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Introduction 1

Introduction

The principal object of this report is the study of limiting embeddings in function spaces. The history of such
questions starts in the thirties of the last century with SOBOLEV’S famous embedding theorem [Sob38]

WEQ) = L.(Q) , (0.1)

where  C R™ is a bounded domain with sufficiently smooth boundary, L,, 1 < r < oo, stands for the
usual Lebesgue space, and W;, keN, 1< p< oo, are the classical Sobolev spaces. The latter have been
widely accepted as one of the crucial instruments in functional analysis — in particular, in connection with
PDE's — and have played a significant role in numerous parts of mathematics for many years. SOBOLEV's
famous result (0.1) holds for k € N with k <2, and r suchthat £ — 1 > —1 (strictly speaking, [Sob38]
E 1 1

1 1 : _ : P
— 3 > —7. whereas the extension to - — - = — was achieved later). In the limiting

€ N, this inclusion (0.1) does not hold for 7 = oc, whereas for all r < oo

covers the case
case, when k =

SESRSEES

WIP(Q) < L(Q) . (0.2)

The theory of Sobolev type embeddings originates in classical inequalities from which integrability properties
of a real function can be deduced from those of its derivatives. In that sense (0.2) can be understood simply
as the impossibility to specify integrability conditions of a function f € W,?/p(ﬂ) by means of L, conditions
merely. In order to obtain further refinements of the limiting case of (0.1) it becomes necessary to deal with
a wider class of function spaces. Lorentz-Zygmund spaces L,.(logL),(Q2), 1 <r < oo, a € R, being the
set of all those functions f such that

/ F@ log™ @+ /(@) dz < o0 (03)
Q

(with the usual modification if r = oo) constitute a natural class to consider. In the late sixties of the last
century PEETRE [Pee66], TRUDINGER [Tru67], and POHOZAEV [Poh65] independently found refinements
of (0.1) expressed in terms of Orlicz spaces of exponential type, see also [Str72] by STRICHARTZ; this was
followed by a lot of contributions investigating problems related to (0.1) in detail in the last decades. In 1979
HANssoN [Han79] and BrEzis, WAINGER [BW80] showed independently that

W/P(Q) & Logy (log L), (2) (0.4)

where 1 < p < oo, and the spaces L, , (logL), (£2) appearing in (0.4) are derived from L, (logL),(f2)

given by (0.3) providing an even finer tuning. Recently we noticed a revival of interest in limiting embeddings
of Sobolev spaces indicated by a considerable number of publications devoted to this subject; let us only
mention a series of papers by EDMUNDS with different co-workers ([EGO96], [EGO97], [EGO00], [EK95],
[EKPO0Q]), by CWIKEL, PUSTYLNIK [CP98], and — also from the standpoint of applications to spectral theory
— the publications [ET95], [ET99], [Tri93], [Tri99] by EDMUNDS and TRIEBEL. This list is by no means
complete, but reflects the increased interest in related questions in the last years. There are a lot of different
approaches how to modify (0.1) appropriately in order to get — in the adapted framework — optimal assertions.
We return to this discussion after a short digression to entropy numbers.

The idea of the entropy of a set has attracted a great deal of attention over the years, connected with the
concept of entropy numbers e, k € N, of embeddings between function spaces. The paper [KT59] by
KoLMOGOROV and TIKHOMIROV is certainly one of the earliest significant contributions to this subject,
stating that the k—th entropy number of the embedding id,, : C"™ (]0,1]") — C([0,1]™) asymptotically
behaves like k~"/" written as

ek (idm : C™ ([0,1]") — C([0,1]")) ~ k™", keN, (0.5)

where the involved spaces consist of the (m-times differentiable) bounded uniformly continuous functions
on the cube [0,1]™ in R". The next milestone in that development is unquestionable the paper [BS67]
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by BIRMAN and SOLOMYAK; in this pioneering work they introduced the method of piecewise polynomial
approximation and established sharp estimates for the entropy numbers of the embedding (0.1),

ec (ids - WF(Q) — Lo(Q)) ~ €7, (€N, (0.6)

where 1 < p,r < oo,and k >n max(%—%, 0). It is essentially remarkable in this asymptotic characterisation
that — apart from the restriction k > n max(;—,0) —the numbers p and r do not appear on the right-hand
side of (0.6). Here as in the sequel we shall assume that Q stands for the unit ball U = {z ¢ R" : |z| < 1}
in R™, but this is for convenience and simplicity rather than necessity. It is furthermore hidden in our above
description so far that entropy numbers are used to characterise (the quality of) compact embeddings only;
however, for k = n(% — 1) the embedding (0.1) is merely continuous, but not compact. It is natural to
enquire into its nature by approaching this non-compact limiting situation by related (possibly) non-limiting

compact ones. This was carried out in detail in [ET95] for the situation when (0.1) is replaced by
idg : W) (Q) — L, (log L), () , (0.7)

as id, is compact for a <0, k= n(% — 1) Though the target space in (0.7) is then slightly larger than

L,(Q) originally, the modification is so gentle that we continue referring to (0.7) as a limiting embedding.

We consider generalisations of (0.1) in two directions : at first, we investigate the counterpart of (0.1) with

W,?/p replaced by the more general fractional Sobolev spaces Hg/” , or even by spaces of Besov or Triebel-
Lizorkin type B, , and F}  respectively; secondly, we additionally study spaces defined on R" with some
weight function of type w(z) = (1 + |z|)® log" (2 + |z|), @, u € R. This leads to limiting assertions for

spaces on £ oron R™ with a weight w(x), respectively, which have the form

Fi, o L., s——=-2 l<r<oo, 0<q<oo, s>0, (0.8)
: p .
and
n n
By, = Lr, s——=—-—, 1<r<oo, 0<g<r, s>0, (0.9)
, . ,

complemented by their counterparts for r = oc,

Fi'" < L, ifandonlyif, 0<p<1 and 0<gq< o, (0.10)
and
BI/? < L. ifandonlyif, 0<p<oo and 0<g<1, (0.11)

cf. [ET96, 2.3.3 (iii), p. 45]. Again we face the problem that, say, (0.8) is continuous, but not compact
for s — % = —2 assuming that ) or the weight is suitably chosen. Though adapting the weight function
can shrink or extend the corresponding space, this is not sufficient to gain compactness of the underlying
embedding. So, roughly speaking, we transfer the idea behind (0.7) and look for modifications of (0.8) —
concerning the type of spaces, too — such that the embedding in the adapted setting becomes compact. This
is presented in two versions : once for the counterpart of (0.7) on weighted spaces on R", otherwise for
embeddings of spaces on bounded domains similar to the situation (0.11). In either case we estimate the
corresponding entropy numbers subsequently. These two examples together make up Part | of the report. A
good deal of this work was motivated by the need for suitable embedding theorems more delicate than the
classical ones and new as far as we are aware.

In Part Il our goal is different : in contrast to recent approaches studying optimal source or target spaces of
limiting embeddings within a certain context (of rearrangement-invariant spaces, for instance) we look for an
original characterisation of the involved spaces (as appearing in, say, (0.3) or (0.4)). More precisely, in view
of (0.10), (0.11) the question which suggests itself is in what sense the unboundedness of functions belonging
to Fj, with 1 <p<oc,and B, with 1 < g < oc, respectively, can be qualified. Concentrating

on this particular feature only we introduce the concept of growth envelope functions &£; ‘measuring’ the
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unboundedness of such functions belonging to some function space X C L!°¢, f € X , by means of their
non-increasing rearrangement f*(t),

X)) = sup  fr(t), t>0. (0.12)
[IF1X]<1

Surprisingly enough one finds rather simple and final answers characterising apparently complicated spaces like
B, , and FJ ;in fact, the results contain an even finer description of this feature than measured by SGX

qu;
merely. Likewise we investigate parallel limiting situations when questions of (un)boundedness of functions

are replaced by inquiries about (almost) Lipschitz continuity, for instance. This refers to limiting embeddings
based on (0.10), (0.11), but lifted by smoothness 1,

Fiim/® < Lip'  if andonlyif, 0<p<1 and 0<gq< oo, (0.13)

and
Byt™P < Lip!  if,andonlyif, O0<p<oo and 0<qg<1, (0.14)

see [ET96, (2.3.3/9,10), p. 45]. Dealing with spaces Bpt"/? for 1 < q < oo one finds that they contain
‘almost’ Lipschitz continuous functions in the sense that the Lipschitz continuity is spoilt by a logarithmic

term of order % =1- % . The associated concept of continuity envelope functions ECX replaces (0.12) by
, T
eX(t) = sup @ L t>0, (0.15)
lF1x<1

stressing the same arguments as above afterwards. In (0.15) the function w(f,¢) stands for the well-known
modulus of continuity of a function f e X — C.

This outlines some historic background as well as the main goals of our report. Further historic references are
given at the corresponding places.

The report consists of an introductory Section 1 followed by two parts (as briefly mentioned above), Part |
composed of Sections 2 and 3, and Part Il containing the remaining four sections. We discuss the mathemat-
ical programme and structure of this report at the end of Section 1, that is, in Section 1.4 in greater detail.
We preferred this probably unusual procedure because of the big advantage that we can explain the concept
and formal structure subordinate to it more precisely then (compared with the rather vague terms as above).

We collect in this report a selection of results of our papers [Har98], [Har00a], [EH99], [EHO00], [Har00b]
and from the recent preprint [Har01]. Though the outcomes are thus not new essentially, the report tries
a completely new way of linking model cases on the one hand, and more abstract approaches on the other
hand, and focuses on their interdependence as well as striking differences. Only the totality of all these pieces
together form the idea we want to present. In that sense this report intends to be not only the sum of its
components (papers); it pursues the idea of passing the existing results in review from another viewpoint, as
sometimes the welter of details makes it harder to see the connection (or distinction, respectively).

The motivation and guiding principles under which we selected and rearranged the material are explained in
Section 1.4
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1 General concept, basic definitions

In this section we collect the necessary definitions and basic facts on function spaces, embeddings and entropy
numbers. We shall rely on the notation introduced here throughout the whole report.

Afterwards, at the end of this section — and having thus all the necessary definitions and facts introduced —,
we can precisely describe the structure of this report. This is done firstly from the mathematical point of view
and subsequently from a more formal one, as the reasons for our selection — why we have chosen to present
Jjust this material — can hardly be understood without the preliminaries.

1.1 Function spaces

Let R" be Euclidean n-space and

() = 2+ |z|)?, zeR". (1.1.1)

In a slight abuse of notation we also use (k) to stand for (2 + k?)'/> when k € N. Given two (quasi-)
Banach spaces X and Y, we write X — Y if X C Y and the natural embedding of X in Y s
continuous. For non-negative functions f,g: N — R, the symbol f(k) ~ g(k) will mean that there are
positive numbers ¢y, cs such that for all k € N,

a f(k) < g(k) < e f(k).
All unimportant positive constants will be denoted by ¢, occasionally with subscripts. For any a € R let
ay =max(a,0) and [a]=max{k€Z:k < a}. (1.1.2)

Moreover, for 0 < r < oo the number r' is given by

1 1
—,::<1——> , 0<r<oo. (1.1.3)
r r)

For convenience, let both dz and |-| also stand for the (n-dimensional) Lebesgue measure ¢,, in the

sequel.

1.1.1 Classical spaces

We briefly recall the definitions and properties of some well-known spaces which will be used below.

The Lebesgue space L, and some relatives

Let L,(2), 0 < p < oo, be the (quasi-) Banach space with respect to Lebesgue measure, normed by

L@l = ([ 1@ ar)™ (114)
Q

(with the usual modification for p = oc), where ) in (1.1.4) may stand both for a bounded domain in R"
or R™ itself. A natural refinement of this scale of Lebesgue spaces are the spaces L,(log L), () being the
set of all measurable functions f: 2 — C such that

/\f(x)\p log® (2 + £ (2)]) de < o0 . (1.15)
Q

This definition (1.1.5) for spaces L,(logL),(f2) may be found in the book of BENNETT and SHARPLEY
in [BS88, Ch. 4, Def. 6.11, p. 252] where 1 < p < o0, a € R, and Q@ C R* with |2 < co. They are
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called Zygmund spaces there. We give an alternative definition (admitting also parameters 0 < p <1 and
p = 00), in Definition 1.1.1 below.

In [BS88, Ch. 4, Lemma 6.12, p. 252] it is shown that f € L,(logL),(Q2), 1 <p< oo, a€R, if, and only
if,
9]

(/ [a+ |logt|)“f*(t)]pdt>l/p < o0, (1.1.6)

where f* denotes the non-increasing rearrangement of f, as usual,
ff@)=inf{s>0: {z € Q:|f(z)] >s} <t} , t>0 (1.1.7)

(with the agreement inf () = oc). Note that f* is non-negative, decreasing and right-continuous on [0, o).
Moreover,
ff@t)=sup{s>0:|[{z e Q:|f(x)] >s} >t} , t>0, (1.1.8)

(af)* =lalf*, a€R, (|fI")" = (f*)’, 0<p<oo,and |g| <|f| ae. implies g* < f*. One knows that
f and f* are equi-measurable, i.e.

pp(s) =z e Qu[f(x)] > s} =[{t 2 0: f7() > s} = vp-(s), 520, (1.1.9)

where v(-) = || stands for the usual Lebesgue measure on R, . Furthermore, f*(0) = ||f|Loo(©)|], and
f*(t) =0 for t > |Q|. Note that f* satisfies the weak form of sub-additivity only, that is,

(f+9)(t+1t2) < frl)+97(),  t,t2 20

There is a plenty of literature on this topic; we refer to [BS88, Ch. 2, Prop. 1.7, p. 41] and [DL93, Ch. 2, §2],
for instance. In view of (1.1.6) we come to an alternative definition of L,(log L), (), which simultaneously
extends it to parameters 0 < p < oc.

Definition 1.1.1 Let Q CR", and 0 < p,q < o0.

(i)  The Lorentz space L, ,(Q2) consists of all measurable functions f:Q — C for which the quantity

] N He
1 q
/[ﬁf*(t)} 5 , 0<g<oo,
[ F1Lp.q ()] = ) (1.1.10)
sup t%f*(t) , ¢=00
0<t<|Q|

is finite.

(i) Let a € R The Lorentz-Zygmund space L, ,(logL), = L, ,(log L),(2) consists of all measurable
functions f:Q — C for which

2| Ha
1 a ox a dt
/[tp(1+\logt\) O , 0<q< oo,
[1f1Lp,q(log L)a ()| = i’ (1.1.11)
sup t» (1+[logt))" f*(¢) , =00
0<t<|Q|

is finite.

The above definition given by BENNETT and SHARPLEY may be found in [BS88, Ch. 4, Def. 6.13] and in
[BR80, (1.4), (1.14)]. Note that L, , = L, are the usual Lebesgue spaces, 0 < p < o0, and L, ,(logL), =
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Ly,. The spaces L, ,(logL), are monotonically ordered in ¢ (for fixed p and a) as well asin a (when
p,q are fixed). In particular, for aj,as € R, a2 < aq,

Lp(lOg L)a1 (Q) — Lp(log L)az (Q) . (1112)

Moreover, when || < oc, then there is also some monotonicity in p, i.e. we obtain for any 0 <e < p and
all a >0,
Lp+e(Q) = Ly(log L) () = Lp(©) < Ly(log L)—a(€2) = Lp—=(Q) (1.1.13)

see [ET95, Rem. 2.1/2] and [ET96, Prop. 2.6.1/1 (i)]. Otherwise, when [Q2| = oo, there is no monotonicity
in p. Note that L., 0 < ¢ < oo, is trivial; i.e. it contains the zero function only. The same happens for
spaces of type L, ,(logL), when p=o00, 0<g<oo and a+1/g>0,0or p=g¢q=o0, but a>0.
Thus when p = co we only study spaces L, ,(log L), in the sequel, where a+1/g <0 for 0 < g < o0,
or a <0 for g = oc, respectively.

Moreover, when |Q| < oo, say, |2 =1,and p=g =00, a >0, onehas Ly  (logL)_, () = Lexp,a(2),
where the latter are the Zygmund spaces consisting of all measurable functions f on € for which there is
a constant A = A(f) > 0 such that

/Qexp()\\f(x)\)l/a dr < oo, (1.1.14)

(if a =0, this is interpreted as f is bounded, i.e. Lexpo = Loo); see [BS88, Ch. 4, Def. 6.11, Lemma
6.12, p. 252].

Remark 1.1.2 Note that (1.1.10) and (1.1.11) do not give a norm in any case, not even for p,q > 1.
However, replacing the non-increasing rearrangement f* in (1.1.10) and (1.1.11) by its maximal function

f**, given by

o~ | =

(MFY () = f() = /f*(s) ds. t>0, (1.1.15)

one obtains for 1 < p < oo, 1<g< o0, or p=g=o00,anorm in that way, see [BS88, Ch. 4, Thm. 4.6,
p. 219]. An essential advantage of the maximal function f** — compared with f* —is that it possesses a
certain sub-additivity property,

(f+9)7(@) < 7O +97@), t>0, (1.1.16)

cf. [BS88, Ch. 2, (3.10), p. 54]. Moreover, for 1 < p < oo and 1< ¢ < oo, the corresponding expressions
(1.1.10) with f* and f**, respectively, are equivalent; cf. [BS88, Ch. 4, Lemma 4.5, p. 219].

Banach function spaces

The spaces L,, 1< p < oo, belong to the category of Banach function spaces (or lattices); we briefly recall
this notion and follow [BS88, Ch. 1, Sect. 1] closely. We assume the underlying measure space to be (a subset
of) R" equipped with the Lebesgue measure ¢, . Then these are Banach spaces X of locally integrable
functions for which the norm || - |X|| is related to the order by the property that |f(z)| < |g(z)| a.e. for
g€ X implies fe X and [[fIX]|] < |lg|X]||. One also assumes that X contains the characteristic
functions X, of all subsets of R™ with finite measure £,,(A) < co. Finally one requires that X satisfies the
Fatou property : if f, >0 is an increasing sequence in X, 0< f, 1 f a.e., then ||f|X] = nh_}rr;o | fn] X
Obviously one can extend this definition to quasi-Banach function spaces, if X isequipped with a quasi-norm
only. Note that for Banach function spaces X and Y (over the same measure space [R,u] ) the condition
X CY already implies X < Y ; cf. [BS88, Ch. 1, Thm. 1.8, p. 7].

Spaces of continuous functions

Let C(R™) be the space of all complex-valued bounded uniformly continuous functions on R, equipped with
the sup-norm as usual. If m € N, we define

C™(R") = {f: D*f € C(R") forall |a| <m}.
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Here D% are classical derivatives and C™(R") is endowed with the norm

IFIC™ (R = D 1D f|Loo(R™)]].

lo|<m

Recall the concept of the difference operator A}', m € N, h € R". Let f(z) be an arbitrary function on
R", then

(ARN@) = fle+h) = flz), (AP f)(2) = AL (AR (@), (1.1.17)

where z,h € R". For convenience we may write Aj, instead of A}. Let r € N, the r-th modulus of
smoothness (or r-th order modulus of continuity) of a function f € L,(R"), 0 < p < oo, is defined by

or(f = sup [SLFLE] >0, (11.18)
<t

see [BS88, Ch. 5, Def. 4.2, p. 332] or [DL93, Ch. 2, §7, pp. 44-46]. Note that each modulus w,(f,t), ,
1 <p<oo, r €N, isa nonnegative, continuous, increasing function of ¢ > 0. Moreover, w,(f,t), \,
wr(f,0), =0 for ¢t 0. We also have for 1 < p < oo,

wr(f,t)p < 27 [|fILyl| and wr(f,2t)p < 2" wp(fit)p, t>0, f€ Ly
there is some triangle inequality,

wr(f’i’g:t)p < wr(fat)p‘i’wr(g:t)pa t>0, fagELp-

We shall write w(f,t), instead of wq(f,t), and omit the index p = oo if there is no danger of confusion,
that is, w(g,t) instead of w(g,t)o.. We refer to the literature mentioned above for further details.

MARCHAUD’S inequality states the following : let f € L,(R"), 1<p<oo, t>0,and k€N then

o0

wit1(f,u)p du

k k
)y < — 111
wi(f,t)p < log2t / R e ( 9)
t

see [BS88, Ch. 5, (4.11), p. 334] or [DL93, Ch. 2, Thm. 8.1, p. 47] (for the one-dimensional case).

Definition 1.1.3 Let 0 < a < 1. The Lipschitz space Lip“(R") is defined as the set of all f € C(R™)
such that
w(f,1)

1f Lip® (R := [ FIC(R) || + sup  —7= (1.1.20)
o<t<1

is finite.

Remark 1.1.4 Note that the restriction 0 < a < 1 is quite natural, as otherwise the spaces contain only
constants; when a = 1 one recovers the classical Lipschitz space Lipl(IR”),

=@+ sup 22D (1121)

| £iLip' (&)

1.1.2 Sequence spaces

Our estimation of the entropy numbers of embedding maps involves a reduction of the problem to the study
of maps between finite-dimensional sequence spaces; this method has been efficiently used before in [ET96]
and [Tri97]. Accordingly we introduce the sequence spaces 224 , M eN, 0<p<oo and follow [ET96,



8 1. General concept, basic definitions

3.2.1, p. 97]. By Zi,” we shall mean the linear space of all complex M-tuples y = (y;), endowed with the

quasi-norm
1/p

M
Iyl = { > lwilP | . 0<p<ec,
j=1

with the usual modification if p = co. Moreover, we also need weighted /,-spaces in the following sense : Let
(M;)jen, be a sequence of natural numbers with M; ~ 2/", j € Ny. Let 0 <p <ooand 0< g < co.
Let (wj)jen, be a sequence of positive numbers (weights), mainly of the type

w; = 207 or  w; = (j)*, jENy, v>0, x€R.

We extend the definition of TRIEBEL given in [Tri97, 8.1, p. 38]. Then {,(w;, 62/13') stands for the linear
space of all complex sequences x = (z;;:j € No;l =1,...,M;) endowed with the quasi-norm

a/p\ M9

P (1.1.22)

00 M;
2160 (w; G5 = | Do wi | 3 I
7j=0 =1

(with the obvious modifications if p = o0 or ¢ = oc). In case of w; =1 we write eq(eﬁ”f). The above
notation was introduced in [EH99, (3.1)] and coincides with [Tri97, (8.2), p. 38] when w; =27, v > 0.

In addition to the above notation of the spaces ¢, (w; Kﬁ/[j) endowed with the quasi-norm (1.1.22) we have
to introduce spaces £, [2‘”” Ly (w; e%)], 0 <u < oo, >0, as the linear space of all £,(w; Zyj)—valued

sequences = = (2™ )men, such that the quasi-norm

oo

1/u
2]y [29™ £y (w; £))]]| = (Z Hmu ||mm£q(wj££4f)||“> (1.1.23)

m=0

(with the obvious modification if « = oc) is finite. In case of w; =1 and =0 we write ¢, [eq(eﬁ”f)].

The above notation coincides with [Tri97, (9.1)] when w; =277, v > 0.

Let Qum, v € Ny, m € Z", denote a cube in R™ with sides parallel to the axes of coordinates, centred at
27Ym, and with side length 27%. Furthermore, X,(/I:q)z is the p-normalised characteristic function of the cube
Qum, that is

P (z) =2% if z€Qu, and X‘(fgl(m) =0 ifzxd Qum,

vm

where v € Ny, m € Z"™, and 0 < p < co. Plainly, ||X‘(/’1’7)1|Lp(]R”)|| =1

Definition 1.1.5 Let 0 <p<oo, 0<g< o0, and A = {A\,, €C: v ENy, m € Z"}. Then

bpg = {A: 1A ] bpgll = <§:( > Aymp)a/p>1/q < oo}

v=0 mez"

This definition is a modification of the related one in [FJ90] and coincides with [Tri97, Def. 13.5, p. 74].

and

oo = {3 1ALl = | (25 o ()" L)

v=0mezm

(with the usual modification if p = oo and/or q = ).
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1.1.3 Spaces of type B, ., F;,

p:.q’

Function spaces of Besov or Triebel-Lizorkin type, B, , and Fj  respectively, will serve both as essential
motivation and as outstanding examples in the sequel. We recall briefly the basic ingredients needed to their

introduction.

Fourier-analytical approach

The Schwartz space S(R") and its dual S’(R™) of all complex-valued tempered distributions have their
usual meaning here. We first need the notion of a smooth dyadic resolution of unity. Let

Ap={zeR 2 < |z| <21}, (€N, (1.1.24)

complemented by
Ag={z e R : |z| < 2}, (1.1.25)

the usual dyadic annuli in R". Let {p;}72, be a sequence of Cg° functions satisfying the following
conditions :

(i) suppp; C 4;, j €N,
(i) for any multi-index v = (y1,...,7,) € Nj there exists a positive constant ¢, such that

24l ID7p;(z)] < ¢y forall zeR™, |y[=5+...+ 7,

(i) Y wjz) =1, zeR",

i=0

Then {p;}72, is said to be a smooth dyadic resolution of unity. Such a smooth dyadic resolution of unity
can be constructed, say, based on some ¢ € S(R") with

suppp C{y € R : ly| <2} and ¢(z)=1 if |z|<1. (1.1.26)

Put @9 = ¢ and for each j € N let ;(z) = p(277z) — p(277*'x). Then {p;}32, forms a smooth
dyadic resolution of unity. Given any f € S’(R"), we denote by Ff and F'f its Fourier transform and
its inverse Fourier transform, respectively.

Definition 1.1.6 Let s€ R, 0< g < o0, and let {¢;} be a smooth dyadic resolution of unity.
(i) Let 0<p<oo. Thespace By (R") isthe collection of all f € S'(R") such that

= . 1/q
17185, (BRI = (30270 || F = o, F Ly (RY)| ) (11.27)
=0
(with the usual modification if q = oc) s finite.

(i) Let 0 <p<oc. Thespace Fj (R") isthe collection of all f € S'(R") such that

| £185, (B)| = H(fjwf-l e FFOI) " 1L, (1.1.28)

J=0

(with the usual modification if q = oc) s finite.

For later use we introduce numbers

1 1
o,=n|-—-1 and o,y =n| ——m— -1 1.1.29
? (p ) N r (mln(p, q) ) N ( )

where 0 < p<oo and 0 < ¢ < oo, recall notation (1.1.2).
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Remark 1.1.7  The theory of the spaces B, , and Fj = as given above has been developed in detail in
[Tri83] and [Tri92] but has a longer history already including many contributors; we do not want to discuss
this here. Let us mention instead that these two scales B, , and F  cover (fractional) Sobolev spaces,
Holder-Zygmund spaces, local Hardy spaces, and classical Besov spaces — characterised via derivatives and
differences : Let 0 <p < o0, s>0y, 0<qg<oo and re€ N with 7> s. Then with w,.(f,t), given by
(1.1.18),

: ar\ "’

1f1Bpg R~ [[f[Lp (R[] + (/0 [t7wn(f. 8] — (1.1.30)
(with the usual modification if ¢ = oc), see [BS88, Ch. 5, Def. 4.3, p. 332], [DL93, Ch. 2, §10, pp. 54-56]
(where the Besov spaces are defined in that way) for the Banach case, and [Tri83, Thm. 2.5.12, p. 110]
for what concerns the equivalence of Definition 1.1.6 (i) and characterisation (1.1.30). In particular, with
p = q = o0, one recovers Holder-Zygmund spaces C*. Let, say, 0 < s <1, then B3 . =C*® (in the sense
of equivalent norms),
w(f,1)

ts

[f1B% oo R)|| ~ [IFIC(R™)|| + sup (1.1.31)
0<t<1
cf. [Tri83, Thm. 2.5.12, p. 110]. Concerning F—spaces, one has, for instance, Fj,(R") = H;(R") ,
s € R, 1< p < oc, the latter being the well-known (fractional) Sobolev spaces of all measurable functions
f:R* — C, normed by
| fIHy (R[] = [[Ls fILp(R*)|| (1.1.32)

where

Lf=FQ°Ff, feS(R), o€R, (1.1.33)

is the lift operator and (-) is given by (1.1.1); in particular, in case of classical Sobolev spaces Wlf it holds

FYyRY) =Wy (R"), keNy, 1<p<oo, e  FJ,(R")=L,(R"). (1.1.34)
For later use we also recall the definition of the local (non-homogeneous) Hardy spaces h, , 0 < p < oc.
Let ¢(z) be a test function on R", ¢ € CF°(R"), with p(0) = 1. Put ¢i(z) = ¢(tz) for x € R" and

t > 0. Then

hy(R") = {f € S'(R™) < [|f1hp(R™)[ = Ly(R™)

sup |F o Ff| ‘ < oo} . (1.1.35)
0<t<1

This definition is due to Goldberg [Gol79b, Gol79a], see also [Tri83, Sect. 2.2.2, p. 37]. According to [Tri83,
Thm. 2.5.8/1, p. 92] it holds

hp(R") = F),(R*), 0<p<oo. (1.1.36)

The local (non-homogeneous) space of functions of bounded mean oscillation, bmo, consists of all locally-
integrable functions f € L!°¢ satisfying the following condition,

bmo (R") = {f € Ll°¢(R")

N R _ 1
Iomo )| = sy Q/f(m) faldr+ s Q/f(x)dx<oo}, (1.1.37)

where ) are cubesin R", and fg isthe mean value of f with respect to @, fo = @ [ f(z)dz. This
Q

definition coincides with [Tri83, 2.2.2 (viii), p. 37]; see also [BS88, Ch. 5, Def. 7.6, (7.15), p. 380].
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Atomic decompositions

It turns out that the following characterisation of function spaces of type By , or Fy is sometimes preferred
(compared with the above Fourier-analytical approach), in particular when arguments for entropy numbers of
embeddings between such function spaces can thus be transferred to related questions of embeddings in (well-
adapted) sequence spaces (as introduced in Section 1.1.2) which are sometimes easier to handle.

Concerning atomic decompositions of spaces B, , and F, , we closely follow the presentation in [Tri97,
Sect. 13]. Recall our notation Q,n, XE/Z;BL' v €Ny, m € Z" given at the end of Section 1.1.2. For a cube
@ inR" and r > 0 we shall mean by 7@ the cube in R” concentric with  and with side length r

times the side length of Q.

Definition 1.1.8

(i) Let Ke€Ny and d>1. A K times differentiable complex-valued function a on R™ (continuous if
K =0) is called a 1gx-atom if

supp a C dQom, for some m € Z" (1.1.38)

and
|ID%a(z)] <1 for |a] < K. (1.1.39)

(i) Let seR 0<p<oo, KeNy, L+1€Ny, and d>1. A K times differentiable complex-valued
function a on R"™ (continuous if K = 0) is called an (s,p)k - atom if for some v € Ny

supp a C dQ,m for some m € Z", (1.1.40)
|D%a(z)| < 27V n/Dtlal for |o| < K (1.1.41)

and
/ 2P a(x)de =0 if | <L (1.1.42)

This definition coincides with [Tri97, Def. 13.3, p. 73]. The number d in (1.1.38) and (1.1.40) is unimportant
in so far as it simply makes clear that at the level v some controlled overlapping of the supports of a,,
must be allowed. Assumption (1.1.42) is called a moment condition, where L = —1 means that there are
no moment conditions. It is convenient to write a,,,(x) instead of a(x) if this atom is located at Q.
according to (1.1.38) and (1.1.40).

We come to the main theorem now, the atomic characterisation of function spaces of type B, , and F |
respectively, as obtained by TRIEBEL in [Tri97].

Theorem 1.1.9 [Tri97, Thm. 13.8, p. 75]
(i) Let 0<p<oo, 0<qg<oo,and seR Let KeNy and L+1€Ny with

K >(1+]s])+ and L >max(-1,[o,— s]) (1.1.43)

Y

be fixed. Then f € S'(R") belongs to B; ,(R") if, and only if, it can be represented as

f = Z Z Avm aum (), convergence being in S'(R"), (1.1.44)
v=0megznr

where the a,,, are lg-atoms (v =0) or (s,p)k,r-atoms (v € N) according to Definition 1.1.8, with
supp ym C dQum, vENy.meZ" d>1, (1.1.45)

and X € b,q. Furthermore
inf || by ||, (1.1.46)

where the infimum is taken over all admissible representations (1.1.44), is an equivalent quasi-norm in
B (R").

p.q
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(i) Let 0<p<oo, 0<g<oo,and seR Let KNy and L+1€Ny with
K>1+[s])+ and L >max(—1,[op — s]) (1.1.47)

be fixed. Then f € S'(R") belongs to F; (R") if, and only if, it can be represented by (1.1.44),
where the atoms a,,, have the same meaning as in part (i) (now perhaps with a different value of L)
and X € fp,. Furthermore

inf [|A] fpqll, (1.1.48)
where the infimum is taken over all admissible representations (1.1.44), is an equivalent quasi-norm in
Fs (R™).

p.q

For the proof as well as further remarks and consequences we refer to [Tri97, Thm. 13.8, p. 75].

Convention.  Note that we shall write A} = occasionally, when both scales of spaces — either A} = By |
or A, =Fj, - areconcerned simultaneously and the particular choice does not matter.

Weighted function spaces

We recall the concept of ‘admissible’ weight functions and some basics about weighted functions spaces, see
[HT94a], for instance.

Definition 1.1.10 The class of admissible weight functions is the collection of all positive C°° functions
w(z) on R™ with the following properties:

(i) For any multi-index ~y there exists a positive constant c~ with
|DYw(z)| < cy w(z) forall zeR", (1.1.49)
(ii) there exist two constants ¢ >0 and « >0 such that

0 <w(z) <cw(y){x—y)* forall z€R* andall yeR". (1.1.50)

[n this paper we merely deal with special weight functions of type
w(z) = (z)" log"(z), a€R peR. (1.1.51)

Therefore we do not discuss the more general concept of weight functions, but details may be found in [HT94a,
2.1], for instance. Nevertheless we shall formulate the next results in the framework of admissible weight func-
tions in the sense of Definition 1.1.10, but the special weights (1.1.51) may serve as typical examples.

We use the notation L,(w(-),Q) for the weighted L, spaces where w(z) is some admissible weight
function in the sense of Definition 1.1.10 and 2 C R™, normed via

11 Lp(w(-), D = [[wfLp(D)]] - (1.1.52)

The weighted Sobolev spaces Hp(w(:),R") are defined in the following way : one has to replace the
unweighted basic space L,(R") in (1.1.32) by its weighted counterpart, i.e.

IF1Hp (w(-), R = [[Ls f|Lp(w(-), R, (1.1.53)

where w(z) is an admissible weight function in the sense of Definition 1.1.10. In [HT94a, Thm. 2.2] we
have shown that this definition (1.1.53) is completely consistent with that approach,

feH (w(),R") < wfeHRY). (1.1.54)

More precisely, we have proved there that the operator f +— wf isan isomorphic mapping from H;(w(-), R")
onto Hj(R") and that |fwf|H;(R")|| is an equivalent norm in Hj(w(-), R").
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Remark 1.1.11 Our paper [HT94a] is written in the framework of more general Besov and Triebel-Lizorkin
spaces, Bj (R") and Fj (R"), respectively, where s € R, 0 <p< oo (p< oo in caseof the F-spaces)
and 0 < g < oo. Assertion (1.1.54) is valid for more general spaces than Sobolev or Lebesgue spaces, but
there is no need to pursue this point here.

Spaces on domains

We give the definition for the spaces A ().

Definition 1.1.12 Let Q@ C R® be a bounded domain. Let s € R, 0 < p < oo (p < oo in case of
Ay, =F;,) and 0<q<oc. Then Aj (Q) isthe restriction of A (R") to Q,ie.
A () ={feD'(Q):3g€4; (R"),g,=f}. (1.1.55)

Furthermore,
|| f1 45,4 ()|| = inf [|g] A4, (R

p.q

where the infimum is taken over all g € A; (R"), g, = f.

1.2 Embeddings

The intention of this section is a short summary of results concerning embeddings of weighted function spaces
on R™ or on bounded domains 2 C R"; we begin with the so-called non-limiting case. Though this situation
is well-known and not the main topic of our investigations, we think it at least convenient and helpful for a
better understanding where the differences and analogues are comparing the non-limiting case and the limiting
situation we deal with.

1.2.1 Non-limiting embeddings

As already mentioned in the introduction, SOBOLEV’S famous embedding theorem (0.1) led to a large number
of further embedding results in more general function spaces, say, of type A; . We briefly collect some
of these well-known facts for further reference mainly. These results are originally R™— results, but can be
transferred to spaces on domains by the restriction procedure described in (1.1.55). Therefore we shall omit
2 or R™ in the formulation below. Let A7~ stand for Bj 6 or Fj . respectively, where we assume

2
se€R, 0<p< oo (with p<oo for F—spaces), and 0 < ¢ < oco. Then

Ay = A for g<r<oo, (1.2.1)
s+e s
Ay = Ay, forall 0<r<oo, e>0, (1.2.2)
and, for 0 < p < oo,
By min(p.a) = Fpg = Bpmax(p.a) o (1.2.3)

see [Tri83, Prop. 2.3.2/2, p. 47]. Moreover, dealing with classical spaces such as L, and C, one can
complement (1.1.34) by

By — W, = B when 1<p<oo, méeN, (1.2.4)
and
B, = C" <= BZ . for m e Ny, (1.2.5)
see [Tri83, Prop. 2.5.7, (2.5.7/10,11), pp. 89-90]. On the other hand, regarding spaces with different metrics,
then not only the so-called ‘differential dimension’ s — % of the involved spaces is important, but — in case
of B- spaces — also the g¢- indices gain influence. Let 0 < p1 < p» < o0, 0 < 1, g2, ¢ < o0 and
sl—pﬂl:sQ—p%,then
B;ivq = Bz;q and FlfllaQI = F;;‘IZ ’ (126)
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cf. [Tri83, Thm. 2.7.1, p. 129]. Let us introduce the notation

(2)-(3)

Together with (1.2.2) it then follows immediately that A}t =~ < A2 = for all admitted parameters
0 < q1, g2 < 00, assuming that s; > s2, 0 < p; < ps < oo (with py < oo inthe F— case), and § > 0,
whereas this is not true for 6 =0 and all ¢g— parameters in the B— case, see (1.2.6). This is the first reason
why § =0 can be regarded as some limiting case. e give further arguments below. There is no compact

embedding in case of (unweighted) spaces on R".

Embeddings between weighted spaces

In Section 2 we consider a special limiting case where both source and target space are chosen as Sobolev
spaces. For this reason we give the corresponding non-limiting result of weighted embeddings in this adapted
special setting only though it is valid for much more general situations.

Theorem 1.2.1 [HT94a, Thm. 23] Let —c0o < s2 < 81 <00, 1 <p; < py < o0 and wy,ws be
admissible weight functions according to Definition 1.1.10.

(i) H;*(wi(-),R™) is continuously embedded in H,2(w,(-), R"),

if, and only if,
550 and 2@ cicoo (1.2.9)
wy ()
for some ¢ >0 and all x € R".
(i) The embedding (1.2.8) is compact, if, and only if,
5> 0 and 20 L0 i a] — o (1.2.10)
wy ()

Remark 1.2.2 Recall that when wq(z) = wo(2z) =1 one obtains the unweighted case and (1.2.9) is simply
the well-known embedding theorem in R”. Furthermore one obviously has no compact embedding in the
unweighted case, in view of (1.2.10). Let us mention that Theorem 1.2.1 has also been proved in the wider
context of B- and F-spaces in [HT94a, Thm. 2.3] where more details can be found, too.

Note that by (1.1.54) and conditions (1.2.9), (1.2.10) it is completely sufficient to consider situations where
only the source space is weighted, the target one unweighted. For later use we specify two embedding maps
id**" and id® as follows. In view of Theorem 1.2.1 it is obvious that both embedding operators

id*": Hy! ()" log"(z)) — Hyz . >0, peR, (1.2.11)

and

id® : H (1ogﬁ<x>) S H2, B>0, (1.2.12)

p2

are compact if § > 0, where we assume s; < s1 and 1 < p; < ps < oc. (Note that there are extension to
values ps < p; when «a > 0, but this is of no further interest in our context of limiting situations.)

Embeddings between spaces on domains

Let Q@ C R* be a bounded C° domain, assume —o0 < s5 < 81 <00, 0 < pi,p2 <0 (p1,p2 < o0 in
the F-case), 0 < q1,q2 < 00, and denote by idg the natural embedding operator

idg = idg @ AS!

P1,91

(Q) — A% (Q) (1.2.13)

P2,92
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where the spaces A7 (€) are given by Definition 1.1.12. Then idq is continuous when

1 1
0y =51 —32—n<———) >0 (1.2.14)
b1 D2 +

and ¢; < g2 if 64 =0 inthe B- case. Furthermore, idg becomes compact when ¢, > 0. The extension
to values py < p; — compared with the R"- setting — is due to Holder's inequality and the finite measure
Q] < 0.

1.2.2 Limiting embeddings

It is known that spaces of type A} , can —roughly speaking — be embedded along lines of constant differential
dimension s—2 = const; see (1.2.6). Moreover, by (1.2.10) and the situation described for idgq it is obvious,
that the case g: 0 is not only more difficult to handle, but also refers to a different quality of embeddings
— one has compactness of the corresponding embeddings only for § > 0. This led us to a separate study of
continuous embeddings A’ < A2 (on R™ with weights, or on bounded  C R") in the so-called

limiting case, i.e. 0=0. (1.2.15)

We shall retain this meaning of a ‘limiting embedding’ throughout this report.

1

In the usual (Z,S)—diagram, where any space

of the above type is characterised by its param- s = %
eters s and p (neglecting ¢ for the moment), . .

that is A5, > (5,5), these embeddings cor- s=5pt }//

respond to embeddings along lines with slope p

n,ie. s -— % = const. In view of the his- /// super-

torical background (0.1), that is, the question critical

whether a space contains essentially unbounded
functions, it is reasonable to call embeddings (or
simply spaces) of type Aj  with s —2 =0 1
‘critical’, whereas situations with s — 2 > 0
and s— % < 0 are regarded as ‘super-critical
or ‘sub-critical', respectively. Moreover, as in-
dicated in the diagram aside, we shall merely
study spaces where o0, < s < % + 1. The idea
to focus on that set of parameters has essen-
tially two reasons. It turns out that —in general |

— the concepts we study make sense only for 1 1
spaces A5 . C LP°, ie. when we deal with !
locally integrable functions. Figure 1

This implies that we have to assume s > o,,; for a complete characterisation of A;q C LlloC see [ST95, Thm.
3.3.2] by SickEL and TRIEBEL. We return to this point later. On the other hand, spaces with s > 2 + 1
are not very interesting in our context, we refer to our introductory remarks in Section 6.2 below. Thus we
shall rely on the notation as indicated in Figure 1, where both, the super-critical and the sub-critical case are
represented by the corresponding strips in the diagram.

For later use it is reasonable to complement (1.2.6) by its counterpart concerning the case when both, B-
as well as F'-spaces are involved (as source or target spaces, respectively). Having different smoothness
parameters s; in the spaces under consideration, then the situation (1.2.3) is improved as follows; we gain
from a result of SICKEL and TRIEBEL in [ST95, Thm. 3.21]. Let 0 < po < p < p1 < o0, s € R,
so—pﬂozs—%zsl—pﬂl,and 0<g<oc, 0<u<oo, 0<wv<oo,then

B, <= F5, <= B, if, and only if, O<u<p<v<ox. (1.2.16)

Ppo,u p1,v
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The 'if'-part of the right-hand embedding is due to JAWERTH [Jaw77], whereas the 'if'-part of the left-hand
embedding was proved by FRANKE [Fra86]. The sharp assertion (1.2.16) is proved in [ST95, Sect. 5.2]. In
particular, (1.2.16) yields

By, = F, = By, (1.2.17)

for 0<po<p<p <00, seER, so—pﬂo :s—;:sl—pﬂl, and 0 < g < oo. Further conclusions from
(1.2.1), (1.2.5) and (1.2.17) playing a crucial role in the sequel are

FZ/qp — C if, and only if, 0<p<1l and 0<gq< o0, (1.2.18)
and
BMP < ¢ if,andonlyif, 0<p<oc and 0<g<I, (1.2.19)

where C' in (5.3.1) and (5.3.2) can be replaced by L..; see [ET96, 2.3.3 (iii), p. 45]. lts lifted counterpart
reads as
EatmP < Lip!  if andonlyif, 0<p<1 and 0<q< oo, (1.2.20)

and
Byt™P o Lip!  if,andonlyif, 0<p<oc and 0<gq<1; (1.2.21)

see [ET96, (2.3.3/9,10), p. 45].

1.3 Entropy numbers
1.3.1 Definition, elementary properties

Let us briefly recall the definition of entropy numbers. Let A; and A, be two complex (quasi-) Banach
spaces and let 7' be a linear and continuous operator from A; into As. If T is compact then for any
given ¢ > (0 there are finitely many balls in Ay of radius ¢ which cover the image T U; of the unit ball
Uy ={a€ A : |aA]] <1}

Definition 1.3.1 Let kK € N andlet T : Ay — As be the above continuous operator. The kth entropy
number e, of T is the infimum of all numbers £ > 0 such that there exist 21 balls in A, of radius
€ which cover T U,.

For details and properties of entropy numbers we refer to [CS90], [EE87], [K6n86] and [Pie87] (always restricted
to the case of Banach spaces). The extension of these properties to quasi-Banach spaces causes no problems.
Among other features we only want to mention the multiplicativity of entropy numbers : let A;, A, and
As be complex (quasi-) Banach spaces and T : A1 — Ay, Ty : As — A3 two operators in the sense of
Definition 1.3.1. Then

6k1+k2_1(T2 o Tl) <e (T1) €Chs (TQ), ki, ks € N (1.3.1)
Note that one has in general that
klim ex(T)=0 <= T compact. (1.3.2)
—00

The last equivalence justifies the saying that entropy numbers measure ‘how compact’ an operator acts. This is
one reason to study the asymptotic behaviour of entropy numbers (that is, their decay) for compact operators
in detail.

1.3.2 Related results in the non-limiting situation

We restrict ourselves to give the main results related to compact embeddings of function spaces on domains and
in weighted spaces — always bound to the non-limiting setting. The famous forerunner of all these considerations
is certainly the result of EDMUNDS and TRIEBEL [ET89, ET92] (see also [ET96, Thm. 3.3.3/2, p. 118]) :
Let Q@ C R® be a bounded C* domain and id, the compact embedding operator given by (1.2.13),
idg : Ast (Q) — A2 (). Then

P1,q1 P2.92

S1—82

ep(idg) ~ k= =, keN, (1.3.3)

where s1 > sy, 0<pi,p2 <oc (p1,p2 < oo inthe F-case), 0 < q,q < oo, and 64 > 0. We come to
the situation of weighted spaces now, where the weights are of type (1.1.51).
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Proposition 1.3.2 [Har97a, Prop. 4.1] Let s; > s3, 1< p1,p2 < 00, with pl—l < plz < pll & and
0 > 0. Assume « > 0, and p € R. Then id** from (1.2.11) is compact, and we have the following

estimates for its entropy numbers.

(i) Let 0<éd<a, peR Then

er(id®") ~ k752, keN (1.3.4)
(i) Let 6>a>0, p€R and - < o= < -+ % Then
ex(id®H) ~ k™55 o1 (log(k)) ™, ke N. (1.3.5)

(i) Let 6 > a >0, pw€e R and p; < pa. Then there exist a constant ¢ > 0 and forany ¢ >0 a
constant c¢. > 0 such that for all k € N
1

ek (log(k)) " < ew(id™) < e kT (log(k) TR L (136)

(iv) Let 6 =a>0,and p> *—241. Then

S1—82

ex(id™") ~ k=75 keN (1.3.7)

Remark 1.3.3  We restricted ourselves in part (iv) of Proposition 1.3.2 to that situation concerning p € R
where a satisfying answer could be achieved. There are counterparts of (1.3.7) in case of p < #-52 +1, but
at the expense of a gap between upper and lower bound for the respective entropy numbers e (id*"); the
case p =0 is covered by our more general result [HT94a, Thm. 4.2], complemented and partly improved in
[Har97a].

Dealing with limiting situations in the sequel, we are mainly interested in situations related to (i), (iii) and
(iv) where p; < po. Finally, when
w(z) =log’(z) , >0,

(the special weight we mainly want to use in the following) our estimate reads as follows.

Proposition 1.3.4 [Har97a, Prop. 44] Let >0, 1 <p <p2 < o0, s3 < sy and 6 > 0. Denote by
er(id®), k € N, the respective entropy numbers of the compact embedding operator

id’ : H: (10g™(2)) — Hy2
Then there are two constants ¢ > 0 and c¢o > 0 such that for all k € N

er kA (08(k) ™ < enlid”) < e (log{k) ™.

1.3.3 Connection with applications

The study of entropy numbers of embeddings between function spaces is closely related to the distribution of
eigenvalues of (degenerate) elliptic operators, as the books [ET96] and [Tri97] show.

Carl’s inequality

The motivation comes from CARL’S inequality giving an excellent link to possible applications, in particular,
between entropy numbers and eigenvalues of some compact operator. The setting is the following. Let A
be a complex (quasi-) Banach space and T € L(A) compact. Then the spectrum of T (apart form the
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point 0) consists only of eigenvalues of finite algebraic multiplicity. Let {ux(T)}ren be the sequence of all
non-zero eigenvalues of T, repeated according to algebraic multiplicity and ordered such that

I (T)] 2 [p2(T)] > ... > 0.

Then CARL's inequality states that

k 1/k
(H um<T>|> <inf 2% e(T),  keN
m=1 n

In particular, we have
k(1) < V3 ex(T). (1.3.8)

This result was originally proved by CARL in [Car81] and CARL and TRIEBEL in [CT80] when A is a Banach
space. An extension to quasi-Banach spaces is proved in [ET96, Thm. 1.3.4].

Eigenvalue distribution

We consider the operator
B:bgob(',D)Obl (139)

acting in some L, space where b(z,D) is in some Hormander class U, »2>0 0<~v<1, and the
functions b;(z), i = 1,2, belong to certain function spaces. Let {ur} be the sequence of the eigenvalues of
B, counted according to their algebraic multiplicity and ordered by decreasing modulus as described above.
In view of CARL's inequality (1.3.8) one arrives at |u| < V2 ex(B); this problem can often be reduced
further to the study of entropy numbers of suitable embeddings assuming that one has corresponding Hélder

inequalities for by, by available.

Negative spectrum

Another possible application is connected with the Birman-Schwinger principle as described in [Sch86, Ch. 8,
Sect. 5, p. 193]. Let A be a self-adjoint operator acting in a Hilbert space H and let A be positive. Let
V' be a closable operator acting in H and suppose that K : H — H is a compact linear operator such that

Ku = VA™'V*u  forall u€dom(VA™'V*¥)

where V* is the adjoint of V. Assume that dom(A) N dom(V*V) is dense in 7. Then the above-
mentioned result provides : A —V*V has a self-adjoint extension H with pure point spectrum in (—o0, 0]
such that

#{o(H) N (—00,0]} < #{keN: [N > 1}

where {\;} is the sequence of eigenvalues of K, counted according to their multiplicity and ordered by
decreasing modulus. The number of elements of a finite set M is denoted by # M, as usual. In particular, we
consider the behaviour of the ‘negative spectrum’ o(H,) N (—o0,0] of the self-adjoint unbounded operator

H, = a(z, D) — vb*(z) as v — 00 (1.3.10)

where a(z,D) € V¥, x>0, 0<y<1, (1.3.11)

is assumed to be a positive-definite and self-adjoint operator in L, and b(x) is a real-valued function. We
know from former considerations, cf. [HT94b, 2.4, 5.2], that

#{o(H,) N (—o0,0]} < # {k EN:VZ e > 1/_1} (1.3.12)

with e; = ey (b(z) b(z, D) b(z)) and b(z,D)=a""'(z,D) € ¥, 7.

These are essentially the applications we have in mind for using our results on entropy numbers of compact
embeddings. This programme was carried out in [HT94b], [ET96], first, and [Tri97], [Har98], [Har00a], [EHOQ]
in different settings afterwards; we refer to these papers and books for details.
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1.4 Concept and structure of this report

The idea of the present report is to collect material on limiting embeddings, entropy numbers and envelopes,
mainly published already, and to arrange it in a more coherent form than the separate parts (papers) provide.
We would like to qualify this immediately by confessing that we do not aim at a survey of these topics in the
sense that the state of the art as well as all the historic background is reflected completely. Based on our own
results we shall give all the related references we know of at the moment, but the selection of the presented
material is guided by our own goals only.

We explain the structure of the report, see also the diagram below.

Preliminaries |
' Section 1 :

limiting embeddings :
two ‘examples’

Part |

IH:s (w(z),R™) < Ly(log L)a(R™)

: Bytr/P(U) — Liph~2)(U)
Section 2

Section 3

sub-critical case super-critical case

weighted space on R" space on a bounded domain

modifying integrability modifying smoothness
N N
v v

introduction of new function spaces

a more abstract approach :
envelopes

Part Il

& (X), & (X)
Sections 4-7

sub-, super-, and critical case
local characterisation of spaces on ) C R"

measuring growth and smoothness

SERRIEES

new characterisation of well-known spaces

compactness of embeddings, estimates for entropy numbers

The report is divided in two parts which reflect different approaches to the topic of limiting embeddings.
According to our philosophy explained in Section 1.3.3 we shall be concerned with embeddings of type

i AR, — AR, (14.1)
mainly, where s1 > s2, 0 < py,p2 <00 (p1,p2 < oo inthe F-case), 0< g1,z < oo, and
5= <.91 - ﬁ) - <52 - —) =0, (1.4.2)
P1 D2



20 1. General concept, basic definitions

see (1.2.15). Furthermore, as the determination of entropy numbers is another objective of this report, we are

especially interested in compact limiting embeddings; a comparison with the non-limiting situation described

in Section 1.3.1 suggests that the setting should be adapted to either the study of weighted spaces on R",
idy @ AL (w(:),R™) — A5z (R™), (1.4.3)

P1,q1 P2.92

or to spaces on bounded domains 2 C R",

idg : A5 (Q) — A% (Q) | (1.4.4)

P1.41 P2,92

This is exactly the programme followed in Part I, where Section 2 concerns a model case for id,,, and Sec-
tion 3 is devoted to some question derived from (1.4.4). Moreover, both sections in Part | differ inasmuch as
the problem posed in Section 2 leads to modification in the integrability of the regarded functions, whereas
this is replaced in Section 3 by refined smoothness assertions. Linking it with the general setting described
in Fig. 1, Section 2 refers to the sub-critical case and Section 3 to the super-critical one. Both model cases
investigated in Sections 2 and 3 share, however, one essential feature : the ‘repair’ of the (original) loss of
compactness in limiting embeddings id,,, idq, is achieved in either case by the introduction of new function
spaces, especially adapted to the problem under consideration. Thus the disadvantage is obvious — the solution
appears hand-made and can hardly be transferred to other problems. However, as the introduction of the new
spaces relies in both cases on well-known concepts (such as the Lorentz-Zygmund spaces in Section 2 and
the famous BREZIS-WAINGER inequality (3.1.3) in Section 3), the construction seems quite natural - at least
we would like to convince the reader of this claim | Moreover, the restriction to very special settings as in
Part | permits subsequently a variety of results and applications. This briefly outlines the pros and cons of our
approach in Part |; more details can also be found in the introductory Sections 2.1 and 3.1.

The method performed in Part Il is now easy to explain : In contrast to Part | we concentrate on a more
general, abstract approach, tackling all sub-, super- and critical cases given by Fig. 1. We do not seek for
new spaces, but new descriptions for well-known spaces. The concept of envelopes is separated from (special)
limiting embeddings, dealing instead with the (involved) spaces. Of course, the idea to introduce envelopes
arose from the well-tilled field of limiting embeddings, too, and has thus inherited intrinsic features of this
background; but this should rather be regarded as some motivation for studying envelopes, the corresponding
definitions can be understood independently of it. We explain the idea first in simple, well-known terms and
with very classical examples before climbing up to the peaks — the corresponding results in terms of spaces of
type Aj . this is indeed technically more complicated, but their simple elegance undoubtedly compensates
for the preceding efforts. This phenomenon can be experienced twice : what is first carried out in view of
measuring local growth (unboundedness) of functions is afterwards presented in a parallel approach to charac-
terise smoothness of functions. Roughly speaking, the most interesting spaces we deal with are such ‘nearby’
L., (or other Lebesgue spaces L,) and, secondly, those containing functions which are ‘almost’ Lipschitz
continuous.

We emphasised the independence of the concept of envelopes from limiting embeddings, but already confessed
that there are close (historic) links, too. In that sense our sharp assertions on envelopes imply a lot of inter-
esting (new) inequalities; in our opinion, however, the essential advantage of this new approach rather results
from its simplicity when establishing (so far final) answers to relatively difficult questions. There is only one
exception of this statement explicitly to be mentioned : It concerns the very last part of this report when
we study the interplay of envelops, lifts and compact embeddings, including first entropy numbers estimates
obtained as applications of envelope results. This seems to be a promising new subject and worth to be
investigated further; it is, however, left for future work.

We are thus immediately led to further confessions what will not be contained in this report :

e no approximation number results : Another tool to characterise compact embeddings more precisely is
the concept of approximation numbers which can be used effectively for applications, too. We dealt
with corresponding estimates in [EHOO], that is in the model case described in Section 3, and in [Har01]
briefly. But as we lack results for the first model case in Section 2 and have to restrict the length of the
report anyway, we decided to skip this topic completely.

e no more general settings (measure spaces, homogeneous spaces) : Likewise we dealt in our papers [Har98]
and [Har01] with slightly more general settings than presented here; the first model case given in Section 2
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is considered in the framework of homogeneous type spaces in [Har98, Sect. 5] whereas the approach in
[Har01] relies partially on more general measure spaces than R" equipped with the Lebesgue measure
only. For reasons of consistency (and length) we also omitted these extensions.

e no applications : Finally, we do not give any applications of our entropy number results in the sense
indicated in Section 1.3.3. Although we pursued this line in both model cases, see [Har98, Sect. 4],
[Har00a, Sect. 4], [EHOO, Sect. 4], and consider it in fact for one of the strongest reasons to study
entropy numbers in detail, we have to leave it out by means of restriction simply. Nevertheless we
decided to outline the link between entropy numbers and possible applications in Section 1.3.3 briefly, as
the motivation to study questions of compactness in limiting cases appears essentially weaker otherwise.

Formally the report is built upon our papers [Har98], [Har00a], [EH99], [EH00], [Har00b] and the recent
preprint [Har01]. More precisely, in Section 2 we use results from [Har98] and [Har00a], whereas Section 3
relies on [EH99], [EHO0] and [Har00b]; Part Il consists of [Har01] mainly. All the material is selected and
re-arranged under the above-described programme and restrictions. Moreover, we do not give any proofs of our
results here (apart from very few original assertions); they can be found in the original papers according to the
given references. We insert some sketches of proofs only when we think it indisputable for the comprehension
of the background, for realising technical difficulties, or, conversely, the interaction of apparently separated
components and methods. Certainly this reduces the comprehensibility of a mathematical report necessarily;
but we found no reasonable alternative in view of its length. On the other hand we tried to lay more emphasis
on the account why this and that solution or definition was chosen — correspondingly the presentation how it
worked technically came second to it. This also explains that we conceded motivating arguments, examples
and comparisons (with well-known facts) relatively large scope. We hope that this selection of the material
and concentration on more descriptive and explanatory elements does not prevent but — quite the reverse —
encourages the honourable reader !
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Part |
Limiting embeddings, entropy numbers

2 Moaodified integrability

2.1 Introduction

We start with a model case for id,, from (1.4.3). It is known by Theorem 1.2.1 that the embedding operator
idg : Hy! (w(),R")  —  H2(R") (2.1.1)
is continuous if, and only if, the weight function w(z) is bounded from below,

w(z) >e¢>0, zeR, and 0= <51——> — <52—£> >0, (2.1.2)
P2

where —o00 <53 <51 <00, 1<p; <py<oc, and w(z) is of type
w(z) = (z)* log"(z) , a€R peR

Moreover, idp from (2.1.1) is compact if, and only if, w(z) — oo as |z] = oc and & from (2.1.2)
is positive, § > 0. We are thus led to the problem of characterising this compactness of idy further in
terms of entropy (or approximation) numbers. We studied this question in [HT94a], [Har97a] and obtained
estimates for the respective entropy numbers ey (idg) of the form e (idy) ~ k *log?(k), k € N, where
the numbers s, (3 depend upon the given parameters s;, p;, i = 1,2, and the weight function, see also
our survey [Har97b].

There are various possibilities to come to ‘limiting embeddings’ based on (2.1.1). According to the philosophy
of this report (1.2.15) we stick at 6 = 0 now. Obviously compactness of idy from (2.1.1) is then lost
independently of the weight chosen. We handle a model case first and simplify the setting as much as possible
from the very beginning. We assume for the target space s; =0, i.e. a Lebesgue space L,,(R"), and fix
the weight by w(z) = log®(z), 8 > 0. Now the idea is clear : the source space Hp! (logﬁ(:n), R™) becomes
smaller depending upon 3 > 0. Although this is not sufficient to gain compactness of

id® : H? (logﬁ(:n),]R”) — Ly, (RY), (2.1.3)
where >0, s1>0, 1 <p; <py <oc,and s— pﬂl = —p%, one tries to enlarge the target space L,,(R")

simultaneously to achieve compactness, but also keeping the integrability index po fixed (that is, preserving
d = 0). One needs reasonable extensions of L,,(R™) as described above. Here we benefitted essentially
from parallel work done for function spaces on bounded domains. Let 2 C R™ be a bounded C° domain
and denote by

(2.1.4)

idq : Hp! () — Ly, (),
where the parameters are as above. Embeddings of that type (in particular, what concerns questions of
compactness and corresponding entropy numbers) have been studied by EDMUNDS and TRIEBEL in [ET89],
[ET92] for the non-limiting case (6 > 0) and in [ET95], [ET96] for the limiting one (6 = 0), respectively; in the
‘limiting situation’ they led to the replacement of the target space L,,(€2) by the logarithmic Lebesgue space
L,,(log L)o(2), a < 0. Dealing with weighted spaces on R" — being in some sense the ‘natural counterpart’
of spaces on bounded domains — we follow this idea, but immediately face the problem of a suitable definition
for L,,(log L), (R™). The first main question to answer is to develop a reasonable definition of those spaces.
We present some motivation and our approach in Section 2.2. In Section 2.3 we give some more features of
the ‘new’ spaces, serving as some justification for their definition, too. Finally, we end this section with our
results on the compactness of embeddings of type (2.1.4) (where L, (R"™) is replaced by L,,(log L), (R"),
a < 0), and on corresponding entropy numbers; this is always compared with the associated non-limiting
outcome.

The material we present in this section is essentially based on our papers [Har98] and [Har00a]; we summarise
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in this report, however, only selected results — according to our general strategy to describe model cases only
focused now under a certain point of view : ‘how to handle limiting situations when non-limiting counterparts
are well-understood'. Likewise all related proofs and further minor results (which do not contribute to our
above question directly) are to be found in these papers according to the references given below. Moreover,
for the same reason we completely skip a discussion of possible applications as well as further extensions to
homogeneous type spaces in this context; details can be found in [Har98, Sect. 4,5] and [Har00a, Sect. 4].

2.2 Spaces of type L,(logl), and H;(logH), on R" ; basic properties

We introduce logarithmic spaces of type L,(logL), and H,(log H), on R". One should always keep in
mind that we study the embedding (2.1.3) with 8 >0, 51 >0, 1 <p; <p2 <00, and s— pﬂl = _p%' For
that reason and a parallel study related to (unweighted) spaces on bounded domains (2, where
idoo: Hy () —  Lp,(log L) ()

is compact for any a > 0, we try to enlarge L,,(R") slightly to some space L,,(log L)_q(R"™). The problem
thus consists in finding a suitable counterpart on R™ of L,(logL),(€2) given by Definition 1.1.1 (ii) with
p = q, as usual. There are, however, different ways of extension depending upon the preceding decision which
features should be kept in any case — and which might go lost. (At first glance one could hope, of course,
to find the one extension which carries over all nice properties of L,(logL),(Q) to L,(logL),(R™); but -
whether it appears disappointing or rather normal in life — this desideratum cannot exist.) One has to balance
advantages and disadvantages of this or that approach — according to the purpose one has in mind. Let us
only mention two different approaches of extending L,(log L),(Q) to R™ : firstly, a very natural way was
to replace [Q2] by oo in (1.1.11), i.e. to require

[e%¢) 1/p

/(1+ log ) F (1P dt | < oo

0

and to construct spaces on that basis. For later reason we shall call these spaces L,(log L)% (R"™). Another —
and from our point of view preferred — extension relies on a characterisation of spaces L,(log L), by means
of extrapolating L, spaces (corresponding to non-limiting situations). The gain following that method was
obvious — we could benefit from our exact knowledge on compact embeddings in non-limiting situation (as
briefly mentioned in Subsection 1.2.1) when tackling the limiting one. The price to pay for this better adapted
setting we choose is, for instance, that the spaces L,(logL),(R") and L,(logL)%(R"™) differ — unlike in
case of a bounded underlying domain ). We return to this point in Subsection 2.2.4 below.

2.2.1 Motivation — spaces on () revisited

Recall the definition of spaces L,(log L), () by Definition 1.1.1 (ii) with
p = ¢q. As already announced we are more interested in characterisations
of these spaces by extrapolation techniques as obtained by EDMUNDS and
TRIEBEL in [ET96, Thm. 2.6.2, p. 69]. We start with some notation.
Introduce the strip

G:{<1,5>:O<p<oo,n<1—1><s<ﬁ}
p p p

in the usual (7, s) diagram, see Figure 1, where H} < (1,s), 0 <p < o0,
s € R Any line of slope n is characterised by its ‘foot point’ where it
meets the axis s = 0. For convenience we adopt the notation

S

1
p°

+ (2.2.1)

"=
319

where 1<p<oo, 0 €R and 1< p? < 0.
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Theorem 2.2.1 [ET96, Thm. 2.6.2, p. 69]

(i) Let 1<p<oo and a>0. Then Ly(logL)_,() is the set of all measurable functions f:Q — C

such that
y » do 1/p
([ [z 4) " <o (222)

0

for small € > 0, and (2.2.2) defines an equivalent norm on L,(log L)_, (). Furthermore, (2.2.2) can
be replaced by the equivalent norm

oo 1/p
(Z 2_j“”||f|Lpg(j)(Q)||p> < o0 (2.2.3)
j=J

for large J € N and o(j) =277.

(i) Let 1<p<oo and a>0. Then Ly(logL),(2) is the set of all measurable functions g:Q — C
which can be represented as

(e}
9= Zgj 95 € Ly—oin (), (2.2.4)
j=J
for large J € N, with
. 1/p
(Z2lglz, o @) <o (225)
i=J

The infimum of the expression (2.2.5) taken over all admissible representations (2.2.4) is an equivalent
norm on Ly(log L), ().

There is also an extension of this theorem to spaces L, ,(logL),(2) in [Har98, Prop. 2.5]. Note that
assertion (ii) looks technically more complicated because we have (in the above notation)

Lo (@) = LylogL)a(Q) < Ly(Q) < LyllogL) o(Q) < Le(®), [Q<oc,  (226)

where 1 < p < oo, a >0, such that f € L,(logL)_,(?) belongs to all spaces L,-(Q2), o > 0, in (i),
whereas this is not the case in situation (ii); see also (1.1.13). When a > 0, there is a similar result in [Sob98]
by SOBUKAWA.

Remark 2.2.2 We want to discuss the use of the above theorem for our purposes a bit further. The idea
of this characterisation is to ‘approximate’ spaces L,(log L),(£2) by usual Lebesgue spaces in a precise way
(rather than by (2.2.6) simply). The main reason for this in [ET96] was to make these spaces L, (log L),(f2)
(appearing in limiting embeddings) more handy, especially from the standpoint of entropy numbers. Denoting
(non-limiting) embeddings H.(Q) < Ly- () by id,, that is,

idy : H.(Q) — Ly (9), (2.2.7)

where s >0, 0 >0, 1<p< oo, itiswell-known that id, is compact, see (1.2.13) with 6. = o > 0.
The asymptotic behaviour of its entropy numbers is determined by e(id,) ~ k==  for all o > 0, see
(1.3.3). So if one succeeds to control the dependence of the equivalence constants upon the number o > 0,
one can hope to benefit from the non-limiting case when treating the limiting one. We return to this point
later in Section 2.4 when we study the entropy numbers of limiting embeddings in detail. In the course of this
programme, EDMUNDS and TRIEBEL needed the above characterisation of spaces L,(logL),(f2) in terms
of ‘nearby’ Lebesgue spaces L,-(f2) or L, .q) (), respectively.
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In Figure 3 we additionally illustrated this idea in the (%, s)-diagram,

recall Figure 2. One is finally interested in the limiting embedding
id: Hp. () — Ly(Q), where 1 <p < oo, s>0. Thisembedding
is continuous, but not compact. However, replacing the target spaces
L,(Q) by slightly larger spaces L,(logL)_,(€2), a > 0, one regains
compactness and can further ask about the (asymptotic) behaviour of
the corresponding entropy numbers. The essential trick of EDMUNDS
and TRIEBEL was now to study the same question, but taking into
consideration that one has information about e (id,) for all o > 0.

Figure 3

2.2.2 Definition and elementary properties

We look for spaces larger than L,(R™) which additionally should be extensions of L, (log L),(£2) in case of
bounded ©Q C R™. In order to emphasise whether we are dealing with extensions (or restrictions) of the usual
L, space, we prefer the notation Ly(logL)_,(Q) or Ly(logL),(), respectively, now always assuming
a > 0. We retain this notation in this section.

In view of the norm expression (2.2.2) one immediately realises that in case of bounded domains 2 (or, at
least, with finite measure || < co) those spaces L, (€2) are monotonically embedded,

Ly() = Lpe () = Lo (), 0<p<0, (2.2.8)

which becomes false if ) is replaced by R™. One has to find a reasonable substitution of that fact in the R”
situation. In a first step we slightly modify (2.2.2) in case of annuli Q = A,;, ¢ €Ny, see (1.1.24), (1.1.25),
by
- 1/p
do
[ oM L (b A0
0
where (z) is given by (1.1.1) and || - |L4(w(.),Q)|| is the weighted L, norm, see (1.1.52). In view of
(2.2.2) one recognises that (2.2.9) is an equivalent norm on L,(log L)_,(A;) for any fixed ¢ € Ny, because

1f1Lpe (§2) =7, Al ~ 27 (| F|Lpe (D) -

, (2.2.9)

Furthermore, Holder's inequality provides

Lp(A)) = Lye((2)™2, A)) = Ly ()77, Af), 0< o< (22.10)

A simple replacement of || - [L,-({z) 7, A¢)|| by its R™— counterpart still fails, but monotonicity as in
(2.2.10) was important for the construction in (2.2.2). We may cope with these problems using interpolation
arguments. In particular, one can prove that for 1 < p < oo a Holder inequality of type

Lpg,p(Rn)-Ln/(g_Q)7oo(]Rn) ‘—)Lpgp(]Rn) , 0<o<o0,
holds, meaning that whenever f € L. ,(R") and g € L,,/(s—p),o0(R"), then fg belongs to Ly- ,(R"),
i.e
1791 Lpe p(R*)[| < [ f|Lpe p(R™)I 9] L/ (o-g) , 00 R 5
cf. [Har98, Lemma 2.12]. Choosing g(z) = (¥)77 € Ly/s, o (R") we thus obtain
Ly(R") <= Lpep((2)"%RY) < Lpe p((2)77,R"), 0<p<o, (2.2.11)

that is, the desired substitute of (2.2.8). So replacing L,-(2) in (2.2.2) by Ly- ,({(z) 7, R") as basic
spaces, ¢ > 0, we arrive at the definition for spaces L,(logL)_,(R"); in view of Theorem 2.2.1 (ii) it is
complemented with the definition of L,(log L), (R").



26 2. Modified integrability

Definition 2.2.3 [Har98, Defs. 2.13,2.20] Let 1<p<oo and a > 0.

(i) The space Lp(logL)_o(R™) is the set of all measurable functions f:R" — C such that (z)~° f €
Lpo »(R") for small ¢ >0, and

£ 1/p
do
|1 f|Lp(log L) —a(R™)[| := /U“p||<$)7”f|va,p(]R")||p —~ < oo (2.2.12)

0

for small € > 0.

(i) The space L,(log L), (R™) is the set of all measurable functions g : R* — C which can be represented
as

9= g, (@79 g; € Ly0i H(R) (2.2.13)
j=J

for large J €N, o(j) =277, and

; p
(52 lero @l ) <o 2214
=7

The infimum of expression (2.2.14), taken over all admissible representations (2.2.13) is defined as
gl Lp(log L)a(R™)]|.

In the above definition we have introduced spaces L,(logL),(R"), 1 <p < oo, a € R, a # 0. For
convenience we adopt the following notation,

Ly(log L)o(R") := L,(R"), 1<p< oc. (2.2.15)

Clearly, Definition 2.2.3 gives the desired R — counterpart of Theorem 2.2.1 characterising spaces L,(log L),,
a € R, 1< p< oo, by extrapolation techniques based on (weighted) Lorentz or Lebesgue spaces, respectively.

Remark 2.2.4 The above definition can also be extended to the cases 0 <p <1 or p = oc, resp., but we
omit these generalisations here. Moreover, let us additionally assume that € > 0 and J € N are chosen such
that all involved spaces L,-, and L, .(), are Banach spaces. In view of Theorem 2.2.1 (i) expression
(2.2.12) can be complemented by its discrete counterpart :

o0

1| Lp(log L) —a(R™)[| ~ (Z 9—jap

i=J

. p\ /P
<x)*0<i>f\Lpg(j),p(Rn)H ) (2.2.16)

where o(j) =277 and J €N is large.

One can introduce spaces L, ,(logL),(R"), 1 <p<oo, 1<¢qg< o0, and a € R, completely analogous,
cf. [Har98, Defs. 2.15, 2.21]. We come to the definition of spaces H, (log H),(R") now.

Let o € R, recall that I, is the usual lift operator, mapping H,(R") isomorphically onto H;~7(R"),
s€R, 1< p<oo. Inparticular, I_sL,(R") = H}(R"), see (1.1.32) and (1.1.53), respectively.

Definition 2.2.5 [Har00a, Def. 2.1] Let s€ R, 1 <p<oo and a € R Then Hj(logH),(R") is the
set of all f € S'(R") such that I;f € L,(logL),(R"™), with

1 f1H;(log H)a(R™)|| := |[5f|Lp(log L)a(R™ )] (22.17)
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Note that by (1.1.32) we extend our convention (2.2.15) by

Hj(log H)o(R") = H(R") ;  HO(log H)a(R") = L (log L)a(R") (2218)

where 1 < p < oo, s€ R a€R Moreover, using Definition 2.2.3 (i) we obtain that for 1 < p < oc,
a >0,
5 1/17
a Y do
|71 g H)—a(BY)| = | [ (a7 Lf Lye p (B <2
0
Likewise the counterpart for Hy(log H),(R™) can be given by Definition 2.2.3 (i) : Some g € S'(R")
belongs to H,(log H),(R"), 1 <p<oc, a>0,if, and only if, it can be represented as

(2.2.19)

g= Zgj , <;U>U(j)(Isgj) € Lp—g(j)7p(]Rn)’ (2.2.20)
i=J
for large J € N, o(j) =277, (convergence in S') and

o0 l/p
(Z?WMM%WWWWAWW> < oo. (22.21)
j=J

Now |[|lg|H,(log H),(R")[| is the infimum of expression (2.2.21) taken over all admissible representations
(2.2.20).

We end this subsection with some elementary properties of the above-defined spaces with the conventions
(2.2.15), (2.2.18).

Proposition 2.2.6 [Har98, Props. 2.16, 2.22], [Har00a, Prop. 2.2] Let s€R, 1< p< 0.

(i) Let a€R. Then Hj(log H),(R") is a Banach space (using equivalent quasi-norms).

(i) Let a>0. Then Hpy(logH)u(R") — Hy(R") <~ H(log H)_o(R").

iii) Let a; > ay, then Hj(logH),, (R") < H,(log H)a,(R").

(iii)
(iv) Let a € R, then I gL,(logL),(R") = H(logH).(R").

Taking our convention (2.2.15) into consideration we thus arrive at some analogue of (1.1.12), (1.1.13), now

in case of R" :
L,(logL)o(R™) <= L,(R") — Ly(log L)_,(R™) (2.2.22)

for a>0, 1<p<oc.

2.2.3 Examples

We look for some ‘typical’ function belonging to L,(log L),(R"), 1 < p < oc, a € R; recall our convention
(2.2.15). All spaces in this subsection are defined on R™ unless otherwise stated. We briefly recall the
situation of bounded domains first. Let

1
0= {y eER™: |y < 5} (2.2.23)
and 1<p<oc, N€éR Then

b(z) = \x\_ﬂlog\x\‘ik € L,(logL),(%) if, and only if, X > ! + a, (2.2.24)
p
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see [ET96, Ex. 5.3.3, p. 215]. The idea is to ‘extend’ these functions to R™, i.e. to investigate functions
g(z) = || 7| log|e|| ™, AeR, zeR". (2.2.25)

But this direct counterpart to (2.2.24) does not fit our needs as one easily verifies that ¢ from (2.2.25) belongs
to L, if, and only if, A > %. There is no way to find some ‘better’ bound for A (relying on the parameter
a additionally), such that, say, g € L,(logL)_, for some A < %. This necessarily fails as the restriction to
A is due to the global behaviour of g belonging to some space ‘nearby’ L,, whereas the local (logarithmic)
structure is neglected. But this does not correspond to the structure of the spaces L,(log L), as introduced
in Subsection 2.2.2. One has rather to concentrate on local-global characterisations, i.e. searching functions
f(x) which locally behave like b(z) from (2.2.24) but additionally satisfy convergence conditions (in the
sense of L,). Let ¢ € C§°, supp ¥ C Q, where Q is given by (2.2.23), 0 <9 <1, and ¢(z) =1 if
z| < 1. Put

fl@) = (@)% (logla) ™) 3" o — k| 7F |log & — k| p(z — k)
keZ™
~ 3" (k)T (log(k)) TR |o — k7| log|a — KI| 7 (z — k) (2.2.26)
keZ™

where = € R” and + > 0. Obviously the first multiplicative term on the right-hand side of (2.2.26), i.e.
n 1

(z) » (log(w>)7(7+P), belongs to L, itself whereas the sum refers to the local structure, see (2.2.24).

We have shown in [Har98, 2.5] that f from (2.2.26) belongs to L,(logL)_,, a > 0, if, and only if,
A > % —a,and f € L, if andonly if, A > %. In other words, f € Ly(logL)_,\ L, if, and only if,
% —a< A< %, meaning that the spaces L,(logL)_, , a > 0, are in fact extensions of L,. Furthermore,
application of Hdélder inequalities (as presented in Section 2.3.3 below) yields that f from (2.2.26) does not
belong to Ly (logL), incase of A < - +a, a>0; hence f€ L,\Ly(logL), when - <A< 1 +a
Consequently th spaces L,(log L), are properly contained in L, for a > 0.

2.2.4 An alternative approach

Obviously the spaces L,(logL)_,(R™) introduced above by an extrapolation approach possess those (basic)
properties we had in mind; that is, they extend the already known L,(logL)_, spaces on domains in a
reasonable sense and as much monotonicity is preserved as could be expected in case of R", see (1.1.12),
(1.1.13) and parts (ii) and (iii) of Proposition 2.2.6, resp. We shall derive further useful features in Section 2.3
below, but briefly present another approach first.

In view of (1.1.11) the following extension of L,(logL),(€2) appears natural. Let 1 < p < oo, and a € R.
Denote by L,(log L)% (R"™) the set of all measurable functions f: R" — C such that

o

1/p
111y (10g L) (R™)|| = ( [ oty ey dt) (2.227)

0

is finite, where f* is given by (1.1.7). These spaces have been introduced as Lorentz-Zygmund spaces by
BENNETT and RUDNICK in [BR80, (1.4)]. Obviously

L,(log L)*(R") < L,(R") = L,(log L)* ,(R"), a > 0.

In contrast to the situation on bounded domains, see Section 2.2.1, those spaces do not coincide with the
spaces given by Definition 2.2.3. Moreover, these spaces are different in the sense that there is no general
inclusion relation between, say, L,(logL)* ,(R") and L,(logL)_;(R") for a,b > 0 — though they have
a non-empty intersection containing L,(R™) : We return to example g(z) given by (2.2.25). One verifies
g € Ly(log L)=,(R") \ Ly(log L)—4(R") for - —a < XA < 4 andall b > 0, see [Har98, Sect. 2.5].
Conversely, in case of b > a > % take f(z) given by (2.2.26). Then f belongs to L,(logL)_,(R"™) if
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A> % —b but f¢ Ly(logL)* ,(R*) for A< % —a <0, see [Har98, 2.2]. Now for b > a > % one can
always choose A with +—b <X < - —a <0 suchthat f belongsto Ly(logL) 4(R")\ Ly(log L), (R").
Similar arguments can be stressed concerning L,(log L),(R™), L,(logL)*(R"), a > 0.

In other words, extending L,(logL),(22) to R™ by Definition 2.2.3 or (2.2.27), respectively, leads to
different concepts of spaces. The spaces L,(logL)(R") have been thoroughly investigated in a series
of papers by EDMUNDS, GURKA and Opic [EGO95a], [EGO95b], [EGO96], [EGO97], [EGO98],[EGO00],
[GO98], and by EvaNs, OPic and P1cK in [EOP96], [EO00], and [OP99]. However, in our opinion the spaces
L,(log L),(R™) seem to represent the needed extensions to R™ in the context of entropy numbers we aim
at.

Turning to logarithmic Sobolev spaces H,(log H), on R", there is also a parallel approach, based on
Ly(log L), (R™) instead of Ly(logL),(R"). Denoting these spaces by H,(log H);(R") accordingly, a € R,
1< p<oo, s>0, one can define them in a parallel way to Definition 2.2.5, i.e.

feH,(logH),(R") <= I,f€ Ly(logL);(R").

This has been done, for instance, in [EGO97, (2.8)]. It follows by our above remarks about L, (log L)% (R")
and L,(log L),(R") thatalso H(logH);(R") and H,(log H).(R") cannot coincide. OPIC and TREBELS
followed a similar line when introducing their spaces H»*® (L,) in [OT00] : the basic space L, is lifted by
a logarithmically adapted version of (1.1.33).

2.3 Further properties

We briefly discuss some more features of L,(logL),(R") and Hy(log H),(R") as introduced in Defi-
nitions 2.2.3 and 2.2.5. The intention is twofold : a better illustration of the new members in the already
well-equipped world of function spaces on the one hand, and, secondly — and more important — to expound
our grounds for introducing new spaces rather than studying existing concepts (like L,(log L)%(R™)) further.

2.3.1 Local versions

An important tool when studying entropy numbers on R™ is to reduce this problem essentially to the related
question of embeddings of function spaces on (particular) bounded domains, say, annuli {A4,}sen,, granted
that the dependence of appearing constants upon that special domain can be controlled. Here the annuli are

given by (1.1.24) and (1.1.25). We introduce subspaces Lp(la\g/L)a(Ag) of Ly(logL),(R™) by
L,(logL)o(A) = {f € L,(log L)o(R") : supp f C Ag} | (2.3.1)
where 1 <p<oc, a€R and £€N,.

Proposition 2.3.1 [Har98, Lemmata 2.17, 2.23] Let 1 <p< oo, a € R; let Ay, ¢ € Ny, be the above
annuli. Then . .
| f|Lp(log L)a(Ar)|| ~ 2% || £(2%) | Ly(log L)a(Ao) | (2.3.2)

for all f € L,(logL),(R™) with supp f C A,.

Remark 2.3.2 In case of Ay (or any fixed bounded €© C R") we have L,(logL),(A4o) = Lp(l/os\g,/L)a(Ag)
(appropriately interpreted), where the spaces L,(log L),(Ag) are given by Definition 1.1.1 (i) and (1.1.6),
see [Har98, (2.52), (2.70)]. Furthermore, having the lift operator I, available in spaces of type H, (log H),,
see (1.1.33) and Proposition 2.2.6 (iv), we do not need a counterpart of (2.3.2) when dealing with entropy
numbers and spaces of type H(log H),(R").

In addition to the extrapolation matter already explained this local behaviour is the second main reason for us
to extend L,(logL),(©2) as given in Subsection 2.2.2 (unlike L,(logL)%(R™)) : an easy calculation shows
that using the (quasi-) norm (2.2.27) there is no counterpart of (2.3.2). But this property is essentially needed
in our argument when dealing with entropy numbers below.
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2.3.2 Duality

When defining spaces L,(logL), on R™ one naturally wants to keep duality assertions — known from the
case of bounded domains. Moreover, duality can also be used to extend results on entropy numbers, relying
on an important paper by BOURGAIN, PAJOR, SZAREK and TOMCZAK-JAEGERMANN [BPSTJ89].

Let @ C R™ be a bounded domain and L,(log L),(2) as given in Definition 1.1.1 (i) with p = ¢. Then
one has

1 1

S =l (2.3.3)
where the dash ' denotes the dual space; see [BR80, Thm. 8.4, p. 30], [ET96, Prop. 2.6.1/2 (i), p. 68]. The

counterpart on R™ reads as follows.

[L,(log L) o()] = Ly(logL),(Q), 1<p<oo, ack,

Proposition 2.3.3 [Har98, Prop. 2.26] Let 1<p < oo, and a € R. Then

[Ly(10g L)a (RY)]' = Ly (log L) o (R") . (2.3.4)

We come to spaces Hj(log H),(R"), 1 <p< oo, a€R se&R Recall that [H;(]R”)]' = H*(R"),
where s € R, and 1 < p < oc; cf. [Tri78a, Thm. 2.6.1(a), p. 198]. Here the duality is understood in the
sense of the [S,S'] pairing, as usual.

Proposition 2.3.4 [Har00a, Prop. 2.4] Let s€ R, 1<p< oo, and a € R. Then

[H3(log H)a(R)]" = H,*(log H) o (R") . (23.5)

EDMUNDS and TRIEBEL proved in [ET96, Thm. 2.6.3 (iii), p. 79] a counterpart for spaces H, (log H).(f2)
defined on a bounded C*° domain QCR", 1<p<oc, a€R and s> 0.

2.3.3 Héolder inequalities

It is often very useful to have special Holder inequalities available when using results on entropy numbers in
order to estimate eigenvalues of compact operators acting in, say, (weighted) L,— spaces. This has been
carried out in detail in [Har98, Sect. 4] and [Har00a, Sect. 4]. Though applications (of that type) are out
of the scope of the present report we want to mention some results on Holder inequalities in spaces of type
Ly(log L), (R™) and Hp(log H),(R"). Besides Hélder inequalities serve for the extension of our example in
Section 2.2.3, too. Note that all spaces are defined on R™ unless otherwise stated.

Proposition 2.3.5 [Har00a, Prop. 2.6] Let 1 < p,q < oo with % = %+% < 1. Let a,b € R and
c<a+b. Then
L,(logL), - Ly(logL), — L,(logL), . (2.3.6)

Note that (2.3.6) has to be understood in the sense that whenever f € L,(logL), and g € L,(logL); ,
then fg belongsto L,.(logL). ,i.e

1fg|Lr(og L)e|| < ¢ [|f|Lp(log L)all [lg|Lq(log L)s]|-

The result in the form given above coincides with [Har00a, Prop. 2.6] and extends in that way [Har98, Cor.
2.29]. There is, however, an even sharper version in [Har98, Prop. 2.27] where we obtained that

1f9\Lell < c|If|Lp(log L)—all llglLq(log L)all ,
1

and 1<p,q<oo with = % + % < 1, a > 0. But this improvement is achieved at the expense of some
additional assumptions imposed on g € L,(log L),; we refer to [Har98, Prop. 2.27] for details.
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Remark 2.3.6 It is obvious that the outcome (2.3.6) is sub-optimal in the sense that one would like to have
¢ =a+b in view of the classical Holder inequality (when a =b = ¢ =0 in our notation). On the other
hand it turned out, that in applications this version (with ¢ < a + b instead of ¢ < a + b) is completely
sufficient.

Let us mention the parallel result when dealing with spaces L,(log L)% instead of L,(logL),; see Subsec-
tion 2.2.4. Recall that L,(log L)% are Orlicz spaces when a > %, see [BS88, Ch. 4, Sect. 8, pp. 265-280] for
the notion of an Orlicz space and [BS88, Ch. 4, Ex. 8.3(e), p. 266] for this fact. Using YOUNG's inequality,
cf. [BS88, Ch. 4, Thm. 8.12, Lemma 8.16, pp. 271-276] — one can conclude that

L,(logL); - Ly(logL); — L,(logL): (2.3.7)

holds with ¢ = a + b, where 1 < p,q < oo, %:l+%<1 and a >

7 , b> % | thank this hint my
colleagues L. PicK and A. CIANCHI.

1
P

We seek for some counterpart of Proposition 2.3.5 in case of H;(log H),— spaces, a € R, 1 < p < oo,
s > 0. We briefly mention what is known when a = 0; recall notation (2.2.1). In [ST95] SICKEL and
TRIEBEL studied Holder inequalities in the wider framework of Besov- and Triebel-Lizorkin spaces. In our
case of (fractional) Sobolev spaces their result reads as

H.-H:. < HZ, (23.8)

where s >0, 1< p,g<oo with =+ <1, see[ST95 Thm. 4.2.1]. Note that (2.3.8) is the

classical Holder inequality when s = 0. Moreover, there is an extension of (2.3.8) to some negative s € R

by EDMUNDS and TRIEBEL in [ET96, Thm. 2.4.5, p. 56] :
Hy.-HS < H

where s € R, 1< p,q<oc with pl—s = % +£>0 and 1= % + % < 1. In case of logarithmic Sobolev

spaces on bounded domains, H (log H),(2), EDMUNDS and TRIEBEL obtained in [ET96, (5.3.3/30), p. 219]
Hp.(log H)o(Q) - Hy. (log H)y(Q)  —  HL(Q), (2.3.9)

where s >0, 1<p,qg<oc with % = % + % <1,and b> —a > 0. Here Q isa bounded C*> domain
in R™. In view of (2.3.6), (2.3.8) as well as (2.3.9) the desired result in our case was

Hp.(logH), - Hy:(logH)y <  Hp(logH), (2.3.10)
with s >0, 1< p,qg< o0, % = % + % <1 and ¢ < a+b. But we are not yet able to prove (or disprove)

an assertion of that type. However, in some special case we may verify (2.3.10) and give the counterpart of
[Har98, Prop. 2.27].

Proposition 2.3.7 [Har00a, Prop. 2.10] Let s>0, a>0, 1 <g<oc with ¢°>1. Let 1 <p< o0

be such that p* > 1 and + = % +% <1 Let g€ Hp.(logH), and assume that {g; = ¢;g}72; is an
admissible representation of g according to (2.2.20), (2.2.21), i.e.
1/p*
o0
S 2 L (039)| Lyprmoir e (@) | < o (2311)
i=7

where J € N s large, o(j) =277, and {¥j}52, is a smooth dyadic resolution of unity. Then fg € H,.
for any f € Hp.(logH) ,,

1fglHy

<c ||f‘H;s (lOgH)—a” ||g|H55 (lOgH)a” .

In contrast to the situation s =0 we cannot yet replace the probably rather technical assumption (2.3.11)
by the more convenient one g € H.(log H); for b > a.
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2.3.4 Equivalent norms

Let s€N, 1<p<oo. Itiswell-known, that H;(R") =W/ (R"), ie.

IFIH; RN~ > 1D FILy R (23.12)

lor|<s

where a € NJ, |a| =a1+...+ay, and f € S'(R"), see [Tri78a, Thm. 2.3.3, p. 177], for instance. In case
of logarithmic Sobolev spaces on bounded C'>° domains one has a parallel result for s € Ny, 1 < p < o0,
and a € R :

If1H; log H)u(@)]] ~ > 1D fILy(log L)a(Q)]] .

laf<s
see [ET96, Thm. 2.6.3, p. 79]. Thus it is reasonable to ask whether a similar assertion is true in case of
logarithmic Sobolev spaces on R™. We obtain the following.

Proposition 2.3.8 [Har00a, Prop. 25] Let m € Ny, 1 < p < oc and a € R Then f €
H'(log H),(R™) if, and only if, D®f € L,(log L)o(R"), |a| < m, and

IF1H (log H)o(B™)|| ~ 3 |[D*f|L,(log L)a(R")]]. (23.13)

loa|<m

Remark 2.3.9 A parallel result for spaces L,(log L);(R"), H,(logH);(R") was obtained by EDMUNDS,
GURKA and OPIC in [EGO97, Thm. 4.2].

2.4 Compact embeddings, and entropy numbers

We return to our initial problem (2.1.1) and study the following embedding map in the sequel,
id? : H3) (log H)o, (log?(2), R")  —  H32 (log H) oy (R?), (24.)

where —oc0 < s9 <51 < 00, 1< p; < ps < oo, with sl—pﬂl:sQ—p%,and aj,az € R, g€ R Al

spaces are defined on R™ in the sequel unless otherwise stated.

2.4.1 Embeddings

We first investigate when the above embedding (2.4.1) is contin-
uous or even compact. Thus we always assume in the sequel that az a1 = as
siy Pi, © = 1,2, are given as above and fixed now. We concentrate
on the remaining parameters aj,as,3 € R and their influence

upon continuity or compactness of id?. So we also use (ai,as)- A b A,

diagrams now, sometimes additionally depending upon 3 € R. A Ay
Proposition 2.4.1 [Har00a, Prop. 3.1] ay
Let s1 > s9, 1 <p; <ps < oo with sl—pﬂl:sQ—pﬂz and

id°®  be gi Aj = Ay

id? be given by (2.4.1).

(i) id? is continuous if aj; >as, B >0.

(i) 4d% is compact if s >sy, >0 and

Figure 4
a; > as, a120, GQSO- g

We illustrated Proposition 2.4.1 in Figure 4, where A;, A, temporarily denote the spaces involved in (2.4.1),
and A; << A, stands for the compact embedding id”?. Note that the result (i) is known when a; = as = 0;
it follows from our more general result Theorem 1.2.1. Furthermore, by Theorem 1.2.1 (ii) the assumption
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B > 0 for the weight function in (ii) appears reasonable, though we cannot have a compact embedding in
the situation covered by Theorem 1.2.1, i.e. s; — pﬂl = S9 — p% and a1 = a» = 0. Furthermore, there is
no continuous embedding for a; < 0, as > 0 and a; < a2, B > 0.This can be disproved easily by (ii)
combined with Theorem 1.2.1 (ii); see also the argument in [Har00a, Cor. 3.2]. In the remaining cases with
a1 < as the assumption is that there is no continuous embedding, too, but the proof in [Har00a, Cor. 3.2]

covers the case s; = so only.
Remark 2.4.2 Let 2 C R™ be a bounded domain, then one can similarly ask for which parameters
idq,q : Hp! (logH),,(Q) — Hpz (log H),, () (2.4.2)

is continuous or even compact. In that case EDMUNDS and TRIEBEL [ET96] as well as EDMUNDS and
NETRUSOV [EN98] have proved that idg , is compact when s1 > s9, 1< p; < ps < o0, with s1 — pﬂl =
Sy — p%, and a; > as. From that point of view an extension of Proposition 2.4.1 (ii) — concerning the

parameters aj, as — might be true, but is not yet clear.

In the framework of different spaces L,(log L);(R") and H,(log H);(R") EDpDMUNDS, GURKA and OPIC
obtained in [EGO97], [EGOO00] parallel results on continuous or compact embeddings of type (2.4.1).

2.4.2 Entropy numbers

We investigate compact embeddings as given by Proposition 2.4.1 (ii); in particular, we study the asymptotic
behaviour of the corresponding entropy numbers. Clearly, by (1.3.2), this can be reformulated as to characterise
their rate of decay more precisely.

We postpone a discussion of related known results — in particular those for embeddings of spaces on domains
— to Section 2.4.3 below and come immediately to our results for limiting embeddings on R". Let

) n n
—00 < sy <851 <00, 1<p <ps <o, with sl—p—:sQ—p—,
1 2
(2.4.3)
a; >0, ay <0 with a; > as, and (3> 0.
For later reason we also introduce the number
. $1— s
s = min <a1 — 2) > 0. (2.4.4)
n

Recall our notation for id? given by (2.4.1).

Theorem 2.4.3 [Har00a, Thm. 3.7]  Let assumptions (2.4.3) be satisfied, then id’ is compact. Assume
that ai — as # #-°2. Then there are constants ci,co > 0 such that for all k € N

k—ﬂ* ’ ﬂ > o + 1
e kP < ep(id®) < e kP log?(k) , B=p 41 (2.45)
Eoe TR B <.+ 1.

Remark 2.4.4 We may complement Theorem 2.4.3 by the estimates related to the case a; —ay = #-2.
The counterpart of (2.4.5) reads then as

femHetE s Bz +1

P (2.4.6)

ck M < ep(idd) < cE{

s
M THas T

There are forerunners of the above theorem given in [Har98]; in particular, the case so = 0, a3 = 0,
az < —2% refers to [Har98, Thm. 3.5], whereas the setting sy =0, a2 =0, a3 > —222 s related to
[Har98, Cor. 3.7].
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We briefly illustrate the meaning of the restrictions in (2.4.5) concerning the interplay of aj,a> and 5. All
other parameters are assumed to be fixed for the moment; thus (2.4.5) and (2.4.6) provide upper and lower
estimates for the corresponding entropy numbers of the form

c k7" < e < e kT

(neglecting e-perturbations for the moment). Similarly to Figure 4 we have indicated in the (a;, az)-diagram
below these (usually different) exponents according to the areas given by (2.4.5) and (2.4.6). It is obvious
that for ‘strong’ weights w(z) = log”(z), that is where § is large enough ( 3 > p. + 1), the asymptotic
behaviour of the entropy numbers is determined (up to constants) by ey (zdg) ~ k~#+ whereas in the more
interesting case of small 3 > 0 we have no general result. But one may observe that in any case the different
behaviour is determined both by the a-parameters (contributing to ) as well as the weight [ (taking the

other parameters s; — pﬂl = 59 — 1% as fixed for the moment).

_ a _
as 5152 ay 2 ﬂ -1 —SlnSZ ap

ey ~ k—(a1—a2)

o
—B+1
o o k_¥
- Uy = 7
" 5t
v = S1;52
__S81—82
n
. $1— 8 S — 8
Figure 5 : The case (3 > ¥+1. The case 0 < 3 < g-&l.
n n

Using interpolation arguments for entropy numbers as presented in [HT94a, Thm. 3.2 (i)] together with
[Har00a, Cor. 2.9], the upper estimate in (2.4.5) for 3 < p.+ 1 can be improved slightly.

Proposition 2.4.5 [Har00a, Prop. 3.11]  Let assumptions (2.4.3) be satisfied with 0 < 3 < 222 +1 and

S1 — 82

ay; — < as <min(a; — B+ 1,0). (2.4.7)

Then for any € > (0 there is some c. > 0 such that for all k € N,

81 —82

er (zdg) < ¢ kTVtE with v = min <a1 —as, %) . (2.4.8)

Obviously (2.4.5) as well as (2.4.6) give (2.4.8) when ay < a; — %2 e <222 4+1<a; —ax + 1.
Returning to our above diagrams in Figure 5, in particular, the right-hand side, Proposition 2.4.5 concerns
the upper exponent v, in the intermediate strip. So, roughly speaking, the achievement of (2.4.8) consists
in the removal of this strip (indicated by the two broken lines in Figure 6) and its replacement by the line L;
more exactly, we could extend both areas (where either vy = a; —ay or vy = 3/(1+ —2—) s a correct

81 —82
upper exponent) from the corresponding broken lines to the line L - neglecting e-terms for the moment.




2.4. Compact embeddings, and entropy numbers 35

In the diagram aside we sketched those areas in the
(a1,as)-diagram where the corresponding ‘upper’
exponents vy are of the same type. The lower
exponents v; are only given for completeness,
where vy = a; — as is ‘responsible’ for the area
a; — %2 <ap <0, whereas vy = #-22 con-
cerns the remaining part as < a; — **2. There
is no improvement in view of Theorem 2.4.3. How-
ever, concerning the ‘upper’ exponent v5, we could
remove the strip

aq

S1 — So

ayp —

< as < min(a; — B+ 1,0)

__S81—82 |~

(indicated by the two broken lines); compare the
right-hand side of Figure 5 and Figure 6.

Figure 6

We may summarise Theorem 2.4.3 and Proposition 2.4.5 in the following sense. Note that 0 < # < #*2 +1
and (2.4.7) imply v < -2 in (2.4.8). Recall our notation . given by (2.4.4). We complement it by

. . B . 81 — 82 B
1t Z:mln(,u*,ni“ =min | ap — a3, ——, — 1 < . (2.4.9)

S1—82 §1—82

Corollary 2.4.6 [Har00a, Cor. 3.13] Let assumptions (2.4.3) be satisfied; we make use of the above
notation. Then there is some ¢ > 0 and for any € >0 some c. > 0 such that for all k € N,

ck™h < ey (id?) < e kTHTEE (2.4.10)

with e =0 if ay —ay #3522 and B> p.+1 or 0< B <222 4+1<a; —ax+ 1.

n

At the moment, we have no better (‘sharper’) result to characterise the asymptotic behaviour of the entropy
numbers of embedding id?, given by (2.4.1) and (2.4.3). We do not even claim that the upper bound in
(2.4.10) (apart from e-terms) is the correct one. However, in some formal sense the number p* given by
(2.4.9) looks very reasonable in so far as the interplay between the ‘non-limiting’ exponent *1-%2 (see (a),
(c) in Section 2.4.3 below, respectively), and the auxiliary parameters aj,as and § in that limiting situation
is concerned. In other words, if we can manage to shrink the original space and/or to extend the target space
sufficiently well (by means of aj,as and [3) then we regain the ‘non-limiting' behaviour of the corresponding
entropy numbers, that is, when 3 > 0 and/or a; — as are sufficiently large. Certainly these quantities
should have some influence on the ‘quality’ of the compactness (measured in terms of entropy numbers), see
also (b) in Section 2.4.3 below, for instance.

Remark 2.4.7 By the same technique as presented above one can prove similar estimates for the entropy
numbers when (2.4.1) is replaced by

id® : Hpt (log H)a, ()%, R")  —  Hp2(log H)a, (R"),

where —00 < 89 < 81 < 00, 1< p; < pay < 00, with sl—pﬂlZSQ—pﬂz,and a>0.Let a; >0, ax <0
with a; > as, and assume a; — az # #-*2. Recall (2.4.4) and (2.4.9). Now p* = p, and hence

en(id®) ~  kHe. (2.4.11)

2.4.3 Comparison of limiting and non-limiting results

We described in Remark 2.2.2 the idea of approximating the limiting embedding idg ., : H,.(2) —
Ly(log L) (2) by means of non-limiting embeddings id, : H;.(Q) — Ly-(Q), o | 0, which were
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thoroughly investigated in the past; see also Figure 3. We return to this point and — after a short review
of related results for spaces on bounded domains — focus especially on the behaviour of the corresponding
entropy numbers under this approximation procedure. Let us always assume now

S§1> 82, 1<p <ps<oo, with 6251—2—52—}—220, (2.4.12)
P p2

for simplicity.

Embeddings of spaces on a bounded domain ()
Let O C R* be a bounded C* domain.

(a) Non-limiting case:  Let (2.4.12) be satisfied with § > 0 and idg : H;*(Q2) — H;2(Q). This situation
is covered by the general result of EDMUNDS and TRIEBEL in [ET89, ET92] :

S17-82

ep(idg) ~ k=77, keN, (2.4.13)

see also (1.3.3).

(b) Limiting case :  Let (2.4.12) be satisfied with § = 0 and let idg,, be the natural embedding given
by (2.4.2), where we additionally assume a; > as and a; — ay # #1222 In this situation studied by
EpmuNDS and TRIEBEL in [ET96, 3.4, p. 128-151], EDMUNDS and NETRUSOV in [EN98], and further
extended by CAETANO in [Cae00], one obtains for the corresponding entropy numbers

er(ida,.) ~ k™", keN, (2.4.14)
where p, is given by (2.4.4). In particular, when s =s;1 >0, s =0, p=ps, p1 =p°, a1 =0,
a:=—ay >0, and a# 2, then (2.4.14) implies,

er (id: H3.(Q) = Ly(log L) 4(Q)) ~ & ™), (2.4.15)

We want to link this with our Remark 2.2.2 briefly. Recall that by Theorem 2.2.1 (i) one can characterise
the target space L,(logL)_,(2) by extrapolating spaces L,-(2), ¢ > 0. On the other hand, (1.3.3)
yields for id,, given by (2.2.7),

e (idy  H3(Q) = Lo (Q)) ~ k »  forall >0, (2.4.16)

cf. [ET96, Thm. 3.3.3/2, p. 118]. Comparing the limiting result (2.4.15) with the non-limiting one
(2.4.16), one observes that the non-limiting exponent ‘— 2" survives when the additional parameter a > 0
is large enough, a > > otherwise it determines the behaviour of the entropy numbers.

One can obviously derive further estimates of entropy numbers in the case of non-limiting compact embeddings
when either source or target space is of logarithmic type; this can be obtained by decomposition techniques,
for instance, but is omitted here.

Embeddings of weighted spaces on R"

Clearly there are no compact embeddings in unweighted spaces on R™, thus we return to the setting described
in Propositions 1.3.2, 1.3.4. We link the situation studied now with our more general results in Sections 1.1.3,
1.3.2, where the weights are of type (1.1.51), w(z) = (z)* log"(z), a,p € R

(c) Non-limiting case, weighted spaces on R" : Let (2.4.12) be satisfied with 6 > 0 and assume first
a >0, p€e R for the corresponding weight function. Then we have by Proposition 1.3.2 for id**
given by (1.2.11),

s a>d eR
i { M (2.4.17)

ey (id*H ~ k™™=
k( ) a:(s , M>S1;SQ+1
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and for 0 < a < d and any number ¢ > 0,
k™ TR (log(k) M < en(id™) < ek TR (log(k)) TTRETIE L (24.18)
When a =0, pu= />0, then Proposition 1.3.4 gives
e1 k77 (log(k) ™7 < ey (id”) < e (log(k)) ™" . (2.4.19)

Note that (2.4.11) and (2.4.17) (with u = 0) coincide — also with the non-limiting situation on (2, see
(2.4.13) - assuming that in the limiting case a; — a» is sufficiently large, i.e. a; —as > #=°2, and in its
non-limiting counterpart the weight is strong enough, « > § (which is always the case in (2.4.11) as 6 = 0).
Though otherwise, when the weight is of purely logarithmic type, we have no sharp results in (2.4.10) and
(2.4.19), there are grounds for the supposition that the decay in (2.4.19) should be of power type, too — in

contrast to the upper bound in (2.4.19) so far.

Let us finally give the counterpart of (2.4.16), but related to the situation of weighted embeddings on R"™. For
simplicity we assume s=s1 >0, so =0, p=p2, pr =p°, a1 =0 and a = —ay > 0. We first compare
(2.4.10) with some non-limiting counterpart, i.e. we deal with the weight function w(z) = log’(z), > 0.
We shall consider only the case 3> 1+ 2 and a # 7; then Theorem 2.4.3, in particular (2.4.5) provides

e (id] - Hjo(log”{), BY) = Ly(log L) o(R")) ~ Kk "n(ed).
In view of (2.2.11) and Definition 2.2.3 (i) the counterpart of (2.2.7) is given by
idgpn H;s (logﬁ<x),]R”) — Lpo p((x)"7,R"), o >0, (2.4.20)

and we have by (2.4.17) with a =0 =0 >0, p=p8> 142 =1+ 2=% (and interpolation arguments
concerning the target space) that

s

Chk (idavR" : st (logﬁ<l‘),]Rn) - Lpa,p(<x>7J:]Rn)) ~ k== ;. 0>0.

Consequently the non-limiting exponent ‘—2" survives in that situation, too (like when studying limiting
embeddings of function spaces on bounded domains), supposed that @ > 0 and (3 > 0 are large enough.

The situation is even nicer when dealing with the weight w(z) = ()¢, « > 0: (2.4.11) implies

s
3

e (id® : H2.((2)*,R") = Ly(log L) _,(R")) ~ k= ™n(®%)

if a# =, whereas for the counterpart of (2.4.20)
idg o + Hyp ((2)*, R") — Lpo p((2)77, R") , 0 >0,
it follows by (2.4.17) with o' =a+0>d=0>0, p=0, s=s; — s> (and interpolation arguments)
er (idggn : H3. ((x)*, R") = Lypo ,((z) 7, R")) ~ e

The conclusion is the same again : turning from the non-limiting situation — with Ly~ ,({(z)~7,R"), ¢ > 0,
as target spaces — to the limiting one — now embedding into L,(log L)_,(R") - the asymptotic behaviour
of the corresponding entropy numbers changes from k== to k~ min(“’%), assuming that a # > and the

weight is strong enough (either w(z) = log®(z) with 3 > 2 +1 or w(z)=(x)*, a >0). Otherwise the
weight gains additional influence, as expected.

Conclusion.  We briefly summarise this short discussion. It is obvious that — even when dealing with limiting
situations — there are settings such that the non-limiting behaviour of the corresponding entropy numbers is
preserved. The prize to pay for this achievement is some compensation measured in additional fine indices

ai,az € R. Moreover, following that process, new ‘limiting situations’ naturally arise, e.g. a; —as = 2 ;
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we leave this refinement process here. More important from our point of view was to close the gaps in (2.4.10);
but this is left for future work and — possibly — some even stronger motivation (than the aim for completeness
merely).

We have presented an obviously reasonable opportunity how to cope with limiting embeddings of weighted
spaces on R” of the type studied above. The introduction of spaces L,(logL),(R™) according to
Definition 2.2.3 led to a number of features which appear desirable in view of further investigations. The most
essential disadvantage is in our opinion the resulting diversity of spaces L,(logL),(R™) and L,(log L)%(R"),
being in sharp contrast to their counterparts on bounded domains 2 C R™. The reward for our deviation
from the ‘standard’ approach L,(log L)*(R™) lies in the outcome finally, permitting not only entropy number
estimates for related limiting embeddings but also a comparison with closely linked non-limiting assertions.
We do not know of parallel results when L,(log L), (R™) is replaced by L,(logL)%(R") as target space.

As applications are out of the scope of the present report we end our discussion of this first example here.

3 Modified smoothness

3.1 Introduction

We present a model case for idg from (1.4.4) and study the embedding

id: B, (Q) —s B2 (Q), (3.1.1)

P1,q1 Pp2,92

where Q C R" is a bounded C* domain, 0 < pi1, p2, q1, g2 < 00, s1, $2 € R. The embedding (3.1.1)
is compact if

1 1
0<p1,p2§OO, §1 — 82 > N max <___:0>7 0<¢]1ﬂ12§00; (312)
p1 P2
see Section 1.2.1. Posing the question what happens when (3.1.2) is replaced by s; — pﬂl = 89 — p%,

0<pr <ps <00, 0<qr,q < oo, one firstly observes that the embedding (3.1.1) is no longer compact.
However, modifying the setting in this so-called limiting case by enlarging the target space sufficiently carefully
(where the initial space is assumed to be fixed now), this leads to compact limiting embeddings.

In contrast to Section 2 we shall recover compactness of (3.1.1) with s; — pﬂl = 59 — p% now by decreasing
the smoothness of the target space in such a way, that the smoothness s, is preserved and the embedding
becomes compact. In that way one quite naturally arrives at the introduction of new spaces with additional
‘logarithmic smoothness’. As an example one may consider the case s; = 1 and p; = co. It turns out
that in case of the B-spaces there is an interplay between the (usually neglected) g¢-parameters and the
additional logarithmic smoothness. This result is somewhat surprising in our opinion, though similar results
were obtained before; cf. [EOP96].

The second reason to deal with spaces of ‘logarithmic smoothness' in more detail, is the well-known and cele-
brated result of BREZ1S and WAINGER [BWS0] in which it was shown that every function u in Hp™"/?(R")
is ‘almost’ Lipschitz-continuous, in the sense that for all =,y € R?, 0 < |z —y| < L,

1/ 1+n/p(mn
[u(@) = u@)] < clz—yl |loglz—yl| " ulHL/P@)]) (3.13)

Here ¢ is a constant independent of z,y and wu, and z% + % = 1. Our aim in [EH99] was to investigate
how ‘sharp’ this result is (concerning the exponent of the log-term), as well as to look for possible extensions
to the wider scale of F'-spaces and parallel results for B-spaces. We found that the exponent i is sharp in
the F'-setting, whereas in case of B-spaces the sharp exponent turned out to be % As already mentioned
above, this important role played by the g-parameter is rather unusual. In that way (3.1.3) suggests some

definition of ‘logarithmic’ Lipschitz spaces Lip(l’_a)(]R”), a > 0, as the collection of all f € C(R™) such

that
‘ = [[f|Loo(R")[|+ sup  sup 1(Anf)(@)|

oz (3.1.4)
o<lhl<1/2 zern || |log]|hl|

| A1) @)
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is finite. Then the BREZIS-WAINGER result (3.1.3) can be extended to H;Jrn/p(]R”) o Lip Y (R if,
and only if, a> i where 1 < p < oo, % + i = 1. Moreover, generalising the spaces Lip(l’fa)
(3.1.4) further, one arrives at spaces Lip(;:ga), 1<p<oo, 0<qg<oo, a> % Likewise one asks which
embedding results can be derived for such spaces when p < oo, ¢ < 0o, and compares the outcome with the
case already studied, i.e. for p =g = oc.

Secondly, we discuss the compactness of embeddings into spaces of Lipschitz type and analyse these embed-

dings from the standpoint of entropy numbers : we consider the embedding

given by

id: ByVPU) —  Liph YWy,

where 0 < p,q < oo, a> % and U being the unit ball in R™, and determine the asymptotic behaviour
of its entropy numbers ey (id) for k € N large.

Finally, let us briefly mention that these logarithmic Lipschitz spaces also appear in other connections, e.g.
when studying (generalised) moduli of smoothness and related inequalities, see [BS88], [DL93]. Furthermore,
these spaces are involved when characterising the regularity of solutions in stationary problems (see [Lio98])
and when investigating hydrodynamics in Besov spaces (cf. [Vis98]). Thus it is not only of inner-mathematical
interest to study such spaces in greater detail, but also in view of applications. They are, however, out of the
scope of the present report.

3.2 Spaces of additional logarithmic smoothness

Spaces of generalised smoothness have been studied from different points of view, coming from the inter-
polation side (with a function parameter) we refer to MERUCCI [Mer84] and CoBOS, FERNANDEZ [CF88],
whereas the rather abstract approach (approximation by series of entire analytic functions and coverings) was
independently developed by GOL’DMAN and KALYABIN, see [Gol81], [Gol83], [Gol87a], and [Kal77], [Kal83].
Furthermore, the survey by KALYABIN and L1ZORKIN [KL87] and the appendix [Liz86] cover the extensive
(Russian) literature at that time. More recently, we mention the contributions of GOL’DMAN [Gol87b], [Gol94]
and NETRUSOV [Net88], [Net92] and of BURENKOV [Bur99]. We give further references below in connection
with special topics. One of the latest works is certainly that one of FARKAS and LEoroLD [FLO1] linking
function spaces of generalised smoothness with negative definite functions — and thus opening another scene :
the application to pseudo-differential operators (as generators of sub-Markovian semi-groups). Plainly all this
is out of the scope of the present report; it may, however, serve as some explanation that function spaces of
generalised smoothness have long been of interested already, but are far from being 'old-fashioned’.

3.2.1 Motivation

We were led to this subject quite naturally when dealing with (particular) limiting situations : It is well-known

that functions in the (fractional) Sobolev space H;M‘/I’(R”), when 1 < p < oo, are Hélder-continuous with
exponent «a for any a € (0,1) but need not be Lipschitz-continuous. This limiting situation was clarified
in an important paper by BREZIS and WAINGER [BW80] in which it was shown that every function u in

HYT"P(R7) s ‘almost’ Lipschitz-continuous, in the sense that for all =,y € R*, z £y, |z —y| < 1/2,
1/ 1+n/p(mn
[u(@) = u@)] < clz—y| |loglz—yl| " ulHLPE)]). (3:2.)
Here ¢ is a constant independent of =z, and wu, and X + 1 = 1. Reformulating this fact in terms of

(limiting) embeddings (3.2.1) immediately suggests the definition of ‘logarithmically’ spoilt spaces of Lipschitz
type Liph™®) (R"), « >0, as the space of all functions f € C'(R"™) such that

17 Lip ™ (R = (| Lo (B | + sup @) =)l (3.22)
eycrn 1T yllloglz —yll

0<|z—yl<1/2
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is finite. Parallel studies (of limiting situations) led LEOPOLD in [Le098], [Leo00b] to the introduction of

spaces Béféb) of type B ,, but with additional logarithmic smoothness. We give the related definitions here

and derive some basic properties of the spaces.

3.2.2 Definition

Recall our notation for the difference operator A}* in (1.1.17) and for w,(f,t), in (1.1.18).

Spaces of Lipschitz type

Definition 3.2.1 [Har00b, Def. 1] Let 1<p<oo, 0<g< o0, a> % (with « >0 if ¢ =00). Then
Lip =) (Rn) is defined as the set of all f € L,(R™) such that

Pp,q
[ = UL, )+ ( [ [Arn) %>/ (323)

Linl—) (Rn
Hf‘ P (R") t|logt|

p.q

(with the usual modification if q = co) is finite.

Note that Definition 3.2.1 coincides with [EH00, Def. 4.1] when ¢ = oo, and in case of p=¢ =0, a >0,
we recover the logarithmic Lipschitz spaces, Lip'™® = Lip((lx’;a) introduced by (3.1.4) in [EH99, Def.

o0

1.1]. For a = 0 they collapse to the classical Lipschitz spaces Lipl(]R”); as long as there is no danger

of confusion we shall write Lip» ™ instead of Lip(;;fg. The restriction « > % is quite natural as

otherwise we have Lip(;:;a) = {0} only, see [Har00Ob, Rem. 18]. However, when ¢ = oo we may also

admit a = 0, whereas Lip(l’fa) would consist only of constants were « allowed to be negative. The
somehow unusual notation using —a (instead of «) is simply due to the fact that we want to emphasise that
the additional smoothness parameter « acts in such a way that the usual spaces Lipl(]R") are extended :
Lip' (R") — Lip(l’fa)(R”) for all a >0, i.e. the spaces become larger when less smoothness is assumed
— as it should be in some reasonable notation. Definition (3.1.4) was suggested first by TRIEBEL in some
unpublished notes.

Remark 3.2.2 The spaces Lip(;jg)(R”), « > 0, can also be obtained as a special case of the more general

spaces C%7(1)(Q), O C R", which were introduced by KUFNER, JOHN and FUCIK; see [KJF77, Def. 7.2.12,
p. 361]. Moreover, spaces of type Lip(;:;oa), a = 0, are given as Lip(1,L,) by DEVORE and LORENTZ
in [DL93, Ch. 2, §9, p. 51], where R" is being replaced by some interval [a,b] C R and 0 < p < .
Similarly, spaces Lip(a,p) were studied by KOLYADA in [Kol89]; see also the end of Section 3.3.3 for further
references.

We introduce the Zygmund spaces ¢ (R™), a >0, as some counterparts of the spaces Lip(l’fa); this

definition also relies on some unpublished notes by TRIEBEL.

Definition 3.2.3 [EH99, Def. 4.1] Let « > 0. Then the space ¢t (R™) s defined as the set of all
f e C(R") such that

- AQ xr
1FICE D) = [ L ® ]+ sup SOl (3.2.4)
o Thlllog| ]
0<|hl <1/2

Though it might not be obvious at first glance there is an essential difference between spaces of type, say,
Lip(l’fa) and C(l’fa), a > 0 - concerning their compatibility with spaces of type B; , introduced by
LEOPOLD.
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Spaces of type B; ,

As already mentioned, spaces of generalised smoothness have been intensively studied for long; in our context
we concentrate on the following generalisations of spaces B, , merely, where some additional (logarithmic)
smoothness is incorporated. Recently, an important contribution to this subject was achieved by MOURA in
[Mou01].

Definition 3.2.4 [LeoO0b, Def. 1] Let s€ R beR 0<p<oo, 0<qg< oo andlet {p;j} bea
smooth dyadic partition of unity. The space B,(,f[]b) (R™) s the collection of all f € S'"(R™) such that
1/q

1F1BED R = (D2 2701+ )" |77 oy AL, (R (3.2.5)
7=0

(with the usual modification if q = o) is finite.

When b = 0 this definition coincides with the usual one, see Definition 1.1.6 (i) or [Tri83, Def. 2.3.1/2,
p. 45]. On the other hand, spaces of type B are special cases of BY;"), F\%") introduced by MOURA
in [Mou01, Def. 1.5], where ¥ is an ‘admissible’ function (including ¥(z) = (1 + |logz|)’, b € R); for

details we refer to [Mou01].

Spaces on domains

Let © be a bounded domain in R"; for simplicity we shall mainly assume
Q=U = {zeR:|z[<1} (3.2.6)

throughout this paper, i.e. that 2 is the unit ball in R™ . One can easily check that our results remain true
when U s replaced by some arbitrary bounded C°° domain ©Q C R" (meant in the sense of [EE87, Def.
V.4.1, p. 244], say), but at the expense of some constants (depending on ).

Definition 3.2.5 Let o > 0. The space Lip" * (U) is defined as the set of all f € C(U) such that

(1o (Anf) ()]
L O)| = If| Lo (U)]| +  sup e (3.2.7)
H H vornep Mloglhl

0<|h| <1/2

is finite.

Standard procedures (see, for example, [EE87, pp. 250-251]) show that there is a bounded extension map from
Lip" ) (U) to Lip™ ) (R"). Spaces of type B,(,i’lb)(ﬂ) are defined by restriction completely parallel to
Definition 1.1.12. This approach coincides with the one of LEOPOLD in [Leo00b, Sect. 3].

In spite of the different approach to spaces on € (intrinsic characterisation in case of Lip(l’_o‘) and by
restriction for Béféb)(ﬂ)) one can cope with that technicality by extension procedures. Clearly, one could
avoid it from the very beginning by introducing both spaces on Q in the same way (either by restriction or by
intrinsic characterisation) but the respective definitions given above are the more natural ones in our opinion.

3.2.3 Properties, equivalent norms

All spaces are defined on R™ unless otherwise stated. In view of applications suitably adapted Holder inequal-

ities are often needed; we give an example for spaces Lip(ll,:;oa).

Proposition 3.2.6 [EHO00, Prop. 4.3, Rem. 44] Let 1< p,q < oo suchthat 0 < % =
a,3>0. Then

+ = < 1. Let

1
q

S =

Lip(zlj:;oa) . Lip(;:;oﬁ) < Li (1,— max(a,8)) N Lip(;’,f(a+5))_ (3.2.8)

pnoo oo
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We consider spaces of type Llp(p’ ) and B},f,’]b), see Definitions 3.2.1 and 3.2.4, and give some equivalent
characterisations. Recall that we have in B-spaces the equivalent norm (1.1.30). The following extrapolation
type result for spaces Llp(p’ ) is known: for details about extrapolation techniques we refer to [Mil94].

Proposition 3.2.7 [EH00, Prop. 4.2 (i)], [Har00b, Prop. 7] Let 1<p< .

(i) Let q=o00, a«>0. Then f € Llp(p’ ) if and only if, f belongsto L, and there is some ¢ > 0
such that for all A\, 0 < A < 1,
t
sup w({f;)\)p < el
o<t<1/2 t

Moreover, we obtain as an equivalent norm in Llp(p’ a),

w(f, t)p

~ AL+ s X s L

<1 0<t<1/2

Hf|L1p (1,—a) (3.2.9)

(ii) Let 0 < g<oo, a>21 Then feLip),* if andonlyif, f belongsto L, and there is some

¢ >0 such that
N f,t),]7 dt dx
/P A qt/n [ tl By } 7; T;‘ C.

! o, ar dx)
~ IIpr||+</0 AM/O {wif_?f’} %T) . (3.2.10)

Remark 3.2.8 When p = oo Proposition 3.2.7 (i) coincides with the result of KRBEC and SCHMEISSER in
[KSO1a, Prop. 2.5] which was also our motivation for the above extension; part (i) was already presented in
[EHO0, Prop. 4.2 (i)].

We want to mention some apparently elegant, but dangerous notation replacing (3.2.9). In view of (1.1.30)
with =1 and s=1—-X, ¢ =00, ie

IN

Moreover,

HfILlp1 7

w(/f,1)
BN ~ WAL+ sup ALDe (3:2.11)
o<t<1/2 b

one might be tempted to shorten (3.2.9) by

| i 2|~ sup xe (7B (3.2.12)
0<A1
or — likewise — to replace (3.2.10) by
. (1—a) o . d>\ Vi
| £ininty; e 181 . (3.2.13)
0

However, the (hidden) equivalence constants in (3.2.11) depend upon A, especially for A | 0, thus one either
has to calculate this dependence explicitly, or has to note that the B-spaces in (3.2.12), (3.2.13) are defined
via first differences only (in contrast to the usual Fourier-analytical approach). Hence we prefer the slightly
more complicated but correct formulation as in Proposition 3.2.7.

Note that the idea of the characterisations (3.2.12), (3.2.13) resembles in some sense the argument given in
Theorem 2.2.1 (i) concerning spaces L,(logL)_,, 1<p<oo, a>0.

We come to some counterpart of (1.1.30) when dealing with spaces of type B},f,’]b), beR
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Proposition 3.2.9 [Har00b, Prop. 7] Let 1<p<o0, 0<g<oco, b>0. Then

| 71B& | ~ 1Ll + ( / : B $>/ (3214

t|logt|?
(with the usual modification for q = o).

Remark 3.2.10 In view of [Tri83, Thm. 2.5.12 (i)] one can extend (3.2.14) to spaces B,(,f[]b) with 0 < p < oo,
s>o0p beR 0<qg<oo, where wy(f,t), hasto bereplaced by w,(f,t), with r>s, reN,

1 1/q
2 ), 1T dt
BE=|\ (| FIL / wrlfit)p |7 dt 0, 21
Hf| p,q H ||f‘ P||+ ( 0 ts\logt\b t < ’ (3 5)

see also [NevOla, Thm. 4.2] by NEVES. In particular, for p = ¢ = 0o we arrive at spaces of Zygmund type,
™ =B, s>0, aeR

B 1)
N = ||| Lo wr(fit) 3.2.16
e = WALl st (32.16)

where r € N, r > s.

3.3 Sharp embeddings

We have already reserved the expression ‘limiting' (in connection with embeddings) for situations described by
(1.2.15). Now we shall adopt the saying ‘sharp embedding’ when — at least for one parameter — there cannot
be chosen any ‘better’ (smaller or larger, respectively) value such that the embedding still holds. For instance,
returning to the famous result of BREZIS and WAINGER [BW80], see (3.2.1) and rewritten now as

HyPP (R < Ligh v (R (3.3.1)

Y

one asks whether the embedding (3.3.1) is sharp in the sense that

H,""P(®Y) o Ligh ™ (R")
if a < £ (by the monotonicity of spaces Lip(l’fa) in « one clearly looks for the smallest value of «).
All spaces in this section are defined on R™ unless otherwise stated.

3.3.1 Sharp embeddings into spaces of Lipschitz type

We care for the question posed above, i.e. the sharpness of a = z% in (3.3.1), and extend it simultaneously :

HI™P will be replaced by ALY"P. Moreover, turning to spaces defined on bounded domains, it then

becomes reasonable to ask for which parameters embeddings of the above type (3.3.1) (suitably adapted to
function spaces on domains) become compact, but this is postponed to Section 3.4. Our result is the following.

Theorem 3.3.1 [EH99, Thm. 2.1] Let 0<p<oc (p< oo in F-case), 0 < qg<oo and a>0. Then

n . (1,— . . 1
Byh Py Liph®) if, and only if, a > 7 (3.3.2)

and 1
Foim? & L™ if and only if, o > 2 (3.3.3)

Note that Theorem 3.3.1 was already known for 0 < ¢ < 1lin B—caseand 0 <p <1 in F— case, see
(1.2.20) and (1.2.21).
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Remark 3.3.2 We proved our result [EH99, Thm. 2.1] using (sub-)atomic decompositions of function spaces,
interpolation arguments and extremal functions. We are indebted to H. TRIEBEL in what concerns this result.
He stated it together with a sketch of its proof in some unpublished notes and encouraged us to publish it in
[EH99].

Another way to prove (3.3.2) when p =o0c and 1< ¢ < oo (apart from the sharpness assertion) is given
by MARCHAUD’S inequality : One uses equivalent characterisations of Lip(l’fa), B, ,. via the modulus of
continuity; recall (1.1.30) with p = oo, i.e.

s (ft)e? at)!
1718, Alﬁvlﬁme+</ Lij—ﬁ}-7> | (334)
0
On the other hand, (3.1.4) implies
_ t)
Lip" ||~ Lol + sup 2D 335
N (335)
An application of MARCHAUD’S inequality (1.1.19) with k=1 and p=oc
00 N d
ol et [ S (3.3.6)

t
for some ¢ >0 andall f &€ Ly and ¢t >0 resultsin
- (1,-a) 1 - 1
1fLip " < C[f|Boo ol if > 7
which yields (3.3.2) for p = 00 and 1 < ¢ < co. The extension to 0 < p < oo then comes from the

elementary embedding
By — Bl . (3.3.7)

We thank this hint our colleague V. Rychkov and refer to [EH99, Rem. 2.4] for further details.

Remark 3.3.3 In view of our introductory remarks, in particular (3.2.1), the theorem implies that for 1 <
p<oo and 0 < g < oo thereis some ¢ > 0 such that for all z,y € R?, 0 < |z —y| < % and all

feram,
(3.3.8)

14+n
7@ = f)l < cla -yl [ogle—yl| " 71785
where the exponent i is sharp. Similarly, for 0 < p < oo and 1< ¢q < oo thereis some ¢ > 0 such that

forall z,y e R", 0<|z—y|<3i andall fe€ le),—;n/p:

#@) = 1wl < ele—l [rogle -yl " | 183" | (3.3.9)

1

where the exponent - is sharp. Recall Fj, = Hj, s € R, 1< p<oc. Thus we regain by (3.3.8) the

original BREZIS-WAINGER result (3.3.1); for other works on sharpness of related embeddings see [EGO97],
[EGO00] and [EK95]. On the other hand, (3.3.9) gives for p = ¢ = oo that there is some ¢ > 0 such that
for all f belonging to the Holder-Zygmund space C' = B/, ., cf. [Tri83, Thm. 2.5.7, p. 90],

(@) = £O)] < c o] |loglal| IIfIC'] (3.3.10)

forall 2, 0 < |z] < . The exponent 1 of |log|z|| in (3.3.10) is sharp. Further consequences of

Theorem 3.3.1 (in terms of sharp inequalities) are discussed in [EH99, Rem. 2.5].

The sharpness assertion essentially relies on results on extremal functions as presented below.
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Proposition 3.3.4 [EH99, Prop. 2.2] Let 1<p<oo and o > %. There is a function g,, with

Jpo € B1+n/p ) gpcr(o) = 07

p.p

1/1’, —0
lgpo ()] > c|2] ‘log\x\‘ (log‘logs\x\‘)

for some ¢ >0, small ¢ >0 and z = (21,0,...,0), 0<xzy <3§, 6 >0 small.

This is essentially the ‘lifted’ version of an example given by TRIEBEL in [Tri93, Thms. 3.1.2, 4.2.2]; see also
[ET96, Thm. 2.7.1, p. 82].

We give the counterpart of Theorem 3.3.1 where the target spaces Lip" ™% in (3.3.2), (3.3.3) are replaced
by Lipl~®, 0<wv< .

oo, v !

Proposition 3.3.5 Let 0 < q,v<oo, a>1 (with a >0 if v=00).

(i) Let 0 <p<oo. Then

Byi™? s Liph @ if andonlyif, o> % + ql : (3.3.11)

In particular, for v = q,
By s LiplT®  if andonly if,  a>1. (3.3.12)

(i) Let 0 <p < oo. Then
o e Liple 2 if andonly if, o> % + ]} : (3.3.13)

In particular, for v = p,
Fpd™” o Lipl™®  if andonlyif,  a>1. (3.3.14)

Proof : As this result is new in this formulation we insert a short proof. Note that (3.3.11) as well as
(3.3.13) with v = oo are already covered by Theorem 3.3.1. Our results [Har00b, Prop. 11, Cor. 13,
Cor. 20] provided, however, weaker assertions only than above (when v < 00) whereas the sharpness of
a= % + 1 in (3.3.11) is already covered by [Har00b, Cor. 20]. The essential contribution now comes from
our recent studies on envelopes in function spaces which are the main subject of Part Il of this report. We
do not go into further detail, but refer to our results in [Har01] (described in detail in Sections 4, 5 and 6).

There we obtain by Theorem 6.2.5 that there is some ¢ > 0 such that for all f € Ap5"/?,

€ 1/u 14+n/p 14+n/p
w u>p, Apg =Fpq ',

/ {M} L Hf\A;;”/P if, and only if, (3.3.15)
o] 7 wra. A= B

see in particular [Har01, (5.46), (5.47), (5.56)]. To verify the sharpness in (3.3.12), (3.3.14), as well as to
show (3.3.11) and (3.3.13) is then a consequence of the above mentioned result (3.3.15) and Proposition 3.3.6
below. O



46 3. Modified smoothness

3.3.2 Sharp embeddings between spaces with additional logarithmic smoothness

—a)

We first deal with (sharp) embeddings between logarithmic Lipschitz spaces Lip(1
C(lv_a)

and Zygmund spaces
, both of which are defined by differences. Our first result is of ‘purely Lipschitzian' type.

Proposition 3.3.6 [Har00b, Prop. 16] Let 1<p<oo0, 0< q,v <00, a> % 8> % Then

Lipy;® < Lipho?  if and only if, (3.3.16)

Remark 3.3.7 One recognises that our result (3.3.16) resembles the outcome of BENNETT and RUDNICK
concerning spaces L 4(logL), :

atg >b+y . v>g
L logL), — L log L if , 3.3.17
s0,q(10g L)a so,u(log L)y a—}—% > b4y . v<g ( )

see [BR80, Thms. 9.3, 9.5]. Let us especially point out the somehow astonishing result that concerning the
embedding Lip)/;® into Lip'y,”
by ‘paying’ with the additional index ¢, that is, as long as (—f) — (—a) < % -

one can ‘compensate’ some gain of logarithmic smoothness —f3 > —a
1
;1

v 2> q.

This situation is essentially different from the related one when dealing with spaces B},f;]b) exclusively, see
Proposition 3.3.10 below.

(1=_O‘)

We investigate the situation when Zygmund spaces C are involved additionally.

Proposition 3.3.8 [EH00, Prop. 2.7] Let «, 3,y be non-negative real numbers. Then
Lip" ™ o ¢ o piph ) (3.3.18)

if, and only if,
B>a, and y>p+1,

We give the counterpart of Proposition 3.3.5 for p < co.

Proposition 3.3.9 [Har00b, Prop. 11] Let 1<p<oo, 0<gv <00, a>1 (with a >0 if v=00).
Then

) v = w’

(3.3.19)

+% , 1< 00.

q

>
B!, < Lipl ;™ if =
' ' a >

< = »Q\l,d

Note that we proved [Har00b, Prop. 11] for all p, 1 < p < oo, but the case p = oo is now replaced by the
better result Proposition 3.3.5. Furthermore, for p < oo and v = oo (3.3.19) is covered by [EHO00, Prop.
4.2 (ii)] already. Comparing (3.3.19) and (3.3.11) the question naturally arises whether B} = — Lip(},:;a)

remains true for a = % + % and v < 0o, p < oo. Thisis not so clear at the moment, at least not covered
by our recent studies on envelopes. However, when p = oo [Har00b, Cor. 20] implies that there cannot be
an embedding like (3.3.19) for a < § + ;. Otherwise, for 1 < p < oo, there is an improved version of
(3.3.19) by NEVES in [Nev0Ola, Prop. 5.2] based upon TIMAN’S inequality [DL93, Ch. 2, Thm. 8.4, p. 49]
instead of MARCHAUD's (1.1.19).

We showed in [EH99, Prop. 4.2] that c(h=®) — Béi;;;’), a > 0. In that sense Proposition 3.3.8 also
leads to the question what else can be said about the relation between spaces of type Béfg”) (defined in
the Fourier-analytical way, see Definition 3.2.4) and spaces defined by differences, in particular, Lip(;:ga).
We try to clarify this interplay by some more results and a subsequent discussion in Section 3.3.3. We begin
with a result of LEOPOLD obtained in [Leo98, Thm. 1] which is closely linked to Theorem 3.3.1 as well as to
Proposition 3.3.6.
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Proposition 3.3.10 [Le098 Thm. 1] Let s1 > 82, b1, b €R, 0<p; <p2 <00, 0< q1,q2 < 00, and

assume s — pﬂl = 59 — . Then
by — by >0 v 1 <@
Bt oy Bt e and only if 11 (3.3.20)
bi—be>——— |, qa1>q.
q2 q1

The above assertion can also be found (as some special case) in [Mou01].

As already mentioned, we are interested in the interplay between both scales of spaces especially. RecaII that for
a =0 itis known that C® = B} 5> 0, see [Tri83, Thm. 2.5.7 (i), p. 90], and B, ; — Lip' < B!

see [Tri83, (2.5.7/2), (2.5.7/11) p. 89/90]. In [EH99] we proved that there are extensions to « > 0.
Proposition 3.3.11 [EH99, Props. 4.2, 4.4] Let a > 0. Then
BUTY o Lipt ) o ¢ = Bloe), (3.3.21)

Moreover,
Bl oy Liph=) if, and only if, 0<qg<l

00,4

Note that also the latter assertion is well-known for a =0, see [ET96, (2.3.3/9,10), p. 45].

Before we come to compare spaces of type B},sqb and Llp(p’ ) in Section 3.3.3, we derive a few more, rather
elementary embeddings between both scales of spaces. In view of characterisation (3.2.14) and MARCHAUD's

inequality we may extend Proposition 3.3.11 to spaces Lip(;:;a).

Corollary 3.3.12 [Har00b, Prop. 23, Cor. 26] Let 1<p<oc, 0<g< o0, a> %
(i) Then

B<a—-L | 0<g<oo,

B o Liploef ! (3.3.22)
D1 Psq
f<a ; q=00.
Moreover,
(Li—(a—=1)) . (1,—a)
p.min(q,1) — Lip, ,~. (3.3.23)
(i) Let 1<g<oc, a>1. Then

Bt~ o Lip) ). (3.3.24)

Recall the notation for spaces ¢l o > 0, see (3.2.16) with s =1, r = 2. Then by Proposition 3.3.8
assertion (3.3.24) coincides with (the right-hand embedding in) (3.3.18) when p=¢ =

Corollary 3.3.13 [Har00b, Cor. 25] Let 1<p<oo, 0<quv<o00, a> % 8> % Then

v2>q,

Liph,” < BLP f

B-Fza-
) (3.3.25)

ﬂ_

V
2
|

1
E )
1
q

Remark 3.3.14 For p =g = oo assertions (3.3.22), (3.3.23) and (3.3.25) coincide with Proposition 3.3.11.



48 3. Modified smoothness

3.3.3 Some discussion

We examine the relation between ‘logarithmically smooth’ Besov spaces B,(,i’lb), introduced by LEOPOLD

=) From the point of dealing with these spaces in

s d
view of atomic decompositions etc. it is essential that the logarithmic B-spaces, that is Bé,s,}b), arise by

a Fourier-analytical approach (like the usual spaces B, ), see (3.2.5), whereas the logarithmic Lipschitz
spaces Lip(;:;a), defined via first differences, see (3.2.3), remain as ‘Fourier-unfriendly’ as were their classical
forerunners (with p = ¢ = oo, a = 0). In fact, the almost inconspicuous modification in (3.2.3) compared
with (3.2.14), namely the substitution of ws(f,t), by wi(f,t),, causes a striking difference in the features

of the corresponding spaces (as it does for a =b = 0).

in [Leo98], and ‘logarithmic’ Lipschitz spaces Lip(ll,

We return to Proposition 3.3.10 obtained by LEOPOLD in [Le098, Thm. 1]. Plainly, it implies

f-a>0 AN

B 3.3.26
P ﬁ—%>a—%,q>v. ( )

Loe) — BILTAif, and only if, {
It is obvious, that — though (3.3.16) and (3.3.26) appear related somehow — the role played by the parameter ¢
in either case is different. The ‘diagonal argument’ (essentially used in Step 3 of the proof of Proposition 3.3.6
and borrowed from BENNETT and RUDNICK) does not apply in (3.3.26). In other words, the parallel notation
(taking the same parameter ¢) in both cases Bé,s,}b) and Lip(;:ga), respectively, is a dangerous one (though
suggestive in either case), possibly pretending at first glance that the construction with respect to ¢ might
be the same; however, it is not. On the other hand, it is nevertheless surprising that the ‘fine index’ ¢ in

these limiting cases becomes so important.

=% can be found within the scale of Besov

4
. Let 1 <p<oo and 0 < g < oo. Concerning the scale of logarithmic Besov spaces ng’b)
—a)
q

We study the question now 'where' the Lipschitz spaces Lip(;
(s,b)

spaces By

for fixed p and ¢, but arbitrary b € R, we may locate the Lipschitz spaces Lip(},:

by ¢*:=min(g,1) and assume a > . Then

as follows. Denote

—(a—ZF o _
By, ) o Y o BlL) (3.3.27)

5 q p.q

see (3.3.23), (3.3.25) and (3.3.24). Insisting, however, on the same (logarithmic) smoothness in both nestling

(1,b)
:q

spaces of type B, , thatis, for fixed p and b, but varying ¢, we found

(

(1,—(a=3)) N Bpi;

P,q*

—a)
.4

B (a=3)) ’

< Lip}, (3.3.28)
recall (3.3.23) and (3.3.25). One verifies that for 1 < ¢ < oo the respective initial spaces and endpoint spaces
in (3.3.27) and (3.3.28) are incomparable in the sense that neither of them is contained in the corresponding

L—(a—x L—(a—1 - L—(a—¢ .
other one; this refers to Bé,q (@=2)) and B;q* (=2 as well as to Bg,} ) and B,(,,oo (e ")), respectively.

Obviously they coincide, respectively, when 0 < ¢ < 1 (in case of the initial spaces) and when ¢ = co
(concerning the endpoint spaces). Thus we have the general situation that

B(1,7(afqi*)) B—)
oL Pyq Psq
Bl ) ¢ > [ptea) ¢ N oplce) | (3329)
N (el N L—(a=t)y S
By g ’ Bp,oc
— aflv = (17_&3 —
= B 7 0<q<t = Byt a=oc
—(a-1
Moreover, we have the same diagram with Lip(ll,j;a) replaced by ng’ (e ")). These spaces, however, are
(=1
not comparable (in the above sense) when 1 < ¢ < oo, whereas Lip(ll,:;a) — Bg,} =2 \when q= 00,

(

and Bqu’_(a_ W)

— Lip(;:;a) for 0 < g <1, see (3.3.23); we also refer to [Har00b, Sect. 4].



3.4. Compact embeddings, and entropy numbers 49

There are a lot of further related approaches to spaces of Lipschitz type, recall Remark 3.2.2, see also [Her68]
by HERZ, the books of STEIN [Ste70] and PEETRE [Pee76], and the papers [Tai64], [Tai65], [Tai66] by
TAIBLESON and [Tri73] by TRIEBEL. Let us finally mention only a few, more recent papers : AKSOY
and MALIGRANDA, see [AM96], studied descriptions of spaces of Lipschitz-Orlicz type Lip(a,Ly/) and
Zyg(a, L) in terms of Poisson integrals; BRANDOLINI, [Bra98], introduced generalised Lipschitz spaces, i.e.
spaces of type A% (R"), a@ >0 and X beingeither L, oo(R™) or L,(R™); in particular, for X = L,(R")
and a = 1 these are the above spaces Lip(;:g()). The closest approach we found in the literature so far —
really dealing with logarithmic or similar modifications of the usual Lipschitz spaces — is given in the paper
[BS94] by BLooM and DE SouzA. They concentrated on weighted Lipschitz spaces of type Lip o, where
0 :10,27] — [0,00) is a nondecreasing weight function with (0) = 0. With a slight modification we
may regard o, (t) ~ t|logt|*, t > 0 small, as such a weight, and — in their notation — we obtain that
Lip 0o = Lip(éc’;;) and for the Zygmund spaces A(g,) = ¢,

In a wider context — dealing with spaces of generalised smoothness — there is a variety of literature, recall our
introductory remarks at the beginning of Section 3.2.

3.4 Compact embeddings, and entropy numbers
3.4.1 Entropy numbers in sequence spaces

As in [ET96] and [Tri97], our estimation of the entropy numbers of embedding maps involves a reduction of
the problem to the study of maps between finite-dimensional sequence spaces. Accordingly we study the situ-
ation in sequence spaces — as defined in Section 1.1.2 — first. Concerning entropy numbers of the embedding
map id : €)1 — ), 0 < p; < p» < oo, we make use of the results [ET96, Prop. 3.2.2, p. 98] as well
as [Tri97, Prop. 7.2, p. 36]. Note that in the Banach space setting estimates for the entropy numbers in
finite-dimensional sequence spaces have been studied in great detail for a long time. We refer to [Sch84] as
well as [Kén86, Sect. 3.c.8] for further details and references.

We consider the embedding
idp, ps : g (%\/{j) — L, (<j>7%££/2[j) ) (3.4.1)

where 0 <p; <pr <oo, 0<g<oo, 2>0 and M; ~ 2in Jj € Ny. We have shown in [EH99, Prop.
3.1] that id,, p, is compact for > >0 and p; < ps (see also Proposition 3.4.1 below which implies the
compactness, too). We study (the asymptotic behaviour of) the corresponding entropy numbers ey (idp, p,)
in the sequel. Note that in case of entropy numbers parallel results —i.e. when dealing with dyadic weights of
type w; = 2799, § > 0, — were obtained by KUHN in [Kiih84] and TRIEBEL in [Tri97, Sect. 8].

It turns out that for later application we need only deal with the cases when p = p; = p» and p = py,
p2 = oc, respectively. We begin with the setting when 0 < p =p; = p» < oo and adopt the notation

idpp : {y (Zi)\/fj) — (<j>7%€£/[") ; (3.4.2)

where 0 <p<oo, 0<g<oo, >0 and M; ~ 2" jeN. Asa first result we obtained in [EH99]
the following.

Proposition 3.4.1 [EH99, Prop. 3.1] Let >0, 0<p<oo, 0<g<oo, M~ 2in i eNy. Then

er (idy,) ~ (log(k)) ™, keN (3.4.3)

Remark 3.4.2 When w; = 2/°, § > 0, our notation (1.1.22) coincides with [Tri97, (8.2)]. The result parallel
to Proposition 3.4.1, assuming 0 < p<oc, 0 < g< oo, M;~ 2" je Ny, is then a special case of [Tri97,
Thm. 8.2, p. 39] and reads as

e (id: €y (27°0M5) = £, (M)~ kv, keN



50 3. Modified smoothness

Furthermore, as will be clarified later, we do need some generalisation of Proposition 3.4.1 in the context of
spaces £, [2’””&1 (Zf,w")], 0 < u < oo; see (1.1.23) for the definition. This is covered by [EH99, Cor. 3.3];
it yields, in particular, for >0, 0<p,q<oo, M;~2/" jeN,

e (id: loo 2970 (0)15)]  — loo [292™4, (()76)15)]) ~ (log(k)) ™™ (3.4.9)
for all k€N, where 91 > p». The parallel result to (3.4.4) with w; = 27§ >0, is given in [Tri97, Thm.
9.2, p. 47].

We study the embedding
idp,oe Ly (017) = Ly (() 7 02) (3.4.5)

now, where 0 < p < oo, 0<g<oc and 2 > 0. Note that the compactness of id, ., is a consequence
of the compactness of id, ,. We estimate the corresponding entropy numbers.

Proposition 3.4.3 [EH00, Props. 3.4,35] Let x>0, 0<p<oo, 0<g<oo, M;j~2" jeN.
(i) There is some ¢ > 0 such that for all k € N,

k™7 (log(k)) x> 1
er (idps) > ¢ , i (3.4.6)
K S
Moreover, if we additionally have 1 < p < oo, then (3.4.6) can be replaced by
77 (log(k)) 7T, s> 1
er (idpo) > ¢ (3.4.7)
K , xSy
(i) Let p:=min(q,1). There is some ¢ >0 such that for all k €N,
k7 (log(k)) et s> Ly2
1,1
erlidyo) < ¢ K77 (loglk))etr =142 (3.4.8)
1 x
) 1,2
k e p n < E + E

A major improvement of Proposition 3.4.3 was obtained in a recent paper by CoBos and KUHN [CKO01] : They
showed that (3.4.7) and (3.4.8) can be improved using tricky combinatorial arguments, complex interpolation
and an extended knowledge on the ¢-norm and related results for Kolmogorov- and entropy numbers; we refer
to the book of P1SIER [Pis89, Ch. 5] for an excellent presentation of all the necessary background material
as well as details, and to the papers of GLUSKIN [Glu83], SUDAKOV [Sud71], and PAJOR and TOMCZAK-
JAEGERMANN [PTJ86], [PTJ89]. We already discussed this possibility briefly in [EH00, Rem. 3.6]. The result
of CoBOs and KUHN is the following.

Proposition 3.4.4 [CKO1, Thms. 1,2] Let »2>0, 1<p<oo, 1<¢g<o0, M~ 2in jeN.
(i) There is some ¢ >0 such that for all k €N,

kv (log(k))=ts 2
, ¢ (log . o>
er (idp,oo) > ¢ (3.4.9)
k3 xn < %
(i) There is some ¢ > 0 such that for all k €N,
ETF (log(k) e x> 2
ek (idpo) < ¢ kv (log(k))® a=12 (3.4.10)
k== n < %
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One has a sharp result now for small s < %, ie.

er (idpoo) ~ k72, keEN,

and the gap between lower and upper estimate in the remaining cases became much smaller compared with
Proposition 3.4.3, at least in the Banach case situation. Moreover, COBOS and KUHN conjecture in their
paper that the upper bound is sharp for s > %, too. This is based on two reasons : firstly, when ¢ = oo,

then by [CKO1, Prop. 1]
1 aer2
er (idpoo) ~ k7 (log(k)) "

forall 1<p<oo and » > %. Secondly, they briefly mention a brand-new result by BELINSKY [Bel01]
verifying the upper bound as sharp even in the quasi-Banach setting.

Remark 3.4.5 Note that LEOPOLD obtained in [Leo00Oc, Thm. 3] similar results when dealing with the more
general setting

id, 2 Ly, (Z%f) -l ((j)”‘é%f) ,

where 0 < p;p <py <00, 0< q1,q2 <00, 32> (ql2 - qil)Jr and M; ~ 2i" j € Ny; see also [Leo00a].
These results were sharpened in a recent paper by KUHN and SCHONBEK [KS01b].

3.4.2 Compact embeddings and entropy numbers

We are prepared now to tackle the problem of estimating the entropy numbers of our limiting embedding.

Compact embeddings

Clearly it makes no sense to study compactness of natural embeddings like
id: ByE"P(R7) = Lip ™ (Rn)
in (unweighted) R"™—setting : we have for any a > % andany € >0, 0< u < oo, the embeddings
By P(®") < Ligh " (R") < BUI(RY) < BIL(ERY),

which are all continuous by our results in Section 3.3 and in view of Definitions 1.1.6 (i) and 3.2.4 (referring

to the last embedding). Assuming B;j;n/p(]R{”) N (R™) was compact for some « > % then this

implied compactness of Bah™/”(R?) < Bl 5 (R™) immediately, but this is not true; cf. Theorem 1.2.1 (ii)
and its more general version [HT94a, Thm. 2.3].

A gentle modification of our setting surmounting the above-described difficulty consists in the introduction
of additional weight functions (as presented in the first example in Section 2) or, alternatively, to reduce the
problem to spaces on domains. We follow the latter concept here. By our remarks in Section 3.2.2 concerning
spaces on domains it is clear that our embedding results in Section 3.3 remain valid. Let U = {z € R" :
|z] < 1} be the unit ball in R”.

Proposition 3.4.6 [EHO00, Prop. 2.5, Cor. 2.8] Let 0< g < 0.

(i) Assume 0 <p<oo, a> 4. Then idB : BYEMP(U) — Lipt () is compact.

(i) Assume 0 <p < oo, a> =. Then id" : FpimP(U) — Lip ) (U) is compact.

=

In view of our embedding results in Section 3.3 and Proposition 3.4.7 below this result is obvious. We collect

—a) (s,b)
q

two further results dealing with either Lipschitz spaces Lip(1 or spaces of type Bj exclusively.

Proposition 3.4.7 [EH00, Prop. 2.6] Let 3> a >0. Then idys: Lip" "~ (U) — Lip"=(U) s
compact.
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Remark 3.4.8 In Remark 3.2.2 we identified Lip(l’fa)(Q) as a special case of the more general €7 (Q)
spaces introduced in [KJF77, Def. 7.2.12, p. 361]. The above proposition can also be found as a special case
of a related result for C° () (Q) spaces, that is [KJF77, Lemma 7.4.3, p. 368].

LEOPOLD obtained in [Leo98] a similar result. We present it in a simplified version (adapted to our setting)
only. Recall notation (1.1.2).

Proposition 3.4.9 [Leo98, Thm. 2] Let s€ R, 0<p, q, ¢o < o0, and b > (q% - ql—l) . Then
+

i s,b s
id: B (U) — Bs (U)

is compact.

This result can also be identified as a special case of [Mou01, Thm. 3.13, p. 78].

Our intention was to deal with some model cases only; however, in view of (1.3.2) more compactness results
can be easily obtained from our results below when we deal with estimates for entropy numbers.

Entropy numbers

Recall our notation id? for the embedding
idP : ByhP(U) — Lipt (), (3.4.11)

where 0 <p<oc, 0<qg<oo, a> % According to Proposition 3.4.6 (i) id® is compact and it makes
sense to study its entropy numbers.

Theorem 3.4.10 [EH99, Thm. 4.10] Let 0 <g< o0 and a> % Then there are positive numbers ¢
and c¢o such that for all k € N,

e1 (log(k)) ™ < ey (id : BL ,(U) — Lip“’*“)(U)) < e (log(k)) ™7, (3.4.12)
In particular, when 0 < q <1 and thus « > 0, we obtain

ek(id:Béo’q(U)—)Lip(l’fa)(U)) ~  (log(k))~. (3.4.13)

Due to the embedding B,l,j;n/p(U) — BL, ,(U) and the multiplicativity of entropy numbers the upper

estimate is true for all id?® , 0 < p < oo, whereas we already showed in [EH99, Thm. 4.10] that the lower

bound (3.4.12) has to be replaced by ¢; kv (log(k)) ™™ when p < oc. Our result for id® and 0 < p < o0
is the following.

Theorem 3.4.11 [EHO0, Thm. 3.11] Let 0 <p < oo, 0<g< oo, a> . Let o=min(g1). There
are positive numbers ¢, and co such that for all k € N,

k5 (log()) ot a> Ll
q 4 p
1 “a . 1 142
e k7 (log(k)) ™™ < ey (idP) <2 k7 (log(k)) ety o= % + % + % (3.4.14)
—ga-lig 1,1, 2
k™ 2¥e/e , Oé<?+5+5

We briefly sketch the main ideas of our proof in [EH00]. It indicates the way in which our preceding results are
used for that purpose. We start with the estimate from below, essentially using the characterisation (3.2.9),
(3.2.12) for p = oo, and our complete knowledge about the non-limiting case, see (1.3.3)

__ 81582

e (id: BS , (U) — B2 (U)) ~ k

CTPL,0 P2,q2

k€N, (3.4.15)
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p1 p2
st=14+2, 55 =1-A A>0, p1=p ¢ =¢q p2=¢q =00 A straightforward (and nevertheless
careful) calculation of the extremal problem in A > 0 completes the argument for the lower estimate.
We care about the upper estimate in (3.4.14). Here we benefit from our results on entropy numbers in
sequence spaces in Section 3.3.1. We outline the main points, for details we refer to [EH99], [EH00]. The
crucial trick is to find a (non-)linear bounded operator S and a linear operator T' such that we obtain the
following commutative diagram,

where s; > 83, 0 < p1,ps <o, 0<qi,q2 <oc,and 51 — 83 >n (L - L) . We apply (3.4.15) with
+

S
By (U) by (63")
3.4.16
| e 5419
s (1,—a) T —(a—1/q") pM
Lip— ' (U) £y ((K) w0

This is done via atomic (or, strictly speaking, even quarkonial) decompositions of function spaces, but we
do not propose to go into further details here; we remind the reader of Section 1.1.3, in particular, The-
orem 1.1.9 and [Tri97, Sect. 13]. In [Tri97, Th. 13.8, p. 75] there is a mechanism established by which
distributions f € B;’Q(R”) can be transformed into a sequence of complex numbers belonging to some space
Kq(éi,”k), simultaneously controlling the corresponding norms. This provides the boundedness of the operator
S. Concerning the independence of the ‘inverse’ operator 7' from the used atomic decomposition, one has to
involve even ‘smaller’ building blocks than atoms, i.e. ‘quarks’; cf. [Tri97, Sect. 14] for all necessary details.
Moreover, one also needs some ‘quarkonial version' of Propositions 3.4.1 and 3.4.3 (ii) then, but this can
be obtained without difficulties; cf. [Tri97, Sect. 9], [EH99, Cor. 3.3] and Remark 3.4.2. One verifies that
T 6, ((k) @ 7) M) - Lig=*) (U) is bounded. Thus by the multiplicativity of entropy numbers and
id® =T oid, oS, Proposition 3.4.3 (ii) concludes the proof.

Remark 3.4.12 Due to their improved estimates for ey (id, ~ ), see Proposition 3.4.4, CoBos and KUHN
achieved in [CKO1, Thm. 3] a replacement for the upper estimates in (3.4.14) as follows :

_ 142
L e
1
ex (id%) < ez $ kv (log(h))? . a=l+2
- ; a<%+%,

where 1 <p< oo, 1<¢g< o0, a>%.

We return to the situation of Proposition 3.4.7 and give our result on the (asymptotic behaviour of the)
entropy numbers of the compact embedding id.g, 3 > a > 0.

Theorem 3.4.13 [EHO00, Thm. 3.17] Let 3> a > 0. Then

ex (idaﬁ Lip O (U) — Lip(l’_ﬁ)(U)) ~ (log(k)) =) keN. (3.4.17)

Combining Propositions 3.3.8 and 3.4.7 the compactness of id : Lip(l’_o‘)(U) —= CL=A(U) for B>a >0
is obvious. We proceed with the corresponding result on entropy numbers.

Corollary 3.4.14 [EHO00, Cor. 3.18]
(i) Let B>a>0. Then

ex (id:Lip(l’_“)(U) - C(I’_ﬁ)(U)) ~ (log(k))""~ | keN. (3.4.18)
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(i) Assume v —1> (3> 0. Then there are positive numbers c¢i,co such that for all k € N,

o1 (log() ™7™ < ey (id : D (W) = L™ (1)) < e (log(k)) "0+,

We finally give LEOPOLD's related result [Leo98, Thm. 2] for the case mentioned in Proposition 3.4.9. We
could slightly improve it in [EH99].

Proposition 3.4.15 [Leo00Ob, Thm. 1], [EH99, Prop. 4.7, Cor. 4.9]

Let seR, 0<p<oco, 1<q,q <00, and by,bo € R with by — by > (l—l) . There are numbers
+

q2 q1
c1,co > 0 such that for all k € N,

er (log(k)) ™" ") < ex(BER(U) < BE(U)) < ea (log(hy) ™" s

p.q1 p,q2

In particular, if ¢ < g2, then

ex(BE(U) < B2 (U)  ~  (log(k)) ™" ") (3.4.19)

P.q1 pyq2

Another related result concerning entropy numbers of id : B,(,ff(}?l)(U) - Béi?&gQ)(U) ., S1 > 8g, can be

found in [Leo0Ob, Thm. 2]; see also [Mou01, Thm. 3.13, p. 78].

Remark 3.4.16 \We want to mention some (in our opinion) peculiar and very interesting consequences which
might shed some light on the place of Lipschitz spaces in between the Fourier-analytically based B-spaces,
see our discussion in Section 3.3.3. We contribute to these considerations with the following observation : let
0<q¢g<1, a>0,then by (3.4.13) and (3.4.19),

B ()
Va N
id : BL ,(U) —  Lipgh 2W) er ~ (log(k)) *
Ny ~
BN W) )

So at least in that particular situation it turns out that the entropy numbers for the corresponding embeddings
behave ‘equally well' (meaning that the compactness of the underlying embedding is seen by the entropy
numbers as of the same quality) independent of whether the respective target spaces are rather ‘Fourier-

unfriendly’ (as it is with Lip'"~%)) or not.

3.4.3 Comparison with the non-limiting setting

We briefly want to compare our limiting results, i.e. Theorems 3.4.10 and 3.4.11, with their non-limiting
counterparts; we refer to Remark 2.2.2 and Figure 3 for a parallel discussion referring to our first described
example (in Section 2).
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One possibility to ‘approximate’ our limiting embedding id® by
R B) non-limiting embeddings of a similar type is shown in the (1, s)-
diagram aside. Any space AJ  is characterised there by its pair of

parameters (%,s) (independent of ¢, 0 < g < 0), as usual. In

that (rough) sense our target space Lip(l’_o‘)(U) can be found
at the point (0, 1), too (neglecting the additional smoothness
provided by the log-exponent « > 0). In our situation described
above we stick at the parameter p; = oo for the target space,
but have less smoothness, say, so =1— A <1, A >0. Thus we
are interested in assertions about e (idy) when A |0 and idy

% % is given by
idy : Byly""(U) — BLA(U) (3.4.20)
Figure 7 where 0 <p<oo, 0<g<oc,and A >0.
Note that one has for any k€ N and A >0,
1 A
ep(idy) ~ k » = (3.4.21)

cf. [ET96, Thm. 2, p. 118] and (1.3.3). In view of (3.4.21) (for A | 0) it is thus rather natural that the

extra term k_% survives the limiting procedure, see Theorem 3.4.11, whereas the loss of k== has to be
compensated by some additional ( log —) term (depending on the particular kind of extension of the target
space in (3.4.20) when X =0), as clearly idy is no longer compact for A = 0.

We stick at the non-limiting situation, i.e. s; — sy > n (pl—1 - ,,17) and give some related results when the

‘new’ spaces appear as source or target spaces, respectively. This is of great help when having applications in
mind (excluded in this report from the very beginning), but it also illustrates the influence of the parameter

a in Lip" ™ a bit further.

Corollary 3.4.17 [EHO00, Cor. 3.19]
(i) Let « >0, s>0, 0<q<oo. Then forall k€N,

er (z’d Lipt O (U) - B;oj;(U)) ~ k% (log(k))® . (3.4.22)
(i) Let >0, 0<p,gq<oc,and s> 1+%. Then for all k € N,
ex (id . B, (U) — Lip“’*“)(U)) ~ k5 (log(k)) 77, (3.4.23)

where B, in (3.4.23) may be replaced by F,], (when p < o0).

Remark 3.4.18 LEOPOLD obtained in [LeoOOb, Thm. 3] estimates for the entropy numbers in the non-
limiting situation id : B;,ffé?l)(U) — B2 (U), where s1 — sy >n (p% - p%) 0 < p1 < py < ox,
0<q, gg<oc, b €R
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Part |1
Envelopes

4 Envelope functions Sé( and Sé( . definition, and basic properties

4.1 Introduction

We present our recently developed concept of envelopes in function spaces — a relatively simple tool for the

study of rather complicated spaces, say, of Besov or Triebel-Lizorkin type, B,  or FJ . respectively, in

so-called ‘limiting' situations. It is well-known, for instance, that BL4 < Lo, if, and only if, 0 < p < oo,

0 < ¢ <1 - but what can be said about the growth of functions f € Bﬁ{f’ otherwise, i.e. when Bﬁ{f’ contains
essentially unbounded functions ? EDMUNDS and TRIEBEL proved that one can characterise such spaces
by sharp inequalities involving the non-increasing rearrangement f* of a function f : Let s be a bounded,
continuous, decreasing function on (0,1] and 1 < p < oc. Then there is a constant ¢ > 0 such that

1/p

1
[(E5) ) <l =
0

for all f € HM™ if, and only if, s is bounded, cf. [ET99, Thm. 2.5]. Parallel studies in the ‘sub-critical
case, i.e. for embeddings B;:q — L., s>0, 1<r<oo 0<g<oo and 0 < p < oo such that
% =5+ T, led TRIEBEL in [Tri99] to similar results.

As already explained in Section 1.4 we are looking now for some feature only ‘belonging’ to the spaces under
consideration, but not bound to a certain context of embedding (with original or target spaces within a
prescribed scale), defined as elementary as possible (using classical approaches) — and gaining from the many
forerunners essentially. In view of the above-mentioned papers and our results in Section 3 the choice of
f* (the non-increasing rearrangement) and w(f,t) (the classical modulus of continuity) was apparently
suggested as basic concept our new tool should be built on. This led us to the introduction of the growth
envelope function of a function space X C L°¢,

Xt = sup frt), O<t<l.
[If1Xx<1

It turns out that in rearrangement-invariant spaces there is a connection between 55( and the fundamental
function ¢ x; we derive further properties and give some examples. The pair &;(X) = (EX(t),ux) is called

G
growth envelope of X, where ux, 0 < ux < oo, is the infimum of all numbers v satisfying
c v 1/v
[t
JIEL| wotan] < clsx
& (1)
0

for some ¢ > 0 and all f € X, and pug is the Borel measure associated with — log 5GX. One verifies for the
Lorentz spaces &; (Lyq) = (t=1/P q), but we also obtain characterisations for spaces of type A, where
op <5< %; this is contained in Section 5. Instead of investigating the growth of functions one can also

focus on their smoothness, i.e. when X < C' it makes sense to replace f*(¢) by @ , where w(f,t) is

the modulus of continuity. Now the continuity envelope function £ and the continuity envelope & are

introduced completely parallel to £ and &; , respectively, and similar questions are studied in Section 6.We
finally present in Section 7 some more, rather astonishing consequences of our recent studies on envelopes in
view of lifting arguments and compactness.

4.2 The growth envelope function &£ , and the index u

We already mentioned that characterisations like (4.1.1) gave reason to study the behaviour of the non-
increasing rearrangement f* of a function f € AJ . in particular, when these spaces contain essentially
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unbounded functions. Regarding this problem in a more general context this leads to the introduction of
growth envelopes, and in particular, to growth envelope functions. Our results for spaces of type Aj are
postponed to Sections 5.2, 5.3; we start with some simple features to give a better feeling what is really
‘measured’ by growth envelopes. For that reason we test our new envelope tool on rather classical spaces like
Lorentz(-Zygmund) spaces; these examples are to be found in Section 5.1. Of course, there was no big gain
to develop a theory for, say, L, , spaces only — had we not achieved more surprising results in Sections 5.2,
5.3. Finally, there is also some astonishing outcome in Section 4.2.2 : the recognition of growth envelope

functions in terms of fundamental functions in rearrangement-invariant spaces.

We shall only consider (quasi-) normed function spaces X C L°¢ in the sequel.

4.2.1 Definition and basic properties

Definition 4.2.1 [Har01, Def. 2.2] Let X be some (quasi-) normed function space on R". The growth
envelope function Eé( : (0,00) — [0,00] is defined by

EX@M) = sup f*(t), t>0. (4.2.1)
171X <1

We shall adopt the usual convention to put Eé((r) =00 when {f*(r) : ||f|X]| <1} is not bounded from
above for some 7 > 0.

Remark 4.2.2 Note that (4.2.1) immediately causes some problem when taking into account that we shall
always deal with equivalent (quasi-) norms in the underlying function space (rather than a fixed one) : Assume
we have two different, but equivalent (quasi-) norms || - |X]||1 and ||-|X]l2 in X. Then every function
fe X with [|[fIX|1 <1, f # 0, is connected with some gy := cf, where ¢ = ||f|X|1/][fIX]l2,
llgr| X, <1, and g} = cf”, leading to a different, but equivalent expression for 5GX. So, strictly speaking,
we are concerned with equivalence classes of growth envelope functions, where we choose one representative

EX(t) ~ sup  fH(t), t>0.
171X <1

However, we shall not make this difference between equivalence class and representative in the sequel — but
return to this point in Subsection 4.2.3 below.

Furthermore, by (4.2.1) the growth envelope Eé( (t) is defined for all values ¢ > 0, but at the moment we are
only interested in local characterisations (singularities) of the spaces referring to small values of ¢ > 0, say,
0 < t < 1. Nevertheless questions of global behaviour ( ¢ — oo ) as well as the comparison with their local
counterparts are certainly of interest and will be tackled in the future. This preference of local studies also
implies that we can transfer a lot of our results from spaces on R" to their counterparts on bounded domains
formally. The necessary modifications in case of our examples in Section 5.1 below are obvious; concerning
spaces of type A7 (2), where 2 C R" is a bounded C°° domain, they are defined by restriction from their
R™-counterparts, so that the local behaviour of functions is not ‘spoilt’. Conversely we may conclude that in
most cases (apart from a few explicitly mentioned) the study of spaces on domains does not contribute very
much to our results. This justifies that we shall mainly deal with function spaces on R™ in the sequel.

We briefly discuss the obvious question whether the growth envelope function é’é{ is always finite for ¢ > 0
or what necessary / sufficient conditions on X (or the underlying measure space) imply this; recall notation
(1.1.9).

Lemma 4.2.3 [Har01, Lemmata 2.8, 2.9]

(i)  There are function spaces X on R"™ which do not have a growth envelope function in the sense that
Eé( (t) is not finite for ¢t > 0.
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(ii) Le; );' be some (quasi-) normed function space on R™. Then Eé((t) is finite for any t > 0 if, and
only if,

sup  pr(A) — 0 for A — o00. (4.2.2)
Il fF1x)<1

Hence the definition of £ is non-trivial and reasonable. We now collect a few elementary properties of it.
Simplifying technical matters in the sequel we introduce the number 7, by

To = Tg(X) = sup {t >0 : Eé((t) > 0} . (4.2.3)

Note that Eé((t) =0 for some t > 0 implies f*(t) =0 forall fe X, ||f|X]| < 1; thus — by some
scaling argument — ¢*(¢) =0 for all g € X. But then (1.1.8) yields that X contains only functions having
a support with finite measure, i.e. [{z € R" : |g(z)] >0} <t for all g € X. This is in particular true,
when X is defined on Q C R" with |Q] <¢. On the other hand, as already mentioned above, we are only
interested in the local behaviour of functions g € X, so we shall not focus on larger values of ¢ > 0, that is,
say, when ¢ > 7q.

Proposition 4.2.4 [Har01, Prop. 2.4] Let X be a (quasi-) normed function space on Q C R".

(i) Eé( is monotonically decreasing and right-continuous. We have Eé( = (Sé() .

(i) If |Q] < oo, then SGX(t) =0 for t>|Q] and any function space X on (.

i) We have X < Lo if and only if. £ () is bounded, i.e. sup . (t) =lim E (t) is finite. In that
G G o 6
t>0
case it holds

Xy o X e
& (0) = ltlﬁ)l & (1) =lid : X = Ll

(iv) Let X, Xo be some function spaces on R™. Then X; — X, implies that there is some positive
constant ¢ such that for all t > 0,

X X

& (t) < &7 ().
One may choose ¢ = ||id : X1 — Xs|| in that case.

(v) Let 3 :(0,00) = [0,00) be some non-negative function, assume that (4.2.2) is satisfied. Then »«(-)
is bounded on (0,79) if, and only if, there is some ¢ >0 such that for all f € X, ||f|X]| <1,

(1)

55 m ) < e. (4.2.4)

(vi) Assume that X additionally satisfies
|7 (2#) x| < cnrxl (4.25)

for some ¢ >0 andall f e X. Then
X (279) ~ & (2771 (4.2.6)

for some jo € N and all j > jo.

Parts (i)-(v) are covered by [Har01, Prop. 2.4] whereas (vi) is a generalisation of [Tri01, (12.38), p. 190];
the monotonicity (i) of Eé( immediately yields *>" in (4.2.6), whereas the converse inequality uses functions
faul(z) := f(27= z) built upon f € X, say, with ||f|X|| < 1. Plainly f(2t) = f*(¢), the rest is covered

by (4.2.5). Note that all spaces of type A; , L, ,(log L), studied below satisfy (4.2.5).

Remark 4.2.5 We have shown in [Har01, Rem. 2.14] that some counterpart of (iv) in the sense of (iii),
i.e. that some relation of the envelope functions implied some (continuous) embedding for the corresponding
spaces, cannot hold in general; see also Section 5.1. Concerning (v), we proved in [Har01, Cor. 2.6] even

more, namely that in some sense SGX is the only such function with the property described above.

In contrast to [Har01] we postpone examples to Section 5.1.
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4.2.2 Connection with the fundamental function

In rearrangement-invariant function spaces X one has the concept of the ‘fundamental function’ ¢ ; we

investigate its connection with the growth envelope function é’é{ . All function spaces are considered on R"
(equipped with the Lebesgue measure £,). We closely follow the presentation in [BS88, Ch. 2, §5].

Recall the notion of a (quasi-) Banach function space as presented in Section 1.1.1. A function (quasi-) norm

|| -1X]|| over R™ is said to be rearrangement-invariant, if || f|X|| = ||g|X]|| for every pair of equimeasurable
functions f and g, i.e. if for all non-negative measurable functions f, g, finite a.e., with ps(X) = pg(A)
for all A > 0 this implies ||f|X]|| = |lg|X]||. A (quasi-) Banach function space X generated by a

rearrangement-invariant (quasi-) norm is called rearrangement-invariant (quasi—) Banach function space or
simply rearrangement-invariant space. Recall that we have for such spaces always X, € X when A CR",

l,(A) < 0.

Definition 4.2.6 Let X be a rearrangement-invariant Banach function space over R™. For each t > 0, let
A; CR™ be such that (,(A;) =t, and let

px(t) = HxAt |XH : (4.2.7)
The function ¢ so defined is called fundamental function of X.

Note that the particular choice of the set A; with ¢,,(A;) =t is immaterial since if B; is another subset

By CR" with £,(B;) =1, then x , and x, are equi-measurable, and so [[x , [X[| =[x, |X]| because
t t t t

of the rearrangement-invariance of X. Hence ¢ is well-defined. We give some well-known examples.

Let 1 <p<oo,and L, = L,(R"); then for ¢ >0,

1 0, t=0
oy ()=t} 1<p<oco, and %u):{l o (4.2.8)

cf. [BS88, p. 65]. Moreover, when 1 <¢g<p< oo or p=gq =00, then L,, isrearrangement-invariant
and )
pr, () =1t7, (4.2.9)

p,q

see [BS88, Ch. 4, Thm. 4.3, p. 218]. (In view of Remark 1.1.2 one can further prove that L,, is a
rearrangement-invariant Banach space for 1 < p < oo, 1 <¢g<o0,0or p=¢q=o00, when f* in (1.1.10)
is replaced by f**; cf. [BS88, Ch. 4, Thm. 4.6, p. 219].) Likewise, let ©Q C R™ have finite measure,
say, £,(92) = 1. Then it is known that L; (log L), () and Lexp,1(€2) are rearrangement-invariant with
fundamental functions

ooy (O =t(1+logt)), and ()= (1+logf)™", (4.2.10)

exp,1

for 0 <t < 1, see [BS88, Ch. 4, Thm. 6.4, p. 246]. So in view of our examples in Section 5.1, i.e.

Propositions 5.1.2, 5.1.4, where we calculated Eé( for the same spaces as involved in (4.2.8)-(4.2.10), the
following assertion is naturally suggested.

Proposition 4.2.7 [Har01, Prop. 2.22] Let X be a rearrangement-invariant Banach function space over
R™, and ¢ the corresponding fundamental function. Then

X, 1
X (1) = @ O (4.2.11)

Remark 4.2.8 One can prove a counterpart of Proposition 4.2.7 when the underlying measure space [R, u] =
[R",£,] is replaced by some non-atomic finite measure space [R, p].
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After completing [Har01] we found that CARRO, PICK, SORIA and STEPANOV studied related questions in
[CPSSO01]; in particular, [CPSSO01, Rem. 2.5 (ii)] essentially coincides with (4.2.11), where the function px (¢)
used there corresponds to Eé( (t). Moreover, when X is a rearrangement-invariant Banach function space
then by [CPSS01, Thm. 2.8 (iii)] there is a counterpart of Proposition 4.2.4 (iii) as follows :

X = Lpoe &= Sllpt%gé((t)<00, 0<g<oo.
>0

4.2.3 The index uf

We shall need a finer characterisation than provided by the growth envelope functions solely. By Propo-
sition 5.1.2 below it is obvious, for instance, that SGX cannot distinguish between different spaces like

Ly, (logL), and L, (logL),, q # g2. So it appears desirable to complement SGX by some expres-
sion, naturally belonging to é’é{ , but yielding — as a test — the number ¢ (or a related quantity) in case

of L,,(logL), spaces. Again a more substantial justification for complementing Eé( by this additional
expression results from more complicated spaces (like Aj ) than L, ,(logL),; but in these classical cases
the outcome can be checked immediately.

The missing link is obtained by the introduction of some ‘characteristic’ index ug which gives a finer measure
of the (local) integrability of functions belonging to X. Moreover, the definition below is also motivated by
(sharp) inequalities of type (4.1.1) with > =1.

We start with some preliminaries. Let 1 be a real continuous monotonically increasing function on the
interval [0,e] for some small & > 0. Assume (0) =0 and ¥(t) >0 if 0 <t<e. Let pogy be the
associated Borel measure with respect to the distribution function log1); if, in addition, 1 is differentiable
in (0,e) then

Mogy (dt) = 15)’((;) dt (4.2.12)

in (0,e); cf. [Lan93, p. 285] or [Hal74, §15(9), p. 67]. The following result of TRIEBEL is essential for our
argument below.

Proposition 4.2.9 [Tri01, Prop. 12.2, p. 183]
(i) Let ¢ and puogy be as above, and 0 < ro < ry < co. Then there are numbers c; > ¢y > 0 such

that
c 1/r1 - 1/ro

swp (09(0) < o1 | [ OO moso(d) | < e | [0 i) | @213
0 0

for all functions g(t) > 0, which are monotonically decreasing.

(i) Let tq, o be two equivalent functions as above and [uogy,, hogys the corresponding measures.
Assume 0 <r < oc. Then

- 1/r - 1/r

[ @90 mogunt@ |~ { [ 100 90 oy (a0 (42.14)

0 0

(usual modification if r = oo) for all functions g(t) > 0, which are monotonically decreasing.

In a slight abuse of notation we shall mean by ug the Borel measure associated with a function ¢ (as described
above and) equivalent to I/Eé(, where X is some function space satisfying (4.2.5) and X < L.; that
is, P(t) ~ 1/5(? (t), 0 < t < e. Note that all growth envelope functions Eé( of a space X with (4.2.5) belong
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to the same equivalence class which contains moreover a continuous representative. If £_ is differentiable,
then

pc(dt) ~ — dt (4.2.15)

for small ¢ > 0. This approach coincides with the one presented by TRIEBEL in [Tri01, Sect. 12.1, pp. 181-
183] and [Tri01, Sect. 12.8, p. 192]. Recall our notation 75 in (4.2.3).

Definition 4.2.10 [Har01, Def. 3.1] Let X < L. be some (quasi-) normed function space on R"

with (4.2.5) and growth envelope function SGX. Assume 0 < e < 7o. The index u, 0 < ul < oo, is
defined as the infimum of all numbers v, 0 < v < oo, such that

1/v

0/ [;G;((tt))] we(dt) | < cllfIX] (4.2.16)

(with the usual modification if v = oc) holds for some ¢ >0 and all f € X.

Remark 4.2.11 It is clear by Proposition 4.2.4 (v) (with 3 = 1) that (4.2.16) holds with v = oo in any
case. Thus the question arises whether (depending upon the underlying function space X) there is some
smaller v such that (4.2.16) is still satisfied. Moreover, it is reasonable to ask for the smallest parameter v
satisfying (4.2.16) as the corresponding expressions on the left-hand side are monotonically ordered in v by
Proposition 4.2.9 (i) with g = f* and ¢ ~ 1/&5 .

The number ug in Definition 4.2.10 is defined as the infimum of all numbers v satisfying (4.2.16); however,
it is not clear at the moment, whether this infimum (4.2.16) is in fact always a minimum. More precisely,
one can study the question what assumptions (on the function space X and the underlying measure space)

imply that u satisfies (4.2.16), too. So far we only know that all cases we studied (as presented below) are

examples for the latter case (when ué" happens to be a minimum), but lack a general answer.

Remark 4.2.12 We explicitly excluded the case X < L., (in particular, X = L.,) in Definition 4.2.10

above. One may, however, adopt the (reasonable) opinion that — in case of bounded growth functions é’é{
(that is, according to Proposition 4.2.4 (i), when X — L) — (4.2.16) is replaced by

sup f*(t) < cl[fIX]],

0<t<e

for some ¢>0 andall f € X;thus ug :=oc.

The following assertion is not very complicated to prove — relying on Proposition 4.2.9 essentially — but quite
effective in application later on.

Proposition 4.2.13 [Har01, Prop. 3.5] Let X, X5 be some function spaces on R" with X; — X,.
Assume for their growth envelope functions

X)) ~ E°(1), O<t<e. (4.2.17)

Then we obtain for the corresponding indices

uXt < uXe (4.2.18)
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Remark 4.2.14 \We give another interpretation of the meaning of (4.2.16) in terms of sharp embeddings.
Assume that Eé((t) ~ t7%|logt|" forsmall t >0 with a >0, p€R or a =0, p>0 (recall the
monotonicity of 5GX near 0). Then

dt dt
dt) ~ — if 0 d dt) ~ ——— =0
,UG( ) P | a>0, an :uG( ) t\logt\ o
and (4.2.16) can be reformulated as follows : What is the smallest space of type
Li,(logL)_, if a>0, or Lo v (logL)_(u_i_l) if a=0,

respectively, such that X can be embedded into it continuously ? Having this idea in mind the results in
Section 5.1 are not very astonishing. However, this is only some interpretation of (4.2.16); the definition itself
is independent of any scale of Lorentz spaces as target spaces.

4.3 The continuity envelope function & , and the index uf

We introduce the continuity envelope function £_° and derive some elementary properties. The method is
parallel to that in the preceding section.

4.3.1 Definition and basic properties

Recall that C(R™) is the space of all complex-valued bounded uniformly continuous functions equipped with
the sup-norm as usual.

Definition 4.3.1 Let X — C be some function space on R". The continuity envelope function ECX :
(0,00) — [0,00) is defined by

o ap 200
L fIX]I<t

t>0. (4.3.1)

Remark 4.3.2 An adapted version of Remark 4.2.2 holds here, too, concerning the equivalence classes of
continuity envelope functions as well as the question of local (instead of global) behaviour of functions,
implying our restriction on function spaces on R™ rather than function spaces on domains. We do not want
to repeat the arguments in detail.

In view of Section 4.2.1, in particular Lemma 4.2.3 (i), one may ask whether any space X of the above type
possesses a continuity envelope function ECX , that is, whether in any admissible situation 5CX (t) is finite for
any t > 0. In contrast to Eé(, see Lemma 4.2.3 (i), our assumption X < C already implies

eX(t) = sup uJ(f,t)g sup 2| f1C]
Iflxj<y ¢ Iflxf<t 1

1
< 20lid: X =0 5. >0, (4.3.2)

i.e. there is some ¢ > 0 such that forall ¢ >0, 5?(75) < 7. In that sense any space X < C' has a

- . X
continuity envelope function &£ .

We collect a few elementary properties of Eg( (t). Note that ECX(t) cannot be too small for ¢ | 0, for

b'¢ S . .
Ec (1) (0 as t ] 0 implies that X' contains constants only. Furthermore, one introduces a number & -

parallel to (4.2.3) — by
78 = 1$(X) := sup {t >0 : Eg((t) > O} . (4.3.3)

However, as Eg( (t) =0 forsome t >0 means w(f,t) =0 forall fe X (i.e. X consists of constants

merely) we are mainly interested in spaces X with 7§(X) = oo; investigating the local behaviour (small

t > 0) at the moment, it was even sufficient to assume, say, sup{0 <t <1 : Eg( (t)>0} = 1.
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Proposition 4.3.3 [Har01, Prop. 4.3] Let X — C be some function space on R".

. X . . . . . . . X . .
(i) & is continuous and ‘essentially monotonically decreasing’, that is, £C is equivalent to some mono-
tonically decreasing function.

(i) We have X < Lip' if, and only if, £X(-) is bounded, i.e. sup X (1) = lirrtllsoup X (1) is finite. In
that case it holds
ECX(O) := lim sup ECX(t) = sz X = Lile .
tlo

(i) Let X; — C, i = 1,2, be some function spaces on R*. Then X; — X, implies that there is some
positive constant ¢ such that for all t > 0,

X1 X2
() < c &1 (t).

One may choose ¢ = ||id: X1 — Xs|| in that case.
(iv) Let X < C be non-trivial, i.e. 7&(X) = oc. Let 3 : (0,00) — [0,00) be some non-negative function.

Then 3(-) is bounded if, and only if, there is some ¢ > 0 such that for all f € X, ||f|X]|| <1,

x(t) w(ft)

il;g %T < ec. (4.3.4)

(v) Assume that X additionally satisfies
[F @)X < e llfIX (4.3.5)

for some ¢ >0 andall f € X. Then
X (279) ~ &8 (277 (4.3.6)

for some jo € N and all j > jo.

Parts (i)-(iv) are covered by [Har01, Prop. 4.3] whereas (v) generalises [Tri01, (12.78), p. 197]; see the
similar argument following Proposition 4.2.4. The somehow clumsy formulation in (i) results from the fact
that w(f,t) is not necessarily concave itself, but equivalent to its least concave majorant w(f,t) ,

S0 < w(fif) < B, >0, (4.3.7)

for any f € C; cf. [DL93, Ch. 2, Lemma 6.1, p. 43].

Remark 4.3.4 In analogy to Remark 4.2.5 we mention that we proved in [Har01, Cor. 4.4] more than (iv),
namely that in some sense ECX is the only such function with the property described above.

4.3.2 Theindex uf

Recall our introductory remarks at the beginning of Section 4.2.3. Analogously to the situation described there
we shall introduce the Borel measure uc associated with the function ) as described in Section 4.2.3, and

equivalent to I/ECX for some function space X with (4.35)and X < Lip', ¢(t) ~ 1/6’? (1), 0<t<e.
Then (granted that ECX was differentiable) we obtain

pc(dt) ~ — dt (4.3.8)

for small ¢ > 0.
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Definition 4.3.5 [Har01, Def. 5.1] Let X < C be some function space on R" with (4.3.5), X < Lip'

and continuity envelope function 5?. Assume e > 0. The index uf, 0 < ul < oo, is defined as the infimum
of all numbers v, 0 < v < oo, such that

1/v

/ [M] pe(ar) | < elfx (4.3.9)

tEX (1)

(with the usual modification if v = oc) holds for some ¢ > 0 and all f € X.

Remark 4.3.6 Proposition 4.3.3 (iv) (with 3 = 1) implies that (4.3.9) holds with v = oc in any case; but
— depending upon the underlying function space X — there might be some smaller v such that (4.3.9) is still
satisfied. As Proposition 4.2.9 (i) can be applied to the above case, that is, ¢ ~ 1/&. and g(t) ~ @ ,
without any difficulties, we have the monotonicity of (4.3.9) in v.

The question posed in Section 4.2.3, that is, under which assumptions

X =inf{v:0<wv<o0, v satisfies (4.3.9)} (4.3.10)

Uc

is in fact a minimum, makes sense in that context, too, but is likewise open in general. Again, all the examples

studied below are such (possibly special) cases where ul satisfies (4.3.9).

Remark 4.3.7 In analogy to Remark 4.2.12 we handle the case when X — Lip1 separately. Parallel
to Remark 4.2.12 we can include this situation by putting ué( := oo as for bounded 5?, that is, by
Proposition 4.3.3 (i), when X < Lip', (4.3.9) can be replaced by

sup A0 < oy,

0<t<e

for some ¢ > 0 and all f € X. We give the counterpart of Proposition 4.2.13 in terms of continuity envelopes.

Proposition 4.3.8 [Har01, Prop. 54] Let X; — C, i = 1,2, be some function spaces on R™ with
X1 = X,. Assume for their continuity envelope functions

X)) ~ EX(), O<t<e. (4.3.11)
Then we get for the corresponding indices
ul' < ule . (43.12)

5 Growth envelopes ¢

We introduce the concept of growth envelopes, followed by our corresponding results; first we shall deal with
classical spaces such as Lebesgue and Lorentz spaces whereas afterwards the (sub-) critical case for spaces
A7, is considered. All spaces are defined on R"™ unless otherwise stated.

5.1 Definition and first examples

X

Let X be some (quasi-) normed function space, recall the definitions for £X and ug as given in

G
Definitions 4.2.1 and 4.2.10, respectively.
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Definition 5.1.1 [Har01, Def. 3.1] Let X < Lo be some function space on R" with (4.2.5) and
growth envelope function SGX (t), 0<t<e, and index ug Then

X
& (X) = (£50), ) (5.1.1)
is called growth envelope for the function space X .

We claim that the growth envelope €;(X) of some function space X gives some characteristic feature of
X in the sense that it indicates the ‘quality’ of the unboundedness of functions contained in X. We start
with some easy examples to illustrate the concept of the growth envelope introduced above, though the more
surprising results are obtained when dealing with spaces of type A7 ; this is postponed to Sections 5.2, 5.3.
Recall the definition for Lorentz (-Zygmund) spaces L, ,, L, ,(logL), in Definition 1.1.1.

Proposition 5.1.2 [Har01, Props. 2.13, 2.16, 2.18, 3.7, 3.8, 3.9]
(i) Let 0<p,q< oo (withq= oo whenp= c0). Then

%(Lp,q) = (t’%, q) : (5.1.2)
(i) Let 0<p<oo, 0<g<oo,and a€ R Then
& (Lpallog L)) = (177 ogt| ™", q). (5.13)

(i) Let 0<g<oo, a€R, with a+ L <0. Then

%(Lm,q(logL)a) = (\logtlf(“%), q)- (5.1.4)

, o , L —1 ,
Plainly, we obtain in, say, (i) that & Pt o~ » for all admitted q, 0 < q < oc. Hence there cannot
exist a direct counterpart of Proposition 4.2.4 (iv), because otherwise all L, ,— spaces were contained in each

other. Moreover, it becomes clear that only the index u{ can distinguish between L, 4, and L, ,,, whereas,
. . . . X
of course, ué" solely carries not enough information on the spaces as well; but the pair ¢ (X) = (EG , ué)

does. This justifies the introduction of the growth envelope again.

Remark 5.1.3 As already announced in Remark 4.2.14, the above results were to expect in view of the
reformulation of (4.2.16). The value of Proposition 5.1.2 rather lies in the verification of our method to
recover the fine index ¢ in case of Lorentz (-Zygmund) spaces L, ,(log L),; this was our aim as announced
before.

Looking back on Section 4.2.2 the question arises naturally whether ug can also be identified as some quantity,

known for a long time (and in possibly another context) in Banach space theory. By Proposition 5.1.2 we have
to look for expressions only which take the value ¢ when, say, X = L, ,(logL),; we were not yet successful
in this task.

Let |Q] < o0, say, || =1; recall that Lo o (logL) , (Q) = Lexp,a(2) for @ >0 and Lexp,. being the
Zygmund spaces given by (1.1.14).

Proposition 5.1.4 [Har01, Props. 2.19, 3.11] Let Q CR" with |Q| =1, and a > 0. Then
%(Lexp,a(ﬁ)) = (\logt\“, oo)- (5.1.5)

Note that we determined the growth envelope function Eé((t) in [Har01, Props. 2.13, 2.16, 2.18, 2.19] directly,
not relying on results about the fundamental function ¢, and Proposition 4.2.7. In fact, it happened just
the other way round in [Har01] : we took our results [Har01, Props. 2.13, 2.16, 2.18, 2.19] together with
(4.2.8)-(4.2.10) as motivation for Proposition 4.2.7. The result remains true when [R",/,] is replaced by
some o—finite measure space [R, ] satisfying that for every number s € [0, u(R)] there is some A; CR
in the o—algebra of R with pu(As) =s; likewise one can assume [R, u] to be a finite non-atomic measure
space.
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5.2 Growth envelopes in the sub-critical case

In this section we deal with spaces of type A7 .
as introduced in Definition 1.1.6. Let s > 0,
0 < p< oo and 0 < qg < oo. Then ac-
cording to our notation in Figure 1 (and the
explanations given there) we call spaces sub-
critical when —n < s — % < 0. As usual, the
borderline case s =0, , thatis, s =0 when
1< p< oo, and s:n(%—l) for 0<p<1,
needs some additional care concerning the cor-
responding spaces. This refers to the thick lines
in Figure 8. We shall deal with that situation
separately, but postpone it to the end of this
subsection.

Figure 8

First we consider the ‘sub-critical strip’ where % >s>0p 0<p<oo and 0<g<oc. Let 1 <7< o0,

then all spaces on the line with slope n and ‘foot-point’ % (see Figure 8) belong to this sub-critical area.

Moreover, as all spaces of type A7 =~ (with such parameters) can be embedded in, say, suitable Lebesgue
spaces L,, it makes sense to study their growth envelopes, see the previous section.

Theorem 5.2.1 [Har01, Thm. 3.12], [Tri01, Thm. 15.2, p. 230] Let 0<g< o0, s>0, 1 <r < o0

and p with 0 < p < oc be such that s — % = —3. Then

%(F,iq) = (t‘%, p) (5.2.1)
and

%(Bi,q) = (t‘%, q) : (5.2.2)

We briefly explain the main ideas of the proof, starting with the determination of the growth envelope functions.
By (1.1.34) and (1.2.6) we have

F, = F% =L, 1<r<oo. (5.2.3)

Now Propositions 4.2.4 (iv) and 5.1.2 immediately imply ~ £.7*(t) < ¢ t=+. Stressing real interpolation
arguments we obtain not only the corresponding estimate for B-spaces, but also a sharper result in the F-case,

F3, < Ly, (5.2.4)

and

BS, < Ly ; (5.2.5)
we refer to [BL76, Thm. 5.3.1, p. 113], [Tri78a, Thm. 1.18.6/2, p. 134; (2.4.2/6), p. 185], [FJ90, Cor. 6.7 and
§12] and [Tri83, Thm. 2.4.2, p. 64] for details on the interpolation results. Application of Propositions 4.2.4 (iv)

and 5.1.2 leads to Ef”"’(t) < ¢t~ Conversely, we use an example given in [Tri99, 3.2]. Let t(z) be
some compactly supported C*°-function in R™ given by

¢TI , ozl <1,
b(z) = =! (5.2.6)
0 lz| > 1.

3

Let j € N, then the functions
fi(z) = 27% ¢ (272) , zeR", (5.2.7)
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are atoms in By in the sub-critical case; we refer to Section 1.1.3, in particular Theorem 1.1.9 (i). Besides,
these atoms satisfy

f; (Q_jn) ~ 20 JEN,

implying
£ (27 2 ff (277) ~ 2F, jeN

L . B .
This yields not only the desired B-result, & Pit) ~ ¢ t’%, 0 < t < 1, but also its counterpart for
F—spaces, due to the embedding By , — F  for 0 > s and 1 <v <p suchthat o -7 = s—% =-7
see (1.2.17). Proposition 4.2.4 (iv) completes the proof in as far as envelope functions are concerned. Turning

to the indices ué“ we benefit from Propositions 4.2.13 and 5.1.2 together with (5.2.5) and (5.2.4) providing

ug” <p and u?“ < q, respectively. The sharpness is a consequence of [Tri99, Cor. 2.5].

Remark 5.2.2 Note that (5.2.1) together with Proposition 5.1.2 implies

& (Leo) = (¢, ») = & (F3,) (5.2.8)

where 0 < g¢<o00,s>0,1<r<oc and 0<p < oo with s—%: 2. that is, we have by (5.2.4) the
embedding F, <> L., only, whereas the corresponding envelopes even comade This can be interpreted
as Ly, belng indeed the best possible space within the Lorentz scale in which F ~ can be embedded
continuously. On the other hand this is to be understood in the sense that L, , is ‘as good as’ Fj 6 —as
far as only the growth of the unbounded functions belonging to the spaces under consideration is concerned;
(additional) smoothness features (making a big difference between the spaces L., and F} , for instance)
are obviously ‘ignored’ by the growth envelope. This is not really astonishing in view of its construction, but
worth to be noticed. The parallel assertion for the B-case, i.e. (5.2.2) together with Proposition 5.1.2 provide

€ (La) = (t7 a) =& (By,) . (5.2.9)

the parameters being as above. Again we note by (5.2.5) that B, , can be embedded in L, ,, whereas their
envelopes even coincide. We return to this phenomenon in Section 7.2.

The embedding result (5.2.5) can (in the Banach space situation) also be found in [Gol87a] and [Kol98].
Moreover, GOL’'DMAN's result [Gol87b, Thm. 2.1, Cor. 5.1] can be disclosed as the fact that L, , is the
best possible space within the Lorentz scale in which B; =~ can be embedded continuously - coinciding with
our above interpretation of (5.2.8).

Remark 5.2.3 Forerunners of this result — formulated in a different context — are presented in [Tri99]. This is
extended and generalised in [Tri01, Sect. 15]. There one also finds a lot of remarks and references on the long
history of related studies; thus we shall only mention some of the most important names and papers briefly :
essential contributions were achieved by PEETRE [Pee66], STRICHARTZ [Str67], HERZ [Her68], as well as
in the Russian school by BRUDNYI [Bru72], GOL’DMAN [Gol87¢c, Gol87b], LizORKIN [Liz86], KALYABIN,
L1zorKIN [KL87], NETRUSOV [Net87, Net89], see also the book by ZIEMER [Zie89]. More recent treatments
are, for instance, [CP98] by CWIKEL, PUsTYLNIK, [EKP0O] by EDMUNDS, KERMAN, PicK and the surveys
[Kol98] by KoLYADA, [Tar98] by TARTAR. There are far more investigations connected in some sense with
limiting embeddings, we refer to the survey papers for detailed information.

Remark 5.2.4 Recently CAETANO and MOURA obtained parallel results in the sub-critical case when studying
spaces of generalised smoothness of type Béf,’;p), F,qu’q’), introduced by MOURA in [Mou01], see our remark
after Definition 3.2.4. In particular, ¥(z) = (1 + |logz|)®, b € R, is admitted in this context. The result
of CAETANO and MOURA in [CM01, Thm. 4.4] completely characterises the influence of the additional
smoothness function ¥ by

& (BD) = (e a) . & (FEY) = (e p)
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where ¥ is an admissible function, 0 <p < oo, 0<g< oo, s €R with 0, <s< %, and 1<r < oo
such that s — 2 = — . Thus with ¥,(z) = (1+ [logz|)*, a € R, one concludes by Proposition 5.1.2 (ii)

r

& (BE") = (177 Nowtl ™", @) = €& (Lo, (log L),)
d
" & (Fi5™)) = (77 logtl™, p) = € (Ly, (l0gL),) .

where the parameters are as above. This seems in some sense the counterpart of (5.2.8) and (5.2.9), whereas
some more qualified discussion is still missing; this refers in particular to assertions like (5.2.4) and (5.2.5)
adapted to this more general setting.

Borderline cases

We study the situation s = o, = n(% — 1)1 now; recall that this refers to the thick lines in Figure 8.

However, in this situation additional care is needed, because not all spaces in question are contained in L11OC :
A complete treatment of this problem A ~C LI°° can be found in [ST95], where SICKEL and TRIEBEL
obtained in [ST95, Thm. 3.3.2] the following result — related to the case s = o, we are interested now :

either 0<p<l, 0<qg<o0,
C Ll if, and only if, (5.2.10)
or 1<p<oo, 0<qg<2.

Ip
p.q

F

The parallel assertion for B-spaces reads as

either 0<p<1l, O0<qg<1,
C Llc if, and only if, (5.2.11)
or 1l<p<oo, 0<gqg<min(p,?2).

Ip
p.q

B

We first consider the ‘bottom line'" of the sub-critical strip in Figure 8; that is, where 1 < p < o0, and s = 0.

Proposition 5.2.5 [Har01, Prop. 3.15] Let 1<p<oo.
(i) Assume 0< q<2. Then

_1
& (Fp,) = (t p)- (5.2.12)
(i) Assume 0 < ¢ < min(p,2). Then
0 0
¢ (Bpy) = (tfl’, ug) with q < ug™ < p. (5.2.13)

In particular,
¢ (B),) =(t77.p) , 1<p<2

The assertion for the envelope functions and the upper bounds for ué‘s"" are proved via embeddings Aj , <
A, = L,, where the parameters are as above, see (1.2.6), (1.1.34), and (1.2.3), and application of

Theorem 5.2.1 together with Propositions 4.2.4 (iv), 4.2.13, 5.1.2. The lower bounds for ué;"’ rely on
modified extremal functions

flz) = Z b; 2% (¢ (2z) — ¢ (272 —2%)) , zeR, (5.2.14)

which is an adapted version of [Tri99, Sect. 3.2]. Assume 2 € R" with [2°] > 4 (one needs first
moment conditions now). Choosing the sequence b = {b;},.y in a clever way one verifies (5.2.12) and
(5.2.13), respectively.  Obviously, & (F} ) = & (Ly) = (f%, p), 1 <p<oo 0<gqg<2 and
& (B),) = &(Ly) = (tfi, p), 1< p <2 We add a remark on the gap in (5.2.13) at the end of this
section.

We study the line s =0, =n(; —1) , where 0<p<1.
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Proposition 5.2.6 [Har01, Prop. 3.17] Let 0<p<1 ands=n (% — 1) .
(i) Assume 0<q<oc,and 0<qg<2 if p=1. Then

Fs )= (t71, uF‘f“’ with p < qus’q <1 52.15
p.q G G
In particular,
&(F,)=0t"1), 0<g<2.
(i) Assume 0 < q<1. Then
€ (By,) = (¢ ug)  with g < ugt <1 (5.2.16)

In particular,

& (By,)=(t"" 1), O<p§1,s:n<%—l> .

The ideas of the corresponding proof in [Har01] resemble those discussed above briefly, i.e. embeddings as
well as extremal functions.

Clearly Propositions 5.2.5 and 5.2.6 show that the borderline situation, in particular, the determination of the
corresponding indices ué( is rather complicated to handle and not yet solved completely (apart from some
special cases). Even worse, a reasonable guess what the correct outcome could be, is also missing. Concerning
the ‘bottom line' — referriong to Proposition 5.2.5 — one asks whether B—spaces with s = 0 show their

, , . . B . . o . ‘ , .
usual’ behaviour, i.e. ug;”? = ¢, independently of the delicate limiting situation, or if they ‘suffer’ from this
0

setting and tend to behave like the F'—spaces, that is u;”? = p — or something in between. The situation
is even more obscure on the line s = n(% —1), 0<p<1 :herealso the F—spaces keep silence about

T . F3 . . .
their indices (so far). There was a good assumption that u;"? = p — simply as this happens in all other

[ Fs H H H - - .
cases we studied; on the other hand, also us"* = 1 was some good choice in view of the borderline situation
( F3, C L°°), not to speak of the B—setting.

5.3 Growth envelopes in the critical case

We deal with spaces A}, where s = 7, see Figure 1. We recall the limiting embeddings (1.2.18) and

(1.2.19) : Let 0 < p < 0o (with p < oo for F spaces), and 0 < ¢ < oco. Then

Fi'7 <y L if,andonlyif, 0<p<1 and 0<gq< o, (5.3.1)
and
BMP < L. ifandonlyif, 0<p<oo and 0<g<1, (5.3.2)

see [ET96, 2.3.3 (iii), p. 45]. In view of Proposition 4.2.4 (iii) it is clear that spaces given by (5.3.1) and
(5.3.2), respectively, are of no further interest in our context, because the corresponding (growth) envelope
functions are bounded. We shall study the remaining cases now.

Theorem 5.3.1 [Har01, Thm. 3.19], [Tri01, Thm. 13.2, p. 203] Let 0 < p < o0 and 0 < ¢ < oc.

(i) Let 1<p<oo and -+ — =1, as usual. Then

1
P

S

¢, (F;,/f) - (|10gt|p1_’, p) . (5.3.3)

(i) Let 1<q< oo and %—i—%:l,asusual. Then

_

e (By)) = (llogtl7 . a) - (5.3.4)
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The proof is essentially based on ideas of H. Triebel and also relies on [ET99]; we give its main ideas. One

n/p
starts with Efp"’ and applies [ET99, Thm. 2.5] with > = 1, that is,

1 1/p
2

/[9*@) rﬂ < e “g‘H;/p“ (5.3.5)

|logt|| ¢
0

for any g € H™P. Let f € F™”  then by a result of NETRUSOV [Net89, Thm. 1.1] there is some g € H/”

p,o0!

\f(z)] < g(x) ae. in R* (implying f* < g*), with Hg|H nrll < e Hf|Fn/p and hence (5.3.5) leads
to
1 1/p 1 1/p
*(t) 1" dt *(t) 1" dt n
[logt|| ¢ |logt|] ¢
0 0

n/p

for all f € F;/OZ. By monotonicity this follows for F’ ",

0 < g < o0, and application of (3.3.17) results in

1/p

1
2

* * p
ap O /{f(t)} dt
octet |logt|t/p |logt]| ¢

2 0

n/p
forall f € F"/p. This gives 55”"’ (t) <cllogt|?, 0<t< 1. Concerning the B-counterpart of (5.3.7),
that is

n/p

(5.3.7)

() n/p
oSi?, Togtp 7w = © Hf‘B H (5.3.8)

forall f € Bn/p, 0<p<oo, 1<g< oo, weexploit the following embeddings

B™” < bmo < Lexps, 0<p<oo; (5.3.9)

p,o0

see (1.1.37) for the definition of bmo. The latter embedding is covered by [BS88, (7.22), p. 383] (locally,
but this is sufficient for our purpose), whereas the first one is verified by means of embeddings (1.2.17) and
duality results,

1

!
Brr = (Bp,ﬁ(lp’>> — (FP,) =(h)" = bmo, 1<p<occ, (5.3.10)

where h, are the local Hardy spaces, see (1.1.35) and (1.1.36). Here we use the duality result bmo = (h;)’,
see [Gol79b], and [Tri83, Thm. 2.11.2, p. 178] for the duality of B—spaces. This gives

(@) Hf‘ n/p

0<t<1 |10 t|

(5.3.11)

for all f € Bn/p because of (5.3.9) and Propositions 5.1.4, 4.2.4 (iv), i.e. the desired upper estimate

for SG ”'°°(t). The extension to 1 < ¢ < oc is achieved by some (non-linear) real interpolation argument
for T : f +—— f** mapping from suitably chosen B— spaces into weighted L., spaces; note that
the sub-additivity of f** (1.1.16) immediately gives the Lipschitz-continuity of 7" which allows us to apply
TARTAR's result [Tar72, Thm. 4, p. 476]. We end up with (5.3.8) when 1 < p < oo, the remaining case

. . . An/r
0 < p < 1 follows by the monotonicity of B-spaces simply. The converse estimates for &7 (t) are proved
with extremal functions similar to (5.2.14), i.e.

o0
Z (27'z) , zeR; (5.3.12)
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this construction of extremal functions goes back to [ET99] by EpMUNDS and TRIEBEL. Choosing the
sequence b = {bj};'il properly, the B—result is completed, whereas the F'—counterpart directly results
from embedding (1.2.17) via

BT <y FUIP (5.3.13)

Py
for r < p, and Proposition 4.2.4 (iv).

.. .- An/p
Determining the correct indices u;”* needs much more effort, at least when upper bounds are concerned.

n/p n/p
Clearly, (5.3.7) gives ugp’q < p already, leading via (5.3.13) to ug""’ < q, butonly for p<gq. In
n/p
B

general one has to cope with the atomic decomposition of f € B’

Theorem 1.1.9 for details. One finally arrives at

we refer to Section 1.1.3, in particular,

£ 1/q

[lot] ) < e lome

1<g<oco, (5.3.14)

Bn/P . . . . . n/p
such that u;”* < g, but now for all admitted ¢. It remains to verify the converse inequalities for u;* .

In B—case this is a matter of extremal functions (5.3.12) where the sequence b= {bj};.’il has to be chosen
suitably; the F'—case follows by (5.3.13) and Proposition 4.2.13.

Remark 5.3.2 In analogy to (5.2.8) and (5.2.9) in Remark 5.2.2 we see that

%(Loo,p(logL)_l) = (\logt\P_l’, p) =& (FZ,/,}’), (5.3.15)

where 0 < ¢ <ooand 1< p< oo;cf. Proposition 5.1.2 (iii) and (5.3.3). This also refers to [BW80] in case
of Sobolev spaces. Correspondingly the situation in B-case reads as

4 n
& (LocallogZ) 1) = (gt , ¢) = & (ByY). (5.3.16)
where 0 < p < oo and 1< g < oco. This follows by Proposition 5.1.2 (iii) and (5.3.4).

Remark 5.3.3 Studying spaces on a bounded domain Q C R" , say with |Q] < 1, (5.3.7) and (5.3.8) can
be rewritten as F;/qp(Q) —  Lexp1/p (), 1 <p<oo, 0<gq< oo, and B;/qp(ﬂ) < Lexp1/q (),
0 <p<oo 1<g< oo see Definition 1.1.1 (i) with Ly o(l0gL)—g = Lexp,a, @ > 0. In view of
(5.3.1), (5.3.2) and our notation (1.1.3) this can be summarised as follows (see [Har01, Cor. 3.23]); recall
Lexpo = Loo. Then FJ/P(Q) < Lega(Q) i andonlyif, a > L, and BY/P(Q) < Lexpa(®) if,
and only if, a > % where 0 < p < oo (p < oo for F—spaces), 0 < q<oo,and Q@ CR* with |Q] <1.
Note that this is the classical result by POHOZAEV, PEETRE, TRUDINGER, STRICHARTZ extended to all
reasonable cases in the context of B- or F-spaces. Moreover, the history of papers devoted to critical
embeddings in the above sense is very long already; we mentioned in Remark 5.2.3 some of the relevant papers.
Additionally we shall refer to STRICHARTZ [Str72], TRUDINGER [Tru67], YUDOVICH [Yud61], POHOZAEV
[Poh65], HaANssON [Han79], BrREz1s, WAINGER [BW80], BENNETT, SHARPLEY [BS88, Ch. 4] and TRIEBEL
in [Tri93]. We refer to [ET99, Rem. 2.6] for an extensive discussion of the history of embeddings of that
‘critical’ type.

Remark 5.3.4 Obviously assertions (5.3.1) and (5.3.2), together with elementary embedding properties of
spaces Aj , given in Section 1.2.1 imply that A} =~ Lo in the super-critical case, see Figure 1. Thus

A . . o .
we know that &£_7(t) is bounded in the super-critical case and so, by our convention, €;(A45 ) = (1, o)
where 0 < p < o (p<oointheF—case),s>%,and0<q§oo.

We excluded in the above theorem the study of B&’q, 0 < g < 0o, whereas we clearly have by (5.3.2) that

BY, , < Lo when 0 < g <1. On the other hand, (5.2.11) implies that BJ_ , C L{*® for 0 < ¢ < 2. So

00, q
it remains to consider the case 1 < ¢ < 2.
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Proposition 5.3.5 [Har01, Prop. 3.25] Assume 1 < q < 2. Then there are positive constants cy,cs such
that for all small t > 0

0
o flogt]? < E2%(t) < o [logt] . (5.3.17)

Clearly the result for B&,q, 1 < ¢ < 2, is not yet satisfactory and needs further effort; in compensation
for this we end this section with some complete result which is in some sense also surprising. We promised
in Remark 4.2.2 that growth envelopes for spaces on bounded domains and for the corresponding spaces on
R™ are essentially the same — apart from a few explicitly mentioned cases. Clearly, Proposition 5.1.4 already
deals with such an exception as Lexp,, does not make sense otherwise. Even more peculiar is the following
situation when dealing with bmo ; for a definition we refer to (1.1.37). Starting with the situation on R” it

can be easily checked that functions like

S (e —m) floglz —ml| ,

mezZ™m

where ¢ (z) is given by (5.2.6), belong to bmo (R"); see [BS88, Ch. 5, Sect. 7, p. 376] for the local matter,
and [Tri01, Sect. 13.7]. On the other hand, these members of bmo (R") immediately lead to ngo(t) =0
for all ¢ > 0 (representing another example for Lemma 4.2.3 (i)). Restricting, however, the space bmo to a
bounded domain  C R”, say, with || < 1, then spaces bmo (Q2), defined by restriction from bmo (R™),
possess a much more interesting growth envelope function.

Proposition 5.3.6 [Har01, Prop. 3.26], [Tri01, Sect. 13.7] Let Q2 C R™ be bounded, say, with |Q] < 1.
Then

eG(bmo (Q)) = (llogt|, o). (5.3.18)

The proof easily follows from our (local) assertion (5.3.9) together with Propositions 4.2.4 (iv), 4.2.13, 5.1.4
and Theorem 5.3.1 (ii).

Let us finally mention that there is a connection between spaces of type F2 4 and bmo, appearing (though
secretly hidden) in (5.3.10) already. Spaces F 6 with p = oo are excluded in our considerations usually;
however they were introduced already in [Tri78b, 2.5.1, p. 118] for 1 < ¢ < o0, see also [Tri83, Sect. 2.3.4,
p. 50]. This definition was modified and extended to 0 < ¢ < oo in [FJ90, Sect. 5]. In the critical case
s =0, p=oc,onehasfor 0 <q<2,

F), < F), = bmo < LP°. (5.3.19)

Conversely, MARSCHALL proved in [Mar95, Lemma 16], that Bs+n/p — F3
and 0 < ¢ < o0; in particular,

so,q forall seR, 0<p<oo,

Bp2 < Fl,, 0<p<oo, 0<g<oo; (5.3.20)

the case ¢ > 1 is already covered by [Mar87, Cor. 4]. Combining Proposition 5.3.6, Theorem 5.3.1 (ii), and
(5.3.19), (5.3.20) we arrive at

¢ (FY.,) = (logt], o0) , 0<g<2. (5.3.21)

6 Continuity envelopes &¢

The programme for this section is similar to the previous one, where now questions of growth of functions are
replaced by smoothness assertions. All spaces are defined on R™ unless otherwise stated.
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6.1 Definition and first examples

Recall that C' stands for the space of all bounded and uniformly continuous functions on R™, as usual.

Definition 6.1.1 Let X < C be some function space on R* with (4.35), X < Lip' and continuity

envelope function &5 0<t<e, and index uX. Then

X
& (X) = (£80), uf) (6.1.1)
is called continuity envelope for the function space X .

We begin with Lipschitz spaces Lip®, 0 < a < 1, and L1p( : O‘), 0<qg<oo, a> % (with « >0 if

g = o), see Definitions 1.1.3 and 3.2.1, respectively, as examples. Recall that f € C' belongs to Lip(;T;‘)
if

1/q
dt
Lipl || = ||f|lC / 6.1.2
L ] =i+ L“Ogﬂa} n (6.12)
0
(with the usual modification if ¢ = oc) is finite; see (3.2.3). Combining Definitions 1.1.3 for Lip® and
(6.1.2) for Llp( ' C’) one can introduce spaces Lip» ), 0<a<1, a€R 0<q<oc. Weadd this

oo, q !
consideration by matter of completeness.

a,— a)

Definition 6.1.2 Let 0<a<1, 0<g<o0, and a € R. The space Llp( is defined as the set of all

f € C such that

1 1/q
o] o g ]
e 2] =nne i+ | [ |are] g (6.1.3)
0

(with the usual modification if ¢ = o) is finite.

Remark 6.1.3 One can easily verify that there is a counterpart of Proposition 3.2.7 for spaces Lip(;’fqa),

0<a<1l 0<qg<oo, and a€ R In particular, f € L1p =) if ‘and only if, f belongs to C (or L)
and there is some ¢ > 0 such that

“ag [F [w(£0)]7 dt dA
fo M Sk
1 1/q
~ ||f|C||+</ A4 / { } ﬂﬂ) . (6.1.4)

t A
In contrast to (3.2.12), (3.2.13) there is no problem now writing this as
a A"
. ( JESR S T) . (6.15)
0

WESTERHOFF dealt in [Wes01] with spaces C(*%) coinciding with Lip%'.jffg, estimating also entropy
numbers for related embeddings.

Moreover,

e

Hf\Llp“’ )

aslongas 0<a<1.

Proposition 6.1.4 [Har01, Props. 4.9, 4.12, 4.14, 415, 5.5, 5.6, 5.7, 5.8]
(i) LetO<a<1. Then

(’_’C(Lipa) - (t’“’“), oo) . (6.1.6)
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(i) Let0<q§oo,a>%(WithaZOifq:oo). Then

e (Lidk ) = (hogt* + . q). (6.1.7)
(i) Let 0<a<1 0<g<oo, and a€R Then
ec(Lip(;;jq“)) = (t—<1—a> logt|®, q) . (6.1.8)
(iv) We have
e(C)=(t" o). (6.1.9)

6.2 Continuity envelopes in the super-critical case

We finally deal with the super-critical case of spaces of type
Aj . as introduced in Figure 1, ie. let 0 <p < oc (with s s=241
p < o in the F-case), 0 < ¢ < oo, and %<s§ %+1.
Obviously (5.3.1), (5.3.2) and some elementary embedding ,
argument for B- and F-spaces imply that such spaces can 7
be embedded into C'. Hence it is reasonable to study their ( )

continuity envelope function. On the other hand, when s > 17 7
%+1, we may conclude that A7 s continuously embedded

in Lip', so that by Proposition 4.3.3 (ii) the corresponding 7 1 /
continuity envelope functions are bounded and thus of no ’
further interest. ’

First we study spaces Aj , belonging to the ‘super-critical y
strip' (without the border-lines so far), thatis, 0 < s — 7 <
1, 0 < p < oo, see Figure 9 aside. 1
P

Figure 9

Theorem 6.2.1 [Har01, Prop. 5.9, Thm. 5.10] Let 0 < p < oo (with p < oo inthe F-case), 0 < g < 00,
0<o<1 and s:%—}—a. Then

e(Bg) = (""" q) (6.2.1)

and

e(Fp) = ("7 ). (6.2.2)

We outline the main ideas of the proof. First one deals with the case p = oc in (6.2.1); here one gains
from characterisation (1.1.30) with 0 < s =0 <1, r =1 and p = oco. This yields the upper estimates

s

B B . . . .
for SC *4(t) and uc"" almost immediately; the converse is done by extremal functions. Furthermore, the

elementary embedding B, , < BZ, , implies then Sf;"’(t) < ¢t=1=9 for small ¢ > 0. Conversely, let
fi(@) =279 4 (2Iz) , jeEN, (6.2.3)

where ¢ is a smooth function like

0 ST n
p(z) N{l—x el <1, reR".
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Then f; given by (6.2.3) isa B, — atom (as we do not need moment conditions), ||f]|B || ~ 1, and
MNQJU*U)’ t~277, jEN.

Note that f; given by (6.2.3) is in some sense the substitute of construction (5.2.7) for the subcritical case

(and growth envelopes). This leads to the desired B— result, Efp"’(t) > c¢t=(1=9) 0 <t <1, and by the
elementary embedding B? - by, — B’ ) also to the assertion for the F-case. Concerning

" p,min(p,q) p,max(p,q
the indices u-"* we benefit from the precedlng argument for B, , :Llet sg >s >0, so— p% = s—% =0,
then (1.2.17) implies Bj° < F; < BZ , and Proposition 4.3.8 leads to the correct upper estimates

A3 . . . . . B . . .
for uc."?. In view of elementary embeddings as above it remains to verify u."? > ¢. This is achieved with
extremal functions based on a combination of the functions f; given by (6.2.3). Put

Zb 2797 o (2z — yl) | z € R, (6.2.4)

where b; >0, j € N. A clever choice of y/ € R", j € N, (such that the supports of ¢ (2/ - —y7) and
¢ (2" - —y") are disjoint for k # j) and the sequence b= {b;}, . € £, resultsin [[b|¢,|| < ¢ [[b]¢]| for
any number v satisfying (4.3.9), which reads in our setting now as

- 1/v

/{w(f’t)rﬂ < e [ £1B5ll - (6.2.5)

t? t
0

Hence v > g is obvious and the proof is finished. Note that this argument resembles the construction for
the sub-critical case given in [Tri99, Sect. 3.2] and its adapted version presented in (5.2.14).

Remark 6.2.2 Parallel to Remarks 5.2.2 and 5.3.2 we mention that Proposition 6.1.4 (iii) and Theorem 6.2.1
lead to

@c(ngn/p) = (t_(l_a), q) = Q(Lipé‘;’,‘;)) , 0<p<oo,0<qg<oo, 0<0o<1,

and

p:q

e (Fp) = (7077 p) = & (Lnh) . 0<p<oo, 0<g<oo, 0<o <L

[t remains to study the borderline case s = % + 1, referring to the thick line in Figure 9. First observe that
for 0 < p < oo (with p < oo for F-spaces), 0 < ¢<oo and a>0

1
i o niph = if andonly if,  a > — (6.2.6)

’ P’

and .
Byt o Liphm®  if andonly if, o> — (6.2.7)

’ q"

see [ET96, (2.3.3/9,10), p. 45], [EH99, Thm. 2.1]; in particular, with & = 0 we regain (1.2.20) and (1.2.21),
Fpi™/® < Lip'  if andonlyif, 0<p<1 and 0<gq< oo, (6.2.8)

and
Byi™P < Lip!  if,andonlyif, 0<p<oo and 0<g<1;: (6.2.9)

these are the 'super-critical ' counterparts of (5.3.1) and (5.3.2). Hence, in view of Proposition 4.3.3 (ii) it is
clear that spaces given by (6.2.8) and (6.2.9), respectively, are of no further interest in our context, because
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the corresponding envelope functions are bounded. We are concerned with the remaining cases now.

We start with some ‘lifting" assertion which turns out to be an essential key in the later argument. It provides
some relation between the modulus of continuity of some (sufficiently smooth) function and the non-increasing
rearrangement of its gradient. The idea is to gain from results obtained in spaces of (sub-)critical type (and
hence in terms of growth envelopes) when dealing with (super-)critical spaces (and continuity envelopes).
Roughly speaking, we want to 'lift" our (sub-)critical results by smoothness 1 to (super-)critical ones. This
is at least partly possible. We return to this point later in Section 7.2.1 and discuss it in more detail. Recall

(VF)(z) = (g—i(x),...,%(w)), ¢ € R", with

Vi) = (Z %(m) ) ~> %(x)‘. (6.2.10)
=1

=1

Proposition 6.2.3 [Har01, Prop. 5.12]
(i) There is some ¢ >0 such that for all t >0 and all f e C'(R")

m

t
W(fit) < e / sV (s)ds ~ / VI (0™ do . (6.2.11)
0

0

(i) Let 0<r<oo, u> % and 0 < e < 1. Then there is some number ¢ > 0 such that

/ wif) |7 dt c/ VA" @) dt (6.2.12)
t|logt/v| ¢ | log t|* t

0 0
(with the obvious modification when r = oo) for all f € C'(R").

(i) Let 0<r<oo, 0<x<1,and 0<e < 1. Then there is some number ¢ > 0 such that
€

/{M}Tﬂ < C/E[ti(lx) IVFI* () r% (6.2.13)
0 0

t* t
(with the obvious modification when r = oo) for all f € C'(R").

We thank the idea to estimate (6.2.11) Prof. V. Kolyada; assertions (6.2.12) and (6.2.13) can then be derived
from (6.2.11) using an extended version of HARDY's inequality obtained by BENNETT and RUDNICK in [BR80,
Thm. 6.4].

Remark 6.2.4 Note that TRIEBEL obtained in [Tri01, Prop. 12.16, p. 199] assertion (6.2.12), too, but based
on a different estimate replacing (6.2.11) by

1ol

w(£?) < c VAT E) +3 sup 7T

w(f,7) (6.2.14)
t 0<r<t?

for some small ¢ >0 andall 0<t<e andall fe CYR"),cf. [Tri01, Prop. 12.16, p. 199]. We discuss
these results in Section 7.2.1 below. The exponent 2n —1 (instead of n) in the first term on the right-hand
side of (6.2.14) prevented a result like (6.2.13) in that case, in contrast to (6.2.12) where the log-term takes

no notice of exponents. Besides, with the help of (6.2.13) and Theorem 5.2.1 one easily derives uf“ <gq

F? . . .
and uc"? < p, respectively, in Theorem 6.2.1 : simply put > =0, s =0+ 2, % = 1’7" and make use

of the lifting property for A7 - spaces, cf. [Tri83, Thm. 2.3.8, p. 58]. NEVES derived some counterpart to
(6.2.13) from (6.2.14), see [Nev01b, Prop. 4.2.28].
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We are prepared now to give our result in the ‘borderline’ super-critical case when s = % + 1. Recall that we
are only interested in the cases not covered by (6.2.8) and (6.2.9), respectively.

Theorem 6.2.5 [Har01, Thm. 5.14, Prop. 5.16], [Tri01, Thm. 14.2, p. 218/219; (14.44), p. 226]

(i) Let 1<p<oo with -+ -;=1,and 0<q<oo. Then
@C(F,};”/p) - (|logt|5', p) . (6.2.15)
(i) Let 0 <p<oo,and 1<q<oo with ¢+ 2 =1. Then

& (By5"") = (logt™ . q). (6.2.16)

We briefly sketch the proof. Clearly, Propositions 4.3.3 (iii) and 6.1.4 (ii), together with (6.2.6), (6.2.7), give

14+n/p 14+n/p
the upper estimates 5:”“’ (t) < ¢ \logt\P_l’, Efp’q (t) < ¢ |10gt|L’ For the converse inequalities we
use extremal functions f; as constructed by TRIEBEL in [Tri01, (14.15)-(14.19), pp. 220/221]; these are in
some sense ‘lifted’ counterparts of (5.3.12), satisfying (in the B— case)

1/q - 1/q

S~ [ [[ALD] L) o s
j=1 )

6.2.17
t|logt|] ¢ ‘ ( )

where b = {bj}jeN is a sequence of non-negative numbers. Moreover, those functions f, are atoms

in Bph"/" or Fpi™P | respectively, see [Tri01, Cor. 13.4, p. 213]. For a clever choice of the sequence

= {bj};cn one obtains in that way functions f;, J € N, with HfJ\BH”/p ~ JY4 and
w fJ:27J
( 57 ) J (6.2.18)
14+n/p w —J o
This implies forany .J € I Ec]:gp’q 277) > J s (f;f, ) o g , completing the argument in the B-

case. The F-case can be handled in analogy to (5.3.13); in particular, (1.2.17) implies Bpp™" < Fpi™/?

- i Lo
for 0 <r <p leading to &, ~ |logt|?" finally.
1+n/p
Concerning the indices u"" , in particular their upper bounds, we essentially gain from Proposition 6.2.3

and our preceding results in Section 5.3 now. Assume p < oo first; recall

EEREED + 3 oL | e

‘ (6.2.19)

and similarly for F,}j;"/p, see [Tri83, Thm. 2.3.8, p. 58]. We start with the B— case, that is, 0 < p < oo,
1 < g < oo Letfirst g <oo. Apply (6.2.12) with » =¢, uw =1 (recall our assumption ¢ > 1, that is
u=1> 2 =1), then (5.3.14) and (6.2.19) yield

1/q 1/q

O/L |(1{)gt7)5|} — | <c ![%r%

forall f € C! ﬂBp+"/p the rest is done by completion. The same method applies in the F-case when ¢ < oc,
now using (6.2.12) and (5.3.7). When ¢ = oo, one has to modify the above argument slightly and work with

1+n/p Rn)

p.q

‘ (6.2.20)
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a sequence of functions which converge pointwise to f and satisfy the corresponding estimates uniformly. We
1
o, q

. B .
deal with the case u, separately, i.e. we have to show

£ 1/q

/{w(f;t)rﬂ < ¢ ||fIBL.,]
0

6.2.21
t|logt|| ¢ ’ ( )

or, in other words, Bl , — Lip(é;;ql) (locally). When ¢ = oo, then [Har00b, Cor. 13, Rem. 19] covers
this case. Assume 1 < ¢ < oo now; here we obtained in [Har00b, Prop. 11] only Bl , — Lip(;’;qa) for
a > 1. However, a very simple and elegant proof of (6.2.21), for 1 < ¢ < oo was obtained by BOURDAUD
and LANzA in [BLOO, Prop. 1], combining MARCHAUD's and HARDY's inequality, see (1.1.19) and [BS88,

Ch. 3, Lemma 3.9, p. 124] for the latter one. We thank this hint our colleague W. Sickel.
i Bltn/p pltn/p L i .
It remains to show the sharpness of u."* > g and uc"? > p, whereas it is again sufficient to deal

with the B— case only by elementary embeddings. This works exactly as in the proof of Theorem 5.3.1, now
with the extremal functions given by (6.2.17).

Remark 6.2.6 Combining Proposition 6.1.4 (ii) and (6.2.15), (6.2.16), we arrive at

e (Lidk))) = (gt p) = e (Fi™"), (6.2.22)
with 1 <p< oo, 0<¢q<oco, and
e (Livkry) = (logtl™ . ) = & (B3""). (6.2.23)

with 0 < p < oo, 1 < g < oo, respectively. This situation is similar to Remarks 5.2.2 and 5.3.2 when
dealing with growth envelopes; the corresponding envelopes coincide whereas the underlying spaces do not; cf.
[Har00b, Cor. 13, 20] and its extension by NEVES [NevOla]. In addition to the more or less historic references
we gave in Remarks 5.2.3 and 5.3.3 already, which are partly connected with the super-critical case, too, we
shall mention the results by BREZIS, WAINGER [BW80], the above-mentioned by BOURDAUD and LANZA
[BLOO], approaches based on extrapolation by EbDMUNDS, KRBEC [EK95], KRBEC, SCHMEISSER [KS01a],
and recently by NEVES [Nev0la]. The borderline case was already studied by ZYGMUND [Zyg45, Zyg77].

Remark 6.2.7 Note that LEOPOLD introduced in [Leo98] spaces of type Béféb), b € R, which generalise
spaces of type B, ,, see Definition 1.1.6 (i), in terms of some additional logarithmic smoothness, we refer to
Definition 3.2.4. For our purposes the characterisation (3.2.15) is sufficient, see Remark 3.2.10; then

1 1/q
{ wr(f,t) r ﬂ < 00 (6.2.24)

BV ~ e
[rBez®| ~usien+ | [ ahoer]

o

(usual modification if g = oc), where s >0, be R, 0< ¢q< oo, and r € N such that r > s. Plainly, by
the definition of Eg( and Proposition 4.3.3 only spaces B(()f,:;b) with 0 < s <1 (and arbitrary b € R),

or s=1, b>0 are of interest in this context. When 0 < s < 1, B(()Z’,;b) coincides with Lip((;’;b), see

Definition 6.1.2; thus Proposition 6.1.4 (iii) covers this case. Let s =1, b > 0. In view of the close relation

between spaces Bg’,;b) and Lip(i;)’_;‘),

is naturally led to the study of GC(B(%’,;I’)). So by Corollaries 3.3.12, 3.3.13 and Proposition 6.1.4 (ii), as
well as Proposition 3.3.10 and Theorem 6.2.5 (ii) (with p = o0) we immediately derive the following bounds

0<qg<ox a> % — studied in Section 3.3.2 in some detail — one

BTV .
for £ > (t) :thereis some ¢ >0 and forany >0 some c. >0 such that for (small) ¢ >0,

1,—b

( )
ce [logt/"t T < €770 (1) < cllogt/"T (6.2.25)

. . B Y .
where 1 < g < oo, b > 0. The exact asymptotic behaviour of £- > (¢) in all cases 0 < ¢ < oo,
b > 0, could not be obtained yet; we refer to some forthcoming research of our colleagues A. Caetano and
S.D. Moura dealing with situations described above, but in a more general setting.
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6.3 Continuity envelopes in the critical case

We return to the critical case, already studied in Section 5.3; that is, we consider spaces Ap/qp, see Figure 1.
In view of (5.3.1) and (5.3.2) (where L. can be replaced by C' ) we deal with the remaining cases now,

not covered by Theorem 5.3.1 (in terms of growth envelopes &;).

Theorem 6.3.1 [Har01, Thm. 5.18] Let 0 <p< o0 and 0 < g < 0.

(i) Assume 0<p<1. Then
Fn/p

Ert o~ Tt 0<t<1, (6.3.1)

and s
p < u”? < 00 (6.3.2)

(i) Assume 0 < q<1. Then
n/p

77 ~ 7t 0<t<1, (6.3.3)

and s
g < uc"’ < oo (6.3.4)

We outline the main ideas of the proof. Firstly, (5.3.1) and (5.3.2) give A /p — (C for the admitted

n/p
parameters, thus Proposition 6.1.4 (iv) immediately provides SC Pty < ¢ t’l, 0 <t < 1. Conversely,
note that our construction of the functions f; in the proof of Theorem 6.2.1, that is, in (6.2.3), works for

o =0, too. This yields the lower estimate in the B- case (no moment conditions), and — by (5.3.13) for
n/p n/p

0<r<p<1 0<q<oo-alsointhe F- case. It remains to verify uf“ > q, whereas ulgp"’ > p
follows then by (5.3.13) again. Note that the extremal functions (6.2.4) work also for o = 0, leading to the
desired B— result.

Remark 6.3.2 We briefly discuss the obvious gaps in (6.3.2) and (6.3.4). At first glance one is certainly
Bn/p Fr/p . . . . . ) .
tempted to assume that u-"* = ¢, uc”* = p was a good choice in that situation, too — simply ‘as it

always happens’. However, our methods presented so far fail necessarily in this limiting case : assume we

would like to prove that
e 1/q
dt n
Jwor S < |l

0

(6.3.5)

holds for all f € Bn/qp, 0<p<oo, 0<gq<1 The lifting argument’, however, as used in Step 2 of the
proof of Theorem 6.2.5 quite effectively, cannot be used as our setting now refers to Proposition 6.2.3 (iii),
but with > = 0 . This is probably not true in general, but at least not covered by Proposition 6.2.3. Still
tackling (6.3.5) one could also try to verify

€ 1/q 1 1/q

[uar S) s ezl e [[ALR] S (636)

tn/p
0 0

which at least for large values of p, p > n, is an equivalent reformulation of (6.3.5); cf. [Tri83, Thm. 2.5.12,
p. 110]. But the estimate

t
w(f,t) < ¢ /w(f’s)” E, 0<t<l,
0

(which can be shown similarly to [BS88, Ch. 5, Cor. 4.21, p. 346]) does not imply (6.3.6).

. . . Bn/p
Quite the reverse we rather question now the suggestion u-"? = ¢ ; these doubts do not rely on the present

situation (lacking of a proof, dead-ends as described above), but on a more general point of view. Note that,
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on the one hand, we have B /qp — C if,and only if, 0 < ¢ <1, where 0 < p < oo, see (5.3.2). Keeping,

on the other hand, Proposntlon 6.1.4 (iv) in mind, it was indeed rather astonishing (though, of course, not
n/p

. B
n/p to C causes a rather ‘huge’ jump from uc?' =1

impossible) that the apparently ‘small’ change from B,

[

to ug = oo, whereas both spaces share the same contlnmty envelope function

B"/P

c
& Pril () ~ E () ~t7h , 0<t<l.
n/p
So from that point of view an expression for uf“ which tends to oc when ¢ 1 1 was very much reasonable,

too. Following that line further one needs of course 'better’ extremal functions than involved in Step 2 of the
proof of Theorem 6.3.1. One discovers, for instance, the extremal functions

_1 o n
Foo (@) = [log |z]|" "7 (log (1 —log|z|)) " v(z) € BMPNFP,

constructed in [ET96, Thm. 2.7.1, p. 82] by EDMUNDS and TRIEBEL for 1 < p < oo and o > 11—3, where
¥ (x) is a cut-off function supported near the origin. Plainly the functions do not serve in the above-given form
as extremal functions in our situation (B%,p <% C for p > 1); but there might be a clever modification

adapted for our purpose. At the moment we have to content ourselves with the ‘less exciting’ state of the art,
i.e. estimates (6.3.2) and (6.3.4) in Theorem 6.3.1.

7 An outlook : envelopes and related questions

7.1 The envelope functions £; and &c revisited

In this concluding part we return to some more general features of envelopes and additionally collect some
open problems, phenomena, desiderata. We do not aim at completeness of the posed questions (concerning
possible extensions of known facts, say), and rather intend to give an outlook on future work. We study the
interplay between envelopes and lifting properties as well as envelopes and related questions of compactness.
The idea is twofold : firstly, of course, to find out what potential this new tool will show in the near future
when tackling already ‘familiar’ or even new problems; secondly, we try to find as many ‘interfaces’ to well-
established theory as possible. The latter means, for instance, that connections with related results for entropy
and approximation numbers are very much welcome, because one of the starting points for introducing the
concept of envelopes was the study of limiting embeddings, for instance. These problems are often connected
with questions of continuity or compactness of embeddings, implying subsequent investigations of entropy
numbers as performed in Sections 2, 3. Another very desirable link would be the one to more abstract Banach
space theory, say. As we already explained in case of the fundamental function together with growth envelopes
and questions concerning the (geometric) meaning of u we are interested in further ‘identifications’
in that sense, at least in special cases.

G Uc

7.1.1 Further properties

We summarise some features which naturally appeared as consequences of earlier observations, but were not
needed before. All spaces are defined on R™ unless otherwise stated.

In Subsection 4.2.2 we recalled the notion of a fundamental function ¢ of a rearrangement-invariant Banach
function space X . Some further property (in addition to the already mentioned in Subsection 4.2.2) is its
quasi-concavity by which the following is meant : A non-negative function ¢ defined on Ry is called
quasi-concave, if (t) isincreasing on (0,00) , p(¢t) =0 if, and only if, t =0, and @ is decreasing on
(0,00); see [BS88, Ch. 2, Def. 5.6, p. 69]. Observe that every nonnegative concave function on Ry, that
vanishes only at the origin, is quasi-concave; the converse, however, is not true. Any quasi-concave function
@ is equivalent to its least concave majorant ¢, cf. [BS88, Ch. 2, Prop. 5.10, p. 71]. Thus Proposition 4.2.7
implies the following result.
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Corollary 7.1.1 [Har01, Cor. 6.1] Let X be a rearrangement-invariant Banach function space, put
belt) = tEL(H), t>0. (7.1.1)
(i)  The function ¢(t) is monotonically increasing int > 0.

(i) Assume that ltifg Yg(t) =0, then 1g(t) is equivalent to some concave function for t > 0.
(i) The growth envelope function SGX (t) is equivalent to some convex function for ¢ > 0.

The question whether the rearrangement-invariance of X is really necessary or to what extent this assumption
can be weakened suggests itself. Obviously in all cases we studied in the previous sections, i.e. spaces of type
Ly ,(logL), and Aj ,, respectively, we obtained the above-described behaviour of é’é{ and g whenever
X C L°¢ was satisfied (incorporating in a slight abuse of notation the case of constant functions ¢ in (i),
too; then also X = L with Eé( (t) ~t~1 and thus g (t) ~ 1 is covered) : functions of type

EX(t) ~t7 flogt]" , ¢>0 small,

with 0 < <1, peR or =0, pu>0, lead to functions g(t) clearly satisfying Corollary 7.1.1
(with the above-mentioned extension to 3 =1, p < 0). On the other hand, as we did not observe a direct
application of (an extended version of) Corollary 7.1.1 so far we studied this question of a more general setting
than X being rearrangement-invariant not yet further.

Corollary 7.1.2 [Har01, Cor. 6.3] Let X — C be a function space, put
det)y = tEX(), t>0. (7.1.2)

(i)  The function c(t) is monotonically increasing in t >0 with ltilr{]l Pe(t) = 0.

(i)  The function tc(t) is equivalent to some concave function for t > 0.

The coincidences as well as differences between Corollaries 7.1.1 and 7.1.2Xare obvious. Note that in all cases
we studied we have the counterpart of Corollary 7.1.1 (iii), too, i.e. & is (equivalent to) some convex
function.

More important from our point of view, however, is the observation that obviously the (different) envelope
functions Eé( and ECX show similar behaviour; we merely take it as some kind of (delayed) justification
that the definition of the two envelope functions — arising in completely different problems when measuring
smoothness or unboundedness, respectively, — led to parallel concepts, though each one of them separately
was motivated by suitable classical settings initially. In Subsection 7.2.1 we return to this point in the sense,
that there are in fact deeper connections between both envelope functions than those already discussed.

7.1.2 Spaces on R;

In this subsection we insert a short digression to (envelopes of) spaces on Ry = [0, 00). We pose the question
whether, say,
SGX € X,

and this makes sense only in such spaces. We simplify the setting further and regard only spaces X on
Q= [0, %] in the sequel. First we collect some immediate consequences of our results in Section 5.1. Recall
the definition for Lorentz and Zygmund spaces L, ,(log L)a, Lexp,qa, in Definition 1.1.1 and (1.1.14).

Corollary 7.1.3 [Har01, Cors. 2.15, 2.17, 2.20]  Let all spaces be defined on Q = [0, §].
(i) Let 0<p,q< oo (withq= o0 whenp= c0). Then

E/‘LPaq

G €Lpy if, and only if, q = oc. (7.1.3)
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(i) Let 0<p<oo, 0<qg<oo,and a€ R Then

EGLP’q(IOg B ¢ L, ,(logL), if, and only if, q = 0. (7.1.4)
(i) Let a>0. Then
EL7"" € Loxpua - (7.1.5)
(iv) We have
£ € bmo . (7.1.6)

Parts (i)-(iii) are covered by [Har01, Cors. 2.15, 2.17, 2.20], whereas (iv) follows from Proposition 5.3.6, i.e.

Egmo(t) ~ |logt|, t > 0 small, and [BS88, Ch. 5, Sect. 7, p. 376]. We obtain as a direct consequence

. X o
of Corollary 7.1.3 that there are examples of spaces X with £ € X as well as such where this is not
the case. Moreover, taking also the index ué", see Definition 4.2.10, into account, one observes the following
peculiarity : whenever

Ly ;, 0<p<cx
L, (log L , O0<p<oo, a€R
X = oo (l0g L), P = Eé(EX, ué(:oo; (7.1.7)
Lexp,a 3 aZO
bmo

we refer to Corollary 7.1.3 and Propositions 5.1.2, 5.1.4, 5.3.6. Thus the following assertion seems natural.

Proposition 7.1.4 [Har01, Props. 6.5, 6.6] Let X < LI°° be some function space on Q= [0,1] with

X
e ex

and Eé( Z 0. Then this implies ul =oc, ie € (X)= (Eé(, oo), and Hé'é( |XH > 1.
The second assertion, ||Sé( |X|| > 1, is obviously a direct consequence of Sé( € X and the definition

and basic properties of Eé(, we refer to Section 4.2.1. Besides, we have in all examples given in (7.1.7) even
equivalence, that is

X
e 1x] ~ 1. (7.18)
This is due to the fact that all these spaces are rearrangement-invariant spaces which can be equivalently

renormed to rearrangement-invariant spaces of type M (X) , |[[f|M(X)| = sup f**(t)¢y(t), for the def-
>0

inition of the maximal function f**(¢#) and the fundamental function ¢ () we refer to (1.1.15) and
(4.2.7), respectively; for Lorentz spaces of type M (X) see [BS88, Ch. 2, Sect. 5, pp. 69-72]. In view of
Propositions 4.2.4 (i), 4.2.7 and the fact that (Eé( (t) ~ (Mé‘é()(t) ~ Eé((t) in all above-mentioned
examples, we immediately obtain (7.1.8).

We return to the situations studied in Sections 5.2, 5.3 in detail.

Corollary 7.1.5 Let all spaces be defined on Q= [0, 1].

'3
() Let 0<g<oo, >0, 1<r<oo and 0<p<oo besuchthat s—L=—1 Then

v
g7 eBs,  if andonlyif.  q=oo. (7.1.9)
(i) Let 1<qg<o0,and 0<p<oo. Then

Bl/p 1) . .
EM € Byl if, and only if, q = oc. (7.1.10)
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By Theorems 5.2.1 and 5.3.1 together with Proposition 7.1.4 it is immediately clear that only B—spaces with
q = oo can satisfy SGX € X as otherwise ué;"’ < oo which contradicts SGX € X. So it remains to verify
that in the sub-critical case ¢t='/" € B3 . s— 5 = =7 (locally), and |logt| € B2 0<p< oo,
referring to the critical case. For p > 1 a straightforward calculation based on (1.1.30) was sufficient, but
othe{wise the atomic characterisation seems to be better adapted : we start with the sub-critical case, i.e.

s—5 = —%. Let ¢ be some smooth cut-off function supported near ¢ = 0, take, for instance, the standard

one from (1.1.26). Let 1;(t) = p(27t) — p(27F't), j € Ng, 0 <t < 1, build a partition of unity, then

Jpi(t) pt) t 200678 | o<t<t, (7.1.11)

~ v

= a;(t)

]
=
I
BS)
—
o~
~
]
=
¢
N
d
—
o
|
o=

where the a;(t), j € Ny, are supported near {s € [0,1]: s~ 277}, such that o~ 28~ 27i(m3),
t € suppa;. Hence (7.1.11) can be understood as an atomic decomposition of tr (near 0, no moment
conditions) with coefficients A; = 1, i.e. |[A[{x|| = 1. Theorem 1.1.9 (i) then implies v € B, -
Concerning the critical case we return to our construction (5.3.12); in particular, with (¢) as above, and
1 (t) the (one-dimensional version of the) function given by (5.2.6), we consider

> (277 p(2t) (7.1.12)

—1

=

supported near t = 0. Then for small ¢ >0,

| [10g ]
Z P (2771) p(2t) ~ Z 1 ~ |logt|,
=1 =1

i.e. (7.1.12) can be interpreted as an atomic decomposition for |logt| near 0 (no moment conditions) with

Aj ~ 1 and thus ||A[{x]| ~ 1. Consequently |logt| € B,l,,/o%, 0<p<oo (locally).

Remark 7.1.6 Note that a different, but related question is that one asking for the boundedness of the
operator x : u — u*, u € X(0,1). C1aNcHI proved in [Cia01] that this x— operator is bounded in
By ,(0,1), where 1 <p<oc, 1<g<o0, 0<s<1+ %. In another context this means an extension of

the Pélya - Szegd principle known for W', L, already. Clearly the additional supremum in the definition
of SGX causes an essential distinction between the corresponding assertion for any wu, say, with ||u|X|| <1,
and SGX.

Concerning Eg( it obviously makes no sense to ask whether ECX € X with X being a function space on
Q = [0, 3], for — apart from the not very interesting case when Eg( is bounded, i.e. X < Lip' — we know
that Eg( (t) /oo when ¢ 0, such that Eg( g X forall X — C. However, one may replace this question
by

X(t) =t (1) e X 7 (7.1.13)

It is clear by Corollary 7.1.2 (i) that ¢ (t) is uniformly bounded, recall (4.3.2) and X < C. Looking for a
counterpart of (7.1.7) we first collect some examples. In a slight abuse of notation we put Lip’ = C.

Corollary 7.1.7 [Har01, Lemmata 6.7, 6.8, 6.9, 6.10]  Let all spaces be defined on Q = [0, 1].

(i) Let 0<a<1. Then
elP” € Lip” . (7.1.14)
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(i) Let0<g<oo, a> % (with & > 0 when q = o). Then
e e Lipl®  if andonly if g = oo (7.1.15)
(i) Let 0<a<1, 0<g<oo,a€R Then

T e Lipl® ) if and only if, g = co. (7.1.16)

So we can summarise Proposition 6.1.4 and Corollary 7.1.7 as follows,

Lip“ , 0<a<1
X = Llp(;’,_;) , 0<ac< 1’ a€R = QX e X s UCX = 00 . (7117)
or a=1, a>0

This suggests the counterpart of Proposition 7.1.4.

Proposition 7.1.8 [Har01, Props. 6.11, 6.12] Let X < C be some non-trivial function space on
Q=1[0,1] with

)

X

X =00, ie @C(X)z(gc,oo), and ||eX|X||2 1.

Then (unless ¢~ s a constant) this implies u

One observes that for our examples (7.1.17) it always holds ||eX |X|| ~ 1. We review our results in
Section 6.2.

Corollary 7.1.9 Let all spaces be defined on Q= [0,1].

(i) Let 0<p<oo, 0<g<oo0, 0<o<1,and s:a—i—%. Then
B® . . _
¢’ra € By, if, and only if, q = 0o. (7.1.18)

(i) Let 0<p<oo,and 1< q<oo. Then

Blti/e 141 . . o
ere € B /p if, and only if, q = oo. (7.1.19)

Theorems 6.2.1, 6.2.5 imply that only B— spaces with ¢ = oc can satisfy ¢X € X, see Proposition 7.1.8.
So we have to show that 7 € BJE/? for 0 <o <1, 0< p< oo (atleast locally), and t|logt| € Bpoe'”,
0 < p < 0. For the super-critical case we proceed parallel to the sub-critical one in Corollary 7.1.5 (i), where

(7.1.11) is now being replaced by
= o) 17 ~ 3 27T i) ) 17 297, 0<t <1, (7.1.20)

the rest is similar. Concerning (i) we return to the extremal functions f;, as constructed by TRIEBEL in
[Tri01, (14.15)-(14.19), pp. 220/221]; see also (6.2.17). Put b; = 1, then this is essentially the integrated
version of (7.1.12),

Z 9—it+ly (2j71t) o(2t) U(z) = / Y(u) du , (7.1.21)

=1

where (t), ¢(t) are as above; note that we need no moment conditions. One checks that

© ) ) 1
Z 27N (2771) p(2t) ~ tllogt| , 0<t< 5

=1

and (7.1.21) can be understood as the atomic decomposition of ¢|logt| (near 0). Now (6.2.17) and the

particular choice of the sequence b € o, imply t|logt| € B;fxl)/p, 0<p<oo.
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Remark 7.1.10 TRIEBEL studied a related question in [Tri01, Sect. 17.1, pp. 243-246], asking under what
conditions there are functions f € Aj  such that f*(t) or M are equivalent to the corresponding
growth or continuity envelope functions. By the same arguments as above only B— spaces with ¢ = co are

left to consider; TRIEBEL applies these outcomes showing that certain Green's functions (of (id— A)~% for
the critical case, for instance) materialise the corresponding envelope functions.

7.2 Envelopes, lifts, and compact embeddings

We discover some links and consequences of the above topics which seem both surprising and promising. In
future, there is certainly more fruit to be reaped of our previous studies.

7.2.1 Envelopes and lifts

Recall that SGX (t) is bounded when X < L, see Proposition 4.2.4 (iii), whereas Sg( (t) is only defined
for X — C. Thus it might not appear very interesting at first glance to study the interplay of Sé(l and

ECX2 in general — at least not when the spaces X; and X, coincide, X; = X,. We may, however, observe
some phenomena granted that X; and X, are connected in a suitable way; we shall try to interprete and
generalise this afterwards.

We consider the following situation. Let 0 < p < o
and 0 < ¢ < oco. Assume (as indicated in Figure 10) that
31:%—% forsome r, 1<r<ooc,and s, =c+ 2
for some o with 0 < ¢ < 1. We consider the case that
sy = s1 + 1 ; that is, where o0 = 1 — 2. (Note that
the assumptions on o thus imply r > n.) Furthermore,

A
by Theorem 5.2.1 we know & 7“(t) ~ t+, whereas
s+1
Theorem 6.2.1 yields Efp’q (t) ~ t~(1=9) Consequently
we obtain in that case

s+1

EC P.q (t) ~ t*(lfo) _ (tn)*% ~ 6(’;4;,4 (tn)

Likewise, for 0 < p <n and 0 < g <1 Theorems 6.3.1
and 5.2.1 (with » =n ) lead to

An/y _ n—
Eemt(t) ~ t7h=(t")

1 An/r=1

~ ELTT ().

Figure 10

n/p

1 .
g and Bp,-zn/p , respectively,

A similar behaviour can be observed when dealing with the borderline cases, B

Bl+"/P

o 5 BpIF n
Ecrt (t) ~ |logt]s ~ £, ("),

and a parallel result for the F-case. However, the log-function spoils the interplay of ¢ and t™ in that case.
Turning to the envelopes &; or &, it thus appears reasonable to define

& (X) = (&8 ™), ug),

where ué is given as in Definition 4.2.10. Then Theorems 5.2.1 and 6.2.1, as well as Theorems 5.3.1 and
6.2.5 lead to

0<p<oo, 0<qg<o0, s=
C(Ahq) = € (437) f § 1<p<oo, 0<g<oo, s=
0<p<oo, 1<qg<x0, s=

2, and n<r<oo
and A) =F;, (7.2.1)

s _— ns
and Ap7q - Bp7q

TS VIS VIS
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When r=n,ie s= % — 1, we have at least the corresponding result for the envelope functions,

s+1

AS n APJI
EaP (i) ~ ELPT (1), (7.22)

see Theorems 5.2.1 (with r =n) and 6.3.1.

Does this reflect a more general behaviour, that is, in what sense can this particular result be extended 7

So far we only collected results ‘associated’ in the above sense, but achieved (almost) independently of each

other. The more desirable was a direct link between @ and |Vf|*(t") or |V fI**(t™) ) for, say,

f € X < C'. We return to Proposition 6.2.3, in particular to estimate (6.2.11),
i
sft) < e [ SV (9 ds (7.2.3)

0

. . . . . X
for t >0 andall f € C'(R"). Plainly, this estimate plays an essential role in our subsequent study of & !

and 82(2, where X; < C' and X, C LI°° are such that |Vf| € Xy for f € X, (this setting is motivated
by our above observations). We first discuss the ‘optimality’ of (7.2.3). Recall that we have by (7.2.3) for

n=1,
b *ok
w(];’) <c|fI"®), 0<t<e, feCYR). (7.2.4)
So one can ask whether a replacement of (6.2.11) in the sense of (7.2.4), i.e.
t * ¥
@ < VAT, O<t<e, (7.2.5)

was true for all f € C'(R") and dimension n > 1. Obviously, (7.2.5) was sharper than (7.2.3), and also
implied TRIEBEL’S result [Tri01, Prop. 12.16, p. 199] mentioned in Remark 6.2.4,

W(f,t) S ¢ ‘Vf‘** (th—l) +3 sup -

t 0<T<t2

1ol

w(f, 1) (7.2.6)

for some small ¢ >0 andall 0 <t <e andall fe C'(R"); we refer to [Har01, Sect. 6.3]. However,
(7.2.5) cannot hold in general when n > 1; we give some argument disproving (7.2.5).

Assume (7.2.5) was true for n. > 1. Let f € W, (R") = F,, ,(R"); by density arguments we may furthermore
suppose that f € F)) ,(R") N Cg°(R™). Then by [Tri83, Thm. 2.3.8, p. 58] |V f| € F}}, = L,, leading to

IVF[*™ (1) < Cp 1w, 7>0, and (7.2.5) then implies
W(f,t) < ct V(") < ¢t (¢ = ¢

for small ¢ > 0. In other words, all f € F, ,(R") N Cg°(R") (and by the usual density arguments then
all f € F,,(R"), too) are (locally) bounded. This, however, is wrong : recall (5.3.1) with p =n > 1;
cf. [ET96, 2.3.3 (iii), p. 45]. On the other hand, one can also rely on a result of STEIN in [Ste81] stating
that if a function f on R" satisfies Vf € Ly locally, then f is equi-measurable with a continuous
function. Moreover, there is a remark that the result is sharp in the following sense : taking ¢ & Ly 1
with f = |z|=(®=1) % g, then there is a positive §, equi-measurable with |g|, such that the resulting f is
unbounded near every point; see also [Ste70, Ch. 8] and [Kol89, §5] for further details. So (7.2.3) — stating
exactly that |V f| belongsto L, ; locally —is the best possible result (in that sense) and (7.2.5) — referring
to |Vf] € L, — cannot hold. The essential difference to the one-dimensional case is obvious in this setting
as L1 =1Ly, but L, (R") is properly contained in L,(R"™) for any p > 1.

Hence for n > 1 we are left with the two estimates (7.2.3) and (7.2.6) (instead of (7.2.5)) and try to compare
them. At first glance it seems that our estimate (7.2.3) might be slightly sharper : though both estimates in
question gave raise to the estimate (6.2.12), only (7.2.3) implies (6.2.13). The case n =1 is clear : the
second term in (7.2.6) disappears and we have (7.2.4) again.
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Lemma 7.2.1 [Har01, Lemma 6.13] Let n > 1. There is some ¢ > 0 such that for all 0 <t <1 and
all feC'(R"),

.
/ EU VS (s)ds < en t [V () 4o 278 £ (7.2.7)
0

Obviously the estimate for the second term on the right-hand side in (7.2.7) is very rough and can probably be
improved. Following the proof in [Har01] one easily realizes, for instance, that the first term on the right-hand
side of (7.2.7) can be reduced at the expense of the latter one,

-
/ sv U [VE (s)ds < e [ [VF (#7F) + £ | £1C ]
0

this argument resembles [Tri01, Rem. 12.17, p. 202]. On the other hand, one verifies that a second term for
‘compensation’ is necessary in general; see [Har01, Sect. 6.3].

Comparing (7.2.3) and (7.2.6) we conclude that a combination of (7.2.3) and (7.2.7) results in an estimate
less sharp than (7.2.6). On the other hand, due to the partly rather rough estimates in the proof of [Har01,
Lemma 6.13] it is not yet clear, whether (7.2.6) or (7.2.3) are better in general. Nevertheless, for our purpose
estimate (7.2.3) was completely sufficient; recall Proposition 6.2.3.

We come back to our 'lifting’ problem for the envelopes. Let X C L!°¢ be some function space on R" of
regular distributions with, say, X % L... Denote by XV C X the following subspace

V={geLl : g, |Vgle X} (7.2.8)

with
lolxV |~ liglxli+ || 1¥g] 1| -

We assume that XV < ( this setting is obviously motivated by X = A3 . see (6.2.19). In view of
(7.2.1) and (7.2.2) we study the problem under which assumptions one has

€(X) = & (xV) (7.2.9)

or, at least,
X xVv
& t") ~ & t), 0<t<e. (7.2.10)

We have no complete answer, but a partial one.

Corollary 7.2.2 [Har01, Cor. 6.14] Let the spaces X, XV be given as above.
(i) There is some ¢ > 0 such that

o~ | =

£ < c% ] X ~ /tg do = [M gf(r")} (1) (7.2.11)

for all small t, 0 <t < e. Moreover, if there is some number C > (0 such that for all large J € N

e 5X 2—(k+J)n
> 27k # <, (7.2.12)
k=0 & (277m)
then (7.2.11) can be replaced by
v
g (1) < &) . (7.2.13)
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(i) Assume there is some number ¢ > 0 such that for all k € N,

k X —kn "

2
S oave ng(—) < ec, (7.2.14)
v=0

& (270

where ¢ <1 =ug (in case of r=uf <1 we may admit o=r). Then

XVS

uc ué . (7.2.15)

v
In particular, when ECX (t) ~ SGX (t"), (7.2.14) can be replaced by

k D O "
£ 2
> 2ve Xg# < ec. (7.2.16)
v=0 & (27w
Clearly (7.2.12) is satisfied for
O<p<i , x€eR,
Eé((T) ~ 7 |logT|” with pw=0 x>0, (7.2.17)

w= % < —1;

this covers all cases in (7.2.1) apart from the limiting case when X = B;L,{Ip_l, XV = BZ’/qp, 0<p<n,
0 < g <1, — reflecting that (7.2.12) is only sufficient for (7.2.13). Concerning (ii), one observes that (6.2.12)

v
and (6.2.13) are certain examples for (7.2.14) : the first one with Sé( (t) ~ SGX(t) ~ [logt", u>1,

v
whereas (6.2.13) is related to the setting ECX (t) ~ t= (=) EGX(t) ~ w1770 < 3¢ < 1; see [Har01,
Sect. 6.3] for details. In view of Theorems 5.2.1 (with r =n) and 6.3.1 we have to check (7.2.16), reading
now as the question whether

k ng (27]6) " k 2k T k
9-—ve C — 9-ve [ — :| — 271/(971’)
2 X (2t > ] =2

converges independently of k € N. This, however, fails because of ¢ < r. So condition (7.2.16) reflects the
additional problems appearing on the critical line exactly.

Inequalities converse to (7.2.13) and (7.2.15) are missing so far; further studies in the sense of [JMP91] are
necessary, and — in view of our results (7.2.1), (7.2.2) — also promising.

7.2.2 Envelopes and compactness

Finally we briefly discuss questions related to compactness (of certain embeddings). We already mentioned
that — turning to spaces on bounded domains defined by restriction — most of our results for (growth or
continuity) envelopes can be transferred immediately. Taking this for granted at the moment, it makes sense
to study the following problem : Consider an embedding between two function spaces defined on a bounded
domain, and ask whether there are consequences concerning its compactness (note that continuity is assumed)
by means of their envelopes.

Let X; C L'°® or X; < C, i=1,2, respectively, and denote by

X1 Xl
E. (t E. (t
00 = aa = LD e = e = 50 0cice. (2
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We may assume that ¢ > 0 is chosen sufficiently small, say, ¢ < 7$(X2), given by (4.2.3), and & < 7§(X>),
according to (4.3.3). Now Propositions 4.2.4 (iv) and 4.3.3 (iii) imply that there cannot be a continuous
embedding X; — X, at all whenever

sup qg(t) = oo, or sup qc(t) = oo. (7.2.19)
0<t<e 0<t<e
So for a continuous embedding (not to speak of compactness so far) it is at least necessary that qg(#)
or qc(t) are bounded. Moreover, granted the embedding X; — X, was continuous, the boundedness of
qc(t), qc(t) is not sufficient for its compactness : TRIEBEL proved in [Tri01, 14.6, pp. 227/228] that, roughly
speaking, some embedding cannot be compact when the envelopes of source and target spaces coincide, i.e.
qc(t) ~ 1 or qc(t) ~ 1. Consequently the corresponding embedding

id : Xl(U) — XQ(U)

can only be compact when

li t) =0 or i t) =0 7.2.20

im qc(t) = 0. im ac(t) (7.2.20)
(if the corresponding limits exist). We return to this point after some digression linking entropy (and approx-
imation) numbers and (continuity) envelopes more directly. This approach relies on a result of CARL and
STEPHANI [CS90, Thm. 5.6.1, p. 178] estimating approximation numbers in terms of moduli of continuity.
As we restricted ourselves in this report to the study of entropy numbers, we formulate the result below in this
adapted setting. Moreover, we consider a simple example only and compare the outcome with already known
results on entropy numbers.

We consider the following situation. Let U be the unit ball in R", denote by id, id% the natural
embedding operators

idy : X(U) — OU), idk:X({U) — Bl (U)

where the spaces X (U) are defined by restriction from their R"— counterparts. We assume that the
embeddings exist; in particular, we are mainly interested in the cases

A3 (U) , %+1>s>%, O0<p<oo, 0<g<
XU) = or s=2+1, 0<p<oo, 1<g<0 (7.2.21)
Lip" " YU) , a>0
concerning id%, and
4; ,(U) ;op>s>3—1, s>0, 0<p<oo, 0<g<oo
or s:%, O<p<oo, 1<qg<x
XWU) = (7.2.22)
Ly(logL).(U) , n<p<oo,a€R

or p=n,a>0 or p=o0, a<0
in connection with id%-.

Then compactness of id} is guaranteed for spaces of type (7.2.21) : cf. [ET96, (2.5.1/10), p. 60], or (1.3.3)
for the first assertion, and Corollary 3.4.17 (i) in connection with (1.3.2) for the second one. Likewise (1.3.3)
and (1.3.2) cover the compactness of id% in the first line of (7.2.22), whereas it follows for the second one
from (2.4.2) and another application of (1.3.3).

Corollary 7.2.3 Let X C L!°¢ be some Banach-space defined on the unit ball U in R*. Let f:N— R
be a positive and increasing function satisfying

F(2F) < e f (2 (7.2.23)

for some ¢ >0 and all k&€ N.
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(i) Assume X — C. Then there is some C >0 such that for all m € N,

sup  f(k) ex (idy : X(U) — C(U)) < C sup  f(k) k™ & (k—%) . (7.2.24)

1<k<m 1<k<m
(i) Assume X <5 L, but with X — B;ioo and XV < C. Let Eé( satisfy (7.2.12) and assume

that there is a bounded (linear) lift operator I, mapping X (U) into XV (U) such that L~' maps
C(U) into BZ' (U). Then

sup  f(k) ex (id% : X(U) — B (U)) < C sup  f(k) k= & (k1) . (7.2.25)

1<k<m 1<k<m

Part (i) is an immediate consequence of [CS90, Thm. 5.6.1, p. 178] and the definition of Sg( (leading
directly to [Har01, Cor. 6.15] formulated for approximation numbers) and a general relation between entropy
and approximation numbers; cf. [Car81, p. 294] and [CS90, p. 96] for the Banach case, and [ET96, Thm.
1.3.3, Rem. 2, pp. 15-17] for its extension as given above. The technicality dealing with U (in the original
formulation in [CS90, Thm. 5.6.1, p. 178]) or U as above can be surmounted by extension procedures and
further natural embeddings. Similarly one could also use [CS90, (5.7.1), Thm. 5.7.1, p. 185] leading to the
same results in our cases. Concerning (ii) we stress lifting arguments, Corollary 7.2.2 (i) and (7.2.24). Having
a bounded lift L:X(U) — XV(U) with L™": B (U) — B3', (U), then the decomposition

idx = L™ o (C(U) = BY . (U)) o idyv o L

together with the multiplicativity of entropy numbers, (1.2.5) and (7.2.24) yield

sup  f(R) ex (i) < C swp f(k) kH £ (kF)

1<k<m 1<k<m ¢
whereas the last step to (7.2.25) results from Corollary 7.2.2 (i).

Remark 7.2.4 In fact, Corollary 7.2.3 is rather an approximation number result (in its original intention),
the transfer to entropy numbers causes the somewhat clumsy formulation; the spoilt elegance is due to our
restriction on entropy numbers (instead of approximation numbers) from the very beginning of this report.
The advantage of this procedure, however, lies in the possible comparisons of our results presented in both
parts of this report — at least as far as entropy numbers are concerned. This was not possible to the same
extent when dealing with approximation numbers exclusively.

Assume now that ECX(t) ~ t7"|logt|* with u >0, > €R, or p=0, 3 >0; recall Eg(t) ~ t7' by
(6.1.9). Thus by (7.2.20) we have to consider the cases p <1, > € R, or p=1, 3 <0 only such that
(7.2.24) eventually leads to
o (log(k)* , 0<p<1 , x€R
ex(idy) < ¢q k= (log(k))* , p=0 , x>0 (7.2.26)
(log(k))™ ., u=1 , %<0

Dealing with (ii) one firstly observes that L, (U) < B;O{OO(U) continuously, and SGL"(t) ~ 177 see
(5.1.2). Moreover, all spaces X (U) compactly embedded into L,(U) are then compactly embedded

in B;O{OO(U), too. Thus in view of (7.2.20) and (7.2.17) it makes at least sense to regard the following
consequences of (7.2.25) when Eé((t) ~ t H|logt|”* :

En e (log(k)* , 0<p<t | xeR

ex(idy) < ¢q k= (log(k))* , =0 , x>0 (7.2.27)
(log (k)" S
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Similarly one could argue that the right-hand side of (7.2.25) with f =1 cannot be finite otherwise.

We return to our examples (7.2.21), (7.2.22) and compare it with known results. We start with X (U) =
B, (U), where s > %, 0<p< oo, 0<q<oo. (Strictly speaking, we had to restrict ourselves to p,q > 1
to meet exactly the Banach space assumption in the above corollary; however, as only estimates from above
are concerned and the corresponding spaces with 0 < p,q < 1 can be embedded in suitable Banach spaces,
the multiplicativity of entropy numbers (1.3.1) covers all above cases.) In view of BY , — C — B .
see (1.2.5), and (1.3.3) we have

ep(idy) ~ k™ n (7.2.28)

forall 0 <p<oo s>2 0<g< oo On the other hand, (7.2.26) with p =1—(s— ) and

Theorems 6.2.1, 6.2.5 lead to

Eoate , O<s—%<l, 0<g<x
ey (idg) < ¢ o N (7.2.29)
E=wt% (log(k))a | s=2+1 1<qg<o

We briefly compare (7.2.28) and (7.2.29). One realizes that for 0 < s — 2 <1 (i.e. in the ‘super-critical

strip') we are led to the correct upper estimates for ey (id};) when p = oo, whereas otherwise — on the
‘super-critical (border—)line' s = % + 1 — our method provides a less sharp upper bound only. The reasons,
however, are obvious : firstly, our result Corollary 7.2.3 is originally a result for approximation numbers [Har01,
Cor. 6.15], the transfer above gives usually satisfactory results in special cases only. In particular, in the
super- or subcritical strips, respectively, we have the same envelopes for spaces with the same differential
dimension §; this corresponds exactly to the asymptotic behaviour of approximation numbers (unlike entropy
numbers). On the other hand, as long as we are not in limiting situations (as it is the case with id% and
X given by (7.2.21), i.e. when § > 0), then the ¢— index plays no role for the entropy numbers of the
corresponding embeddings; however the continuity envelopes reflect this tricky ‘almost’ Lipschitzian continuity
of functions f € B} , with s =2 +1, 1< ¢ < oo. Moreover, one could obviously complement (7.2.29)
by e (idy) < ¢ k== whenever s = 2+1 and 0<g<1lor s>2+41 0<g<oc. Clearly thisis
worse than (7.2.28) as our continuity envelope functions are ‘made’ for 0 < s — 5 <1 only; it is not at all
surprising that we lose interesting information otherwise.

We study the second case in (7.2.21). Let X(U) = Lip* *(U), a > 0. Then Proposition 6.1.4 (i) and
(7.2.26) yield

ex (idty,) < ckn (log(k)® ;

this coincides with Corollary 3.4.17 (i) for that case, i.e. (3.4.22) with s =1 (recall B, |, — C < BY, ).

Summarising these two examples, the rather astonishing observation from our point of view is the sharpness
of the results in embedding situations ‘well-adapted’ to the context we studied with our envelopes : note that
we combined a very general result of CARL and STEPHANI [CS90, Thm. 5.6.1, p. 178] with our envelope
results, which grew up in absence of any compactness criteria. But at least in the above-described setting
they meet exactly as they should !

We come to (i) and our settings for X described in (7.2.22). When X =B] , 2 -1<s< 2, 5>0,
0<p,q< oo, or s:%, 0<p< oo, 1<gq<oc, then again by (1.3.3)

s+1

ep(ids) ~ k= (7.2.30)

in all admitted cases. The counterpart of (7.2.29) is given by (7.2.27) with y1 = § = - —=* and Theorems5.2.1,
5.3.1 such that (7.2.25) implies

g5t , Bol<s<® §>0,0<p<oo, 0<g< oo
er (id3) < ¢ » (7.2.31)
St

3 =
—
—
o
o2
—
-
~
~
Qe
»

|

I3

O<p<oo, 1 <g<
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Note that the existence of the lift operator L can be seen by applying usual restriction-extension procedures
and the lift operator I, in R" given by (1.1.33), which maps B, , isomorphically onto B~ for all
admitted parameters. Alternatively one can also use regular elliptic differential operators adapted to U; see
[Tri78a, Thm. 4.9.2, p. 335] for the case 1 < p < o0, 1< ¢ < oo, and [Tri83, Thm. 4.3.4, p. 235] for the
extensions to 0 < p,q < oo, which are based on more recent techniques of Fourier multipliers. The discussion
of (7.2.30) and (7.2.31) copies the one related to (7.2.28) and (7.2.29); it is thus omitted. Finally, we come
to X = L,(logL), as given in (7.2.22). The existence of a bounded linear lift is covered by [ET96, Thm.
2.6.3, p. 79], at least for n < p < co. Propositions 5.1.2 (ii) and 5.1.4 combined with (7.2.27) for u = %
» = —a, and (7.2.25) provide

3=

E vt (log(k)™® , n<p<oc , a€R
en(idy,) < ¢ k= (log(k))™ , p=o0 , a<0 (7.2.32)
(log(k)) ™" , p=n_, a>1

We briefly compare it with known results. Clearly for n < p < oo and well-known embeddings like (2.2.6),
ie. Lpto(U) = Ly(logL)o(U) < L,_.(U), we conclude in this non-limiting situation from (1.3.3) for all
a € R that

ek(id?);a) ~ k_% )

which is obviously better than (7.2.32). Let p = n, then by (2.4.14)

er (id: L, (log L), (U) = H, *(U)) ~ k mnlen) kN, (7.2.33)

—1-s .d @4 # =, a > 0. Using the multiplicativity of

assuming that n =p <r < oo, s> 0 with -2,
entropy numbers as well as the embeddings H,* = F, - — B, 5 < B, , see (1.1.34), (1.2.6), (1.2.3),

00,00 !
this leads to

3=

1 1
77;)

er(id?,) < ¢, k- min(a

for any number r, n <r < oo, and a# L — 1. Choosing r suitably, this can be reformulated into

1
c. k7=t a

v

S|=

er(id,.,)

IN

c k™ , 0

A

a <

S|=

for any small ¢ > 0. Though no final result is achieved so far it is rather unlikely that the last line of
(7.2.32) gives the correct upper bound, as (for sufficiently large a, say, a > 1) one would rather guess a

behaviour like e (id2.,) < ¢ k~w (with some additional term depending on a possibly) in view of (7.2.33).
A similar argument held for the case p = oo where one has to care for the required linear lift (to apply
Corollary 7.2.3 (ii)) additionally. We do not pursue this point further at the moment.

By the arguments stressed above it appears that the problem to determine ey (idy) in Corollary 7.2.3 (ii)
might not be well-adapted to our knowledge on growth envelopes which we want to apply. Though the target
space B ' (U) cannot be avoided by our lifting procedure and the intended application of (i) of Corol-
lary 7.2.3 we do not benefit enough from the continuous embedding L, (U) — B3, (U) - from the point
of entropy numbers. In other words, the target space BZ'  (U) might be ‘too far away’ from the (sub-)
critical strip where the (spaces having) growth envelopes live. This does not affect the approximation num-
bers very much as they show the same asymptotic behaviour along (compact embeddings of) spaces having
the same differential dimension §; we already mentioned this fact above. So for approximation numbers it
does not matter whether the target space is L, (U), B!, (U), or something in between, i.e. AS = with

0=s— % = —% (as long as one sticks with p at the same side of 2 compared with the source space,
but for n > 2 and AS ~ between L,(U) and B_' (U) thisis satisfied); in contrast to that, entropy
numbers distinguish between L, (U), B!y (U), and some intermediate A5, with s — - = —& as target

spaces essentially, as they go with the difference in smoothness between source and target space asymptotically.
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Remark 7.2.5 We already mentioned that the natural approach to (7.2.26) relies on approximation numbers
instead of entropy numbers; here the results are even more convincing. Moreover, our results on envelopes
can thus be applied to obtain related (upper) estimates for approximation numbers of compact embeddings
in a rather elegant way. This works also in cases not studied separately before, say,

-1

ax (id : Ly(log L), (U) — BOO’OO(U)) ,

with n < p < oo, a € R A further study of related questions will be carried out in the near future. In that
sense the difficulty mentioned in Remark 7.2.4 (that we do not have approximation number results in all cases
we would like to compare) can immediately be turned into its contrary : it offers some interesting cases to
apply our envelope results very effectively.

Finally we return to Corollary 7.2.3 from a more abstract point of view; i.e. we have a closer look on the
structure of the right-hand sides of (7.2.24) and (7.2.25). Note that Proposition 6.1.4 (iv) together with the

definition of q(CX“XQ) reveals that the entropy numbers of idY : X(U) — C(U) are estimated at the

expense of q(CX’C) (t), i.e.

sup  f(k) e (idx : X(U) — C(U)) < C sup f(k) q(CX,C) (k_%) _
1sksm 1<k<m

The counterpart for Corollary 7.2.3 (ii) is given by

sup  f(k) ex (idﬁ(:X(U)—>B;Ol’OO(U)) < C sup flk) 5P (k1)

1<k<m 1<k<m

where L, may be replaced by any space A) . 0 < ¢ < oo, as long as A) C LP°. So it appears
reasonable to ask in what sense this can be generalised for embeddings id : X;(U) — X5(U). This study
promises to be interesting in future.
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