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Introduction �

Introduction

The principal object of this report is the study of limiting embeddings in function spaces� The history of such
questions starts in the thirties of the last century with Sobolev�s famous embedding theorem �Sob���

W k
p ��� �� Lr��� � ����	

where � � R
n is a bounded domain with su
ciently smooth boundary� Lr� � � r � �� stands for the

usual Lebesgue space� and W k
p � k � N� � � p ��� are the classical Sobolev spaces� The latter have been

widely accepted as one of the crucial instruments in functional analysis � in particular� in connection with
PDEs � and have played a signi�cant role in numerous parts of mathematics for many years� Sobolevs
famous result ����	 holds for k � N with k � n

p � and r such that k
n �

�

p � �
�

r �strictly speaking� �Sob���

covers the case k
n �

�

p � � �

r � whereas the extension to k
n �

�

p � � �

r was achieved later	� In the limiting

case� when k � n
p � N� this inclusion ����	 does not hold for r ��� whereas for all r ��

Wn�p
p ��� �� Lr��� � ����	

The theory of Sobolev type embeddings originates in classical inequalities from which integrability properties
of a real function can be deduced from those of its derivatives� In that sense ����	 can be understood simply

as the impossibility to specify integrability conditions of a function f � W
n�p
p ��� by means of Lr conditions

merely� In order to obtain further re�nements of the limiting case of ����	 it becomes necessary to deal with
a wider class of function spaces� Lorentz�Zygmund spaces Lr�logL�a���� � � r � �� a � R� being the
set of all those functions f such that

Z

�

jf�x�j
r
logar �� � jf�x�j� dx � � ����	

�with the usual modi�cation if r � �	 constitute a natural class to consider� In the late sixties of the last
century Peetre �Pee���� Trudinger �Tru���� and Poho�zaev �Poh��� independently found re�nements
of ����	 expressed in terms of Orlicz spaces of exponential type� see also �Str��� by Strichartz� this was
followed by a lot of contributions investigating problems related to ����	 in detail in the last decades� In ����
Hansson �Han��� and Br�ezis� Wainger �BW��� showed independently that

Wn�p
p ��� �� L��p �logL��� ��� � ����	

where � � p � �� and the spaces Lr�u �logL�a ��� appearing in ����	 are derived from Lr�logL�a���
given by ����	 providing an even �ner tuning� Recently we noticed a revival of interest in limiting embeddings
of Sobolev spaces indicated by a considerable number of publications devoted to this subject� let us only
mention a series of papers by Edmunds with di�erent co�workers ��EGO���� �EGO���� �EGO���� �EK����
�EKP���	� by Cwikel� Pustylnik �CP���� and � also from the standpoint of applications to spectral theory
� the publications �ET���� �ET���� �Tri���� �Tri��� by Edmunds and Triebel� This list is by no means
complete� but re�ects the increased interest in related questions in the last years� There are a lot of di�erent
approaches how to modify ����	 appropriately in order to get � in the adapted framework � optimal assertions�
We return to this discussion after a short digression to entropy numbers�

The idea of the entropy of a set has attracted a great deal of attention over the years� connected with the
concept of entropy numbers ek� k � N� of embeddings between function spaces� The paper �KT��� by
Kolmogorov and Tikhomirov is certainly one of the earliest signi�cant contributions to this subject�
stating that the k�th entropy number of the embedding idm � Cm �	
� ��n� �� C �	
� ��n� asymptotically
behaves like k�m�n� written as

ek �idm � Cm �	
� ��n� �� C �	
� ��n�� � k�
m

n � k � N� ����	

where the involved spaces consist of the �m�times di�erentiable	 bounded uniformly continuous functions
on the cube 	
� ��n in R

n � The next milestone in that development is unquestionable the paper �BS���



� Introduction

by Birman and Solomyak� in this pioneering work they introduced the method of piecewise polynomial
approximation and established sharp estimates for the entropy numbers of the embedding ������

e�
�
idS � W k

p ��� �� Lr���
�
� ��

k

n � � � N� ���	�

where � � p� r ��� and k � n max� �p�
�

r � ��� It is essentially remarkable in this asymptotic characterisation

that 
 apart from the restriction k � n max� �p�
�

r � �� 
 the numbers p and r do not appear on the right�hand

side of ���	�� Here as in the sequel we shall assume that � stands for the unit ball U � fx � Rn � jxj � �g
in R

n � but this is for convenience and simplicity rather than necessity� It is furthermore hidden in our above
description so far that entropy numbers are used to characterise �the quality of� compact embeddings only�
however� for k � n� �p �

�

r � the embedding ����� is merely continuous� but not compact� It is natural to

enquire into its nature by approaching this non�compact limiting situation by related �possibly� non�limiting
compact ones� This was carried out in detail in �ET�� for the situation when ����� is replaced by

ida �W
k
p ��� �� Lr �logL�a ��� � �����

as ida is compact for a � �� k � n� �p �
�

r �� Though the target space in ����� is then slightly larger than

Lr��� originally� the modi�cation is so gentle that we continue referring to ����� as a limiting embedding�

We consider generalisations of ����� in two directions � at �rst� we investigate the counterpart of ����� with

W
n�p
p replaced by the more general fractional Sobolev spaces H

n�p
p � or even by spaces of Besov or Triebel�

Lizorkin type Bs
p�q and F s

p�q � respectively� secondly� we additionally study spaces de�ned on R
n with some

weight function of type w�x� � �� � jxj�� log� �	 � jxj�� �� � � R� This leads to limiting assertions for
spaces on � or on R

n with a weight w�x�� respectively� which have the form

F s
p�q �� Lr � s�

n

p
� �

n

r
� � � r ��� � � q ��� s � �� �����

and

Bs
p�q �� Lr � s�

n

p
� �

n

r
� � � r ��� � � q � r� s � �� ����

complemented by their counterparts for r ���

F
n�p
p�q �� L� if� and only if� � � p � � and � � q � �� ������

and

B
n�p
p�q �� L� if� and only if� � � p � � and � � q � � � ������

cf� �ET	� ����� �iii�� p� ���� Again we face the problem that� say� ����� is continuous� but not compact
for s� n

p � �n
r assuming that � or the weight is suitably chosen� Though adapting the weight function

can shrink or extend the corresponding space� this is not su�cient to gain compactness of the underlying
embedding� So� roughly speaking� we transfer the idea behind ����� and look for modi�cations of ����� 

concerning the type of spaces� too 
 such that the embedding in the adapted setting becomes compact� This
is presented in two versions � once for the counterpart of ����� on weighted spaces on R

n � otherwise for
embeddings of spaces on bounded domains similar to the situation ������� In either case we estimate the
corresponding entropy numbers subsequently� These two examples together make up Part I of the report� A
good deal of this work was motivated by the need for suitable embedding theorems more delicate than the
classical ones and new as far as we are aware�
In Part II our goal is di�erent � in contrast to recent approaches studying optimal source or target spaces of
limiting embeddings within a certain context �of rearrangement�invariant spaces� for instance� we look for an
original characterisation of the involved spaces �as appearing in� say� ����� or ������� More precisely� in view
of ������� ������ the question which suggests itself is in what sense the unboundedness of functions belonging
to F s

p�q with � � p � �� and Bs
p�q with � � q � �� respectively� can be quali�ed� Concentrating

on this particular feature only we introduce the concept of growth envelope functions E
X

G
�measuring� the
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unboundedness of such functions belonging to some function space X � Lloc
� � f � X � by means of their

non�increasing rearrangement f��t��

E
X

G
�t� � sup

kf jXk��

f��t� � t � �� �����	

Surprisingly enough one 
nds rather simple and 
nal answers characterising apparently complicated spaces like

Bs
p�q and F s

p�q � in fact� the results contain an even 
ner description of this feature than measured by E
X

G

merely� Likewise we investigate parallel limiting situations when questions of �un	boundedness of functions
are replaced by inquiries about �almost	 Lipschitz continuity� for instance� This refers to limiting embeddings
based on �����	� �����	� but lifted by smoothness ��

F
��n�p
p�q �� Lip

� if� and only if� � � p � � and � � q � �� �����	

and
B

��n�p
p�q �� Lip� if� and only if� � � p � � and � � q � � � �����	

see ET��� �����������	� p� ���� Dealing with spaces B
��n�p
p�q for � � q � � one 
nds that they contain

�almost� Lipschitz continuous functions in the sense that the Lipschitz continuity is spoilt by a logarithmic

term of order �

q�
� �� �

q � The associated concept of continuity envelope functions E
X

C
replaces �����	 by

E
X

C
�t� � sup

kf jXk��

��f� t�

t
� t � �� �����	

stressing the same arguments as above afterwards� In �����	 the function ��f� t� stands for the well�known
modulus of continuity of a function f � X �� C�

This outlines some historic background as well as the main goals of our report� Further historic references are
given at the corresponding places�

The report consists of an introductory Section � followed by two parts �as brie�y mentioned above	� Part I
composed of Sections � and �� and Part II containing the remaining four sections� We discuss the mathemat�
ical programme and structure of this report at the end of Section �� that is� in Section ��� in greater detail�
We preferred this probably unusual procedure because of the big advantage that we can explain the concept
and formal structure subordinate to it more precisely then �compared with the rather vague terms as above	�

We collect in this report a selection of results of our papers Har���� Har��a�� EH���� EH���� Har��b�
and from the recent preprint Har���� Though the outcomes are thus not new essentially� the report tries
a completely new way of linking model cases on the one hand� and more abstract approaches on the other
hand� and focuses on their interdependence as well as striking di�erences� Only the totality of all these pieces
together form the idea we want to present� In that sense this report intends to be not only the sum of its
components �papers	� it pursues the idea of passing the existing results in review from another viewpoint� as
sometimes the welter of details makes it harder to see the connection �or distinction� respectively	�

The motivation and guiding principles under which we selected and rearranged the material are explained in
Section ����
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� General concept� basic de�nitions

In this section we collect the necessary de�nitions and basic facts on function spaces� embeddings and entropy
numbers� We shall rely on the notation introduced here throughout the whole report�

Afterwards� at the end of this section � and having thus all the necessary de�nitions and facts introduced ��
we can precisely describe the structure of this report� This is done �rstly from the mathematical point of view
and subsequently from a more formal one� as the reasons for our selection � why we have chosen to present

just this material � can hardly be understood without the preliminaries�

��� Function spaces

Let Rn be Euclidean n�space and

hxi � �� � jxj����� � x � Rn � ������	

In a slight abuse of notation we also use hki to stand for �� � k����� when k � N� Given two �quasi�	
Banach spaces X and Y � we write X �� Y if X � Y and the natural embedding of X in Y is
continuous� For non�negative functions f� g � N �� R� the symbol f�k� � g�k� will mean that there are
positive numbers c�� c� such that for all k � N�

c� f�k� � g�k� � c� f�k��

All unimportant positive constants will be denoted by c� occasionally with subscripts� For any a � R let

a� � max�a� �� and �a	 � maxfk � Z � k � ag � �����
	

Moreover� for � � r � � the number r� is given by




r�
��

�

�




r

�
�

� � � r � � � ������	

For convenience� let both dx and j 	 j also stand for the �n�dimensional	 Lebesgue measure �n in the
sequel�

����� Classical spaces

We brie�y recall the de�nitions and properties of some well�known spaces which will be used below�

The Lebesgue space Lp and some relatives

Let Lp���� � � p � �� be the �quasi�	 Banach space with respect to Lebesgue measure� normed by

kf jLp���k �
�Z
�

jf�x�jp dx
���p

� ������	

�with the usual modi�cation for p ��	� where � in ������	 may stand both for a bounded domain in Rn �
or Rn itself� A natural re�nement of this scale of Lebesgue spaces are the spaces Lp�logL�a��� being the
set of all measurable functions f � � �� C such that

Z
�

jf�x�jp logap
�
� � jf�x�j

�
dx �� � �����	

This de�nition �����	 for spaces Lp�logL�a��� may be found in the book of Bennett and Sharpley

in �BS��� Ch� �� Def� ����� p� 

� where 
 � p � �� a � R� and � � Rn with j�j � �� They are
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called Zygmund spaces there� We give an alternative de�nition �admitting also parameters � � p � � and
p ���� in De�nition ����� below�

In �BS		� Ch� 
� Lemma ����� p� ��� it is shown that f � Lp�logL�a���� � � p ��� a � R� if� and only
if� � j�jZ

�

h
�� � j log tj�af��t�

ip
dt

���p
�� � �������

where f� denotes the non�increasing rearrangement of f � as usual�

f��t� � inf
�
s � � � jfx � � � jf�x�j � sgj � t

�
� t � � �������

�with the agreement inf � ���� Note that f� is non�negative� decreasing and right�continuous on 	�����
Moreover�

f��t� � sup fs � � � jfx � � � jf�x�j � sgj � tg � t � � � �����	�

�af�� � jajf�� a � R� �jf jp�� � �f��p� � � p ��� and jgj � jf j a�e� implies g� � f�� One knows that
f and f� are equi�measurable� i�e�

�f �s� �� jfx � � � jf�x�j � sgj � jft � � � f��t� � sgj � �f��s� � s � �� �������

where ���� � j � j stands for the usual Lebesgue measure on R� � Furthermore� f���� � kf jL����k� and
f��t� � � for t � j�j� Note that f� satis�es the weak form of sub�additivity only� that is�

�f � g���t� � t�� � f��t�� � g��t�� � t�� t� � ��

There is a plenty of literature on this topic� we refer to �BS		� Ch� �� Prop� ���� p� 
� and �DL��� Ch� �� x��
for instance� In view of ������� we come to an alternative de�nition of Lp�logL�a���� which simultaneously
extends it to parameters � � p � ��

De�nition ����� Let � � R
n � and � � p� q � ��

�i� The Lorentz space Lp�q��� consists of all measurable functions f � � �	 C for which the quantity

kf jLp�q���k �

�������
������

	
B


j�jZ
�

h
t
�

p f��t�
iq dt

t

�
CA
��q

� � � q ���

sup
��t�j�j

t
�

p f��t� � q ��

��������

is �nite�

�ii� Let a � R� The Lorentz�Zygmund space Lp�q�logL�a � Lp�q�logL�a��� consists of all measurable

functions f � � �	 C for which

kf jLp�q�logL�a���k �

�������
������

	
B


j�jZ
�

h
t
�

p �� � j log tj�a f��t�
iq dt

t

�
CA
��q

� � � q ���

sup
��t�j�j

t
�

p �� � j log tj�a f��t� � q ��

��������

is �nite�

The above de�nition given by Bennett and Sharpley may be found in �BS		� Ch� 
� Def� ���� and in
�BR	�� ���
�� ����
�� Note that Lp�p � Lp are the usual Lebesgue spaces� � � p � �� and Lp�q �logL�� �
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Lp�q� The spaces Lp�q�logL�a are monotonically ordered in q �for �xed p and a� as well as in a �when
p� q are �xed�� In particular� for a�� a� � R� a� � a��

Lp�logL�a���� �� Lp�logL�a���� � ��������

Moreover� when j�j ��� then there is also some monotonicity in p� i�e� we obtain for any � � � � p and
all a � ��

Lp����� �� Lp�logL�a��� �� Lp��� �� Lp�logL��a��� �� Lp����� � ������	�

see 
ET��� Rem� ����� and 
ET��� Prop� ������ �i��� Otherwise� when j�j ��� there is no monotonicity
in p� Note that L��q� � � q ��� is trivial� i�e� it contains the zero function only� The same happens for
spaces of type Lp�q�logL�a when p � �� � � q � �� and a � ��q � �� or p � q � �� but a � ��
Thus when p � � we only study spaces Lp�q�logL�a in the sequel� where a� ��q � � for � � q ���
or a � � for q ��� respectively�
Moreover� when j�j ��� say� j�j � �� and p � q ��� a � �� one has L��� �logL�

�a ��� � Lexp�a����
where the latter are the Zygmund spaces consisting of all measurable functions f on � for which there is
a constant 	 � 	�f� � � such that

Z
�

exp �	jf�x�j�
��a

dx � �� ��������

�if a � �� this is interpreted as f is bounded� i�e� Lexp�� � L��� see 
BS��� Ch� �� Def� ����� Lemma
����� p� �����

Remark ����� Note that �������� and �������� do not give a norm in any case� not even for p� q � ��
However� replacing the non�increasing rearrangement f� in �������� and �������� by its maximal function
f��� given by

�Mf�� �t� � f���t� �
�

t

tZ

�

f��s� ds � t � �� ��������

one obtains for � � p ��� � � q � �� or p � q ��� a norm in that way� see 
BS��� Ch� �� Thm� ����
p� ����� An essential advantage of the maximal function f�� � compared with f� � is that it possesses a
certain sub�additivity property�

�f � g����t� � f���t� � g���t� � t � �� ��������

cf� 
BS��� Ch� �� �	����� p� ���� Moreover� for � � p � � and � � q � �� the corresponding expressions
�������� with f� and f��� respectively� are equivalent� cf� 
BS��� Ch� �� Lemma ���� p� �����

Banach function spaces

The spaces Lp� � � p � �� belong to the category of Banach function spaces �or lattices�� we brie�y recall
this notion and follow 
BS��� Ch� �� Sect� �� closely� We assume the underlying measure space to be �a subset
of� R

n equipped with the Lebesgue measure 
n � Then these are Banach spaces X of locally integrable
functions for which the norm k � jXk is related to the order by the property that jf�x�j � jg�x�j a�e� for
g � X implies f � X and kf jXk � kgjXk� One also assumes that X contains the characteristic
functions �

A
of all subsets of Rn with �nite measure 
n�A� ��� Finally one requires that X satis�es the

Fatou property � if fn � � is an increasing sequence in X � � � fn � f a�e�� then kf jXk � lim
n��

kfnjXk�

Obviously one can extend this de�nition to quasi�Banach function spaces� if X is equipped with a quasi�norm
only� Note that for Banach function spaces X and Y �over the same measure space �R� �	 � the condition
X � Y already implies X �� Y � cf� 
BS��� Ch� �� Thm� ���� p� ���

Spaces of continuous functions

Let C�Rn � be the space of all complex�valued bounded uniformly continuous functions on Rn � equipped with
the sup�norm as usual� If m � N� we de�ne

Cm�Rn � � ff 
 D�f � C�Rn � for all jj � mg�
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Here D� are classical derivatives and Cm�Rn � is endowed with the norm

kf jCm�Rn �k �
X
j�j�m

kD�f jL��Rn �k�

Recall the concept of the di�erence operator �m
h � m � N� h � R

n � Let f�x� be an arbitrary function on
R
n � then

���

hf��x� � f�x� h�� f�x� � ��m��
h f��x� � ��

h��
m
h f��x�� ��������

where x� h � R
n � For convenience we may write �h instead of ��

h� Let r � N� the r�th modulus of

smoothness �or r�th order modulus of continuity� of a function f � Lp�R
n �� � � p � �� is de�ned by

�r�f� t�p � sup
jhj�t

k�r
hf jLp�R

n �k � t � �� ������	�

see 
BS		� Ch� �� Def� ��� p� ��� or 
DL��� Ch� � x�� pp� ������� Note that each modulus �r�f� t�p �
� � p � �� r � N� is a nonnegative� continuous� increasing function of t � �� Moreover� �r�f� t�p �
�r�f� ��p � � for t � �� We also have for � � p � ��

�r�f� t�p � �r kf jLpk and �r�f� �t�p � �r �r�f� t�p � t � �� f � Lp	

there is some triangle inequality�

�r�f � g� t�p � �r�f� t�p � �r�g� t�p � t � � � f� g � Lp �

We shall write ��f� t�p instead of ���f� t�p and omit the index p �� if there is no danger of confusion�
that is� ��g� t� instead of ��g� t��� We refer to the literature mentioned above for further details�

Marchaud�s inequality states the following � let f � Lp�R
n �� � � p � �� t � �� and k � N� then

�k�f� t�p �
k

log �
tk

�Z

t

�k���f� u�p
uk

du

u
� ��������

see 
BS		� Ch� �� ������� p� ���� or 
DL��� Ch� � Thm� 	��� p� ��� �for the one�dimensional case��

De�nition ����� Let � � a � �� The Lipschitz space Lip
a
�Rn � is de�ned as the set of all f � C�Rn �

such that

kf jLipa�Rn �k 
� kf jC�Rn� k� sup
��t��

��f� t�

ta
�������

is �nite�

Remark ����� Note that the restriction � � a � � is quite natural� as otherwise the spaces contain only
constants� when a � � one recovers the classical Lipschitz space Lip��Rn ��

���f jLip��Rn �
��� � kf jC�Rn �k� sup

��t��

��f� t�

t
� �������

����� Sequence spaces

Our estimation of the entropy numbers of embedding maps involves a reduction of the problem to the study
of maps between �nite�dimensional sequence spaces� this method has been e�ciently used before in 
ET���
and 
Tri���� Accordingly we introduce the sequence spaces �Mp � M � N� � � p � � and follow 
ET���



� �� General concept� basic de�nitions

������ p� ��	� By �Mp we shall mean the linear space of all complex M 
tuples y � �yj�� endowed with the
quasi
norm

��yj�Mp �� �

�
� MX

j��

jyj j
p

�
A

��p

� � � p ���

with the usual modi�cation if p � �� Moreover� we also need weighted �p
spaces in the following sense � Let
�Mj�j�N� be a sequence of natural numbers with Mj � �jn� j � N� � Let � � p � � and � � q � ��
Let �wj�j�N� be a sequence of positive numbers weights�� mainly of the type

wj � �j� or wj � hji� � j � N� � � � �� � � R �

We extend the de�nition of Triebel given in �Tri��� ���� p� ��	� Then �q�wj �
Mj

p � stands for the linear
space of all complex sequences x � �xj�l � j � N� � l � �� � � � �Mj� endowed with the quasi
norm

��xj�q �wj �
Mj

p

��� �

�
B� �X

j��

w
q
j

�
�MjX

l��

jxj�lj
p

�
A
q�p
�
CA

��q

�������

with the obvious modi�cations if p � � or q � ��� In case of wj � � we write �q��
Mj

p �� The above
notation was introduced in �EH��� ����	 and coincides with �Tri��� ����� p� ��	 when wj � �j� � � � ��

In addition to the above notation of the spaces �q�wj �
Mj
p � endowed with the quasi
norm ������� we have

to introduce spaces �u

h
��m �q�wj �

Mj

p �
i
� � � u � �� � � �� as the linear space of all �q�wj �

Mj

p �
valued

sequences x � �xm�m�N� such that the quasi
norm

��xj�u ���m �q�wj �
Mj

p �
��� �

	
�X

m��

��mu
��xmj�q�wj �

Mj

p �
��u
��u

�������

with the obvious modi�cation if u � �� is �nite� In case of wj � � and � � � we write �u

h
�q��

Mj

p �
i
�

The above notation coincides with �Tri��� ����	 when wj � �j� � � � ��

Let Q�m� � � N� � m � Zn� denote a cube in Rn with sides parallel to the axes of coordinates� centred at
���m� and with side length ��� � Furthermore� 	�p�

�m
is the p
normalised characteristic function of the cube

Q�m� that is

	�p�
�m

�x� � �
�n
p if x � Q�m and 	�p�

�m
�x� � � if x �� Q�m�

where � � N� � m � Zn� and � � p � �� Plainly� k	�p�
�m

jLp�R
n �k � ��

De�nition ����� Let � � p ��� � � q � �� and 
 � f
�m � C � � � N� � m � Z
ng� Then

bpq �

�

 � k
 j bpqk �

� �X
���

 X
m�Zn

j
�mj
p
�q�p ���q

� �

�

and

fpq �

�

 � k
 j fpqk �

���� 
�X
���

X
m�Zn

j
�m 	�p�
�m

���jq
���q

jLp�R
n �

���� � �

�

�with the usual modi�cation if p � � and�or q � ���

This de�nition is a modi�cation of the related one in �FJ��	 and coincides with �Tri��� Def� ����� p� ��	�
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����� Spaces of type Bs
p�q� F s

p�q

Function spaces of Besov or Triebel�Lizorkin type� Bs
p�q and F s

p�q � respectively� will serve both as essential
motivation and as outstanding examples in the sequel� We recall brie�y the basic ingredients needed to their
introduction�

Fourier�analytical approach

The Schwartz space S�Rn � and its dual S��Rn � of all complex�valued tempered distributions have their
usual meaning here� We �rst need the notion of a smooth dyadic resolution of unity� Let

A� �
�
x � Rn � ���� � jxj � ����

�
� � � N� �����	
�

complemented by
A� � fx � R

n � jxj � �g � �����	��

the usual dyadic annuli in R
n � Let f�jg

�
j�� be a sequence of C�

� functions satisfying the following
conditions 

�i� supp�j � Aj � j � N� �

�ii� for any multi�index � � ���� � � � � �n� � N
n
� there exists a positive constant c� such that

�jj�j jD��j�x�j � c� for all x � R
n � j�j � �� � � � �� �n�

�iii�

�X
j��

�j�x� � �� x � R
n �

Then f�jg
�
j�� is said to be a smooth dyadic resolution of unity� Such a smooth dyadic resolution of unity

can be constructed� say� based on some � � S�Rn � with

supp� � fy � R
n � jyj � �g and ��x� � � if jxj � � � �����	��

Put �� � � and for each j � N let �j�x� � ����jx� � ����j��x�� Then f�jg
�
j�� forms a smooth

dyadic resolution of unity� Given any f � S��Rn �� we denote by Ff and F��f its Fourier transform and
its inverse Fourier transform� respectively�

De�nition ����� Let s � R� � � q � �� and let f�jg be a smooth dyadic resolution of unity�

�i� Let � � p � �� The space Bs
p�q�R

n � is the collection of all f � S��Rn � such that

kf jBs
p�q�R

n �k �
� �X

j��

�jsq
��F�� �jFf jLp�R

n �
��q ���q �����	��

�with the usual modi�cation if q ��� is �nite�

�ii� Let � � p ��� The space F s
p�q�R

n � is the collection of all f � S��Rn � such that

��f jF s
p�q�R

n �
�� � ����

�X
j��

�jsq jF�� �jFf���j
q
���q

jLp�R
n �
��� �����	��

�with the usual modi�cation if q ��� is �nite�

For later use we introduce numbers

�p � n

�
�

p
� �

�
�

and �pq � n

�
�

min�p� q�
� �

�
�

�����	��

where � � p � � and � � q ��� recall notation �����	��
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Remark ����� The theory of the spaces Bs
p�q and F s

p�q as given above has been developed in detail in
�Tri��� and �Tri��� but has a longer history already including many contributors	 we do not want to discuss
this here
 Let us mention instead that these two scales Bs

p�q and F s
p�q cover �fractional� Sobolev spaces

H�older�Zygmund spaces local Hardy spaces and classical Besov spaces � characterised via derivatives and
di�erences � Let � � p � � s � �p � � q � � and r � N with r � s
 Then with �r�f� t�p given by
��
�
���

kf jBs
p�q�R

n �k � kf jLp�R
n �k�

�Z �

�

�

�
t�s�r�f� t�p

�q dt

t

���q

��
�
���

�with the usual modi�cation if q � �� see �BS�� Ch
 � Def
 �
� p
 ���� �DL�� Ch
 � x�� pp
 ������
�where the Besov spaces are de�ned in that way� for the Banach case and �Tri�� Thm
 �
�
�� p
 ����
for what concerns the equivalence of De�nition �
�
� �i� and characterisation ��
�
���
 In particular with
p � q �� one recovers H�older�Zygmund spaces Cs
 Let say � � s � � then Bs

��� � Cs �in the sense
of equivalent norms� ��f jBs

����Rn �
�� � kf jC�Rn�k� sup

��t��

��f� t�

ts
� ��
�
���

cf
 �Tri�� Thm
 �
�
�� p
 ����
 Concerning F�spaces one has for instance F s
p���R

n � � Hs
p�R

n � 
s � R � � p � � the latter being the well�known �fractional� Sobolev spaces of all measurable functions
f � Rn �� C  normed by

kf jHs
p�R

n �k � kIsf jLp�R
n �k � ��
�
���

where

I�f � F��h�i�Ff� f � S��Rn �� � � R� ��
�
���

is the lift operator and h�i is given by ��
�
��	 in particular in case of classical Sobolev spaces W k
p it holds

F k
p���R

n � �W k
p �R

n �� k � N� � � � p ��� i
e
 F �

p���R
n � � Lp�R

n � � ��
�
���

For later use we also recall the de�nition of the local �non�homogeneous� Hardy spaces hp  � � p � �

Let 	�x� be a test function on Rn  	 � C�

�
�Rn � with 	��� � �
 Put 	t�x� � 	�tx� for x � Rn and

t � �
 Then

hp�R
n � �

�
f � S��Rn � � kf jhp�R

n �k �

���� sup
��t��

��F��	tFf
�� ���Lp�Rn �

���� ��

�
� ��
�
���

This de�nition is due to Goldberg �Gol��b Gol��a� see also �Tri�� Sect
 �
�
� p
 ���
 According to �Tri��
Thm
 �
�
��� p
 ��� it holds

hp�R
n � � F �

p���R
n � � � � p �� � ��
�
���

The local �non�homogeneous� space of functions of bounded mean oscillation bmo  consists of all locally�
integrable functions f � Lloc

�
satisfying the following condition

bmo �Rn � �

	
f � Lloc

�
�Rn � �

kf jbmo �Rn �k � sup
jQj��

�

jQj

Z
Q

jf�x�� fQj dx� sup
jQj��

�

jQj

Z
Q

jf�x�j dx ��



� ��
�
���

where Q are cubes in Rn  and fQ is the mean value of f with respect to Q fQ � �

jQj

R
Q

f�x� dx
 This

de�nition coincides with �Tri�� �
�
� �viii� p
 ���	 see also �BS�� Ch
 � Def
 �
� ��
��� p
 ����




���� Function spaces ��

Atomic decompositions

It turns out that the following characterisation of function spaces of type Bs
p�q or F s

p�q is sometimes preferred
�compared with the above Fourier�analytical approach�� in particular when arguments for entropy numbers of
embeddings between such function spaces can thus be transferred to related questions of embeddings in �well�
adapted� sequence spaces �as introduced in Section ������ which are sometimes easier to handle�
Concerning atomic decompositions of spaces Bs

p�q and F s
p�q � we closely follow the presentation in �Tri	
�

Sect� ���� Recall our notation Q�m� ��p�
�m

� � � N� � m � Zn� given at the end of Section ������ For a cube
Q in Rn and r � � we shall mean by rQ the cube in Rn concentric with Q and with side length r

times the side length of Q�

De�nition �����

�i� Let K � N� and d � �� A K times di�erentiable complex�valued function a on R
n �continuous if

K � �� is called a �K�atom if

supp a � dQ�m for some m � Zn �������

and

jD�a�x�j � � for j�j � K� ������	�

�ii� Let s � R� � � p � �� K � N� � L� � � N� � and d � �� A K times di�erentiable complex�valued

function a on R
n �continuous if K � �� is called an �s� p�K�L� atom if for some � � N�

supp a � dQ�m for some m � Zn� ��������

jD�a�x�j � ����s�n�p��j�j� for j�j � K ��������

and Z
Rn

x� a�x� dx � � if j	j � L� ��������

This de�nition coincides with �Tri	
� Def� ����� p� 
��� The number d in ������� and �������� is unimportant
in so far as it simply makes clear that at the level � some controlled overlapping of the supports of a�m
must be allowed� Assumption �������� is called a moment condition� where L � �� means that there are
no moment conditions� It is convenient to write a�m�x� instead of a�x� if this atom is located at Q�m

according to ������� and ���������
We come to the main theorem now� the atomic characterisation of function spaces of type Bs

p�q and F s
p�q �

respectively� as obtained by Triebel in �Tri	
��

Theorem ����� �Tri	
� Thm� ���� p� 
��

�i� Let � � p ��� � � q � �� and s � R� Let K � N� and L� � � N� with

K � �� � �s	�� and L � max���� �
p � s	� ��������

be �xed� Then f � S��Rn � belongs to Bs
p�q�R

n � if� and only if� it can be represented as

f �

�X
���

X
m�Zn

��m a�m�x�� convergence being in S��Rn �� ��������

where the a�m are �K�atoms �� � �� or �s� p�K�L�atoms �� � N� according to De�nition ������ with

supp a�m � dQ�m � � � N� � m � Zn� d � �� ��������

and � � bpq � Furthermore

inf k� j bpq k � ��������

where the in�mum is taken over all admissible representations ��������� is an equivalent quasi�norm in

Bs
p�q�R

n ��
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�ii� Let � � p ��� � � q ��� and s � R� Let K � N� and L� � � N� with

K � �� � �s��� and L � max���� ��pq � s�� ��������

be �xed� Then f � S��Rn � belongs to F s

p�q
�Rn � if� and only if� it can be represented by ���������

where the atoms a�m have the same meaning as in part �i� �now perhaps with a di�erent value of L�
and � � fpq � Furthermore

inf k� j fpqk � ��������

where the in�mum is taken over all admissible representations ��������� is an equivalent quasi�norm in

F s

p�q
�Rn ��

For the proof as well as further remarks and consequences we refer to 	Tri
�� Thm� ����� p� ���

Convention� Note that we shall write As

p�q
occasionally� when both scales of spaces � either As

p�q
� Bs

p�q

or As

p�q
� F s

p�q
� are concerned simultaneously and the particular choice does not matter�

Weighted function spaces

We recall the concept of �admissible� weight functions and some basics about weighted functions spaces� see
	HT
�a�� for instance�

De�nition ������ The class of admissible weight functions is the collection of all positive C� functions

w�x� on Rn with the following properties�

�i� For any multi�index � there exists a positive constant c� with

jD�w�x�j � c� w�x� for all x � Rn � ������
�

�ii� there exist two constants c � � and � � � such that

� � w�x� � c w�y�hx � yi� for all x � Rn and all y � Rn � �������

In this paper we merely deal with special weight functions of type

w�x� � hxi� log�hxi � � � R� 	 � R � �������

Therefore we do not discuss the more general concept of weight functions� but details may be found in 	HT
�a�
����� for instance� Nevertheless we shall formulate the next results in the framework of admissible weight func�

tions in the sense of De�nition ������� but the special weights ������� may serve as typical examples�

We use the notation Lp�w����	� for the weighted Lp spaces where w�x� is some admissible weight
function in the sense of De�nition ������ and 	 � R

n � normed via

kf jLp�w����	�k � kwf jLp�	�k � �������

The weighted Sobolev spaces Hs

p
�w����Rn � are de�ned in the following way � one has to replace the

unweighted basic space Lp�R
n � in �������� by its weighted counterpart� i�e�

kf jHs

p
�w����Rn �k � kIsf jLp�w����R

n �k � �������

where w�x� is an admissible weight function in the sense of De�nition ������� In 	HT
�a� Thm� ���� we
have shown that this de�nition ������� is completely consistent with that approach�

f � Hs

p
�w����Rn � �	 wf � Hs

p
�Rn � � �������

More precisely� we have proved there that the operator f 
� wf is an isomorphic mapping from Hs

p
�w����Rn �

onto Hs

p
�Rn � and that kwf jHs

p
�Rn �k is an equivalent norm in Hs

p
�w����Rn ��
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Remark ������ Our paper �HT��a� is written in the framework of more general Besov and Triebel�Lizorkin
spaces� Bs

p�q
�Rn � and F s

p�q
�Rn �� respectively� where s � R� � � p � � 	p �� in case of the F �spaces


and � � q � �� Assertion 	������
 is valid for more general spaces than Sobolev or Lebesgue spaces� but
there is no need to pursue this point here�

Spaces on domains

We give the denition for the spaces As

p�q
����

De�nition ������ Let � � R
n be a bounded domain� Let s � R� � � p � � �p � � in case of

As

p�q
� F s

p�q
� and � � q � �� Then As

p�q
��� is the restriction of As

p�q
�Rn � to �� i�e�

As

p�q
��� � ff � D���� � � g � As

p�q
�Rn �� gj� � fg � 	������


Furthermore�

kf jAs

p�q
���k � inf kgjAs

p�q
�Rn �k

where the in�mum is taken over all g � As

p�q
�Rn �� gj� � f �

��� Embeddings

The intention of this section is a short summary of results concerning embeddings of weighted function spaces
on R

n or on bounded domains � � R
n � we begin with the so�called non�limiting case� Though this situation

is well�known and not the main topic of our investigations� we think it at least convenient and helpful for a
better understanding where the di�erences and analogues are comparing the non�limiting case and the limiting

situation we deal with�

����� Non�limiting embeddings

As already mentioned in the introduction� Sobolev�s famous embedding theorem 	���
 led to a large number
of further embedding results in more general function spaces� say� of type As

p�q
� We brie�y collect some

of these well�known facts for further reference mainly� These results are originally R
n� results� but can be

transferred to spaces on domains by the restriction procedure described in 	������
� Therefore we shall omit
� or R

n in the formulation below� Let As

p�q
stand for Bs

p�q
or F s

p�q
� respectively� where we assume

s � R� � � p � � 	with p �� for F�spaces
� and � � q ��� Then

As

p�q
�� As

p�r
for q � r ��� 	�����


As��

p�q
�� As

p�r
for all � � r � �� � � �� 	�����


and� for � � p ���

Bs

p�min�p�q� �� F s

p�q
�� Bs

p�max�p�q� � 	�����


see �Tri��� Prop� �������� p� ���� Moreover� dealing with classical spaces such as Lp and C� one can
complement 	������
 by

Bm

p�� �� Wm

p
�� Bm

p�� when � � p ��� m � N� � 	�����


and

Bm

��� �� Cm �� Bm

��� for m � N� � 	�����


see �Tri��� Prop� ������ 	�����������
� pp� ������� On the other hand� regarding spaces with di�erent metrics�
then not only the so�called �di�erential dimension� s � n

p
of the involved spaces is important� but � in case

of B� spaces � also the q� indices gain in�uence� Let � � p� � p� � �� � � q�� q�� q � � and
s� �

n

p�
� s� �

n

p�
� then

Bs�

p��q
�� Bs�

p��q
and F s�

p��q�
�� F s�

p��q�
� 	�����
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cf� �Tri��� Thm� ��	��� p� ��
�� Let us introduce the notation

� �

�
s� �

n

p�

�
�

�
s� �

n

p�

�
� �����	

Together with ������ it then follows immediately that As�
p��q�

�� As�
p��q�

for all admitted parameters
� � q�� q� � �� assuming that s� � s�� � � p� � p� � � �with p� �� in the F� case� and � � ��
whereas this is not true for � � � and all q� parameters in the B� case� see ������� This is the �rst reason
why � � � can be regarded as some limiting case� We give further arguments below� There is no compact
embedding in case of �unweighted spaces on R

n �

Embeddings between weighted spaces

In Section � we consider a special limiting case where both source and target space are chosen as Sobolev
spaces� For this reason we give the corresponding non�limiting result of weighted embeddings in this adapted
special setting only though it is valid for much more general situations�

Theorem ����� �HT
�a� Thm� ���� Let �� � s� � s� � �� � � p� � p� � � and w�� w� be

admissible weight functions according to De�nition �������

�i Hs�
p�
�w�����R

n � is continuously embedded in Hs�
p�
�w�����R

n ��

Hs�
p�
�w�����R

n � �� Hs�
p�
�w�����R

n �� ������

if� and only if�

� � � and
w��x�

w��x�
� c �� �����


for some c � � and all x � Rn �

�ii The embedding ������ is compact� if� and only if�

� � � and
w��x�

w��x�
�� � if jxj �� �� �������

Remark ����� Recall that when w��x� � w��x� � � one obtains the unweighted case and �����
 is simply
the well�known embedding theorem in R

n � Furthermore one obviously has no compact embedding in the
unweighted case� in view of �������� Let us mention that Theorem ����� has also been proved in the wider
context of B� and F �spaces in �HT
�a� Thm� ���� where more details can be found� too�

Note that by ������� and conditions �����
� ������� it is completely su�cient to consider situations where
only the source space is weighted� the target one unweighted� For later use we specify two embedding maps
id��� and id� as follows� In view of Theorem ����� it is obvious that both embedding operators

id��� � Hs�
p�

�hxi� log�hxi� �� Hs�
p�

� � � �� � � R� �������

and
id� � Hs�

p�

�
log�hxi

�
�� Hs�

p�
� 	 � �� �������

are compact if � � �� where we assume s� � s� and � � p� � p� ��� �Note that there are extension to
values p� � p� when � � �� but this is of no further interest in our context of limiting situations�

Embeddings between spaces on domains

Let � � R
n be a bounded C� domain� assume �� � s� � s� � �� � � p�� p� � � � p�� p� � � in

the F �case� � � q�� q� � �� and denote by id� the natural embedding operator

id� � id� � As�
p��q�

��� �� As�
p��q�

��� � �������
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where the spaces As
p�q��� are given by De�nition ������� Then id� is continuous when

�� �� s� � s� � n

�
�

p�
�

�

p�

�
�

� � ��������

and q� � q� if �� � � in the B	 case� Furthermore
 id� becomes compact when �� � �� The extension
to values p� � p� � compared with the R

n 	 setting � is due to H�olders inequality and the �nite measure
j�j ���

����� Limiting embeddings

It is known that spaces of type As
p�q can � roughly speaking � be embedded along lines of constant di�erential

dimension s� n
p
� const� see �������� Moreover
 by �������� and the situation described for id� it is obvious


that the case � � � is not only more di�cult to handle
 but also refers to a di�erent quality of embeddings
� one has compactness of the corresponding embeddings only for � � �� This led us to a separate study of
continuous embeddings As�

p��q�
�� As�

p��q�
�on R

n with weights
 or on bounded � � R
n � in the so	called

limiting case
 i�e� � � � � ��������

We shall retain this meaning of a �limiting embedding� throughout this report�

In the usual � �
p
� s�	diagram
 where any space

of the above type is characterised by its param	
eters s and p �neglecting q for the moment�

that is As

p�q � � �
p
� s�
 these embeddings cor	

respond to embeddings along lines with slope
n
 i�e� s � n

p
� const� In view of the his	

torical background �����
 that is
 the question
whether a space contains essentially unbounded
functions
 it is reasonable to call embeddings �or
simply spaces� of type As

p�q with s� n
p
� �

�critical
 whereas situations with s � n
p
� �

and s� n
p
� � are regarded as �super�critical

or �sub�critical
 respectively� Moreover
 as in	
dicated in the diagram aside
 we shall merely
study spaces where �p � s � n

p
��� The idea

to focus on that set of parameters has essen	
tially two reasons� It turns out that � in general
� the concepts we study make sense only for
spaces As

p�q � Lloc
� 
 i�e� when we deal with

locally integrable functions�

super	
critical

sub	

�
critical

critical

s � n
p
� �

s � n
p

s � n
�
�

p
� �

�

� �

p

s

Figure �

This implies that we have to assume s � �p� for a complete characterisation of As
p�q � Lloc

� see �ST��
 Thm�
������ by Sickel and Triebel� We return to this point later� On the other hand
 spaces with s � n

p
� �

are not very interesting in our context
 we refer to our introductory remarks in Section ��� below� Thus we
shall rely on the notation as indicated in Figure �
 where both
 the super�critical and the sub�critical case are
represented by the corresponding strips in the diagram�

For later use it is reasonable to complement ������� by its counterpart concerning the case when both
 B	
as well as F 	spaces are involved �as source or target spaces
 respectively�� Having di�erent smoothness
parameters si in the spaces under consideration
 then the situation ������� is improved as follows� we gain
from a result of Sickel and Triebel in �ST��
 Thm� ������� Let � � p� � p � p� � �
 s 	 R

s� �

n
p�

� s� n
p
� s� �

n
p�

 and � � q � �
 � � u � �
 � � v ��
 then

Bs�
p��u

�� F s
p�q �� Bs�

p��v
if
 and only if
 � � u � p � v � � � ��������
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The �if��part of the right�hand embedding is due to Jawerth �Jaw���	 whereas the �if��part of the left�hand
embedding was proved by Franke �Fra
��� The sharp assertion ������� is proved in �ST��	 Sect� ���� In
particular	 ������� yields

Bs�
p��p �� F s

p�q �� Bs�
p��p �������

for � � p� � p � p� � �	 s � R	 s� �
n
p�

� s� n
p � s� �

n
p�
	 and � � q � �� Further conclusions from

������	 ������ and ������� playing a crucial role in the sequel are

F
n�p
p�q �� C if	 and only if	 � � p � � and � � q � �� �����
�

and
B

n�p
p�q �� C if	 and only if	 � � p � � and � � q � �� �������

where C in ������� and ������ can be replaced by L�� see �ET��	 ���� �iii�	 p� ���� Its lifted counterpart
reads as

F
��n�p
p�q �� Lip

� if	 and only if	 � � p � � and � � q � �� ������

and
B
��n�p
p�q �� Lip

� if	 and only if	 � � p �� and � � q � �� ������

see �ET��	 �������	���	 p� ����

��� Entropy numbers

����� De�nition� elementary properties

Let us brie�y recall the de�nition of entropy numbers� Let A� and A� be two complex �quasi�� Banach
spaces and let T be a linear and continuous operator from A� into A�� If T is compact then for any
given � � � there are �nitely many balls in A� of radius � which cover the image T U� of the unit ball
U� � fa � A� � kajA�k � �g�

De�nition ����� Let k � N and let T � A� � A� be the above continuous operator� The k th entropy
number ek of T is the in�mum of all numbers � � � such that there exist �k�� balls in A� of radius

� which cover T U��

For details and properties of entropy numbers we refer to �CS���	 �EE
��	 �K�on
�� and �Pie
�� �always restricted
to the case of Banach spaces�� The extension of these properties to quasi�Banach spaces causes no problems�
Among other features we only want to mention the multiplicativity of entropy numbers � let A�	 A� and
A� be complex �quasi�� Banach spaces and T� � A� �� A�	 T� � A� �� A� two operators in the sense of
De�nition ������ Then

ek��k����T� � T�� � ek��T�� ek��T��� k�� k� � N� �������

Note that one has in general that

lim
k��

ek�T � � � �� T compact � ������

The last equivalence justi�es the saying that entropy numbers measure �how compact� an operator acts� This is
one reason to study the asymptotic behaviour of entropy numbers �that is	 their decay� for compact operators
in detail�

����� Related results in the non�limiting situation

We restrict ourselves to give the main results related to compact embeddings of function spaces on domains and
in weighted spaces � always bound to the non�limiting setting� The famous forerunner of all these considerations
is certainly the result of Edmunds and Triebel �ET
�	 ET�� �see also �ET��	 Thm� ������	 p� ��
�� �
Let 	 	 R

n be a bounded C� domain and id� the compact embedding operator given by �������	
id� � As�

p��q��	� �� As�
p��q��	�� Then

ek�id�� 
 k�
s��s�

n � k � N� �������

where s� � s�	 � � p�� p� � � � p�� p� �� in the F �case�	 � � q�� q� � �	 and �� � �� We come to
the situation of weighted spaces now	 where the weights are of type ���������
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Proposition ����� �Har��a� Prop� ���� Let s� � s�� � � p�� p� � �� with �

p�
� �

p�
� �

p�
� �

n
� and

� � �� Assume � � �� and � � R� Then id��� from 	��
���� is compact� and we have the following

estimates for its entropy numbers�

	i� Let � � � � �� � � R� Then

ek�id
���� � k�

s��s�

n � k � N� 	������

	ii� Let � � � � �� � � R� and �

p�
� �

p�
� �

p�
� �

n
� Then

ek�id
���� � k

�

�

n
� �

p�
�

�

p� �loghki�
��

� k � N� 	�����

	iii� Let � � � � �� � � R� and p� � p�� Then there exist a constant c � � and for any 	 � � a

constant c� � � such that for all k � N

c k
�

�

n
�

�

p�
�

�

p� �loghki�
��

� ek�id
���� � c� k

�

�

n
�

�

p�
�

�

p� �loghki�
����� �

p�
��� �

p� � 	������

	iv� Let � � � � �� and � � s��s�
n

� �� Then

ek�id
���� � k�

s��s�

n � k � N� 	������

Remark ����� We restricted ourselves in part 	iv� of Proposition ����
 to that situation concerning � � R
where a satisfying answer could be achieved� There are counterparts of 	������ in case of � � s��s�

n
��� but

at the expense of a gap between upper and lower bound for the respective entropy numbers ek�id
����� the

case � � � is covered by our more general result �HT��a� Thm� ��
�� complemented and partly improved in
�Har��a��

Dealing with limiting situations in the sequel� we are mainly interested in situations related to 	i�� 	iii� and
	iv� where p� � p�� Finally� when

w�x� � log�hxi � 
 � ��

	the special weight we mainly want to use in the following� our estimate reads as follows�

Proposition ����� �Har��a� Prop� ���� Let 
 � �� � � p� � p� � �� s� � s� and � � �� Denote by

ek�id
��� k � N� the respective entropy numbers of the compact embedding operator

id� � Hs�
p�

�
log�hxi

�
�� Hs�

p�
�

Then there are two constants c� � � and c� � � such that for all k � N

c� k
�

�

p�
� �

p� �loghki�
��

� ek�id
�� � c� �loghki�

��
�

����� Connection with applications

The study of entropy numbers of embeddings between function spaces is closely related to the distribution of
eigenvalues of 	degenerate� elliptic operators� as the books �ET��� and �Tri��� show�

Carl�s inequality

The motivation comes from Carl�s inequality giving an excellent link to possible applications� in particular�
between entropy numbers and eigenvalues of some compact operator� The setting is the following� Let A

be a complex 	quasi�� Banach space and T � L�A� compact� Then the spectrum of T 	apart form the
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point �� consists only of eigenvalues of �nite algebraic multiplicity� Let f�k�T �gk�N be the sequence of all
non�zero eigenvalues of T � repeated according to algebraic multiplicity and ordered such that

j���T �j � j���T �j � � � � � ��

Then Carl�s inequality states that�
kY

m��

j�m�T �j
���k

� inf
n�N

�
n

�k en�T � � k � N�

In particular� we have
j�k�T �j �

p
� ek�T �� 	��
���

This result was originally proved by Carl in �Car��� and Carl and Triebel in �CT�� when A is a Banach
space� An extension to quasi�Banach spaces is proved in �ET��� Thm� ��
����

Eigenvalue distribution

We consider the operator
B � b� � b��� D� � b� 	��
���

acting in some Lp space where b�x�D� is in some H�ormander class ���
��� � � � �� � � � � �� and the

functions bi�x�� i � �� �� belong to certain function spaces� Let f�kg be the sequence of the eigenvalues of
B� counted according to their algebraic multiplicity and ordered by decreasing modulus as described above�
In view of Carl�s inequality 	��
��� one arrives at j�kj � p

� ek�B�� this problem can often be reduced
further to the study of entropy numbers of suitable embeddings assuming that one has corresponding H�older
inequalities for b�� b� available�

Negative spectrum

Another possible application is connected with the Birman�Schwinger principle as described in �Sch��� Ch� ��
Sect� �� p� ��
�� Let A be a self�adjoint operator acting in a Hilbert space H and let A be positive� Let
V be a closable operator acting in H and suppose that K � H � H is a compact linear operator such that

Ku � V A��V � u for all u � dom�V A��V ��

where V � is the adjoint of V � Assume that dom�A� � dom�V �V � is dense in H� Then the above�
mentioned result provides � A	V � V has a self�adjoint extension H with pure point spectrum in �	
� �	
such that


 f��H� � �	
� �	 g � 
 fk � N � j�kj � �g
where f�kg is the sequence of eigenvalues of K� counted according to their multiplicity and ordered by
decreasing modulus� The number of elements of a �nite set M is denoted by 
M � as usual� In particular� we
consider the behaviour of the �negative spectrum� ��H�� � �	
� �	 of the self�adjoint unbounded operator

H� � a�x�D� 	 �b��x� as � �
 	��
���

where a�x�D� � ��
��� � � � � � � � � 	 �� 	��
����

is assumed to be a positive�de�nite and self�adjoint operator in L� and b�x� is a real�valued function� We
know from former considerations� cf� �HT��b� ���� ����� that


f��H�� � �	
� �	g � 

n
k � N �

p
� ek � ���

o
	��
����

with ek � ek
�
b�x� b�x�D� b�x�

�
and b�x�D� � a���x�D� � ���

��� �
These are essentially the applications we have in mind for using our results on entropy numbers of compact
embeddings� This programme was carried out in �HT��b�� �ET���� �rst� and �Tri���� �Har���� �Hara�� �EH�
in di�erent settings afterwards� we refer to these papers and books for details�
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��� Concept and structure of this report

The idea of the present report is to collect material on limiting embeddings� entropy numbers and envelopes�
mainly published already� and to arrange it in a more coherent form than the separate parts �papers� provide�
We would like to qualify this immediately by confessing that we do not aim at a survey of these topics in the
sense that the state of the art as well as all the historic background is re�ected completely� Based on our own
results we shall give all the related references we know of at the moment� but the selection of the presented
material is guided by our own goals only�

We explain the structure of the report� see also the diagram below�

sub�critical case

weighted space on R
n

super�critical case

space on a bounded domain

Part I Part II

sub�� super�� and critical case

local characterisation of spaces on � � R
n

Preliminaries

Section �

limiting embeddings �
two 	examples


a more abstract approach �
envelopes

Section � Section � Sections ���

Hs
ps �w�x��Rn� �� Lp�logL�a�R

n� B��n�p
p�q �U� �� Lip�������U� E

G
�X�� E

C
�X�

�Har��� �Har��a �EH��� �EH��� �Har��b �Har��

compactness of embeddings� estimates for entropy numbers

introduction of new function spaces new characterisation of well�known spaces

modifying integrabilitymodifying integrability modifying smoothness measuring growth and smoothness

The report is divided in two parts which re�ect di�erent approaches to the topic of limiting embeddings�
According to our philosophy explained in Section ����� we shall be concerned with embeddings of type

id � As�
p��q�

�� As�
p��q�

�������

mainly� where s� � s�� � � p�� p� � � �p�� p� �� in the F �case�� � � q�� q� ��� and

� �

�
s� �

n

p�

�
�

�
s� �

n

p�

�
� �� �������
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see ��������� Furthermore� as the determination of entropy numbers is another objective of this report� we are
especially interested in compact limiting embeddings	 a comparison with the non
limiting situation described
in Section ����� suggests that the setting should be adapted to either the study of weighted spaces on R

n �

idw � As�
p��q�

�w����Rn � �� As�
p��q�

�Rn � � �������

or to spaces on bounded domains � � R
n �

id� � As�
p��q�

��� �� As�
p��q�

��� � �������

This is exactly the programme followed in Part I� where Section � concerns a model case for idw� and Sec

tion � is devoted to some question derived from �������� Moreover� both sections in Part I dier inasmuch as
the problem posed in Section � leads to modi�cation in the integrability of the regarded functions� whereas
this is replaced in Section � by re�ned smoothness assertions� Linking it with the general setting described
in Fig� �� Section � refers to the sub
critical case and Section � to the super
critical one� Both model cases
investigated in Sections � and � share� however� one essential feature � the �repair� of the �original� loss of
compactness in limiting embeddings idw� id�� is achieved in either case by the introduction of new function
spaces� especially adapted to the problem under consideration� Thus the disadvantage is obvious � the solution
appears hand�made and can hardly be transferred to other problems� However� as the introduction of the new
spaces relies in both cases on well
known concepts �such as the Lorentz
Zygmund spaces in Section � and
the famous Br�ezis
Wainger inequality ������� in Section ��� the construction seems quite natural 
 at least
we would like to convince the reader of this claim � Moreover� the restriction to very special settings as in
Part I permits subsequently a variety of results and applications� This brie�y outlines the pros and cons of our
approach in Part I	 more details can also be found in the introductory Sections ��� and ����
The method performed in Part II is now easy to explain � In contrast to Part I we concentrate on a more
general� abstract approach� tackling all sub
� super
 and critical cases given by Fig� �� We do not seek for
new spaces� but new descriptions for well�known spaces� The concept of envelopes is separated from �special�
limiting embeddings� dealing instead with the �involved� spaces� Of course� the idea to introduce envelopes
arose from the well
tilled �eld of limiting embeddings� too� and has thus inherited intrinsic features of this
background	 but this should rather be regarded as some motivation for studying envelopes� the corresponding
de�nitions can be understood independently of it� We explain the idea �rst in simple� well
known terms and
with very classical examples before climbing up to the peaks � the corresponding results in terms of spaces of
type As

p�q
	 this is indeed technically more complicated� but their simple elegance undoubtedly compensates

for the preceding eorts� This phenomenon can be experienced twice � what is �rst carried out in view of
measuring local growth �unboundedness� of functions is afterwards presented in a parallel approach to charac

terise smoothness of functions� Roughly speaking� the most interesting spaces we deal with are such �nearby�
L� �or other Lebesgue spaces Lu� and� secondly� those containing functions which are �almost� Lipschitz
continuous�
We emphasised the independence of the concept of envelopes from limiting embeddings� but already confessed
that there are close �historic� links� too� In that sense our sharp assertions on envelopes imply a lot of inter

esting �new� inequalities	 in our opinion� however� the essential advantage of this new approach rather results
from its simplicity when establishing �so far �nal� answers to relatively di�cult questions� There is only one
exception of this statement explicitly to be mentioned � It concerns the very last part of this report when
we study the interplay of envelops� lifts and compact embeddings� including �rst entropy numbers estimates
obtained as applications of envelope results� This seems to be a promising new subject and worth to be
investigated further	 it is� however� left for future work�

We are thus immediately led to further confessions what will not be contained in this report �

� no approximation number results � Another tool to characterise compact embeddings more precisely is
the concept of approximation numbers which can be used eectively for applications� too� We dealt
with corresponding estimates in �EH���� that is in the model case described in Section �� and in �Har���
brie�y� But as we lack results for the �rst model case in Section � and have to restrict the length of the
report anyway� we decided to skip this topic completely�

� no more general settings �measure spaces� homogeneous spaces� � Likewise we dealt in our papers �Har���
and �Har��� with slightly more general settings than presented here	 the �rst model case given in Section �
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is considered in the framework of homogeneous type spaces in �Har��� Sect� �	 whereas the approach in
�Har
�	 relies partially on more general measure spaces than R

n equipped with the Lebesgue measure
only� For reasons of consistency �and length� we also omitted these extensions�

� no applications  Finally� we do not give any applications of our entropy number results in the sense
indicated in Section ������ Although we pursued this line in both model cases� see �Har��� Sect� �	�
�Har

a� Sect� �	� �EH

� Sect� �	� and consider it in fact for one of the strongest reasons to study
entropy numbers in detail� we have to leave it out by means of restriction simply� Nevertheless we
decided to outline the link between entropy numbers and possible applications in Section ����� brie�y� as
the motivation to study questions of compactness in limiting cases appears essentially weaker otherwise�

Formally the report is built upon our papers �Har��	� �Har

a	� �EH��	� �EH

	� �Har

b	 and the recent
preprint �Har
�	� More precisely� in Section � we use results from �Har��	 and �Har

a	� whereas Section �
relies on �EH��	� �EH

	 and �Har

b	� Part II consists of �Har
�	 mainly� All the material is selected and
re�arranged under the above�described programme and restrictions� Moreover� we do not give any proofs of our
results here �apart from very few original assertions�� they can be found in the original papers according to the
given references� We insert some sketches of proofs only when we think it indisputable for the comprehension
of the background� for realising technical di�culties� or� conversely� the interaction of apparently separated
components and methods� Certainly this reduces the comprehensibility of a mathematical report necessarily�
but we found no reasonable alternative in view of its length� On the other hand we tried to lay more emphasis
on the account why this and that solution or de�nition was chosen � correspondingly the presentation how it
worked technically came second to it� This also explains that we conceded motivating arguments� examples
and comparisons �with well�known facts� relatively large scope� We hope that this selection of the material
and concentration on more descriptive and explanatory elements does not prevent but � quite the reverse �
encourages the honourable reader �
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Part I

Limiting embeddings� entropy numbers

� Modi�ed integrability

��� Introduction

We start with a model case for idw from �������� It is known by Theorem ����� that the embedding operator

idH � Hs�
p�
�w����Rn � �� Hs�

p�
�Rn � �������

is continuous if� and only if� the weight function w�x� is bounded from below�

w�x� � c � �� x � Rn � and � �

�
s� �

n

p�

�
�

�
s� �

n

p�

�
� �� �������

where �� � s� � s� ��� � � p� � p� ��� and w�x� is of type

w�x� � hxi� log�hxi � � � R� � � R�

Moreover� idH from ������� is compact if� and only if� w�x� �� � as jxj � � and � from �������
is positive� � � �� We are thus led to the problem of characterising this compactness of idH further in
terms of entropy �or approximation� numbers� We studied this question in 	HT
�a�� 	Har
�a� and obtained
estimates for the respective entropy numbers ek�idH� of the form ek�idH� � k�� log�hki� k � N� where
the numbers �� 	 depend upon the given parameters si� pi� i � �� �� and the weight function� see also
our survey 	Har
�b��
There are various possibilities to come to limiting embeddings� based on �������� According to the philosophy
of this report �������� we stick at � � � now� Obviously compactness of idH from ������� is then lost
independently of the weight chosen� We handle a model case �rst and simplify the setting as much as possible
from the very beginning� We assume for the target space s� � � � i�e� a Lebesgue space Lp��R

n �� and �x

the weight by w�x� � log�hxi� 	 � �� Now the idea is clear � the source space Hs�
p�

�
log�hxi�Rn

�
becomes

smaller depending upon 	 � �� Although this is not su�cient to gain compactness of

id� � Hs�
p�

�
log�hxi�Rn

�
�� Lp��R

n � � �������

where 	 � �� s� � �� � � p� � p� ��� and s� n
p�

� � n
p�
� one tries to enlarge the target space Lp��R

n �

simultaneously to achieve compactness� but also keeping the integrability index p� �xed �that is� preserving
� � ��� One needs reasonable extensions of Lp��R

n � as described above� Here we bene�tted essentially
from parallel work done for function spaces on bounded domains� Let � 	 R

n be a bounded C� domain
and denote by

id� � Hs�
p�
��� �� Lp����� �������

where the parameters are as above� Embeddings of that type �in particular� what concerns questions of
compactness and corresponding entropy numbers� have been studied by Edmunds and Triebel in 	ET�
��
	ET
�� for the non�limiting case �� � �� and in 	ET
��� 	ET
�� for the limiting one �� � ��� respectively� in the
limiting situation� they led to the replacement of the target space Lp���� by the logarithmic Lebesgue space
Lp��logL�a���� a � �� Dealing with weighted spaces on R

n � being in some sense the natural counterpart�
of spaces on bounded domains � we follow this idea� but immediately face the problem of a suitable de�nition
for Lp��logL�a�R

n �� The �rst main question to answer is to develop a reasonable de�nition of those spaces�
We present some motivation and our approach in Section ���� In Section ��� we give some more features of
the new� spaces� serving as some justi�cation for their de�nition� too� Finally� we end this section with our
results on the compactness of embeddings of type ������� �where Lp��R

n � is replaced by Lp��logL�a�R
n ��

a � ��� and on corresponding entropy numbers� this is always compared with the associated non�limiting
outcome�

The material we present in this section is essentially based on our papers 	Har
�� and 	Har��a�� we summarise



���� Spaces of type Lp�logL�a and Hs
p�logH�a on R

n � basic properties ��

in this report� however� only selected results � according to our general strategy to describe model cases only
focused now under a certain point of view � �how to handle limiting situations when non�limiting counterparts

are well�understood�� Likewise all related proofs and further minor results 	which do not contribute to our
above question directly
 are to be found in these papers according to the references given below� Moreover�
for the same reason we completely skip a discussion of possible applications as well as further extensions to
homogeneous type spaces in this context� details can be found in �Har�� Sect� ���� and �Har��a� Sect� ���

��� Spaces of type Lp�logL�a and H
s

p
�logH�a on R

n � basic properties

We introduce logarithmic spaces of type Lp�logL�a and Hs
p�logH�a on R

n � One should always keep in
mind that we study the embedding 	�����
 with � � �� s� � �� � � p� � p� ��� and s� n

p�
� � n

p�
� For

that reason and a parallel study related to 	unweighted
 spaces on bounded domains �� where

id��a � Hs�
p� ��� �� Lp��logL��a���

is compact for any a � �� we try to enlarge Lp��R
n � slightly to some space Lp��logL��a�R

n �� The problem
thus consists in �nding a suitable counterpart on R

n of Lp�logL�a��� given by De�nition ����� 	ii
 with
p � q� as usual� There are� however� di�erent ways of extension depending upon the preceding decision which
features should be kept in any case � and which might go lost� 	At �rst glance one could hope� of course�
to �nd the one extension which carries over all nice properties of Lp�logL�a��� to Lp�logL�a�R

n �� but �
whether it appears disappointing or rather normal in life � this desideratum cannot exist�
 One has to balance
advantages and disadvantages of this or that approach � according to the purpose one has in mind� Let us
only mention two di�erent approaches of extending Lp�logL�a��� to R

n � �rstly� a very natural way was
to replace j�j by � in 	������
� i�e� to require

�
�
�Z
�

�� � j log tj�ap f��t�p dt

�
A

��p

��

and to construct spaces on that basis� For later reason we shall call these spaces Lp�logL�
�

a�R
n �� Another �

and from our point of view preferred � extension relies on a characterisation of spaces Lp�logL�a by means
of extrapolating Lp spaces 	corresponding to non�limiting situations
� The gain following that method was
obvious � we could bene�t from our exact knowledge on compact embeddings in non�limiting situation 	as
brie�y mentioned in Subsection �����
 when tackling the limiting one� The price to pay for this better adapted
setting we choose is� for instance� that the spaces Lp�logL�a�R

n � and Lp�logL�
�

a�R
n � di�er � unlike in

case of a bounded underlying domain �� We return to this point in Subsection ����� below�

����� Motivation � spaces on � revisited

G

�

�

p �

�

s

�

p�

s � n
p

�n

�

p

s � n� �p � ��

Figure �

Recall the de�nition of spaces Lp�logL�a��� by De�nition ����� 	ii
 with
p � q� As already announced we are more interested in characterisations
of these spaces by extrapolation techniques as obtained by Edmunds and
Triebel in �ET�� Thm� ������ p� ��� We start with some notation�
Introduce the strip

G �

��
�

p
� s

�
� � � p ��� n

�
�

p
� �

�
� s �

n

p

�

in the usual � �p � s� diagram� see Figure �� where Hs
p � � �p � s�� � � p ���

s � R� Any line of slope n is characterised by its �foot point� where it
meets the axis s � �� For convenience we adopt the notation

�

p�
�

�

p
�

�

n
� 	�����


where � � p ��� � � R and � � p� ���
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Theorem ����� �ET��� Thm� ������ p� ���

	i
 Let � � p �� and a � �� Then Lp�logL��a��� is the set of all measurable functions f � � �� C

such that � �Z
�

h
�akf jLp����k

ip d�

�

���p
�� 	�����


for small � � �� and 	�����
 de�nes an equivalent norm on Lp�logL��a���� Furthermore� 	�����
 can

be replaced by the equivalent norm

� �X
j�J

��japkf jLp��j� ���k
p

���p
�� 	�����


for large J � N and ��j� � ��j �

	ii
 Let � � p �� and a � �� Then Lp�logL�a��� is the set of all measurable functions g � � �� C

which can be represented as

g �

�X
j�J

gj � gj � Lp���j� ��� � 	�����


for large J � N� with �
�X
j�J

�japkgj jLp���j� ���k
p

���p
�� � 	�����


The in�mum of the expression 	�����
 taken over all admissible representations 	�����
 is an equivalent

norm on Lp�logL�a����

There is also an extension of this theorem to spaces Lp�q�logL�a��� in �Har�� Prop� ����� Note that
assertion 	ii
 looks technically more complicated because we have 	in the above notation


Lp���j� ��� �� Lp�logL�a��� �� Lp��� �� Lp�logL��a��� �� Lp���� � j�j ��� 	�����


where � � p � �� a � �� such that f � Lp�logL��a��� belongs to all spaces Lp� ���� � � �� in 	i
�
whereas this is not the case in situation 	ii
� see also 	������
� When a � �� there is a similar result in �Sob��
by Sobukawa�

Remark ����� We want to discuss the use of the above theorem for our purposes a bit further� The idea
of this characterisation is to �approximate� spaces Lp�logL�a��� by usual Lebesgue spaces in a precise way
	rather than by 	�����
 simply
� The main reason for this in �ET��� was to make these spaces Lp�logL�a���
	appearing in limiting embeddings
 more handy� especially from the standpoint of entropy numbers� Denoting
	non�limiting
 embeddings Hs

ps��� �� Lp� ��� by id�� that is�

id� � Hs
ps��� �� Lp� ���� 	�����


where s � �� � � �� � � p � �� it is well�known that id� is compact� see 	������
 with �� � � � ��
The asymptotic behaviour of its entropy numbers is determined by ek�id�� � k�

s
n for all � � �� see

	�����
� So if one succeeds to control the dependence of the equivalence constants upon the number � � ��
one can hope to bene�t from the non�limiting case when treating the limiting one� We return to this point
later in Section ��� when we study the entropy numbers of limiting embeddings in detail� In the course of this
programme� Edmunds and Triebel needed the above characterisation of spaces Lp�logL�a��� in terms
of �nearby� Lebesgue spaces Lp� ��� or Lp���j� ���� respectively�



���� Spaces of type Lp�logL�a and Hs
p�logH�a on R

n � basic properties ��

s � n
p

id

�

p

�

id�

�

p�

� �

ps � s�

�

p

s
In Figure � we additionally illustrated this idea in the � �p � s��diagram�
recall Figure �� One is �nally interested in the limiting embedding
id � Hs

ps��� �� Lp���� where � � p ��� s � �� This embedding
is continuous� but not compact� However� replacing the target spaces
Lp��� by slightly larger spaces Lp�logL��a���� a � �� one regains
compactness and can further ask about the �asymptotic	 behaviour of
the corresponding entropy numbers� The essential trick of Edmunds
and Triebel was now to study the same question� but taking into
consideration that one has information about ek�id�� for all � � ��

Figure �

����� De�nition and elementary properties

We look for spaces larger than Lp�R
n � which additionally should be extensions of Lp�logL�a��� in case of

bounded � � R
n � In order to emphasise whether we are dealing with extensions �or restrictions	 of the usual

Lp space� we prefer the notation Lp�logL��a��� or Lp�logL�a���� respectively� now always assuming
a � �� We retain this notation in this section�
In view of the norm expression ������	 one immediately realises that in case of bounded domains � �or� at
least� with �nite measure j�j ��	 those spaces Lp� ��� are monotonically embedded�

Lp��� �� Lp���� �� Lp���� � � � � � �� �����
	

which becomes false if � is replaced by Rn � One has to �nd a reasonable substitution of that fact in the Rn

situation� In a �rst step we slightly modify ������	 in case of annuli � � A�� � � N� � see �������	� �������	�
by �

�
�Z

�

�apkf jLp��hxi
�� � A��k

p d�

�

�
A

��p

� �����	

where hxi is given by ������	 and k � jLq�w�	����k is the weighted Lq norm� see �������	� In view of
������	 one recognises that �����	 is an equivalent norm on Lp�logL��a�A�� for any �xed � � N� � because

kf jLp��hxi
�� � A��k � ���� kf jLp��A��k 	

Furthermore� H�older�s inequality provides

Lp�A�� �� Lp��hxi
��� A�� �� Lp��hxi

�� � A�� � � � � � � 	 �������	

A simple replacement of k � jLp� �hxi
�� � A��k by its R

n� counterpart still fails� but monotonicity as in
�������	 was important for the construction in ������	� We may cope with these problems using interpolation
arguments� In particular� one can prove that for � � p �� a H�older inequality of type

Lp��p�R
n � � Ln������ ���Rn � �� Lp��p�R

n � � � � � � � �

holds� meaning that whenever f � Lp��p�R
n � and g � Ln������ ���Rn �� then fg belongs to Lp��p�R

n ��
i�e

kfgjLp��p�R
n �k � c kf jLp��p�R

n �k kgjLn������ ���Rn �k 	

cf� �Har
� Lemma ������ Choosing g�x� � hxi�� � Ln�� ���Rn � we thus obtain

Lp�R
n � �� Lp��p�hxi

���Rn � �� Lp��p�hxi
�� �Rn � � � � � � �� �������	

that is� the desired substitute of �����
	� So replacing Lp� ��� in ������	 by Lp��p�hxi
�� �Rn � as basic

spaces� � � �� we arrive at the de�nition for spaces Lp�logL��a�R
n �� in view of Theorem ����� �ii	 it is

complemented with the de�nition of Lp�logL�a�R
n ��
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De�nition ����� �Har��� Defs� ���	� ���
� Let � � p �� and a � ��

�i The space Lp�logL��a�R
n � is the set of all measurable functions f � Rn �� C such that hxi�� f �

Lp��p�R
n � for small � � �� and

kf jLp�logL��a�R
n �k ��

�
� �Z

�

�ap khxi��f jLp��p�R
n �k

p d�

�

�
A

��p

�� �������

for small � � ��

�ii The space Lp�logL�a�R
n � is the set of all measurable functions g � Rn �� C which can be represented

as

g �

�X
j�J

gj � hxi��j� gj � Lp���j��p�R
n � ������	

for large J � N� ��j� � ��j � and

�
�X
j�J

�jap
��hxi��j� gj jLp���j��p�R

n �
��p���p

��� �������

The in�mum of expression �������� taken over all admissible representations ������	 is de�ned as

kgjLp�logL�a�R
n �k�

In the above de�nition we have introduced spaces Lp�logL�a�R
n �� � � p � �� a � R� a �� �� For

convenience we adopt the following notation�

Lp�logL���R
n � �� Lp�R

n � � � � p ��� �������

Clearly� De�nition ����	 gives the desired Rn� counterpart of Theorem ����� characterising spaces Lp�logL�a�
a � R� � � p ��� by extrapolation techniques based on �weighted Lorentz or Lebesgue spaces� respectively�

Remark ����� The above de�nition can also be extended to the cases � � p � � or p ��� resp�� but we
omit these generalisations here� Moreover� let us additionally assume that � � � and J � N are chosen such
that all involved spaces Lp� �p and Lp���j��p are Banach spaces� In view of Theorem ����� �i expression
������� can be complemented by its discrete counterpart �

kf jLp�logL��a�R
n �k �

� �X
j�J

��jap
���hxi���j� f jLp��j��p�R

n �
���p���p

�������

where ��j� � ��j and J � N is large�

One can introduce spaces Lp�q�logL�a�R
n �� � � p � �� � � q � �� and a � R� completely analogous�

cf� �Har��� Defs� ����� ������ We come to the de�nition of spaces Hs
p�logH�a�R

n � now�

Let � � R� recall that I� is the usual lift operator� mapping Hs
p�R

n � isomorphically onto Hs��
p �Rn ��

s � R� � � p ��� In particular� I�sLp�R
n � � Hs

p�R
n �� see �����	� and ������	� respectively�

De�nition ����� �Har

a� Def� ���� Let s � R� � � p �� and a � R� Then Hs
p�logH�a�R

n � is the

set of all f � S��Rn � such that Isf � Lp�logL�a�R
n �� with

kf jHs
p�logH�a�R

n �k �� kIsf jLp�logL�a�R
n �k� �������
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p�logH�a on R

n � basic properties ��

Note that by �������� we extend our convention �������� by

Hs
p�logH���R

n � � Hs
p�R

n � � H�
p �logH�a�R

n � � Lp�logL�a�R
n � � ������	�

where � � p � �
 s � R
 a � R� Moreover
 using De�nition ����� �i� we obtain that for � � p � �

a � �


kf jHs
p�logH�

�a�R
n �k �

�
� �Z

�

�ap khxi��Isf jLp��p�R
n �k

p d�

�

�
A

��p

� ��������

Likewise the counterpart for Hs
p�logH�a�R

n � can be given by De�nition ����� �ii�  Some g � S��Rn �
belongs to Hs

p�logH�a�R
n �
 � � p ��
 a � �
 if
 and only if
 it can be represented as

g �

�X
j�J

gj � hxi��j��Isgj� � Lp���j� �p�R
n �� ��������

for large J � N
 ��j� � ��j 
 �convergence in S�� and

�
�X
j�J

�jap
��Isgj jLp���j��p�hxi

��j� �Rn �
��p���p

��� ��������

Now kgjHs
p�logH�a�R

n �k is the in�mum of expression �������� taken over all admissible representations
���������

We end this subsection with some elementary properties of the above�de�ned spaces with the conventions
��������
 ������	��

Proposition ����� �Har�	
 Props� ����
 �����
 �Har��a
 Prop� ���� Let s � R� � � p ���

�i� Let a � R� Then Hs
p�logH�a�R

n � is a Banach space �using equivalent quasi�norms��

�ii� Let a � �� Then Hs
p�logH�a�R

n � �� Hs
p�R

n � �� Hs
p�logH��a�R

n ��

�iii� Let a� � a�� then Hs
p�logH�a��R

n � �� Hs
p�logH�a��R

n ��

�iv� Let a � R� then I�sLp�logL�a�R
n � � Hs

p�logH�a�R
n ��

Taking our convention �������� into consideration we thus arrive at some analogue of ��������
 ��������
 now
in case of R

n �

Lp�logL�a�R
n � �� Lp�R

n � �� Lp�logL��a�R
n � ��������

for a � �
 � � p ���

����� Examples

We look for some �typical� function belonging to Lp�logL�a�R
n �
 � � p ��
 a � R� recall our convention

��������� All spaces in this subsection are de�ned on R
n unless otherwise stated� We brie�y recall the

situation of bounded domains �rst� Let

	 �

�
y � R

n � jyj �
�

�

�
��������

and � � p ��
 � � R� Then

b�x� � jxj�
n
p

		 log jxj		�� � Lp�logL�a�	� if
 and only if
 � �
�

p

 a� ��������
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see �ET��� Ex� ��	�	� p� �
��� The idea is to �extend these functions to R
n � i�e� to investigate functions

g�x� � jxj�
n

p

�� log jxj���� � � � R� x � Rn � ��������

But this direct counterpart to �������� does not �t our needs as one easily veri�es that g from �������� belongs
to Lp if� and only if� � � �

p � There is no way to �nd some �better bound for � �relying on the parameter

a additionally�� such that� say� g � Lp�logL��a for some � � �

p � This necessarily fails as the restriction to

� is due to the global behaviour of g belonging to some space �nearby Lp� whereas the local �logarithmic�
structure is neglected� But this does not correspond to the structure of the spaces Lp�logL�a as introduced
in Subsection ������ One has rather to concentrate on local�global characterisations� i�e� searching functions
f�x� which locally behave like b�x� from �������� but additionally satisfy convergence conditions �in the
sense of Lp�� Let � � C�� � supp � � �� where � is given by ������	�� � � � � �� and ��x� � � if
jxj � �

� � Put

f�x� � hxi�
n

p �loghxi�
���� �

p
�
X
k�Zn

jx� kj�
n

p

�� log jx� kj
���� ��x� k�

�
X
k�Zn

hki�
n

p �loghki�����
�

p
� jx� kj�

n

p

�� log jx� kj
���� ��x� k� ��������

where x � R
n and � � �� Obviously the �rst multiplicative term on the right�hand side of ��������� i�e�

hxi�
n

p �loghxi�����
�

p
�� belongs to Lp itself whereas the sum refers to the local structure� see ���������

We have shown in �Har��� ���� that f from �������� belongs to Lp�logL��a� a � �� if� and only if�
� � �

p � a� and f � Lp if� and only if� � � �
p � In other words� f � Lp�logL��a n Lp if� and only if�

�
p � a � � � �

p � meaning that the spaces Lp�logL��a � a � �� are in fact extensions of Lp� Furthermore�

application of H�older inequalities �as presented in Section ��	�	 below� yields that f from �������� does not
belong to Lp�logL�a in case of � � �

p � a� a � �� hence f � Lp n Lp�logL�a when �
p � � � �

p � a�

Consequently th spaces Lp�logL�a are properly contained in Lp for a � ��

����� An alternative approach

Obviously the spaces Lp�logL��a�R
n � introduced above by an extrapolation approach possess those �basic�

properties we had in mind� that is� they extend the already known Lp�logL��a spaces on domains in a
reasonable sense and as much monotonicity is preserved as could be expected in case of Rn � see �
�
�
���
�
�
�
	� and parts �ii� and �iii� of Proposition ������ resp� We shall derive further useful features in Section ��	
below� but brie�y present another approach �rst�

In view of �
�
�

� the following extension of Lp�logL�a��� appears natural� Let � � p ��� and a � R�
Denote by Lp�logL�

�

a�R
n � the set of all measurable functions f � Rn �� C such that

kf jLp�logL�
�

a�R
n �k �

� �Z
�

�� � j log tj�apf��t�p dt

���p

��������

is �nite� where f� is given by �
�
���� These spaces have been introduced as Lorentz�Zygmund spaces by
Bennett and Rudnick in �BR��� �
����� Obviously

Lp�logL�
�

a�R
n � 	� Lp�R

n � 	� Lp�logL�
�

�a�R
n � � a � ��

In contrast to the situation on bounded domains� see Section ����
� those spaces do not coincide with the
spaces given by De�nition ����	� Moreover� these spaces are di�erent in the sense that there is no general
inclusion relation between� say� Lp�logL�

�

�a�R
n � and Lp�logL��b�R

n � for a� b � � � though they have
a non�empty intersection containing Lp�R

n � � We return to example g�x� given by ��������� One veri�es
g � Lp�logL�

�

�a�R
n � n Lp�logL��b�R

n � for �
p � a � � � �

p and all b � �� see �Har��� Sect� �����

Conversely� in case of b � a � �
p take f�x� given by ��������� Then f belongs to Lp�logL��b�R

n � if



���� Further properties ��

� � �

p
� b� but f �� Lp�logL�

�

�a�R
n � for � � �

p
� a � �� see �Har��� ����� Now for b � a � �

p
one can

always choose � with �

p
�b � � � �

p
�a � � such that f belongs to Lp�logL��b�R

n �nLp�logL�
�

�a�R
n ��

Similar arguments can be stressed concerning Lp�logL�a�R
n �� Lp�logL�

�

a�R
n �� a � ��

In other words� extending Lp�logL�a��� to R
n by De�nition ����	 or 
�������� respectively� leads to

dierent concepts of spaces� The spaces Lp�logL�
�

a�R
n � have been thoroughly investigated in a series

of papers by Edmunds� Gurka and Opic �EGO��a�� �EGO��b�� �EGO���� �EGO���� �EGO�����EGO����
�GO���� and by Evans� Opic and Pick in �EOP���� �EO���� and �OP���� However� in our opinion the spaces
Lp�logL�a�R

n � seem to represent the needed extensions to R
n in the context of entropy numbers we aim

at�

Turning to logarithmic Sobolev spaces Hs
p�logH�a on R

n � there is also a parallel approach� based on
Lp�logL�

�

a�R
n � instead of Lp�logL�a�R

n �� Denoting these spaces by Hs
p�logH��a�R

n � accordingly� a � R�
� � p ��� s � �� one can de�ne them in a parallel way to De�nition ������ i�e�

f � Hs
p�logH��a�R

n � �� Isf � Lp�logL�
�

a�R
n ��

This has been done� for instance� in �EGO��� 
������ It follows by our above remarks about Lp�logL�
�

a�R
n �

and Lp�logL�a�R
n � that also Hs

p�logH��a�R
n � and Hs

p�logH�a�R
n � cannot coincide� Opic and Trebels

followed a similar line when introducing their spaces H
n

p
�� �Lp� in �OT��� � the basic space Lp is lifted by

a logarithmically adapted version of 
����		��

��� Further properties

We brie�y discuss some more features of Lp�logL�a�R
n � and Hs

p�logH�a�R
n � as introduced in De��

nitions ����	 and ������ The intention is twofold � a better illustration of the new members in the already
well�equipped world of function spaces on the one hand� and� secondly � and more important � to expound
our grounds for introducing new spaces rather than studying existing concepts 
like Lp�logL�

�

a�R
n �� further�

����� Local versions

An important tool when studying entropy numbers on Rn is to reduce this problem essentially to the related
question of embeddings of function spaces on 
particular� bounded domains� say� annuli fA�g��N�� granted
that the dependence of appearing constants upon that special domain can be controlled� Here the annuli are

given by 
������� and 
�������� We introduce subspaces Lp��logL�a�A�� of Lp�logL�a�R
n � by

Lp��logL�a�A�� � ff � Lp�logL�a�R
n � � supp f � A�g � 
��	���

where � � p ��� a � R and � � N� �

Proposition ����� �Har��� Lemmata ����� ���	� Let � � p � �� a � R� let A�� � � N� � be the above

annuli� Then

k f jLp��logL�a�A��k � ��
n

p k f���	� jLp��logL�a�A��k 
��	���

for all f � Lp�logL�a�R
n � with supp f � A��

Remark ����� In case of A� 
or any �xed bounded � � Rn � we have Lp�logL�a�A�� � Lp��logL�a�A��

appropriately interpreted�� where the spaces Lp�logL�a�A�� are given by De�nition ����� 
i� and 
�������
see �Har��� 
������ 
������� Furthermore� having the lift operator Is available in spaces of type Hs

p�logH�a�
see 
����		� and Proposition ����� 
iv�� we do not need a counterpart of 
��	��� when dealing with entropy
numbers and spaces of type Hs

p�logH�a�R
n ��

In addition to the extrapolation matter already explained this local behaviour is the second main reason for us
to extend Lp�logL�a��� as given in Subsection ����� 
unlike Lp�logL�

�

a�R
n �� � an easy calculation shows

that using the 
quasi�� norm 
������� there is no counterpart of 
��	���� But this property is essentially needed
in our argument when dealing with entropy numbers below�
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����� Duality

When de�ning spaces Lp�logL�a on R
n one naturally wants to keep duality assertions � known from the

case of bounded domains� Moreover� duality can also be used to extend results on entropy numbers� relying
on an important paper by Bourgain� Pajor� Szarek and Tomczak�Jaegermann �BPSTJ�	
�

Let � � R
n be a bounded domain and Lp�logL�a��� as given in De�nition ����� �i with p � q� Then

one has
�
Lp�logL��a���

�
�

� Lp��logL�a��� � � � p ��� a � R�
�

p
�

�

p�
� �� ������

where the dash � denotes the dual space� see �BR��� Thm� ���� p� ��
� �ET	�� Prop� ������� �i� p� ��
� The
counterpart on R

n reads as follows�

Proposition ����� �Har	�� Prop� ����
 Let � � p ��� and a � R� Then

�Lp�logL�a�R
n ��

�

� Lp��logL��a�R
n � � ������

We come to spaces Hs
p�logH�a�R

n �� � � p � �� a � R� s � R� Recall that
�
Hs

p�R
n �

�
�

� H�s
p� �Rn ��

where s � R� and � � p � �� cf� �Tri��a� Thm� ������a� p� �	�
� Here the duality is understood in the
sense of the �S� S�� pairing� as usual�

Proposition ����� �Har��a� Prop� ���
 Let s � R� � � p ��� and a � R� Then

�
Hs

p�logH�a�R
n �

�
�

� H�s
p� �logH��a�R

n � � ������

Edmunds and Triebel proved in �ET	�� Thm� ����� �iii� p� �	
 a counterpart for spaces Hs
p�logH�a���

de�ned on a bounded C� domain � � R
n � � � p ��� a � R and s � 	�

����� H�older inequalities

It is often very useful to have special H�older inequalities available when using results on entropy numbers in
order to estimate eigenvalues of compact operators acting in� say� �weighted Lp� spaces� This has been
carried out in detail in �Har	�� Sect� �
 and �Har��a� Sect� �
� Though applications �of that type are out
of the scope of the present report we want to mention some results on H�older inequalities in spaces of type
Lp�logL�a�R

n � and Hs
p�logH�a�R

n �� Besides H�older inequalities serve for the extension of our example in
Section ������ too� Note that all spaces are de�ned on R

n unless otherwise stated�

Proposition ����� �Har��a� Prop� ���
 Let � � p� q � � with �

r
� �

q
� �

p
� �� Let a� b � R and

c � a� b� Then

Lp�logL�a � Lq�logL�b �� Lr�logL�c � ������

Note that ������ has to be understood in the sense that whenever f � Lp�logL�a and g � Lq�logL�b �
then fg belongs to Lr�logL�c � i�e

kfgjLr�logL�ck � c kf jLp�logL�ak kgjLq�logL�bk�

The result in the form given above coincides with �Har��a� Prop� ���
 and extends in that way �Har	�� Cor�
���	
� There is� however� an even sharper version in �Har	�� Prop� ����
 where we obtained that

kfgjLrk � c kf jLp�logL��ak kgjLq�logL�ak �

and � � p� q �� with �

r
� �

q
� �

p
� �� a � 	� But this improvement is achieved at the expense of some

additional assumptions imposed on g � Lq�logL�a� we refer to �Har	�� Prop� ����
 for details�



���� Further properties ��

Remark ����� It is obvious that the outcome ������� is sub�optimal in the sense that one would like to have
c � a � b in view of the classical H	older inequality �when a � b � c � � in our notation�� On the other
hand it turned out
 that in applications this version �with c � a � b instead of c � a � b� is completely
su�cient�
Let us mention the parallel result when dealing with spaces Lp�logL�

�
a instead of Lp�logL�a� see Subsec�

tion ����� Recall that Lp�logL�
�
a are Orlicz spaces when a � �

p 
 see �BS��
 Ch� 
 Sect� �
 pp� �������� for

the notion of an Orlicz space and �BS��
 Ch� 
 Ex� ����e�
 p� ���� for this fact� Using Young�s inequality

cf� �BS��
 Ch� 
 Thm� ����
 Lemma ����
 pp� �������� � one can conclude that

Lp�logL�
�
a � Lq�logL�

�
b �� Lr�logL�

�
c �������

holds with c � a � b
 where � � p� q � �
 �

r � �

q � �

p � � and a � �

p 
 b � �

q � I thank this hint my
colleagues L� Pick and A� Cianchi�

We seek for some counterpart of Proposition ����� in case of Hs
p�logH�a� spaces
 a � R
 � � p � �


s � �� We brie�y mention what is known when a � �� recall notation �������� In �ST��� Sickel and
Triebel studied H	older inequalities in the wider framework of Besov� and Triebel�Lizorkin spaces� In our
case of �fractional� Sobolev spaces their result reads as

Hs
ps �H

s
qs �� Hs

rs � �������

where s � �
 � � p� q � � with �

r � �

q � �

p � �
 see �ST��
 Thm� ������ Note that ������� is the

classical H	older inequality when s � �� Moreover
 there is an extension of ������� to some negative s � R
by Edmunds and Triebel in �ET��
 Thm� ����
 p� ��� �

Hs
ps �H

jsj

qjsj
�� Hs

rs �

where s � R
 � � p� q � � with �

ps � �

p � s
n � � and �

r � �

q �
�

p � �� In case of logarithmic Sobolev

spaces on bounded domains
 Hs
p�logH�a���
 Edmunds and Triebel obtained in �ET��
 ����������
 p� ����

Hs
ps�logH�a��� �H

s
qs�logH�b��� �� Hs

rs���� �������

where s � �
 � � p� q � � with �

r � �

q �
�

p � �
 and b � �a � �� Here � is a bounded C� domain

in Rn � In view of �������
 ������� as well as ������� the desired result in our case was

Hs
ps�logH�a �H

s
qs�logH�b �� Hs

rs�logH�c ��������

with s � �
 � � p� q ��
 �

r � �

q �
�

p � � and c � a� b� But we are not yet able to prove �or disprove�

an assertion of that type� However
 in some special case we may verify �������� and give the counterpart of
�Har��
 Prop� ������

Proposition ����� �Har��a
 Prop� ����� Let s � �� a � �� � � q �� with qs � � � Let � � p ��
be such that ps � � and �

r � �

q �
�

p � �� Let g � Hs
ps�logH�a and assume that fgj � �jgg

�
j�J is an

admissible representation of g according to ��������� ��������� i�e�

�
�

�X
j�J

�jap
s

kIs��jg�jLps���j��ps�hxi
��j��kp

s

�
A

��ps

��� ��������

where J � N is large� ��j� � ��j � and f�jg
�
j�J is a smooth dyadic resolution of unity� Then fg � Hs

rs

for any f � Hs
qs�logH��a�

kfgjHs
rsk � c

��f jHs
qs�logH��a

�� ��gjHs
ps�logH�a

�� �

In contrast to the situation s � � we cannot yet replace the probably rather technical assumption ��������
by the more convenient one g � Hs

ps�logH�b for b � a�



�� �� Modi�ed integrability

����� Equivalent norms

Let s � N� � � p ��� It is well�known� that Hs
p�R

n � �W s
p �R

n �� i�e�

kf jHs
p�R

n �k �
X

j�j�s

kD�f jLp�R
n �k � ��������

where � � Nn
�
� j�j � �� � � � ���n� and f � S��Rn �� see 	Tri
�a� Thm� ������ p� �

�� for instance� In case

of logarithmic Sobolev spaces on bounded C� domains one has a parallel result for s � N� � � � p � ��
and a � R �

kf jHs
p�logH�a���k �

X

j�j�s

kD�f jLp�logL�a���k �

see 	ET�� Thm� ������ p� 
�� Thus it is reasonable to ask whether a similar assertion is true in case of
logarithmic Sobolev spaces on Rn � We obtain the following�

Proposition ����� 	Har��a� Prop� ���� Let m � N� � � � p � � and a � R� Then f �
Hm
p �logH�a�R

n � if� and only if� D�f � Lp�logL�a�R
n �� j�j � m� and

kf jHm
p �logH�a�R

n �k �
X

j�j�m

kD�f jLp�logL�a�R
n �k � ��������

Remark ����� A parallel result for spaces Lp�logL�
�
a�R

n �� Hs
p�logH��a�R

n � was obtained by Edmunds�
Gurka and Opic in 	EGO
� Thm� �����

��� Compact embeddings� and entropy numbers

We return to our initial problem ������� and study the following embedding map in the sequel�

id�a � Hs�
p�
�logH�a��log

�hxi�Rn � �� Hs�
p�
�logH�a��R

n �� �������

where �� � s� � s� � �� � � p� � p� � �� with s� �
n
p�

� s� �
n
p�
� and a�� a� � R� � � R� All

spaces are de�ned on Rn in the sequel unless otherwise stated�

����� Embeddings

We �rst investigate when the above embedding ������� is contin�
uous or even compact� Thus we always assume in the sequel that
si� pi� i � �� �� are given as above and �xed now� We concentrate
on the remaining parameters a�� a�� � � R and their in�uence
upon continuity or compactness of id�a � So we also use �a�� a���
diagrams now� sometimes additionally depending upon � � R�

Proposition ����� 	Har��a� Prop� ����

Let s� � s�� � � p� � p� � � with s� �
n
p�

� s� �
n
p�

and

id�a be given by ��������

�i� id�a is continuous if a� � a�� � � 	�

�ii� id�a is compact if s� � s�� � � 	 and

a� � a�� a� � 	� a� � 	�

A� ��	 A�

A� ��A�

a� � a�
a�

a�

A� ����A�

Figure �

We illustrated Proposition ����� in Figure �� where A�� A� temporarily denote the spaces involved in ��������
and A� ���� A� stands for the compact embedding id�a � Note that the result �i� is known when a� � a� � 	�
it follows from our more general result Theorem ������ Furthermore� by Theorem ����� �ii� the assumption



���� Compact embeddings� and entropy numbers ��

� � � for the weight function in �ii� appears reasonable� though we cannot have a compact embedding in
the situation covered by Theorem ������ i�e� s� �

n

p�
� s� �

n
p�

and a� � a� � �� Furthermore� there is

no continuous embedding for a� � �� a� � � and a� � a�� � � ��This can be disproved easily by �ii�
combined with Theorem ����� �ii�� see also the argument in 	Har

a� Cor� ����� In the remaining cases with
a� � a� the assumption is that there is no continuous embedding� too� but the proof in 	Har

a� Cor� ����
covers the case s� � s� only�

Remark ����� Let � � R
n be a bounded domain� then one can similarly ask for which parameters

id��a � Hs�
p�
�logH�a���� �� Hs�

p�
�logH�a���� �������

is continuous or even compact� In that case Edmunds and Triebel 	ET�� as well as Edmunds and
Netrusov 	EN�� have proved that id��a is compact when s� � s�� � � p� � p� ��� with s� �

n
p�

�

s� �
n
p�
� and a� � a�� From that point of view an extension of Proposition ����� �ii� � concerning the

parameters a�� a� � might be true� but is not yet clear�

In the framework of di�erent spaces Lp�logL�
�

a�R
n � and Hs

p�logH��a�R
n � Edmunds� Gurka and Opic

obtained in 	EGO��� 	EGO

� parallel results on continuous or compact embeddings of type ��������

����� Entropy numbers

We investigate compact embeddings as given by Proposition ����� �ii�� in particular� we study the asymptotic
behaviour of the corresponding entropy numbers� Clearly� by �������� this can be reformulated as to characterise
their rate of decay more precisely�
We postpone a discussion of related known results � in particular those for embeddings of spaces on domains
� to Section ����� below and come immediately to our results for limiting embeddings on R

n � Let

�� � s� � s� ��� � � p� � p� ��� with s� �
n

p�
� s� �

n

p�
�

�������
a� � �� a� � � with a� � a�� and � � ��

For later reason we also introduce the number

�� �� min

�
a� � a��

s� � s�

n

�
� �� �������

Recall our notation for id�a given by ��������

Theorem ����� 	Har

a� Thm� ���� Let assumptions ������� be satis�ed� then id�a is compact� Assume

that a� � a� ��
s��s�

n
� Then there are constants c�� c� � � such that for all k � N

c� k
��� � ek�id

�
a� � c�

����
���

k��� � � � �� � �

k��� log�hki � � � �� � �

k���
�

���� � � � �� � � �

�������

Remark ����� We may complement Theorem ����� by the estimates related to the case a� � a� � s��s�
n

�
The counterpart of ������� reads then as

c k��� � ek�id
�
a� � c�

�
k����� � � � �� � �

k���
�

����
�� � � � �� � � �

�������

There are forerunners of the above theorem given in 	Har��� in particular� the case s� � �� a� � ��
a� � �	 s�

n
refers to 	Har�� Thm� ����� whereas the setting s� � �� a� � �� a� � �	 s�

n
is related to

	Har�� Cor� �����



�� �� Modi�ed integrability

We brie�y illustrate the meaning of the restrictions in ������� concerning the interplay of a�� a� and �� All
other parameters are assumed to be 	xed for the moment
 thus ������� and ������� provide upper and lower
estimates for the corresponding entropy numbers of the form

c� k
��� � ek � c� k

���

�neglecting ��perturbations for the moment�� Similarly to Figure � we have indicated in the �a�� a���diagram
below these �usually dierent� exponents according to the areas given by ������� and �������� It is obvious
that for �strong� weights w�x� � log�hxi� that is where � is large enough � � � �� � ��� the asymptotic
behaviour of the entropy numbers is determined �up to constants� by ek

�
id�a

�
� k��� � whereas in the more

interesting case of small � � � we have no general result� But one may observe that in any case the dierent
behaviour is determined both by the a�parameters �contributing to ��� as well as the weight � �taking the
other parameters s� �

n
p�

� s� �
n
p�

as 	xed for the moment��

a�

� s��s�
n

ek � k��a��a��

s��s�
n

a�

ek � k�
s��s�

n

a�

� s��s�
n

s��s�
n

�� � �

� � �

�� � a� � a�

�� �
�

�� �

a��a�

�� � �� �
a� � a�

a�

�� �
s��s�
n

�� �
�

�� n

s��s�

Figure � � The case � �
s� � s�

n
� �� The case � � � �

s� � s�
n

� ��

Using interpolation arguments for entropy numbers as presented in �HT��a� Thm� ��� �i�� together with
�Har��a� Cor� ����� the upper estimate in ������� for � � �� � � can be improved slightly�

Proposition ����� �Har��a� Prop� ����� Let assumptions ������� be satis�ed with � � � � s��s�
n

�� and

a� �
s� � s�

n
� a� � min�a� � � � �� ��	 �������

Then for any � � � there is some c� � � such that for all k � N�

ek
�
id�a

�
� c� k

���� with � � min

�
a� � a� �

�

� � n
s��s�

�
	 �������

Obviously ������� as well as ������� give ������� when a� � a� �
s��s�
n

� i�e� � � s��s�
n

� � � a� � a� � ��
Returning to our above diagrams in Figure �� in particular� the right�hand side� Proposition ����� concerns
the upper exponent �� in the intermediate strip� So� roughly speaking� the achievement of ������� consists
in the removal of this strip �indicated by the two broken lines in Figure �� and its replacement by the line L

more exactly� we could extend both areas �where either �� � a� � a� or �� � �
�� � n

s��s�
� is a correct

upper exponent� from the corresponding broken lines to the line L � neglecting ��terms for the moment�



���� Compact embeddings� and entropy numbers ��

In the diagram aside we sketched those areas in the
�a�� a���diagram where the corresponding �upper�
exponents �� are of the same type� The lower
exponents �� are only given for completeness�
where �� � a� � a� is �responsible� for the area
a� �

s��s�
n

� a� � �� whereas �� � s��s�
n

con�
cerns the remaining part a� � a� �

s��s�
n

� There
is no improvement in view of Theorem ��	��� How�
ever� concerning the �upper� exponent ��� we could
remove the strip

a� �
s� � s�

n
� a� � min�a� � � � �� ��


indicated by the two broken lines�� compare the
right�hand side of Figure � and Figure �

a�

� s��s�
n

� �
�� n

s��s�

�� � �

���a��a�

�� �
s��s�
n

�� �
�

�� n

s��s�

s��s�
n a�

�
�� n

s��s�
� � �

�� � a� � a�

�� � ��������

L

Figure �

We may summarise Theorem ��	�� and Proposition ��	�� in the following sense� Note that � � � � s��s�
n

��
and 
��	��� imply � � s��s�

n
in 
��	���� Recall our notation �� given by 
��	�	�� We complement it by

�� �� min

�
���

�
n

s��s�
� �

�
� min

�
a� � a��

s� � s�

n
�

�
n

s��s�
� �

�
� ��� 
��	���

Corollary ����� �Har��a� Cor� ����� Let assumptions 
��	��� be satis�ed� we make use of the above

notation� Then there is some c � � and for any 	 � � some c� � � such that for all k � N�

c k��� � ek
�
id�a

�
� c� k

����� 
��	����

with 	 � � if a� � a� ��
s��s�
n

and � � �� � � or � � � � s��s�
n

� � � a� � a� � ��

At the moment� we have no better 
�sharper�� result to characterise the asymptotic behaviour of the entropy
numbers of embedding id�a � given by 
��	��� and 
��	���� We do not even claim that the upper bound in

��	���� 
apart from 	�terms� is the correct one� However� in some formal sense the number �� given by

��	��� looks very reasonable in so far as the interplay between the �non�limiting� exponent s��s�

n

see 
a��


c� in Section ��	�� below� respectively�� and the auxiliary parameters a�� a� and � in that limiting situation
is concerned� In other words� if we can manage to shrink the original space and�or to extend the target space
su�ciently well 
by means of a�� a� and �� then we regain the �non�limiting� behaviour of the corresponding
entropy numbers� that is� when � � � and�or a� � a� are su�ciently large� Certainly these quantities
should have some in�uence on the �quality� of the compactness 
measured in terms of entropy numbers�� see
also 
b� in Section ��	�� below� for instance�

Remark ����� By the same technique as presented above one can prove similar estimates for the entropy
numbers when 
��	��� is replaced by

id� � Hs�
p�
�logH�a��hxi

��Rn � �� Hs�
p�
�logH�a��R

n ��

where �� � s� � s� ��� � � p� � p� ��� with s� �
n
p�

� s� �
n
p�
� and 
 � �� Let a� � �� a� � �

with a� � a�� and assume a� � a� ��
s��s�
n

� Recall 
��	�	� and 
��	���� Now �� � �� and hence

ek�id
�� � k��� � 
��	����

����� Comparison of limiting and non�limiting results

We described in Remark ����� the idea of approximating the limiting embedding id��a � Hs
ps��� ��

Lp�logL��a��� by means of non�limiting embeddings id� � Hs
ps��� �� Lp� ���� � 	 �� which were



�� �� Modi�ed integrability

thoroughly investigated in the past� see also Figure �� We return to this point and � after a short review
of related results for spaces on bounded domains � focus especially on the behaviour of the corresponding
entropy numbers under this approximation procedure� Let us always assume now

s� � s�� � � p� � p� �� � with � � s� �
n

p�
� s� �

n

p�
� �� �����	�


for simplicity�

Embeddings of spaces on a bounded domain �

Let � � R
n be a bounded C� domain�

�a
 Non�limiting case � Let �����	�
 be satis�ed with � � � and id� � Hs�
p�
��� �� Hs�

p�
���� This situation

is covered by the general result of Edmunds and Triebel in ET��� ET��� �

ek�id�� � k�
s��s�

n � k � N� �����	�


see also �	����
�

�b
 Limiting case � Let �����	�
 be satis�ed with � � � and let id��a be the natural embedding given
by ������
� where we additionally assume a� � a� and a� � a� ��

s��s�
n

� In this situation studied by
Edmunds and Triebel in ET��� ���� p� 	���	�	�� Edmunds and Netrusov in EN���� and further
extended by Caetano in Cae���� one obtains for the corresponding entropy numbers

ek�id��a� � k��� � k � N� �����	�


where �� is given by ������
� In particular� when s � s� � �� s� � �� p � p�� p� � ps� a� � ��
a �� �a� � �� and a �� s

n
� then �����	�
 implies�

ek
�
id � Hs

ps���� Lp�logL��a���
�

� k�min�a� s
n
�� �����	�


We want to link this with our Remark ����� brie�y� Recall that by Theorem ����	 �i
 one can characterise
the target space Lp�logL��a��� by extrapolating spaces Lp����� � � �� On the other hand� �	����

yields for id� � given by ������
�

ek
�
id� � Hs

ps���� Lp����
�

� k�
s

n for all � � �� �����	�


cf� ET��� Thm� �������� p� 		��� Comparing the limiting result �����	�
 with the non�limiting one
�����	�
� one observes that the non�limiting exponent �� s

n
� survives when the additional parameter a � �

is large enough� a � s
n
� otherwise it determines the behaviour of the entropy numbers�

One can obviously derive further estimates of entropy numbers in the case of non�limiting compact embeddings
when either source or target space is of logarithmic type� this can be obtained by decomposition techniques�
for instance� but is omitted here�

Embeddings of weighted spaces on R
n

Clearly there are no compact embeddings in unweighted spaces on R
n � thus we return to the setting described

in Propositions 	����� 	����� We link the situation studied now with our more general results in Sections 	�	���
	����� where the weights are of type �	�	��	
� w�x� � hxi� log�hxi� 	� � � R�

�c
 Non�limiting case� weighted spaces on R
n � Let �����	�
 be satis�ed with � � � and assume �rst

	 � �� � � R for the corresponding weight function� Then we have by Proposition 	���� for id���

given by �	���		
�

ek�id
���� � k�

s��s�

n if

�
	 � � � � � R

	 � � � � � s��s�
n

� �
�����	�




���� Compact embeddings� and entropy numbers ��

and for � � � � � and any number � � ��

c k
�

�

n
�

�

p�
�

�

p� �loghki�
��

� ek�id
���� � c� k

�

�

n
�

�

p�
�

�

p� �loghki�
����� �

p�
��� �

p� � ������	


When � � �� � � � � �� then Proposition ����� gives

c� k
�

�

p�
� �

p� �loghki�
��

� ek�id
�� � c� �loghki�

��
� �������


Note that �������
 and �������
 �with � � �
 coincide � also with the nonlimiting situation on �� see
�������
 � assuming that in the limiting case a� � a� is su�ciently large� i�e� a� � a� �

s��s�
n

� and in its
non�limiting counterpart the weight is strong enough� � � � �which is always the case in �������
 as � � �
�
Though otherwise� when the weight is of purely logarithmic type� we have no sharp results in �������
 and
�������
� there are grounds for the supposition that the decay in �������
 should be of power type� too � in
contrast to the upper bound in �������
 so far�

Let us �nally give the counterpart of �������
� but related to the situation of weighted embeddings on Rn � For
simplicity we assume s � s� � �� s� � �� p � p�� p� � ps� a� � � and a � �a� � �� We �rst compare
�������
 with some nonlimiting counterpart� i�e� we deal with the weight function w�x� � log�hxi� � � ��
We shall consider only the case � � � � s

n
and a �� s

n
� then Theorem ������ in particular ������
 provides

ek

�
id�a � Hs

ps�log
�hxi	Rn �� Lp�logL��a�R

n �
�

� k�min�a� s
n
� �

In view of �������
 and De�nition ����� �i
 the counterpart of ������
 is given by

id��Rn � Hs
ps�log

�hxi	Rn � �� Lp��p�hxi
�� 	Rn � 	 
 � �	 �������


and we have by �������
 with � � 
 � � � �� � � � � � � s
n
� � � s��s�

n
�and interpolation arguments

concerning the target space
 that

ek

�
id��Rn � Hs

ps�log
�hxi	Rn �� Lp��p�hxi

�� 	Rn �
�

� k�
s

n 	 
 � ��

Consequently the nonlimiting exponent �� s
n
� survives in that situation� too �like when studying limiting

embeddings of function spaces on bounded domains
� supposed that a � � and � � � are large enough�
The situation is even nicer when dealing with the weight w�x� � hxi�� � � � � �������
 implies

ek
�
id� � Hs

ps�hxi
�	Rn �� Lp�logL��a�R

n �
�

� k�min�a� s
n
�

if a �� s
n
� whereas for the counterpart of �������


id���Rn � Hs
ps�hxi

�	Rn � �� Lp��p�hxi
�� 	Rn � 	 
 � �	

it follows by �������
 with �� � �� 
 � � � 
 � �� � � �� s � s� � s� �and interpolation arguments


ek
�
id���Rn � Hs

ps�hxi
�	Rn �� Lp� �p�hxi

�� 	Rn �
�

� k�
s

n �

The conclusion is the same again � turning from the nonlimiting situation � with Lp� �p�hxi
�� 	Rn �� 
 � ��

as target spaces � to the limiting one � now embedding into Lp�logL��a�R
n � � the asymptotic behaviour

of the corresponding entropy numbers changes from k�
s

n to k�min�a� s
n
�� assuming that a �� s

n
and the

weight is strong enough �either w�x� � log�hxi with � � s
n
� � or w�x� � hxi�� � � �
� Otherwise the

weight gains additional in�uence� as expected�

Conclusion� We brie�y summarise this short discussion� It is obvious that � even when dealing with limiting
situations � there are settings such that the nonlimiting behaviour of the corresponding entropy numbers is
preserved� The prize to pay for this achievement is some compensation measured in additional �ne indices
a�	 a� � R� Moreover� following that process� new �limiting situations� naturally arise� e�g� a� � a� �

s��s�
n

�



�� �� Modi�ed smoothness

we leave this re�nement process here� More important from our point of view was to close the gaps in ������	
�
but this is left for future work and � possibly � some even stronger motivation �than the aim for completeness
merely
�

We have presented an obviously reasonable opportunity how to cope with limiting embeddings of weighted
spaces on R

n of the type studied above� The introduction of spaces Lp�logL�a�R
n � according to

De�nition ����� led to a number of features which appear desirable in view of further investigations� The most
essential disadvantage is in our opinion the resulting diversity of spaces Lp�logL�a�R

n � and Lp�logL�
�
a�R

n �
being in sharp contrast to their counterparts on bounded domains � � R

n � The reward for our deviation
from the �standard� approach Lp�logL�

�
a�R

n � lies in the outcome �nally permitting not only entropy number
estimates for related limiting embeddings but also a comparison with closely linked non�limiting assertions�
We do not know of parallel results when Lp�logL�a�R

n � is replaced by Lp�logL�
�
a�R

n � as target space�

As applications are out of the scope of the present report we end our discussion of this �rst example here�

� Modi�ed smoothness

��� Introduction

We present a model case for id� from ������
 and study the embedding

id � Bs�
p��q���� �� Bs�

p��q���� � ������


where � � R
n is a bounded C� domain � � p�� p�� q�� q� � � s�� s� � R� The embedding ������


is compact if

� � p�� p� � �� s� � s� � n max

�
�

p�
�

�

p�
� �

�
� � � q�� q� ��� ������


see Section ������ Posing the question what happens when ������
 is replaced by s� �
n
p�

� s� �
n
p�


� � p� � p� � � � � q�� q� � � one �rstly observes that the embedding ������
 is no longer compact�
However modifying the setting in this so�called limiting case by enlarging the target space su�ciently carefully
�where the initial space is assumed to be �xed now
 this leads to compact limiting embeddings�
In contrast to Section � we shall recover compactness of ������
 with s� �

n
p�

� s� �
n
p�

now by decreasing
the smoothness of the target space in such a way that the smoothness s� is preserved and the embedding
becomes compact� In that way one quite naturally arrives at the introduction of new spaces with additional
�logarithmic smoothness�� As an example one may consider the case s� � � and p� � �� It turns out
that in case of the B�spaces there is an interplay between the �usually neglected
 q�parameters and the
additional logarithmic smoothness� This result is somewhat surprising in our opinion though similar results
were obtained before� cf� �EOP����
The second reason to deal with spaces of �logarithmic smoothness� in more detail is the well�known and cele�

brated result of Br�ezis and Wainger �BW�	� in which it was shown that every function u in H
��n�p
p �Rn �

is �almost� Lipschitz�continuous in the sense that for all x� y � Rn  � � jx� yj � �
� 

ju�x�� u�y�j � c jx� yj
��� log jx� yj

�����p
�

kujH��n�p
p �Rn �k � ������


Here c is a constant independent of x� y and u and �
p�
� �

p � �� Our aim in �EH��� was to investigate

how �sharp� this result is �concerning the exponent of the log�term
 as well as to look for possible extensions
to the wider scale of F �spaces and parallel results for B�spaces� We found that the exponent �

p�
is sharp in

the F �setting whereas in case of B�spaces the sharp exponent turned out to be �
q�
� As already mentioned

above this important role played by the q�parameter is rather unusual� In that way ������
 suggests some

de�nition of �logarithmic� Lipschitz spaces Lip�������Rn � � � � as the collection of all f � C�Rn � such
that ���f jLip�������Rn �

��� �� kf jL��Rn �k� sup
��jhj����

sup
x�Rn

j�	hf��x�j

jhj jlog jhjj
� ������




���� Spaces of additional logarithmic smoothness ��

is �nite� Then the Br�ezis�Wainger result ������� can be extended to H
��n�p
p �Rn � �� Lip�������Rn � if�

and only if� � � �
p�

where � � p ��� �
p � �

p�
� �� Moreover� generalising the spaces Lip������ given by

�����	� further� one arrives at spaces Lip������p� q � � � p � �� � � q � �� � � �
q � Likewise one asks which

embedding results can be derived for such spaces when p ��� q ��� and compares the outcome with the
case already studied� i�e� for p � q ���
Secondly� we discuss the compactness of embeddings into spaces of Lipschitz type and analyse these embed

dings from the standpoint of entropy numbers � we consider the embedding

id � B
��n�p
p�q �U� �� Lip

������
�U� �

where � � p� q � �� � � �
q�
� and U being the unit ball in R

n � and determine the asymptotic behaviour

of its entropy numbers ek�id� for k � N large�

Finally� let us brie�y mention that these logarithmic Lipschitz spaces also appear in other connections� e�g�
when studying �generalised� moduli of smoothness and related inequalities� see BS���� DL���� Furthermore�
these spaces are involved when characterising the regularity of solutions in stationary problems �see Lio����
and when investigating hydrodynamics in Besov spaces �cf� Vis����� Thus it is not only of inner
mathematical
interest to study such spaces in greater detail� but also in view of applications� They are� however� out of the
scope of the present report�

��� Spaces of additional logarithmic smoothness

Spaces of generalised smoothness have been studied from di�erent points of view� coming from the inter

polation side �with a function parameter� we refer to Merucci Mer�	� and Cobos� Fernandez CF����
whereas the rather abstract approach �approximation by series of entire analytic functions and coverings� was
independently developed by Gol�dman and Kalyabin� see Gol���� Gol���� Gol��a�� and Kal���� Kal����
Furthermore� the survey by Kalyabin and Lizorkin KL��� and the appendix Liz��� cover the extensive
�Russian� literature at that time� More recently� we mention the contributions of Gol�dman Gol��b�� Gol�	�
and Netrusov Net���� Net��� and of Burenkov Bur���� We give further references below in connection
with special topics� One of the latest works is certainly that one of Farkas and Leopold FL��� linking
function spaces of generalised smoothness with negative de�nite functions � and thus opening another scene �
the application to pseudo
di�erential operators �as generators of sub
Markovian semi
groups�� Plainly all this
is out of the scope of the present report� it may� however� serve as some explanation that function spaces of
generalised smoothness have long been of interested already� but are far from being �old
fashioned��

����� Motivation

We were led to this subject quite naturally when dealing with �particular� limiting situations � It is well
known

that functions in the �fractional� Sobolev space H
��n�p
p �Rn �� when � � p ��� are H�older
continuous with

exponent � for any � � ��� �� but need not be Lipschitz
continuous� This limiting situation was clari�ed
in an important paper by Br�ezis and Wainger BW��� in which it was shown that every function u in

H
��n�p
p �Rn � is �almost� Lipschitz
continuous� in the sense that for all x� y � Rn � x �� y� jx� yj � ����

ju�x�� u�y�j � c jx� yj
�
�
� log jx� yj

�
�
�

��p�

kujH��n�p
p �Rn �k � �������

Here c is a constant independent of x� y and u� and �
p�

� �
p � �� Reformulating this fact in terms of

�limiting� embeddings ������� immediately suggests the de�nition of �logarithmically� spoilt spaces of Lipschitz

type Lip�������Rn �� � � �� as the space of all functions f � C�Rn � such that

kf jLip�������Rn �k �� kf jL��Rn �k� sup
x� y � Rn

� � jx� yj � ���

jf�x�� f�y�j

jx� yj jlog jx� yjj
� �������
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is �nite� Parallel studies �of limiting situations� led Leopold in �Leo�	
� �Leo��b
 to the introduction of

spaces B
�s�b�
p�q of type Bs

p�q � but with additional logarithmic smoothness� We give the related de�nitions here
and derive some basic properties of the spaces�

����� De�nition

Recall our notation for the di�erence operator �m
h in ����� and for �r�f� t�p in ���	��

Spaces of Lipschitz type

De�nition ����� �Har��b� Def� 
 Let � � p � �� � � q � �� � � �
q � with � � � if q ���� Then

Lip������p� q �Rn � is de�ned as the set of all f � Lp�R
n � such that

���f jLip������p� q �Rn �
��� �� kf jLp�R

n �k�

�Z �

�

�

�
��f� t�p
t j log tj�

�q
dt

t

���q

�������

�with the usual modi�cation if q ��� is �nite�

Note that De�nition ���� coincides with �EH��� Def� ��
 when q ��� and in case of p � q ��� � � ��

we recover the logarithmic Lipschitz spaces� Lip������ � Lip������
��� introduced by ������ in �EH��� Def�

�
� For � � � they collapse to the classical Lipschitz spaces Lip��Rn �� as long as there is no danger

of confusion we shall write Lip������ instead of Lip������
��� � The restriction � � �

q is quite natural as

otherwise we have Lip������p� q � f�g only� see �Har��b� Rem� 	
� However� when q � � we may also

admit � � �� whereas Lip������ would consist only of constants were � allowed to be negative� The
somehow unusual notation using �� �instead of �� is simply due to the fact that we want to emphasise that
the additional smoothness parameter � acts in such a way that the usual spaces Lip��Rn � are extended �

Lip��Rn � �� Lip�������Rn � for all � � �� i�e� the spaces become larger when less smoothness is assumed
� as it should be in some reasonable notation� De�nition ������ was suggested �rst by Triebel in some
unpublished notes�

Remark ����� The spaces Lip������
��� �Rn �� � � �� can also be obtained as a special case of the more general

spaces C�� ��t��	�� 	 � R
n � which were introduced by Kufner� John and Fu�c��k� see �KJF��� Def� ������

p� ��
� Moreover� spaces of type Lip������p�� � � � �� are given as Lip��� Lp� by DeVore and Lorentz

in �DL��� Ch� �� x�� p� �
� where R
n is being replaced by some interval 
a� b� � R and � � p � ��

Similarly� spaces Lip��� p� were studied by Kolyada in �Kol	�
� see also the end of Section ����� for further
references�

We introduce the Zygmund spaces C
������

�Rn �� � � �� as some counterparts of the spaces Lip������� this
de�nition also relies on some unpublished notes by Triebel�

De�nition ����� �EH��� Def� ��
 Let � � �� Then the space C
������

�Rn � is de�ned as the set of all

f � C�Rn � such that

kf jC
������

�Rn �k � kf jL��Rn �k� sup
x� h � Rn

� � jhj � ���

j���
hf��x�j

jhj jlog jhjj
� ��� �������

Though it might not be obvious at �rst glance there is an essential di�erence between spaces of type� say�

Lip������ and C
������

� � � � � concerning their compatibility with spaces of type Bs
p�q introduced by

Leopold�



���� Spaces of additional logarithmic smoothness ��

Spaces of type Bs
p�q

As already mentioned� spaces of generalised smoothness have been intensively studied for long� in our context
we concentrate on the following generalisations of spaces Bs

p�q merely� where some additional �logarithmic�
smoothness is incorporated� Recently� an important contribution to this subject was achieved by Moura in
�Mou	�
�

De�nition ����� �Leo		b� Def� �
 Let s � R� b � R� � � p � �� � � q � �� and let f�jg be a

smooth dyadic partition of unity� The space B
�s�b�
p�q �Rn � is the collection of all f � S��Rn � such that

kf jB
�s�b�
p�q �Rn �k �

� �X
j��

�jsq�� � j�bq
��F�� �jFf jLp�R

n �
��q ���q ������

�with the usual modi�cation if q ��� is �nite�

When b � � this de�nition coincides with the usual one� see De�nition ����� �i� or �Tri��� Def� ��������

p� �
� On the other hand� spaces of type B
�s�b�
p�q are special cases of B

�s���
p�q � F

�s���
p�q � introduced by Moura

in �Mou	�� Def� ��
� where � is an �admissible� function �including ��x� � �� � j logxj�b� b � R�� for
details we refer to �Mou	�
�

Spaces on domains

Let 	 be a bounded domain in R
n � for simplicity we shall mainly assume

	 � U � fx � Rn 
 jxj � �g �������

throughout this paper� i�e� that 	 is the unit ball in Rn � One can easily check that our results remain true
when U is replaced by some arbitrary bounded C� domain 	 � R

n �meant in the sense of �EE��� Def�
V����� p� ���
� say�� but at the expense of some constants �depending on 	��

De�nition ����� Let � � �� The space Lip�������U� is de�ned as the set of all f � C�U� such that

���f jLip�������U�
��� � kf jL��U�k� sup

x� x� h � U

� � jhj � ���

j��hf��x�j

jhj jlog jhjj
� �������

is �nite�

Standard procedures �see� for example� �EE��� pp� �	���
� show that there is a bounded extension map from

Lip�������U� to Lip�������Rn �� Spaces of type B
�s�b�
p�q �	� are de�ned by restriction completely parallel to

De�nition ������� This approach coincides with the one of Leopold in �Leo		b� Sect� �
�

In spite of the di�erent approach to spaces on 	 �intrinsic characterisation in case of Lip
������ and by

restriction for B
�s�b�
p�q �	�� one can cope with that technicality by extension procedures� Clearly� one could

avoid it from the very beginning by introducing both spaces on 	 in the same way �either by restriction or by
intrinsic characterisation� but the respective de�nitions given above are the more natural ones in our opinion�

����� Properties� equivalent norms

All spaces are de�ned on Rn unless otherwise stated� In view of applications suitably adapted H�older inequal�

ities are often needed� we give an example for spaces Lip
������
p�� �

Proposition ����	 �EH		� Prop� ���� Rem� ���
 Let � � p� q � � such that � � �
r � �

p �
�
q � �� Let

�� � � �� Then

Lip������p�� � Lip������q�� �� Lip����max������r�� �� Lip����������r�� � �������
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We consider spaces of type Lip������p� q and B
�s�b�
p�q � see De�nitions ����� and ������ and give some equivalent

characterisations� Recall that we have in B�spaces the equivalent norm 	�����
�� The following extrapolation

type result for spaces Lip������p� q is known� for details about extrapolation techniques we refer to Mil����

Proposition ����� EH

� Prop� ��� 	i��� Har

b� Prop� �� Let � � p � ��

	i� Let q ��� � � �� Then f � Lip
������
p�� if� and only if� f belongs to Lp and there is some c � �

such that for all �� � � � � ��

sup
��t����

��f� t�p
t���

� c ����

Moreover� we obtain as an equivalent norm in Lip������p�� �

���f jLip������p��

��� � kf jLpk� sup
�����

�� sup
��t����

��f� t�p
t���

� 	������

	ii� Let � � q � �� � � �
q � Then f � Lip������p� q if� and only if� f belongs to Lp and there is some

c � � such that Z �

�

��q
Z �

�

�

�
��f� t�p
t���

�q
dt

t

d�

�
� c �

Moreover� ���f jLip������p� q

��� � kf jLpk�

�Z �

�

��q
Z �

�

�

�
��f� t�p
t���

�q
dt

t

d�

�

���q

� 	�����
�

Remark ����� When p �� Proposition ����� 	i� coincides with the result of Krbec and Schmeisser in
KS
�a� Prop� ���� which was also our motivation for the above extension� part 	i� was already presented in
EH

� Prop� ��� 	i���

We want to mention some apparently elegant� but dangerous notation replacing 	������� In view of 	�����
�
with r � � and s � �� �� q ��� i�e

kf jB���
p��k � kf jLpk� sup

��t����

��f� t�p
t���

� 	�������

one might be tempted to shorten 	������ by���f jLip������p��

��� � sup
�����

��
��f jB���

p��

�� � 	�������

or � likewise � to replace 	�����
� by

���f jLip������p� q

��� �

�Z �

�

��q
��f jB���

p�q

��q d�

�

���q

� 	�������

However� the 	hidden� equivalence constants in 	������� depend upon �� especially for � � �� thus one either
has to calculate this dependence explicitly� or has to note that the B�spaces in 	�������� 	������� are de�ned
via �rst di�erences only 	in contrast to the usual Fourier�analytical approach�� Hence we prefer the slightly
more complicated but correct formulation as in Proposition ������

Note that the idea of the characterisations 	�������� 	������� resembles in some sense the argument given in
Theorem ����� 	i� concerning spaces Lp�logL��a� � � p ��� a � ��

We come to some counterpart of 	�����
� when dealing with spaces of type B
�s�b�
p�q � b � R�



���� Sharp embeddings ��

Proposition ����� �Har��b� Prop� �� Let � � p � �� � � q ��� b � �� Then

���f jB����b�
p�q

��� � kf jLpk�

�Z �

�

�

�
���f� t�p
t j log tjb

�q
dt

t

���q

	��
����

�with the usual modi�cation for q ����

Remark ������ In view of �Tri�� Thm� 
����
 	i�� one can extend 	��
���� to spaces B
�s�b�
p�q with � � p � ��

s � �p� b � R� � � q ��� where ���f� t�p has to be replaced by �r�f� t�p with r � s� r � N�

���f jB�s��b�
p�q

��� � kf jLpk�

�Z �

�

�

�
�r�f� t�p
ts j log tjb

�q
dt

t

���q

�� � 	��
����

see also �Nev��a� Thm� ��
� by Neves� In particular� for p � q �� we arrive at spaces of Zygmund type�

C
�s����

� B
�s����
��� � s � �� � � R�

kf jC
�s����

k � kf jL�k� sup
��t����

�r�f� t�

ts j log tj�
� 	��
����

where r � N� r � s�

��� Sharp embeddings

We have already reserved the expression �limiting� 	in connection with embeddings� for situations described by
	��
����� Now we shall adopt the saying �sharp embedding� when � at least for one parameter � there cannot
be chosen any �better� 	smaller or larger� respectively� value such that the embedding still holds� For instance�
returning to the famous result of Br�ezis and Wainger �BW��� see 	��
��� and rewritten now as

H
��n�p
p �Rn � �� Lip������p

���Rn � � 	������

one asks whether the embedding 	������ is sharp in the sense that

H
��n�p
p �Rn � ��	 Lip�������Rn �

if � � �
p�

	by the monotonicity of spaces Lip������ in � one clearly looks for the smallest value of ���
All spaces in this section are de�ned on R

n unless otherwise stated�

����� Sharp embeddings into spaces of Lipschitz type

We care for the question posed above� i�e� the sharpness of � � �
p�

in 	������� and extend it simultaneously �

H
��n�p
p will be replaced by A

��n�p
p�q � Moreover� turning to spaces de�ned on bounded domains� it then

becomes reasonable to ask for which parameters embeddings of the above type 	������ 	suitably adapted to
function spaces on domains� become compact� but this is postponed to Section ���� Our result is the following�

Theorem ����� �EH��� Thm� 
��� Let � � p �� �p �� in F �case�� � � q � � and � � �� Then

B
��n�p
p�q �� Lip������ if� and only if� � �

�

q�
� 	����
�

and

F
��n�p
p�q �� Lip

������
if� and only if� � �

�

p�

 	������

Note that Theorem ����� was already known for � � q � � in B� case and � � p � � in F� case� see
	��
�
�� and 	��
�
���



�� �� Modi�ed smoothness

Remark ����� We proved our result �EH��� Thm� ���� using 	sub
�atomic decompositions of function spaces�
interpolation arguments and extremal functions� We are indebted to H� Triebel in what concerns this result�
He stated it together with a sketch of its proof in some unpublished notes and encouraged us to publish it in
�EH����
Another way to prove 	������ when p � � and � � q � � 	apart from the sharpness assertion� is given

by Marchaud�s inequality  One uses equivalent characterisations of Lip
������� Bs

p�q � via the modulus of
continuity� recall 	������� with p ��� i�e�

kf jB�
��qk � kf jL�k�

�Z �

�

�

�
���f� t��

t

�q
dt

t

���q

� 	������

On the other hand� 	������ implies

kf jLip������k � kf jL�k� sup
��t����

���f� t��
tj log tj�

� 	������

An application of Marchaud�s inequality 	������� with k � � and p ���

���f� t�� � c t

�Z
t

���f� u��
u

du

u
� 	������

for some c � � and all f � L� and t � � results in

kf jLip������k � C kf jB�
��qk if � �

�

q�
�

which yields 	������ for p � � and � � q � �� The extension to � � p � � then comes from the
elementary embedding

B
��n�p
p�q �� B�

��q � 	������

We thank this hint our colleague V� Rychkov and refer to �EH��� Rem� ���� for further details�

Remark ����� In view of our introductory remarks� in particular 	������� the theorem implies that for � �

p � � and � � q � � there is some c � � such that for all x� y � R
n � � � jx � yj � �

� � and all

f � F
��n�p
p�q �

jf�x�� f�y�j � c jx� yj
��� log jx� yj

�����p� ���f jF ��n�p
p�q

��� � 	������

where the exponent �
p�

is sharp� Similarly� for � � p �� and � � q �� there is some c � � such that

for all x� y � Rn � � � jx� yj � �
� � and all f � B

��n�p
p�q �

jf�x�� f�y�j � c jx� yj
��� log jx� yj

�����q� ���f jB��n�p
p�q

��� � 	������

where the exponent �
q�

is sharp� Recall F s
p�� � Hs

p � s � R� � � p � �� Thus we regain by 	������ the

original Br�ezis�Wainger result 	������� for other works on sharpness of related embeddings see �EGO����
�EGO��� and �EK���� On the other hand� 	������ gives for p � q �� that there is some c � � such that
for all f belonging to the H�older
Zygmund space C� � B�

���� cf� �Tri��� Thm� ������ p� ����

jf�x�� f���j � c jxj
��� log jxj��� kf jC�k� 	�������

for all x� � � jxj � �
� � The exponent � of j log jxjj in 	������� is sharp� Further consequences of

Theorem ����� 	in terms of sharp inequalities� are discussed in �EH��� Rem� �����

The sharpness assertion essentially relies on results on extremal functions as presented below�



���� Sharp embeddings ��

Proposition ����� �EH��� Prop� ���� Let � � p �� and � � �

p � There is a function gp� with

gp� � B��n�p
p�p � gp���� � ��

jgp��x�j � c jxj
�
�
� log jxj

�
�
�

��p� �
log

��� log �jxj������

for some c � �� small � � � and x � �x�� �� � � � � ��� � � x� � �� � � � small�

This is essentially the 	lifted
 version of an example given by Triebel in �Tri��� Thms� ������ ������ see also
�ET��� Thm� ������ p� ����

We give the counterpart of Theorem ����� where the target spaces Lip������ in �������� ������� are replaced

by Lip������
�� v � � � v ���

Proposition ����� Let � � q� v � �� � � �
v �with � � � if v ����

�i� Let � � p � �� Then

B
��n�p
p�q 	� Lip������

�� v if� and only if� � �
�

v
�

�

q�
� ��������

In particular� for v � q�

B
��n�p
p�q 	� Lip������

�� q if� and only if� � � � � ��������

�ii� Let � � p ��� Then

F
��n�p
p�q 	� Lip

������
�� v if� and only if� � �

�

v
�

�

p�
� ��������

In particular� for v � p�

F
��n�p
p�q 	� Lip

������
�� p if� and only if� � � � � ��������

P r o o f � As this result is new in this formulation we insert a short proof� Note that �������� as well as
�������� with v � � are already covered by Theorem ������ Our results �Har��b� Prop� ��� Cor� ���
Cor� ��� provided� however� weaker assertions only than above �when v � �� whereas the sharpness of
� � �

q�
� �

v in �������� is already covered by �Har��b� Cor� ���� The essential contribution now comes from
our recent studies on envelopes in function spaces which are the main subject of Part II of this report� We
do not go into further detail� but refer to our results in �Har��� �described in detail in Sections �� � and ���

There we obtain by Theorem ����� that there is some c � � such that for all f � A
��n�p
p�q �

�
�

�Z
�

�

�f� t�

t jlog tj

�u
dt

t

�
A

��u

� c
			f jA��n�p

p�q

			 if� and only if�


�
�

u � p � A
��n�p
p�q � F

��n�p
p�q �

u � q � A
��n�p
p�q � B

��n�p
p�q �

��������

see in particular �Har��� ������� ������� �������� To verify the sharpness in ��������� ��������� as well as to
show �������� and �������� is then a consequence of the above mentioned result �������� and Proposition �����
below�



�� �� Modi�ed smoothness

����� Sharp embeddings between spaces with additional logarithmic smoothness

We �rst deal with �sharp� embeddings between logarithmic Lipschitz spaces Lip������ and Zygmund spaces

C
������

� both of which are de�ned by di�erences� Our �rst result is of 	purely Lipschitzian
 type�

Proposition ����� �Har��b� Prop� �� Let � � p ��� � � q� v � �� � � �
q
� � � �

v
� Then

Lip
������
p� q �� Lip

������
p� v if� and only if�

��
�

� � �
v
� �� �

q
� v � q�

� � �
v
� �� �

q
� v � q�

�������

Remark ����� One recognises that our result ������� resembles the outcome of Bennett and Rudnick
concerning spaces L��q�logL�a �

L��q�logL�a �� L��v�logL�b if

�
a� �

q
� b� �

v
� v � q

a� �
q

� b� �
v

� v � q
� �������

see �BR��� Thms� ���� ����� Let us especially point out the somehow astonishing result that concerning the

embedding Lip������p� q into Lip������p� v one can 	compensate
 some gain of logarithmic smoothness �� � ��

by 	paying
 with the additional index q� that is� as long as ����� ���� � �
q
� �

v
� v � q�

This situation is essentially di�erent from the related one when dealing with spaces B
�s�b�
p�q exclusively� see

Proposition ����� below�

We investigate the situation when Zygmund spaces C
������

are involved additionally�

Proposition ����� �EH��� Prop� ���� Let �� �� 	 be non�negative real numbers� Then

Lip
������

�� C
������

�� Lip
������ �������

if� and only if�

� � �� and 	 � � � ��

We give the counterpart of Proposition ����� for p ���

Proposition ����� �Har��b� Prop� � Let � � p ��� � � q� v � �� � � �
v
�with � � � if v ����

Then

B�
p�q �� Lip

������
p� v if

�
� � �

q�
� v ���

� � �
v
� �

q�
� v �� �

�������

Note that we proved �Har��b� Prop� � for all p� � � p � �� but the case p �� is now replaced by the
better result Proposition ������ Furthermore� for p � � and v � � ������� is covered by �EH��� Prop�

��� �ii�� already� Comparing ������� and ������ the question naturally arises whether B�
p�q �� Lip������p� v

remains true for � � �
v
� �

q�
and v ��� p ��� This is not so clear at the moment� at least not covered

by our recent studies on envelopes� However� when p � � �Har��b� Cor� ��� implies that there cannot be
an embedding like ������� for � � �

v
� �

q�
� Otherwise� for � � p � �� there is an improved version of

������� by Neves in �Nev�a� Prop� ���� based upon Timan�s inequality �DL��� Ch� �� Thm� ���� p� ���
instead of Marchaud
s ������

We showed in �EH��� Prop� ���� that C
������

� B
������
��� � � � �� In that sense Proposition ����� also

leads to the question what else can be said about the relation between spaces of type B
�s�b�
p�q �de�ned in

the Fourier�analytical way� see De�nition ������ and spaces de�ned by di�erences� in particular� Lip������p� q �
We try to clarify this interplay by some more results and a subsequent discussion in Section ������ We begin
with a result of Leopold obtained in �Leo��� Thm� � which is closely linked to Theorem ���� as well as to
Proposition ������



���� Sharp embeddings ��

Proposition ������ �Leo��� Thm� �	 Let s� � s�� b�� b� � R� � � p� � p� � �� � � q�� q� � �� and

assume s� �
n

p�
� s� �

n
p�
� Then

B
�s��b��
p��q� �� B

�s��b��
p��q� if� and only if�

���
��

b� � b� � � � q� � q�

b� � b� �
�

q�
�

�

q�
� q� � q� �


������

The above assertion can also be found 
as some special case� in �Mou�	�

As already mentioned� we are interested in the interplay between both scales of spaces especially� Recall that for
� � � it is known that Cs � Bs

���� s � �� see �Tri��� Thm� ����� 
ii�� p� �	� and B�
��� �� Lip

�
�� B�

����
see �Tri��� 
��������� 
���������� p� ����	� In �EH��	 we proved that there are extensions to � � ��

Proposition ������ �EH��� Props� ���� ���	 Let � � �� Then

B
������
��� �� Lip

������
�� C

������
� B������

��� � 
�������

Moreover�

B������
��q �� Lip

������
if� and only if� � � q � ��

Note that also the latter assertion is well�known for � � �� see �ET��� 
����������� p� ��	�

Before we come to compare spaces of type B
�s�b�
p�q and Lip

������
p� q in Section ������ we derive a few more� rather

elementary embeddings between both scales of spaces� In view of characterisation 
������� and Marchaud�s

inequality we may extend Proposition ������ to spaces Lip
������
p� q �

Corollary ������ �Harb� Prop� ��� Cor� ��	 Let � � p ��� � � q � �� � � �
q
�


i� Then

B
������
p�� �� Lip

������
p� q if

�
� � �� �

q
� � � q �� �

� � � � q �� �

�������

Moreover�

B
������� �

q
��

p�min�q��� �� Lip
������
p� q � 
�������


ii� Let � � q � �� � � �� Then

B����������
p�q �� Lip

������
p� q � 
�������

Recall the notation for spaces C
������

� � � �� see 
������� with s � �� r � �� Then by Proposition �����
assertion 
������� coincides with 
the right�hand embedding in� 
������� when p � q ���

Corollary ������ �Harb� Cor� ��	 Let � � p � �� � � q� v ��� � � �
q
� � � �

v
� Then

Lip
������
p� q �� B������

p�v if

��
�

� � �
v
� �� �

q
� v � q �

� � �
v
� �� �

q
� v � q �


�������

Remark ������ For p � q �� assertions 
�������� 
������� and 
������� coincide with Proposition �������



�� �� Modi�ed smoothness

����� Some discussion

We examine the relation between �logarithmically smooth� Besov spaces B
�s�b�
p�q � introduced by Leopold

in �Leo���� and �logarithmic� Lipschitz spaces Lip������p� q 	 From the point of dealing with these spaces in

view of atomic decompositions etc	 it is essential that the logarithmic B
spaces� that is B
�s�b�
p�q � arise by

a Fourier
analytical approach �like the usual spaces Bs
p�q�� see �	�	��� whereas the logarithmic Lipschitz

spaces Lip
������
p� q � de�ned via �rst di�erences� see �	�	�� remain as �Fourier
unfriendly� as were their classical

forerunners �with p � q � �� � � ��	 In fact� the almost inconspicuous modi�cation in �	�	� compared
with �	�	���� namely the substitution of ���f� t�p by ���f� t�p� causes a striking di�erence in the features
of the corresponding spaces �as it does for � � b � ��	

We return to Proposition 		�� obtained by Leopold in �Leo��� Thm	 ��	 Plainly� it implies

B������
p�q �� B������

p�v if� and only if�

�
� � � � � � q � v

� � �
v
� �� �

q
� q � v�

�		���

It is obvious� that � though �		��� and �		��� appear related somehow � the role played by the parameter q

in either case is di�erent	 The �diagonal argument� �essentially used in Step  of the proof of Proposition 		�
and borrowed from Bennett and Rudnick� does not apply in �		���	 In other words� the parallel notation

�taking the same parameter q� in both cases B
�s�b�
p�q and Lip������p� q � respectively� is a dangerous one �though

suggestive in either case�� possibly pretending at �rst glance that the construction with respect to q might
be the same� however� it is not	 On the other hand� it is nevertheless surprising that the ��ne index� q in
these limiting cases becomes so important	

We study the question now �where� the Lipschitz spaces Lip������p� q can be found within the scale of Besov

spaces B
�s�b�
p�q 	 Let � � p � � and � 	 q � �	 Concerning the scale of logarithmic Besov spaces B

���b�
p�q

for �xed p and q� but arbitrary b � R� we may locate the Lipschitz spaces Lip������p� q as follows	 Denote

by q� �� min�q� �� and assume � � �
q�
	 Then

B
������� �

q�
��

p�q �� Lip������p� q �� B������
p�q � �		���

see �		��� �		��� and �		���	 Insisting� however� on the same �logarithmic� smoothness in both nestling

spaces of type B
���b�
p�q � that is� for �xed p and b� but varying q� we found

B
������� �

q
��

p�q� �� Lip
������
p� q �� B

������� �

q
��

p�� � �		���

recall �		�� and �		���	 One veri�es that for � 	 q 	� the respective initial spaces and endpoint spaces
in �		��� and �		��� are incomparable in the sense that neither of them is contained in the corresponding

other one� this refers to B
������� �

q�
��

p�q and B
������� �

q
��

p�q� as well as to B
������
p�q and B

������� �

q
��

p�� � respectively	
Obviously they coincide� respectively� when � 	 q � � �in case of the initial spaces� and when q � �
�concerning the endpoint spaces�	 Thus we have the general situation that

B
������� �

q�
��

p�q�

�

�

B
������� �

q�
��

p�q

B
������� �

q
��

p�q�� �z �
	 B

������� �

q
��

p�q � � 	 q � �

�

�
Lip

������
p� q

�

�

B������
p�q

B
������� �

q
��

p��

�

�
B������
p��

� �z �
	 B������

p�� � q ��

� �		���

Moreover� we have the same diagram with Lip
������
p� q replaced by B

������� �

q
��

p�q 	 These spaces� however� are

not comparable �in the above sense� when � 	 q 	�� whereas Lip������p� q �� B
������� �

q
��

p�q when q ���

and B
������� �

q
��

p�q �� Lip������p� q for � 	 q � �� see �		��� we also refer to �Har��b� Sect	 ��	



���� Compact embeddings� and entropy numbers ��

There are a lot of further related approaches to spaces of Lipschitz type� recall Remark ������ see also �Her�	

by Herz� the books of Stein �Ste��
 and Peetre �Pee��
� and the papers �Tai��
� �Tai�
� �Tai��
 by
Taibleson and �Tri��
 by Triebel� Let us �nally mention only a few� more recent papers � Aksoy

and Maligranda� see �AM��
� studied descriptions of spaces of Lipschitz�Orlicz type Lip���LM � and
Zyg���LM � in terms of Poisson integrals� Brandolini� �Bra�	
� introduced generalised Lipschitz spaces� i�e�
spaces of type ��

X�Rn �� � � � and X being either Lp���Rn � or Lp�R
n �� in particular� for X � Lp�R

n �

and � � � these are the above spaces Lip
�����
p��� The closest approach we found in the literature so far �

really dealing with logarithmic or similar modi�cations of the usual Lipschitz spaces � is given in the paper
�BS��
 by Bloom and De Souza� They concentrated on weighted Lipschitz spaces of type Lip �� where
� � 	�� 
�� � 	���� is a nondecreasing weight function with ���� � �� With a slight modi�cation we
may regard ���t� � tj log tj�� t � � small� as such a weight� and � in their notation � we obtain that

Lip �� � Lip������
��� and for the Zygmund spaces ����� � C

������
�

In a wider context � dealing with spaces of generalised smoothness � there is a variety of literature� recall our
introductory remarks at the beginning of Section ����

��� Compact embeddings� and entropy numbers

����� Entropy numbers in sequence spaces

As in �ET��
 and �Tri��
� our estimation of the entropy numbers of embedding maps involves a reduction of
the problem to the study of maps between �nite�dimensional sequence spaces� Accordingly we study the situ�
ation in sequence spaces � as de�ned in Section ����� � �rst� Concerning entropy numbers of the embedding
map id � �Mp� �� �Mp� � � � p� � p� � �� we make use of the results �ET��� Prop� ������ p� �	
 as well
as �Tri��� Prop� ���� p� ��
� Note that in the Banach space setting estimates for the entropy numbers in
�nite�dimensional sequence spaces have been studied in great detail for a long time� We refer to �Sch	�
 as
well as �K�on	�� Sect� ��c�	
 for further details and references�

We consider the embedding
idp��p� � �q

�
�Mj
p�

�
� �q

�
hji���Mj

p�

�
� �������

where � � p� � p� � �� � � q � �� � � �� and Mj � 
jn� j � N� � We have shown in �EH��� Prop�
���
 that idp��p� is compact for � � � and p� � p� �see also Proposition ����� below which implies the
compactness� too�� We study �the asymptotic behaviour of� the corresponding entropy numbers ek�idp��p��
in the sequel� Note that in case of entropy numbers parallel results � i�e� when dealing with dyadic weights of
type wj � 
j�� � � �� � were obtained by K�uhn in �K�uh	�
 and Triebel in �Tri��� Sect� 	
�

It turns out that for later application we need only deal with the cases when p � p� � p� and p � p��
p� ��� respectively� We begin with the setting when � � p � p� � p� � � and adopt the notation

idp�p � �q
�
�Mj
p

�
� �q

�
hji���Mj

p

�
� �������

where � � p � �� � � q � �� � � �� and Mj � 
jn� j � N� � As a �rst result we obtained in �EH��

the following�

Proposition ����� �EH��� Prop� ���
 Let � � �� � � p � �� � � q � �� Mj � 
jn� j � N� � Then

ek �idp�p� � �loghki�
��

� k � N	 �������

Remark ����� When wj � 
j�� � � �� our notation �������� coincides with �Tri��� �	���
� The result parallel
to Proposition ������ assuming � � p � �� � � q ��� Mj � 
jn� j � N� � is then a special case of �Tri���
Thm� 	��� p� ��
 and reads as

ek
�
id � �q

�

j��Mj

p

�
� �q

�
�Mj
p

��
� k�

�
n � k � N	
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Furthermore� as will be clari�ed later� we do need some generalisation of Proposition ����� in the context of

spaces �u

h
��m�q

�
�
Mj

p

�i
� � � u � �	 see 
������� for the de�nition� This is covered by EH��� Cor� ����	

it yields� in particular� for � � �� � � p� q ��� Mj � �jn� j � N� �

ek
�
id � ��

�
���m�q

�
�Mj

p

��
�� ��

�
���m�q

�
hji���Mj

p

���
� �loghki�

��


������

for all k � N� where �� � ��� The parallel result to 
������ with wj � �j� � � � �� is given in Tri��� Thm�
���� p� ����

We study the embedding
idp�� � �q

�
�Mj
p

�
� �q

�
hji���Mj

�

�

������

now� where � � p � �� � � q � � and � � �� Note that the compactness of idp�� is a consequence
of the compactness of idp�p� We estimate the corresponding entropy numbers�

Proposition ����� EH��� Props� ���� ���� Let � � �� � � p ��� � � q ��� Mj � �jn� j � N� �


i� There is some c � � such that for all k � N�

ek �idp��� � c

�	



k�
�
p �loghki�

��

� � � �

p

k�� � � � �

p

� 
������

Moreover� if we additionally have � � p ��� then 
������ can be replaced by

ek �idp��� � c

�	



k�
�
p �loghki�

��� �
p � � � �

p

k�� � � � �

p

� 
������


ii� Let � �� min�q� ��� There is some c � � such that for all k � N�

ek �idp��� � c

������	
�����


k�
�
p �loghki�

��� �
�
� �

p � � � �

�
� �

p

k�
�
p �loghki�

�
�
� �

p � � � �

�
� �

p

k
�
�
p

�

�
�
� �

p � � � �

�
� �

p

� 
������

A major improvement of Proposition ����� was obtained in a recent paper by Cobos and K�uhn CK��� � They
showed that 
������ and 
������ can be improved using tricky combinatorial arguments� complex interpolation
and an extended knowledge on the ��norm and related results for Kolmogorov� and entropy numbers	 we refer
to the book of Pisier Pis��� Ch� �� for an excellent presentation of all the necessary background material
as well as details� and to the papers of Gluskin Glu���� Sudakov Sud���� and Pajor and Tomczak�

Jaegermann PTJ���� PTJ���� We already discussed this possibility brie�y in EH��� Rem� ����� The result
of Cobos and K�uhn is the following�

Proposition ����� CK��� Thms� �� �� Let � � �� � � p ��� � � q � �� Mj � �jn� j � N� �


i� There is some c � � such that for all k � N�

ek �idp��� � c

�	
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�
p �loghki�

��� �
p � � � �

p

k�
�

� � � � �

p

� 
������


ii� There is some c � � such that for all k � N�

ek �idp��� � c

�����	
����


k�
�
p �loghki�

��� �
p � � � �

p
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�
p �loghki�

�
p � � � �

p
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�

� � � � �
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�������
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One has a sharp result now for small � � �
p � i�e�

ek �idp��� � k�
�

� � k � N�

and the gap between lower and upper estimate in the remaining cases became much smaller compared with
Proposition ������ at least in the Banach case situation� Moreover� Cobos and K�uhn conjecture in their
paper that the upper bound is sharp for � � �

p � too� This is based on two reasons � �rstly� when q � ��

then by 	CK
�� Prop� ��

ek �idp��� � k�
�

p �loghki�
��� �

p

for all � � p � � and � � �
p � Secondly� they brie�y mention a brandnew result by Belinsky 	Bel
��

verifying the upper bound as sharp even in the quasiBanach setting�

Remark ����� Note that Leopold obtained in 	Leo

c� Thm� �� similar results when dealing with the more
general setting

id qp � �q�
�
�Mj

p�

�
� �q�

�
hji���Mj

p�

�
�

where � � p� � p� � �� � � q�� q� � �� � � � �
q�
� �

q�
��� and Mj � �jn� j � N� � see also 	Leo

a��

These results were sharpened in a recent paper by K�uhn and Schonbek 	KS
�b��

����� Compact embeddings and entropy numbers

We are prepared now to tackle the problem of estimating the entropy numbers of our limiting embedding�

Compact embeddings

Clearly it makes no sense to study compactness of natural embeddings like

id � B
��n�p
p�q �Rn �� Lip�������Rn �

in �unweighted� R
n�setting � we have for any � � �

q�
and any � � � � � � u � �� the embeddings

B
��n�p
p�q �Rn � �� Lip�������Rn � �� B������

��� �Rn � �� B���
��u�R

n � �

which are all continuous by our results in Section ��� and in view of De�nitions ����� �i� and ����� �referring

to the last embedding�� Assuming B
��n�p
p�q �Rn � �� Lip

������
�Rn � was compact for some � � �

q�
� then this

implied compactness of B
��n�p
p�q �Rn � �� B���

��u�R
n � immediately� but this is not true� cf� Theorem ����� �ii�

and its more general version 	HT��a� Thm� �����

A gentle modi�cation of our setting surmounting the abovedescribed di�culty consists in the introduction
of additional weight functions �as presented in the �rst example in Section �� or� alternatively� to reduce the
problem to spaces on domains� We follow the latter concept here� By our remarks in Section ����� concerning
spaces on domains it is clear that our embedding results in Section ��� remain valid� Let U � fx � R

n �
jxj � �g be the unit ball in Rn �

Proposition ����� 	EH

� Prop� ���� Cor� ���� Let � � q � ��

�i� Assume � � p ��� � � �
q�
� Then idB � B

��n�p
p�q �U� �� Lip

������
�U� is compact�

�ii� Assume � � p ��� � � �
p�
� Then idF � F

��n�p
p�q �U� �� Lip�������U� is compact�

In view of our embedding results in Section ��� and Proposition ����� below this result is obvious� We collect

two further results dealing with either Lipschitz spaces Lip
������ or spaces of type B

�s�b�
p�q exclusively�

Proposition ����� 	EH

� Prop� ���� Let � � � � �� Then id�� � Lip�������U� �� Lip�������U� is

compact�
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Remark ����� In Remark ����� we identi�ed Lip��������� as a special case of the more general C�� ��t����
spaces introduced in �KJF��� Def� ����	�� p� �
	�� The above proposition can also be found as a special case
of a related result for C�� ��t���� spaces� that is �KJF��� Lemma ������ p� �
��

Leopold obtained in �Leo�� a similar result� We present it in a simpli�ed version �adapted to our setting�
only� Recall notation �	�	����

Proposition ����� �Leo�� Thm� �� Let s � R� � � p� q�� q� � �� and b �
�

�
q�
� �

q�

�
�
� Then

id � B�s�b�
p�q� �U� �� Bs

p�q��U�

is compact�

This result can also be identi�ed as a special case of �Mou�	� Thm� ��	�� p� ���

Our intention was to deal with some model cases only� however� in view of �	����� more compactness results
can be easily obtained from our results below when we deal with estimates for entropy numbers�

Entropy numbers

Recall our notation idB for the embedding

idB � B
��n�p
p�q �U� �� Lip�������U� � �����		�

where � � p � �� � � q � �� � � �
q�
� According to Proposition ����
 �i� idB is compact and it makes

sense to study its entropy numbers�

Theorem ������ �EH��� Thm� ��	�� Let � � q �� and � � �
q�
� Then there are positive numbers c�

and c� such that for all k � N�

c� �loghki�
��

� ek

�
id � B�

��q�U� �� Lip
������

�U�
�
� c� �loghki�

��� �

q� � �����	��

In particular� when � � q � � and thus � � �� we obtain

ek

�
id � B�

��q�U� �� Lip�������U�
�

� �loghki���� �����	��

Due to the embedding B
��n�p
p�q �U� �� B�

��q�U� and the multiplicativity of entropy numbers the upper

estimate is true for all idB � � � p � �� whereas we already showed in �EH��� Thm� ��	�� that the lower

bound �����	�� has to be replaced by c� k
�
�
p �loghki�

��
when p ��� Our result for idB and � � p ��

is the following�

Theorem ������ �EH��� Thm� ��		� Let � � p � �� � � q � �� � � �
q�
� Let � � min�q� ��� There

are positive numbers c� and c� such that for all k � N�

c� k
�
�
p �loghki�

��
� ek

�
idB

�
� c�

������
�����

k�
�
p �loghki�

��� �

q�
� �
��

�
p � � � �

q�
	 �

� 	
�
p

k�
�
p �loghki�

�
��

�
p � � � �

q�
	 �

� 	
�
p

k
�
����q�

��p�� � � � �
q� 	

�
� 	

�
p �

�����	��

We brie�y sketch the main ideas of our proof in �EH���� It indicates the way in which our preceding results are
used for that purpose� We start with the estimate from below� essentially using the characterisation ��������
�����	�� for p ��� and our complete knowledge about the non�limiting case� see �	�����

ek
�
id � Bs�

p��q��U� �� Bs�
p��q��U�

�
� k�

s��s�
n � k � N� �����	��



���� Compact embeddings� and entropy numbers ��

where s� � s�� � � p�� p� � �� � � q�� q� � �� and s� � s� � n
�

�
p�
� �

p�

�
�
� We apply �������� with

s� � � � n
p � s� � � � �� � � �� p� � p� q� � q� p� � q� � �� A straightforward �and nevertheless

careful� calculation of the extremal problem in � � � completes the argument for the lower estimate�
We care about the upper estimate in ��������� Here we bene	t from our results on entropy numbers in
sequence spaces in Section ������ We outline the main points� for details we refer to 
EH���� 
EH�� The
crucial trick is to 	nd a �non��linear bounded operator S and a linear operator T such that we obtain the
following commutative diagram�

B
��n�p
p�q �U�

Lip�������U�

idp��idB

T

S
�q
�
�Mk
p

�

�q
�
hki������q

�� �Mk
�

�

��������

This is done via atomic �or� strictly speaking� even quarkonial� decompositions of function spaces� but we
do not propose to go into further details here� we remind the reader of Section ������ in particular� The�
orem ����� and 
Tri��� Sect� ���� In 
Tri��� Th� ����� p� ��� there is a mechanism established by which
distributions f � Bs

p�q�R
n � can be transformed into a sequence of complex numbers belonging to some space

�q��
Mk
p �� simultaneously controlling the corresponding norms� This provides the boundedness of the operator

S� Concerning the independence of the �inverse� operator T from the used atomic decomposition� one has to
involve even �smaller� building blocks than atoms� i�e� �quarks�� cf� 
Tri��� Sect� ��� for all necessary details�
Moreover� one also needs some �quarkonial version� of Propositions ����� and ����� �ii� then� but this can
be obtained without di�culties� cf� 
Tri��� Sect� ��� 
EH��� Cor� ���� and Remark ������ One veri	es that

T � �q
�
hki
���� �

q�
�
�Mk
�

�
� Lip

������
�U� is bounded� Thus by the multiplicativity of entropy numbers and

idB � T � idp�� � S � Proposition ����� �ii� concludes the proof�

Remark ������ Due to their improved estimates for ek�idp���� see Proposition ������ Cobos and K�uhn
achieved in 
CK�� Thm� �� a replacement for the upper estimates in �������� as follows �

ek
�
idB

�
� c�

������
�����

k�
�

p �loghki�
��� �

q�
� �

p � � � �
q� �

�
p

k�
�

p �loghki�
�

p � � � �
q� �

�
p

k�
����q�

� � � � �
q� �

�
p �

where � � p ��� � � q ��� � � �
q� �

We return to the situation of Proposition ����� and give our result on the �asymptotic behaviour of the�
entropy numbers of the compact embedding id�� � � � � � ��

Theorem ������ 
EH� Thm� ����� Let � � � � �� Then

ek

�
id�� � Lip�������U� �� Lip�������U�

�
� �loghki�

������
� k � N	 ��������

Combining Propositions ����� and ����� the compactness of id � Lip
������

�U�� C�������U� for � � � � �
is obvious� We proceed with the corresponding result on entropy numbers�

Corollary ������ 
EH� Cor� �����

�i� Let � � � � �� Then

ek

�
id � Lip�������U�� C�������U�

�
� �loghki�

������
� k � N	 ��������
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�ii� Assume � � � � � � �� Then there are positive numbers c�� c� such that for all k � N�

c� �loghki�
������

� ek

�
id � C

������
�U�� Lip�������U�

�
� c� �loghki�

��������
�

We �nally give Leopold�s related result �Leo�	
 Thm� � for the case mentioned in Proposition ������ We
could slightly improve it in �EH���

Proposition ������ �Leo��b
 Thm� �
 �EH��
 Prop� ���
 Cor� ���

Let s � R� � � p � �� � � q�� q� � �� and b�� b� � R with b� � b� �
�

�
q�
� �

q�

�
�
� There are numbers

c�� c� � � such that for all k � N�

c� �loghki�
��b��b��� ek�B

�s�b��
p�q�

�U� �� B�s�b��
p�q�

�U�� � c� �loghki�
��b��b���� �

q�
�

�
q�

�� �

In particular� if q� � q�� then

ek�B
�s�b��
p�q�

�U� �� B�s�b��
p�q�

�U�� � �loghki�
��b��b�� � ��������

Another related result concerning entropy numbers of id � B
�s��b��
p��q� �U� � B

�s��b��
p��q� �U� 
 s� � s�
 can be

found in �Leo��b
 Thm� �� see also �Mou��
 Thm� ����
 p� �	�

Remark ������ We want to mention some �in our opinion� peculiar and very interesting consequences which
might shed some light on the place of Lipschitz spaces in between the Fourier�analytically based B�spaces

see our discussion in Section ������ We contribute to these considerations with the following observation � let
� � q � �
 � � �
 then by �������� and ��������


id � B�
��q�U�

�

��

�

B
������
��� �U�

y

Lip�������U�

y

B
������
��� �U�

����������
���������

ek � �loghki�
��

So at least in that particular situation it turns out that the entropy numbers for the corresponding embeddings
behave �equally well� �meaning that the compactness of the underlying embedding is seen by the entropy
numbers as of the same quality� independent of whether the respective target spaces are rather �Fourier�

unfriendly� �as it is with Lip������� or not�

����� Comparison with the non�limiting setting

We brie�y want to compare our limiting results
 i�e� Theorems ������ and ������
 with their non�limiting
counterparts� we refer to Remark ����� and Figure � for a parallel discussion referring to our �rst described
example �in Section ���
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idB

�

�

p
�

p

s

�

�

�� � n
p �

�

p �

�
id�

�� �

Figure �

One possibility to �approximate� our limiting embedding idB by
non�limiting embeddings of a similar type is shown in the � �p � s��
diagram aside� Any space As

p�q is characterised there by its pair of

parameters � �p � s� �independent of q� � � q � ��� as usual� In

that �rough� sense our target space Lip
������

�U� can be found
at the point ��� ��� too �neglecting the additional smoothness
provided by the log�exponent � � ��� In our situation described
above we stick at the parameter p� � � for the target space�
but have less smoothness� say� s� � �� � � �� � � �� Thus we
are interested in assertions about ek�id�� when � � � and id�
is given by

id� � B
��n�p
p�q �U� �� B���

����U� � �	�
����

where � � p � �� � � q � �� and � � ��

Note that one has for any k � N and � � ��

ek�id�� � k�
�

p
�
�
n � �	�
���

cf� �ET��� Thm� �� p� �� and ��	�	�� In view of �	�
��� �for � � �� it is thus rather natural that the

extra term k�
�

p survives the limiting procedure� see Theorem 	�
�� whereas the loss of k�
�
n has to be

compensated by some additional � log�� term �depending on the particular kind of extension of the target
space in �	�
���� when � � ��� as clearly id� is no longer compact for � � ��

We stick at the non�limiting situation� i�e� s� � s� � n
�

�
p�
� �

p�

�
� and give some related results when the

�new� spaces appear as source or target spaces� respectively� This is of great help when having applications in
mind �excluded in this report from the very beginning�� but it also illustrates the in�uence of the parameter

� in Lip������ a bit further�

Corollary ������ �EH��� Cor� 	���

�i� Let � � �� s � �� � � q ��� Then for all k � N�

ek

�
id � Lip�������U�� B��s

��q�U�
�
� k�

s
n �loghki�

�
� �	�
����

�ii� Let � � �� � � p� q ��� and s � � � n
p � Then for all k � N�

ek

�
id � Bs

p�q�U�� Lip�������U�
�
� k�

s��
n �loghki�

��
� �	�
��	�

where Bs
p�q in �	�
��	� may be replaced by F s

p�q �when p ����

Remark ������ Leopold obtained in �Leo��b� Thm� 	� estimates for the entropy numbers in the non�

limiting situation id � B
�s��b��
p��q� �U� � Bs�

p��q��U�� where s� � s� � n
�

�
p�
� �

p�

�
� � � p� � p� � ��

� � q�� q� ��� b� � R�
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Part II

Envelopes

� Envelope functions EXG and EXC � de�nition� and basic properties

��� Introduction

We present our recently developed concept of envelopes in function spaces � a relatively simple tool for the
study of rather complicated spaces� say� of Besov or Triebel�Lizorkin type� Bs

p�q or F s
p�q � respectively� in

so�called �limiting� situations� It is well�known� for instance� that B
n�p
p�q �� L� if� and only if� � � p ���

� � q � � � but what can be said about the growth of functions f � B
n�p
p�q otherwise� i�e� when B

n�p
p�q contains

essentially unbounded functions 	 Edmunds and Triebel proved that one can characterise such spaces
by sharp inequalities involving the non�increasing rearrangement f� of a function f 
 Let � be a bounded�
continuous� decreasing function on ��� �� and � � p ��� Then there is a constant c � � such that�

� �Z
�

�
f��t���t�

� � j log tj

�p
dt

t

�
A

��p

� c
���f jHn�p

p

��� �����

for all f � H
n�p
p if� and only if� � is bounded� cf� �ET��� Thm� ����� Parallel studies in the �sub�critical�

case� i�e� for embeddings Bs
p�q �� Lr� s � �� � � r � �� � � q � �� and � � p � � such that

n
p � s� n

r � led Triebel in �Tri��� to similar results�

As already explained in Section �� we are looking now for some feature only �belonging� to the spaces under
consideration� but not bound to a certain context of embedding �with original or target spaces within a
prescribed scale�� de�ned as elementary as possible �using classical approaches� � and gaining from the many
forerunners essentially� In view of the above�mentioned papers and our results in Section � the choice of
f� �the non�increasing rearrangement� and ��f� t� �the classical modulus of continuity� was apparently
suggested as basic concept our new tool should be built on� This led us to the introduction of the growth

envelope function of a function space X � Lloc
� �

E
X

G
�t� �� sup

kf jXk��
f��t� � � � t � � �

It turns out that in rearrangement�invariant spaces there is a connection between E
X

G
and the fundamental

function �X � we derive further properties and give some examples� The pair E
G
�X� � �E

X

G
�t�� uX� is called

growth envelope of X � where uX � � � uX ��� is the in�mum of all numbers v satisfying�
� �Z

�

�
f��t�

E
X

G
�t�

�v
	G� dt�

�
A

��v

� c kf jXk

for some c � � and all f � X � and 	G is the Borel measure associated with � log E
X

G
� One veri�es for the

Lorentz spaces E
G
�Lpq� � �t���p� q�� but we also obtain characterisations for spaces of type As

p�q � where

p � s � n

p � this is contained in Section �� Instead of investigating the growth of functions one can also

focus on their smoothness� i�e� when X �� C it makes sense to replace f��t� by ��f�t�
t � where ��f� t� is

the modulus of continuity� Now the continuity envelope function E
X

C
and the continuity envelope E

C
are

introduced completely parallel to E
X

G
and E

G
� respectively� and similar questions are studied in Section ��We

�nally present in Section � some more� rather astonishing consequences of our recent studies on envelopes in
view of lifting arguments and compactness�

��� The growth envelope function E
X

G
� and the index u

X

G

We already mentioned that characterisations like ����� gave reason to study the behaviour of the non�
increasing rearrangement f� of a function f � As

p�q � in particular� when these spaces contain essentially



���� The growth envelope function E
X

G
� and the index u

X

G
��

unbounded functions� Regarding this problem in a more general context this leads to the introduction of
growth envelopes� and in particular� to growth envelope functions� Our results for spaces of type As

p�q are
postponed to Sections ���� ���� we start with some simple features to give a better feeling what is really
�measured	 by growth envelopes� For that reason we test our new envelope tool on rather classical spaces like
Lorentz
�Zygmund� spaces� these examples are to be found in Section ��� Of course� there was no big gain
to develop a theory for� say� Lp�q spaces only � had we not achieved more surprising results in Sections ����
���� Finally� there is also some astonishing outcome in Section ����� � the recognition of growth envelope
functions in terms of fundamental functions in rearrangement�invariant spaces�

We shall only consider 
quasi�� normed function spaces X � Lloc
�

in the sequel�

����� De�nition and basic properties

De�nition ����� �Har�� Def� ���� Let X be some �quasi�� normed function space on R
n � The growth

envelope function E
X

G
� ������ ����� is de�ned by

E
X

G
�t� �� sup

kf jXk��

f��t� � t � �� 
�����

We shall adopt the usual convention to put E
X

G
��� ��� when ff���� � kf jXk � �g is not bounded from

above for some � � ��

Remark ����� Note that 
����� immediately causes some problem when taking into account that we shall
always deal with equivalent 
quasi�� norms in the underlying function space 
rather than a �xed one� � Assume
we have two di�erent� but equivalent 
quasi�� norms k � jXk� and k � jXk� in X � Then every function
f � X with kf jXk� � �� f �� �� is connected with some gf �� cf � where c � kf jXk��kf jXk��

kgf jXk� � �� and g�f � cf�� leading to a di�erent� but equivalent expression for E
X

G
� So� strictly speaking�

we are concerned with equivalence classes of growth envelope functions� where we choose one representative

E
X

G
�t� 	 sup

kf jXk��

f��t� � t � ��

However� we shall not make this di�erence between equivalence class and representative in the sequel � but
return to this point in Subsection ����� below�

Furthermore� by 
����� the growth envelope E
X

G
�t� is de�ned for all values t � �� but at the moment we are

only interested in local characterisations 
singularities� of the spaces referring to small values of t � �� say�
� � t � �� Nevertheless questions of global behaviour 
 t � � � as well as the comparison with their local
counterparts are certainly of interest and will be tackled in the future� This preference of local studies also
implies that we can transfer a lot of our results from spaces on R

n to their counterparts on bounded domains
formally� The necessary modi�cations in case of our examples in Section �� below are obvious� concerning
spaces of type As

p�q�	�� where 	 � R
n is a bounded C� domain� they are de�ned by restriction from their

R
n �counterparts� so that the local behaviour of functions is not �spoilt	� Conversely we may conclude that in

most cases 
apart from a few explicitly mentioned� the study of spaces on domains does not contribute very
much to our results� This justi�es that we shall mainly deal with function spaces on R

n in the sequel�

We brie�y discuss the obvious question whether the growth envelope function E
X

G
is always �nite for t � �

or what necessary � su�cient conditions on X 
or the underlying measure space� imply this� recall notation

�����

Lemma ����� �Har�� Lemmata ���� ����


i� There are function spaces X on R
n which do not have a growth envelope function in the sense that

E
X

G
�t� is not �nite for t � ��
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�ii� Let X be some �quasi�� normed function space on R
n � Then E

X

G
�t� is �nite for any t � � if� and

only if�
sup

kf jXk��

�f ��� �� � for ��� � �������

Hence the de�nition of E
X

G
is non	trivial and reasonable� We now collect a few elementary properties of it�

Simplifying technical matters in the sequel we introduce the number �� by

�� � �G� �X� �� sup
n
t � � � E

X

G
�t� � �

o
� �����
�

Note that E
X

G
�t� � � for some t � � implies f��t� � � for all f � X � kf jXk � �� thus  by some

scaling argument  g��t� � � for all g � X � But then ������� yields that X contains only functions having
a support with �nite measure� i�e� jfx � Rn � jg�x�j � �gj � t for all g � X � This is in particular true�
when X is de�ned on � � R

n with j�j � t� On the other hand� as already mentioned above� we are only
interested in the local behaviour of functions g � X � so we shall not focus on larger values of t � �� that is�
say� when t � ���

Proposition ����� �Har��� Prop� ���� Let X be a �quasi�� normed function space on � � R
n �

�i� E
X

G
is monotonically decreasing and right�continuous� We have E

X

G
�
�
E
X

G

��
�

�ii� If j�j ��� then E
X

G
�t� � � for t � j�j and any function space X on ��

�iii� We have X �� L� if� and only if� E
X

G
��� is bounded� i�e� sup

t��

E
X

G
�t� � lim

t��
E
X

G
�t� is �nite� In that

case it holds
E
X

G
��� �� lim

t��
E
X

G
�t� � kid � X � L�k �

�iv� Let X�	 X� be some function spaces on R
n � Then X� �� X� implies that there is some positive

constant c such that for all t � ��

E
X�

G
�t� � c E

X�

G
�t��

One may choose c � kid � X� � X�k in that case�

�v� Let � � ��	�� � ��	�� be some non�negative function� assume that ������� is satis�ed� Then ����
is bounded on ��	 ��� if� and only if� there is some c � � such that for all f � X � kf jXk � ��

sup
��t���

��t�

E
X

G
�t�

f��t� � c � �������

�vi� Assume that X additionally satis�es���f
�
	�

�

n �
�
jX

��� � c kf jXk �������

for some c � � and all f � X � Then

E
X

G

�
	�j

�
� E

X

G

�
	�j��

�
�������

for some j� � N and all j 	 j��

Parts �i�	�v� are covered by �Har��� Prop� ���� whereas �vi� is a generalisation of �Tri��� ����
��� p� �����

the monotonicity �i� of E
X

G
immediately yields �	� in �������� whereas the converse inequality uses functions

fn�x� �� f�	�
�

n x� built upon f � X � say� with kf jXk � �� Plainly f�n�	t� � f��t�� the rest is covered
by �������� Note that all spaces of type As

p�q � Lp�q�logL�a studied below satisfy ��������

Remark ����� We have shown in �Har��� Rem� ����� that some counterpart of �iv� in the sense of �iii��
i�e� that some relation of the envelope functions implied some �continuous� embedding for the corresponding
spaces� cannot hold in general� see also Section ���� Concerning �v�� we proved in �Har��� Cor� ���� even

more� namely that in some sense E
X

G
is the only such function with the property described above�

In contrast to �Har��� we postpone examples to Section ����
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����� Connection with the fundamental function

In rearrangement�invariant function spaces X one has the concept of the �fundamental function� �
X
� we

investigate its connection with the growth envelope function E
X

G
� All function spaces are considered on R

n

�equipped with the Lebesgue measure �n	� We closely follow the presentation in 
BS��� Ch� � x���

Recall the notion of a �quasi�	 Banach function space as presented in Section ������ A function �quasi�	 norm
k � jXk over R

n is said to be rearrangement�invariant� if kf jXk � kgjXk for every pair of equimeasurable
functions f and g � i�e� if for all non�negative measurable functions f � g� �nite a�e�� with �f ��� � �g���
for all � � � this implies kf jXk � kgjXk� A �quasi�	 Banach function space X generated by a
rearrangement�invariant �quasi�	 norm is called rearrangement�invariant �quasi�� Banach function space or
simply rearrangement�invariant space� Recall that we have for such spaces always �

A
� X when A � R

n �

�n�A� ���

De�nition ����� Let X be a rearrangement�invariant Banach function space over R
n � For each t � �� let

At � R
n be such that �n�At� � t� and let

�X�t� �
����

At

��X��� 	 �����	

The function �X so de�ned is called fundamental function of X �

Note that the particular choice of the set At with �n�At� � t is immaterial since if Bt is another subset
Bt � R

n with �n�Bt� � t� then �
At

and �
Bt

are equi�measurable� and so k�
At

jXk � k�
Bt

jXk because

of the rearrangement�invariance of X � Hence �X is well�de�ned� We give some well�known examples�

Let � � p � �� and Lp � Lp�R
n �� then for t � ��

�Lp
�t� � t

�

p 
 � � p ��
 and �L��t� �

�
� 
 t � �
� 
 t � �

�����	

cf� 
BS��� p� ���� Moreover� when � � q � p � � or p � q � �� then Lp�q is rearrangement�invariant
and

�Lp�q
�t� � t

�

p 
 �����	

see 
BS��� Ch� �� Thm� ���� p� ���� �In view of Remark ���� one can further prove that Lp�q is a
rearrangement�invariant Banach space for � � p � �� � � q � �� or p � q � �� when f� in �������	
is replaced by f��� cf� 
BS��� Ch� �� Thm� ���� p� ����	 Likewise� let � � R

n have �nite measure�
say� �n��� � �� Then it is known that L� �logL�� ��� and Lexp����� are rearrangement�invariant with
fundamental functions

�
L��logL��

�t� � t �� � j log tj� 
 and �
Lexp��

�t� � �� � j log tj���

 ������	

for � � t � �� see 
BS��� Ch� �� Thm� ���� p� ���� So in view of our examples in Section ���� i�e�

Propositions ����� ������ where we calculated E
X

G
for the same spaces as involved in �����	�������	� the

following assertion is naturally suggested�

Proposition ����� 
Har��� Prop� �� Let X be a rearrangement�invariant Banach function space over

R
n � and �X the corresponding fundamental function� Then

E
X

G
�t� �

�

�
X
�t�


 t � �	 ������	

Remark ����� One can prove a counterpart of Proposition ���� when the underlying measure space �R
 �	 �
�Rn 
 �n	 is replaced by some non�atomic �nite measure space �R
 �	�
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After completing �Har��� we found that Carro� Pick� Soria and Stepanov studied related questions in
�CPSS���� in particular� �CPSS��� Rem� 	�
 �ii�� essentially coincides with ��	����� where the function �X�t�

used there corresponds to E
X

G
�t�� Moreover� when X is a rearrangement�invariant Banach function space

then by �CPSS��� Thm� 	�� �iii�� there is a counterpart of Proposition �	� �iii� as follows �

X �� Lq�� �� sup
t��

t
�

q E
X

G
�t� � � � � � q �� �

����� The index uX
G

We shall need a �ner characterisation than provided by the growth envelope functions solely� By Propo�

sition 
���	 below it is obvious� for instance� that E
X

G
cannot distinguish between di�erent spaces like

Lp�q� �logL�a and Lp�q� �logL�a� q� �� q�� So it appears desirable to complement E
X

G
by some expres�

sion� naturally belonging to E
X

G
� but yielding � as a test � the number q �or a related quantity� in case

of Lp�q�logL�a spaces� Again a more substantial justi�cation for complementing E
X

G
by this additional

expression results from more complicated spaces �like As
p�q � than Lp�q�logL�a� but in these classical cases

the outcome can be checked immediately�
The missing link is obtained by the introduction of some �characteristic� index uX

G
� which gives a �ner measure

of the �local� integrability of functions belonging to X � Moreover� the de�nition below is also motivated by
�sharp� inequalities of type ������ with � � ��

We start with some preliminaries� Let � be a real continuous monotonically increasing function on the
interval ��� �� for some small � � �� Assume ���� � � and ��t� � � if � � t � �� Let 	log� be the
associated Borel measure with respect to the distribution function log�� if� in addition� � is di�erentiable
in ��� �� then

	log�� dt� �
���t�

��t�
dt ��	��	�

in ��� ��� cf� �Lan��� p� 	�
� or �Hal�� x�
���� p� ���� The following result of Triebel is essential for our
argument below�

Proposition ����� �Tri��� Prop� �	�	� p� ����

�i� Let � and 	log� be as above� and � � r� � r� � �� Then there are numbers c� � c� � � such

that

sup
��t��

��t�g�t� � c�

�
�

�Z

�

���t�g�t��r� 	log�� dt�

�
A

��r�

� c�

�
�

�Z

�

���t�g�t��r� 	log�� dt�

�
A

��r�

��	����

for all functions g�t� � � � which are monotonically decreasing�

�ii� Let ��� �� be two equivalent functions as above and 	log�� � 	log�� the corresponding measures�

Assume � � r � �� Then

�
�

�Z

�

����t� g�t��
r
	log��� dt�

�
A

��r

	

�
�

�Z

�

����t� g�t��
r
	log��� dt�

�
A

��r

��	���

�usual modi�cation if r ��� for all functions g�t� � � � which are monotonically decreasing�

In a slight abuse of notation we shall mean by 	G the Borel measure associated with a function � �as described

above and� equivalent to �
E
X

G
� where X is some function space satisfying ��	�
� and X ��
 L�� that

is� ��t� 	 �
E
X

G
�t�� � � t � �� Note that all growth envelope functions E

X

G
of a space X with ��	�
� belong
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��

to the same equivalence class which contains moreover a continuous representative� If E
X

G
is di�erentiable�

then

�G� dt� � �

�
E
X

G

�
�

�t�

E
X

G
�t�

dt ������	


for small t � �� This approach coincides with the one presented by Triebel in �Tri��� Sect� ����� pp� ���
��� and �Tri��� Sect� ���� p� ����� Recall our notation �� in ������
�

De�nition ������ �Har��� Def� ���� Let X ��� L� be some �quasi�� normed function space on R
n

with �����	
 and growth envelope function E
X

G
� Assume � � � � ��� The index uX

G
� � � uX

G
� �� is

de�ned as the in�mum of all numbers v� � � v ��� such that

�
� �Z

�

�
f��t�

E
X

G
�t�

�v
�G� dt�

�
A

��v

� c kf jXk �������


�with the usual modi�cation if v ��� holds for some c � � and all f � X �

Remark ������ It is clear by Proposition ����� �v
 �with � � �
 that �������
 holds with v � � in any
case� Thus the question arises whether �depending upon the underlying function space X
 there is some
smaller v such that �������
 is still satis�ed� Moreover� it is reasonable to ask for the smallest parameter v
satisfying �������
 as the corresponding expressions on the left�hand side are monotonically ordered in v by

Proposition ����� �i
 with g � f� and � � ��E
X

G
�

The number uX
G

in De�nition ������ is de�ned as the in�mum of all numbers v satisfying �������
� however�
it is not clear at the moment� whether this in�mum �������
 is in fact always a minimum� More precisely�
one can study the question what assumptions �on the function space X and the underlying measure space

imply that uX

G
satis�es �������
� too� So far we only know that all cases we studied �as presented below
 are

examples for the latter case �when uX
G

happens to be a minimum
� but lack a general answer�

Remark ������ We explicitly excluded the case X �� L� �in particular� X � L�
 in De�nition ������

above� One may� however� adopt the �reasonable
 opinion that � in case of bounded growth functions E
X

G

�that is� according to Proposition ����� �iii
� when X �� L�
 � �������
 is replaced by

sup
��t��

f��t� � c kf jXk 	

for some c � � and all f � X � thus uX
G

����

The following assertion is not very complicated to prove � relying on Proposition ����� essentially � but quite
e�ective in application later on�

Proposition ������ �Har��� Prop� ��	� Let X�	 X� be some function spaces on R
n with X� �� X��

Assume for their growth envelope functions

E
X�

G
�t� � E

X�

G
�t�	 � � t � � 
 �������


Then we obtain for the corresponding indices

uX�

G
� uX�

G

 ������
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Remark ������ We give another interpretation of the meaning of �������� in terms of sharp embeddings�

Assume that E
X

G
�t� � t�� jlog tj

�
for small t � � with � � �� � � R� or � � �� � � � �recall the

monotonicity of E
X

G
near ��� Then

�G� dt� �
dt

t
if � � � � and �G� dt� �

dt

t j log tj
if � � � �

and �������� can be reformulated as follows 	 What is the smallest space of type

L �

�
�v �logL�

�� if � � � � or L��v �logL����� �

v
� if � � � �

respectively� such that X can be embedded into it continuously 
 Having this idea in mind the results in
Section ��� are not very astonishing� However� this is only some interpretation of ��������� the denition itself
is independent of any scale of Lorentz spaces as target spaces�

��� The continuity envelope function E
X

C
� and the index u

X

C

We introduce the continuity envelope function E
X

C
and derive some elementary properties� The method is

parallel to that in the preceding section�

����� De�nition and basic properties

Recall that C�Rn � is the space of all complex�valued bounded uniformly continuous functions equipped with
the sup�norm as usual�

De�nition ����� Let X �� C be some function space on R
n � The continuity envelope function E

X

C
�

������ ����� is de�ned by

E
X

C
�t� �� sup

kf jXk��

��f� t�

t
� t � �� �������

Remark ����� An adapted version of Remark ����� holds here� too� concerning the equivalence classes of
continuity envelope functions as well as the question of local �instead of global� behaviour of functions�
implying our restriction on function spaces on R

n rather than function spaces on domains� We do not want
to repeat the arguments in detail�

In view of Section ������ in particular Lemma ����� �i�� one may ask whether any space X of the above type

possesses a continuity envelope function E
X

C
� that is� whether in any admissible situation E

X

C
�t� is nite for

any t � �� In contrast to E
X

G
� see Lemma ����� �i�� our assumption X �� C already implies

E
X

C
�t� � sup

kf jXk��

��f� t�

t
� sup

kf jXk��

� kf jCk

t
� � kid � X � Ck

�

t
� t � �� �������

i�e� there is some c � � such that for all t � � � E
X

C
�t� � c

t
� In that sense any space X �� C has a

continuity envelope function E
X

C
�

We collect a few elementary properties of E
X

C
�t�� Note that E

X

C
�t� cannot be too small for t � �� for

E
X

C
�t� � � as t � � implies that X contains constants only� Furthermore� one introduces a number 	C� �

parallel to ������� � by

	C� � 	C� �X� �� sup
n
t � � � E

X

C
�t� � �

o
� �������

However� as E
X

C
�t� � � for some t � � means ��f� t� � � for all f � X �i�e� X consists of constants

merely� we are mainly interested in spaces X with 	C� �X� � �� investigating the local behaviour �small

t � �� at the moment� it was even su�cient to assume� say� supf� 
 t 
 � � E
X

C
�t� � �g � ��



���� The continuity envelope function E
X

C
� and the index u

X

C
��

Proposition ����� �Har��� Prop� ���	 Let X �� C be some function space on Rn �


i� E
X

C
is continuous and �essentially monotonically decreasing�� that is� E

X

C
is equivalent to some mono�

tonically decreasing function�


ii� We have X �� Lip� if� and only if� E
X

C
��� is bounded� i�e� sup

t��

E
X

C
�t� � lim sup

t��

E
X

C
�t� is �nite� In

that case it holds

E
X

C
��� �� lim sup

t��

E
X

C
�t� �

���id � X � Lip�
��� �


iii� Let Xi �� C� i � �� �� be some function spaces on Rn � Then X� �� X� implies that there is some

positive constant c such that for all t � ��

E
X�

C
�t� � c E

X�

C
�t��

One may choose c � kid � X� � X�k in that case�


iv� Let X �� C be non�trivial� i�e� �C� �X� ��� Let � � ������ 	���� be some non�negative function�

Then ���� is bounded if� and only if� there is some c � � such that for all f � X � kf jXk � ��

sup
t��

��t�

E
X

C
�t�

��f� t�

t
� c � 
������


v� Assume that X additionally satis�es

��f ������ jX�� � c kf jXk 
������

for some c � � and all f � X � Then

E
X

C

�
��j

�
� E

X

C

�
��j��

�

������

for some j� � N and all j � j��

Parts 
i�
iv� are covered by �Har��� Prop� ���	 whereas 
v� generalises �Tri��� 
������� p� ���	� see the
similar argument following Proposition ������ The somehow clumsy formulation in 
i� results from the fact
that ��f� t� is not necessarily concave itself� but equivalent to its least concave majorant ��f� t� �

�

�
��f� t� � ��f� t� � ��f� t� � t � �� 
������

for any f � C� cf� �DL��� Ch� �� Lemma ���� p� ��	�

Remark ����� In analogy to Remark ����� we mention that we proved in �Har��� Cor� ���	 more than 
iv��

namely that in some sense E
X

C
is the only such function with the property described above�

����� The index uX
C

Recall our introductory remarks at the beginning of Section ������ Analogously to the situation described there
we shall introduce the Borel measure �C associated with the function 	 as described in Section ������ and

equivalent to �
E
X

C
for some function space X with 
������ and X ��
 Lip�� 	�t� � �
E

X

C
�t�� � � t � ��

Then 
granted that E
X

C
was di�erentiable� we obtain

�C� dt� � �

�
E
X

C

��
�t�

E
X

C
�t�

dt 
������

for small t � ��



�� �� Growth envelopes EG

De�nition ����� �Har��� Def� ���	 Let X �� C be some function space on Rn with 
������� X ��� Lip�

and continuity envelope function E
X

C
� Assume � � �� The index uX

C
� � � uX

C
� �� is de�ned as the in�mum

of all numbers v� � � v � �� such that

�
� �Z

�

�
��f� t�

t E
X

C
�t�

�v
	C� dt�

�
A

��v

� c kf jXk 
�����

�with the usual modi�cation if v ��� holds for some c � � and all f � X �

Remark ����� Proposition ����� 
iv� 
with � � �� implies that 
����� holds with v � � in any case� but
� depending upon the underlying function space X � there might be some smaller v such that 
����� is still

satis�ed� As Proposition ���� 
i� can be applied to the above case� that is� 
 � ��E
C

and g�t� � ��f�t�
t �

without any di�culties� we have the monotonicity of 
����� in v�

The question posed in Section ������ that is� under which assumptions

uX
C

� inf fv � � � v � �� v satis�es 
�����g 
�������

is in fact a minimum� makes sense in that context� too� but is likewise open in general� Again� all the examples
studied below are such 
possibly special� cases where uX

C
satis�es 
������

Remark ����� In analogy to Remark ������ we handle the case when X �� Lip� separately� Parallel

to Remark ������ we can include this situation by putting uX
C

�� � as for bounded E
X

C
� that is� by

Proposition ����� 
ii�� when X �� Lip�� 
����� can be replaced by

sup
��t��

��f� t�

t
� c kf jXk �

for some c � � and all f � X � We give the counterpart of Proposition ������ in terms of continuity envelopes�

Proposition ����	 �Har��� Prop� ���	 Let Xi �� C� i � �� �� be some function spaces on R
n with

X� �� X�� Assume for their continuity envelope functions

E
X�

C
�t� � E

X�

C
�t�� � � t � � � 
�������

Then we get for the corresponding indices

uX�

C
� uX�

C
� 
�������

� Growth envelopes EG

We introduce the concept of growth envelopes� followed by our corresponding results� �rst we shall deal with
classical spaces such as Lebesgue and Lorentz spaces whereas afterwards the 
sub�� critical case for spaces
As
p�q is considered� All spaces are de�ned on R

n unless otherwise stated�

��� De�nition and �rst examples

Let X be some 
quasi�� normed function space� recall the de�nitions for E
X

G
and uX

G
as given in

De�nitions ����� and ������� respectively�



���� De�nition and �rst examples ��

De�nition ����� �Har��� Def� ���	 Let X ��� L� be some function space on R
n with 
����� and

growth envelope function E
X

G
�t�� � � t � �� and index uX

G
� Then

E
G

�
X
�
�
�
E
X

G
���� uX

G

�

�����

is called growth envelope for the function space X �

We claim that the growth envelope E
G
�X� of some function space X gives some characteristic feature of

X in the sense that it indicates the �quality� of the unboundedness of functions contained in X � We start
with some easy examples to illustrate the concept of the growth envelope introduced above� though the more
surprising results are obtained when dealing with spaces of type As

p�q � this is postponed to Sections ���� ����
Recall the de�nition for Lorentz 
�Zygmund spaces Lp�q� Lp�q�logL�a in De�nition ������

Proposition ����� �Har��� Props� ����� ����� ����� ���� ���� ���	


i Let � � p� q � � �with q �� when p ���� Then

E
G

�
Lp�q

�
�
�
t�

�

p � q
�
� 
�����


ii Let � � p ��� � � q ��� and a � R� Then

E
G

�
Lp�q�logL�a

�
�
�
t�

�

p jlog tj
�a

� q
�
� 
�����


iii Let � � q ��� a � R� with a� �

q
� �� Then

E
G

�
L��q�logL�a

�
�
�
jlog tj

��a� �

q
�
� q

�
� 
�����

Plainly� we obtain in� say� 
i that E
Lp�q

G
�t� � t�

�

p for all admitted q� � � q � �� Hence there cannot
exist a direct counterpart of Proposition ����� 
iv� because otherwise all Lp�q� spaces were contained in each
other� Moreover� it becomes clear that only the index uX

G
can distinguish between Lp�q� and Lp�q� � whereas�

of course� uX
G

solely carries not enough information on the spaces as well� but the pair E
G
�X� �

�
E
X

G
� uX

G

�

does� This justi�es the introduction of the growth envelope again�

Remark ����� As already announced in Remark ������� the above results were to expect in view of the
reformulation of 
������� The value of Proposition ����� rather lies in the veri�cation of our method to
recover the �ne index q in case of Lorentz 
�Zygmund spaces Lp�q�logL�a� this was our aim as announced
before�

Looking back on Section ����� the question arises naturally whether uX
G

can also be identi�ed as some quantity�
known for a long time 
and in possibly another context in Banach space theory� By Proposition ����� we have
to look for expressions only which take the value q when� say� X � Lp�q�logL�a� we were not yet successful
in this task�

Let j�j ��� say� j�j � �� recall that L��� �logL�
�a ��� � Lexp�a��� for a � � and Lexp�a being the

Zygmund spaces given by 
�������

Proposition ����� �Har��� Props� ����� ����	 Let � 	 R
n with j�j � �� and a � �� Then

E
G

�
Lexp�a���

�
�
�
jlog tj

a
� �

�
� 
�����

Note that we determined the growth envelope function E
X

G
�t� in �Har��� Props� ����� ����� ����� ����	 directly�

not relying on results about the fundamental function �
X

and Proposition ������ In fact� it happened just
the other way round in �Har��	 � we took our results �Har��� Props� ����� ����� ����� ����	 together with

������
������ as motivation for Proposition ������ The result remains true when �Rn � 	n	 is replaced by
some 
��nite measure space �R� �	 satisfying that for every number s � ��� ��R�	 there is some As 	 R
in the 
�algebra of R with ��As� � s� likewise one can assume �R� �	 to be a �nite non�atomic measure
space�



�� �� Growth envelopes EG

��� Growth envelopes in the sub�critical case

In this section we deal with spaces of type As
p�q �

as introduced in De�nition ������ Let s � ��
� � p � �� and � � q � �� Then ac�
cording to our notation in Figure � �and the
explanations given there� we call spaces sub�

critical when �n � s � n
p
� �� As usual� the

borderline case s � �p � that is� s � � when
� � p ��� and s � n� �

p
��� for � � p � � �

needs some additional care concerning the cor�
responding spaces� This refers to the thick lines
in Figure 	� We shall deal with that situation
separately� but postpone it to the end of this
subsection�

s � n
�
�

p
� �

�

� �

p
�

r

s

�
�

p
� s
�s

s � n
p

�

p

Figure �

First we consider the 
sub�critical strip� where n
p
� s � �p� � � p �� and � � q � �� Let � � r ���

then all spaces on the line with slope n and 
foot�point� �

r
�see Figure 	� belong to this sub�critical area�

Moreover� as all spaces of type As
p�q �with such parameters� can be embedded in� say� suitable Lebesgue

spaces Lu� it makes sense to study their growth envelopes� see the previous section�

Theorem ����� �Har�� Thm� ������ �Tri�� Thm� ����� p� ��� Let � � q � �� s � �� � � r � �
and p with � � p �� be such that s� n

p
� �n

r
� Then

E
G

�
F s
p�q

�
�
�
t�

�

r � p
�

�������

and

E
G

�
Bs
p�q

�
�
�
t�

�

r � q
�

� �������

We brie�y explain the main ideas of the proof� starting with the determination of the growth envelope functions�
By �������� and ������� we have

F s
p�q �� F �

r�� � Lr � � � r �� � �������

Now Propositions ����� �iv� and ����� immediately imply E
F s

p�q

G
�t� � c t�

�

r � Stressing real interpolation
arguments we obtain not only the corresponding estimate for B�spaces� but also a sharper result in the F �case�

F s
p�q �� Lr�p �������

and

Bs
p�q �� Lr�q � �������

we refer to �BL��� Thm� ������ p� ����� �Tri�	a� Thm� ���	����� p� ���� ���������� p� �	��� �FJ�� Cor� ��� and
x��� and �Tri	�� Thm� ������ p� ��� for details on the interpolation results� Application of Propositions ����� �iv�

and ����� leads to E
Bs

p�q

G
�t� � c t�

�

r � Conversely� we use an example given in �Tri��� ����� Let ��x� be
some compactly supported C��function in Rn given by

��x� �

�
e
�

�

��jxj� � jxj � � �

� � jxj � � �
�������

Let j � N� then the functions

fj�x� �� �j
n

r �
�
�jx

�
� x � Rn � �������



���� Growth envelopes in the sub�critical case ��

are atoms in Bs
p�q in the sub�critical case� we refer to Section ������ in particular Theorem ����	 
i�� Besides�

these atoms satisfy

f�j
�
��jn

�
� �j

n

r � j � N�

implying

E
Bs

p�q

G

�
��jn

�
� f�j

�
��jn

�
� �j

n

r � j � N�

This yields not only the desired B�result� E
Bs

p�q

G
�t� � c t�

�

r � � � t � �� but also its counterpart for
F�spaces� due to the embedding B�

v�p �� F s
p�q for � � s and � � v � p such that �� n

v
� s� n

p
� �n

r
�

see 
�������� Proposition ��� 
iv� completes the proof in as far as envelope functions are concerned� Turning

to the indices u
As

p�q

G
we bene�t from Propositions ����� and ����� together with 
������ and 
����� providing

u
F s

p�q

G
� p and u

Bs

p�q

G
� q � respectively� The sharpness is a consequence of �Tri		� Cor� �����

Remark ����� Note that 
������ together with Proposition ����� implies

E
G

�
Lr�p

�
�
�
t�

�

r � p
�
� E

G

�
F s
p�q

�
� 
������

where � � q � �� s � �� � � r � � and � � p � � with s� n
p
� �n

r
� that is� we have by 
����� the

embedding F s
p�q �� Lr�p only� whereas the corresponding envelopes even coincide� This can be interpreted

as Lr�p being indeed the best possible space within the Lorentz scale in which F s
p�q can be embedded

continuously� On the other hand this is to be understood in the sense that Lr�p is �as good as� F s
p�q � as

far as only the growth of the unbounded functions belonging to the spaces under consideration is concerned�

additional� smoothness features 
making a big di�erence between the spaces Lr�p and F s

p�q � for instance�
are obviously �ignored� by the growth envelope� This is not really astonishing in view of its construction� but
worth to be noticed� The parallel assertion for the B�case� i�e� 
������ together with Proposition ����� provide

E
G

�
Lr�q

�
�
�
t�

�

r � q
�
� E

G

�
Bs
p�q

�
� 
����	�

the parameters being as above� Again we note by 
������ that Bs
p�q can be embedded in Lr�q� whereas their

envelopes even coincide� We return to this phenomenon in Section ����

The embedding result 
������ can 
in the Banach space situation� also be found in �Gol��a� and �Kol	���
Moreover� Gol�dman�s result �Gol��b� Thm� ���� Cor� ���� can be disclosed as the fact that Lr�q is the
best possible space within the Lorentz scale in which Bs

p�q can be embedded continuously � coinciding with
our above interpretation of 
�������

Remark ����� Forerunners of this result � formulated in a di�erent context � are presented in �Tri		�� This is
extended and generalised in �Tri��� Sect� ���� There one also �nds a lot of remarks and references on the long
history of related studies� thus we shall only mention some of the most important names and papers brie�y �
essential contributions were achieved by Peetre �Pee���� Strichartz �Str���� Herz �Her���� as well as
in the Russian school by Brudnyi �Bru���� Gol�dman �Gol��c� Gol��b�� Lizorkin �Liz���� Kalyabin�
Lizorkin �KL���� Netrusov �Net��� Net�	�� see also the book by Ziemer �Zie�	�� More recent treatments
are� for instance� �CP	�� by Cwikel� Pustylnik� �EKP��� by Edmunds� Kerman� Pick and the surveys
�Kol	�� by Kolyada� �Tar	�� by Tartar� There are far more investigations connected in some sense with
limiting embeddings� we refer to the survey papers for detailed information�

Remark ����� RecentlyCaetano andMoura obtained parallel results in the sub�critical case when studying

spaces of generalised smoothness of type B
�s���
p�q � F

�s���
p�q � introduced by Moura in �Mou���� see our remark

after De�nition ����� In particular� ��x� � �� � j logxj�b� b � R� is admitted in this context� The result
of Caetano and Moura in �CM��� Thm� �� completely characterises the in�uence of the additional
smoothness function � by

E
G

�
B�s���
p�q

�
�
�
t�

�

r��t���� q
�

� E
G

�
F �s���
p�q

�
�

�
t�

�

r��t���� p
�

�
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where � is an admissible function� � � p ��� � � q � �� s � R with �p � s � n
p
� and � � r ��

such that s� n
p
� �n

r
� Thus with �a�x� � �� � j logxj�a� a � R� one concludes by Proposition ����� �ii	

E
G

�
B�s��a�
p�q

�
�
�
t�

�

r jlog tj
�a

� q
�
� E

G
�Lr�q �logL�a�

and
E
G

�
F �s��a�
p�q

�
�
�
t�

�

r jlog tj
�a

� p
�
� E

G
�Lr�p �logL�a� �

where the parameters are as above� This seems in some sense the counterpart of ������	 and �����
	� whereas
some more quali�ed discussion is still missing� this refers in particular to assertions like �����	 and ������	
adapted to this more general setting�

Borderline cases

We study the situation s � �p � n� �
p
� ��� now� recall that this refers to the thick lines in Figure ��

However� in this situation additional care is needed� because not all spaces in question are contained in Lloc
� �

A complete treatment of this problem As
p�q � Lloc

� can be found in �ST
��� where Sickel and Triebel

obtained in �ST
�� Thm� ������ the following result � related to the case s � �p we are interested now �

F
�p
p�q � Lloc

� if� and only if�

�
either � � p � � � � � q � � �

or � � p �� � � � q � � �
�������	

The parallel assertion for B�spaces reads as

B
�p
p�q � Lloc

� if� and only if�

�
either � � p � � � � � q � � �

or � � p � � � � � q � min�p� �� �
�������	

We �rst consider the �bottom line� of the sub�critical strip in Figure �� that is� where � � p ��� and s � ��

Proposition ����� �Har��� Prop� ����� Let � � p �� �

�i	 Assume � � q � �� Then

E
G

�
F �
p�q

�
�
�
t�

�

p � p
�
� �������	

�ii	 Assume � � q � min�p� ��� Then

E
G

�
B�
p�q

�
�

�
t�

�

p � u
B�

p�q

G

�
with q � u

B�

p�q

G
� p � �������	

In particular�

E
G

�
B�
p�p

�
�
�
t�

�

p � p
�

� � � p � ��

The assertion for the envelope functions and the upper bounds for u
As

p�q

G
are proved via embeddings As

u�q ��
A�
p�q �� Lp� where the parameters are as above� see ������	� ������	� and ������	� and application of

Theorem ����� together with Propositions ��� �iv	� ������ ������ The lower bounds for u
As

p�q

G
rely on

modi�ed extremal functions

f�x� �

�X
j��

bj �
j n
p

�
�
�
�jx

�
� �

�
�jx� x�

��
� x � Rn � ������	

which is an adapted version of �Tri

� Sect� ����� Assume x� � R
n with

��x��� � 	 �one needs �rst
moment conditions now	� Choosing the sequence b � fbjgj�N in a clever way one veri�es �������	 and

�������	� respectively� Obviously� E
G
�F �

p�q� � E
G
�Lp� � �t�

�

p � p�� � � p � �� � � q � �� and

E
G
�B�

p�p� � E
G
�Lp� � �t�

�

p � p�� � � p � �� We add a remark on the gap in �������	 at the end of this
section�

We study the line s � �p � n� �
p
� �� � where � � p � ��
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Proposition ����� �Har��� Prop� ���	
 Let � � p � � and s � n
�
�

p � �
�
�

�i� Assume � � q � �� and � � q � � if p � �� Then

E
G

�
F s
p�q

�
�
�
t��� u

F s

p�q

G

�
with p � u

F s

p�q

G
� � � ������

In particular�

E
G

�
F �

��q

�
�
�
t��� �

�
� � � q � � �

�ii� Assume � � q � �� Then

E
G

�
Bs
p�q

�
�
�
t��� u

Bs

p�q

G

�
with q � u

Bs

p�q

G
� � � �������

In particular�

E
G

�
Bs
p��

�
�
�
t��� �

�
� � � p � �� s � n

�
�

p
� �

�
�

The ideas of the corresponding proof in �Har��
 resemble those discussed above brie�y� i�e� embeddings as
well as extremal functions�

Clearly Propositions ��� and ���� show that the borderline situation� in particular� the determination of the
corresponding indices uX

G
� is rather complicated to handle and not yet solved completely �apart from some

special cases�� Even worse� a reasonable guess what the correct outcome could be� is also missing� Concerning
the �bottom line� � referring to Proposition ��� � one asks whether B�spaces with s � � show their

�usual� behaviour� i�e� u
B�

p�q

G
� q � independently of the delicate limiting situation� or if they �su�er� from this

setting and tend to behave like the F�spaces� that is u
B�

p�q

G
� p � or something in between� The situation

is even more obscure on the line s � n� �p � ��� � � p � � � here also the F�spaces keep silence about

their indices �so far�� There was a good assumption that u
F s

p�q

G
� p � simply as this happens in all other

cases we studied� on the other hand� also u
F s

p�q

G
� � was some good choice in view of the borderline situation

� F s
p�q � Lloc

� �� not to speak of the B�setting�

��� Growth envelopes in the critical case

We deal with spaces As
p�q � where s � n

p � see Figure �� We recall the limiting embeddings �������� and

�������� � Let � � p � � �with p �� for F spaces�� and � � q � �� Then

F
n�p
p�q �� L� if� and only if� � � p � � and � � q � �� ������

and
B
n�p
p�q �� L� if� and only if� � � p � � and � � q � �� ������

see �ET��� ����� �iii�� p� �
� In view of Proposition ����� �iii� it is clear that spaces given by ������ and
������� respectively� are of no further interest in our context� because the corresponding �growth� envelope
functions are bounded� We shall study the remaining cases now�

Theorem ����� �Har��� Thm� ����
� �Tri��� Thm� ����� p� ���
 Let � � p �� and � � q � ��

�i� Let � � p �� and �

p � �

p�
� � � as usual� Then

E
G

�
F
n�p
p�q

�
�
�
jlog tj

�

p� � p
�
� ������

�ii� Let � � q �� and �

q � �

q�
� � � as usual� Then

E
G

�
B
n�p
p�q

�
�
�
jlog tj

�

q� � q
�
� ������
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The proof is essentially based on ideas of H� Triebel and also relies on �ET���� we give its main ideas� One

starts with E
Fn�pp�q

G
and applies �ET��� Thm� 	�
� with � � �� that is�

�
B�

�

�Z
�

�
g��t�

j log tj

�p
dt

t

�
CA

��p

� c

���gjHn�p
p

��� �
���


for any g � H
n�p
p � Let f � F

n�p
p��� then by a result of Netrusov �Net��� Thm� ���� there is some g � H

n�p
p �

jf�x�j � g�x� a�e� in R
n �implying f� � g�� with

���gjHn�p
p

��� � c

���f jFn�p
p��

���� and hence �
���
 leads

to �
B�

�

�Z
�

�
f��t�

j log tj

�p
dt

t

�
CA
��p

�

�
B�

�

�Z
�

�
g��t�

j log tj

�p
dt

t

�
CA

��p

� c

���gjHn�p
p

��� � c�
���f jFn�p

p��

��� �
����

for all f � F
n�p
p��� By monotonicity this follows for F

n�p
p�q � � � q � �� and application of ������� results in

sup
��t� �

�

f��t�

j log tj��p�
� c

�
B�

�

�Z
�

�
f��t�

j log tj

�p
dt

t

�
CA

��p

� c�
���f jFn�p

p�q

��� �
����

for all f � F
n�p
p�q � This gives E

Fn�p
p�q

G
�t� � c jlog tj

�

p� � � � t � �
�
� Concerning the B�counterpart of �
�����

that is

sup
��t� �

�

f��t�

j log tj��q�
� c

���f jBn�p
p�q

��� �
����

for all f � B
n�p
p�q � � � p ��� � � q � �� we exploit the following embeddings

B
n�p
p�� �� bmo �� Lexp�� � � � p �� � �
����

see ������� for the de�nition of bmo � The latter embedding is covered by �BS��� ���		� p� ���� �locally�
but this is su�cient for our purpose� whereas the �rst one is veri�ed by means of embeddings ���	��� and
duality results�

Bn�p
p�� �

�
B
�n

�
�� �

p�

�

p���

�
�

��
	
F �
���


�
� �h��

�
� bmo � � � p ��� �
�����

where hp are the local Hardy spaces� see ������
 and �������� Here we use the duality result bmo � �h��
��

see �Gol��b�� and �Tri��� Thm� 	����	� p� ���� for the duality of B�spaces� This gives

sup
��t� �

�

f��t�

j log tj
� c

���f jBn�p
p��

��� �
�����

for all f � B
n�p
p��� because of �
���� and Propositions 
����� ��	�� �iv� i�e� the desired upper estimate

for E
Bn�p
p��

G
�t�� The extension to � � q � � is achieved by some �non�linear real interpolation argument

for T � f ��� f�� mapping from suitably chosen B� spaces into weighted L� spaces� note that
the sub�additivity of f�� ������� immediately gives the Lipschitz�continuity of T which allows us to apply
Tartar�s result �Tar�	� Thm� �� p� ����� We end up with �
���� when � � p � �� the remaining case

� � p � � follows by the monotonicity of B�spaces simply� The converse estimates for E
An�p
p�q

G
�t� are proved

with extremal functions similar to �
�	���� i�e�

fb�x� �

�X
j��

bj �
	
�j��x



� x � Rn � �
����	
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this construction of extremal functions goes back to �ET��� by Edmunds and Triebel� Choosing the
sequence b � fbjg

�

j��
properly� the B�result is completed� whereas the F�counterpart directly results

from embedding ���	���
 via

Bn�r
r�p �� F

n�p
p�q �������


for r � p� and Proposition �	� �iv
�

Determining the correct indices u
An�pp�q

G
needs much more e�ort� at least when upper bounds are concerned�

Clearly� ������
 gives u
Fn�p
p�q

G
� p already� leading via �������
 to u

Bn�p
p�q

G
� q� but only for p � q� In

general one has to cope with the atomic decomposition of f � B
n�p
p�q � we refer to Section ������ in particular�

Theorem ����� for details� One �nally arrives at

�
�

�Z
�

�
f��t�

j log tj

�q
dt

t

�
A

��q

� c
���f jBn�p

p�q

��� � � � q �� � ������


such that u
Bn�p
p�q

G
� q� but now for all admitted q� It remains to verify the converse inequalities for u

An�p
p�q

G
�

In B�case this is a matter of extremal functions ������	
 where the sequence b � fbjg
�

j��
has to be chosen

suitably� the F�case follows by �������
 and Proposition �	����

Remark ����� In analogy to ���	��
 and ���	��
 in Remark ��	�	 we see that

E
G

�
L��p�logL���

�
�
�
jlog tj

�

p� � p
�
� E

G

�
F
n�p
p�q

�
� �������


where � � q � � and � � p �� � cf� Proposition ����	 �iii
 and ������
� This also refers to �BW��� in case
of Sobolev spaces� Correspondingly the situation in B�case reads as

E
G

�
L��q�logL���

�
�
�
jlog tj

�

q� � q
�
� E

G

�
B
n�p
p�q

�
� �������


where � � p �� and � � q � �� This follows by Proposition ����	 �iii
 and �����
�

Remark ����� Studying spaces on a bounded domain � � R
n � say with j�j � �� ������
 and ������
 can

be rewritten as F
n�p
p�q ��� �� Lexp���p����� � � p � �� � � q � �� and B

n�p
p�q ��� �� Lexp���q�����

� � p � �� � � q � �� see De�nition ����� �ii
 with L����logL��a � Lexp�a� a � �� In view of
������
� �����	
 and our notation ������
 this can be summarised as follows �see �Har��� Cor� ��	��
� recall

Lexp�� � L�� Then F
n�p
p�q ��� �� Lexp�a��� if� and only if� a � �

p�
� and B

n�p
p�q ��� �� Lexp�a��� if�

and only if� a � �
q�
� where � � p � � �p �� for F�spaces
� � � q � �� and � � R

n with j�j � ��

Note that this is the classical result by Poho�zaev� Peetre� Trudinger� Strichartz extended to all
reasonable cases in the context of B� or F �spaces� Moreover� the history of papers devoted to critical
embeddings in the above sense is very long already� we mentioned in Remark ��	�� some of the relevant papers�
Additionally we shall refer to Strichartz �Str�	�� Trudinger �Tru���� Yudovich �Yud���� Poho�zaev
�Poh���� Hansson �Han���� Br�ezis� Wainger �BW���� Bennett� Sharpley �BS��� Ch� � and Triebel
in �Tri���� We refer to �ET��� Rem� 	��� for an extensive discussion of the history of embeddings of that
�critical� type�

Remark ����� Obviously assertions ������
 and �����	
� together with elementary embedding properties of
spaces As

p�q given in Section ��	�� imply that As
p�q �� L� in the super�critical case� see Figure �� Thus

we know that E
As
p�q

G
�t� is bounded in the super�critical case and so� by our convention� E

G
�As

p�q� �
	
�� �



where � � p �� �p �� in the F �case
� s � n

p � and � � q � ��

We excluded in the above theorem the study of B�
��q� � � q � �� whereas we clearly have by �����	
 that

B�
��q �� L� when � � q � �� On the other hand� ���	���
 implies that B�

��q � Lloc
� for � � q � �� So

it remains to consider the case � � q � ��
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Proposition ����� �Har��� Prop� ���	
 Assume � � q � �� Then there are positive constants c�� c� such

that for all small t � �

c� jlog tj
�

q� � E
B�

��q

G
�t� � c� jlog tj � �	������

Clearly the result for B�
��q � � � q � �� is not yet satisfactory and needs further eort� in compensation

for this we end this section with some complete result which is in some sense also surprising� We promised
in Remark ����� that growth envelopes for spaces on bounded domains and for the corresponding spaces on
R
n are essentially the same � apart from a few explicitly mentioned cases� Clearly� Proposition 	���� already

deals with such an exception as Lexp�a does not make sense otherwise� Even more peculiar is the following
situation when dealing with bmo � for a de�nition we refer to ��������� Starting with the situation on R

n it
can be easily checked that functions like

X

m�Zn

��x�m� jlog jx�mjj �

where ��x� is given by �	������ belong to bmo �Rn �� see �BS��� Ch� 	� Sect� �� p� ���
 for the local matter�

and �Tri��� Sect� ����
� On the other hand� these members of bmo �Rn � immediately lead to E
bmo

G
�t� ��

for all t � � �representing another example for Lemma ����� �i��� Restricting� however� the space bmo to a
bounded domain � � R

n � say� with j�j � �� then spaces bmo ���� de�ned by restriction from bmo �Rn ��
possess a much more interesting growth envelope function�

Proposition ����� �Har��� Prop� ����
� �Tri��� Sect� ����
 Let � � R
n be bounded� say� with j�j � ��

Then

E
G

�
bmo ���

�
� �jlog tj � �� � �	������

The proof easily follows from our �local� assertion �	����� together with Propositions ����� �iv�� ������� 	����
and Theorem 	���� �ii��

Let us �nally mention that there is a connection between spaces of type F �
��q and bmo � appearing �though

secretly hidden� in �	������ already� Spaces F s
p�q with p � � are excluded in our considerations usually�

however they were introduced already in �Tri��b� ��	��� p� ���
 for � � q � �� see also �Tri��� Sect� ������
p� 	�
� This de�nition was modi�ed and extended to � � q � � in �FJ��� Sect� 	
� In the critical case
s � �� p ��� one has for � � q � ��

F �
��q �� F �

��� � bmo �� Lloc
� � �	������

Conversely� Marschall proved in �Mar�	� Lemma ��
� that B
s�n�p
p�� �� F s

��q for all s � R� � � p ���
and � � q � �� in particular�

Bn�p
p�� �� F �

��q � � � p ��� � � q � � � �	������

the case q � � is already covered by �Mar��� Cor� �
� Combining Proposition 	����� Theorem 	���� �ii�� and
�	������� �	������ we arrive at

E
G

�
F �
��q

�
� �jlog tj � �� � � � q � � � �	������

� Continuity envelopes EC

The programme for this section is similar to the previous one� where now questions of growth of functions are
replaced by smoothness assertions� All spaces are de�ned on R

n unless otherwise stated�
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��� De�nition and �rst examples

Recall that C stands for the space of all bounded and uniformly continuous functions on Rn � as usual�

De�nition ����� Let X �� C be some function space on Rn with �������� X ��� Lip� and continuity

envelope function E
X

C
� � � t � �� and index uX

C
� Then

E
C

�
X
�
�
�
E
X

C
���� uX

C

�
�	�
�
�

is called continuity envelope for the function space X �

We begin with Lipschitz spaces Lipa� � � a � �� and Lip������
�� q � � � q � �� � � �

q �with � � � if

q ���� see De�nitions 
�
�� and ����
� respectively� as examples� Recall that f � C belongs to Lip������
�� q

if

���f jLip������
�� q

��� �� kf jC k�

�
B�

�

�Z
�

�
	�f� t�

t j log tj�

	q
dt

t



CA

��q

�	�
���

�with the usual modi�cation if q � �� is �nite see �������� Combining De�nitions 
�
�� for Lip
a and

�	�
��� for Lip������
�� q one can introduce spaces Lip�a����

�� q � � � a � �� � � R� � � q � �� We add this
consideration by matter of completeness�

De�nition ����� Let � � a � �� � � q � �� and � � R� The space Lip
�a����
�� q is de�ned as the set of all

f � C such that

���f jLip�a����
�� q

��� �� kf jC k�

�
B�

�

�Z
�

�
	�f� t�

ta j log tj�

	q
dt

t



CA

��q

�	�
���

�with the usual modi�cation if q ��� is �nite�

Remark ����� One can easily verify that there is a counterpart of Proposition ����� for spaces Lip�a����
�� q �

� � a � �� � � q � �� and � � R� In particular� f � Lip�a����
�� q if� and only if� f belongs to C �or L��

and there is some c � � such that Z a

�


�q
Z �

�

�

�
	�f� t�

ta��

	q
dt

t

d




� c �

Moreover� ���f jLip�a����
�� q

��� � kf jCk�

�Z a

�


�q
Z �

�

�

�
	�f� t�

ta��

	q
dt

t

d





���q

� �	�
���

In contrast to �����
��� �����
�� there is no problem now writing this as

���f jLip�a����
�� q

��� �

Z a

�


�q
��f jBa��

��q

��q d





���q

� �	�
���

as long as � � a � ��

Westerhoff dealt in �Wes�
� with spaces C�a�u� coinciding with Lip
�a��u�
�� � � estimating also entropy

numbers for related embeddings�

Proposition ����� �Har�
� Props� ���� ��
�� ��
�� ��
�� ���� ��	� ���� ����

�i� Let � � a � �� Then

E
C

�
Lipa

�
�
�
t
����a�

� �
�
� �	�
�	�
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�ii� Let � � q ��� � � �

q
�with � � � if q ���� Then

E
C

�
Lip

������
�� q

�
�
�
jlog tj

�� �

q � q
�
� �������

�iii� Let � � a � �� � � q � �� and � � R� Then

E
C

�
Lip�a����

�� q

�
�
�
t����a� jlog tj

�
� q

�
� �������

�iv� We have

E
C

�
C
�
�
�
t
��
� �

�
� �����	�

��� Continuity envelopes in the super�critical case

We 
nally deal with the super�critical case of spaces of type
As
p�q as introduced in Figure �� i�e� let � � p � � �with

p � � in the F �case�� � � q � �� and n
p
� s � n

p
� ��

Obviously ������� ������ and some elementary embedding
argument for B� and F �spaces imply that such spaces can
be embedded into C� Hence it is reasonable to study their
continuity envelope function� On the other hand� when s �
n
p
��� we may conclude that As

p�q is continuously embedded

in Lip�� so that by Proposition ����� �ii� the corresponding
continuity envelope functions are bounded and thus of no
further interest�

First we study spaces As
p�q belonging to the �super�critical

strip� �without the border�lines so far�� that is� � � s� n
p
�

�� � � p ��� see Figure 	 aside�

�

s � n
p

s � n
p
� �

�
p

s

�
�
p
� s
�

�

Figure �

Theorem ����� �Har��� Prop� �	� Thm� ���� Let � � p �� �with p �� in the F �case�� � � q �� �

� � � � � and s � n
p
� �� Then

E
C

�
Bs
p�q

�
�
�
t
������

� q
�

�������

and

E
C

�
F s
p�q

�
�
�
t
������

� p
�
� �������

We outline the main ideas of the proof� First one deals with the case p � � in �������� here one gains
from characterisation �������� with � � s � � � �� r � � and p � �� This yields the upper estimates

for E
Bs

��q

C
�t� and u

Bs

��q

C
almost immediately� the converse is done by extremal functions� Furthermore� the

elementary embedding Bs
p�q �� B�

��q implies then E
Bs

p�q

C
�t� � c t������ for small t � �� Conversely� let

fj�x� � ��j� �
�
�jx

�
� j � N� �������

where � is a smooth function like

��x� �

�
� � jxj � ��
�� jxj � jxj � ��

x � Rn �
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Then fj given by ������� is a Bs
p�q� atom �as we do not need moment conditions�	

��fj jBs
p�q

�� � �	 and

� �fj � t�

t
� �j����� � t � ��j � j � N �

Note that fj given by ������� is in some sense the substitute of construction ������� for the subcritical case

�and growth envelopes�� This leads to the desired B� result	 E
Bs

p�q

C
�t� � c t������	 � � t � �	 and by the

elementary embedding Bs
p�min�p�q� �� F s

p�q �� Bs
p�max�p�q� also to the assertion for the F 
case� Concerning

the indices u
As

p�q

C
we bene�t from the preceding argument for Bs

��q � Let s� � s � �	 s��
n
p�

� s� n
p � �	

then �������� implies Bs�
p��p �� F s

p�q �� B�
��p	 and Proposition ���� leads to the correct upper estimates

for u
As

p�q

C
� In view of elementary embeddings as above it remains to verify u

Bs

p�q

C
� q� This is achieved with

extremal functions based on a combination of the functions fj given by �������� Put

f�x� ��

�X
j��

bj �
�j� 	

�
�jx� yj

�
� x � Rn � ������

where bj � � 	 j � N� A clever choice of yj � R
n 	 j � N	 �such that the supports of 	

�
�j � �yj

�
and

	
�
�k � �yk

�
are disjoint for k �� j� and the sequence b � fbjgj�N � 
q results in kbj
vk � c kbj
qk for

any number v satisfying ������	 which reads in our setting now as

�
�

�Z
�

�
��f� t�

t�

�v
dt

t

�
A
��v

� c
��f jBs

p�q

�� � �������

Hence v � q is obvious and the proof is �nished� Note that this argument resembles the construction for
the sub
critical case given in �Tri��	 Sect� ���� and its adapted version presented in ��������

Remark ����� Parallel to Remarks ����� and ����� we mention that Proposition ���� �iii� and Theorem �����
lead to

E
C

	
B��n�p
p�q



�
	
t
������

� q



� E
C

	
Lip�����

��q



� � � p �	� � � q � 	� � � � � ��

and
E
C

	
F ��n�p
p�q



�
	
t
������

� p



� E
C

	
Lip�����

��p



� � � p �	� � � q � 	� � � � � ��

It remains to study the borderline case s � n
p � �	 referring to the thick line in Figure �� First observe that

for � � p � 	 �with p �	 for F 
spaces�	 � � q �	 and � � �

F
��n�p
p�q �� Lip

������
��� if	 and only if	 � �

�

p�
� �������

and

B
��n�p
p�q �� Lip������

��� if	 and only if	 � �
�

q�
� �������

see �ET��	 ��������	���	 p� ��	 �EH��	 Thm� ����� in particular	 with � � � we regain �������� and ��������	

F
��n�p
p�q �� Lip� if	 and only if	 � � p � � and � � q � 	� �������

and
B
��n�p
p�q �� Lip� if	 and only if	 � � p � 	 and � � q � � 	 �������

these are the �super�critical � counterparts of ������� and �������� Hence	 in view of Proposition ���� �ii� it is
clear that spaces given by ������� and �������	 respectively	 are of no further interest in our context	 because
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the corresponding envelope functions are bounded� We are concerned with the remaining cases now�

We start with some �lifting� assertion which turns out to be an essential key in the later argument� It provides
some relation between the modulus of continuity of some �su�ciently smooth� function and the non	increasing
rearrangement of its gradient� The idea is to gain from results obtained in spaces of �sub	�critical type �and
hence in terms of growth envelopes� when dealing with �super	�critical spaces �and continuity envelopes��
Roughly speaking
 we want to �lift� our �sub	�critical results by smoothness � to �super	�critical ones� This
is at least partly possible� We return to this point later in Section ����� and discuss it in more detail� Recall

�rf��x� �
�

�f
�x�

�x�� � � � � �f
�xn

�x�
�

 x � Rn 
 with

jrf�x�j �

�
nX
l��

���� �f�xl �x�
����
�
� �

�

�

nX
l��

���� �f�xl �x�
���� � �������

Proposition ����� �Har�
 Prop� �����

�i� There is some c � � such that for all t � � and all f � C��Rn �

��f� t� � c

tnZ
�

s
�

n
�� jrf j

�
�s� ds �

tZ
�

jrf j
�
��n� d� � ��������

�ii� Let � � r � �� u � �
r
� and � � 	 � � � Then there is some number c � � such that

�Z
�

�
��f� t�

t j log tju

�r
dt

t
� c

�Z
�

�
jrf j

�
�t�

j log tju

�r
dt

t
��������

�with the obvious modi�cation when r ��� for all f � C��Rn ��

�iii� Let � � r � �� � � � � �� and � � 	 � � � Then there is some number c � � such that

�Z
�

�
��f� t�

t�

�r
dt

t
� c

�Z
�

h
t
�

n
����� jrf j

�
�t�
ir dt

t
��������

�with the obvious modi�cation when r ��� for all f � C��Rn ��

We thank the idea to estimate �������� Prof� V� Kolyada� assertions �������� and �������� can then be derived
from �������� using an extended version of Hardy�s inequality obtained by Bennett and Rudnick in �BR�

Thm� �����

Remark ����� Note that Triebel obtained in �Tri�
 Prop� �����
 p� ���� assertion ��������
 too
 but based
on a di�erent estimate replacing �������� by

��f� t�

t
� c jrf j��

�
t�n��

	
� � sup

����t�

�

�

� ��f� 
� ��������

for some small 	 � � and all � � t � 	 and all f � C��Rn �
 cf� �Tri�
 Prop� �����
 p� ����� We discuss
these results in Section ����� below� The exponent �n� � �instead of n� in the �rst term on the right	hand
side of �������� prevented a result like �������� in that case
 in contrast to �������� where the log	term takes

no notice of exponents� Besides
 with the help of �������� and Theorem ����� one easily derives u
Bs

p�q

C
� q

and u
F s

p�q

C
� p
 respectively
 in Theorem ����� � simply put � � �
 s � � � n

p

 �

r
� ���

n

 and make use

of the lifting property for As
p�q	 spaces
 cf� �Tri��
 Thm� �����
 p� ���� Neves derived some counterpart to

�������� from ��������
 see �Nev�b
 Prop� ��������
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We are prepared now to give our result in the �borderline� super�critical case when s � n

p ��� Recall that we

are only interested in the cases not covered by �����	
 and ������
� respectively�

Theorem ����� Har��� Thm� ����� Prop� ������ Tri��� Thm� ����� p� ��	����� ������
� p� ����

�i
 Let � � p �� with �

p � �

p�
� �� and � � q ��� Then

E
C

�
F
��n�p
p�q

�
�
�
jlog tj

�

p� � p
�
� �������


�ii
 Let � � p � �� and � � q � � with �

q �
�

q�
� �� Then

E
C

�
B
��n�p
p�q

�
�
�
jlog tj

�

q� � q
�
� �������


We brie�y sketch the proof� Clearly� Propositions ����� �iii
 and ����� �ii
� together with ������
� ������
� give

the upper estimates E
F ��n�p
p�q

C
�t� � c j log tj

�

p� � E
B��n�pp�q

C
�t� � c� j log tj

�

q� � For the converse inequalities we
use extremal functions fb as constructed by Triebel in Tri��� ������
�������
� pp� ��������� these are in
some sense �lifted� counterparts of �������
� satisfying �in the B� case


�
� �X

j��

b
q
j

�
A
��q

�

�
�

�Z
�

�
��fb� t�

t j log tj

�q
dt

t

�
A
��q

�
���fbjB��n�p

p�q �Rn �
��� � �������


where b � fbjgj�N is a sequence of non�negative numbers� Moreover� those functions fb are atoms

in B
��n�p
p�q or F

��n�p
p�q � respectively� see Tri��� Cor� ����� p� ����� For a clever choice of the sequence

b � fbjgj�N one obtains in that way functions fJ � J � N� with
���fJ jB��n�p

p�q

��� � J��q � and

�
	
fJ � �

�J



��J
� J � ������	


This implies for any J � N� E
B��n�pp�q

C

	
��J



� J�

�
q

��fJ ���J�
��J � J

�

q� � completing the argument in the B�

case� The F �case can be handled in analogy to �������
� in particular� �������
 implies B
��n�r
r�p �� F

��n�p
p�q

for � � r � p leading to E
F ��n�pp�q

C
� jlog tj

�

p� �nally�

Concerning the indices u
A��n�pp�q

C
� in particular their upper bounds� we essentially gain from Proposition �����

and our preceding results in Section ��� now� Assume p �� �rst� recall

���f jB��n�p
p�q �Rn �

��� �
���f jBn�p

p�q �R
n �
��� �

nX
k��

���� �f

�xk

��� Bn�p
p�q �R

n �

���� � �������


and similarly for F
��n�p
p�q � see Tri	�� Thm� ����	� p� �	�� We start with the B� case� that is� � � p � ��

� � q � �� Let �rst q � �� Apply �������
 with r � q� u � � �recall our assumption q � �� that is
u � � � �

q � �

r 
� then �������
 and �������
 yield

�
�

�Z
�

�
��f� t�

t j log tj

�q
dt

t

�
A
��q

� c

�
�

�Z
�

�
jrf j

�
�t�

j log tj

�q
dt

t

�
A
��q

� c�
���f jB��n�p

p�q �Rn �
��� �������


for all f � C��B
��n�p
p�q � the rest is done by completion� The same method applies in the F �case when q ���

now using �������
 and ������
� When q ��� one has to modify the above argument slightly and work with
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a sequence of functions which converge pointwise to f and satisfy the corresponding estimates uniformly� We

deal with the case u
B�

��q

C
separately� i�e� we have to show

�
�

�Z
�

�
��f� t�

t j log tj

�q
dt

t

�
A

��q

� c
��f jB�

��q

�� � �������	

or� in other words� B�
��q �� Lip������

�� q �locally	� When q � �� then 
Har��b� Cor� ��� Rem� �� covers

this case� Assume � � q � � now� here we obtained in 
Har��b� Prop� ��� only B�
��q �� Lip������

�� q for
� � �� However� a very simple and elegant proof of �������	� for � � q � � was obtained by Bourdaud
and Lanza in 
BL��� Prop� ��� combining Marchaud�s and Hardy�s inequality� see ������	 and 
BS���
Ch� �� Lemma ��� p� ���� for the latter one� We thank this hint our colleague W� Sickel�

It remains to show the sharpness of u
B��n�p
p�q

C
� q and u

F ��n�p
p�q

C
� p� whereas it is again su�cient to deal

with the B� case only by elementary embeddings� This works exactly as in the proof of Theorem ������ now
with the extremal functions given by �������	�

Remark ����� Combining Proposition ����� �ii	 and �������	� �������	� we arrive at

E
C

�
Lip������

�� p

�
�
�
jlog tj

�
p� � p

�
� E

C

�
F
��n�p
p�q

�
� �������	

with � � p ��� � � q � �� and

E
C

�
Lip������

�� q

�
�
�
jlog tj

�
q� � q

�
� E

C

�
B
��n�p
p�q

�
� �������	

with � � p � �� � � q � �� respectively� This situation is similar to Remarks ����� and ����� when
dealing with growth envelopes� the corresponding envelopes coincide whereas the underlying spaces do not� cf�

Har��b� Cor� ��� ��� and its extension by Neves 
Nev��a�� In addition to the more or less historic references
we gave in Remarks ����� and ����� already� which are partly connected with the super�critical case� too� we
shall mention the results by Br�ezis� Wainger 
BW���� the above�mentioned by Bourdaud and Lanza

BL���� approaches based on extrapolation by Edmunds� Krbec 
EK��� Krbec� Schmei�er 
KS��a��
and recently by Neves 
Nev��a�� The borderline case was already studied by Zygmund 
Zyg��� Zyg����

Remark ����� Note that Leopold introduced in 
Leo�� spaces of type B
�s�b�
p�q � b � R� which generalise

spaces of type Bs
p�q � see De�nition ����� �i	� in terms of some additional logarithmic smoothness� we refer to

De�nition ������ For our purposes the characterisation �������	 is su�cient� see Remark ������� then

���f jB�s��b�
��q

��� � kf jCk�

�
B�

�
�Z

�

�
�r�f� t�

tsj log tjb

�q
dt

t

�
CA

��q

�� �������	

�usual modi�cation if q ��	� where s � �� b � R� � � q � �� and r � N such that r � s� Plainly� by

the de�nition of E
X

C
and Proposition ����� only spaces B

�s��b�
��q with � � s � � �and arbitrary b � R	�

or s � �� b � � are of interest in this context� When � � s � �� B
�s��b�
��q coincides with Lip�s��b�

��q � see
De�nition ������ thus Proposition ����� �iii	 covers this case� Let s � �� b � �� In view of the close relation

between spaces B
����b�
��q and Lip������

�� q � � � q � �� � � �
q � � studied in Section ����� in some detail � one

is naturally led to the study of E
C

�
B
����b�
��q

�
� So by Corollaries ������� ������ and Proposition ����� �ii	� as

well as Proposition ������ and Theorem ����� �ii	 �with p � �	 we immediately derive the following bounds

for E
B����b�
��q

C
�t� � there is some c � � and for any � � � some c� � � such that for �small	 t � ��

c� jlog tj
b� �

q�
��

� E
B����b�
��q

C
�t� � c jlog tj

b� �
q� � �������	

where � � q � �� b � �� The exact asymptotic behaviour of E
B����b�
��q

C
�t� in all cases � � q � ��

b � �� could not be obtained yet� we refer to some forthcoming research of our colleagues A� Caetano and
S�D� Moura dealing with situations described above� but in a more general setting�



���� Continuity envelopes in the critical case ��

��� Continuity envelopes in the critical case

We return to the critical case� already studied in Section ���� that is� we consider spaces A
n�p
p�q � see Figure ��

In view of 	�����
 and 	�����
 	where L� can be replaced by C 
 we deal with the remaining cases now�
not covered by Theorem ����� 	in terms of growth envelopes E

G

�

Theorem ����� �Har�� Thm� ����� Let � � p � � and � � q � ��

	i
 Assume � � p � �� Then

E
Fn�pp�q

C
� t�� � � � t � � � 	�����


and

p � u
Fn�p
p�q

C
� � � 	�����


	ii
 Assume � � q � �� Then

E
Bn�p
p�q

C
� t�� � � � t � � � 	�����


and

q � u
Bn�p
p�q

C
� � � 	�����


We outline the main ideas of the proof� Firstly� 	�����
 and 	�����
 give A
n�p
p�q �� C for the admitted

parameters� thus Proposition ����� 	iv
 immediately provides E
An�p
p�q

C
�t� � c t��� � � t � �� Conversely�

note that our construction of the functions fj in the proof of Theorem ������ that is� in 	�����
� works for
� � � � too� This yields the lower estimate in the B� case 	no moment conditions
� and � by 	������
 for

� � r � p � �� � � q � � � also in the F � case� It remains to verify u
Bn�p
p�q

C
� q� whereas u

Fn�p
p�q

C
� p

follows then by 	������
 again� Note that the extremal functions 	�����
 work also for � � �� leading to the
desired B� result�

Remark ����� We brie�y discuss the obvious gaps in 	�����
 and 	�����
� At �rst glance one is certainly

tempted to assume that u
Bn�p
p�q

C
� q� u

Fn�p
p�q

C
� p was a good choice in that situation� too � simply �as it

always happens�� However� our methods presented so far fail necessarily in this limiting case � assume we
would like to prove that �

�
�Z

�

���f� t��q
dt

t

�
A

��q

� c
���f jBn�p

p�q

��� 	�����


holds for all f � B
n�p
p�q � � � p � �� � � q � �� The �lifting argument�� however� as used in Step � of the

proof of Theorem ����� quite e�ectively� cannot be used as our setting now refers to Proposition ����� 	iii
�
but with � � � � This is probably not true in general� but at least not covered by Proposition ������ Still
tackling 	�����
 one could also try to verify

�
�

�Z
�

���f� t��
q dt

t

�
A

��q

� c kf jLpk� c

�
�

�Z
�

�
��f� t�p
tn�p

�q
dt

t

�
A

��q

� 	�����


which at least for large values of p� p � n� is an equivalent reformulation of 	�����
� cf� �Tri��� Thm� �������
p� ���� But the estimate

��f� t� � c

tZ
�

��f� s�p
sn�p

ds

s
� � � t � ��

	which can be shown similarly to �BS��� Ch� �� Cor� ����� p� ����
 does not imply 	�����
�

Quite the reverse we rather question now the suggestion u
Bn�p
p�q

C
� q � these doubts do not rely on the present

situation 	lacking of a proof� dead�ends as described above
� but on a more general point of view� Note that�
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on the one hand� we have B
n�p
p�q �� C if� and only if� � � q � �� where � � p ��� see ������	� Keeping�

on the other hand� Proposition 
���� �iv	 in mind� it was indeed rather astonishing �though� of course� not

impossible	 that the apparently small� change from B
n�p
p�� to C causes a rather huge� jump from u

B
n�p
p��

C
� �

to uC
C
��� whereas both spaces share the same continuity envelope function

E
B
n�p
p��

C
�t� � E

C

C
�t� � t�� � � � t � � �

So from that point of view an expression for u
Bn�p
p�q

C
which tends to � when q � � was very much reasonable�

too� Following that line further one needs of course better� extremal functions than involved in Step � of the
proof of Theorem 
����� One discovers� for instance� the extremal functions

fp��x� � jlog jxjj
��

�

p �log ��� log jxj��
��

��x� � Bn�p
p�p � F

n�p
p�� �

constructed in �ET�
� Thm� ������ p� ��� by Edmunds and Triebel for � � p � � and � � �
p � where

��x� is a cut�o� function supported near the origin� Plainly the functions do not serve in the above�given form

as extremal functions in our situation �B
n�p
p�p ��	 C for p � �	� but there might be a clever modi�cation

adapted for our purpose� At the moment we have to content ourselves with the less exciting� state of the art�
i�e� estimates �
����	 and �
����	 in Theorem 
�����

� An outlook � envelopes and related questions

��� The envelope functions EG and EC revisited

In this concluding part we return to some more general features of envelopes and additionally collect some
open problems� phenomena� desiderata� We do not aim at completeness of the posed questions �concerning
possible extensions of known facts� say	� and rather intend to give an outlook on future work� We study the
interplay between envelopes and lifting properties as well as envelopes and related questions of compactness�
The idea is twofold � �rstly� of course� to �nd out what potential this new tool will show in the near future
when tackling already familiar� or even new problems� secondly� we try to �nd as many interfaces� to well�
established theory as possible� The latter means� for instance� that connections with related results for entropy
and approximation numbers are very much welcome� because one of the starting points for introducing the
concept of envelopes was the study of limiting embeddings� for instance� These problems are often connected
with questions of continuity or compactness of embeddings� implying subsequent investigations of entropy
numbers as performed in Sections �� �� Another very desirable link would be the one to more abstract Banach
space theory� say� As we already explained in case of the fundamental function together with growth envelopes
and questions concerning the �geometric	 meaning of u

G
� u

C
� we are interested in further identi�cations�

in that sense� at least in special cases�

����� Further properties

We summarise some features which naturally appeared as consequences of earlier observations� but were not
needed before� All spaces are de�ned on R

n unless otherwise stated�

In Subsection ����� we recalled the notion of a fundamental function 
X of a rearrangement�invariant Banach
function space X � Some further property �in addition to the already mentioned in Subsection �����	 is its
quasi�concavity by which the following is meant � A non�negative function 
 de�ned on R� is called

quasi�concave� if 
�t� is increasing on ����� � 
�t� � � if� and only if� t � � � and ��t�
t is decreasing on

������ see �BS��� Ch� �� Def� ��
� p� 
��� Observe that every nonnegative concave function on R� � that
vanishes only at the origin� is quasi�concave� the converse� however� is not true� Any quasi�concave function

 is equivalent to its least concave majorant e
 � cf� �BS��� Ch� �� Prop� ����� p� ���� Thus Proposition �����
implies the following result�
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Corollary ����� �Har��� Cor� ���� Let X be a rearrangement�invariant Banach function space� put

�G�t� � t E
X

G
�t� � t � � � 	
�����

	i� The function �G�t� is monotonically increasing in t � ��

	ii� Assume that lim
t��

�G�t� � �� then �G�t� is equivalent to some concave function for t � ��

	iii� The growth envelope function E
X

G
�t� is equivalent to some convex function for t � ��

The question whether the rearrangement�invariance of X is really necessary or to what extent this assumption
can be weakened suggests itself� Obviously in all cases we studied in the previous sections� i�e� spaces of type

Lp�q�logL�a and As
p�q � respectively� we obtained the above�described behaviour of E

X

G
and �G whenever

X � Lloc
� was satised 	incorporating in a slight abuse of notation the case of constant functions �G in 	i��

too� then also X � L� with E
X

G
�t� � t�� and thus �G�t� � � is covered� � functions of type

E
X

G
�t� � t�� jlog tj� � t � � small�

with � � � � �� � � R� or � � � � � � �� lead to functions �G�t� clearly satisfying Corollary 
����
	with the above�mentioned extension to � � �� � � ��� On the other hand� as we did not observe a direct
application of 	an extended version of� Corollary 
���� so far we studied this question of a more general setting
than X being rearrangement�invariant not yet further�

Corollary ����� �Har��� Cor� ���� Let X �� C be a function space� put

�C�t� � t E
X

C
�t� � t � � � 	
�����

	i� The function �C�t� is monotonically increasing in t � � with lim
t��

�C�t� � ��

	ii� The function �C�t� is equivalent to some concave function for t � ��

The coincidences as well as di�erences between Corollaries 
���� and 
���� are obvious� Note that in all cases
we studied we have the counterpart of Corollary 
���� 	iii�� too� i�e� E

X

C
is 	equivalent to� some convex

function�

More important from our point of view� however� is the observation that obviously the 	di�erent� envelope

functions E
X

G
and E

X

C
show similar behaviour� we merely take it as some kind of 	delayed� justication

that the denition of the two envelope functions � arising in completely di�erent problems when measuring
smoothness or unboundedness� respectively� � led to parallel concepts� though each one of them separately
was motivated by suitable classical settings initially� In Subsection 
���� we return to this point in the sense�
that there are in fact deeper connections between both envelope functions than those already discussed�

����� Spaces on R�

In this subsection we insert a short digression to 	envelopes of� spaces on R� � ������ We pose the question
whether� say�

E
X

G
� X �

and this makes sense only in such spaces� We simplify the setting further and regard only spaces X on
� �

�
�� �

�

�
in the sequel� First we collect some immediate consequences of our results in Section ���� Recall

the denition for Lorentz and Zygmund spaces Lp�q�logL�a� Lexp�a� in Denition ����� and 	��������

Corollary ����� �Har��� Cors� ����� ���
� ����� Let all spaces be de�ned on � �
�
�� �

�

�
�

	i� Let � � p� q � � �with q �� when p ���� Then

E
Lp�q

G
� Lp�q if� and only if� q ��� 	
�����
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�ii� Let � � p ��� � � q � �� and a � R� Then

E
Lp�q�logL�a

G
� Lp�q�logL�a if� and only if� q ��� �������

�iii� Let a � �� Then

E
Lexp�a

G
� Lexp�a � �����	�

�iv� We have

E
bmo

G
� bmo � �����
�

Parts �i���iii� are covered by �Har�� Cors� ���	� ����� ����� whereas �iv� follows from Proposition 	���
� i�e�

E
bmo

G
�t� � jlog tj� t � � small� and �BS��� Ch� 	� Sect� �� p� ��
�� We obtain as a direct consequence

of Corollary ����� that there are examples of spaces X with E
X

G
� X as well as such where this is not

the case� Moreover� taking also the index uX
G
� see De�nition ������ into account� one observes the following

peculiarity � whenever

X �

������
�����

Lp�� � � � p ��

Lp�� �logL�a � � � p ��� a � R

Lexp�a � a � �

bmo

������
�����

�� E
X

G
� X� uX

G
�� � �������

we refer to Corollary ����� and Propositions 	����� 	����� 	���
� Thus the following assertion seems natural�

Proposition ����� �Har�� Props� 
�	� 
�
� Let X �� Lloc
� be some function space on � �

�
�� ��

	
with

E
X

G
� X

and E
X

G
�	 �� Then this implies uX

G
��� i�e� E

G
�X� �



E
X

G
� �

�
� and

���EX
G

X
��� � ��

The second assertion� kE
X

G

Xk � �� is obviously a direct consequence of E
X

G
� X and the de�nition

and basic properties of E
X

G
� we refer to Section ������ Besides� we have in all examples given in ������� even

equivalence� that is ���EX
G

X
��� � � � �������

This is due to the fact that all these spaces are rearrangement�invariant spaces which can be equivalently
renormed to rearrangement�invariant spaces of type M�X� � kf jM�X�k � sup

t��
f���t��X �t�� for the def�

inition of the maximal function f���t� and the fundamental function �X�t� we refer to ������	� and
�������� respectively� for Lorentz spaces of type M�X� see �BS��� Ch� �� Sect� 	� pp� 
������ In view of

Propositions ����� �i�� ����� and the fact that


E
X

G

�
��

�t� � �ME
X

G
��t� � E

X

G
�t� in all above�mentioned

examples� we immediately obtain ��������

We return to the situations studied in Sections 	��� 	�� in detail�

Corollary ����� Let all spaces be de�ned on � �
�
�� ��

	
�

�i� Let � � q � �� s � �� � � r �� and � � p �� be such that s
 �
p � 
 �

r � Then

E
Bs
p�q

G
� Bs

p�q if� and only if� q ��� �������

�ii� Let � � q � �� and � � p ��� Then

E
B��p
p�q

G
� B��p

p�q if� and only if� q ��� �������
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By Theorems ����� and ����� together with Proposition ����� it is immediately clear that only B�spaces with

q �� can satisfy E
X

G
� X as otherwise u

As
p�q

G
�� which contradicts E

X

G
� X � So it remains to verify

that in the sub	critical case t���r � Bs
p��
 s � �

p � � �

r �locally�
 and j log tj � B
��p
p��
 � � p � �


referring to the critical case� For p � � a straightforward calculation based on ������� was su�cient
 but
otherwise the atomic characterisation seems to be better adapted � we start with the sub	critical case
 i�e�
s� �

p � � �

r � Let � be some smooth cut	o� function supported near t � �
 take
 for instance
 the standard

one from ��������� Let �j�t� � ���jt�� ���j��t�
 j � N� 
 � � t � �
 build a partition of unity
 then

t�
�

r � ��t� t�
�

r �

�X

j��

��j�s�
�

p � �j�t� ��t� t
� �

r �j�s�
�

p�
� �z �

�� aj�t�

� � � t � �� ��������

where the aj�t�
 j � N� 
 are supported near
�
s � ��� �	 � s � ��j

�

 such that t�

�

r � �
j

r � ��j�s�
�

p �


t � supp aj � Hence �������� can be understood as an atomic decomposition of t�
�

r �near �
 no moment

conditions� with coe�cients �j � �
 i�e� k�j��k � �� Theorem ����� �i� then implies t�
�

r � Bs
p���

Concerning the critical case we return to our construction ��������� in particular
 with ��t� as above
 and
��t� the �one	dimensional version of the� function given by �������
 we consider

�X
j��

�
�
�j��t

�
���t� � ��������

supported near t � �� Then for small t � �


�X
j��

�
�
�j��t

�
���t� �

�j log tj�X
j��

� � j log tj �

i�e� �������� can be interpreted as an atomic decomposition for j log tj near � �no moment conditions� with

�j � � and thus k�j��k � �� Consequently j log tj � B
��p
p��
 � � p �� �locally��

Remark ����� Note that a di�erent
 but related question is that one asking for the boundedness of the
operator � � u �	 u�
 u � X��� ��� Cianchi proved in �Cia�� that this �� operator is bounded in
Bs
p�q��� ��
 where � 
 p � �
 � 
 q 
 �
 � � s � � 
 �

p � In another context this means an extension of

the P�olya 	 Szeg�o principle known for W �
p 
 Lp already� Clearly the additional supremum in the de�nition

of E
X

G
causes an essential distinction between the corresponding assertion for any u
 say
 with kujXk 
 �


and E
X

G
�

Concerning E
X

C
it obviously makes no sense to ask whether E

X

C
� X with X being a function space on

� �
�
�� ��

	

 for � apart from the not very interesting case when E

X

C
is bounded
 i�e� X 		 Lip� � we know

that E
X

C
�t��� when t � �
 such that E

X

C
� X for all X 		 C� However
 one may replace this question

by

e
X�t� �� t E

X

C
�t� � X � ��������

It is clear by Corollary ����� �i� that e
X �t� is uniformly bounded
 recall ������� and X 		 C� Looking for a

counterpart of ������� we �rst collect some examples� In a slight abuse of notation we put Lip� � C�

Corollary ����� �Har�
 Lemmata ���
 ���
 ���
 ���� Let all spaces be de�ned on � �
�
�� ��

	
�

�i� Let � 
 a 
 �� Then

e
Lipa � Lipa 
 ��������
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�ii� Let � � q ��� � � �

q �with � � � when q ���� Then

e
Lip������q�� � Lip������q�� if� and only if� q ��� ��������

�iii� Let � � a � �� � � q � �� � � R� Then

e
Lip�a����
�� q � Lip

�a����
�� q if� and only if� q ��� ������	�

So we can summarise Proposition 	���� and Corollary ����� as follows


X �

����
���

Lipa � � � a � �

Lip�a����
�� � � � � a � �� � � R

or a � �� � � �

����
���

�� e
X � X � uX

C
�� � ��������

This suggests the counterpart of Proposition ������

Proposition ����� �Har��
 Props� 	���
 	��� Let X �� C be some non�trivial function space on

� �
�
�� ��

	
with

e
X � X �

Then �unless e
X is a constant� this implies uX

C
��� i�e� E

C
�X� �



E
X

C
� �

�
� and

��eX X�� � ��

One observes that for our examples �������� it always holds
��eX X�� � �� We review our results in

Section 	��

Corollary ����� Let all spaces be de�ned on � �
�
�� ��

	
�

�i� Let � � p � �� � � q � �� � � � � �� and s � � � �
p � Then

e
Bs
p�q � Bs

p�q if� and only if� q ��� ��������

�ii� Let � � p � �� and � � q ��� Then

e
B����p
p�q � B����p

p�q if� and only if� q ��� ��������

Theorems 	���
 	��� imply that only B� spaces with q �� can satisfy e
X � X 
 see Proposition ������

So we have to show that t� � B
����p
p�� for � � � � �
 � � p � � �at least locally�
 and tj log tj � B

����p
p�� 


� � p � �� For the super�critical case we proceed parallel to the sub�critical one in Corollary ����� �i�
 where
�������� is now being replaced by

t� � ��t� t� �

�X
j��

��j���
�
p�

�
p � 	j�t� ��t� t

� �j� � � � t � �� �������

the rest is similar� Concerning �ii� we return to the extremal functions fb as constructed by Triebel in
�Tri��
 ���������������
 pp� ����� see also �	������ Put bj 	 �
 then this is essentially the integrated
version of �������


�X
j��

��j��	
�
�j��t

�
���t� � 	�z� �

zZ

��

	�u� du � �������

where 	�t�� ��t� are as above� note that we need no moment conditions� One checks that

�X
j��

��j��	
�
�j��t

�
���t� � t jlog tj � � � t �

�

�
�

and ������� can be understood as the atomic decomposition of t jlog tj �near ��� Now �	����� and the

particular choice of the sequence b � 
� imply t jlog tj � B
����p
p�� 
 � � p � ��
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Remark ������ Triebel studied a related question in �Tri��� Sect� ����� pp� 	
��	
�� asking under what

conditions there are functions f � As
p�q such that f��t� or ��f�t�

t are equivalent to the corresponding
growth or continuity envelope functions� By the same arguments as above only B� spaces with q � � are
left to consider� Triebel applies these outcomes showing that certain Green�s functions �of �id����

n

� for
the critical case� for instance� materialise the corresponding envelope functions�

��� Envelopes� lifts� and compact embeddings

We discover some links and consequences of the above topics which seem both surprising and promising� In
future� there is certainly more fruit to be reaped of our previous studies�

����� Envelopes and lifts

Recall that E
X

G
�t� is bounded when X �� L�� see Proposition 
�	�
 �iii�� whereas E

X

C
�t� is only de�ned

for X �� C� Thus it might not appear very interesting at �rst glance to study the interplay of E
X�

G
and

E
X�

C
in general � at least not when the spaces X� and X� coincide� X� � X�� We may� however� observe

some phenomena granted that X� and X� are connected in a suitable way� we shall try to interprete and
generalise this afterwards�

�

s

s � n
�
�
p � �

�

�
r

Bs�
p�q

�
p

�

�

Bs�
p�q

s � n
p

Figure ��

We consider the following situation� Let � � p � �
and � � q � �� Assume �as indicated in Figure ��� that
s� � n

p �
n
r for some r � � � r � � � and s� � � � n

p
for some � with � � � � �� We consider the case that
s� � s� � � � that is� where � � � � n

r � �Note that
the assumptions on � thus imply r � n�� Furthermore�

by Theorem ��	�� we know E
As
p�q

G
�t� � t�

�
r � whereas

Theorem �	�� yields E
As��
p�q

C
�t� � t������� Consequently

we obtain in that case

E
As��
p�q

C
�t� � t������ � �tn�

�
�
r � E

As
p�q

G
�tn� �

Likewise� for � � p � n and � � q � � Theorems ����
and ��	�� �with r � n � lead to

E
An�p
p�q

C
�t� � t�� � �tn�

�
�
r � E

An�p��
p�q

G
�tn� �

A similar behaviour can be observed when dealing with the borderline cases� B
n�p
p�q and B

��n�p
p�q � respectively�

E
B��n�p
p�q

C
�t� � jlog tj

�

q� � E
Bn�p
p�q

G
�tn� �

and a parallel result for the F �case� However� the log�function spoils the interplay of t and tn in that case�
Turning to the envelopes E

G
or E

C
� it thus appears reasonable to de�ne

E
n
G
�X� ��

�
E
X

G
�tn� � uX

G

�
�

where uX
G

is given as in De�nition 
�	���� Then Theorems ��	�� and �	��� as well as Theorems ����� and
�	�� lead to

E
n
G
�As

p�q� � E
C

�
As��
p�q

�
if

���
��

� � p ��� � � q � �� s � n
p �

n
r � and n � r ��

� � p ��� � � q � �� s � n
p � and As

p�q � F s
p�q

� � p � �� � � q � �� s � n
p � and As

p�q � Bs
p�q

���	���
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When r � n� i�e� s � n

p
� �� we have at least the corresponding result for the envelope functions�

E
As

p�q

G
�tn� � E

As��
p�q

C
�t� � �������

see Theorems 	���
 �with r � n� and ����
�

Does this re�ect a more general behaviour� that is� in what sense can this particular result be extended �

So far we only collected results �associated in the above sense� but achieved �almost� independently of each

other� The more desirable was a direct link between ��f�t�
t

and jrf j��tn� or jrf j���tn� � for� say�
f � X �� C�� We return to Proposition ������ in particular to estimate �����

��

��f� t� � c

tnZ

�

s
�
n
�� jrf j

�
�s� ds �������

for t � � and all f � C��Rn �� Plainly� this estimate plays an essential role in our subsequent study of E
X�

C

and E
X�

G
� where X� �� C and X� � Lloc

� are such that jrf j � X� for f � X� �this setting is motivated
by our above observations�� We �rst discuss the �optimality of �������� Recall that we have by ������� for
n � ��

��f� t�

t
� c jf �j

��
�t� � � � t � � � f � C��R� � �������

So one can ask whether a replacement of �����

� in the sense of �������� i�e�

��f� t�

t
� c jrf j�� �tn� � � � t � � � �����	�

was true for all f � C��Rn � and dimension n � � � Obviously� �����	� was sharper than �������� and also
implied Triebel�s result �Tri�
� Prop� 
��
�� p� 
��� mentioned in Remark ������

��f� t�

t
� c jrf j

�� �
t�n��

�
� � sup

����t�
	�

�
� ��f� 	� �������

for some small � � � and all � � t � � and all f � C��Rn �� we refer to �Har�
� Sect� ����� However�
�����	� cannot hold in general when n � �� we give some argument disproving �����	��

Assume �����	� was true for n � � � Let f �W �
n�R

n � � F �
n���R

n �� by density arguments we may furthermore
suppose that f � F �

n���R
n � � C�� �Rn �� Then by �Tri��� Thm� ������ p� 	�� jrf j � F �

n�� � Ln� leading to

jrf j
��
�	� � Cn 	�

�
n � 	 � �� and �����	� then implies

��f� t� � c t jrf j
��
�tn� � c�t �tn�

� �
n � c�

for small t � �� In other words� all f � F �
n���R

n � � C�� �Rn � �and by the usual density arguments then
all f � F �

n���R
n �� too� are �locally� bounded� This� however� is wrong � recall �	���
� with p � n � ��

cf� �ET��� ����� �iii�� p� �	�� On the other hand� one can also rely on a result of Stein in �Ste�
� stating
that if a function f on R

n satis�es rf � Ln�� locally� then f is equi�measurable with a continuous
function� Moreover� there is a remark that the result is sharp in the following sense � taking g �� Ln��
with f � jxj��n��� 	 g� then there is a positive eg� equi�measurable with jgj� such that the resulting f is
unbounded near every point� see also �Ste��� Ch� �� and �Kol��� x	� for further details� So ������� � stating
exactly that jrf j belongs to Ln�� locally � is the best possible result �in that sense� and �����	� � referring
to jrf j � Ln � cannot hold� The essential di�erence to the one�dimensional case is obvious in this setting
as L��� � L� � but Lp���R

n � is properly contained in Lp�R
n � for any p � ��

Hence for n � � we are left with the two estimates ������� and ������� �instead of �����	�� and try to compare
them� At �rst glance it seems that our estimate ������� might be slightly sharper � though both estimates in
question gave raise to the estimate �����
��� only ������� implies �����
��� The case n � � is clear � the
second term in ������� disappears and we have ������� again�



���� Envelopes� lifts� and compact embeddings ��

Lemma ����� �Har��� Lemma ���	
 Let n � �� There is some c � � such that for all � � t � � and

all f � C��Rn ��

tnZ

�

s
�

n
�� jrf j� �s� ds � c� t jrf j��

�
t�n��

�
� c� t��

�

n

��f jC�
�� � ������

Obviously the estimate for the second term on the right�hand side in ������ is very rough and can probably be
improved� Following the proof in �Har��
 one easily realizes� for instance� that the �rst term on the right�hand
side of ������ can be reduced at the expense of the latter one�

tnZ

�

s
�

n
�� jrf j

�
�s� ds � c�

�
t jrf j

��
�
tn��

�
� t���

��f jC�
��� �

this argument resembles �Tri��� Rem� ������ p� ���
� On the other hand� one veri�es that a second term for
�compensation� is necessary in general� see �Har��� Sect� ��	
�

Comparing �����	 and ������ we conclude that a combination of �����	 and ������ results in an estimate
less sharp than ������� On the other hand� due to the partly rather rough estimates in the proof of �Har���
Lemma ���	
 it is not yet clear� whether ������ or �����	 are better in general� Nevertheless� for our purpose
estimate �����	 was completely su�cient� recall Proposition ����	�

We come back to our �lifting� problem for the envelopes� Let X � Lloc
� be some function space on R

n of
regular distributions with� say� X ��� L�� Denote by Xr � X the following subspace

Xr �
�
g � Lloc

� � g� jrgj � X
�

������

with ��gjXr
�� � kgjXk�

��� jrgj jX
��� �

We assume that Xr �� C� this setting is obviously motivated by X � As
p�q � see �������� In view of

������ and ������ we study the problem under which assumptions one has

E
n

G
�X� � E

C

�
Xr

�
������

or� at least�

E
X

G
�tn� � E

Xr

C
�t� � � � t � � � �������

We have no complete answer� but a partial one�

Corollary ����� �Har��� Cor� ����
 Let the spaces X � Xr be given as above�

�i There is some c � � such that

E
X
r

C
�t� � c

�

t
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for all small t� � � t � �� Moreover� if there is some number C � � such that for all large J � N

�X
k��

	�k
E
X

G

�
	��k�J�n

�
E
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G
�	�Jn�

� C � �������

then ������� can be replaced by

E
Xr

C
�t� � c E

X

G
�tn� � ������	
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�ii� Assume there is some number c � � such that for all k � N�

kX
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�
� E
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�
��kn

�
E
Xr
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�
���k���
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� c � ��������

where � � r � uX
G

�in case of r � uX
G
� � we may admit � � r�� Then

uX
r

C
� uX

G
� ������	�

In particular� when E
Xr

C
�t� � E

X

G
�tn�� �������� can be replaced by

kX
���

����

�
� E

Xr

C

�
��k

�
E
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�
���k���

�
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�
r
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�

Clearly �������� is satis�ed for

E
X

G
��� � ��� jlog � j

�

with

��	
�


� � � � �
n � � � R �

� � � � � � � �

� � �
n � � � �� �

��������

this covers all cases in ������� apart from the limiting case when X � B
n�p��
p�q � Xr � B

n�p
p�q � � � p � n�

� � q � ��  re�ecting that �������� is only su�cient for ��������� Concerning �ii�� one observes that �
������

and �
������ are certain examples for �������� � the �rst one with E
Xr

C
�t� � E

X

G
�t� � jlog tj

u
� u � �

r �

whereas �
������ is related to the setting E
Xr

C
�t� � t������� E

X

G
�t� � t�

�

n
������ � � � � �� see �Har���

Sect� 
��� for details� In view of Theorems 	���� �with r � n� and 
���� we have to check ������
�� reading
now as the question whether

kX
���

����

�
� E

Xr

C

�
��k

�
E
Xr

C

�
���k���

�
�
�
r

�

kX
���

����
�

�k

��k���

�r
�

kX
���

������r�

converges independently of k � N� This� however� fails because of � � r� So condition ������
� re�ects the
additional problems appearing on the critical line exactly�

Inequalities converse to �������� and ������	� are missing so far� further studies in the sense of �JMP��� are
necessary� and  in view of our results �������� �������  also promising�

����� Envelopes and compactness

Finally we brie�y discuss questions related to compactness �of certain embeddings�� We already mentioned
that  turning to spaces on bounded domains de�ned by restriction  most of our results for �growth or
continuity� envelopes can be transferred immediately� Taking this for granted at the moment� it makes sense
to study the following problem � Consider an embedding between two function spaces de�ned on a bounded
domain� and ask whether there are consequences concerning its compactness �note that continuity is assumed�
by means of their envelopes�
Let Xi � Lloc

� or Xi 	� C� i � �� �� respectively� and denote by

q
�X��X��
G

�t� � qG�t� ��
E
X�

G
�t�

E
X�

G
�t�

� q
�X��X��
C

�t� � qC�t� ��
E
X�

G
�t�

E
X�

G
�t�

� � � t � 
 � ��������
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We may assume that � � � is chosen su�ciently small� say� � � �G� �X��� given by �����	
� and � � �C� �X���
according to ���	�	
� Now Propositions ����� �iv
 and ��	�	 �iii
 imply that there cannot be a continuous
embedding X� �� X� at all whenever

sup
��t��

qG�t� � � � or sup
��t��

qC�t� � � � �������


So for a continuous embedding �not to speak of compactness so far
 it is at least necessary that qG�t�
or qC�t� are bounded� Moreover� granted the embedding X� �� X� was continuous� the boundedness of
qG�t�� qC�t� is not su�cient for its compactness  Triebel proved in �Tri��� ����� pp� �������� that� roughly
speaking� some embedding cannot be compact when the envelopes of source and target spaces coincide� i�e�
qG�t� � � or qC�t� � � � Consequently the corresponding embedding

id � X��U� �� X��U�

can only be compact when
lim
t��

qG�t� � � � or lim
t��

qC�t� � � �������


�if the corresponding limits exist
� We return to this point after some digression linking entropy �and approx�
imation
 numbers and �continuity
 envelopes more directly� This approach relies on a result of Carl and
Stephani �CS��� Thm� ������ p� ���� estimating approximation numbers in terms of moduli of continuity�
As we restricted ourselves in this report to the study of entropy numbers� we formulate the result below in this
adapted setting� Moreover� we consider a simple example only and compare the outcome with already known
results on entropy numbers�

We consider the following situation� Let U be the unit ball in R
n � denote by id�X � id�X the natural

embedding operators

id�X � X�U� �� C�U� � id�X � X�U� �� B��
����U�

where the spaces X�U� are de�ned by restriction from their R
n� counterparts� We assume that the

embeddings exist� in particular� we are mainly interested in the cases

X�U� �

����
���

As
p�q�U� � n

p
� � � s � n

p
� � � p ��� � � q ��

or s � n
p
� �� � � p ��� � � q � �

Lip�������U� � � � �

�������


concerning id�X � and

X�U� �

�������
������

As
p�q�U� � n

p
� s � n

p
� � � s � �� � � p � �� � � q � �

or s � n
p
� � � p ��� � � q � �

Lp�logL�a�U� � n � p ��� a � R

or p � n� a � � or p ��� a � �

�������


in connection with id�X �

Then compactness of id�X is guaranteed for spaces of type �������
  cf� �ET��� ���������
� p� ���� or ���	�	

for the �rst assertion� and Corollary 	����� �i
 in connection with ���	��
 for the second one� Likewise ���	�	

and ���	��
 cover the compactness of id�X in the �rst line of �������
� whereas it follows for the second one
from ������
 and another application of ���	�	
�

Corollary ����� Let X � Lloc
� be some Banach�space de�ned on the unit ball U in R

n � Let f � N � R

be a positive and increasing function satisfying

f
�
�k
�
� c f

�
�k��

�
������	


for some c � � and all k � N�
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�i� Assume X �� C� Then there is some C � � such that for all m � N �

sup
��k�m

f�k� ek
�
id�X � X�U� �� C�U�

�
� C sup

��k�m

f�k� k�
�

n E
X

C

�
k�

�

n

�
� ��������

�ii� Assume X ��� L�� but with X �� B
��

��� and Xr �� C� Let E
X

G
satisfy �����	�� and assume

that there is a bounded �linear� lift operator L mapping X�U� into Xr�U� such that L�� maps
C�U� into B������U�� Then

sup
��k�m

f�k� ek
�
id�X � X�U� �� B������U�

�
� C sup

��k�m

f�k� k�
�

n E
X

G

�
k��

�
� ������
�

Part �i� is an immediate consequence of �CS��� Thm� 
��	� p� 	��� and the de�nition of E
X

C
�leading

directly to �Har�	� Cor� �	
� formulated for approximation numbers� and a general relation between entropy
and approximation numbers� cf� �Car�	� p� ���� and �CS��� p� �� for the Banach case� and �ET�� Thm�
	����� Rem� �� pp� 	
�	�� for its extension as given above� The technicality dealing with U �in the original
formulation in �CS��� Thm� 
��	� p� 	���� or U as above can be surmounted by extension procedures and
further natural embeddings� Similarly one could also use �CS��� �
���	�� Thm� 
���	� p� 	�
� leading to the
same results in our cases� Concerning �ii� we stress lifting arguments� Corollary ����� �i� and ��������� Having
a bounded lift L � X�U� �� Xr�U� with L�� � B�

����U� �� B������U�� then the decomposition

id�X � L�� �
�
C�U� �� B�

����U�
�
� id�Xr � L

together with the multiplicativity of entropy numbers� �	���
� and �������� yield

sup
��k�m

f�k� ek
�
id�X

�
� C sup

��k�m

f�k� k�
�

n E
Xr

C

�
k�

�

n

�
�

whereas the last step to ������
� results from Corollary ����� �i��

Remark ����� In fact� Corollary ����� is rather an approximation number result �in its original intention��
the transfer to entropy numbers causes the somewhat clumsy formulation� the spoilt elegance is due to our
restriction on entropy numbers �instead of approximation numbers� from the very beginning of this report�
The advantage of this procedure� however� lies in the possible comparisons of our results presented in both
parts of this report � at least as far as entropy numbers are concerned� This was not possible to the same
extent when dealing with approximation numbers exclusively�

Assume now that E
X

C
�t� � t��j log tj� with � � �� � � R� or � � �� � � �� recall E

C

C
�t� � t�� by

��	���� Thus by �������� we have to consider the cases � � �� � � R� or � � �� � � � only such that
�������� eventually leads to

ek�id
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���
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n �loghki�
�

� � � � � � � � � R
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�

n �loghki�
�

� � � � � � � �

�loghki�
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� � � � � � � �

�������

Dealing with �ii� one �rstly observes that Ln�U� �� B
��

����U� continuously� and E
Ln

G
�t� � t�

�

n � see
�
�	���� Moreover� all spaces X�U� compactly embedded into Ln�U� are then compactly embedded

in B
��

����U�� too� Thus in view of �������� and �����	�� it makes at least sense to regard the following

consequences of ������
� when E
X

G
�t� � t��j log tj� �

ek�id
�
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�� �loghki�
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Similarly one could argue that the right�hand side of �������	 with f � � cannot be 
nite otherwise�

We return to our examples �������	� �������	 and compare it with known results� We start with X�U� �
Bs
p�q�U�� where s � n

p
� � � p � �� � � q � �� �Strictly speaking� we had to restrict ourselves to p� q � �

to meet exactly the Banach space assumption in the above corollary� however� as only estimates from above
are concerned and the corresponding spaces with � � p� q � � can be embedded in suitable Banach spaces�
the multiplicativity of entropy numbers �����	 covers all above cases�	 In view of B�

��� �� C �� B�
����

see ������	� and ����	 we have
ek�id

�
B� � k�

s

n �������	

for all � � p � �� s � n
p
� � � q � �� On the other hand� �������	 with � � � � �s � n

p
� and

Theorems ������ ����� lead to

ek
�
id�B

�
� c

��
�

k�
s

n
� �

p � � � s� n
p
� �� � � q � �

k�
s

n
� �

p �loghki�
�

q� � s � n
p
� �� � � q � �

�������	

We brie�y compare �������	 and �������	� One realizes that for � � s � n
p
� � �i�e� in the �super�critical

strip�	 we are led to the correct upper estimates for ek
�
id�B

�
when p � �� whereas otherwise � on the

�super�critical �border��line� s � n
p
� � � our method provides a less sharp upper bound only� The reasons�

however� are obvious � 
rstly� our result Corollary ���� is originally a result for approximation numbers �Har���
Cor� ������ the transfer above gives usually satisfactory results in special cases only� In particular� in the
super� or subcritical strips� respectively� we have the same envelopes for spaces with the same di�erential
dimension �� this corresponds exactly to the asymptotic behaviour of approximation numbers �unlike entropy
numbers	� On the other hand� as long as we are not in limiting situations �as it is the case with id�X and
X given by �������	� i�e� when � � �	� then the q� index plays no role for the entropy numbers of the
corresponding embeddings� however the continuity envelopes re�ect this tricky �almost� Lipschitzian continuity
of functions f � Bs

p�q with s � n
p
� �� � � q � �� Moreover� one could obviously complement �������	

by ek
�
id�X

�
� c k�

�

n whenever s � n
p
� � and � � q � �� or s � n

p
� �� � � q � �� Clearly this is

worse than �������	 as our continuity envelope functions are �made� for � � s� n
p
� � only� it is not at all

surprising that we lose interesting information otherwise�

We study the second case in �������	� Let X�U� � Lip�������U�� � � �� Then Proposition ����� �ii	 and
�������	 yield

ek
�
id�Lip

�
� c k�

�

n �loghki�
�

�

this coincides with Corollary ����� �i	 for that case� i�e� ������	 with s � � �recall B�
��� �� C �� B�

��� 	�

Summarising these two examples� the rather astonishing observation from our point of view is the sharpness
of the results in embedding situations �well�adapted� to the context we studied with our envelopes � note that
we combined a very general result of Carl and Stephani �CS��� Thm� ������ p� ���� with our envelope
results� which grew up in absence of any compactness criteria� But at least in the above�described setting
they meet exactly as they should �

We come to �ii	 and our settings for X described in �������	� When X � Bs
p�q �

n
p
� � � s � n

p
� s � ��

� � p� q � �� or s � n
p
� � � p ��� � � q ��� then again by ����	

ek�id
�
B� � k�

s��

n ������	

in all admitted cases� The counterpart of �������	 is given by �������	 with � � �
r
� �

p
� s

n
and Theorems ������

���� such that �������	 implies

ek
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id�B
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p
� � � s � n

p
� s � �� � � p � �� � � q ��
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n
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p �loghki�

�

q� � s � n
p
� � � p ��� � � q � �

������	
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Note that the existence of the lift operator L can be seen by applying usual restriction�extension procedures
and the lift operator I� in R

n given by ��������	 which maps Bs
p�q isomorphically onto Bs��

p�q for all
admitted parameters� Alternatively one can also use regular elliptic di
erential operators adapted to U � see
�Tri�a	 Thm� �����	 p� ���� for the case � � p ��	 � � q � �	 and �Tri��	 Thm� �����	 p� ���� for the
extensions to � � p� q � �	 which are based on more recent techniques of Fourier multipliers� The discussion
of ������� and ������� copies the one related to ������� and �������� it is thus omitted� Finally	 we come
to X � Lp�logL�a as given in �������� The existence of a bounded linear lift is covered by �ET��	 Thm�
�����	 p� ��	 at least for n � p � �� Propositions ����� �ii� and ����� combined with ������ for � � �

p
	

� � �a	 and ������� provide

ek�id
�
p�a� � c

����
���

k�
�

n
� �

p �loghki�
�a

� n � p �� � a � R

k�
�

n �loghki�
�a

� p �� � a � �

�loghki�
�a

� p � n � a � �

�������

We brie�y compare it with known results� Clearly for n � p � � and well�known embeddings like �������	
i�e� Lp���U� �� Lp�logL�a�U� �� Lp���U�	 we conclude in this non�limiting situation from ������� for all
a � R that

ek�id
�
p�a� � k�

�

n �

which is obviously better than �������� Let p � n	 then by ��������

ek
�
id � Ln �logL�a �U�� H�sr �U�

�
� k�min�a� s

n
� � k � N� �������

assuming that n � p � r � �	 s � � with �
r
� ��s

n
	 and a �� s

n
	 a � �� Using the multiplicativity of

entropy numbers as well as the embeddings H�sr � F�sr�� �� B�sr�� �� B��
��� 	 see ��������	 �������	 �������	

this leads to

ek�id
�
n�a� � cr k

�min�a� �
n
�

�

r
�

for any number r	 n � r ��	 and a �� �
n
� �

r
� Choosing r suitably	 this can be reformulated into

ek�id
�
n�a� �

��
�

c� k
�

�

n
�� � a � �

n

c k�a � � � a � �
n

for any small � � �� Though no �nal result is achieved so far it is rather unlikely that the last line of
������� gives the correct upper bound	 as �for su�ciently large a	 say	 a � �

n
� one would rather guess a

behaviour like ek�id
�
n�a� � c k�

�

n �with some additional term depending on a possibly� in view of ��������
A similar argument held for the case p � � where one has to care for the required linear lift �to apply
Corollary ���� �ii�� additionally� We do not pursue this point further at the moment�

By the arguments stressed above it appears that the problem to determine ek�id
X
� � in Corollary ���� �ii�

might not be well�adapted to our knowledge on growth envelopes which we want to apply� Though the target
space B��

����U� cannot be avoided by our lifting procedure and the intended application of �i� of Corol�
lary ���� we do not bene�t enough from the continuous embedding Ln�U� �� B��

����U� � from the point
of entropy numbers� In other words	 the target space B��

����U� might be �too far away� from the �sub��
critical strip where the �spaces having� growth envelopes live� This does not a
ect the approximation num�
bers very much as they show the same asymptotic behaviour along �compact embeddings of� spaces having
the same di
erential dimension �� we already mentioned this fact above� So for approximation numbers it
does not matter whether the target space is Ln�U�	 B��

����U�	 or something in between	 i�e� As
p�q with

� � s � �
p
� � �

n
�as long as one sticks with p at the same side of � compared with the source space	

but for n � � and As
p�q between Ln�U� and B��

����U� this is satis�ed�� in contrast to that	 entropy

numbers distinguish between Ln�U�	 B��
����U�	 and some intermediate As

p�q with s� �
p
� � �

n
as target

spaces essentially	 as they go with the di
erence in smoothness between source and target space asymptotically�
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Remark ����� We already mentioned that the natural approach to �������� relies on approximation numbers
instead of entropy numbers	 here the results are even more convincing� Moreover
 our results on envelopes
can thus be applied to obtain related �upper� estimates for approximation numbers of compact embeddings
in a rather elegant way� This works also in cases not studied separately before
 say


ak

�
id � Lp�logL�a�U�� B

��

����U�
�
�

with n � p ��
 a � R� A further study of related questions will be carried out in the near future� In that
sense the di�culty mentioned in Remark ����� �that we do not have approximation number results in all cases
we would like to compare� can immediately be turned into its contrary  it o�ers some interesting cases to
apply our envelope results very e�ectively�

Finally we return to Corollary ����� from a more abstract point of view	 i�e� we have a closer look on the
structure of the right�hand sides of �������� and ��������� Note that Proposition ����� �iv� together with the

de�nition of q
�X��X��
C

reveals that the entropy numbers of id�X � X�U� �� C�U� are estimated at the

expense of q
�X�C�
C

�t�
 i�e�

sup
��k�m

f�k� ek
�
id�X � X�U� �� C�U�

�
� C sup
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�
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�
�

The counterpart for Corollary ����� �ii� is given by

sup
��k�m

f�k� ek

�
id�X � X�U� �� B

��

����U�
�
� C sup

��k�m
f�k� q

�X�Ln�
G

�
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�

where Ln may be replaced by any space A�
n�q
 � � q � �
 as long as A�

n�q � Lloc
� � So it appears

reasonable to ask in what sense this can be generalised for embeddings id � X��U� �� X��U�� This study
promises to be interesting in future�
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