)(a; c)
�
ca3

= z(1 + y)
�
(a3; c) + (a2; c) + (1 + (a; c))xz

�
ca3

Suppose (a; c) = x. Then (a2; c) = a(a; c)(a; c) = axx = yzx � xz (mod hyi), and

(a3; c) = a2(a; c)(a2; c) � a2x � xz = zxz = x (mod hyi), hence 0 = [a; �] = (1 + y)(x +

xz + (1 + x)xz) = (1 + y)(x+ z) 6= 0, contradiction. This shows (a; c) 6= x.

In a similar manner we dismiss the cases (a; c) = z, (a; c) = xy, and (a; c) = yz. Then

(a; c) 2 hx; y; zi r fx; z; xy; yzg = hy; xzi, and we are done.

4.5. Lemma: Let the notation be as in 4.2, and assume that G=C is mapped onto V .

Then FG is not centre-by-metabelian.

Proof: We assume that FG is centre-by-metabelian, and construct a contradiction.

We write G=C = haC; bCi with a; b 2 G such that

ax = z; ay = y; az = x;

bx = yz; by = y; bz = xy:

Then CG0(a) = CG0(b) = G0 \ Z(G) = hy; xzi, and the lower central series of G is G D
hx; y; zi D hy; xzi D 1. Hence G has class 3.

Let g; h 2 G. Then (g2h; hg) = g2(h; hg)(g2 ; hg) = (hg; h)(g2 ; h) = h(g; h) g(g; h)(g; h),

and thus

[[g; h]; [g; gh]] = [(1 + (g; h))hg; (1 + (g; gh))g2h] = [(1 + (g; h))hg; (1 + g(g; h))g2h]

= (1 + (g; h))(1 + h(g; h))hg � g2h+ (1 + g(g; h))(1 + h(g; h))g2h � hg

= (1 + h(g; h))
�
(1 + (g; h)) + (1 + g(g; h)) h(g; h) g(g; h)(g; h)

�
hg3h

= (1 + h(g; h)) (1 + (g; h) + (1 + g(g; h))(g; h)) hg3h

= (1 + h(g; h))(1 + g(g; h)(g; h))hg3h

= (1 + h(g; h))(1 + (g; g; h))hg3h:

Now (g; hg3h) = (g; h) hg
3

(g; h) = (gh; g; h) = (g; g; h)(h; g; h), since (g; g; h); (h; g; h) 2

Z(G), and using 1.12, we compute

0 = [g; [g; h]; [g; gh]] = (1 + (g; g; h))[g; (1 + h(g; h))hg3h]

= (1 + (g; g; h))
�
(1 + h(g; h)) + (1 + gh(g; h))(h; g; h)

�
hg3hg

= (1 + (g; g; h))
�
1 + h(g; h) + (h; g; h) + (gh; g; h)(g; h)(h; g; h)

�
hg3hg

= (1 + (g; g; h))
�
1 + h(g; h) + h(g; h)(g; h) + (g; h)

�
hg3hg

= (1 + (g; g; h))(1 + h(g; h))(1 + (g; h))hg3hg

= (1 + (g; g; h))(1 + (h; g; h))(1 + (g; h))g4h2:

(�)

Let us assume that there exists an element c 2 C such that (a; bc) =2 Z(G). Then

(a; a; bc) = xz and (bc; a; bc) = xyz. If we substitute g := a and h := bc into (�), we
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obtain the contradiction 0 = (1 + (a; a; bc))(1 + (bc; a; bc))(1 + (a; bc)) = (1 + xz)(1 +

xyz)(1 + (a; bc)) = (G0 \ Z(G))+(1 + (a; bc)) 6= 0.

Consequently (a; bc) 2 Z(G) for all c 2 C; in particular (a; b); (a; b�1) 2 Z(G) since

bC = b�1C. It follows that (a; c) = (a; b�1bc) = (a; b�1)(a; bc) 2 Z(G) for all c 2 C, and

similarly (a; ac); (a; abc) 2 Z(G). SinceG = C[aC[bC[abC, we �nd that (a;G) � Z(G).

But then (a; g�1; h) = (a; g�1; h) �1 �1 = (a; g�1; h)(g; h�1 ; a)(h; a�1; g) = 1 for all g; h 2 G

by Witt's identity (1.2, recall that G has class 3), which shows that a acts trivially on G0,

contradiction.

4.6. Lemma: Suppose that G is a group of class at most 3 such that G0 and G=CG(G
0)

both have exponent 2, and j3(G)j � 2. If FG is centre-by-metabelian, then

jh(g; h); g(g; h); (g; k)ij � 4

for all g; h; k 2 G.

Proof: Let f; g; h; i; j; k 2 G. Observe that then (1 + (f; g; h))(i; j; k) = (1 + (f; g; h)) and

thus (1 + (f; g; h)) k(i; j) = (1 + (f; g; h))(i; j). Moreover,

[g + kg; h+ gh] = [(1 + (g; k))g; (1 + (g; h))h]

= (1 + (g; k))(1 + g(g; h))gh + (1 + (g; h))(1 + h(g; k))(g; h)gh

=
�
(1 + (g; k))(1 + g(g; h)) + (1 + (g; h))(1 + h(g; k))

�
| {z }

=:�

gh:

Hence

0 = [g; g + kg; h + gh]

=� � gh � g + g� � g � gh = (�(gh; g) + g�)g2h = (� g(g; h) + g�)g2h

=(1 + g(g; h))
�
(1 + (g; k)) g(g; h) + (1 + gh(g; k))

�
g2h

+ (1 + (g; h))
�
(1 + h(g; k)) g(g; h) + (1 + g(g; k))

�
g2h

=(1 + g(g; h))((g; k) + gh(g; k))g2h

+ (1 + (g; h))((1 + h(g; k)) g(g; h)(g; h) + 1 + g(g; k))g2h

=(1 + g(g; h))(1 + gh(g; k)(g; k))(g; k)g2h

+ (1 + (g; h))((1 + h(g; k))(g; g; h) + 1 + g(g; k))g2h

=(1 + (g; h))(1 + (gh; g; k))(g; k)g2h

+ (1 + (g; h))((1 + h(g; k))(g; g; h) + 1 + g(g; k))g2h

=(1 + (g; h))
�
(1 + (gh; g; k)) g(g; k) + (1 + h(g; k))(g; g; h) + 1 + g(g; k)

�
g2h

=(1 + (g; h))
�
(g; g; k)(h; g; k) g(g; k) + g(g; h) + h(g; k) g(g; h) + 1

�
g2h

=(1 + (g; h))
�
(g; k)(h; g; k) + g(g; h) + h(g; k) g(g; h) + 1

�
g2h
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=(1 + (g; h))
�
h(g; k) + g(g; h) + h(g; k) g(g; h) + 1

�
g2h

=(1 + (g; h))(1 + g(g; h))(1 + h(g; k))g2h

=(1 + (g; h))(1 + g(g; h))(1 + (g; k))g2h:

The claim now follows from 1.12.

4.7. Lemma: Let the notation be as in 4.2, and assume that G=C is mapped onto W .

Then FG is not centre-by-metabelian.

Proof: Assume that FG is a counterexample.

We write G=C = haC; bCi with a; b 2 G such that

ax = z; ay = y; az = x;

bx = z; by = xyz; bz = x:

Then CG0(a) = hy; xzi, CG0(b) = hxy; yzi, and G0 \ Z(G) = hxzi. The lower central series

of G is G D hx; y; zi D hxzi D 1. By 4.6,

jh(g; h); g(g; h); (g; c)ij � 4:(�)

for all g; h 2 G, c 2 C.

Note that by 1.6,

G0 = h(a; b)i (a;C)(b; C)C 0

= h(a; ab)i (a;C)(ab; C)C 0

= h(ab; b)i (ab; C)(b; C)C 0:

(��)

By 1.3, C 0 � G0 \Z(G) = hxzi. We want to show now that (a; b) 2 hxzi:

Assumption: (a; b) 2 fx; zg. Then 4 � jh(a; b); a(a; b); (a; c)ij = jhx; z; (a; c)ij, and 4 ���
(b; a); b(b; a); (b; c)��� = jhx; z; (b; c)ij by (�). Therefore, (a; b); (a; c); (b; c) 2 hx; zi for all

c 2 C. Together with (��), this implies G0 � hx; zi, contradiction.

Assumption: (a; b) 2 fxy; yzg. Then 4 � jh(a; b); a(a; b); (a; c)ij = jhxy; yz; (a; c)ij, and 4 ���
(ab; a); ab(ab; a); (ab; c)��� =
��
(ab; a); ab( a(b; a)) ; (ab; c)��� =

��
 a(b; a); b(b; a); (ab; c)��� =

jhxy; yz; (b; c)ij. Similarly as above, this implies G0 � hxy; yzi, contradiction.

Assumption: (a; b) 2 fy; xyzg. Then 4 �
��
(b; a); b(b; a); (b; c)��� = jhy; xyz; (b; c)ij, and 4 ���
(ab; a); ab(ab; a); (ab; c)��� = ��
 a(b; a); b(b; a); (ab; c)��� = jhy; xyz; (a; c)ij. This produces

the contradiction G0 � hy; xyzi.

Hence (a; b) 2 hxzi, as desired. We want to show next that (b; C) � hxzi. Let d 2 C.

Assumption: (b; d) 2 fx; zg. If c 2 C, then (d; c) 2 hxzi, and 4 � jh(bd; b), bd(bd; b),

(bd; c)ij = jhx; z; (b; c)ij, hence (b; d) 2 hx; zi. Moreover, 4 �
��
(ad; b); ad(ad; b); (ad; c)��� =

jhx; z; (a; c)ij, hence also (a; c) 2 hx; zi. We arrive at the already familiar contradiction

G0 � hx; zi.

Assumption: (b; d) 2 fxy; yzg. Then 4 �
��
(ad; b); ad(ad; b); (ad; d)��� = jh a(d; b)(a; b),

(d; b)(a; b), (a; d)ij = jhxy; yz; (a; d)ij, hence (a; d) 2 hxy; yzi. But then Witt's formula im-

plies xz = (a; b; d) = (b�1; d�1; a)(d; a�1; b�1) = (b; d�1; a) = (b; a; d) = 1, contradiction.
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Assumption: (b; d) 2 fy; xyzg. If c 2 C, then 4 �
��
(bd; b); bd(bd; b); (bd; c)��� = jhy, xyz,

(b; c)ij, and 4 �
��
(abd; b); abd(abd; b); (abd; c)��� = jhy; xyz; (ab; c)ij, hence (b; c); (ab; c) 2

hy; xyzi. This produces the contradiction G0 � hy; xyzi.

This shows that (b; d) 2 hxzi = G0 \ Z(G). Observe now that by Witt's formula, 1 =

(b; a�1; d)(a; d�1; b)(d; b�1; a) = (b; a�1; d). Consequently (a;C) = (a�1; C) � CG0(b). But

then (��) implies that G0 � CG0(b), contradiction.

4.8. Lemma: Let the notation be as in 4.2, and assume that G=C is mapped onto T .

Then FG is not centre-by-metabelian.

Proof: Let G satisfy the prerequisites of the lemma. Then jG=Cj = 2, i.e. G=C = haCi

for all a 2 Gr C.

In a �rst step, we claim that there is an element a 2 Gr C such that (a;C) = G0.

We assume otherwise and pick an arbitrary element a 2 Gr C. As usual, G0 = (a;C)C 0

with normal subgroups (a;C) and C 0 of G. Since C 0 � Z(G) and G0 6� Z(G), there is an

element c 2 C such that a(a; c) 6= (a; c). Let x := (a; c), y := a(a; c). Then (a;C) = hx; yi

for order reasons. Furthermore, there must be elements d; e 2 C with z := (d; e) =2 hx; yi.

Then G0 = hx; y; zi, and C 0 � G0 \ Z(G) = hxy; zi.

Now consider (da;C). Similarly as above, it must be a proper subgroup ofG0 that is normal

in G and nontrivially acted upon by G=C. Hence (da;C) = hx; yi or (da;C) = hxz; yzi.

Since (da; e) = (d; e)(a; e) 2 (d; e)(a;C) = z hx; yi, the case (da;C) = hxz; yzi must be the

correct one. Because of z = (d; e) = (ed; e), we may replace d by ed in this argumentation,

and �nd that also (eda;C) = hxz; yzi. But then (eda; d) = z(da; d) 2 (eda;C)\ z(da;C) =

hxz; yzi \ z hxz; yzi = ;, contradiction.

We want to show next that FG is not centre-by-metabelian.

Again, assume otherwise and choose elements a; x; y; z 2 G such that G=C = haCi,

(a;C) = G0 = hx; y; zi, and axa�1 = y; aya�1 = x; aza�1 = z.

The lower central series of G is G D hx; y; zi D hxyi D 1, so lemma 4.6 applies here.

Since (a;C) = G0 6� Z(G), there is an element c 2 C with jh(a; c); a(a; c)ij = 4. On the

other hand, 4.6 implies that jh(a; c); a(a; c); (a; d)ij � 4 for all d 2 C. Together this shows

that j(a;C)j � 4, in contradiction to j(a;C)j = jG0j = 8.

4.9. Theorem: Let G be a group with elementary abelian commutator subgroup of order

8. If FG is centre-by-metabelian, then G has class 2.

Proof: 4.2{4.8.

4.10. Lemma: Let N be an elementary abelian normal subgroup of order 2n+1 (n 2 N0)
of a group G such that N \ Z(G) = (G;N) has order 2. Write N = hx1; : : : ; xn; zi with

N \ Z(G) = hzi. Then G=CG(N) is elementary abelian of order 2n. More exactly, there

are elements a1; : : : ; an 2 G such that for all i; j 2 f1; : : : ; ng,

(ai; xj) =

(
1 if i 6= j

z if i = j
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Proof: The action of G by conjugation on the F2-vector space N w.r.t. the basis x1; : : : ,

xn; z de�nes a matrix representation �: G! GL(n+ 1; 2) with kernel CG(N) and image

B � A :=

0
BBB@
1 0

. . .
...

1 0

� : : : � 1

1
CCCA � GL(n+ 1; 2):

The elementary abelian group A may be interpreted as an F2-vector space of dimension
n with subspace B. So let us choose a basis b1; : : : ; bk of B with k � n.

Again shifting our point of view, we now interpret the elements bi, i = 1; : : : ; k, as F2-linear
mappings N ! N , and compute dimCN (bi) = dimKer(bi� idN ) = dimN� rk(bi� idN ) =

(n+1)�1 = n; i.e. CN (bi) is a hyperplane inN . Hence 1 = dimCN (B) = dim
Tk
i=1 CN (bi) �

(n+ 1)� k � 1. This shows k = n, or equivalently B = A.

If we now choose preimages a1; a2; : : : ; an 2 G under � of the matrices

0
BBB@

1 0
. . .

...

1 0

1 0 : : : 0 1

1
CCCA ;

0
BBB@

1 0
. . .

...

1 0

0 1 0 : : : 0 1

1
CCCA ; : : : ;

0
BBB@
1 0

. . .
...

1 0

0 : : : 0 1 1

1
CCCA 2 B;

respectively, we obtain the desired elements.

4.11. Lemma: Let G be a group that is generated by three elements, with elementary

abelian commutator subgroup G0 of order 16, such that (G;G0) = G0 \ Z(G) has order 2.

Then FG is not centre-by-metabelian.

Proof: We assume that FG is centre-by-metabelian, and write G = hg; h; ki and (G;G0) =

hzi. Note that G has class 3. Then G=hzi has class 2, hence its commutator sub-

group is generated by the commutators of its own generators (cf. 3.1 (ii)), i.e. G0=hzi =

h(g; h); (g; k); (h; k); zi =hzi. Since G0=hzi has order 8, also h(g; h); (g; k); (h; k)i has or-

der 8.

If we set w := (g; h), x := (g; k), y := (h; k), we obtain G0 = hw; x; y; zi.

Assume that gw 6= w. Then gw = wz. So if hw 6= w, then hgw = w. Choose ~h 2 fh; hgg

with
~hw = w. Then

[g + hg; ~h+ g~h] = [g + (h; g)g; ~h+ (g; ~h)~h]

= [(1 + w)g; (1 + w)~h]

= (1 +w)[g; (1 + w)~h]

= (1 +w)
�
(1 + wz)g~h + (1 + w)~hg

�
= (1 +w)(1 + z)g~h:
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Observe that kw � w (mod hzi) and (k; g~h) � (k; h) = y (mod hx; zi). Then

0 = (1 + x) � 0 = (1 + x)[k; g + hg; ~h+ g~h]

= (1 + x)[k; (1 + w)(1 + z)g~h]

= (1 + x)(1 + z)[k; (1 + w)g~h]

= (1 + x)(1 + z)(1 + w)[k; g~h]

= (1 + x)(1 + z)(1 + w)(1 + (k; g~h))g~hk

= (1 + x)(1 + z)(1 + w)(1 + y)g~hk 6= 0;

contradiction.

Therefore (g; g; h) = (g; w) = 1. Similarly one shows that

(r; r; s) = 1(�)

for all r; s 2 fg; h; kg. Hence (r; s)(r�1; s) = r�1(r; s)(r�1; s) = (r�1r; s) = 1, i.e.

(r�1; s) = (s; r) = (r; s)(��)

for all r; s 2 fg; h; kg.

Since G=CG(G
0) = hg; h; ki=CG(G

0) is elementary abelian of order 8 by 4.10, the elements

g; h; k all act nontrivially on G0. Together with (�), it follows that (g; y) = z, (h; x) = z,

(k;w) = z. But then

z = z3 = (g; y)(h; x)(k;w) = (g; h; k)(h; g; k)(k; g; h) = (g; h�1; k)(h; k�1; g)(k; g�1; h) = 1

by (��) and Witt's identity, contradiction.

4.12. Theorem: Let G be a group with exp(G0) = 2 and jG0j � 8. If FG is centre-by-

metabelian, then G has class 2.

Proof: Let G be a counterexample. Then FG is centre-by-metabelian, 3(G) 6= 1, and G0

is elementary abelian of order at least 8.

Set C := CG(G
0). Then G=C is abelian. By 4.1, exp(G=C)

�� 4 or jG=Cj = 3. In the latter

case, 4.1 also implies that G0 = (G;G0) � CG0(G) = 3(G) � (Z(G) \ G0) and 4(G) =

(G; 3(G)) = 3(G) = (G;G0) �= V4. We write Z(G) \ G0 = hzi � N for some z 2 G0,

N � G0. ThenG=N is a nonnilpotent group with (G=N)0 = G0=N �= Z2�Z2�Z2. Then 4.9

implies that F[G=N ] is not centre-by-metabelian, contradiction. Therefore exp(G=C)
�� 4.

We claim next that 3(G) is a �nite 2-group. By 1, there exists a subgroup A of G of index

at most 2 such that A0 is a �nite 2-group. If G = A, then our claim follows immediately.

So suppose G 6= A, and let t 2 G r A. Then G0 = (t; A)A0 � A by 1.6. Similarly

3(G) = (G;G0) = (A;G0)(t;G0) � A0(t;G0), since (A;G0) E G and (ta; h) = t(a; h)(t; h) 2

(A;G0)(t;G0) for all a 2 A, h 2 G0. Now G0 is abelian, and thus (t; xy) = (t; x)(t; y)

for all x; y 2 G0 by 1.1. Therefore (t;G0) = (t; A0(t; A)) = (t; A0)(t; t; A) � A0(t; t; A) =

A0(t; h(t; a) : a 2 Ai) = A0 h(t; t; a) : a 2 Ai, hence 3(G) � A0 h(t; t; a) : a 2 Ai. But for

a 2 A, one has (t; t; a) = t(t; a)(t; a)�1 = t(t; a)(t; a) = (t2; a) 2 A0. This shows 3(G) �

A0. Now since A0 is �nite, 3(G) is �nite, too (and of exponent 2).
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Therefore we may consider the elementary abelian 2-group 3(G) as a �nite-dimensional

F2[G=CG(3(G))]-module. But then G=CG(3(G)) is also �nite; in fact, it is a �nite 2-

group since exp (G=CG(3(G)))
�� exp(G=C) �� 4. Hence 3(G) contains a submodule in

every possible dimension. In other words: For any q 2 f2; 4; 8; : : : ; j3(G)jg, there is a

subgroup N of 3(G) of order q which is normal in G.

Assume that jG0 : 3(G)j � 4. Pick a subgroupN of 3(G) such that N E G and jG0 : N j =

8. Then G=N is a counterexample to 4.9, contradiction. Hence jG0 : 3(G)j � 8.

Choose now a normal subgroup N of G with N � 3(G) and j3(G) : N j = 2. Since G=N

satis�es the prerequisites of the lemma, it is also a counterexample, so we may replace G

by G=N and thus assume that j3(G)j = 2. Then 3(G) is central, and G has class 3. We

write 3(G) = hzi.

Clearly, there is a �nite set X � G such that
��hXi0�� � 8 and hXi0 6� Z(G). By possibly

adding one element of G to X which acts nontrivially on some commutator of hXi, we

may assume that also hXi has class 3, i.e. 3(hXi) = hzi. Therefore also hXi is a coun-

terexample. So we may replace G by hXi and assume that G = hXi is �nitely generated.

Then G=hzi is a �nitely generated group of class 2. By 3.1 (ii), it follows that also G0=hzi

is �nitely generated; in fact, it is �nite since it is elementary abelian. But then also G0 is

�nite.

So from now on, we may argue by induction on jG0j. The case jG0j = 8 is taken care of by

4.9. So suppose jG0j � 16. We write jG0j = 2n+1 with n 2 Nr f1; 2g and assume that the

theorem is already proved for every applicable group H with jH 0j � 2n.

If s 2 (G0\Z(G))rf1g, then, by induction,G=hsi has class 2. Therefore hzi = 3(G) � hsi,

hence s = z and G0 \ Z(G) = hzi = 3(G).

We write G0 = hx1; : : : ; xn; zi with x1; : : : ; xn 2 G0 r Z(G). By 4.10, there are elements

a1; : : : ; an 2 G such that

(ai; xj) =

(
1 if i 6= j

z if i = j

for all i; j = 1; : : : ; n, and G=C = ha1C; : : : ; anCi is an elementary abelian group of order

2n. Hence H1 := ha2; a3; : : : ; an; Ci and H2 := ha1; a3; : : : ; an; Ci are normal subgroups

of G of index 2 with G = H1H2.

In the case H 0
1 = G0, we have Z(H1) \ H

0
1 = CG0(H1) = CG0(a2; : : : ; an) = hz; x1i and

hzi � (H1;H
0
1) = (H1; G

0) � (a2; G
0) = hzi. Hence H1 is a group of class 3, and therefore

also a counterexample. Then H1=hx1i, which also has class 3, is also a counterexample

whose commutator subgroup is elementary abelian of order 2n. But this contradicts the

induction hypotheses.

Therefore H 0
1 < G0. Then induction implies that jH 0

1j � 4 or cl(H1) = 2.

If H1 has class 2, then H 0
1 � CG0(H1) = hx1; zi. Therefore, we have jH 0

1j � 4 in any

case. Moreover, since G0 � C � H1, we know that hzi = (H1; G
0) � H 0

1, and therefore

jH 0
1=hzij � 2.

Similarly, we have jH 0
2=hzij � 2.
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We now apply 3.1 (ii) to the group G=hzi, which has class 2 and is generated by the set

C [ fa1; : : : ; ang:

G0=hzi = h(a1; a2)iH
0
1H

0
2=hzi :(�)

It follows that jG0 : hzij � jh(a1; a2); zi : hzij � jH
0
1 : hzij � jH

0
2 : hzij � 2 � 2 � 2 = 8. Hence

jG0j � 16. In fact, since jG0j > 8, we have jG0j = 16.

Consequently n = 3, G0 = hx1; x2; x3; zi, and G=C = ha1C; a2C; a3Ci. Then (a1; a2) must

not be contained in h(a1; a3); (a2; a3)i � H 0
1H

0
2, for otherwise jG

0j < 16 by (�). Similarly

one shows that (a1; a3) =2 h(a1; a2); (a2; a3)i and (a2; a3) =2 h(a1; a2); (a1; a3)i. Hence

jh(a1; a2); (a1; a3); (a2; a3)ij = 8, i.e. j ha1; a2; a3i
0 j � 8. Then ha1; a2; a3i acts nontrivially

on ha1; a2; a3i
0, i.e. cl(ha1; a2; a3i) > 2. By 4.9, j ha1; a2; a3i

0 j 6= 8, hence j ha1; a2; a3i
0 j � 16,

and thus ha1; a2; a3i
0 = G0 = hx1; x2; x3; zi. But then ha1; a2; a3i is a counterexample to

4.11, contradiction.

4.13. Theorem (summary): Let G be a group such that exp(G0) = 2. Then FG is

centre-by-metabelian if and only if one of the following statements holds:

(i) jG0j
�� 4,

(ii) G0 �= Z2 � Z2 � Z2 and cl(G) = 2,

(iii) G has an abelian subgroup of index 2.

Proof: 3.11 and 4.12.



5. Group actions and algorithmic reductions

5.1. Remark: (i) Let G be a group that acts via automorphisms on groups H, K, and

let ' : G! Aut(H),  : G! Aut(K), be the corresponding group homomorphisms.

The actions of G on H and on K are called equivalent, if there exists an isomorphism

� : H ! K such that the following diagram commutes for all g 2 G (cf. [5, I.10.1.c]):

H

�

��

'(g)
// H

�

��

K
 (g)

// K

Additionally, we will allow renaming the elements of G by an automorphism of G,

i.e. we will also consider the two actions to be equivalent in the case that the above

diagram commutes with  � � in the place of  for a suitable � 2 Aut(G).

(ii) Consider the case H = K. Two actions of G on H are consequently \essentially

the same", if the images of the corresponding homomorphisms G ! Aut(H) are

conjugate in Aut(H). (Note the analogy to the theory of linear representations of G.)

This insight makes it cheaper to compute (and later on work with) \all" group actions

on a given group H: Instead of the complete subgroup lattice of Aut(H), we only

need representatives for the conjugacy classes of its subgroups.

(iii) As the reader might have already guessed, we henceforth take H := G0 to be the

commutator subgroup of G, where G acts on H by conjugation, and ask the following

question: Given the isomorphism type of H, what are the possible actions of G on H?

For this, set

C := CG(H); A := G=C; U := HC=C; I := H=(C \H) = H=Z(H):

(Cf. the diagram in 5.4.) Then A0 = U �= I, or more exactly: We have monomor-

phisms ' : A ,! Aut(H),  : I ,! Aut(H), which are induced by the actions of G

on H, respectively of H on itself, by conjugation. Then '(A)0 = '(A0) = '(U) =

 (I) = Inn(H); in words: the commutator subgroup of the image of A in Aut(H) is

the group of inner automorphisms of H.

(iv) As an application of (iii), we show that H := D8 cannot be a commutator subgroup:

Assume otherwise, then Z2�Z2 �= D8=Z(D8) = I �= U = A0 ,! Aut(D8)
0 �= D0

8
�= Z2,

contradiction. (Recall that Aut(D8) �= D8.) We will study the other instances of

jHj 2 f8; 16g in 5.4, but before that, we need two more lemmata which will also be

helpful in later sections:

5.2. Lemma: Let P be a normal �nite 2-subgroup of a group G, and set C := CG(P ).

Suppose that FG is centre-by-metabelian, and that G=C is not a 2-group. Then

(i) there is a Hall 20-subgroup S=C of G=C with jS : Cj = 3,

(ii) P = CP (S)� (S; P ) is abelian with (S; P ) �= V4.

Proof: Since P is �nite, G=C is also �nite. By theorem 1, G is solvable. Therefore G=C

contains a (nontrivial) Hall 20-subgroup S=C [5, Hauptsatz VI.1.8].

27
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According to Burnside [3, theorem 5.1.4], the action of S=C on the elementary abelian

group �P := P=�(P ) is also nontrivial and faithful. We set �G := G=�(P ), �S := S�(P )=�(P ),
�C := C�(P )=�(P ). Then also �S= �C �= S=C acts nontrivially and faithfully on �P .

Now F
�
�G
�
is centre-by-metabelian. By 4.1, j �S : �Cj = 3, �P = (S; �P ) � C �P (S), and

j(S; �P )j = 4. In particular, jS : Cj = 3; this shows (i). We write S=C = haCi.

To prove (ii), we �rst study the case P = (S; P ). We claim that then P �= V4. First

note that �P = P=�(P ) = (S; P )=�(P ) = (S; P=�(P )) = (S; �P ) has order 4. Hence we

may write P=�(P ) = hx�(P ); y�(P )i with some elements x; y 2 P with ax = y. Then

P = hx; yi, and x2 � y2 � (x; y) � 1, ay � xy (mod �(P )). Then

� := [x+ ax; a+ xa] = [x+ y; a+ xy�1a] = [(1 + xy�1)y; (1 + xy�1)a]

= (1 + xy�1)(y(1 + xy�1)a+ a(1 + xy�1)y)

= (1 + xy�1)(y + yx+ ay + y)a

= ( yx+ ay + x2y�1 + xy�1 ay)a; and

0 = [x; �]a�1 = x( yx+ ay + x2y�1 + xy�1 ay)aa�1 + ( yx+ ay + x2y�1 + xy�1 ay)axa�1

= x yx+ x ay + x3y�1 + x2y�1 ay + yx+ ayy + x2 + xy�1 ayy 2 FP:

Sorting and splitting the last sum w.r.t. the partition of P into cosets of �(P ), we obtain

0 = x yx+ x2 2 F[�(P )] 0 = x2y�1 ay + ayy 2 F[x�(P )]

0 = x ay + xy�1 ayy 2 F[y�(P )] 0 = x3y�1 + yx 2 F[xy�(P )]:

The �rst equation implies that yx = x, i.e. P = hx; yi is abelian. The last one shows that

x2 = y2. Hence �(P ) =


x2; y2

�
is cyclic.

Assume that �(P ) 6= 1. Then j�(P ) : �(�P )j = 2. Since �(�P ) E G, we may replace G

by G=�(�P ) if necessary, and assume that j�(P )j = 2. Then jP j = 8, i.e. P �= Z2 � Z4.

Then P contains four elements of order 4, and each automorphism that �xes one of them

also �xes its inverse. Hence P has no automorphism of order 3, contradiction.

Therefore �(P ) = 1, and thus P �= V4, as desired.

We now consider the case that M := (S; P ) < P . By [8, 7.12], we have P = MQ,

where Q := CP (S), and (S;M) = (S; S; P ) = (S; P ) = M . Therefore we are in a similar

situation as in the preceding case (withM instead of P , and SM instead of G). Applying

its result, we obtain M �= V4. Since S acts on M by cyclic permutation of the three

nontrivial elements, we have Q \M = 1. Hence P =M oQ, since M E P by 1.4. Then

(M;Q) 2 M \ P 0 � M \ �(P ). But M �= V4 �= M�(P )=�(P ) �= M=M \ �(P ), i.e.

M \ �(P ) = 1. Consequently (M;Q) = 1, and P =M �Q.

It remains to show that Q is abelian. We assume that Q0 6= 1 and set U := ha; P i. Then

U 0 = (a; P )P 0 = (a;M)Q0 = M � Q0 by 1.6. Since P is a �nite 2-group, there exists

a normal subgroup R of P with R � Q0 and jQ0 : Rj = 2 by [5, Satz III.7.2]. Since

R � Q is centralized by a, it is even normal in U . Then U=R is a nonnilpotent group with

(U=R)0 = (M �Q0)=R �=M �Q0=R �= Z2�Z2�Z2. By the summary of section 4, F[U=R]
is not centre-by-metabelian. Contradiction.
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5.3. Lemma: Let G be a group such that jG0j 6
�� 8. Suppose that M is a subgroup of

index 2 in G with jM 0j = 2. Then FG is not centre-by-metabelian.

Proof: Note thatM 0 E G, henceM 0 � Z(G). We writeM 0 = hzi and G = hg;Mi. By 1.6,

G0 = (g;M)M 0.

We de�ne maps

� : (M r Z(M))�M �M ! F[G0];

(b; c; d) 7! (1 + z)(1 + (g; c�1))(1 + (g; d))(1 + (g; b));

and

' : M ! G0=M 0; a 7! (g; a)M 0:

Then ' is surjective; it even is an epimorphism since for all a; b 2 M we have '(ab) =

(g; ab)M 0 = (g; a) a(g; b)M 0 = (g; a)M 0(a; g; b)(g; b) = (g; a)(g; b)M 0 = '(a)'(b).

We want to show that � 6= 0.

Suppose �rst that there are elements of G0 whose order is not a power of 2. Then also

G0=M 0 contains such elements. Then there clearly is also an element b 2 M r Z(M)

such that jh'(b)ij is not a power of 2; in particular, (g; b)4 =2 hzi. Then (g; b2) � (g; b)2

(mod hzi), hence �(b; b�2; b) = (1 + z)(1 + (g; b2))(1 + (g; b))2 = (1 + z)(1 + (g; b)4) 6= 0.

Suppose now that every element of G0 is a 2-element. Then jG0j � 16, i.e. jG0=M 0j � 8.

Then there also is a �nite (2-)subgroup H=M 0 of G0=M 0 with jH=M 0j � 8. We obviously

may choose elements c; d 2 M such that 1 / h'(c)i / h'(c); '(d)i / H=M 0. Then M1 :=

'�1(h'(c); '(d)i) < M . Since also Z(M) < M , there is an element b 2Mr(M1[Z(M)) 6=

;. Hence 1 < h'(c)i < h'(c); '(d)i < h'(c); '(d); '(b)i, i.e. 1 < hzi < hz; (g; c)i <

hz; (g; c); (g; d)i < hz; (g; c); (g; d); (g; b)i. By 1.13, �(b; c�1; d) 6= 0.

In any case, there is a triple (b; c; d) 2 (M r Z(M)) �M �M such that �(b; c; d) 6= 0.

Choose an element a 2M r CM (b) 6= ;, then (a; b) = z, and

(FG)00 3 [b+ ab; g + cg] = [(1 + z)b; (1 + (c; g))g]

= (1 + z)(1 + (c; g))[b; g]

= (1 + z)(1 + (c; g))(1 + (g; b))b| {z }
=:�2FM

g:

(Note that z is central and (c; g) commutes with b modulo hzi.) Now M=hzi is abelian, in

particular [d; �] = 0. Then

0 6= b �(b; c; d) dg = (1 + z)(1 + (c; g))(1 + (g; b))b (1 + (g; d))dg

= �[d; g] = [d; �g]

2 [FG; (FG)00]:

Hence FG is not centre-by-metabelian.
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5.4. Remark: Recall the situation of 5.1:

G

A HC

U

DD
DD

DD
DD

DD
DD

DD
DD

DD
DD

C

CC
CC

CC
CC

CC
CC

CC
CC

CC
CC

H := G0

I

Z(H)

N

2

1

Assume additionally that G is a counterexample to theorem 4, and that H is a �nite

2-group. Then H is not elementary abelian (cf. section 4), and A 6= 1 (cf. section 3).

Furthermore, FG is centre-by-metabelian, so lemma 5.2 implies that:

(1) If H is nonabelian, then A is a 2-group.

(2) If H is abelian and A is not a 2-group, then A is a f2; 3g-group such that jSj = 3 and

(S;H) �= V4 for any Sylow 3-subgroup S of A.

If jHj = 16, we may argue by induction and assume that there are no counterexamples

with commutator subgroups of order 8. So for all N E G with N � H and jN j = 2, G=N

is not a counterexample. Hence one of the following holds:

(3) H=N �= Z2 � Z2 � Z2, and A acts trivially on H=N , i.e. (A;H) � N .

(4) H=N �= Z2 � Z4, and A acts dihedrally on H=N .

(5) G=N contains an abelian subgroup of index 2.

But lemma 5.3 shows that in case (5), also G contains an abelian subgroup of index 2,

hence it is not a counterexample. So we may dismiss this case.

We are now able to describe an algorithm that, given any �nite 2-group H, computes all

possibilities for A:

� Check if H is elementary abelian. If so, stop, otherwise proceed (cf. section 4).

� Compute the conjugacy classes of the subgroups of Aut(H), and take representatives

(cf. 5.1 (ii)).

� Throw away the trivial representative (cf. section 3).

� Throw away all representatives A with A0 6= Inn(H) (cf. 5.1 (iii)).

� Throw away the representatives A that do not comply with either (1) or (2).
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� If jHj = 16, then for each A that has survived so far, compute all A-invariant

subgroups N of H of order 2. (Then N is normal in G, and in particular also H-

invariant.) If there is an N such that neither of the conditions (3) or (4) is satis�ed,

throw the A away.

This computational e�ort is better left to a machine rather than a human being. This

should not be a problem for any reasonable computer algebra system, even for in�nite G,

since H �nite implies that Aut(H), Inn(H), A, I, U are also �nite.

I have chosen GAP 3.4 [18] to program this algorithm in a routine called PossibleActions;

you can �nd its commented source code in appendix C.

IfH loops over all groups of orders 8 and 16, PossibleActions yields the following results:

gap> ls:=AllTwoGroups(Size, [8,16]);;

gap> actions:=List(ls, PossibleActions);;

gap> PrintArray(List([1..Length(ls)], i->[i,

> GroupNames(ls[i]),

> Length(actions[i])]

> ));;

[ [ 1, [ 8 ], 4 ],

[ 2, [ 2x4 ], 6 ],

[ 3, [ D8 ], 0 ],

[ 4, [ Q8 ], 0 ],

[ 5, [ 2x2x2 ], 0 ],

[ 6, [ 16 ], 0 ],

[ 7, [ 4x4 ], 1 ],

[ 8, , 0 ],

[ 9, [ (2x4).2 ], 0 ],

[ 10, [ 2x8 ], 5 ],

[ 11, , 0 ],

[ 12, [ D16 ], 0 ],

[ 13, [ QD16 ], 0 ],

[ 14, [ Q16 ], 0 ],

[ 15, [ 2^2x4 ], 3 ],

[ 16, [ D8x2 ], 0 ],

[ 17, [ Q8x2 ], 0 ],

[ 18, [ D8Y4 ], 0 ],

[ 19, [ 2^4 ], 0 ] ]

The �rst column indexes H as it appears in the 2-group catalogue of GAP, the second

states GAP's (obvious) names for H, if GAP has found any, and the third tells us the

number of representatives A that have survived the reductions laid out in the algorithm.

(In appendix C, it is also described how to extract the actual action of A on H in each

case.)

Actually, the results for jHj = 8 are not surprising:
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The automorphism group of H := Z8 is isomorphic to V4, so it has 4 nontrivial subgroups,

none of which is excluded by the algorithm.

The automorphism group of H := Z2 � Z4 is isomorphic to D8, which has 6 conjugacy

classes of nontrivial abelian subgroups, all of which are listed above.

We have shown already in 5.1 (iv) that H := D8 cannot be a commutator subgroup, so

our algorithm certainly must give us 0 possibilities in this case.

For H := Q8, we have Aut(Q8) �= S4, U �= Inn(Q8) �= H=Z(H) �= Z2 � Z2, and the only

subgroup A of S4 with A
0 �= Z2�Z2 is A �= A4. Since Q8 is nonabelian, only 2-groups are

allowed for A, but A4 is not a 2-group.

The elementary abelian group H := Z2�Z2�Z2 is ignored anyway because of the results

of section 4.

So the algorithm starts to become really helpful in the case jHj = 16. Keep in mind how-

ever, that here the results are based on our assumption that there are no counterexamples

with jHj = 8. The existence of such is disproved in section 6 (4 + 6 = 10 cases). The

1+5+3 = 9 cases with jHj = 16 that the algorithm could not dismiss are then dealt with

in section 7, before we rule out any other counterexamples to theorem 4 with an inductive

argument in section 8.



6. Commutator subgroups of order 8

6.1. Remark: Let us assume that G is a counterexample to our main theorem 4 such

that jG0j = 8. By 5.4, G0 �= Z8 or G
0 �= Z2 � Z4.

We �rst study the case G0 = hxi �= Z8. Then Aut(G0) = h�; �i �= V4, where

� : G0 ! G0; x 7! x�1;

� : G0 ! G0; x 7! x3:

The four possibilities for the action of G mentioned in the list on page 31 are h�; �i, h�i,

h�i, h��i, i.e. all nontrivial subgroups of Aut(G0).

As usual, we set C := CG(G
0), and study the monomorphism ' : G=C ,! Aut(G0) that

stems from the action of G on G0. We have to show that if FG is centre-by-metabelian,

then the image of ' is h�i, and C is abelian. This will be done in lemmata 6.2{6.4.

6.2. Lemma: Let the notation be as in 6.1, and assume that the image of ' is either h�i

or h��i. Then FG is not centre-by-metabelian.

Proof: Observe that �� : G0 ! G0, x 7! x5. Hence, there is an exponent i 2 f3; 5g and

an element b 2 G such that bx = xi. Then G=C = hbCi, and G0 = (b; C)C 0 = (b; C), since

C 0 � Z(G) \G0 < G0, i.e. C 0 � �(G0).

Consequently, (b; :) : C ! G0 = hxi is an epimorphism, so there is an element c 2 C such

that (b; c) = x. Then

� := [[b; c]; [b; cb�1]] = [(1 + x)cb; (1 + x)c]

= (1 + x)c (b(1 + x)c+ (1 + x)cb)

= (1 + x)c
�
(1 + xi)x+ (1 + x)

�
cb

=(1 + x)(1 + xi+1)c2b; and

[c; � ] = (1 + x)(1 + xi+1)c2[c; b]

= (1 + x)(1 + xi+1)c2(1 + x)cb

=(1 + xi+1)(1 + x2)c3b:

It is easy to see that the last expression is nonzero for any choice of i 2 f3; 5g.

6.3. Lemma: Let the notation be as in 6.1, and assume that the image of ' is h�; �i.

Then FG is not centre-by-metabelian.

Proof: Choose a; b 2 G with ax = x�1, bx = x3. Then abx = x5, and G=C = haC; bCi =

habC; bCi. It follows that G0 = h(ab; b)i (ab; C)(b; C)C 0 = h(a; b)i (ab; C)(b; C), since C 0 �

Z(G) \G0 = CG0(a) \ CG0(b) =


x4
�
� �(G0). Since G0 is cyclic, we have G0 = h(a; b)i or

G0 = (ab; C) or G0 = (b; C),

Suppose that G0 = (b; C), and set H := hb; Ci. Then H 0 = G0, and CH(H
0) = C, and

H=C = hbCi. Hence H satis�es the hypothesis of lemma 6.2, i.e. FH is not centre-by-

metabelian, and certainly FG is neither.

33
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The same argument is valid for the case G0 = (ab; C).

Therefore we may assume that (a; b) has order 8, w.l.o.g. (a; b) = x. Then

� := [a+ ba; b+ ab] = [(1 + x�1)a; (1 + x)b]

= (1 + x�1)(1 + x�1)ab+ (1 + x)(1 + x�3)ba

=
�
(1 + x�2) + (1 + x)(1 + x�3)x�1

�
ab

=x4
�
1 + x+ x2 + x3

�
ab; and

[x; � ] =x4(1 + x+ x2 + x3)[x; ab]

=x4(1 + x+ x2 + x3)(1 + x4)xab = hxi+ab 6= 0:

So FG is also not centre-by-metabelian in this case.

6.4. Lemma: Let the notation be as in 6.1, and assume that the image of ' is h�i. If

FG is centre-by-metabelian, then C is abelian.

Proof: Suppose that C 0 6= 1. Since C 0 � Z(G) \ G0 =


x4
�
�= Z2, we have C

0 =


x4
�
�

�(G0).

Let a 2 G r C. Then G=C = haCi, ax = x�1, G0 = (a;C), and the map (a; :) : C ! G0

is an epimorphism. In particular, U := (a; :)�1(


x2
�
) < C. Let d 2 C r Z(C) 6= ;, then

V := CC(d) < C. Therefore we may choose an element c 2 C r (U [ V ) 6= ;. Then

(c; d) = x4 = (d; c), and (a; c) has order 8, w.l.o.g. (a; c) = x. Hence

(FG)00 3 [a+ ca; c+ dc] = [(1 + x�1)| {z }
2CFG(c)

a; (1 + x4)| {z }
2Z(FG)

c]

= (1 + x�1)(1 + x4)[a; c]

= (1 + x�1)(1 + x4)(1 + x�1)ac =


x2
�+
ac;

and [c;


x2
�+
ac] =



x2
�+

[c; a]c =


x2
�+

(1 + x)cac = hxi+cac 6= 0. Therefore FG is not

centre-by-metabelian.

6.5. Remark: Now we have seen that groups with cyclic commutator subgroups of

order 8 are not counterexamples to the main theorem 4. So let us turn to the case

G0 = hx; yi �= Z2 � Z4, where x
2 = 1 = y4. Then Aut(G0) = h�; �i �= D8, where

� : G0 ! G0; x 7! xy2; y 7! xy;

� : G0 ! G0; x 7! x; y 7! xy;
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check that �2 = idG0 = �4, ����1 = ��1. The subgroup lattice of Aut(G0) looks like:

h�; �i

rr
rr
rr
rr
rr

MM
MM

MM
MM

MM



�2; �

�
LL

LL
LL

LL
LL

h�i


�2; ��

�
qq
qq
qq
qq
qq
q

h�i �


�2�

�
MM

MM
MM

MM
MM

MM



�2
� 


�3�
�
� h��i

pp
pp
pp
pp
pp
pp

1

Here � symbolizes conjugacy of subgroups. Set C := CG(G
0) and let ' : G=C ,! Aut(G0)

be the usual monomorphism. The algorithm in 5.4 leaves us with six \possible" images of

' (cf. the table on page 31). Since G0 � C, i.e. G=C is abelian, those are (representatives

for the conjugacy classes of) the subgroups of order 2 or 4 .

We will show in the lemmata 6.6{6.11 that if FG is centre-by-metabelian, then G=C is

mapped onto


�2
�
, and that C 0 � �(G0) =



y2
�
. (Note that



�2
�
acts dihedrally on G0.)

6.6. Lemma: Let the notation be as in 6.5, and assume that the image of ' is h�i. Then

FG is not centre-by-metabelian.

Proof: Let a 2 G such that ah = �(h) for all h 2 G0, i.e. ax = xy2, ay = xy. Then

G=C = haCi �= Z4. Since C
0 � Z(G) \ G0 =



y2
�
= �(G0), we have G0 = (a;C) by 1.6,

i.e. (a; :) : C ! G0 is an epimorphism. Choose an element c 2 C with (a; c) = y. Note

that (a; x) = y2 = (x; a) 2 Z(G). Then

(FG)00 3 [c+ ac; a+ xa] = [(1 + y)c; (1 + y2)a]

= (1 + y2)
�
(1 + y)ca+ a(1 + y)c

�
=(1 + y2)

�
(1 + y)ca+ (1 + xy)yca

�
=(1 + y2)(1 + xy2)ca =



x; y2

�+
ca;

and [c;


x; y2

�+
ca] =



x; y2

�+
c[c; a] = c



x; y2

�+
(1 + y)ca = c(G0)+ca 6= 0. Therefore, FG

is not centre-by-metabelian.

6.7. Lemma: Let the notation be as in 6.5, and assume that the image of ' is h�i or

�2�

�
. Then FG is not centre-by-metabelian.

Proof: Since h�i and


�2�

�
are conjugate in Aut(G0), we may (by renaming the elements

of G0 if necessary) w.l.o.g. assume that the image of ' is h�i. Then there is an element

b 2 G with bx = �(x) = x and by = �(y) = xy. Then G=C = hbCi �= Z2 and C 0 �

Z(G) \G0 =


x; y2

�
= 
(G0) �= Z2 � Z2.
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Since G0 = (b; C)C 0 by 1.6, there is an element c 2 C such that ~y := (b; c) has order 4, i.e.

~y 2 fy; xy; y�1; xy�1g. In any case, b~y = x~y. So we may w.l.o.g. assume that ~y = y. Then

(FG)00 3 [c+ bc; b+ yb] = [(1 + y)c; (1 + x)b]

= (1 + x)
�
(1 + y)cb+ b(1 + y)c

�
=(1 + x)

�
(1 + y)cb+ (1 + xy)ycb

�
=(1 + x)(1 + xy2)cb =



x; y2

�+
cb;

and [c;


x; y2

�+
cb] =



x; y2

�+
c[c; b] = c



x; y2

�+
(1 + y)cb = c(G0)+cb 6= 0. Therefore, FG is

not centre-by-metabelian.

6.8. Lemma: Let the notation be as in 6.5, and assume that the image of ' is


�3�

�
or

h��i. Then FG is not centre-by-metabelian.

Proof: As in the preceding proof, we may w.l.o.g. assume that the image of ' is


�3�

�
,

and choose an element b 2 G with bx = (�3�)(x) = xy2 and by = (�3�)(y) = y. Then

G=C = hbCi �= Z2 and C
0 � Z(G) \G0 = hyi �= Z4.

Case 1: C 0 = hyi. Here there are elements c; ~c 2 C such that jh(c; ~c)ij = 4; in particular,

(c; :) : C ! hyi is an epimorphism. Then U := (c; :)�1(


y2
�
) < C.

Now G0 = (b; C)C 0 implies that (b; C) * hyi. Since the map (b; :) : C ! G0 is a homomor-

phism, this shows that V := (b; :)�1(hyi) < C.

Therefore we may choose an element d 2 C r (U [ V ) 6= ;. Then (c; d) 2 fy; y�1g, and

(b; d) 2 x hyi. By replacing d by its inverse if necessary, we may assume that (c; d) = y.

Since for all i 2 Z, we have (cib; d) = (c; d)i(b; d) = yi(b; d), we may replace b by cib for a

suitable i, and assume that (b; d) = x. Note that this does not change the action of b on

G0. Then (cb; d) = xy, hence

(FG)00 3 [d+ cbd; c + dc] = [(1 + xy)d; (1 + y�1)c]

= (1 + xy)(1 + y�1)(dc+ cd)

= (1 + xy)(1 + y�1)(1 + y�1)cd

=(1 + xy)(1 + y2)cd = hxyi+cd;

and [c; hxyi+cd] = hxyi+c[c; d] = chxyi+(1 + y)cd = c(G0)+cd 6= 0. Therefore, FG is not

centre-by-metabelian in this case.

Case 2: C 0 �


y2
�
= �(G0). Then G0 = (b; C), i.e. the map (b; :) : C ! G0 is an

epimorphism. If we choose elements c; d 2 C such that (b; c) = x = (c; b), (b; d) = y, then

(FG)00 3 [c+ bc; b+ cb] = [(1 + x)c; (1 + x)b]

= (1 + x)
�
(1 + x)cb+ b(1 + x)c

�
=(1 + x)

�
1 + x+ (1 + xy2)x

�
cb

=(1 + x)(1 + y2)cb =


x; y2

�+
cb:

Since (cb; d) = (c; d)(b; d) 2 y


y2
�
, we then have [d;



x; y2

�+
cb] =



x; y2

�+
[d; cb] =


x; y2
�+

(1 + (cb; d))dcb = (G0)+dcb 6= 0. Therefore, FG is also not centre-by-metabelian

in this case.
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6.9. Lemma: Let the notation be as in 6.5, and assume that the image of ' is


�2; �

�
.

Then FG is not centre-by-metabelian.

Proof: We may choose elements a; b 2 G with ah = �2(h) = h�1 for all h 2 G0, and
bx = �(x) = x, by = �(y) = xy. Then G=C = haC; bCi = habC; bCi �= Z2 � Z2 and

C 0 � Z(G) \G0 =


x; y2

�
= 
(G0) �= Z2 � Z2. Moreover, G0 = h(a; b)i (ab; C)(b; C)C 0 =

h(a; b)i (ab; C)(b; C)
(G0).

Case 1: h(a; b)i * 
(G0). With ~y := (a; b) we have G0 = h~y; xi, a~y = ~y�1, b~y = x~y, so by

replacing y by ~y, we may assume that (a; b) = y. Then

(FG)00 3 [b+ ab; a+ ba] = [(1 + y)b; (1 + y�1)a]

= (1 + y)(1 + xy�1)ba+ (1 + y�1)(1 + y�1)ab

=
�
(1 + y + xy�1 + x) + (1 + y2)y

�
ba

=(1 + x)(1 + y�1)ba =: �:

Since (ba; y) = xy2, it follows that [y; � ] = (1 + x)(1 + y�1)[y; ba] = (1 + x)(1 + y�1)(1 +

xy2)yba = (G0)+ba 6= 0. This shows that FG is not centre-by-metabelian in this case.

Case 2: h(a; b)i � 
(G0). Then (�;C) = (b; C) * 
(G0) or (�2�;C) = (ab; C) * 
(G0).

Since � and �2� are conjugate in Aut(G0) (namely �� = �2�), we may \shift" G0 by � as

described in section 5, and assume w.l.o.g. that (b; C) = (�;C) * 
(G0).

Then there is an element c 2 C such that ~y := (b; c) 2 y
(G0). It is easy to see that this

implies G0 = hx; ~yi, and (b; b; c) = (b; ~y) = x. So if we set H := hb; Ci, then H 0 = G0,

CH(H
0) = C, and H=C = hbCi. But then H satis�es the hypothesis of lemma 6.7, so FH

is not centre-by-metabelian, and neither is FG.

6.10. Lemma: Let the notation be as in 6.5, and assume that the image of ' is


�2; ��

�
=


�3�; ��
�
. Then FG is not centre-by-metabelian.

Proof: We may choose elements a; b 2 G with ax = (�3�)(x) = xy2, ay = (�3�)(y) = y,

and bx = (��)(x) = xy2, by = (��)(y) = y3; i.e. a acts trivially on hyi and dihedrally on

hxyi, and b acts dihedrally on hyi and trivially on hxyi; note moreover that abh = h�1 for

all h 2 G0.

Then G=C = haC; bCi �= Z2 � Z2, and C 0 � Z(G) \ G0 =


y2
�
= �(G0) �= Z2, hence

G0 = h(a; b)i (a;C)(b; C).

Case 1: (a;C) = G0. If we set H := ha;Ci, then H 0 = G0, and H=C is mapped onto

�3�

�
under '. So H satis�es the hypotheses of lemma 6.8, hence FH is not centre-by-

metabelian.

Case 2: (b; C) = G0. Here H := hb; Ci satis�es the hypotheses of lemma 6.8, since H=C is

mapped onto h��i.

Case 3: (a; b) =2


x; y2

�
= 
(G0). Then a(a; b) = (a; b)�1 or b(a; b) = (a; b)�1. We only

consider the case b(a; b) = (a; b)�1 here, since the case a(a; b) = (a; b)�1 can be handled

completely analogously; we just have to switch y and xy, resp. a and b (this stems again

from the fact that �3� and �� are conjugate in Aut(G0) under the automorphism �,

which does switch y and xy). Then (a; b) 2 fy; y3g � CG(a). By replacing a by a�1 2 aC
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if necessary, we may assume that (a; b) = y. Then (a;C)(b; C) * hyi, for otherwise

G0 = h(a; b)i (a;C)(b; C) � hyi.

If (a; c) =2 hyi for some c 2 C, then

(FG)00 3 [b+ ab; ab+ b(ab)] = [(1 + y)b; (1 + y�1)ab]

= (1 + y)(1 + y)bab+ (1 + y�1)(1 + y�1)abb

=(1 + y2)(ba+ ab)b

=(1 + y2)(1 + y�1)ab2 = hyi+ab2:

Since b2 2 C we have (b2; c) 2 C 0 �


y2
�
. Hence [c; hyi+ab2] = hyi+(1 + (ab2; c))cab2 =

hyi+(1 + (a; c))cab2 = (G0)+cab2 6= 0, and FG is not centre-by-metabelian.

So we may assume that (a;C) � hyi. Then z := (b; c) =2 hyi for some c 2 C, and az = zy2.

Furthermore,

(FG)00 3 [a+ ba; b+ cb] = [(1 + y�1)a; (1 + z�1)b]

= (1 + y�1)(1 + y2z�1)ab+ (1 + z�1)(1 + y)ba

=
�
(1 + y�1)(1 + y2z�1)y + (1 + z�1)(1 + y)

�
ba

=(1 + y)
�
1 + y2z�1 + 1 + z�1

�
ba

= hyi+z�1ba:

Since (ba; c) = b(a; c)(b; c) 2 hyi z, we have [c; hyi+z�1ba] = hyi+z�1[c; ba] = z�1hyi+(1 +

z)cba = (G0)+cba 6= 0. Therefore, FG is not centre-by-metabelian in this case.

Case 4: (a; b) =2 �(G0). By case 3, (a; b) 2 
(G0)r�(G0) =


x; y2

�
r


y2
�
= fx; xy2g. By

renaming x if necessary, we may even assume that (a; b) = x.

Then there exists an element c 2 C such that at least one of (a; c), (b; c) has order 4; by

switching the roles of a and b, resp. y and xy as in case 3 if necessary, we may w.l.o.g.

assume that jh(a; c)ij = 4. Then h(a; c)i = hyi or h(a; c)i = hxyi (disappointingly there is

no w.l.o.g.-ing anymore, since we might have switched y and xy already); by replacing c

by c�1 if necessary we may assume that (a; c) 2 fy; xyg.

Assume �rst that (a; c) = y. Note that y 2 Z(F[ha; ci]). Then

(FG)00 3 [ca+ c(ca); c + ac] = [(1 + y�1)ca; (1 + y)c]

= (1 + y�1)(1 + y)[ca; c]

= (1 + y�1)(1 + y)(1 + y)c2a = hyi+c2a:

Observe that (b; c2a) = (b; c)2(b; a) 2


y2
�
x, hence [b; hyi+c2a] = hyi+(1 + (b; c2a))c2ab =

hyi+(1 + x)c2ab = (G0)+c2ab 6= 0. Hence FG is not centre-by-metabelian.
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Assume now that (a; c) = xy. Note that (1 + x)ba = (1 + x)ab. Then

(FG)00 3 [a+ ca; b+ ab] = [(1 + xy�1)a; (1 + x)b]

= (1 + xy�1)[a; (1 + x)b]

= (1 + xy�1)
�
(1 + xy2)ab+ (1 + x)ba

�
=(1 + xy�1)

�
1 + xy2 + 1 + x

�
ab

=(1 + xy�1)(1 + y2)xab = hxyi+xab:

Now since (b; xab) = (b; x)(b; a) 2


y2
�
x, we have [b; hxyi+xab] = hxyi+(1+(b; xab))xab2 =

hxyi+(1+x)xab2 = (G0)+xab2 6= 0. Therefore FG is not centre-by-metabelian, and case 4

is �nished.

By the cases 1-4, we may assume that (a;C) < G0, (b; C) < G0, and (a; b) 2 �(G0). Then

G0 = (a;C)(b; C), and consequently (a;C) �= Z4 or (b; C) �= Z4. W.l.o.g. (a;C) �= Z4, i.e.

(a;C) = hyi (case 5 below) or (a;C) = hxyi (case 6).

Case 5: (a;C) = hyi. Then (a; :) : C ! hyi is an epimorphism, and U := (a; :)�1(


y2
�
) <

C. The map (b; :) : C ! G0 is a homomorphism with image (b; C) * hyi, so V :=

(b; :)�1(hyi) < C. Hence there is an element c 2 C r (U [ V ) 6= ;. Then (a; c) 2 fy; y�1g

and (b; c) 2 x hyi. By replacing c by c�1 if necessary, we may even assume that (a; c) = y.

If (b; c) has order 4, then (ba; c) = b(a; c)(b; c) = y�1(b; c) 2 (b; c) hyi = x hyi has order 2.

If we choose ~b 2 fb; bag such that (~b; c) has order 2, and if we set z := (~b; c) = (c;~b), then

z 2 x


y2
�
and (1+ z)~bc = (1+ z)c~b. Note that

~by = y�1 and (a;~b) = (a; b) 2


y2
�
for any

choice of ~b. Then

(FG)00 3 [c+ ac;~b+ c~b] = [(1 + y)c; (1 + z)~b] = (1 + z)[(1 + y)c;~b]

= (1 + z)
�
(1 + y)c~b+ (1 + y�1)~bc

�
=(1 + z)

�
1 + y + 1 + y�1

�
c~b

=(1 + z)(1 + y2)yc~b =


z; y2

�+
yc~b =



x; y2

�+
yc~b:

Now


x; y2

�+
is central in FG, since



x; y2

�
E G. Moreover (a; yc~b) = (a; c)(a; b) 2 y



y2
�
.

Hence [a;


x; y2

�+
yc~b] =



x; y2

�+
[a; yc~b] =



x; y2

�+
(1 + (a; yc~b))yc~ba = (G0)+yc~ba 6= 0.

Therefore FG is not centre-by-metabelian in this case.

Case 6: (a;C) = hxyi. Similarly as in case 5, we obtain an element c 2 C such that

(a; c) = xy and z := (b; c) =2 hxyi. Then

(FG)00 3 [ca+ a(ca); a+ ca] = [(1 + xy)ca; (1 + xy�1)a]

= (1 + xy)(1 + xy)caa+ (1 + xy�1)(1 + xy�1)aca

=(1 + y2)(ca+ ac)a = (1 + y2)(1 + xy)ca2

= hxyi+ca2:

Now (b; ca2) = (b; c)(b; a2) = (b; c)(b; a)2 = (b; c) = z, and so [b; hxyi+ca2] = hxyi+(1 +

(b; ca2))ca2b = hxyi+(1 + z)ca2b = (G0)+ca2b 6= 0. So FG is also not centre-by-metabelian

in this last case.
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6.11. Lemma: Let the notation be as in 6.5, and assume that the image of ' is


�2
�
. If

C 0 * �(G0), then FG is not centre-by-metabelian.

Proof: We may choose an element a 2 G with ah = �2(h) = h�1 for all h 2 G0. Then

G=C = haCi �= Z2 and C
0 � Z(G) \G0 =



x; y2

�
�= Z2 � Z2.

Since C 0 * �(G0) =


y2
�
, there are elements c; ~c 2 C such that jh(c; ~c)ij =2



y2
�
. For the

homomorphism (c; :) : C !


x; y2

�
this implies that U := (c; :)�1(



y2
�
) < C.

Now G0 = (a;C)C 0 implies that (a;C) *


x; y2

�
. Since the map (a; :) : C ! G0 is a

homomorphism, this shows that V := (a; :)�1(


x; y2

�
) < C.

Therefore we may choose an element d 2 C r (U [ V ) 6= ;. Then (c; d) 2 x


y2
�
, and

(a; d) 2 y


x; y2

�
; w.l.o.g. (c; d) = x, (a; d) = y (rename x and y if necessary). We compute

(FG)00 3 [d+ cd; a+ da] = [(1 + x)d; (1 + y�1)a]

= (1 + x)(1 + y�1)(da + ad)

= (1 + x)(1 + y�1)(1 + y�1)ad

=(1 + x)(1 + y2)ad =


x; y2

�+
ad;

and [d;


x; y2

�+
ad] =



x; y2

�+
[d; a]d =



x; y2

�+
(1 + y)dad = (G0)+dad 6= 0. This shows

that FG is not centre-by-metabelian.

6.12. Theorem (summary): Let G be a group with jG0j = 8. Then FG is centre-by-

metabelian if and only if one of the following holds:

(i) G0 �= Z2 � Z2 � Z2, and G acts trivially on G0,

(ii) G0 �= Z2 � Z4, CG(G
0)0 � �(G0), and G acts dihedrally on G0,

(iii) G contains an abelian subgroup of index 2.

Remark: Recall that in case (iii), G acts dihedrally on G0, and CG(G
0) is the mentioned

abelian subgroup of index 2 (unless cl(G) � 2, cf. 2.10).



7. Commutator subgroups of order 16

7.1. Remark: Let us assume that G is a counterexample to our main theorem 4 such

that jG0j = 16. Then FG is centre-by-metabelian. By section 5, G0 is isomorphic to Z4�Z4
or Z2 � Z8 or Z2 � Z2 � Z4.

Suppose �rst that G0 �= Z4�Z4. Then by 5.4, we only have to study one particular action

of G on G0; this turns out to be the dihedral action; i.e. jG : Cj = 2 for C := CG(G
0), and

ah = h�1 for all a 2 Gr C, h 2 G0. Fix an element a 2 Gr C. Then G0 = (a;C) by 1.6,

since C 0 � G0 \ Z(G) = �(G0). Consequently (a; :) : C ! G0 is an epimorphism.

If C is abelian, then G is not a counterexample since jG : Cj = 2. Therefore Z(C) < C.

Since also U := (a; :)�1(�(G0)) < C, we may choose an element c 2 C r (U [ Z(C)) 6= ;.

We set x := (a; c) =2 �(G0). Then V := (a; :)�1(hx;�(G0)i) < C and W := CC(c) < C.

Choose an element d 2 C r (V [W ) 6= ;.

If we set y := (a; d), then G0 = hx; yi, and (c; d) 2


x2; y2

�
r f1g. Then

(FG)00 3 [d+ ad; ca+ a(ca)] = [(1 + y)d; (1 + x)ca]

= (1 + x)
�
(1 + y)dca+ (1 + y�1)(ca; d)dca

�
=(1 + x)

�
(1 + y) + (1 + y�1)(c; d)y

�
dca

=(1 + x)(1 + y)(1 + (c; d))dca =: �:

If (c; d) = x2, then � = dc(1 + y)hxi+a, and hence

[y; � ] = dc(1 + y)hxi+[y; a] = dc(1 + y)hxi+(1 + y2)ya = dc(G0)
+
a 6= 0;

contradiction.

Consequently ~y2 := (c; d) 2 fy2; x2y2g. Then � = dc(1 + x)(1 + y)(1 + ~y2)a, and

[x; � ] = dc(1+x)(1+ y)(1+ ~y2)[x; a] = dc(1+x)(1+ y)(1+ ~y2)(1+x2)xa = dc(G0)
+
a 6= 0;

contradiction.

Therefore G0 � Z4 � Z4.

7.2. Remark: Let us again start with a counterexample G to our main theorem, and

suppose that G0 = hx; yi �= Z2�Z8, where x
8 = 1 = y2. Then FG is centre-by-metabelian,

and all subgroups of index 2 in G are nonabelian.

Set C := CG(G
0), and map G=C to Aut(G0) �= Z2 �D8 in the usual way. The reductions

of the algorithm described in 5.4 give the following subgroup lattice of possible images of

41
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G=C in Aut(G0):

h�; �; i

kkk
kkk

kkk
kkk

kk

RRR
RRR

RRR
RRR

R

h��; �i � h��; i

SSS
SSS

SSS
SSS

SS
h�; ��i h�; i � h�; �i

lll
lll

lll
lll

l

h�i � h��i

Here h�; �; i �= Z2 � Z2 � Z2, where

� : G0 ! G0; x 7! x3; y 7! y;

� : G0 ! G0; x 7! x5; y 7! y;

 : G0 ! G0; x 7! x; y 7! yx4:

Note that (�;G0) = (h�; �; i ; G0) =


x2
�
= �(G0). So in any case we have (G;G0) =

�(G0), i.e.G=�(G0) has class 2. Then by 3.1 (ii), hg; hi0�(G0)=�(G0) = h(g; h)i�(G0)=�(G0)

for all g; h 2 G. Hence hg; hi0 � h(g; h)i�(G0); in particular:

8g; h 2 G : jh(g; h)ij = 8 =) hg; hi0 = h(g; h)i :(�)

Assumption: jG : Cj � 4.

Let a; b 2 G such that jh(a; b)ij = 8. By renaming x and y if necessary, we may assume

that (a; b) = x (note however that this \�xes" the image of G=C in Aut(G0) in the sense

that we may not replace '(G=C) by a conjugate subgroup as described in 5.1).

Set H := ha; bi, then H 0 = hxi by (�). Now 6.12 implies that H acts dihedrally on H 0.

In particular, jH : CH(x)j = 2; w.l.o.g. H=CH(x) = haCH(x)i. Then bx = x or bx = ax.

In the latter case, ba 2 CH(x). Since (a; b) = (a; ba), we may replace b by ba, and thus

assume that b 2 CH(x).

Now jG : Cj � 4 implies that there is an element g 2 G such that 4 = jhaC; gCij. If

bC 2 haCi, then haC; gCi = haC; gbCi, and either (a; g) or (a; bg) = (a; b) b(a; g) = x(a; g)

has order 8, w.l.o.g. jh(a; g)ij = 8. So after replacing b by g if necessary and working

through the preceding paragraphs again, we may assume that jhaC; bCij = 4, (a; b) = x,
ax = x�1, and bx = x. Hence '(aC) 2 f��; ��g, and '(bC) = .

Set K := ha; b; yi. Note that (G; y) =


x4
�
, so K 0 = H 0 = hxi. By 6.12, CK(x) must be

abelian. But b; y 2 CK(x), and (b; y) = (; y) = x4 6= 1, contradiction.

This shows that jG : Cj = 2.

Then G=C is mapped onto h�i or h��i. Now CG0(�) = CG0(��) =


yx2

�
, i.e. C 0 �

Z(G)\G0 =


yx2

�
�= Z4. If C

0 = 1, then C is an abelian subgroup of index 2 in G, and G

is not a counterexample. If jC 0j = 2, then FG is not centre-by-metabelian by lemma 5.3,

so G is also not a counterexample. Hence C 0 =


yx2

�
.

Set N :=


x4
�
= �(�(G0)) E G, and �H := HN=N for all H � G, and �g := gN for all g 2

G. Then �G0 �= Z2�Z4, and


�x�y2

�
= �C 0 � C �G(

�G0)
0
; in particular, C �G(

�G0)
0 * �( �G0) =



�x2
�
.

By 6.12, F �G is not centre-by-metabelian, contradiction.
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This shows that G0 � Z2 � Z8.

7.3. Remark: Let G be a group with G0 = hx; y; zi �= Z2 � Z2 � Z4, where x
2 = y2 =

z4 = 1.

As usual, set C := CG(G
0) and map G=C to Aut(G0). By 5.4, G may only be a counterex-

ample to the main theorem, if the image of G=C is (conjugate to) one of the following

elementary abelian groups:

h�i ; h�; i ; h�; �; i ; where

� : G0 ! G0; x 7! x; y 7! y; z 7! z3;

� : G0 ! G0; x 7! xz2; y 7! y; z 7! z;

 : G0 ! G0; x 7! x; y 7! yz2; z 7! z:

(In fact, h�i and h�; �; i are normal in Aut(G0), while h�; i is not.)

We will study those cases in 3 separate lemmata.

7.4. Lemma: Given the notation of 7.3, suppose that jG : Cj = 2, and that FG is centre-

by-metabelian. Then G contains an abelian subgroup of index 2.

Proof: By 7.3, G=C is mapped onto h�i.

By 1.3, C 0 � Z(G) \ G0 =


x; y; z2

�
. Set N := hxi E G. Then G0=N �= Z2 � Z4. Since

F[G=N ] is centre-by-metabelian, 6.12 implies that C 0=N � CG=N (G
0=N)0 � �(G0=N) =


z2N
�
. Therefore C 0 �



x; z2

�
. Similarly C 0 �



y; z2

�
, so together we have C 0 �



x; z2

�
\


y; z2
�
=


z2
�
�= Z2.

Now lemma 5.3 implies that jC 0j 6= 2. Hence C 0 = 1, and C is abelian.

7.5. Lemma: Given the notation of 7.3, suppose that jG : Cj = 4. Then FG is not

centre-by-metabelian.

Proof: By 7.3 and 5.1, we may assume that G=C is mapped onto h�; i. Then C 0 �

Z(G) \ G0 = hzi. We write G=C = haC; bCi where ah = (a), bh = �(h) for all h 2 G0.

Then

ax = x ay = yz2 az = z;

bx = xz2 by = y bz = z:

Set H := hb; Ci. Then H 0 = (b; C)C 0 and C � CH(H
0).

Case 1: H 0 = G0. Then H does not act dihedrally on H 0, hence C cannot be abelian by

remark 1.7, so by lemma 7.4, FH is not centre-by-metabelian.

Case 2: H 0 �= Z2�Z2�Z2. Then H
0 =



x; y; z2

�
, hence b 2 HrCH(H 0), and so cl(H) > 2.

By 6.12, FH is not centre-by-metabelian.

Case 3: H 0 �= Z2 � Z4.

If H does not act dihedrally on H 0, or if C 0 * �(H 0), then FH is not centre-by-metabelian

by 6.12.
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So we may assume that bh = h�1 for all h 2 H 0, and that C 0 �


z2
�
. It is easy to check

that fh 2 G0 : bh = h�1g = hy; xzi. Therefore hy; xzi = H 0 = (b; C)C 0 = (b; C), i.e.

(b; :) : C ! H 0 is an epimorphism.

Now if (a; b) =2 H 0, then (a; b) 2 xH 0. Note that (ca; b) = (c; b)(a; b) for all c 2 C, so by

replacing a by a suitable element of Ca if necessary, we may assume that (a; b) = x = (b; a).

Let c 2 C such that (b; c) = y = (c; b). Then

(FG)00 3 [a+ ba; b+ cb] = [(1 + x)a; (1 + y)b]

= (1 + x)(1 + yz2)ab+ (1 + y)(1 + xz2)ba

=(1 + x)(1 + yz2)xba+ (1 + y)(1 + xz2)ba

=
�
x+ yz2 + y + xz2

�
ba

=(x+ y)(1 + z2)ba = x


xy; z2

�+
ba;

and [a; x


xy; z2

�+
ba] = x



xy; z2

�+
[a; b]a = x



xy; z2

�+
(1 + x)ba2 =



x; y; z2

�+
ba2 6= 0, i.e.

FH is not centre-by-metabelian.

Hence we may assume that (a; b) 2 H 0 = (b; C). As above, we may replace a by a suitable

element of Ca and assume that (a; b) = 1.

Then G0 = h(a; b)i (a;C)(b; C)C 0 = (a;C)H 0. Since G0 * H 0, we have (a;C) * H 0. Then

(a; :) : C ! G0 is a homomorphism with U := (a; :)�1(H 0) < C. Similarly, (b; :) : C ! H 0

is an epimorphism, i.e. V := (b; :)�1(


y; z2

�
) < C. Let c 2 Cr(U[V ) 6= ;, then (b; c) 2 H 0

has order 4, and (a; c) =2 H 0.

Then z2 2 h(a; c); (b; c)i �= Z2�Z4. Since G=


z2
�
has class 2, also ha; b; ci =



z2
�
has class 2.

By 3.1 (ii), ha; b; ci0 =


z2
�
= h(a; b); (a; c); (b; c)i =



z2
�
= h(a; c); (b; c)i =



z2
�
. Therefore

ha; b; ci0 = h(a; c); (b; c)i, in particular ha; b; ci0 �= Z2�Z4. Now b does neither act trivially

on ha; b; ci0, since b(b; c) = (b; c)�1, nor dihedrally, since (a; c) =2 H 0 = fh 2 G0 : bh = h�1g.

By 6.12, F ha; b; ci is not centre-by-metabelian.

By the cases 1-3, we may assume that jH 0j � 4. Furthermore z2 = (b; x) 2 (b; C) �

(b; C)C 0 = H 0.

For K := ha;Ci, we argue similarly as in the cases above to show that jK 0j � 8 implies

that FG is not centre-by-metabelian. So we may assume that jK 0j � 4. Note that

z2 = (a; y) 2 (a;C)C 0 = K 0.

Then jH 0K 0j � 8. Now G0 = h(a; b)i (a;C)(b; C)C 0 = h(a; b)iH 0K 0. For order reasons,

Z2 � Z2 � Z2 �= G0=


z2
�
=


(a; b); z2

�
=


z2
�
�H 0=



z2
�
�K 0=



z2
�
;

In particular, C 0 � H 0 \K 0 =


z2
�
. Then H 0 = (b; C), K 0 = (a;C), and jK 0j = jH 0j = 4.

Suppose that (b; C) �= Z4. As usual, we �nd an element c 2 C such that w := (b; c)

has order 4, and (a; c) =2 hwi. Note that 1 = (b�1b; c) = b�1(b; c)(b�1; c) = bw(b�1; c).

Hence (b�1; c) 2 fw�1; bw�1g � fw�1g. Since (b�1; c�1) = (b�1; c)�1, there is an element
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d 2 fc; c�1g such that (b�1; d) = w. Then also (cb�1; d) = w, and thus

(FG)00 3 [b+ c�1b; cb�1 + d�1(cb�1)] = [(1 + w)b; (1 + w)cb�1]

= (1 + w)(1 + bw)bcb�1 + (1 + w)(1 + bw)c

= (1 + w)(1 + bw)(c+ bc)

= (1 + w)(1 + bw)(1 + w)c

= (1 + w2)(1 + w�1) = hwi+c;

and [a; hwi+c] = hwi+(1 + (a; c))ca 6= 0, so FG is not centre-by-metabelian.

Hence we may assume that H 0 = (b; C) �= Z2 � Z2, and similarly K 0 = (a;C) �= Z2 � Z2.

Then (a; b) =2


x; y; z2

�
= H 0K 0. As usual, we �nd elements c; d 2 C such that (b; d) = z2,

and t := (b; c) 2 H 0r


z2
�
, and s := (a; c) 2 K 0r



z2
�
. Then



s; t; z2

�
= H 0K 0 =



x; y; z2

�
.

Note that b commutes with s modulo


z2
�
� Z(G), so

(FG)00 3 [b+ db; c+ ac] = [(1 + z2)b; (1 + s)c] = (1 + z2)(1 + s)[b; c]

= (1 + z2)(1 + s)(1 + t)cb =


z2; s; t

�+
cb =



x; y; z2

�+
cb:

Since a and c commute modulo


x; y; z2

�
, we furthermore have

[a;


x; y; z2

�+
cb] =



x; y; z2

�+
[a; cb] = c



x; y; z2

�+
[a; b]

= c


x; y; z2

�+
(1 + (a; b))ba = c(G0)

+
ba 6= 0:

Hence FG is not centre-by-metabelian.

7.6. Lemma: Given the notation of 7.3, suppose that jG : Cj = 8. Then FG is not

centre-by-metabelian.

Proof: By 7.3, G=C is mapped onto h�; �; i = h�; ; ��i.

Choose elements g; h; k 2 G such that gv = �(v), hv = (v), kv = ��(v) for all v 2 G0.

Then

gx = xz2; gy = y; gz = z;

hx = x; hy = yz2; hz = z;

kx = xz2; ky = yz2; kz = z3:

It is easy to check that

CG0(g) = hy; zi ; fv 2 G0 : gv = v�1g = hy; xzi ;(�)

CG0(h) = hx; zi ; fv 2 G0 : hv = v�1g = hx; yzi ;

CG0(k) = hxy; xzi ; fv 2 G0 : kv = v�1g = hxy; zi :

Set H := hg; h; Ci. Then H 0 = h(g; h)i (g; C)(h;C)C 0 by 1.6. If H 0 = G0 then FH
is not centre-by-metabelian by lemma 7.5. Hence we may assume that jH 0j � 8. If

H 0 �= Z2 � Z2 � Z2, then H 0 =


x; y; z2

�
. Since H does not act trivially on



x; y; z2

�
,

the results of section 4 implies that FH is not centre-by-metabelian. Suppose next that

H 0 �= Z2 � Z4. If FH was centre-by-metabelian, then by 6.12, hg; hi would act dihedrally

on H 0, which is not possible by (�). Hence we may assume that jH 0j � 4.
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If we set K := hg; k; Ci and L := hh; k; Ci, we similarly may assume that

K 0 = h(g; k)i (g; C)(k;C)C 0 and
��K 0

�� � 4;

L0 = h(h; k)i (h;C)(k;C)C 0 and
��L0�� � 4:

Note that z2 2 (g;G0)\(h;G0)\(k;G0) � (g; C)\(h;C)\(k;C) � H 0\L0\K 0. Moreover,

since G0 = h(g; h); (g; k); (h; k)i (g; C)(h;C)(k;C)C 0 by 1.6, we have G0 = H 0K 0L0. For

order reasons,

Z2 � Z2 � Z2 �= G0=


z2
�
= H 0=



z2
�
�K 0=



z2
�
� L0=



z2
�
:

In particular,

(g; C)C 0 � H 0 \K 0 =


z2
�
= �(G0);

(h;C)C 0 � H 0 \ L0 =


z2
�
;

(k;C)C 0 � K 0 \ L0 =


z2
�
:

Therefore G0 = h(g; h); (g; k); (h; k)i. Choose r; s 2 fg; h; kg such that w := (r; s) has

order 4, and let t 2 fg; h; kg r fr; sg. Then w2 = z2, and

G0 = h(r; s); (r; t); (s; t)i ; (r; s) = w with jhwij = 4:(��)

Note that (r; w); (s; w) 2 (G;G0) =


w2
�
.

Assume �rst that (r; w) = 1 = (s; w), then

(FG)00 3 [r + sr; s+ rs] = [(1 + w3)r; (1 + w)s]

= (1 + w3)(1 + w)[r; s] = (1 + w3)(1 + w)(1 + w)sr

= hwi+sr:

Now hwi E G, i.e. hwi+ 2 Z(FG). Moreover (sr; t) =2 hwi. Hence

[t; hwi+sr] = hwi+[t; sr] = hwi+(1 + (t; sr))srt 6= 0:

Therefore FG is not centre-by-metabelian in this case.

So we may w.l.o.g. assume that (r; w) = w2 = z2. By possibly replacing s by sr, we

even may assume that (s; w) = w2 (since (r; sr) = (r; s) and (sr; t) = s(r; t)(s; t) 2

w2; (r; t)

�
(s; t) � h(r; s); (r; t)i (s; t), this does not change (��)). Then

(FG)00 3 [r + sr; s+ rs] = [(1 + w3)r; (1 + w)s]

= (1 + w3)(1 + w3)rs+ (1 + w)(1 + w)sr = (1 + w2)(rs+ sr)

= (1 + w2)(1 + w)sr = hwi+sr:

As before, [t; hwi+sr] = hwi+(1+(t; sr))srt 6= 0: Hence FG is also not centre-by-metabelian

in this case.

7.7. Theorem (summary): Let G be a group with jG0j = 16. Then FG is centre-by-

metabelian if and only if G has an abelian subgroup of index 2.



8. Finish

8.1. Lemma: Let FG be a centre-by-metabelian group algebra. If G0 is a �nite 2-group

of order at least 16, then G has an abelian subgroup of index 2.

Proof: We argue by induction on jG0j. By the results of section 7, we may assume that

jG0j � 32. Set C := CG(G
0). Note that G=C is �nite, since G0 is �nite.

It su�ces to show that G0 \ Z(G) 6= 1, because then we may proceed as follows: Choose

an involution z 2 G0\Z(G), and set N := hzi. Then N E G, and j(G=N)0j = jG0j =2 � 16.

By induction, G=N has an abelian subgroup A=N of index 2, i.e. jG : Aj = 2 and jA0j � 2.

Now 5.3 implies jA0j 6= 2, and we are done.

If �(G0) = 1, then G0 is elementary abelian, i.e. 1 6= G0 � Z(G) by the summary of

section 4. Hence we may assume that �(G0) 6= 1.

IfG=C is a 2-group, thenG0oG=C is also a (�nite) 2-group, and (G0o1)\Z(G0oG=C) 6= 1,

i.e. G0 \Z(G) 6= 1.

So suppose that G=C is not a 2-group. Then by 5.2, G=C has a Hall 20-subgroup which

centralizes �(G0). Therefore G=CG(�(G
0)) is a �nite 2-group, and similarly as above, we

�nd that 1 6= �(G0) \ Z(G) � G0 \ Z(G).

8.2. Remark: The preceding lemma shows that if G is a counterexample to the main

theorem 4, then G0 is not a �nite 2-group. Then, by theorem 1, G contains a subgroup A

of index 2 such that A0 is a �nite 2-group. We set

A(G) :=
�
A � G : jG : Aj = 2 and A0 is a �nite 2-group

	
6= ;;

a(G) := min
���A0

�� : A 2 A(G)
	
2 N;

and we have to show that if FG is centre-by-metabelian, then a(G) = 1.

But before we do so in 8.4, let us quickly insert another lemma:

8.3. Lemma: Let G be a group with a normal subgroup U that is isomorphic to V4. Set

C := CG(U), and let ' : G=C ! Aut(U) �= S3 be the usual monomorphism. If ' is

surjective, then FG is not centre-by-metabelian.

Proof: We write hx; yi = U �= V4. If ' is surjective, then there are elements g; h 2 G with
gx = y, gy = x, hx = y, hy = xy. Set a := (g; h), then ax = y and ay = xy; in particular,

a 2 Gr U . Then

� := [x+ ax; h+ gh] = [x+ y; h+ (g; h)h] = (x+ y)(h+ ah) + (h+ ah)(x + y)

= (x+ y)h+ (x+ y)ah+ (y + xy)h+ (xy + x)ah = (x+ ya+ xy + xya)h;

and

[x; �] = [x; (x+ xy)h] + [x; (y + xy)ah] = (x+ xy)[x; h] + (y + xy)[x; ah] =

= (x+ xy)(1 + (h; x))xh + (y + xy)(1 + (ah; x))xah =

= ((x+ xy)(1 + xy)x+ (y + xy)(1 + y)xa) h =
�
U+ + U+a

�
h 6= 0:
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8.4. Lemma: Let G be a group. Suppose that G0 is not a �nite 2-group, and that a(G) �

2. Then FG is not centre-by-metabelian.

Proof: We argue by induction on a(G), which clearly is a power of 2. If a(G) = 2, then

FG is not centre-by-metabelian by 5.3.

So we may assume that a(G) � 4. Let A 2 A(G) such that jA0j = a(G).

Assume there is a normal subgroup N of G with 1 < N < A0. Then also (G=N)0 = G0=N is

not a �nite 2-group. Let B=N 2 A(G=N) with j(B=N)0j = a(G=N). Since then B 2 A(G)

and A=N 2 A(G=N), we have a(G)= jN j � jB0N j = jN j = j(B=N)0j = a(G=N) � jA0 : N j =

a(G)= jN j; in particular 1 < a(G=N) < a(G). By induction, F[G=N ] is not centre-by-

metabelian, and we are done.

So we may assume that A0 is a minimal normal (2-)subgroup of G. Then �(A0) = 1, so

A0 is elementary abelian.

Assume cl(A) = 2; i.e. A � CG(A
0). In this case, A0 may be regarded as an F2[G=A]-

module. Let N be a simple submodule of A0. Then N �= Z2, since G=A �= Z2. But then

N E G and N < A0 in contradiction to the minimality of A0.

Consequently cl(A) � 3. If jA0j � 8, then FA is not centre-by-metabelian by the summary

of section 4. Therefore we may assume that jA0j � 4, in fact jA0j = 4, i.e. A0 �= V4.

The action of G on A0 gives a monomorphism ' : G=CG(A0)! Aut(A0) �= S3. By 8.3, we

may assume that ' is not surjective. If jG : CG(A
0)j = 2, we again �nd a (trivial) simple

submodule N of the F2[G=CG(A0)]-module A0 in contradiction to the minimality of A0.

Therefore jG : CG(A
0)j = 3. Then G0 � A \ CG(A

0) =: B, and G=B �= Z6.

G

Z6

3
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We write G = hg;Bi. Then g6 2 B, g3 2 CG(A
0), g2 2 A. We also may write A0 = hx; yi

with gx = y and gy = xy. Then

(FG)00 3 [g + xg; x + gx] = [(1 + xy)g; x+ y] = (1 + xy)(x+ y + y + xy)g = (A0)
+
g:

Clearly G = hg;Ai, so by 1.6, G0 = (g;A)A0. Since G0 > A0, there is an element a 2 A

with (g; a) =2 A0. But then

[FG; (FG)00] 3 [a; (A0)
+
g] = (A0)

+
[a; g] = (A0)

+
(1 + (g; a))ag 6= 0:



9. Applications to the unit group

Let F be a �eld of (at �rst arbitrary) characteristic p � 0.

9.1. Remark: (i) It is well-known that the functor F[ : ] from the category of groups to

the category of F-algebras, that assigns to each group G the group algebra F[G], is a
left adjoint of the functor U in the converse direction, which assigns to each F-algebra
A its unit group U(A). So far we have focused on the one direction; in this section we

will apply our results to the other: Namely we will show that a centre-by-metabelian

group algebra in characteristic p = 2 need not have a centre-by-metabelian unit

group; even worse: it may not be solvable at all. This is contrary to the case p 6= 2.

(ii) Several commutator properties of the unit group U(A) do go along with the commu-

tator properties of an algebra A. E.g., if A is Lie nilpotent, then U(A) is nilpotent,

where the class of U(A) is bounded by the class of A [4]. Or, if A is metabelian, then

so is U(A) [23]. And if p 6= 2, then every Lie solvable group algebra has a solvable

unit group [19, V.6.17].

(iii) More exactly, it is shown in [23] that for any algebra A, we have �n(U(A)) � 1 �

�n(A) �A = A � �n(A) for n = 0; 1; 2.

(iv) The question, whether U(A) is necessarily centre-by-metabelian, if only A is centre-

by-metabelian, was raised in [23]. As already mentioned, this is true if A is a centre-

by-metabelian group algebra in the case p 6= 2. This is clear for p =2 f2; 3g, since

by [23] (theorem 3 (i)), all centre-by-metabelian group algebras are in fact abelian.

The result for p = 3 is shown in [7]. (It is not known whether the same is true for

other F-algebras than group algebras.)

(v) An example of a centre-by-metabelian algebra A in characteristic p = 2 with unit

group U(A) that is not centre-by-metabelian is given in [24]. There, A is a factor

algebra of some power series algebra.

From now on, let p = 2 again, and let us examine what happens if A is a group algebra:

9.2. Lemma: Let G be a group that satis�es either condition (i) or (ii) of theorem 4.

Then U(FG) is centre-by-metabelian.

Remark: Recall that satisfying condition (i) means that jG0j
�� 4, and condition (ii)

requires that Z2 � Z2 � Z2 �= G0 � Z(G).

Proof: By the lemmata 2.2{2.4, we have (FG)00 � FG � (G0)+ � FG � Z(FG). By 9.1 (iii),

U(FG)00 � 1 � (FG)00 � FG. Hence U(FG)00 � U(FG) \ Z(FG) � Z(U(FG)).

9.3. Example: Now we will construct a group G that satis�es the conditions (iii) and (iv)

of theorem 4, but U(FG) is not centre-by-metabelian. Recall that a group G satis�es both

of these conditions, if and only if it acts dihedrally on G0 �= Z2�Z4, and CG(G
0) is abelian.

Let C := hc; d; xi �= Z8 � V4, where c
8 = d2 = x2 = 1. Then a : C ! C, c 7! c3,

d 7! dx, x 7! x, de�nes an automorphism of order 2 with (a; c) = c2 =: y, (a; d) = x,

(a; x) = 1, and (a; y) = (a; c2) = c4 = y2. So G := C o hai is a group of order 64
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with G0 = hx; yi �= Z2 � Z4. Moreover, CG(G
0) = C is abelian, and ax = x = x�1 and

ay = y3 = y�1, i.e. G acts in a dihedral manner on G0.

By theorem 4, FG is centre-by-metabelian. We will show that U := U(FG) is not. The

following statements may be checked by direct expansion:

(1 + a+ c)�1 = 1 + y2 + y3 + c+ y2a+ y3a+ ya+ y3ca+ y2ca;

(1 + a+ c; d) = 1 + y + y2 + y3 + xy + xy2 + xy3 + y2c+ y3c+ xy2c+ xy3c

+ a+ ya+ y2a+ xa+ xya+ xy2a+ yca+ xyca

= (1 + a+ c; d)�1;

((1 + a+ c; d); (a; c)) = 1 + ya+ y3a+ xya+ xy3a+ yca+ y3ca+ xyca+ xy3ca

= ((1 + a+ c; d); (a; c))�1;

(a; (1 + a+ c; d); (a; c)) = 1 + (G0)
+
ca 6= 1:

This shows that (U;U 00) 6= 1, hence U is not centre-by-metabelian.

However, U still has derived length 3, as the following lemma shows.

9.4. Lemma: Let G be a group that satis�es condition (iii) of theorem 4, and let U :=

U(FG). Then U 0 is nilpotent of class at most 2. In particular, U is solvable of derived

length at most 3.

Proof: Note that we are in the situation of lemma 2.5. So let us adopt the notation used

in its proof, and let us restate some of the facts we have established there: !(FG0)5 = 0,

!(FG0)4 FG � Z(FG), and (FG)00 � !(FG0)4 FG + X FG, where X := f�h + a�: � 2

!(FG0)2, h 2 G0g. Recall that G0 = hx; yi, C := CG(G
0), and G=C = haCi.

We have to show that (U 0; U 00) = 1, or equivalently, [U 0; U 00] = 0. By 9.1 (iii), we have

U 0 + 1 � (FG)0 FG � !(FG0)FG, and U 00 + 1 � (FG)00 FG. So it su�ces to show that

[!(FG0)FG; X FG] = 0.

By [16, lemma 3.1.1], !(FG0)FG = f1 + x; 1 + ygFG, and !(FG0)2 FG = f(1 + x)(1 +

y); 1 + y2gFG. We are going to check that

[�f; (�h+ a�)g] = 0

for all f; g 2 G, h 2 G0, � 2 f1 + x; 1 + yg, � 2 f(1 + x)(1 + y); 1 + y2g.

First, since x 2 Z(G) and x2 = 1, we have [(1+x)f; ((1+x)(1+y)h+(1+x)(1+y3))g] =

(1 + x)(1 + x)[f; (1 + y)hg + (1 + y3)g] = 0:

Recall that h commutes with f modulo


y2
�
, hence

[(1 + x)f; ((1 + y2)h+ (1 + y2))g] = (1 + x)(1 + y2)[f; (h+ 1)g]

= (1 + x)(1 + y)2(h+ 1)[f; g] 2 !(FG0)4 (FG)0 FG � !(FG0)5 FG = 0:

Observe next that for y1, y2 2 hyi, we have (1 + y1)(1 + y2) 2 f0; (1 + y2); (1 + y2)yg. So

there are i, j 2 f0; 1g with (1 + y)(1 + fy) = (1 + y2)yi, and (1 + y)(1 + gy) = (1 + y2)yj .
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Recall also that (1 + y2)y3 = (1 + y2)y and (1 + y2) fh = (1 + y2)h. Then

[(1 + y)f; ((1 + x)(1 + y)h+ (1 + x)(1 + y3))g] = (1 + x)[(1 + y)f; (1 + y)hg + (1 + y3)g]

= (1 + x)
�
(1 + y)(1 + fy) fhfg + (1 + y)(1 + fy3)fg

+ (1 + y)(1 + gy)hgf + (1 + y3)(1 + gy)gf
�

= (1 + x)
�
(1 + y2)yi fhfg + (1 + y)(1 + fy) fy3fg

+ (1 + y2)yjhgf + y3(1 + y)(1 + gy)gf
�

= (1 + x)
�
(1 + y2)yihfg + (1 + y2)yi fy3fg + (1 + y2)yjhgf + (1 + y2)yjy3gf

�
= (1 + x)(1 + y2)

�
yihfg + yiyfg + yjhgf + yjygf

�
= (1 + x)(1 + y2)

�
yi(h+ y)fg + yj(h+ y)gf

�
= (1 + x)(1 + y2)(h + y)(yifg + yjgf)

= (1 + x)(1 + y)2(h+ y)(yi(f; g) + yj)gf 2 !(FG0)5 FG = 0:

Finally,

[(1 + y)f; ((1 + y2)h+ (1 + y2))g] = (1 + y2)[(1 + y)f; (h+ 1)g]

= (1 + y2)(1 + y)(h+ 1)[f; g] 2 !(FG0)4 (FG)0 FG � !(FG0)5 FG = 0:

9.5. Example: Not all centre-by-metabelian group algebras have unit groups of bounded

derived length. In fact, they do not even have to be solvable at all. As an example, we

will study F2D10. (See also appendix B.)

Write D10 := ha; xi with a2 = 1 = x5, ax = x�1. Then hxi is an abelian subgroup

of index 2 in D10, so F2D10 is centre-by-metabelian by theorem 4. Let us examine the

structure of F2D10 more closely:

Consider F2hxi � F2D10 �rst. By Maschke [25, x108], F2hxi is semisimple, and thus,

according to Wedderburn [25, x102], decomposes into a direct sum of simple F2-algebras,
which are isomorphic to full matrix algebras over some F2-division algebras. But F2hxi is
commutative, so it is in fact isomorphic to a direct sum of �eld extensions of F2. Since x
has multiplicative order 5, at least one of these �elds contains F16. Checking dimensions,
we �nd that F2hxi �= F2�F16 as an F2-algebra. The adequate Wedderburn decomposition

of F2hxi is determined by the central, orthogonal idempotents e := hxi+ and f := 1 + e,

where eF2hxi = F2e �= F2, and fF2hxi �= F16.

Since hxi E D10, the idempotents e, f are also central in F2D10, so we obtain a decom-

position F2D10 = eF2D10 � fF2D10 into ideals. We are going to combine this with the

vector space decomposition F2D10 = F2hxi � F2hxi a.

Observe that as a vector space, eF2D10 = eF2hxi � eF2hxi a = F2e � F2ea = F2fe; eag.
Now fe; eag is a multiplicative group with neutral element e, hence eF2D10

�= F2Z2. It

follows that U(eF2D10) �= Z2. (To complete the picture, let us point out that J (eF2D10) =

F2(e+ea) = F2(D10)
+; we are going to see that this also is the Jacobson radical of F2D10.)

Let us �x an F2-algebra isomorphism fF2hxi ! F16, and thus identify fF2hxi with F16 (and
f with 1 = 1F16). Then, as a vector space, A := fF2D10 = fF2hxi�fF2hxi a = F16�F16a,
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i.e. A is an F16-vector space with basis f1; ag, plus a multiplicative structure, which we are
going to determine now: Conjugation by a leaves the subspace F16 � A invariant. This

de�nes a �eld automorphism � : F16 ! F16. The Galois group of F16 over F2 is cyclic of
order 4, with generator � : F16 ! F16, s 7! s2. Since �(fx) = af ax = fx4 = (fx)4, we

have �(s) = s4 for all s 2 F16. Then � = �2, and h�i = Gal(F16jF4). Hence F4 is the centre
of A. By [25, x94.3], A is (isomorphic to) the crossed product of F16 with Gal(F16jF4).
In particular, A is a central simple F4-algebra (ibid). By Wedderburn, A �= Mat(n;D) for

some n 2 N and an F4-division algebra D. But �nite division algebras are �elds, so D

is in fact commutative. Since A is not commutative, we obtain n � 2. Then 28 = jAj =

(4dimF4 D)n
2

implies that dimF4 D = 1 and n = 2, i.e. fF2D10 = A �= Mat(2;F4).

Summarizing, we obtain U(F2D10) = U(eF2D10 � fF2D10) �= U(eF2D10)� U(fF2D10) �=
Z2 �GL(2; 4). Since SL(2; 4) �= A5 is simple, U(F2D10) is not solvable.

9.6. Remark (summary): 9.2-9.5 imply theorem 5.
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APPENDIX A. Notation

An alternating group acting on f1; : : : ; ng

!(FG) augmentation ideal of FG
Aut(G) automorphism group of G

CG(A) centralizer of A in G

n(H) nth term of the lower central series of (the group or Lie algebra) H

cl(G) (nilpotence) class of G (if G is not nilpotent, set cl(G) :=1)

(x; y) group commutator of x and y in G, de�ned as xyx�1y�1

[x; y] Lie commutator of x and y in FG, de�ned as xy � yx

L0 commutator (Lie-)subalgebra of L

G0 commutator subgroup of G

D2n dihedral group of order 2n

�n(H) nth term of the derived series of (the group or Lie algebra) H

n
�� m n divides m

Fq �eld with q elements

�(G) Frattini subgroup of G

Gal(LjK) Galois group of the �eld extension L � K

GL(n; q) general linear group of degree n over Fq
idG identity map on G

Inn(G) group of inner automorphisms of G

J (A) Jacobson radical of A

Mat(n;A) matrix algebra of n� n-matrices with coe�cients in A

N set of positive integers (natural numbers)

N0 set of nonnegative integers


(G) subgroup of the p-group G generated by all elements of order p

p0 set of all primes excluding p

Q8 quaternion group of order 8

GoA semidirect product of A with G (A acts on G)

SL(n; q) special linear group of degree n over Fq
H+ sum (in FG) over all elements of H � G � FG
Sn symmetric group acting on f1; : : : ; ng

U(A) group of units of the algebra A

V4 Klein's Vierergruppe (isomorphic to Z2 � Z2)

Z set of integers

Zn cyclic group of order n

Z(H) centre of (the group or algebra) H
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APPENDIX B. The GAP extension package LAG

The following is an example session with the GAP extension package LAG { Lie Algebras

of Group Algebras, which may be downloaded from

http://www.mathematik.uni-jena.de/algebra/skripten/

We examine F2D10 and its unit group (cf. example 9.5):

gap> Read("lag.g");

Lag: Lie Algebras of Group Algebras

gap> F:=GF(2); G:=DihedralGroup(10);

GF(2)

Group( (1,2,3,4,5), (2,5)(3,4) )

gap> FG:=GroupAlgebra(F,G);

GroupAlgebra( GF(2), Group( (1,2,3,4,5), (2,5)(3,4) ) )

gap> a:=GroupAlgebraElement([(1,2,3,4,5), (2,5)(3,4)], [One(F), One(F)]);

(2,5)(3,4)+(1,2,3,4,5)

gap> b:=a+(2,5)(3,4)*(1,2,3,4,5);

(2,5)(3,4)+(1,2)(3,5)+(1,2,3,4,5)

gap> Lie(a,b);

(2,5)(3,4)+(1,2,3,4,5)+(1,3)(4,5)+(1,5,4,3,2)

gap> Lie(a,a);

Lag.Zero()

gap> IsCentreByMetabelian(FG);

true

gap> List(DerivedSeries(FG), Dimension);

[ 10, 6, 2, 0 ]

gap> IsSubset(Centre(FG), DerivedSeries(FG)[3]);

true

gap> U:=Units(FG);;

gap> List(DerivedSeries(U), Size);

[ 360, 60 ]

gap> IsSolvable(U);

false

gap> GroupId(DerivedSubgroup(U));

rec(

catalogue := [ 60, 13 ],

names := [ "A5", "PSL(2,4)", "PSL(2,5)" ],

size := 60 )

gap> quit;
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APPENDIX C. The GAP �le actions.g

The computer algebra system GAP [18] has the built-in command AutomorphismGroup(h)

to compute the automorphism group of some previously de�ned group h. Although this

works very nicely if h is not too big, the handling of the automorphism group itself

later on in the GAP session can become awkward. That is so because automorphisms

are represented by rather complex data structures in GAP. A possibility to size down

this complexity is to simply convert automorphisms to permutations. Fortunately GAP

already provides a command for this task, namely

gap> aut:=Operation(AutomorphismGroup(h), Elements(h));

The �le actions.g, which is available under

http://www.mathematik.uni-jena.de/algebra/skripten/,

provides some useful general routines in this situation. Additionally, the speci�c algorithm

described in section 5 is programmed in this �le. Since this algorithm is part of the proof

of theorem 4, and since the �le is not too long, a commented listing shall be included (see

end of this appendix).

To start our algorithm for all groups of order 8 or 16, one has to issue the following

commands:

gap> Read("actions.g");

gap> ls:=AllTwoGroups(Size, [8,16]);;

gap> actions:=List(ls, PossibleActions);;

gap> PrintArray(List([1..Length(ls)], i->[i,

> GroupNames(ls[i]),

> Length(actions[i])]

> ));;

# The first column gives the number of 'h' in the group catalogue, the

# second its names (if GAP has found any), and the third the number of

# "possible" ways that 'g' (respectively 'a') may act on 'h'.

[ [ 1, [ 8 ], 4 ],

[ 2, [ 2x4 ], 6 ],

[ 3, [ D8 ], 0 ],

[ 4, [ Q8 ], 0 ],

[ 5, [ 2x2x2 ], 0 ],

[ 6, [ 16 ], 0 ],

[ 7, [ 4x4 ], 1 ],

[ 8, , 0 ],

[ 9, [ (2x4).2 ], 0 ],

[ 10, [ 2x8 ], 5 ],

[ 11, , 0 ],

[ 12, [ D16 ], 0 ],
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[ 13, [ QD16 ], 0 ],

[ 14, [ Q16 ], 0 ],

[ 15, [ 2^2x4 ], 3 ],

[ 16, [ D8x2 ], 0 ],

[ 17, [ Q8x2 ], 0 ],

[ 18, [ D8Y4 ], 0 ],

[ 19, [ 2^4 ], 0 ] ]

The remaining 4+ 6+ 1+ 5+ 3 = 10 cases have then to be examined more closely. As an

example, we de�ne the second instance of h �= Z2 � Z4 (10th row, 5 possible actions, we

take the second):

gap> h:=ls[10]; # 10th group

2x8

gap> a:=actions[10][2]; # 2nd action on 10th group

Subgroup( Group( (5,6)(7,8)(13,14)(15,16), (5,6)(7,8)(9,10)(11,12),

(3,4)(7,8)(9,12)(10,11)(13,16)(14,15), (9,13)(10,14)(11,15)(12,16) ),

[ (9,10)(11,12)(13,14)(15,16), (3,4)(5,6)(9,11)(10,12)(13,16)(14,15) ] )

In order to study this action, we have to de�ne the global variable

gap> el:=Elements(h);;

The operation

gap> op:=function(x,perm)

> local i;

> i:=Position(el,x);

> return el[i^perm];

> end;

then returns for each x in h the image under the automorphism corresponding to the

permutation perm in a. We may use this operation to compute the images of the generators

of h under the action of the generators of a. The results of this examination may be found

in sections 6 and 7.

And here comes the source code of actions.g:

Beginning of the �le actions.g

GroupNames:=function(g)

local n;

# Returns a list of commonly used names of the group 'g', if GAP can

# find any, and the empty list otherwise.

n:=GroupId(g).names; # See description of GroupId for list of names.

if Length(n)=1 then # if 'g' has only one name,

g.name:=n[1]; # remember that name.

fi;

return n;

end;;
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Fixpoints:=function(a, d, op)

# 'a' is a group that acts on the domain 'd' via the operation 'op'.

# The function returns the fixpoints as a subset of 'd'.

return Union(Filtered(Orbits(a,d,op), o -> Length(o)=1));

end;;

Fixgroup:=function(a,h)

# 'a' is a permutation group that acts on the list Elements(h) like some

# group of automorphisms of the group 'h'. The function returns the

# centralizer of 'a' in 'h', which is not defined in standard GAP since

# 'a' and 'h' do not have a common parent group.

return Subgroup(h, Elements(h){Fixpoints(a,[1..Size(h)],OnPoints)});

end;;

CommSubgroup:=function(a,h)

# 'a' and 'h' as above. Returns the commutator subgroup of 'a' with

# 'h' (as a subgroup of 'h').

local comm,i,p,e;

e:=Elements(h);

comm:=[];

for i in [1..Size(h)] do

for p in Elements(a) do

Add(comm, e[i]^(-1)*e[i^p]);

od;

od;

return Subgroup(h, comm);

end;;

IsInvariantSubgroup:=function(a,h,s)

local el,pos;

# 'a' and 'h' as above, 's' a subgroup of 'h'. Tests if 's' is invariant

# under the action of 'a'.

el:=Elements(h);

pos:=List(s.generators, x -> Position(el,x));

return ForAll(pos,

i -> ForAll(a.generators,

perm -> (el[i^perm] in s)

)

);

end;;

FactorGroupOperation:=function(a,h,n)

# 'a' and 'h' as above, 'n' an 'a'-invariant normal subgroup of 'h'.
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# Returns a permutation group whose action on Elements(h/n) is

# induced by the action of 'a' on Elements(h).

local f,t,el,op;

if not IsInvariantSubgroup(a,h,n) then

Error("<n> must be an a-invariant normal subgroup of <h>");

else

f:=FactorGroup(h,n);

t:=NaturalHomomorphism(h,f);

el:=Elements(h);

op:=function(x,perm)

local i;

i:=Position(el,PreImagesRepresentative(t,x));

return Image(t,el[i^perm]);

end;

return Operation(a,Elements(f),op);

fi;

end;;

IsDihedralAction:=function(a,h)

# 'a' and 'h' as above. Checks if action is dihedral, i.e. Size(a)=2 and

# 'a' acts on 'h' by element inversion.

local el,perm;

if Size(a)=2 then

el:=Elements(h);

perm:=Filtered(Elements(a), x -> (Order(a,x)=2) )[1];

return ForAll([1..Size(h)], i -> (el[i^perm]=el[i]^-1) );

else

return false;

fi;

end;;

MayBeCounterexample16:=function(a,h)

# 'a' and 'h' as above, with Size(h)=16.

# We think of 'h' as the commutator subgroup of some (finite or infinite)

# group 'g', and of 'a' as the (finite) factor group g/Centralizer(g,h).

# (Note that the function trusts that 'a' contains the inner

# automorphisms of 'h'. Otherwise the call to 'FactorGroup' in the

# function body might produce an error.)

# If the function returns "false", then 'g' cannot be a counterexample

# to the classification of centre-by-metabelian group algebras in

# characteristic 2. No information is gained if the function returns

# "true".

# The function works by reduction to the case Size(h)=8, which is

# assumed to be already handled:
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# Let 'x' be the list of all elements of order 2 of 'h' which are fixed

# by 'a', and let 'z' run through 'x' (we think of 'z' as being central

# in 'g'). Then k:=h/<z> has order 8.

# Now if 'g' is a counterexample, then 'k' must be isomorphic to

# 2x2x2 or 2x4. In the case 2x2x2, 'a' must act trivially on 'k',

# and in the case 2x4, 'a' must act dihedrally on 'k'.

# The function tests just that.

local x,z,k,n,i,b;

if (Size(h)<>16) then

Error("<h> must be a group of order 16");

else

x:=Filtered(Elements(Fixgroup(a,h)), x -> (Order(h,x)=2) );

for z in x do

n:=Subgroup(h,[z]);

k:=FactorGroup(h,n);

i:=GroupNames(k);

if i=["2x2x2"] then

if not IsSubgroup(n,CommSubgroup(a,h)) then

return false;

fi;

elif i=["2x4"] then

b:=FactorGroupOperation(a,h,n);

if not IsDihedralAction(b,k) then

return false;

fi;

elif Length(i)<>1 then

Error("Obscure Error: <k> has more or less than one Name");

else

return false;

fi;

od;

fi;

return true;

end;;

PossibleActionsNonabelianCase:=function(h)

# If we adopt the notation of above, this function computes all

# possibilities for the group 'a' acting on 'h', where 'h' must be a

# nonabelian 2-group.

# All groups 'a', that already here lead to a situation where it is

# known that (the undefined --see above-- group) 'g' cannot be a

# counterexample to our classification theorem, are thrown away.

# In particular, 'a' must be a 2-group and its commutator subgroup must

# correspond to the inner automorphisms of 'h'.
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local aut,u,subs;

if IsAbelian(h) or (not Set(Factors(Size(h)))=[2]) then

Error("<h> must be a nonabelian 2-group");

fi;

aut:=Operation(AutomorphismGroup(h),Elements(h));

# permutation representation of action of Aut(h) on Elements(h)

u:=AsSubgroup(aut,Operation(h,Elements(h)));

# u corresponds to the inner automorphisms

subs:=List(ConjugacyClassesSubgroups(aut), Representative);

# take representatives of conjugacy classes of subgroups of aut

subs:=Filtered(subs, a -> (

Set(Factors(Size(a)))=[2]

and (DerivedSubgroup(a)=u)

)

);

# We only need representatives 'a' which are 2-groups, and whose

# commutator subgroup is the inner automorphism group 'u' of 'h'.

return subs;

end;;

IsLegal3Action:=function(a,h)

# Under the situation described above, if 'h' is an abelian 2-group,

# then the order of 'a' may be divided by 3, but not by 9.

# In this case, let 's' be the Sylow-3-subgroup of 'a' of order 3, then

# the commutator subgroup of 's' with 'h' must be 2x2 -- otherwise the

# imaginary group 'g' (see above) cannot be a counterexample to our

# classification theorem.

local s;

s:=SylowSubgroup(a,3);

if Size(s)=1 then

return true;

elif Size(s)>3 then

return false;

else

return GroupNames(CommSubgroup(s,h))=["2x2"];

fi;

end;

PossibleActionsAbelianCase:=function(h)

# Similar to nonabelian case. Differences: 'a' and 'h' must be abelian,

# 'h' must be a 2-group, and 'a' must be a 2,3-group whose order is not

# divided by 9. If its order is divided by 3, a special condition

# applies, see the function 'IsLegal3Action'.

# Since 'g' cannot be a counterexample if its nilpotence class
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# is at most 2, we only need to consider nontrivial 'a'.

# Similarly if 'h' is elementary abelian of size greater than 4.

local aut,subs;

if not (IsAbelian(h) and Set(Factors(Size(h)))=[2]) then

Error("<h> must be an abelian 2-group");

elif IsElementaryAbelian(h) and (Size(h)>4) then

# nothing can act on 'h' in this case

return [];

fi;

aut:=Operation(AutomorphismGroup(h),Elements(h));

# permutation representation of action of Aut(h) on Elements(h)

subs:=List(ConjugacyClassesSubgroups(aut), Representative);

# take representatives of conjugacy classes of subgroups of 'aut'

subs:=Filtered(subs, a-> IsAbelian(a)

and Size(a)>1

and IsSubset( [2,3], Set(Factors(Size(a))) )

and IsLegal3Action(a,h));

# We only need nontrivial abelian reps which are 2,3-groups.

# The 3-part of 'a' has to pass an additional test.

return subs;

# return the found groups.

end;;

PossibleActions:=function(h)

# Checks whether 'h' is abelian or not and sends 'h' to the appropriate

# subroutine. In the case Size(h)=16, an additional test is performed.

local subs;

if (Size(h)=1) or (Set(Factors(Size(h)))<>[2]) then

Error("<h> must be a nontrivial 2-group");

elif IsAbelian(h) then

subs:=PossibleActionsAbelianCase(h);

else

subs:=PossibleActionsNonabelianCase(h);

fi;

if Size(h)=16 then

subs:=Filtered(subs, a -> MayBeCounterexample16(a,h));

fi;

return subs;

end;;

End of the �le actions.g
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