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Summary

The topic of this work comes from the practical gripper system, whose simplified essential

part is composed of two elastic clamped-free circular rods. The motion of this system

originates in the deformations of the elastic circular rods under the force load acting at the

free end.

The elastic circular arcs can be of any form, from straight line to slitted entire ring and

their deformations can be arbitrarily large.

After the mathematical model’s being built, which finally resulted in a boundary value

problem for a pendulum equation with three parameters representing the acting force and

the geometric character of the undeformed elastic circular arc, the study was focused on

the investigation of multiplicity and stability of the solutions of the pendulum equation

and the corresponding configurations of the deformed arcs. In the study of the multiplicity,

a powerful method, namely the manifold method, was developed, based on the discussion

of the phase curves of the pendulum equation. Primarily, the manifold method yields

qualitative insight to bifurcation. Quantitative results then by combination with numerics.

Combining this manifold method with numerical calculations sketched in Section 3.1, the

bifurcation diagrams of the pendulum equation were obtained for various possibilities of

the parameters. The bifurcation indicated clearly the multiplicity and the change tendency

of the solutions of pendulum equation and the configurations of deformed arcs. Using the

manifold method and bifurcation diagrams the phenomenon of bifurcation was also inves-

tigated, for our model the turning point, bifurcation point of pitchfork and X-type and

hysteresis were encountered and therefore were given a special attention. The theoretical

study on the phase curves of the half ring was carried out and the result showed an exact

coincidence with the result obtained with manifold method. For the stability study of the

solutions, especially the non-trivial solutions, of the pendulum equation, a new concept

about stability, namely ”P-stability”, which was based on the embedding of the pendulum

equation into a parabolic partial differential equation and led to an eigenvalue problem,

was defined. The stability study could be carried out by means of connecting the partial

differential equation with the bifurcation function obtained by manifold method or other

ways, such as Liapunov and Schmidt reduction. By turning the researches back to the

original practical problem, some characters of elastic circular arcs used as spring and grip-

per element were given out, in particular the load-displacement character (spring behavior)

was studied, exploiting this, the grasping forces at given opening width and friction coef-

ficient was found for a gripper that consists of two such arcs in symmetric configuration.
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The methods introduced in this work, especially manifold method and P-stability, will be

potentially useful in the bifurcation and stability study of ordinary differential equations.
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Über große Deformationen

elastischer Kreisbögen
-Bifurkation, Stabilität und Anwendung als Feder und

Greiferelement

Zusammenfassung
Das Thema dieser Arbeit kommt von einem praktischen Greifersystem, dessen vereinfachter

wesentlicher Teil aus zwei eingespannt-freien elastischen kreisförmigen Stäben besteht.

Die Bewegung dieses Systems wird durch die Deformationen der elastischen kreisförmigen

Stäbe unter der am freien Ende angreifenden Kraft erzeugt. Die Bögen können von jeder

möglichen Form sein, von der Geraden bis zum gesamten geschlitzten Ring, und ihre De-

formationen können beliebig groß sein.

Nach Aufstellung eines mathematischen Modells in Form eines Randwertproblems mit drei

Parametern (Kraft, Bogengeometrie) für eine Pendelgleichung wurden Vielfachheit und

Stabilität der Lösungen der Pendelgleichung und der entsprechenden Stabkonfigurationen

untersucht. Dazu wurde eine leistungsfähige Methode, die ”Mannigfaltigkeitsmethode”, en-

twickelt, die auf der Diskussion der Phasenkurven der Pendelgleichung basiert. Mit dieser

Methode, gekoppelt mit numerischen Rechnungen, wurden die Bifurkationsdiagramme der

Pendelgleichung für verschiedene Kombinationen der Parameter erhalten. Die Bifurka-

tionsdiagramme zeigten Vielfachheit und die Änderungstendenz der Lösungen der Pendel-

gleichung und der Konfigurationen der verformten Bögen an. Die Bifurkationsdiagramme

zeigen für unser Modell turningpoint-, pitchfork- und X-Bifurkationen sowie Hysteresis. Die

Kraftparameterebene wurde nach der Zahl der Lösungen in Gebiete unterteilt. Die the-

oretische Untersuchung des Halbringes mittels elliptischer Integrale wurde durchgeführt,

und das Resultat zeigt eine genaue Übereinstimmung mit den Ergebnissen der Manni-

faltigkeitsmethode. Für die Stabilitätsuntersuchung versagen klassische Methoden, da das

Randwertproblem für die Pendelgleichung keine trivialen Lösungen besitzt. Deshalb wurde

die Pendelgleichung in eine parabolische partielle Differentialgleichung eingebettet, die Lia-

punovstabilität der stationären Lösungen definiert die ”P-Stabilität” der Konfiguration des

elastischen Stabes. Stabilitätsaussagen werden mit Hilfe der Methode der ersten Näherung

und unter Benutzung der Bifurkationsfunktion gewonnen. Zum ursprünglichen praktis-
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chen Problem ”Feder und Greifer” wurden als Ergebnisse Federcharakteristiken, insbeson-

dere Kraft-Verschiebungs-Kennlinien für kreisbogenförmige Federn gefunden. Für Greifer,

die aus zwei symmetrisch angeordneten elastischen Kreisbögen bestehen, wurden Zusam-

menhänge von Öffnungsweite, Haftreibungskoeffizient und Haltekraft gefunden.

Die Methoden, die in dieser Arbeit eingeführt werden, besonders die Mannifaltigkeitsmeth-

ode und P-Stabilität, können für die Untersuchung von Bifurkation und Stabilität bei

allgemeinen gewöhnlichen Differentialgleichungen nützlich sein.



Chapter 1

Introduction

In mechanical and civil engineering and many other areas one often meets some problems

related to grasping devices and spring systems, the simplification of the essential parts of

which has something to do with the deformation of elastic rods [77], [85], [99], for instance,

the manipulator of a robot, the front limb of a crab and the grasping part of a crane .

The rod theory is probably one of the most attractive and active parts of the elasticity

researches [25], [50], [56], [59], [60]. It has been always drawing interests of the scientists

who work in the fields of mathematics, mechanics, engineering, material science, etc. Eu-

ler, Saalschuetz and Born represented their earlier work in [64], [11] more then 100 years

ago. Euler discussed the deformation of the elastic straight rod and stability of disturbed

equilibrium in about the year of 1744, Born represented the variation method for stability

studies of the elastic rods in his dissertation. These early researches laid the foundation

of study of elastic rods and are still of importance and used in the research of this area.

In [7] and [82], one can find brief summaries of some earlier and recent results of stability

studies of straight elastic rods and general introduction to the research methods, namely

adjacent method, energy method and dynamical method. There are also plenty of other

literature which partly or totally deals with the researches in this area [1], [6], [5],[8], [13],

[22], [42], [52], [74], [88],[89], [93], [94], [95].

Concerning the object, the researches on the theory of elastic rods consist of two parts:

the three-dimensional rod theory and one-dimensional rod theory. In the three-dimensional

rod theory the rod is treated as an elastic body, so its spatial shape and physical features

play an important role in the study. In one-dimensional rod theory, the elastic rod is con-

sidered as a curve along the center axis of it with or without mass. Of course sometimes

we can not separate these two parts totally, because the study of the partial differential

equations which describe the deformation of a three-dimensional rod is frequently turned

to an ordinary differential system. So these two parts of theories are both of importance

1
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in the theoretical study and in practical applications.

From the view of mathematics, the mathematical model used to describe the practical

problem is normally parameterized by several parameters governing the practical problem,

e.g., bifurcation parameters, which could be acting force in mechanical system, tempera-

ture in physical system, density of solutions in chemical system and so on. For some values

of them the uniqueness of the solutions could be invalid, that is, multiplicity phenomenon

arises [16], [48], [70], [81], [87], [91]. This situation brings out two research directions: bifur-

cation discussion and stability investigation. The bifurcation theory deals with a common

phenomenon in nature and many scientific and technological fields, this is sometimes con-

nected with the concept of catastrophe [3]. As the qualitative structure may undergo an

abrupt change at bifurcation points, so bifurcation theory deals with the critical values

of parameters, the multiplicity of the solutions and classification of the configurations.

About this theme some methods are developed both from mathematical discussion and

engineering consideration. Jepson and Spence in their work [40], [41] studied the nonlinear

problems of the form: f(x, λ, α) = 0, where x ∈ IR is the state variable, λ ∈ IR is a bifur-

cation parameter and α ∈ IR represents a control parameter, f is a scalar function. They

used singularity theory and hierarchy of singularities to develop a numerical approach such

that they can calculate part of the α-parameter region in which the problem has equivalent

bifurcation diagrams (or the discussed systems are qualitatively similar). Seydel did also

some important work in the bifurcation discussion, he investigated the equilibrium of an

equation in his series of papers [67], [68], [69]. He introduced the concept of extended sys-

tem, that is, combining the original equation, the necessary condition for bifurcation and

boundary conditions together to form a new system with more equations and new bound-

ary conditions. He also defined a test function. In numeric calculation of the bifurcation

point, the value obtained is normally an approximation value of bifurcation, he defined

a function, namely test function, with which one can determine in certain circumstances

whether the value obtained is a bifurcation value or not [90]. For boundary value problems

(shorted as BVP)

y′′(t) = f(t, y, λ), r(y(a), y(b)) = 0,

here a ≤ t ≤ b, λ ∈ IR, y, f, r are n-vectors. f, r are sufficiently smooth, by choosing two

suitable values 1 ≤ k ≤ n and δ, two distinct solutions y(t, λ), z(t, λ) of the BVP can be

solved simultaneously from a new system

Y ′ :=









y

λ

z









′

= F (t, Y ) :=









f(t, y, λ)

0

f(t, y + d, λ)− f(t, y, λ)
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R(Y (a), Y (b)) =









r(y(a), y(b))

r(y(a) + d(a), y(b) + d(b))

dk(a)− δ









= 0

with d = z−y. His another approach of handling the boundary value problem is: choosing

a suitable k and yk(a), let yk(a, λ) = η and solving

[

y

λ

]′

=

[

f(t, y, λ)

0

]

,

[

r(y(a), y(b))

yk(a)− η

]

= 0.

Then two distinct solutions of BVP correspond to different values of η. For these two

methods k could be chosen as

k = min
1≤j≤n

{j|yj(a) not fixed by an initial condition} .

Smoller and Wassermann [72] studied the solution of u′′+f(u) = 0,−L < x < L, they used

a time-map method [66] to discuss the special case for f(u) = (a−u)(u−b)(u−c), a < b < c

and u(L) = u(−L) = 0 as well as u′(L) = u′(−L) = 0, the result they obtained is that the

BVPs have at most three solutions for each L. Pönisch [61] and Ramachandra [63] did also

some work on the computation of turning points. Of course the mentioned work is only a

small part of the work done in bifurcation calculations.

In elasticity theory stability study is also a very important theme, because the phenomenon

of loss of stability could occur in almost each area of science and technology [86], and some-

times it may bring some trouble or damage to the system, so many scientists manage to

find more useful and efficient methods to detect or control a system in order that it main-

tains in a state of stability. Most of the available methods for stability study apply to the

trivial equilibria, for non-trivial equilibria there is still a lot of work to do.

As we know the work done on elastic rod (one dimension) mainly dealt with the defor-

mation of straight elastic rods or elastic rods with small imperfection(the curvature is

relatively small and the both ends of them are usually not free or sometimes the symmetry

of a descriptive system is needed )(see the literature cited before), so some well-known

methods, for instance, approximate linearization, small perturbation, Liapunov-Schmidt

reduction [6] (see Appendix 1) and time-map could be used. In [44], [77], [78] the authors

presented their work on circular elastic rings and their application in micro-technology, in

the works some transversing time expressions Ti(β, k
2) are defined according to the differ-

ent types of segments of the phase curves and treated numerically. In our work we mainly

investigate the mechanical motion originated by deformations of circular elastic arcs with

acting force on their free ends, the arcs can be of any form, from straight line to ring. After
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a suitable transformation the mathematical model results in a boundary value problem for

a pendulum equation. The results include mathematical modelling, bifurcation investi-

gation through phase plane discussion and numerical calculation, stability of equilibrium

and total system, deformed configuration and some useful characteristics of elastic arcs as

spring and gripper elements. The methods introduced in this paper for bifurcation and

stability study should be potentially useful in the study related to boundary value problem

of differential equations.

We organized our work in the following parts: The first part is a brief introduction to the

work, including the background and former related work and results. In the second part we

put forward the practical problem originated in mechanical engineering and abstract the

mathematical model by means of the balance equations of forces and moments at the cross

section of the rod, after a suitable transformation the model results in a boundary value

problem for a pendulum type equation with three parameters. The difficulty of solving this

BVP is that some parameters enter the boundary conditions, and the non-uniqueness of

the solutions. By turning BVP into an initial value problem we introduce a new unknown

parameter indicating the initial rate of change of the angular formed by the tangent of

deformed rod and the horizontal axis. As it is difficult and sometimes impossible to obtain

the exact solution for the general equation, we try in part 3 to use numerical method. Ex-

cept the frequently used method we introduce a very powerful method, namely a “manifold

method”, which is based on the phase curve consideration of BVP of pendulum equation.

In the following part 4, we use this method to get the effect of the parameters on the

multiplicity of the solutions and show the result by means of bifurcation diagrams. We

also give a special consideration to the bifurcation behavior. In order to compare the re-

sults obtained by the manifold method with the direct theoretical discussion we take some

special cases for example. In section 5 we study the stability of the solutions by means

of partial differential equations of parabolic type, we pay attention also to the structural

stability of the system. In section 6, we turn back from mathematical considerations to the

original practical problem, we get some typical characteristics of the circular elastic arcs as

spring and gripper elements, in which engineers are interested. In our study of bifurcation

and stability we try to give a general explanation of our methods in order to make them

useful for general BVP of ordinary differential equations.



Chapter 2

Mathematical modelling

The mechanical or biological structure of practical problems mentioned in the introduction

is usually very complex. For simplicity and without loss of generality, we investigate mainly

the essential part of the device shown in figure 2.1.

0

1

2

1

2

α

R

R

F

F

G2h
γ

Y

(X(s),Y(s))
1(X , Y1)

0

θ
α

γ

α
P

P2

1

P

P

|P|= P

X

s

(a) (b)

Figure 2.1: (a): The grasping device of two circular elastic arcs. (b): The simplified

part of figure (a), the dash-dotted line represents the undeformed arc.
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Figure 2.2: Samples of the undeformed arcs (note: the aspect ratio of the figure is

not 1).

In figure 2.1(a) R1 and R2, whose undeformed shapes are circular arcs, whose left and

right ends coincide, are deformed elastic inextensible circular arcs as gripper elements,

clamped at their left ends 0, grasping a body of weight G (acting horizontally), F1 and

F2 are forces acting on the device, which make R1, R2 open. h is the half opening of the

gripper. By symmetry of the device, we need only to investigate half of it as shown in

figure 2.1(b). Here s ∈ [0, L] is the arc length and s = 0 at the left end, while s = L at

the right end. The planar coordinate system takes the left end of the arc as its origin.

γ ∈ [0, π] is the angle made by the tangent of the undeformed arc at its left end and the

x-axis, so the undeformed elastic arc could be of any form, from straight line segment to a

total circular ring (see figure 2.2). θ is the direction angle of the tangent of the rod at any

point. (X1, Y1) is the coordinate of the free right end of the arc. P is the acting force with

α as its direction angle, its magnitude is denoted by P . Based on the assumption that the

arc is inextensible and undergoes pure bending, we can describe the practical problem in
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the following mathematical model, according to mechanical laws [57], [76], [83], [96]:

dX

ds
= cos θ(s),

dY

ds
= sin θ(s),

dθ

ds
=

1

EI
{P2[X1 −X(s)] + P1[Y (s)− Y1]}+ κ,

X(0) = 0,

Y (0) = 0,

θ(0) = γ, (2.1)

where P1 and P2 are the X− and Y− components of P, I is the moment of inertia of

the cross section, E is the elasticity modulus of the material, in our model both I and

E are assumed to be constants. κ is the curvature of the undeformed circular rod, thus

0 > κ =constant. The first two equations of (2.1) are the geometrical description of the

arc and the third equation is derived from the balance equations of forces and moments.

System (2.1) is an initial value problem(IVP) with two unknown parameters, namely X1

and Y1, which depend obviously on the parameters P, γ and α and can not be given in

advance provided that we take p, α, γ as parameters which can be given in advance in our

model, therefore we can not solve (2.1) in a direct way as usual. If we in some cases need

to determine the acting force which maintains an appointed form of the deformed rod, we

should think of X1, Y1 as adjustable in advance. Differentiating the third equation of (2.1)

with respect to s , we get

d2θ

ds2
=

1

EI
(−P2 cos θ(s) + P1 sin θ(s))

=
P

EI
(
−P2

P
cos θ(s) +

P1

P
sin θ(s))

=
P

EI
(− sinα cos θ(s) + cosα sin θ(s))

=
P

EI
sin (θ − α),

and then making the following transformation:

L2

EI
P = p, s = Lσ =

L√
p
t,

θ(s) = ϑ(σ) = Ψ(t) + α− π,

the essential part of system (2.1) is turned into a dimensionless boundary value problem for

a pendulum equation with three parameters p, γ and α, which are included in the boundary
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conditions:

Ψ′′ = − sin Ψ,

Ψ(0) = π + γ − α,

Ψ′(
√
p) = − 2γ√

p
. (2.2)

Note: The advantage of equation (2.2) is: the parameters γ, α and p are not involved in

the differential equation, they appear only in the boundary conditions, so they have no

any influence on the qualitative phase portrait defined by the equation. It is especially

beneficial for the study based on the discussion of phase curves of the equation.

Now we make the further transformation,

X = Lx, Y = Ly,

the original system (2.1) is then turned into an initial value problem with an unknown

parameter ω0:

x′(σ) = cosϑ(σ),

y′(σ) = sinϑ(σ),

ϑ′(σ) = p [y(σ) cosα− x(σ) sinα] + ω0
√
p,

x(0) = 0,

y(0) = 0,

ϑ(0) = γ, (2.3)

where ω0 := Ψ′(0), which depends on the parameters p, γ and α, essentially describes the

curvature of the deformed arc at σ = 0 (the normalized length of the arc is 1).

In (2.2), ′ represents the derivative of Ψ with respect to t, t ∈
[

0,
√
p
]

, while ′ in (2.3) rep-

resents the derivative with respect to σ, σ ∈ [0, 1]. (2.3) will preferably be used to calculate

the configurations of the deformed rod, which is described by (x(σ), y(σ)), σ ∈ [0, 1], and

later will be used to get some mechanical characters. In order to solve equation (2.3) as

an usual initial value problem we should find the value of the unknown parameter ω0 first.

This will be done by virtue of BVP (2.2), by solving (2.2), we could get the value of ω0,

substituting this value into (2.3), it becomes a normal initial value problem. Our approach

to solve (2.3) is: solving equation (2.2) first to get the value of ω0, then for each obtained

ω0 solving (2.3) to get its solution which describes the configuration of deformed elastic

circular arc. In the context of (2.3), we have ω0
√
p = Lκ+ p [x(1) sinα− y(1) cosα].
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Note: 1. Study on pendulum equation is also an interesting theme, it is connected fre-

quently with the study on vibration and oscillation [10], [65], [71]. 2. The existence of

solutions for (2.2) is guaranteed by several criteria [30], [54]. 3. If we confine our discus-

sion only to the small deformation of the arc from its original (or undeformed) form, we

may probably find some existing methods. For example, for the originally straight arc,

assuming the perturbed solution is of the form:

Ψ =
∞

∑

i=1

Ψi(t)ε
i,

p =
π2

4
+

n
∑

i=1

biε
i,

where ε is the amplitude of small deflection, Ψi(t), bi are unknown parameters, they are to

be determined by (2.2)[85]. Another similar idea is: supposing

Ψ(t) = a0 +
∞

∑

i=1

(ai cos it+ bi sin it)

be solution of (2.2), here ai, bi are unknown coefficients, they can be determined by substi-

tuting the series in (2.2) and comparing the coefficients of cos it, sin it [88]. Both of these

two approaches need elaborate calculations.



Chapter 3

Methods of finding ω0

As explained in last section, the main task to solve (2.3) is to find the value of ω0 for

given parameters α, γ and p. After ω0 being obtained, (2.3) then appears to be a normal

initial value problem, therefore we turn our study on the solutions of equation (2.3) and

pendulum equation (2.2) first to the study of the properties of ω0. In this section we study

mainly the methods how to get ω0.

3.1 Solving algebraic equations(direct method)

First let us give a short discussion on the phase curves of (2.2). Rewriting the essential

part of (2.2) in the following equivalent form:

dΨ

dt
= Φ, (3.1)

dΦ

dt
= − sin Ψ.

The singular points of (3.1) are (±nπ, 0), n = 0, 1, 2, .... The coefficient matrixes of the

linearized systems at the corresponding points are

[

0 1

− cos (±nπ) 0

]

, n = 0, 1, 2, ....

The eigenvalues for (±2mπ, 0) are ±i, these singular points of nonlinear equation (3.1)

could be either centers or focuses, but concerning the symmetry of the system, that is

F (Ψ,Φ) :=

[

Φ

− sin Ψ

]

satisfies F (−Ψ,−Φ) = −F (Ψ,Φ), (±2mπ, 0) are centers [98].

While eigenvalues for (±(2m+1)π, 0) are ±1, so they are saddles of (3.1). The separatrixes

10
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connecting these saddles form a boundary for the central zone, outside this boundary the

phase curves of (3.1) are topologically straight lines.

3 4 5 6 7 8 9
-2

-1

0

1

2 Psi’

Psi

Figure 3.1: Possible phase curves of the BVP (2.2).

Integrating equation (2.2) in the usual way, we get

1

2
Ψ′2 = cos Ψ + c.

Taking initial condition into consideration,

c =
1

2
ω2

0 + cos(γ − α).

Setting

k2 :=
4

2 + ω0
2 + 2 cos(γ − α)

,

we have

Ψ′2 =
4

k2
(1− k2 sin2 Ψ

2
), t ≥ 0.

This could be taken as the solution of the initial value problem:

d2Ψ

dt2
= − sin Ψ,Ψ(0) = π + γ − α,Ψ′(0) = ω0.

If a solution of the initial value problem is also a solution of BVP (2.2), the boundary

condition must be satisfied. It means that the phase curve related to the possible solution

of (2.2) must end with Ψ′(
√
p) = − 2γ√

p . This is shown in figure 3.1. Now we take the
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boundary condition of (2.2) under consideration. When confining to orbits below the

lower part of the separatrix, Ψ′ < 0, thus

Ψ′ = −2

k

√

1− k2 sin2 Ψ

2
.

Let u = Ψ
2 , then

u′ = −1

k

√

1− k2 sin2 u,

or

dt = −k du
√

1− k2 sin2 u
,

integrating the last equation yields

t = −k
∫ u

1
2
(π+γ−α)

du
√

1− k2 sin2 u
.

The final values of
√
p of the transit ‘time’ and − 2γ√

p of Ψ′ then show up as

√
p = k(F (

1

2
(π + γ + α), k2)− F (

1

2
Ψ1, k

2)),

γ2

p
=

1

k2
− sin2 Ψ1

2
,

where Ψ1 = Ψ(
√
p) and

F (v, k2) =

∫ v

0

1
√

1− k2 sin2 u
du

is the elliptic integral of the first kind.

Now let

F1(ω0, k,Ψ1) := k2 − 4

2 + ω0
2 + 2 cos(γ − α)

,

F2(ω0, k,Ψ1) :=
√
p− k(F (

1

2
(π + γ − α), k2) + F (

1

2
Ψ1, k

2)),

F3(ω0, k,Ψ1) :=
γ2

p
− 1

k2
+ sin2 Ψ1

2
,

then a solution (ω̄0, k̄, Ψ̄1) of the equations














F1(ω0, k,Ψ1) = 0

F2(ω0, k,Ψ1) = 0

F3(ω0, k,Ψ1) = 0,

is the values needed to solve BVP (2.2) and then (2.3). Denoting the jacobian determinant

of F1, F2, F3 with respect to ω0, k,Ψ1 by D(F1,F2,F3)
D(ω0,k,Ψ1) , then (ω̄0, k̄, Ψ̄1) is a simple point of

system (2.2) if

D(F1, F2, F3)

D(ω0, k,Ψ1)

∣

∣

∣

∣

∣

(ω̄0,k̄,Ψ̄1)

6= 0,
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at each point of this kind holds the uniqueness of the solution. If

D(F1, F2, F3)

D(ω0, k,Ψ1)

∣

∣

∣

∣

∣

(ω̄0,k̄,Ψ̄1)

= 0

holds, then (ω̄0, k̄, Ψ̄1) is a singular point of system (2.2), around which the uniqueness of

solution will not be guaranteed.

From figure 3.1 we can see clearly that the possible orbits of (2.2) can also locate within

the zone bounded by the two branches of the separatrix, for those orbits the expression of

the transit ‘time’ is more involved since the entire orbits are possibly composed of several

pieces, along which Ψ′ may have different signs, so the above equations can not represent

this case possibly. Theoretically we can solve the above three equations obtained from (2.2)

to get the values of the three unknowns k,Ψ1 and ω0 for given p, α and γ, but owing to the

nonlinearity of the equations and the fact that one set of (p, α, γ) there may correspond

more than one value of k,Ψ1 and ω0, that is the multiplicity phenomenon would occur,

it is difficult to find the three unknowns as explicit functions of p, α and γ exactly or

numerically. This method was used in [77], [78] for discussion on the deformed elastic

rings.

3.2 Method of extended system

By suitable transformation we can also put the bifurcation parameter p involved in the

boundary value condition of (2.2) into principal equation and the equivalent equation of

(2.2) is:

Ψ′′ = −λ sin Ψ,

Ψ(0) = π + γ − α,

Ψ′(1) = −2γ, (3.2)

where λ = p. In [67] the author considered the general boundary value problem of differ-

ential equation:

Ψ′ = F (Ψ, λ), B(Ψ(a),Ψ(b)) = 0, (3.3)

where Ψ = (Ψ1,Ψ2, ...,Ψn)
> ∈ IRn, F : IRn × IRm −→ IRn is a map differentiable to any

order needed. λ ∈ IRm is considered as branching parameter, B : IRn×IRn −→ IRn is a map
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indicating boundary value condition. Normally λ is a constant vector in the discussions,

that is λ′ = 0. So we can write the BVP in a more general form:

[

Ψ

λ

]′

=

[

F (Ψ, λ)

0

]

with boundary condition
[

B(Ψ(a),Ψ(b))

Ψk(a)− η

]

=

[

0

0

]

,

where 1 ≤ k ≤ n is an index and η is some constant (for example we can simply choose

η = 1). By solving the above BVP we will get a value of λ which matches the given k

and η. If Ψl(a) is prescribed by B(Ψ(a),Ψ(b)) = 0, k must be different from l, otherwise

a contradiction might be brought about [67],[68],[69].

When we discuss the branching problem of the BVP, we should take some more aspects

into account. Suppose (Ψ0, λ0) is a branching point of (3.3), it means, there are more than

one orbits passing through it, as discussed above, at this point the following conditions

hold:

F (Ψ0, λ0) = 0,
[

F ′
Ψ(Ψ0, λ0)

]−1
dost not exist,

that is, equation F ′
Ψ(Ψ0, λ0)ψ = 0 has non-trivial solution, so we consider also the following

linear differential equation

ψ′ = F ′
Ψ(Ψ0, λ0)ψ

with boundary condition

Jψ(a) +Kψ(b) = 0,

where

J =
∂B(Ψ(a),Ψ(b))

∂Ψ(a)
, K =

∂B(Ψ(a),Ψ(b))

∂Ψ(b)

are n × n matrices obtained from boundary condition of (3.3). In emphasis of ψ 6= 0, we

set some certain ψk(a) = 1. Put this BVP together with the original BVP (3.3) we get the

extended BVP for branching point:









Ψ

λ

ψ









′

=









F (Ψ, λ)

0

F ′
Ψ(Ψ, λ)ψ









,









B(Ψ(a),Ψ(b))

ψk(a)− 1

Jψ(a) +Kψ(b)









= 0. (3.4)

All kinds of singular points of (3.3) are included in (3.4), in order to pick out the singular

points with special characters, we need to add some more conditional equations to the above

extended system (3.4), that is, it can be further extended. For instance, at bifurcation
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points (we will give the exact definition and discussion on them in next chapter). at least

two branching curves intersect with different tangents, the condition ∂F (Ψ0,λ0)
∂λ = 0 holds

for bifurcation point.

This method put every condition for branching point in an extended equation, but owing

to the increase of the number of the extended equations, sometimes it could not reduce the

difficulty for bifurcation calculation.

3.3 Using manifold in the phase plane of equation

(2.2)

The character of (2.2) is: the equation is a nonlinear differential equation of order two

defined on an interval
[

0,
√
p
]

, the right end of the interval is a parameter, the boundary

conditions depend on p. First we discuss a general form of equation (2.2):

Ψ′′ = F (Ψ,Ψ′),Ψ(a) = Ψa,Ψ
′(b) = H(b), (3.5)

where a and Ψa(independent of a) are some fixed constants, b ∈ IR, b > a could be consid-

ered as the branching parameter, F : IR × IR −→ IR and H : IR −→ IR are both smooth

functions.

Actually we try to find the solution of the above BVP defined on the interval [a, b]. Instead

of discussing the BVP, we consider the related initial value problem(IVP):

Ψ′′ = F (Ψ,Ψ′),

Ψ(a) = Ψa,

Ψ′(a) = Ψ′
a. (3.6)

According to the wellknown existence and uniqueness theorem of the IVP for ordinary

differential equations, for each given Ψ′
a, the above IVP has a unique solution, denoted by

Ψ(t,Ψa,Ψ
′
a). Therefore if Ψ(t,Ψa,Ψ

′
a) is a solution of the above BVP (3.5), it must satisfy

Ψ′(b,Ψa,Ψ
′
a) = H(b).

Now we consider the last situation in an another way. For each given fixed Ψa, the above

discussion has a geometrical explanation as follows: on the Ψ − Ψ′ phase plane, Ψ = Ψa

represents a vertical straight line, at time moment a all orbits of (3.6) start from the points

(Ψa,Ψ
′
a) on this vertical straight line. This segment Ψ = Ψa can be thought as the initial

manifold Ma or starting manifold, at any time t > a, let ψt denote the flow [43] of (3.6) in
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the ΨΨ′-phase plane and let Mt = {(Ψ(t,Ψa,Ψ
′
a),Ψ

′(t,Ψa,Ψ
′
a))}, then Mt = ψt(Ma). For

fixed Ψa, Mt is a continuous curve parameterized by Ψ′
a, we take it as the manifold at time

t. Further we take the set Mb = {(Ψ(b,Ψa,Ψ
′
a),Ψ

′(b,Ψa,Ψ
′
a))} as the end manifold. For

fixed Ψa and Ψ′
a, Mt represents an orbit of (3.6) for t ∈ [a, b]. Summarizing the discussion

we have the following result.

Theorem 3.1 There is an one- to- one correspondence between the solutions of the BVP

Ψ′′ = F (Ψ,Ψ′),Ψ(a) = Ψa,Ψ
′(b) = H(b) and the roots of the equation Ψ′(b,Ψa,Ψ

′
a) =

H(b), or geometrically, there is an one- to- one correspondence between the orbits of the

BVP Ψ′′ = F (Ψ,Ψ′),Ψ(a) = Ψa,Ψ
′(b) = H(b) and the intersections of the end manifold

with the horizontal straight line Ψ′ = H(b).

If we denote Ξ(b,Ψa,Ψ
′
a) := Ψ′(b,Ψa,Ψ

′
a) − H(b), then we should discuss the roots Ψ′

a

of the equation Ξ(b,Ψa,Ψ
′
a) = 0 for given b and Ψa. According to the theory of implicit

functions, we know if at some root, say Ψ̄′
a, of the equation, there holds the condition

Ξ′
Ψ′

a
(b̄,Ψa, Ψ̄

′
a) 6= 0, then point (b̄, Ψ̄′

a) is called a regular point, geometrically, the end

manifold intersects Ψ′ = H(b) transversally at this point, so this kind of point will still

exist under small change of the parameters, or in analytical words: for this kind of point,

there exists a ε > 0, such that when |b − b̄| < ε, all corresponding BVP (3.5) has a

solution with initial value (Ψa,Ψ
′
a) near (Ψa, Ψ̄

′
a). The singular point occurs only when

Ξ′
Ψ′

a
(b̄,Ψa, Ψ̄

′
a) = 0.

In some literature, for example in [8], the frequently referred BVP is of the following form:

Ψ′′ = λF (Ψ,Ψ′),Ψ(a) = Ψa,Ψ
′(b) = Ψ̄′

b, λ 6= 0,

here F has the same property as given above, λ is a parameter, which is in the equation

not in the boundary condition. After making a transformation
√
λt = δ (provided λ > 0),

then

Ψ′
t =
√
λ
dΨ

dδ
,Ψ′′

tt = λ
d2Ψ

d2δ
,

we get

Ψ′′
δδ = F (Ψ,Ψ′),Ψ(

√
λa) = Ψa,Ψ(

√
λb) =

1√
λ

Ψ̄′
b,

the parameter λ is moved to the boundary condition and the equation is now of the form

we discussed above. Therefore our discussion on (2.2) is also applicable to Ψ′′ = λF (Ψ,Ψ′).

Applying the above discussion to our pendulum equation, in the (Ψ,Ψ′)-phase plane of

system (2.2), for each given γ, we can define a manifold M(α, p) in the following way: for
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Figure 3.2: (a): Manifold M(− 3π
8

, 12) for γ = π
2
. (b): Ψ′

1 vs. ω0 with γ = π
2
, α =

−3π
8

, p = 12.

fixed α, the initial manifold Mα is the vertical straight line {(π + γ − α, ω0)|ω0 ∈ IR}.
Let Ψt be the flow of the pendulum equation (2.2), consider Mα under that flow and let

M(α, p) := Ψ√
p(Mα), then M is composed of points (Ψ(

√
p),Ψ′(

√
p))(note: we denote

them as (Ψ1,Ψ
′
1)), it is a plane smooth curve parameterized by ω0 for given γ, α and p(see

figure 3.2(a)). Each intersection of M(α, p) with the horizontal straight line Ψ′ = − 2γ√
p is

an end point of the possible phase curve, the coordinate ω̄0 of the start point of which is

the value we intend to find. That means, from this value of ω0 we can get an orbit of (2.2)

which starts at (π + γ − α, ω̄0), ends at a point on Ψ′ = − 2γ√
p and the transit ‘time’ along

it is
√
p. Since the final value of Ψ′ along each possible orbit of (2.2) is to be negative

and owing to the fact that the phase curve of (2.2) can not meet the separatrix (except

separatrix itself), we need not take points of Mα above the upper part of the separatrix

into consideration, i.e., ω0 < 2. In our following discussion we suppose Mα is a half straight

line. Figure 3.2(a) shows the manifold defined by (2.2) for γ = π
2 , α = −3π

8 . In figure 3.2(a)

the thin curves are the phase curve (2.2), the thick solid curve represents part of the end

manifold M(−3
8π, 12) for γ = π

2 (the corresponding undeformed elastic rod is a half ring),

in this case there are three mentioned intersections, which correspond to three values of

ω0. It indicates that, for γ = π
2 , α = −3

8π, p = 12, system (2.2) has three orbits, each takes

the above ω0 as initial velocity, and further (2.3) has three solutions.

With the same consideration , for fixed γ, α and p we can consider Ψ′
1 as a function of ω0,

namely Ψ′
1 = Ψ′

1(ω0), it defines a continuous curve in ω0Ψ
′
1- plane, the ω0-coordinates of the

intersections of this curve with the horizontal straight line Ψ′ = − 2γ√
p are the values of ω0 we

wanted. Figure 3.2(b) shows a sample curve of this kind, which corresponds to the situation

shown in figure 3.2(a). Comparing figure 3.2(a) and 3.2(b), it is obvious that 3.2(b) can be
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obtained from 3.2(a), but 3.2(b) shows the relation between the intersection and ω0 more

clearly than 3.2(a).

The obvious advantages of this method (we call it manifold method) are:

a) With this method we can relatively more easily investigate the behavior of the pos-

sible phase curves (or solutions) of system (2.2);

b) We can find the number of ω′
0s and give estimations to ω0 more easily compared with

the frequently used numerical methods, these estimations are extremely important

for almost all numerical treatments;

c) We can get a prediction to the change tendency of ω0 visually;

d) With this method we can discuss the phase curves and possible orbits both outside

and inside of the zone bounded by the separatrix at the same time, without giving

special attention to their location;

e) With this method, for given γ and α we need not deal with the three nonlinear

equations about k,Ψre and ω0 in 3.1, but only function Ψ′(ω0), determined by end

manifold.

For determination of the relation between ω0 and the parameters γ, α and p, we could use

other methods mentioned above, for instance, recalling the extended system (3.4), taking

F (Ψ1,Ψ2) =

[

Ψ2

− sin Ψ1

]

, λ = Ψ3,

B(Ψ(a),Ψ(b)) =

[

Ψ1(0)− π − γ + α

Ψ2(1) + 2γ

]

= 0,

thus

F ′
Ψ =

[

0 1

−Ψ3 cos Ψ1 0

]

,

J =

[

1 0

0 0

]

, K =

[

0 0

0 1

]

,

further let ψ = (Ψ4,Ψ5)
>,Ψ5(0) = 1, at last we get the following equations:



















Ψ1

Ψ2

Ψ3

Ψ4

Ψ5



















′

=



















Ψ2

−Ψ3 sin Ψ1

0

Ψ5

−Ψ3Ψ4 cos Ψ1



















,



















Ψ1(0)

Ψ2(1)

Ψ5(0)

Ψ4(0)

Ψ5(1)



















=



















π + γ − α
−2γ

1

0

0
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Solving above equations gives the relation between Ψ2(0) and Ψ3(0), which correspond to

ω0 and p respectively.

To solve the above mentioned equations numerically, we could use some numerical methods

suitable for differential equations, such as shooting, Runge-Kutta, continuation, imbedding,

finite difference and so on [21], [47], or we may call for some existing mathematical soft-

wares, for instance Mathematica, Maple or Matlab, etc. In this work we used Mathematica

to deal with the numeric calculation. With the help of this software, we can get satisfactory

results with not too complex program. Taking main part of the procedure for finding the

value of ω0 for example, we use the following short Mathematica program:

End[ω0 , γ , α , p ]:=Module[{Ψ,Φ}, Evaluate[{Ψ[
√
p],Φ[

√
p]}]/.

NDSolve[{Ψ′[t] == Φ[t],Φ′[t] == − sin Ψ[t],Ψ[0] == π + γ − α,Φ[0] == ω0},
{Ψ,Φ}, {t, 0,√p}]];

ω0[γ , α , p ]:=FindRoot[End[ω0, γ, α, p][[1, 2]] == − 2γ√
p , {ω0, ω01, ω02}],

where ω01, ω02, which are needed in the Mathematica command ‘FindRoot’ and can be

found by considering the end manifold, are two approximate values of ω0, with ω01 ≤ ω02.

In this program, End(ω0, γ, α, p) determines the end manifold, while ω0(γ, α, p) is the ω0

coordinate of intersection produced by end manifold and the horizontal line Ψ′ = −2γ√
p . We

can also increase the precision of the calculation for ω0 by means of reducing the difference

of ω02 − ω01 and choosing some extra options in ’FindRoot’ with no big problem. With

this method we need not to know where the orbit lies, inside or outside the zone bounded

by the separatrix, and the nonlinearity plays a little role.

After ω0 being obtained with the above methods, for fixed p, α and γ, we can calculate k

easily with k2 = 4
ω2

0+2+2 cos(γ−α)
and for orbits below the separatrix, we have

Ψ′ = − 2

|k|

√

1− k2 sin2 Ψ

2

or
dΦ

√

1− k2 sin2 Φ
= − 1

|k|dt.

Thus

t = −|k|
∫

Ψ(t)
2

π+γ−α

2

dΦ
√

1− k2 sin2 Φ

= |k|(F (
π + γ − α

2
, k2)− F (

Ψ(t)

2
, k2)), 0 ≤ t ≤ √p.

The above equation determines an implicit function

Ψ = Ψ(t, α, γ), 0 ≤ t ≤ √p.
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Substituting this expression in system (2.3), we obtain the solution of it

x(σ) =

∫ σ

0
cos(Ψ(ξ

√
p, α, γ) + α− π)dξ,

y(σ) =

∫ σ

0
sin(Ψ(ξ

√
p, α, γ) + α− π)dξ, 0 ≤ σ ≤ 1,

and further

θ(σ) = ω0
√
pσ + γ + p

∫ σ

0
(y(ξ) cosα− x(ξ) sinα)dξ, 0 ≤ σ ≤ 1,

where p, α and γ are parameters.

For orbits inside of the zone bounded by the separatrix, Ψ′ changes its sign when the orbits

meet the Ψ-axis, at these points we have

Ψ′2 =
4

k2
(1− k2 sin2 Ψ

2
) = 0.

Let Ψ̄ be a solution of the last equation, the corresponding ‘time’ is

t̄ = |k|
∫ Ψ̄

2

π+γ−α

2

dΦ
√

1− k2 sin2 Φ
.

Therefore if an orbit meets the Ψ-axis only once, then the corresponding implicit solution

of (2.2) is

t =











|k|
∫

Φ(t)
2

π+γ−α

2

dΦ√
1−k2 sin2 Φ

0 ≤ t ≤ t̄

|k|
∫

Ψ̄
2

π+γ−α

2

dΦ√
1−k2 sin2 Φ

− |k|
∫

Ψ(t)
2

Ψ̄
2

dΦ√
1−k2 sin2 Φ

t̄ < t ≤ √p,

=

{

|k|(F (Ψ(t)
2 , k2)− F (π+γ−α

2 , k2)) 0 ≤ t ≤ t̄
|k|(2F ( Ψ̄

2 , k
2)− F (Ψ(t)

2 , k2)− F (π+γ−α
2 , k2)) t̄ < t ≤ √p.

Similarly we can get the solution of (2.3) in this case. It may be possible that an orbit

of (2.2) meets the Ψ axis more than once, the corresponding expression of the solution

of (2.3) should be more complex. For very special system, sometimes we can handle the

system directly.

For example, let γ = 0, α = π (Euler’s rod) and assume that the deformation of the

originally straight rac under the action of p is sufficiently small. The pendulum equation

now is of the following form:

d2Ψ

dt2
= − sin Ψ,Ψ(0) = 0,Ψ′(

√
p) = 0. (3.7)
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With our direct method, if we take the initial value of the derivative ω0 at left end of the

rod as the unknown parameter, then we have the following equations:

√
p =

2

ω0

∫ 0

Φ1

dΦ
√

1− 4
ω2

0
sin2 Φ

(3.8)

where Φ1 = − arccos (1− 1
2ω

2
0) representing the value of Ψ at the free end of the rod.

If we take Ψ1 as the unknown parameter, then we handle the equation as following. Inte-

grating the pendulum equation one time gives the result: 1
2Ψ′2 = cosΨ+ c, concerning the

boundary value condition Ψ′(
√
p) = 0, we have c = − cos Ψ(

√
p) := − cosβ. Thus

dΨ

dt
= ±

√

2(cos Ψ− cosβ),

if we take the case dΨ > 0 into account, then we have

√
p =

1√
2

∫ β

0

dΨ√
cos Ψ− cosβ

=
1

2

∫ β

0

dΨ
√

sin2 β
2 − sin2 Ψ

2

. (3.9)

Let

λ = sin
β

2
, sin

Ψ

2
= λ sinψ = sin

β

2
sinψ,

then
√

sin2 β

2
− sin2 Ψ

2
= λ cosψ.

Finally we get the result

√
p =

∫ π
2

0

dψ
√

1− λ2 sin2 ψ
= K(λ2).

If only small deformation of the rod is concerned, then β and λ can be considered to be

very small, by neglecting the term λ2 sin2 ψ, then we have the approximate value for critical

force:
√
p =

π

2
,

or
L
√
P√
EI

=
π

2
,

that is

P =
π2EI

4L2
.

This value of P is the smallest critical load (Euler’s 1st critical load obtained via lineariza-

tion) which corresponds the first singular point for pendulum equation with γ = 0, α = π.
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For this arc, getting the displacement of its free end from its original position is not difficult.

From equation
dy

dσ
= sin θ(σ),

we have
dy

dt
= sin θ(σ)

1√
p

=
sin θdθ√

2pdt
√

cos θ − cosβ
.

Using the transformation

sin
θ

2
= λ sinψ,

we have
1

2
cos

θ

2
dθ = λ cosψdψ,

cos
θ

2
=

√

1− λ2 sin2 ψ,

sin θ = 2λ sinψ

√

1− λ2 sin2 ψ,

thus

y(
√
p) =

1

2
√
p

∫ β

0

sin θdθ
√

sin2 β
2 − sin2 θ

2

=
2λ√
p

∫ π
2

0
sinψdψ =

2λ√
p
. (3.10)

Similarly, from

dx =
cos θdθ√

2p
√

cos θ − cosβ

and the transformation used for y-coordinate, we obtain

x(
√
p) =

2√
p

∫ π
2

0

√

1− λ2 sin2 ψdψ − 1√
p

∫ π
2

0

dΨ
√

1− λ2 sin2 Ψ

=
2√
p
E(λ2)− 1√

p
K(λ2),

in the result E(λ2) is elliptic integral of the second kind.

Therefore if we need to get the displacement of the right end of the deformed arc for a

certain small p, we can get the value of λ from
√
p = K(λ2) first, then using the expression

above to get x(
√
p) and y(

√
p).

After ω0 obtained, we can use the following Mathematica program to draw the phase

curves of (2.2):

γ = γ0;α = α0; p = p0;ω0 = ω̄0;

Phase[t , γ , α , p , ω0 ] :=NDSolve[{Ψ′(t) == Φ(t),Φ′(t) == − sin Ψ(t),

Ψ(0) == π + γ − α,Φ(0) == ω0}, {Ψ(t),Φ(t)}, {t, 0,√p}];
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Ψ[t , γ , α , p , ω0 ] :=Phase[t, γ, α, p, ω0][[1, 1]];

Φ[t , γ , α , p , ω0 ] :=Phase[t, γ, α, p, ω0][[1, 2]];

ParametricPlot[{Ψ[t, γ, α, p, ω0],Φ[t, γ, α, p, ω0]}, {t, 0,
√
p}].

The solution of (2.3) can be obtained with the following program:

γ = γ0;α = α0; p = p0;ω0 = ω̄0;

Conf[σ , γ , α , p , ω0 ]:=NDSolve[{x′(σ) == cos θ(σ), y′(σ) == sin θ(σ),

θ′(σ) == p[y(σ) cosα− x(σ) sin(α)] + ω0
√
p,

x(0) == 0, y(0) == 0, θ(0) == γ}, {x(σ), y(σ), θ(σ)}, {σ, 0, 1}];
x[σ , γ , α , p , ω0 ]:=Conf[σ, γ, α, p, ω0][[1, 1]];

y[σ , γ , α , p , ω0 ]:=Conf[σ, γ, α, p, ω0][[1, 2]];

θ[σ , γ , α , p , ω0 ]:=Conf[σ, γ, α, p, ω0][[1, 3]];

We can use the Mathematica command ’ParametricPlot’ to draw the configuration of

(2.3), which we will show in next section:

ParametricPlot[{x[σ, γ, α, p, ω0], y[σ, γ, α, p, ω0]}, {σ, 0, 1}].



Chapter 4

Study on multiplicity and

bifurcation

As discussed above, the study of the deformation of the elastic arcs (or solution of (2.3))

is reduced to the study of the BVP of the related pendulum equation (2.2), and this is

then turned to the study on ω0. Normally, of the three parameters in (2), we take the

normalized acting force p as bifurcation parameter. When the parameters are given, the

number of the possible solutions of the pendulum equation will be the same as the number

of ω0
′s, because there is clearly an one -to-one correspondence between these two numbers.

So from now on we will put ω0 at the same place as the solution of (2.2) and (2.3) to be

found. In the following we will concentrate our discussion on the relation between ω0 and

the three parameters γ, α and p.

First we introduce some concepts for general situations. Generally the BVP of the au-

tonomous differential equation can be written in the following form:

Ψ′ = F (Ψ, λ, β), B(Ψ(a),Ψ(b)) = 0, (4.1)

where Ψ ∈ IRn, λ ∈ IR, β ∈ IRl, F ∈ C1 : IRn×IR×IRl −→ IRn and B ∈ C1 : IRn1×IRn2 −→
IRn with n1 + n2 = n.

In the following discussion we need a definition related to bifurcation,

Definition 4.1 The set D(F ) = {(λ,Ψ)|F (Ψ, λ, β) = 0} is called the bifurcation diagram

of F for fixed β. The set B(F ) = {β|F (Ψ, λ, β) = 0, rank(DF ) < n}, here DF denotes

the differential of F with respect to Ψ and λ but not β, is called branching diagram of F .

To give a geometrical explanation to this definition, we consider a very simple example:

F (Ψ, λ, β) = Ψ3 − λΨ + β = 0,

24
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taking λ as bifurcation parameter and β as branching parameter, the relation Ψ vs. λ for

fixed β is ahown in figure 4.1, in this figure the vertical coordinate is Ψ.

From the above definitions and example we know the bifurcation parameter and other

parameters play an important role in the study of multiplicity and bifurcation. As the ex-

plicit expressions of the solutions of the bifurcation problems and the differential equations

are difficult to find, the numerical handling is necessary. About numerical treatment of

bifurcation problem a plenty of work can be found [4], [16], [35], [34], [61], [63], [75], [84].

In our work we will study bifurcation diagram with manifold method and get the result

with the help of some available mathematical softwares. We try to give a through survey

to the influence of all parameters on the system.

4.1 The relation between ω0 and α, γ as well as p

As described above, the most important work for solving system (2.3) is to find ω0. In

this section we will especially concentrate our attention to ω0 and its character, such as

its existence, multiplicity, change tendency, numerical value and the relations between ω0

and phase curves of (2.2) and configurations of (2.3) as well. As shown in figure 3.2, ω0

changes with the parameters γ, α and p or we can say ω0 is a function of the parameters:

ω0 = ω0(γ, α, p). It is obvious that one set of (γ, α, p) may correspond with more than one

value of ω0, therefore ω0(γ, α, p) represents a complex hypersurface in IR4 geometrically,

which is composed of several branches of simple surface. For simplicity and clearness and

making it more visual, we will discuss the projection of it on different planes, or we will

discuss the intersection of this surface with planes which are parallel to the coordinate

planes of the parameter coordinate system (γ, α, p), that is, in our following discussion we

-2 -1 0 1 2
-2

-1

0

1

2

-2 -1 0 1 2
-2

-1

0

1

2

-2 -1 0 1 2
-2

-1

0

1

2

Figure 4.1: The bifurcation diagram of F (Ψ, λ, β) = Ψ3 − λΨ + β = 0 for β < 0

(left), β = 0 (middle) and β > 0 (right).
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Figure 4.2: The undeforemed arcs for γ = 0 (left), 0.5π (middle) and 0.75π (right).

will set some parameters fixed. Because it is almost not possible to get the exact analytical

expressions of the solutions of the corresponding problem in large scale, the results will be

shown by bifurcation diagrams.

4.1.1 The relation between ω0 and p for fixed γ(alsoα)

In this section we intend to make clear the relation between ω0 and p. First we choose

some typical values of γ, (0(π4 )π), then for each fixed γ, choose some different values of

α. In this section we give the bifurcation diagram for γ = 0, γ = 0.5π and γ = 0.75π in

figure 4.3, 4.4, 4.5 separately, the corresponding undeformed arcs are shown in figure 4.2.

Other bifurcation diagrams are given in appendix 3 together. These figures show clearly:

for fixed γ and α, when p is relatively small, to one p there corresponds only one ω0, the

points (p, ω0) compose a curve in each diagram in pω0- plane, the configurations of (2.3)

corresponding to these values of ω0 are said to be ‘normal’, because they are of practical

significance, according to the engineers.

This states the fact that small acting force does not bring extra configurations to system

(2.2). When p grows further the number of the ω0 has a ’jump’, for relatively large p,

the correspondence between p and ω0 is no more one-to-one, it is represented by several

pieces of curves on the p−ω0 plane. When γ is fixed, these curves move with α, observing

the following rules: considering the two curves located above the normal one, 1.) if one is

above the other when α = −0.5π, then the upper one moves rightwards, while the other

one moves leftwards as α increases, and they meet together for some definite α to form

a singular point, then they split again to form two new curves with one is located at the

right of the other, and then these two new curves move rightwards. 2.) If the two curves

have a left-right position when α = −0.5π, then they move rightwards with α. For the

curves below the normal one, they move rightwards with α. It is possible, one of them
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Figure 4.3: Bifurcation diagram {(p, α, ω0)|α fixed, p ∈ [0, 50]} for γ = 0, (α values

above diagrams)(upper) and some typical cases of acting forces(lower).
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Figure 4.4: Bifurcation diagram {(p, α, ω0)|α fixed, p ∈ [0, 50]} for γ = 0.5π, (α

values above diagrams).
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Figure 4.5: Bifurcation diagram {(p, α, ω0)|α fixed, p ∈ [0, 50]} for γ = 0.75π, (α

values above diagrams).



30 CHAPTER 4. STUDY ON MULTIPLICITY AND BIFURCATION

0 0.2 0.4 0.6 0.8
0

0.1

0.2

0.3

0.4

1

2
3

5

4

-0.2 0 0.2 0.4
0

0.2

0.4

0.6

0.8

5

4
3 2

1

Figure 4.6: The normal configurations for α = 0.5π and γ = 0, γ = 0.25π, γ =

0.5π, γ = 0.75π and γ = π (distinguished by 1, 2, 3, 4 and 5 separately) with p = 1

(left) and p = 6 (right).

will meet the normal one for some certain α to form a singular point, and then it changes

position with the normal one to become the curve above and moves obeying the rule for

curves above the normal one. This phenomenon can be explained by recalling the phase

curve of (2.2). The value π + γ − α = π or γ = α is a special value, for given γ if α makes

the value |α − γ| bigger, the vertical line Ψ = π + γ − α is much apart from the vertical

line Ψ = π, so there are more possibilities for orbit starting from a point on Ψ = π+ γ−α
to reach Ψ′ = −2γ√

p , that means (2.2) could have multiple solutions for relatively smaller p.

In course of this procedure, the normal curve moves with α too, but upwards or downwards.

Specifically, when 0 ≤ γ ≤ 3π
4 , it moves upwards first, meets the curve below it to form

a singular point, then moves downwards to reach a lowest position, after that it moves

upwards again. But for γ = π, it moves in the opposite direction.

These figures show also the developing tendency of ω0. For each fixed γ and α (beside α = γ,

in this case Ψ(0) = π and because (π, 0) is the saddle point of pendulum equation (2.2),

so ω0 must be always negative), when p tends to infinity. ω0 has two limit values, which

corresponds to the upper and lower branches of the separatrix of (2.2) respectively, that

means, when p increases infinitely, the corresponding phase curves of (2.2) will approach

to the two branches of separatrix and the endpoints of the phase curves will tend to the

saddle points. The separatrix then acts as the limit curve of the phase curves and the

saddle points are limit points of the endpoints of the phase curves of (2.2) with boundary

conditions.

We now give a theoretical description to this limit phenomenon with the following theorem.
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Theorem 4.1 The function ω0 = ω0(p) determined by

End(α, γ, ω0, p) +
2γ√
p

= 0,

for every fixed γ and α, is single-valued for small p and multiple-valued for sufficiently

large p (except γ = α = 0), geometrically it has different branches. For α 6= γ, it has two

limit values as p→∞, which correspond to the vertical coordinates of the two intersections

of vertical line Ψ = π + γ − α with the separatrix.

Before the proof of this theorem, we state that, for any fixed α and γ (except γ = α = 0),

there is a pc (dependent on α and γ), when p < pc, ω0(p) vs p is one-to-one. But for

big p, ω0(p) could have as many as branches provided that p is big enough.

Proof: From the pendulum equation Ψ′′ = − sin Ψ we have 1
2Ψ′2 = cos Ψ + c. Without

loss of generality, we confine −π ≤ Ψ ≤ π. Along each possible orbit the arc from a start

point on vertical line Ψ = γ + α − π to a point on Ψ-axis in the first quadrant of Ψ − Ψ′

coordinate system, the transit ‘time’ is

t = k

∫ Φ1

π+γ−α

2

dΦ
√

1− k2 sin2 Φ
,

where Φ1 = Ψ̄
2 corresponding to the intersection between the mentioned arc with the Ψ-

axis. The arc along the separatrix from a point on Ψ′-axis to a point on Ψ-axis in the first

quadrant corresponds c = 1 and k = 1 and Φ1 → π
2 , but

lim
k→1

∫ π
2

0

dΦ
√

1− k2 sin2 Φ
=∞.

So in the procedure of p′s approaching to ∞, the horizontal line Ψ′ = −2γ√
p approaches to

Ψ-axis, the above mentioned arc on an orbit of the pendulum equation approaches to the

arc segment on separatrix from the intersection made by the vertical line and the separatrix

to the saddle point, Φ approaches to π
2 , or in other words, the related ω0 approaches to the

vertical coordinate of the intersection, meanwhile the transit ‘time’ approaches to ∞.2

At the same time the configurations of (2.3) change also with p, for instance in the case of

γ = 0, α = π, when p is very big, the free ends of two of the configurations will tend to the

negative x-axis, while in the case of γ = 0.5π, α = 0.5π, one of the configuration will tend

to the positive y-axis (see 4.8 and 4.9).

Note: When γ = α, the vertical line is Ψ = π, the possible ω0 has only one limit value 0

as p→∞.

From the proof of this theorem we can also get a conclusion about the change of the number

of ω0:
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1. let γ and p be fixed, the curves in bifurcation diagram change with α, as π + γ − α
is near 0, the p needed for the existence of multiple solutions is relatively small, and

when π + γ − α closes to ±π, the p needed is relatively big.

2. let γ and α be fixed, we see the bigger the p is, the more ω0’s there will be, that

is because, when p grows, the horizontal line Ψ′ = − 2γ√
p goes to Ψ-axis, more phase

curves could arrive this line.

3. when α, p are fixed, the situation is more complex, because both Ψ = π+ γ −α and

Ψ′ = − 2γ√
p move with γ, the number of ω0 does not change monotonously with γ.

Here we give some sample phase curves (2.2) and corresponding configurations of (2.3) to

match the above given discussions on bifurcation diagrams in figure 4.7 -4.10:
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Figure 4.7: The phase curves of (2.2) (left) and configurations of (2.3)(right) for

γ = 0, α = π and p = 10.

In order to get more information about the character of ω0, we take also some fixed values

of α, (−0.5π(0.25π)1.25π). For each chosen α, we choose some values of γ, (0(0.25π)π) to

discuss the relation between ω0 and p. The results are geometrically shown in figures 8.3-

8.10 in appendix 3.

These figures show, for each fixed α and 0 ≤ γ ≤ π, there is at most only one singular

point. It is formed in the following way: the two p − ω0 curves above the normal one,

having the left-right position, move leftwards first when γ increases from 0 to π, they meet

together for some definite γ to form a singular point, then they split again to become two

new curves having upper-lower position and then move rightwards. While the two p− ω0

curves below the normal one move leftwards for α ≤ 0 (when exist) and move rightwards

for α > 0 (when exist) first, either to reach an extra right position and then move leftwards,
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Figure 4.8: The phase curves of (2.2) (left) and configurations of (2.3) (right) for

γ = 0, α = π and p = 30.

or to meet the normal one to form a singular point and then become the curves above the

normal one. In this procedure, the normal p− ω0 curve moves upwards or downwards.

For each fixed γ and −π/2 ≤ α ≤ 3π/2, when p ≤ 50, there are two singular points. When

p ≥ 50, there should be more bifurcation points other than these two. In fact, simply

for γ = 0, α = π, the system (2.2) could have as many as singular points provided p is

sufficiently big.

4.1.2 The relation between ω0 and α for fixed γ(also p)

With the same method as used in 4.1.1, in this section we choose some typical values of

γ first, then for each fixed γ we select some values of p to discuss how ω0 changes with

α. That is, in this section we intend to discuss the influence of the acting direction of

p on the deformation of the elastic arcs. The results are shown in figure 8.11- 8.15. For

each fixed p (γ is fixed), the diagram shows the projection of ω0(γ, α, p) on a cylinder of

radius p in a planar manner, so the vertical edges of each diagram are to be identified.

For smaller p, the relation between α and ω0 is one-to-one and the curve is wavelike, the

wave peak turns clockwise as p increases, meanwhile the number of ω0 increases. And

these figures show also for smaller p, the bigger the value of γ is, the flatter are the α−ω0

curves and the lower is the position of them. This can be explained by the location of the

horizontal line Ψ′ = −2π√
p and the fact that the endpoints of the possible orbits lie on this

line. For relatively big p, the bigger the value of γ is, the narrower is the peak of the α−ω0

curve. For each fixed γ, we can see clearly from these figures that, only the curves below

the normal one may intersect with the vertical straight line α = γ, this agrees with the
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Figure 4.9: The phase curves of (2.2) (left) and configurations of (2.3)(right) for

γ = 0.5π, α = 0.5π and p = 30.

discussion before.

When we take some fixed values of α, (−0.5π(0.25π)1.5π) and for each fixed α choose some

values of p to discuss the relation between ω0 and γ, we can see also clearly some characters

of the normal γ − ω0 curve and some other interesting phenomena. For instance, for very

small p(say p = 1), the normal curve becomes steeper when α changes from −0.5π to 0.5π,

then becomes less steeper. For fixed α, it becomes flatter as p increases. These characters

can be explained by phase portrait of (2.2), for fixed γ 6= 0, the bigger the value of p is,

the closer the horizontal line Ψ′ = −2γ√
p goes to the Ψ-axis, and the bigger the curvature of

phase curve becomes, so the value of ω0 changes more quickly. In this group of bifurcation

diagrams, some branches of the γ − ω0 curves are closed (see α = −0.5π, p = 10, etc) and

some two branches may meet together to form a singular point(see α = 0.5π, p ∈ (20, 25),

etc).

As a conclusion of the discussion on bifurcation diagram, we give a partition on the pα-

parameter plane as shown in figure 4.11- 4.15 according to the number of solutions of the

equations 2.2 and (2.3). In these figures we use roman numbers I, II, etc. to represent

the zone in which the number of the solution is equal to this roman number. The curves

in these figures correspond to the turning points and the arabic number on these curves

represents the number of solutions. The pinpoints in each diagram correspond to a singular

point of the bifurcation diagram. The intersection of two curves corresponds to a situation

in which two turning points of the bifurcation diagram exist at the same time.
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Figure 4.10: The phase curves of (2.2) (left) and configurations of (2.3) (right) for

γ = 0.75π, α = −0.25π and p = 20.
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Figure 4.11: Partition of p− α plane for γ = 0.

4.2 Investigation of bifurcation

According to the discussion results in 4.1, we can divide the points on the curves in bifur-

cation diagrams geometrically into four kinds:

1. Regular point, the corresponding p has a neighborhood, in which the number of ω0

keeps not changed.

2.) Turning point, the corresponding point (p̄, ω̄0) has a neighborhood U , denoting the

number of ω0 for p < p̄ (p > p̄) with nl(nr) in U respectively, then |nr − nl| = 2.

3. Bifurcation point, at which two different curves meet together with different tangents.

4. Hysteresis point, at which the branching curve has a vertical tangent and the number

of ω0 keeps the same in a small neighborhood of it.
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Figure 4.12: Partition of p− α plane for γ = 0.25π.
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Figure 4.13: Partition of p− α plane for γ = 0.5π.

There are different analytic definitions about the above classification. We use the following

definition (see for example [32]).

Definition 4.2 A point (Ψ0, λ0) is a simple stationary bifurcation point of the equation

F (Ψ, λ) = 0,

where Ψ ∈ IRn, λ ∈ IR, F : IRn×IR −→ IRn is sufficiently smooth, if the following conditions

hold:

(1). F (Ψ0, λ0) = 0,

(2). rankF ′
Ψ(Ψ0, λ0) = n− 1,

(3). F ′
λ(Ψ0, λ0) ∈ RangeF ′

Ψ(Ψ0, λ0),

(4). exact two branches of stationary solutions intersect at point (x0, λ0) with two different

tangents.
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Figure 4.14: Partition of p− α plane for γ = 0.75π.
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Figure 4.15: Partition of p− α plane for γ = π.

Definition 4.3 A point of (Ψ0, λ0) is a turning point of stationary solution of the equation

F (Ψ, λ) = 0, where F is the same as in last definition, if the following conditions hold:

(1).,(2). are the same as in last definition,

(3). F ′
λ(Ψ0, λ0) /∈ RangeF ′

Ψ(Ψ0, λ0), or rank(F ′
Ψ(Ψ0, λ0)|F ′

λ(Ψ0, λ0))

= n,

(4). there is a parameterization Ψ(σ), λ(σ) with Ψ(σ0) = Ψ0, λ(σ0) = λ0

and d2λ(σ0)
dσ2 6= 0.

For understanding of definition 4.2 we can simply consider F (Ψ, λ) = Ψ3 − λΨ as an

example, here F : IR × IR −→ IR. (Ψ0, λ0) = (0, 0) satisfies (1), F ′
Ψ(0, 0) = 0, that is

rankF ′
Ψ(0, 0) = 1 − 1 = 0. F ′

λ(0, 0) = 0 ∈ RangeF ′
Ψ(0, 0), so condition (2) and (3) are

satisfied, from the following figure we see (4) is also satisfied. That is a pitchfork bifurcation

point is a simple stationary bifurcation point.

For definition 4.3 we consider F (Ψ, λ) = Ψ2 − λ, conditions (1),(2) are true at (Ψ0, λ0) =
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(0, 0). Now F ′
λ(0, 0) = −1 /∈ RangeF ′

Ψ(0, 0) = {0}. If we let δ = Ψ, λ = δ2, then

δ = 0 corresponds to (0, 0), d2λ(0)
dδ2

= 2, so (3), (4) are true, (0, 0) is a turning point for

F (Ψ, λ) = Ψ2 − λ.

We give an explanation to the conditions in these two definitions: For branching point
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Figure 4.16: The bifurcation diagrams of Ψ3 − λΨ = 0 (a) and Ψ2 − λ (b).

the preliminaries of (1). and (2). in both definitions are obvious, because at these points

the uniqueness of Ψ to λ is invalid. Without loss of generality, let λ be (n+1)st component

of Ψ, say Ψn+1 = λ. Now F (Ψ, λ) =: F (Ψ̂) = 0 includes n equations with n+1 unknowns,

Fi(Ψ1,Ψ2, ...Ψn,Ψn+1) = 0, (i = 1, 2, ..., n), and

[

∂F

∂Ψ
,
∂F

∂λ

]

=

[

∂F

∂Ψ1
,
∂F

∂Ψ2
, ...,

∂F

∂Ψn
,

∂F

∂Ψn+1

]

.

Now we take one of the n + 1 components as a parameter, say Ψk = ς. Then the rest

variables Ψ1,Ψ2, ...,Ψk−1,Ψk+1, ...,Ψn,Ψn+1 depend on ς with a jacobian matrix by moving

the kth column from
[

∂F
∂Ψ ,

∂F
∂λ

]

. As long as

rank

[

∂F

∂Ψ
,
∂F

∂λ

]

= n,

the existence of such k is guaranteed. Removing the kth column a nonsingular square

matrix gives
[

∂F

∂Ψ̌

]

:=

[

∂(F1, F2, ..., Fn)

∂(Ψ1, ...,Ψk−1,Ψk+1, ...,Ψn+1)

]

,

where Ψ̌ = (Ψ1, ...,Ψk−1,Ψk+1, ...,Ψn+1)
>. That means if we take Ψk as bifurcation pa-

rameter, the branching (turning) point is removed, as the implicit function theorem works
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again to Ψ̌. The geometrical interpretation is: the bifurcation diagram Ψ vs ς is obtained

by rotating the bifurcation diagram Ψ vs λ to 900, then the turning point disappears. This

situation is reflected in conditions (3). and (4). of definition 4.3. For bifurcation point, we

are not able to remove it by rotating the bifurcation diagram to 900, or in other words, we

could not get a nonsingular matrix by moving a single column from
[

∂F
∂Ψ ,

∂F
∂λ

]

. It means

there are ci such that

F ′
λ =

∂F

∂Ψn+1
=

n
∑

i=1

ci
∂F

∂Ψi
,

it means ∂F
∂λ ∈ RangeF ′

Ψ. This is the third condition in definition 4.2, the condition (4)

is simply from the geometrical consideration. From the explanation of the conditions in

the two definitions one can easily see the geometrical difference between turning point and

bifurcation point.

Among these four kinds of points, turning point and bifurcation point, especially bifurca-

tion point is frequently given a special consideration, because the character of phase curve

of (2.2) and configuration of (2.3) will change qualitatively at these points.

From figure 4.17, we see the end manifold turns as p increases, in this procedure more

intersections are born. So in our study on bifurcation, we must take the dependence of

the end manifolds on p into account. We first discuss some special cases. As shown in

bifurcation diagrams obtained in last section, the situation for γ = 0 is very special. As

the system is symmetric, the bifurcation diagrams for α = π+4α and α = π−4α,4α > 0

are also symmetric. So α = 0 and α = π are two limit cases.

For γ = 0, α = 0, the initial manifold is the vertical line Ψ = π, the target manifold is

the Ψ-axis, it is fixed for any p > 0. From the phase portrait we know there are two

possibilities for orbits of (2.2) to start from (π, 0) to reach the target manifold, namely

saddle point (π, 0) and the lower separatrix from (π, 0) to (−π, 0). But the transit ‘time’

along the separatrix is infinity, so for any finite p > 0 it is not the phase curve of (2.2). The

unique solution is therefore the p-independent saddle point, which corresponds to ω0 = 0.

In bifurcation diagram it is represented by the p-axis (or ω0 = 0).

For γ = 0, α 6= 0, the possible phase curves of (2.2) are p-dependent, because the transit

time is
√
p, different p will correspond to different phase curves. Or in other words, differ-

ent p correspond to different ω0. From the bifurcation diagrams we know γ = 0, α = 0 is

the only case exhibiting one p−independent equilibrium.

Now we discuss the case of γ = 0, α = π, the initial manifold and target manifold are Ψ′-

and Ψ- axis respectively. Obviously (0, 0) is a solution of (2.2) for any p > 0. The end

manifold is symmetric to (0, 0), and it intersects with Ψ- axis transversally from the third
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Figure 4.17: A sample phase portrait of (2.2) with the initial manifold (vertical

dash-dotted line), five different end manifolds (thick curves) corresponding to p =

0.5,p = 4,p = 18,p = 40,p = 100 respectively, the end manifolds listed upwards for

increasing p are drawn in the same sort of lines as the target manifolds.
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quadrant to the first quadrant if p is small. If for big p (2.2) has solutions other than (0, 0),

then the corresponding ω0 must be born in pairs, one is positive and another is negative,

they have the same absolute value. The new ω0 are born in the following manner: for small

p the end manifold intersects with the Ψ-axis transversally from the third quadrant to the

first quadrant, as p increases, the end manifold approaches a situation that the manifold

intersects with the Ψ- axis at (0, 0) with its tangent parallel to the Ψ-axis. As p increase

further, the end manifold intersects the Ψ-axis transversally again, but from the second

quadrant to the fourth quadrant, as other parts of the end manifold are still in the third

and the first quadrant, then two more intersections are produced form (0, 0). So for this

case we have the conclusion: when γ = 0, α = π, (2.2) has an odd number of solutions, the

singular points of its bifurcation diagrams are all pitchforks. All new curves in bifurcation

diagram are first bifurcated from pitchfork, so these pitchforks together with the curves

passing them form a cluster of curves opening to the right and no secondary bifurcation.

Now we try to explain that it is the only case for α = π that the bifurcation diagram has

only pitchforks as its singular points when γ = 0 is fixed. When α 6= π, the initial manifold

is π − α and the target manifold is still the Ψ-axis, without loss of generality, we take

0 < α < π. All possible phase curves of (2.2) lie in the zone bounded by the separatrix.

For small p, the end manifold intersects with the Ψ-axis once transversally, the intersection

point corresponds to a positive ω0. This kind of intersection will exist for any p > 0, as

at this kind of point the end manifold intersects the Ψ-axis transversally, there will be no

new intersections born from these points. In bifurcation diagram the corresponding ω ′
0s lie

on a curve. When p increases further, new intersections may be produced, but they could

only be produced in the following way: As p increases, the end manifold approaches to a

situation gradually for p = p1, in which the end manifold meets the Ψ− axis from below

with its ‘nose’, one new phase curve is produced, now there are two intersections altogether.

When p > p1, this new intersection splits into two, now there are three intersections, so p1

corresponds to a turning point in the bifurcation diagram. If p increases further, the new

intersection will be produced in the same way as discussed above. We show this procedure

by figure 4.18. Therefore the bifurcation diagrams for γ = 0 and different α have only

turning points as their singular points.

As γ = 0, α = π is a special case and has the above character. We intend to discuss the bi-

furcation diagrams for (γ, α) 6= (0, π), but (γ, α) is near to (0, π). As the case γ = 0, α 6= π

is already discussed above, we now discuss the case γ 6= 0, α = π. The initial manifold is

now Ψ = γ, the target manifold is Φ = − 2γ√
p . When p is very small, the target manifold lies

below the lower part of the separatrix, the end manifold will intersect the target manifold
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Figure 4.18: The end manifolds for γ = 0, α 6= π with increasing p along (1,1)-(1,2)-

(2,1)-(2,2)-(3,1)-(3,2)-(4,1)-(4,2).
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Figure 4.19: The end manifolds for very small γ and α = π with increasing p along

(1,1)-(1,2)-(2,1)-(2,2)-(3,1)-(3,2).

transversally, and the corresponding ω0 < 0. This kind of intersection will always exist for

p > 0, the corresponding ω′
0s lie on a curve below the p-axis in pω0-plan. When p grows,

the target manifold moves upwards. After p = γ2

cos2 (γ/2)
, part of the target manifold lies

above the lower part of the separatrix and it is possible for an orbit to start from a point

on part of the initial manifold lying in the zone bounded by the separatrix to reach the

target manifold and to produce new intersection. But as the discussion given before, a new

intersection is born first at the moment when the end manifold meets the target manifold

and is parallel to it, then this new intersection splits into two, that is, the corresponding

new ω′
0s can be produced only from turning points.(see figure 4.19). The bifurcation dia-

gram has therefore only turning points as its singular points.

With the detailed discussion on the end manifold, we can distinguish the difference be-
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tween the bifurcation diagrams for γ = 0, α is close to π and for α = π, γ is close to 0.

The turning points for γ = 0, α 6= 0 and the curves passing these points form a cluster

with the character that the curve passing the turning point corresponding to bigger p lies

in the area bounded by the curve passing the turning points corresponding to smaller p.

While for α = π, γ near zero the turning points and the curves passing these them are

divided into two groups, one group consists of the first turning point and the curve passing

it. The others form a cluster like the one in the last case. We demonstrate this result by

the following two examples.

Example 1: γ = 0, α = 0.9π.

In this case, if p is small, the end manifold has one intersection with Ψ- axis (see figure

4.20), the only ω0 is denoted by ω1
0.
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Figure 4.20: The end manifold (left), phase curves (middle) of equation(2.2) and

configurations of (2.3) for γ = 0, α = 0.9π and p = 2.

As p increases, ‘noses’ are formed to the left of the first intersection below the Ψ-axis, they

turn clockwise when p increases, at a certain value p2 of p, one of them meets the Ψ-axis

from below (see figure 4.21) with ω0 = ω2
0, then it splits into two, so ω2

0 corresponds to a

turning point.
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Figure 4.21: The end manifold (left), phase curves (middle) of equation(2.2) and

configurations of (2.3) for γ = 0, α = 0.9π and p = 4.01918.

The two new values of ω0, denoted by ω2,1
0 < ω2,2

0 , are both less than ω1
0. As p increases

from p2, the ‘nose’ turns further (see figure 4.22) and then meets the Ψ-axis again from

above for some p = p3 (see figure 4.23), the corresponding ω3
0 lies between ω2,1

0 and ω2,2
0 .
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As p increases from p = p3, the intersection corresponding to p3 splits into two, which

correspond to two values ω3,1
0 < ω3,2

0 , so ω3
0 corresponds also to a turning point, which

locates in the area bounded by the bifurcation curve passing the first turning point.
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Figure 4.22: The end manifold (left), phase curves (middle) of equation(2.2) and

configurations of (2.3) for γ = 0, α = 0.9π and p = 5.
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Figure 4.23: The end manifold (left), phase curves (middle) of equation(2.2) and

configurations of (2.3) for γ = 0, α = 0.9π and p = 28.336403.
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Figure 4.24: The end manifold (left), phase curves (middle) of equation(2.2) and

configurations of (2.3) for γ = 0, α = 0.9π and p = 35.

Following this procedure we get the conclusion: equation (2.2) for γ = 0, α = 0.9π can

have any number of tuning points with p ∈ [0, pe], provided pe is sufficiently large. The

curves passing these turning points do not meet and their positions follow the following

role: the bifurcation curve passing the turning point corresponding to pi lies in the area

bounded by the bifurcation curve passing turning point corresponding to pi−1, (pi > pi−1).
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Figure 4.25: Bifurcation diagram of (2.2) for γ = 0, α = 0.9π.

So the bifurcation diagram for γ = 0, α = 0.9π has the form as shown in figure 4.25.

Example 2: γ = 0.1, α = π. In this case, for small p, the end manifold intersects with

the horizontal line Ψ′ = − 2γ√
p only once (see figure 4.26), the corresponding values of p

and ω0 are denoted by p1 and ω1
0. As p increases, ‘noses’ are formed above the horizontal
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Figure 4.26: The end manifold (left), phase curve (middle) of equation(2.2) and

configuration of (2.3) for γ = 0.1, α = π and p = 2.

line right to the first intersection and they turn clockwise as p increases and one of them

meets the horizontal line to the right of the first intersection from above for some certain

p2 (see figure 4.27), the corresponding value of ω0 is denoted by ω2
0. As p increases from

p2, the ‘nose’ turns and the intersection splits into two, the corresponding values of ω0 are

denoted by ω2,1
0 < ω2,2

0 , they are both greater than ω1
0, then ω2

0 corresponds to a turning

point (see figure 4.28).
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Figure 4.27: The end manifold (left), phase curves (middle) of equation(2.2) and

configurations of (2.3) for γ = 0.1, α = π and p = 2.71368.
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Figure 4.28: The end manifold (left), phase curves (middle) of equation(2.2) and

configurations of (2.3) for γ = 0.1, α = π and p = 4.

As p increases further, another ‘nose’ meets the horizontal line from above for some p3, the

corresponding ω3
0 satisfies ω1

0 < ω3
0 < ω2,1

0 (see figure 4.29 ). When p > p3, the intersection
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Figure 4.29: The end manifold (left), phase curves (middle) of equation(2.2) and

configurations of (2.3) for γ = 0.1, α = π and p = 25.61047.

splits into two, the corresponding ω3,1
0 , ω3,2

0 satisfy

ω1
0 < ω3,1

0 < ω3,2
0 < ω2,1

0 ,

so ω3
0 corresponds to a turning point, but this turning point lies outside of the area bounded

by the bifurcation curve passing the first turning point. When p continues to increase, the

end manifold meets the horizontal line for the fourth time for some p = p4. Denoting the

corresponding value of ω0 with ω4
0, then we have:

ω1
0 < ω3,1

0 < ω4
0 < ω3,2

0 < ω2,1
0 ,
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Figure 4.30: The end manifold (left), phase curves (middle) of equation(2.2) and

configurations of (2.3) for γ = 0.1, α = π and p = 30.
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Figure 4.31: Bifurcation diagram of (2.2) for γ = 0.1, α = π.

when p > p4, the intersection splits into two, so ω4
0 corresponds to a turning point. Denoting

the corresponding values of ω0 by ω4,1
0 , ω4,2

0 , then we have

ω1
0 < ω3,1

0 < ω4,1
0 < ω4,2

0 < ω3,2
0 < ω2,1

0 ,

that means the turning point corresponding to ω4
0 is located in the area bounded by the

bifurcation curve passing the second turning point. After the second turning point, the

turning point for pi is located in the area bounded by the bifurcation curve passing the

turning point for pi−1 (i = 4, 5, 6...). So the bifurcation diagram for γ = 0.1, α = π is as

shown in figure 4.31. From the discussion of the two cases, we see, if γ, α is slightly different

from 0, π, the corresponding singular points of the bifurcation diagrams are only turning

points. In detail, the curves passing these turning points of (2.2) for γ = 0, α = π−4α(4α
is very small) are in one group, opening to the right, the bifurcation curve which crosses
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Figure 4.32: The undeformed arcs with γ = 0.5π, α = −0.289521π (left) and

0.84978675π (right).

the turning point corresponding to larger p is located in the area bounded by the curves

which cross the turning points corresponding to smaller p. While the curves passing the

turning points for γ = 4γ(4γ > 0 is very small) and α = π consists of two groups, one

group consists only one curve passing a turning point, the another group consists of the all

other curves passing the other turning points and it has the same character as the group

for γ = 0, α = π −4α.

For the discussion of bifurcation points which belong to the system for γ, α are far from

0, π, we take γ = π
2 for example. The bifurcation diagrams show obviously there are two

bifurcation points, their numerical coordinates (α, p) are (−0.289521π,

23.394) := (αb1, pb1) and (0.84978675π, 3.335735) := (αb2, pb2) respectively. The unde-

formed arcs for these two values of α are sketched in 4.32. The manifolds, phase curves

and configurations for values of α and p lie near (αb1, pb1) are illustrated in figure 4.33

(α = αb1).

When the values of α and p lie near (αb2, pb2), the corresponding diagrams are shown in

figure 4.34 (α = αb2).

In figure 4.33 we can see that, if |p − pb1| is very small and p ≤ pb1, the corresponding

system (2) has three phase curves, when |p − pb1| is very small and p > pb1, system

(2) has 5 phase curves, that is, when p passes through pb1 two extra phase curves (also

configurations) appear near the one which corresponds to the bifurcation point. Bifurcation

point (αb1, pb1) is of pitchfork type (see [91]). With the same discussion for (αb2, pb2) and

referring to figure 4.34, we see that, when p is near and less than pb2, system (2) has three

phase curves, the two lower ones become closer and closer to each other in the course

of p approaching to pb2 and coincide into one when p = pb2, which splits into two again

when p increases further. It means that when p passes through pb2 one phase curve (also

configuration) disappears. Point (αb2, pb2) is of x-type. This is the qualitative difference
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Figure 4.33: Final manifolds, phase curves and configurations for γ = 0.5π, α =

−0.289521π, p takes two different values standing above the diagrams.

of the two bifurcation points.

From the bifurcation diagrams we see: for each fixed γ > 0 and α ∈ [−0.5π, 1.5π) , p ∈
[0, 50], there are two bifurcation points, one is of pitch-fork form and the other of X form.

γ = 0 is a special case, the two bifurcation points are both of pitch-fork form and we take

γ = 0 as a reference, because the p−ω0 relation diagrams are symmetrical about α = π and

the two bifurcations correspond to same value of α. The bifurcation points change with γ

and α as follows: The left bifurcation point for γ = 0, α = π becomes X-form for γ > 0

and the corresponding α decreases from π when γ changes from 0 to π. While the right

bifurcation for γ = 0, α = π keeps pitch-fork type for γ > 0 and the corresponding α varies

from π through 1.5π(the corresponding system (2.2) is identical to that for α = −0.5π), 0

to 0.5π.
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Figure 4.34: Phase curves and configurations for γ = 0.5π, α = 0.84978675π, p takes

three different values standing above the diagrams.

4.3 Theoretical study of system 2.2 for γ = π
2 and

α = ±π
2

In order to give a theoretical description to the method used in investigation of bifurcation

diagram of system (2.2) and compare the result obtained, we take γ = π
2 , α = ±π

2 for

example, which correspond to the deformation of the half ring under the force acting

vertically at its free end.

4.3.1 Phase curve discussion of (2.2) for α = π
2

From system (2.2), when γ = α = π
2 , the corresponding system (2.2) is :

Ψ′′ = − sin Ψ,Ψ(0) = π,Ψ′(
√
p) = − π√

p
.

and the energy integral is now

Ψ′2 = ω2
0 − 4 cos2

Ψ

2
.
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Figure 4.35: Possible phase curves of (2.2) for γ = π
2
, α = π

2
.

As the phase curve (or trajectory) starting at (π, ω0) could not meet the separatrix (except

the separatrix itself), all possible phase curves lie below the separatrix , that is, all possible

ω′
0s are negative. We show the case in figure 4.35, in this figure the phase curves numbered

with 1, 2, 3, 4 are chosen in the following way: phase curve 1 starts from a point above the

horizontal line Ψ′ = − π√
p , it is parallel to the horizontal line at its end point, that means it

is not possible for the phase curves above it to meet the horizontal line. The phase curve 2

is parallel to the horizontal line at both its start and end points, so the phase curves below

it have no chance to meet the horizontal line. Therefore beside phase curves 1, 2, the other

possible phase curves must lie between these two phase curves, or the start points of other

possible phase curves must be located between the start points of 1 and 2 on the vertical

line Ψ = π. Phase curves 3, 4 in figure 4.35 are representatives of the possible phase curves

with 3 meets the horizontal line once and 4 meets it twice.

Let

Ψ′(
√
p) = − π√

p
= ω1,

the possible ω0 satisfies

ω1 ≤ ω0 ≤ ω̄0,
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here (π, ω̄0) is the start point of the phase curve which ends at (0, ω1). So

ω2
1 = ω̄0

2 + 4

and therefore

− π√
p
≤ ω0 ≤ −

√

π2

p
− 4.

For trajectory 1 in figure 4.35, let

k =
2

√

ω2
0 + 4

, u =
Ψ

2
,

then

u′ = −1

k

√

1− k2 sin2 u, u(0) =
π

2
, u′(
√
p) = − π

2
√
p

and

t = −k
∫ u(t)

π
2

du
√

1− k2 sin2 u
.

The transit ‘time’ along trajectory 1 T1 =
√
p is equivalent to

√
p = k

∫ π
2

0

du
√

1− k2 sin2 u
= kK(k2).

ω̄0 =
√

π2

p − 4 gives k =
2
√
p

π , thus

K(k2)) =
π

2
.

But

K(k2) =

∫ π
2

0

du
√

1− k2 sin2 u
>

∫ π
2

0
du =

π

2
.

This means trajectory 1 does not exit.

Along trajectory 2,

ω0 = ω1 = − π√
p
, u(0) =

π

2
, u(
√
p) = −π

2
,

so the implicit expression of the trajectory is

t = −k
∫ u(t)

π
2

du
√

1− k2 sin2 u
.

The transit ‘time’ along it T2 =
√
p is equivalent to

2kK(k2) =
√
p,

where

k =
2

√

ω2
0 + 4

=
2

√

ω2
1 + 4

=
2
√
p

√

4p+ π2
.
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The above equation can be satisfied for relatively large p, it implies that trajectory 2 exists

for some p.

Along trajectory 3 we have

−k
∫ u3

π
2

du
√

1− k2 sin2 u
=
√
p = k(K(k2)− F (u3, k

2)).

and

π2

4p
=

1

k2
(1− k2 sin2 u3).

From the above two equations we get

K(k2)− F (u3, k
2) =

π

2
√

1− k2 sin2 u3

,

or
∫ π

2

u3

√

1− k2 sin2 u3
√

1− k2 sin2 u
du =

π

2
,

the equality is true for some 0 < u3 <
π
2 . So trajectory 3 always exists.

With the same consideration, for trajectory 4 we have

√

1− k2 sin2 u4K(k2) +

∫ u4

0

√

1− k2 sin2 u4
√

1− k2 sin2 u
du =

π

2
.

Because the left side of the above expression is greater than π
2 when u4 = 0, and when

u4 = π
2 , it is equal to

2
√

1− k2K(k2) =
2|ω0|

√

ω2
0 + 4

K(k2),

while ω0 can be very small when p is sufficiently big, so the left side of the discussed

expression may be smaller than π
2 , that means, the discussed equation can be satisfied for

some relative big p or in other words, trajectory 4 can exist. Following the discussion for

trajectory (4), we can imagine that for even bigger p, there could be more solutions other

than these three.

The discussion result on the phase curves of (2.2) and further configurations of (2.3) for

γ = α = 0.5π, p = 25.2691 are shown in figure 4.36.

Recalling the bifurcation diagram for γ = α = π
2 in last section, we see, the theoretical and

numerical results are exactly identical.
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Figure 4.36: The phase curves of (2.2) (left) and configurations of (2.3) for γ = α =

0.5π and p = 25.2691. The aspect ratio of this figure is not 1.

4.3.2 Phase curve discussion of (2.2) for α = −π
2

When α = −π
2 , the energy integral in section 3 is now the following expression with the

corresponding boundary conditions:

Ψ′2 = ω2
0 + 2(cos Ψ− 1) = ω2

0 − 4 sin2 Ψ

2
,

Ψ(0) = 2π,Ψ′(
√
p) = − π√

p
:= ω1. (4.2)

As the separatrix corresponds to ω0 = ±2, and ω1 = −2 implies p = π2

4 , we discuss the

phase curves of system (4.2) in three cases.

Case I. p < π2

4 . We have ω1 < −2. In this case, the principal phase curves are shown in

figure 4.37, in this figure the phase curves are so chosen as for α = π
2 .
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-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

2

1
a

b

-2

Figure 4.37: Possible phase curves of (2) for γ = π
2
, α = −π

2
and p < π2

4
.

From this figure, we see several possibilities for the phase curves starting at (2π, ω0) on the
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vertical line Ψ = 2π, the end points of which lie on the horizontal straight line Ψ′ = − π√
p .

Our aim is to determine which possibility can come true. It is necessary that the possible

ω0 satisfy the inequality:

ω0 ≤ ω0 ≤ ω1

where ω0 corresponds to the final point (π, ω1): ω
2
1 = ω2

0 − 4. Therefore

−2

√

1 +
π2

4p
≤ ω0 ≤ −

π√
p
.

Below the separatrix

ω2
0 > 4, k =

2

|ω0|
,

let u := Ψ
2 , then system (4.2) is now

u′ = −1

k

√

1− k2 sin2 u, u(0) = π, u′(
√
p) = − π

2
√
p
. (4.3)

Along trajectory 1, ω0 = ω0, the transit ‘time’ is

T1 = −k(p)
∫ π

2

π

1
√

1− k2 sin2 u
du

u:=π−v
= k(p)

∫ π
2

0

1
√

1− k2 sin2 v
dv

= k(p)K(k2(p)),

where

K(k2) :=

∫ π
2

0

1
√

1− k2 sin2 u
du

and

k(p) =
1

√

1 + π2/4p

or

p =
π2k2

4(1− k2)
.

If trajectory 1 exist, then

T1(p) =
√
p

or

√

1− k2K(k2) =
π

2
. (4.4)

Since
π

2
< K(k2) <

π

2

1√
1− k2

, (k 6= 0)



4.3. THEORETICAL STUDY OF SYSTEM 2.2 FOR γ = π
2

AND α = ±π
2

57

(4.4) can not be true, i.e., trajectory 1 does not exist.

Along trajectory 2, with

k =
2

|ω1|
, ω0 = ω1,

T2(p) = −k
∫ 0

π

1
√

1− k2 sin2 u
du = 2kK(k2) =

√
p

is equivalent to

K(k2) =
π

4
,

which is not true owing to K(k2) > π
2 . So trajectory 2 does not exist either. Thus, all

possible phase curves lie between trajectories 1 and 2, or the corresponding possible ω0

satisfy

ω0 < ω0 < ω1.

For trajectory a in figure 4.37,

Ta = −k
∫ u1

π

1
√

1− k2 sin2 u
du

with
π2

4p
=

1

k2
(1− k2 sin2 u1).

For trajectory b

Tb = −k
∫ u2

π

1
√

1− k2 sin2 u
du

= k

∫ π

0

1
√

1− k2 sin2 u
du− Ta

= 2kK(k2)− Ta.

From figure 4.37 we know,

Ta = k

∫ u2

0

1
√

1− k2 sin2 u
du = kF (u2, k

2).

Ta =
√
p means

F (u2, k
2) =

π

2

1
√

1− k2 sin2 u2

or
∫ u2

0

√

1− k2 sin2 u2
√

1− k2 sin2 u
du =

π

2
.

Since

0 ≤ u ≤ u2 <
π

2
⇒

√

1− k2 sin2 u2
√

1− k2 sin2 u
< 1,
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it follows
π

2
=

∫ u2

0

√

1− k2 sin2 u2
√

1− k2 sin2 u
du < u2 <

π

2
.

So trajectory a can not exist.

In order to discuss the existence of trajectory b, we define the following function

g(u2) = 2K(k2)− F (u2, k
2)− π

2

1
√

1− k2 sin2 u2

,

with
π2

4p
=

1

k2
(1− k2 sin2 u2).

Then

g(0) = 2K(k2)− π

2
=

∫ π
2

0
(

2
√

1− k2 sin2 u
− 1)du > 0,

g(
π

2
) = 2K(k2)−K(k2)− π

2

1√
1− k2

=

∫ π
2

0
(

1
√

1− k2 sin2 u
− 1√

1− k2
)du < 0.

Thus, ∃ some u2, with 0 < u2 <
π
2 , such that g(u2) = 0. For this u2, Tb =

√
p. Furthermore,

as u2 = 0 means π
4p = 1

k2 , we have

−k
∫ 0

π

1
√

1− k2 sin2 u
du = 2kK(k2) ≥ kπ > √p.

From the above discussion, we know that this kind of u2 corresponds to the trajectory b

in figure 4.37.

Case II. p = π2

4 . The discussion is the same as that for p < π2

4 .

Case III. p > π2

4 , we have ω1 > −2. There are several possibilities for both ω0 > 0 and

ω0 < 0 (see figure 4.38).

First we investigate the existence of trajectories 3 and 4 in figure 4.38. Trajectory 3 lies

on the separatrix, so

ω0 = −2, ω1 = − π√
p
.

From equation (4.3) we have

ω2
1 =

π2

p
= ω2

0 + 2(cos Ψ1 − 1) = 4 cos2
Ψ1

2
,

or,

cos2 u3 =
π2

4p
, u3 ∈ (

π

2
, π)

cosu3 = − π

2
√
p

u3(p) = arccos (− π

2
√
p
) = π − arccos (

π

2
√
p
).
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Figure 4.38: Possible phase curves of (2.2) for γ = π
2
, α = −π

2
and p > π2

4
.

Along trajectory 3, u′ = cosu,

T3(p) =

∫ u3

π

1

cosu
du = log (

2

π

√
p(1 +

√

1− π2

4p
)).

So

log (
2

π

√
p) < T3(p) < log (

4

π

√
p).

If T3(p) =
√
p, then

log (
2

π

√
p) <

√
p =

π

2

2

π

√
p < log (2 · 2

π

√
p).

Because 2
π

√
p > 1, the above inequality is not true. Thus trajectory 3 does not exist.

Inside the separatrix

Ψ′2 = 2(cos Ψ− cos Ψ̂)

with cos Ψ̂ = 1− 1
2ω

2
0. Let

k2 := sin2 Ψ̂

2
, sin

Ψ

2
=: sin

Ψ̂

2
sinu.

Then we have

u′2 = 1− k2 sin2 u.

Along trajectory 4 the transit ‘time’ is

T4 =

∫ π

u4

1
√

1− k2 sin2 u
du

with
π2

4p
= k2 cos2 u4,

π

2
< u4 ≤ π.
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T4 =
√
p is equivalent to

π

2k| cosu4|
=

∫ π

u4

1
√

1− k2 sin2 u
du.

But

∫ π

u4

k| cosu4|
√

1− k2 sin2 u
du < −

∫ π

u4

k cosu
√

1− k2 sin2 u
du (4.5)

=

∫ π−u4

0

k cos v
√

1− k2 sin2 v
dv

= arcsin (k sin (π − u4)) = arcsin (sin (π − Ψ1

2
))

= π − Ψ1

2
<
π

2
.

Thus T4 =
√
p can not be satisfied or trajectory 4 does not exist.

For trajectory 5,

ω0 = ω1 = − π√
p
,

cos Ψ̂ = 1− 1

2
ω2

0 = 1− π2

2p
.

k2 = sin2 Ψ̂

2
=
π2

4p
, sin

Ψ

2
= sin

Ψ̂

2
sinu,

then we get (period for one cycle)

T5 = 4

∫ π
2

0

1
√

1− k2 sin2 u
du = 4K(k2).

While T5 =
√
p is equivalent to

4K(k2) = 4K(
π2

4p
) =
√
p,

the numerical solution of this equation is p = 40.7266. With the same discussion, we

know that trajectories 6, 7, 8 can also exist for some greater p. We illustrate part of the

discussion in this section with figure 4.39, in which the final manifold, phase curves and

configurations for p = 40.7266 are drawn.

From the above discussion, it is obvious that, the theoretical investigation supports the

results obtained from manifold method.
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Figure 4.39: Final manifold, phase curves and configurations for γ = 0.5π, α =

−0.5π, p = 40.7266.



Chapter 5

Study of stability

5.1 General related concepts

Stability and loss of stability exist in nature and in almost every area of science and

technology. The stability study of the solutions of differential equations was greatly de-

veloped by Liapunov, the stability theory and method have been modified, extended and

complemented by a great number of mathematicians and other scientists, the research

areas have been greatly widened after Liapunov. The infiltration of stability study into

non-mathematical areas makes it develop rapidly. In our study of deformation of circular

elastic arcs, we also noticed the problem of stability. Here we intend to mention some

related definitions and methods which have something to do with our theme. In the above

sections, our study based on the discussion of the pendulum equation. In our stability

study we also take the pendulum equation under consideration. As already mentioned, in

the study of stability, parameters p and γ will be given more emphasis. We introduce some

definitions for the general differential equation

dΨ

dt
= F (Ψ, t) (5.1)

where Ψ ∈ IRn, t ∈ (−∞,∞), F : IRn × IR −→ IRn is sufficiently smooth. Let Ψ(t, t0,Ψ0)

be solution of the equation satisfying Ψ(t0) = Ψ0.

Definition 5.1 (Liapunov stability) A solution Ψ̄(t) of equation (5.1) is said to be stable

if it holds the following condition: for each t0 and ε > 0, there exists a δ(ε, t0) > 0 such

that ‖Ψ0 − Ψ̄(t0)‖ ≤ δ =⇒ ‖Ψ(t, t0,Ψ0)− Ψ̄(t)‖ ≤ ε for t > t0.

This definition is frequently used in the study of dynamical system and the most popular

method suitable for this definition is Liapunov direct method or Liapunov function method

62
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(note: in some references it is known as Liapunov second method) [46],

[51], [58]. This kind of stability concerns mainly the behavior of the solution when t

keeps extremely large and the influence of the initial value on the solutions. In the course

of the study the system (or the parameters in the system) keeps generally not changed.

The stability study of this kind is often accompanied by the discussion of the orbits and is

carried out in the phase plane. This definition is belonged to Liapunov. It is a fundamental

definition of the stability of motion, work on this kind of stability is a very important

component of stability study, another part of stability is structural stability, which based

on the concepts of equivalence (see appendix 2 and [33], [34]).

Definition 5.2 Two differential equations Ψ′ = F (Ψ) and Ψ′ = G(Ψ) are said to be

topologically equivalent if there is a homeomorphism h such that h takes the orbits of one

differential equation to the orbits of the other and preserves the sense of directions in time.

In much literature if there is an above mentioned homeomorphism [23], [55] between two

differential systems then these two systems are said to have the same structure. The

following two definitions can be found in books on differential equations and bifurcations,

for instance [2] and [34].

Definition 5.3 Let Ψ′ = F (Ψ, λ) be a differential system with λ ∈ IRm,m ≥ 1. For fixed

value of λ = λ0, system Ψ′ = F (Ψ, λ0) is said to be structurally stable if there is an δ ≥ 0

such that Ψ′ = F (Ψ, λ) has the same structure as Ψ′ = F (Ψ, λ0) for all ||λ− λ0|| ≤ δ.

Definition 5.4 A solution (Ψ0, λ0, β0) of equation F (Ψ, λ, β) = 0 is said to be structurally

stable if for any smooth G, for any neighborhood U of (Ψ0, λ0, β0) and for any ε(|ε| suf-

ficiently small), the small perturbed problem F̂ε(Ψ, λ, β) = F (Ψ, λ, β) + εG(Ψ, λ, β) has a

singularity of the same type at a point in U .

Note: According to this definition, we know the simple node, saddle and focus of differen-

tial equations are structurally stable, but center is not structural stable, this can be easily

explained by consideration of eigenvalues of the corresponding singularities.

The differential equations originated from practical problems contain normally several coef-

ficients, namely branching (or bifurcation) parameter and other parameters, which describe

the mechanical characters or properties of materials. One task of the stability study of the

differential equations is to determine the effect of these parameters on the system, in other

words we intend to make clear how a given solution and qualitative structure of entire

system change with these parameters.

The stability definition of Timoschenko [82], [9], which is more related to our mathematical

model, is stated with words as follows:
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Definition 5.5 The straight form of elastic equilibrium is stable under an acting force

which means that if a lateral force is applied and a small deflection produced, the deflection

disappears when the lateral force is removed and bar returns to its straight form. If the

acting force is gradually increased, a condition is reached in which a small lateral force will

produce a deflection which does not disappear when the lateral force is removed, then the

straight form of equilibrium becomes unstable.

We illustrate this definition via a deformed elastic arc in figure 5.1. The straight form of

the arc in (a) is stable, but it is unstable in (b), (c) and (d).

P P P P

a b c d

1 2 3 4

Figure 5.1: Deformation of an elastic straight bar under acting force p.

This definition is specially used in the study of the elastic straight bars under some external

acting forces. Related to this definition, we can find some other definitions and methods

quoted in [6]. Energy method is an often used method and it is connected with the following

definition.

Definition 5.6 An equilibrium configuration of an elastic rod under conservative loads is

stable if and only if the potential energy assumes a weak proper minimum value at the

equilibrium configuration in the class of finite virtual displacement satisfying the kinetic

constraints (see figure 5.2).

The above definitions are somewhat not exact, but easy to be understood. From these def-

initions we know the stability of an equilibrium and structure stability of a system strongly

depend on the values of parameters in a system. A same equilibrium may be stable for

some value of parameters and unstable for some other value of same parameters. It is an

usual case that a very small change of parameters would bring a great perturbation to an
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Figure 5.2: Stability behavior of a heavy ball moving along a parabola.

equilibrium or a system, this phenomenon of losing stability is encountered in many areas

of applied science and technology, an overview about this situation was given by [86].

Here we intend to give some more explanation about structure stability and other defini-

tions of stability:

1. Liapunov’s stability(or stability of motion) concerns mainly the influence of a small

perturbation to the initial value on a specially indicated equilibrium or a motion. If

the displacement of the motion from a special motion remains small after a small

perturbation to the initial value, then the motion is stable, otherwise unstable, or

geometrically speaking, when all other motions starting from a small neighborhood

of the special motion remain always in a small neighborhood of the special motion.

But structural stability concerns chiefly whether the system studied keeps the same

topological characters as the unperturbed system after a small perturbation on the

parameters included in the system, while changes introduced to initial value play

no role. In this point of view the researching object of structure stability is entire

system, but stability of motion deals with a specially indicated motion.

2. In stability study on a special equilibrium or a motion and structural stability on a

system, the critical values of parameters, for which a system or an indicated motion

loses or gains (structural) stability, play a very important role. Generally speak-

ing the conditions of structural instability contain the critical value for stability of

motion.

3. Concerning the research methods used in both stability, they have also many con-

nections.

5.2 Structural stability

According to the definitions given before and the results on bifurcation diagram, we discuss

the structural stability of (2.2) in this section. In this part we take p as bifurcation
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parameter.

For structural stability of the originally straight line we have the following result

Theorem 5.1 For pendulum equation (2.2) with α = π, γ = 0 (Euler’s rod), there exist

infinite many critical values of p, the system is structurally stable with respect to the small

perturbation of p for p is different from the critical values (for p ≤ 50, there exist two

critical values of p, pc < pd).

Note: When γ = 0, α = π, our model is specially Euler’s rod. According to the bifurcation

diagram we know the two critical values pc ≈ 2.47, pd ≈ 22.2, they agree with the Euler’s

classical result on critical values pc = π2

4 , pd = 9π2

4 obtained by linearization.

The description for this result can be easily got from the bifurcation diagram 4.3, concerning

also the symmetry, the system for different p has same number of solutions and the solutions

have same characteristics, provided that the perturbation on p is small and p 6= pc, p 6= pd.

From this result we know the critical values for structural stability include values which

correspond to bifurcation points. Recalling the bifurcation diagrams for α, γ other than π,

0, we know we must take the values which correspond to turning points into consideration,

because the number of the solutions changes at these points . About structural stability

we have the following result:

(1). In pendulum equation (2.2) let γ and α be fixed, the equation is an one-parameter

system. Let Sp be the set of all p which correspond to turning points or bifurcation

points in bifurcation diagram, then the system is structurally stable for p /∈ Sp.

(2). In (2.2) let γ and p be fixed, the qualitative structure is determined by the value of α.

In the bifurcation diagram no bifurcation appears, but we meet two kinds of critical

points: 1. turning points, let the corresponding value of α = α0, the number of

solutions at this point is n0, the number of solution for α < α0(α > α0) is nl(nr), then

n0 = nl−1 = nr+1, provided that |α−α0| sufficiently small (see bifurcation diagrams

figure 8.11- 8.2 for relatively bigger p). F (Ψ, λ) = Ψ2 + λ = 0 has an equilibrium

of this kind at (0, 0). 2. hysteresis point, at this kind of point, the branching curve

in bifurcation diagram has a vertical tangent. F (Ψ, λ, β) = Ψ3 − λ + βΨ = 0 has

an equilibrium of this kind at β = 0 (see figure 5.3). As shown in the figure the

number of ω0 keeps the same in a small neighborhood of α0. Let Sα be the set

of all α which correspond the above mentioned turning points, then the system is

structurally stable when α /∈ Sα.
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Figure 5.3: The formation procedure of a hysteresis (in the middle) defined by Ψ3−
λ + βΨ = 0 for β < 0 (left), β = 0 (middle) and β > 0 (right).

(3). Let α and p be fixed, there is no bifurcation point of pitchfork type, but turning point

(both types) and bifurcation point of X-type. Let Sγ denote the set of all γ which

correspond to turning points and bifurcation points, then the system is structurally

stable if γ /∈ Sγ .

This conclusion indicates that bifurcation points, turning points are critical points of struc-

tural stability, the corresponding parameters consist of the boundary of structural stability

of (2.2) on the parameter plane, so the parameter partition diagram figures 4.11- 4.15 are

also diagrams for structural stability. For fixed γ, when parameter pair (p, α) is located on

the curves, then the corresponding system (2.2) is not structurally stable.

Note: Here we should claim that the study about structural stability of (2.2) was based on

only mathematical consideration, we did not take the practical background of the model

into account anymore. Sometimes there are some differences between mathematical sta-

bility and practical stability, a solution exists following mathematical consideration and

calculation, but it may not appear in practical observation or a simulation experiment.

5.3 Stability of equilibrium of (2.2)

On stability of equilibrium of differential systems, the most frequently used method is

Liapunov direct method and many delicate modifications, but it is not always an easy work

to build a suitable Liapunov function for a given system, which can be used to determine

the stability of an equilibrium. On stability study of equilibrium of elastic system we

intend to mention the three frequently used methods [6]: 1. adjacent method of Euler,

it is based on the fact that a stable equilibrium should exist and keep its qualitative and

motion distinction under a small perturbation, that is it will not split into more than one

equilibrium or join with other equilibrium, so the key point of the method is to find the
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boundary of stability- or critical value of bifurcation parameter. 2. energy method, this

method is based on the fact that in a dynamic system, the potential energy of a system

takes a minimum value at a stable equilibrium, this is geometrically shown by a heavy ball

moving along a parabola(see figure 5.2), visually it is clear that a small perturbation can

make a small displacement from the lowest position, but the ball will turn back to the lowest

point at end. The key point of this method is therefore to construct an energy functional

and to find its minimum value from all possible equilibriums. 3. dynamic method, this

method was based on Liapunov direct method, the key point of this method is to construct

a Liapunov function which is positive (or negative) definite and its derivative along the orbit

is negative (positive) definite in a sufficiently small neighborhood of an equilibrium. These

three methods are proved to be especially useful for the stability study of constant solutions.

In rod theory they are used in the investigation of the stability of trivial equilibrium which

corresponds to originally straight rod. Except these methods we mention some other

work: Drawshi and Betten [22] discussed the stability of equilibrium with deformation

maps geometrically, Suire and Cederbaum [79] gave explanation to stability by means of a

numerical calculation. Afagh and Lee [1] represented their work on stability with eigenvalue

and Galerkin method. Wu’s [95] work on stability study based on dynamic method and

eigenvalue of linearization part at equilibrium. Bhallacharyya [10] used numerical method

in stability study related to a Mathieu-Hill equation:

d2y

dψ2
+ F (ψ)y = 0,

where F (ψ) = R(ψ)− P 2(ψ)− dP (ψ)
dψ is a even, π-periodic function of ψ.

In our study on large deformations of elastic circular arcs, γ can take any value in [0, π]. If

γ 6= 0, there is no more trivial equilibrium for (2.2), the above mentioned methods might

not be used directly in the stability study in our model.

In this section we will introduce a method to stability study of an equilibrium of a general

differential system. The idea comes from the work on the stability of steady-state solution

(or stationary solution) of partial differential equations, see for example [80].

In the stability study of the solution of given autonomous ordinary differential equation of

first order:
dΨ

dt
= F (Ψ, λ),

we obtain the singular point of the equation by solving equation F (Ψ, λ) = 0, the stability

of the singular points can be determined by several known methods, the most frequently

used way should be Liapunov method and linearization. For instance, let (Ψ0, λ0) be a

singular point of the equation, that is F (Ψ0, λ0) = 0. After making a transformation
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Ψ̂ = Ψ−Ψ0, we get dΨ̂
dt = DF (Ψ0, λ0)Ψ̂+O(Ψ̂2), here DF (Ψ0, λ0) is Jacobian matrix of F

at point (Ψ0, λ0). If all eigenvalues of DF (Ψ0, λ0) have negative real parts, then (Ψ0, λ0)

is stable. If at least one of the eigenvalues has positive real part, then (Ψ0, λ0) is unstable.

If no eigenvalue has positive part, but some eigenvalue has zero real part, in this case the

nonlinear term O(Ψ̂) should be considered.

If we deal with an equilibrium problem G(Ψ, λ) = 0, we could think of G(Ψ, λ) as a

controller of a motion described by the following equation:

dΨ

dt
= G(Ψ, λ),

then we can define and discuss the stability of an equilibrium of G(Ψ, λ) similarly as in

the stability study for a singular point of the equation dΨ
dt = G(Ψ, λ), that is, if (λ0,Ψ0) is

stable (unstable) as a singular point of a differential equation, we say it is stable (unstable)

as an equilibrium of G(Ψ, λ). In this consideration, an equilibrium of G(Ψ, λ) and the

singular point of the corresponding differential equation can be thought to be identical.

With the similar consideration as on the ordinary differential equation of first order, we

could carry out our study on differential equation of order 2.

Let the boundary value problem of differential equations of order two be of the following

form:

ψ′′ + F (ψ,ψ′, λ) = 0 (5.2)

here F is a smooth function of state variable ψ and its derivative ψ′ as well as parameter

λ, ′′ is the 2-order derivative with respect to s ∈ [a, b]. The boundary condition is:

B(ψ(a), ψ(b), ψ′(a), ψ′(b)) = 0.

When F : IRn × IRn × IR −→ IRn, then normally B ∈ IR2n. For solutions of (5.2), we take

them as the stationary solutions of the partial differential equation of parabolic type:

∂ψ
∂t −

∂2ψ
∂s2

= F (ψ,ψ′, λ)

B(ψ(t, a), ψ(t, b), ψ′(t, a), ψ′(t, b)) = 0.
(5.3)

It is obvious that solutions of (5.2) satisfying the boundary condition are independent

of t, they are also solutions of (5.3). The systematic theory and methods about partial

differential equations can be found in many books [24], [26], [92]. Now let ψ0(s) be a solution

of (5.2), whose stability is to be studied. We construct a partial differential equation of

parabolic type:

∂ψ
∂t −

∂2ψ
∂s2

= F (ψ,ψ′, λ), s ∈ [a, b], t > 0

B(ψ(a, t), ψ(b, t), ψ′(a, t), ψ′(b, t)) = 0, t > 0,

ψ(0, s) = ψ0(s) + ψ̃(s).

(5.4)
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Let ψ = ψ(t, s) be a solution of (5.4), then ψ0(s) is called nunstable (not unstable) sta-

tionary state (note: it is also regarded as steady state) of (5.3), if ψ(t, s) lies always in

any given neighborhood of ψ0(s) for all t > 0 provided that ψ(0, s) is sufficiently close to

ψ0(s). Or in other words (see for example reference [73]): a stationary solution ψ0(s) is a

nunstable solution of (5.3), if for every ε > 0, there is a δ > 0 such that if ||ψ̃(s)|| < δ, then

||ψ(s, t)− ψ0(s)|| < ε for all t > 0. If ψ0(s) is nunstable and there holds also the following

condition

lim
t→∞

ψ(t, s) = ψ0(s),

then ψ0(s) is said to be stable (asymptotically stable) solution of (5.4). ψ0(s) is unstable,

if we can find solutions starting arbitrarily close to ψ0(s) which leave some given small

neighborhood of ψ0(s) as t → ∞. Now we say ψ0(s) is a P -nunstable, P -stable or P -

unstable solution of (5.2) with boundary condition. Here we use P -stability to distinguish

it from other definition of stability, “P” is especially used to emphasize that this stability is

defined with the help of the Liapunov stability of a stationary solution of a corresponding

parabolic partial differential equation.

With this method the stability study of solutions of equation (5.2) is turned to the stability

study of the stationary solution of (5.3).

For study of partial differential equation (5.3) or (5.4) there are some methods available

and many publications to find. Nishinra and Fujii [53] discussed the system of reaction-

diffusion equation of the form:



















∂u
∂t = ε2 ∂

2u
∂s2

+ f(u, v),

∂v
∂t = D ∂2v

∂s2
+ g(u, v), (t, s) ∈ (0,∞)× [0, 1],

u′s = 0 = v′s, (t, s) ∈ (0,∞)I, ∂I = {0, 1},

where ε > 0 is a small parameter and D > 0. Using spectral analysis shows there exists

a unique real critical eigenvalue λ(ε) ≈ τε as τ → 0, other non-critical eigenvalues have

negative real parts independent of ε, therefore if τ < 0, the system is stable. Gardmer and

Jones [31] discussed the stability of steady state solution of the partial differential equation

of the form


















∂u
∂t = D ∂2u

∂s2
+ f(s, u, u′s), s ∈ (0, 1)

u(s, 0) = u0(s),

B0u = 0, B1u = 0.

where u ∈ IRn, f : IR2n+1 → IRn is C2, D is a positive diagonal matrix, by introduction

of a stability index ε(K), which counts the number of eigenvalues inside a simple closed
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curve K not intersecting the spectrum itself, they declared that, if K is chosen, so that it

includes the origin and a suitably large portion of the unstable half plane, then K contains

all potentially unstable eigenvalues, if this index is zero for such a curve K, the underlying

solution is stable. Cónsul and Solá -Morales [18] studied the system







∂u
∂t = ∆u, in D,

u0 = kf(u), on ∂D,

here D is a non-convex domain, 4 is Laplace operator. Under some assumption, they

got the criterion for the existence of at least one stable nonconstant equilibrium solution.

Heinemann and Poore [36], [39] studied the stability of a class of partial differential systems

originated from tubular reactors in chemical engineering.

For numerical treatment, apart from the classical methods [29], Finite Element Method is

a powerful method. Theoretically we could investigate the stability of any solution of (5.2)

with this concept of P -stability, and with the help of the existing mathematical softwares,

such asMaple,Matlab, Scilab and so on, one can be able to deal with the partial differential

equations numerically more easily than using the classical method directly. This method is

obviously developed to turn the stability study of solutions of (2.2) to the stability study

of the stationary solutions of (5.4), but inversely it gives a hint that we can also investigate

(5.3) by means of an ordinary differential system, this idea was used in [27], [28] in the

study of evolution equation of the type:

∂u

∂t
− λ∂

2u

∂s2
+
∂u

∂s
− u = 0

with boundary condition

u(0, t) = u(π, t) = 0.

Now we give a discussion to partial differential equation (5.4). Obviously each λ corre-

sponds to a new system. Now let λ be fixed. The state at t is ψ(s, t), which is a function

of s, with notation of [19], considering ψ : t −→ ψ(., t) with ψ(., t) : s −→ ψ(s, t). Writ-

ing ψ(t) instead of ψ(s, t), then ψ(t) is a function for fixed t and it has the character of

ψ(t)(s) = ψ(s, t). Then we define G(λ, .) by

G(λ, ψ) =
d2ψ

ds2
+ F (ψ,ψ′, λ),

and domain of G is defined as

D(G) = {ψ|ψ ∈ C2[a, b], B(ψ(a), ψ′(a), ψ(b), ψ′(b)) = 0}.
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As ψ(s, t) is replaced by ψ(t), we write ∂ψ
∂t as dψ

dt , thus (5.4) can be written as

dψ

dt
= G(λ, ψ), ψ(0) = ψ0. (5.5)

For each known solution of G(λ, ψ) = 0, say ψ = ψ0(λ), let u + ψ0 = ψ, then du
dt =

G(λ, u + ψ0) := Ḡ(λ, u). The stability of ψ0 or u = 0 can be stated as: 0 is P -nunstable

provided that solutions of last equation are close to 0 for all t > 0 and 0 is P -stable if it is

P -stable and u(t) −→ 0 as t −→∞ by choosing ψ(0) sufficiently small. This consideration

gives a hint that a partial differential equation could be possibly studied as an ordinary

differential equation. One of the most common methods used in stability study for ordinary

equation is linearization.

Let ψ0(s) be a solution of (5.2) whose stability is to be studied, ψ(t, s) be an any solution

of (5.4) which starts from a sufficiently small neighborhood of ψ0(s). Let

ψ̄(s, t) = ψ(s, t)− ψ0(s)

be difference of these two solutions. Substituting it into (5.3), we have

∂ψ̄

∂t
=
∂ψ

∂t
= F (ψ0(s) + ψ̄, ψ′

0(s) + ψ̄′) +
∂2ψ0

∂s2
+
∂2ψ̄

∂s2
,

The linearization of the above equation is

∂ψ̄

∂t
= ψ′′

0 + ψ̄′′ + F (ψ0, ψ
′
0) + F ′

ψ(ψ0, ψ
′
0)ψ̄ + F ′

ψ′(ψ0, ψ
′
0)ψ̄

′ s ∈ [a, b], t ≥ 0,

= ψ̄′′ + F ′
ψ(ψ0, ψ

′
0)ψ̄ + F ′

ψ′(ψ0, ψ
′
0)ψ̄

′

with homogeneous boundary condition







K0ψ̄(t, a) +K1ψ̄
′(t, a) = 0,

L0ψ̄(t, b) + L1ψ̄
′(t, b) = 0, t ≥ 0

where K0,K1, L0, L1 are obtained from B by linearization. The above equation, together

with boundary condition, constitutes a linear problem. If we let Aψ̄ := −ψ̄′′−F ′
ψ(ψ0, ψ

′
0)ψ̄−

F ′
ψ′(ψ0, ψ

′
0)ψ̄

′, the last equation can be written as ψ̄′
t+Aψ̄ = 0 and A is a linear differential

operator defined in some class of functions, which satisfy the boundary conditions. The

domain of A, D(A), may be extended to be a dense subset of some Banach space X, the

norm of it is denoted, for simplicity, with ||.||. Then ψ0(s) is an asymptotically stable

stationary solution of PDE (5.3) could be simply expressed by ||ψ̄|| → 0, t → ∞. This

can be guaranteed by the spectrum of A, if it is contained strictly in the right side of the
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complex plane [97]. We transfer the equation into an eigenvalue problem with assuming

that the above equation has solutions of the form:

ψ̄(s, t) = eδtφ(s),

substituting it into the linearization gives an eigenvalue problem for φ:



















δφ = φ′′ + F ′
ψφ+ F ′

ψ′φ′

K0φ(a) +K1φ
′(a) = 0

L0φ(b) + L1φ
′(b) = 0.

The above equation has nontrivial solutions if and only if δ is an eigenvalue of it. If all

eigenvalues have negative real parts, then ψ0(s) is P -stable, if at least one of the eigenvalues

has positive real part, then ψ0(s) is P - unstable, if no real part of δ is positive, but there

are some eigenvalues with zero real part, then they correspond to critical situation for

equation (5.2).

Now we use this method in our model. In stability study we use the equivalent equation

of (2.2):
d2Ψ

ds2
+ λ sin Ψ = 0,

Ψ(0) = π + γ − α, Ψ′(1) = −2γ.

Compared with equation (2.2), the advantage of this equivalent equation lies in the fact

that parameter λ (or p) is not involved in the boundary condition, but only involved in

the differential equation, so s lies in [0, 1] for any p. The corresponding PDE (5.3) is now:

∂Ψ
∂t − ∂2Ψ

∂s2
= λ sin Ψ, s ∈ [0, 1], t > 0,

Ψ(0, t) = π + γ − α,

Ψ′(1, t) = −2γ t > 0.

(5.6)

Let Ψ = Ψ0(s) be a solution of BVP (2.2), then the corresponding PDE (5.4) is:

∂Ψ
∂t − ∂2Ψ

∂s2
= λ sin Ψ, s ∈ [0, 1], t > 0,

Ψ(0, t) = π + γ − α,

Ψ′(1, t) = −2γ, t > 0,

Ψ(s, 0) = Ψ0(s) + Ψ̃(s).

(5.7)

Concerning the initial-boundary condition and boundary conditions of (5.7) and (2.2),

we make some assumption for the perturbation Ψ̃(s): Ψ̃(s) ∈ C2[0, 1], Ψ̃(0) = 0, Ψ̃′(1) =

0, ||Ψ̃(s)|| is very small, the situation is illustrated in figure 5.4.
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Figure 5.4: Illustration of the solutions of (5.4).

Now assume Ψ(s, t) be a solution of (5.7), and Ψ̄(s, t) = Ψ(s, t)−Ψ0(s), substituting this

expression into (5.7) yields:

∂Ψ̄

∂t
− ∂2Ψ̄

∂s2
= λ cos (Ψ0(s))Ψ̄ +O(Ψ̄2), (5.8)

provided ||Ψ̄(s, t)|| is very small. In obtaining the last equation we used the Taylor’s series

of sin (Ψ0(s) + Ψ̄(s, t)) at Ψ0(s) about Ψ̄(s, t). Neglecting the term of high order from the

last equation we get the linearized equation:

∂Ψ̄

∂t
− ∂2Ψ̄

∂s2
= λ cos (Ψ0(s))Ψ̄.

Using linearized equation to get the stability of the solutions of the original equation, we

must check if the conditions of some criteria are satisfied. Let AΨ̄ := −∂2Ψ̄
∂s2
− λ cos (Ψ0)Ψ̄,

A is linear and continuous on C2[0, 1], equation (5.8) can be written in the following form:

∂Ψ̄

∂t
+AΨ̄ = f(λ,Ψ0, Ψ̄) (5.9)

Then we are sure that the conditions in the Liapunov’s main theorem of stability theory in

Banach space [97] can be satisfied. We check this by handling with the nonlinear equation

(5.4) after the transformation Ψ̄(s, t) = Ψ(s, t)−Ψ0(s) and using notation · = ∂
∂t ,

′ = ∂
∂s ,

˙̄Ψ = Ψ′′
0 + Ψ̄′′ + λ sin (Ψ0 + Ψ̄)

= Ψ̄′′ + λ(sin (Ψ0 + Ψ̄))− sin Ψ0)

= Ψ̄′′ + λ(sin Ψ0 cos Ψ̄ + cos Ψ0 sin Ψ̄− sin Ψ0)

= Ψ̄′′ − λ sin Ψ0(1− cos Ψ̄) + λ cos Ψ0 sin Ψ̄
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= Ψ̄′′ + λ cos(Ψ0)Ψ̄ + λ cos Ψ0(sin Ψ̄− Ψ̄)− λ sin Ψ0(1− cos Ψ̄),

then from the last expression, for small Ψ̄ holds

˙̄Ψ = Ψ̄′′ + λ cos(Ψ0)Ψ̄ +O(||Ψ̄||3) +O(||Ψ̄||2) = AΨ̄ +O(||Ψ̄||3) +O(||Ψ̄||2).
(5.10)

Therefore the nonlinear term of the last expression has the character needed in the theorem

for any defined norm. For instance we could choose a Banach space like C2[0, 1] = {f :

[0, 1] −→ IR|f ′′ ∈ C[0, 1]} together with the norm

||f || =
2

∑

i=0

max
0≤x≤1

|f (i)(x)|, f (0)(x) = f(x) ∈ C2[0, 1].

So according to the Liapunov’s main theorem of stability theory in B space we know

Ψ̄ = 0 is asymptotically stable if the real parts of all eigenvalues of A are negative, and it

is unstable if the real part of some eigenvalue is positive. That means the stability of Ψ0

can be determined by discussion on the eigenvalues of the linearized equation in no critical

case(no eigenvalue has positive real part, but some eigenvalues have zero real part).

Now assuming Ψ̄(s, t) = eδtφ(s), substituting it into the last equation gives

δeδtφ(s)− eδt∂
2φ

∂s2
= λ cos (Ψ0(s))e

δtφ(s).

Thus

∂2φ
∂s2

+ (λ cos(Ψ0)− δ)φ = 0,

φ(0) = 0, φ′(1) = 0.
(5.11)

This is an eigenvalue problem of elliptic equation, normally this problem has more than one

eigenvalues [17], [12]. As Aφ = ∂2φ
∂s2

+ λ cos (Ψ0)φ is a self-adjoint linear operator, then the

eigenvalues of (5.11) are all real numbers[73]. The principal (largest) eigenvalue of (5.11)

has the following expression:

δm = sup
φ∈M

(φ, ∂
2φ
∂s2

) + (φ, λ cos (Ψ0(s))φ)

(φ, φ)
, (5.12)

where M = {φ(s)|φ ∈ C2[0, 1], φ 6≡ 0, φ(0) = 0, φ′(1) = 0} and (φ, φ) is the inner product

defined in M by (φ, ψ) =
∫ 1
0 φ(s)ψ(s)ds.

Therefore the stability of Ψ0(s) depends on the sign of δm determined by (5.12). On

the theory and calculation of eigenvalues one can consult [17] and other books on partial

differential equations and functional analysis.
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As an application of this method we take the stability study of the model for γ = 0, α = π

as an example. Now the corresponding equation (5.3) is:

∂Ψ

∂t
− ∂2Ψ

∂s2
= λ sin Ψ,

Ψ(0) = 0,Ψ′(1) = 0.

We intend to discuss the stability of trivial solution Ψ0(s) = 0, so the corresponding

eigenvalue problem is:
∂2φ

∂s2
+ (λ− δ)φ = 0,

φ(0) = 0, φ′(1) = 0.

The principal eigenvalue is

δm = sup
φ∈M

(φ, ∂
2φ
∂s2

) + (φ, λ cos (0)φ)

(φ, φ)
(5.13)

= sup
φ∈M

∫ 1
0 φ(s)φ′′(s)ds+ λ

∫ 1
0 φ

2(s)ds
∫ 1
0 φ

2(s)ds

= sup
φ∈M

−
∫ 1
0 φ

′2(s)ds+ λ
∫ 1
0 φ

2(s)ds
∫ 1
0 φ

2(s)ds

= λ− min
φ∈M

∫ 1
0 φ

′2(s)ds
∫ 1
0 φ

2(s)ds
.

According to [12],

min
φ∈M

∫ 1
0 φ

′2(s)ds
∫ 1
0 φ

2(s)ds
=
π2

4
,

therefore we have the result: if λ > π2

4 , then Ψ0 = 0 is P -unstable, if λ < π2

4 ,Ψ0 = 0 is

P -stable, λ = π2

4 is therefore a critical value for stability.

From expression (5.12) we have the following conclusion:

1. If a solution Ψ0 of (2.2) lies totally in the area where cos (Ψ0) ≤ 0, that is Ψ0(s) lies

totally in one of the intervals: (−3π
2 ,−π

2 ), (π2 ,
3π
2 ) and (5π

2 , 3π), then this solution is

P -stable, because the corresponding δ is negative. For instance, the normal solution

of (2.2) for γ = 0, α = 0.25π, p = 25 is P -stable, because it lies in 0.5π < Ψ < π for

s ∈ [0, 1], see figure 5.15.

2. If p < π2

4 , then for any γ and α the solution of (2.2) is P -stable. This comes from

the fact that:

min
φ∈M

∫ 1
0 φ

′2ds
∫ 1
0 φ

2ds
≥ π2

4
,
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and equality holds if and only if φ is proportional to the first eigenfunction of d2Ψ
ds2

+

λΨ = 0,Ψ(0) = 0,Ψ′(1) = 0 [12].

From 2. we know in our model, the loss of stability occurs the most easily for Euler’s rod.

In order to get some stability behavior of other solutions which are not mentioned in last

conclusion, we intend to quote a result on eigenvalue from [49]: Let a second-order self-joint

linear operator be of the form

LΨ = −(p(x)Ψ′)′ − q(x)Ψ,Ψ(0) = Ψ′(1) = 0, (5.14)

where p′, q are continuous functions on the interval [0, 1]. Then the eigenvalue problem

LΨ = µΨ has the following characters:

• All eigenvalues are simple, they form a countable infinite sequence {µn}, µn →∞.

• There is a least eigenvalue.

• The number of negative eigenvalues of (5.14) is the same as the number of interior

zeros of the solution to the equation

LΨ = 0,Ψ(1) = 1,Ψ′(1) = 0. (5.15)

Comparing with this eigenvalue problem, in our model p(x) = 1, q(x) = cos Ψ0(s), µ =

−λ = −p, we try to use this result in our model. According to the above discussion and

Liapunov’s theorem if the solution of LΨ = 0 with boundary condition has at least one

zero, then Ψ0 is P -unstable, but if the solution has no zero we could not directly get

the result on stability, because 0 is possibly an eigenvalue of LΨ = µΨ, in this case the

corresponding solution is called neutrally stable. We try to deal with the stability of Ψ̄ = 0

or Ψ0 along the following way: using the manifold method and numerical calculation to

get the approximate expression of Ψ0 whose stability is to be studied, then solving the

equation (5.15) to determine if it has zero point. We take some cases for example.

Case 1. γ = 0, α = π, along the two solutions born from the trivial one after the first

bifurcation, the solutions of (5.15) have no zero, according to [49], they are P -stable and

except these two solutions all other solutions for p > π2

4 correspond to a solution of (5.15)

having at least one zero (see, for example, figure 5.5 and 5.6), then at least one δ in our

model is positive, so Ψ0 is P -unstable.

Case 2. As in the study of bifurcation, we give a special attention to the cases that

correspond to γ, α near 0, π. From the results obtained in bifurcation discussion, we know

when γ, α are slightly different from 0, π, the bifurcations for γ = 0, α = π will change
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Figure 5.5: Solution curves of (5.15) for γ = 0, α = π, p = 30 and different ω0 = 0 <
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0 (from left to right).
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Figure 5.6: Solution curves of (5.15) for γ = 0, α = π, p = 65 and different ω0 = 0 <

ω1
0 < ω2

0 < ω3
0 along (1,1)-(1,2)-(2,1)-(2,2).

to turning points (see figure 4.25 and 4.31). The first turning points are formed from

different branches of bifurcation diagram for γ = 0, α = π. For discussion on the solutions

of (5.15) corresponding to the ω′
0s on these new branches in bifurcation diagrams, we take

one example, namely γ = 0, α = 0.9π. From the solution curves (see figures 5.7 and 5.8)

of (5.15), we know the first turning point can be a changing point for P -stability, but the

second turning point is not a changing point for P -stability.

Case 3. For discussion on the cases that have turning points and bifurcation points let us

take γ = 0.5π, α = −0.296851π as an example and discuss the corresponding solutions of

(5.15) (see figure 5.9). These solutions show that the bifurcation point in this case is not

changing point for P -stability, but the first bifurcation, that is turning point, may work as

this kind of point.
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Figure 5.7: Solution curves of (5.15) for γ = 0, α = 0.9π, p = 10 and different

ω1
0 < ω2

0 < ω3
0 from left to right.

If we recall the case for bifurcation of X− type (for instance the case γ = 0.5π, α =

0.84975π) we know it may be changing point of P -stability (see figure 5.10). The phase

curves and configurations of the two cases were given in figure 4.33 and 4.34.

For stability study on the solutions of (2.2) corresponding to the ω ′
0s located near the first

bifurcations in bifurcation diagrams. we have another idea, which is based on the stability

study of another ODE constructed from (5.4).

We build an ordinary differential equation in the following way, our pendulum equation

has the form


















ψ′′ = F (ψ, λ)

ψ(a) = ψa

ψ′(b) = ψ′
b,

(5.16)

where F is a smooth function. First we consider the corresponding initial value problem



















ψ′′ = F (ψ, λ)

ψ(a) = ψa

ψ′(a) = ψ′
a.

(5.17)

For each given ψ′
a, (5.17) has a unique solution, but it is not guaranteed to be solution of

(5.16). Let ψ(s, ψa, ψ
′
a, λ) be a solution of (5.17), if it is also a solution of (5.16), it must

satisfy the following condition

ψ′(b, ψa, ψ
′
a, λ) = ψ′

b.

We call this conditional equation a bifurcation equation, it is no doubt that each ψ ′
a sat-

isfying bifurcation equation corresponds to one solution of (5.16), therefore our task now

is transferred to the study of the relations between the solution of (5.16) and the zero of

bifurcation equation.

Note: Just as what we mentioned in constructing mathematical model, we could also take

points (ψb, ψ
′
b) under consideration first, try to find the solution ψ = ψ(s, ψb, ψ

′
b, λ) of the
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Figure 5.8: Solution curves of (5.15) for γ = 0, α = 0.9π, p = 40 and different

ω1
0 < ω2

0 < ω3
0 < ω4

0 < ω5
0 along first row and then second row from left to right.

BVP problem ψ′′ = F (ψ, λ), ψ(b) = ψb, ψ
′(b) = ψ′

b, and the task is therefore the handing

of the equation

ψ(a, ψb, ψ
′
b, λ) = ψa.

Here we emphasize especially that following this correspondence between root ψ ′
a := ω0 of

bifurcation equation and solution of (5.16), from now on, we would take the solution of

(5.16) as a root of bifurcation equation. And small perturbation to ψ0 could be thought as

small perturbation to ω0. With this consideration, through the related partial differential

equation, the stability study of the solution of (5.16) is turned to the stability study of the

equilibrium of bifurcation equation, the study can be carried out to the equation

dψ′
a

dt
= ψ′(b, ψa, ψ

′
a, λ)− ψ′

b. (∗)

For a solution of (5.4) starting from a small neighborhood of ψ0, we get a solution of (*)

starting from a small neighborhood of ω0 in the following way: first ψ0(s) ←→ ω0 is one-

to-one. For ψ(s, 0) = ψ0(s) + ψ̃(s), from a solution ψ(s, t) of (5.4), we let ω(t) := ψ′
s(0, t),

if t = t0, ω(t0) = ω0, then ψ0(s) = ψ(s, t0). If for arbitrary ψ̃ holds t→∞, ω(t)→ ω0, then

“ψ(s,∞)” = ψ0(s), the static solution ψ0 is P -stable, otherwise it is P -unstable. And this

stability could be determined by (*) with ψ′
a substituted by ω0(t). Some methods of the
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Figure 5.9: Solution curves of (5.15) for γ = 0, α = −0.296851π, p = 30 and different

ω1
0 < ω2

0 < ω3
0 < ω4

0 < ω5
0 along first row and then second row from left to right.

stability study for singular point of ODE’s could be used here for (*). If a singularity of

equation(*) is stable (unstable), then the corresponding solution of (5.16) is thought to be

P -stable (unstable).

Remark 1: The bifurcation equation could be obtained theoretically or numerically in

different ways, so the right side of (*) could be of different forms, but they are strongly

equivalent [6].

Definition 5.7 Two smooth functions F (s, λ) and G(s, λ) are said to be strongly equiva-

lent near (s0, λ0), if there exist two functions R(s, λ) and T (s, λ) with

T (s0, λ0) = s0, (
∂T

∂s
)(s0,λ0) > 0, R(s, λ) > 0,

such that

F (s, λ) = R(s, λ)G(T (s, λ), λ).

The geometrical explanation of this definition is: T (s, λ) can be thought as a state trans-

formation, it is not singular with respect to s at (s0, λ0) and offers an one-to-one mapping

from (s, λ) to T (s, λ) for fixed λ as ( ∂T∂s )(s0,λ0) > 0, while R(s, λ) can be considered as a

transformation to G(s, λ), which could be an amplification or reduction on G(s, λ), F,G

have same zero point as R(s, λ) > 0. Based on this ground, the equilibriums of F = 0 and
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Figure 5.10: A typical sample of stability diagram for γ = 0.5π, α = 0.84975π,

dashed (solid) curves correspond to P -unstable (neutrally stable) solutions of (2.2).

G = 0 have the same qualitative structure.

Remark 2: This method is only used locally near the first bifurcations in the bifurcation

diagrams.

Overview of the idea:

1. For the BVP of ordinary differential equation:

ψ′′ + F (ψ,ψ′, λ) = 0, B(ψ(a), ψ(b), ψ′(a), ψ′(b)) = 0, (5.18)

construct the corresponding BVP of the partial differential equation of

parabolic type:

∂ψ

∂t
− ∂2ψ

∂s2
= F (ψ,ψ′, λ), B(ψ(t, a), ψ(t, b), ψ′(t, a), ψ′(t, b)) = 0;

(5.19)

2. For the first critical value λ0 of λ, using methods available to get the bifurcation

equation f(x, λ)=0 of (5.18), a solution ψ = ψ0(s) of (5.18) corresponds to a root

x = x0 of bifurcation equation;

3. In a small neighborhood of (x0, λ0) find a simple function f̄(x, λ), which is normally

a polynomial function and strongly equivalent to f(x, λ);

4. The stability of ψ = ψ0(s) is the same as that of x = x0, which can be determined

via dx
dt = f̄(x, λ0) (or dx

dt = −f̄(x, λ0)) with practical meaning of the solutions under

consideration and the sign does not affect the critical value for stability.
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Now we use this method to the stability study of our model for γ = 0, α = π (Euler’s rod),

in the discussion we use the equivalent equation of (2.2),







Ψ′′ + λ sin Ψ = 0

Ψ(0) = 0,Ψ′(1) = 0,
(5.20)

with λ = p. The corresponding partial differential equation is







∂Ψ
∂t −Ψ′′ − λ sin Ψ = 0

Ψ(t, 0) = 0,Ψ′(t, 1) = 0
(5.21)

Now we try to get the bifurcation equation with Liapunov-Schmidt method (see appendix

1). Let

f(Ψ, λ) = Ψ′′ + λ sin Ψ,

here f can be thought as an operator acting in Ȳ (defined below). Concerning the boundary

condition of (5.20), we have f(0, λ) = 0 for any λ, that is Ψ = 0 is a solution of f(Ψ, λ) = 0

for any λ.

Now we compose two sets of functions

Ȳ = {y|y ∈ C2[0, 1]; y(0) = y′(1) = 0};

Z̄ = {z|z ∈ C0[0, 1]},

in these two sets, norm is defined as follows

||z|| = sup[|z(σ)|, 0 ≤ σ ≤ 1],

||y|| = max{sup[|yi(σ)| : 0 ≤ σ ≤ 1], i = 0, 1, 2, where yi represents the derivative of y of

order i}.
The linear part of f is

B(λ)Ψ = Ψ′′ + λΨ, Ψ ∈ Ȳ .

B(λ,Ψ) = 0 gives

λn = (nπ +
π

2
)2,Ψ = cn sin (nπ +

π

2
)σ, n = 0, 1, 2....

For the smallest eigenvalue

n = 0, λ = λ0 =
π2

4
,Ψ = c sin

π

2
σ,
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so sin π
2σ can be chosen as a basis for Kern(B(π

2

4 )), that gives

Kern(B(
π2

4
)) = Span[sin

π

2
σ]

Ȳ = Span[sin
π

2
σ]⊕M,

where

M = Kern(B(
π2

4
))

⊥
= {Ψ ∈ Ȳ :< Ψ, q >= 0, q ∈ Kern(B(

π2

4
))},

because B(π
2

4 ) = d2

dσ2 + π2

4 is Fredholm operator of zero index (see appendix 1), so

CodimRange(B(
π2

4
)) = 1 = DimKern(B(

π

2

2
)).

As B(π
2

4 ) = B∗(π
2

4 ), so B∗(π
2

4 )w = 0 offers w = d sin π
2σ, which can be taken as a basis of

N̄ , thus

N̄ = Kern(B∗(
π2

4
)) = Span[sin

π

2
σ]

Z̄ = Span[sin
π

2
σ]⊕Range[B(

π2

4
)].

Decomposing Ψ as Ψ0 + r with Ψ0 ∈ Kern(B(π
2

4 )) and r ∈M , we have

Ψ = ac sin
π

2
σ + r̄(ac sin

π

2
σ,4λ),

where 4λ = λ− π2

4 is very small. The order of a included in r̄ is at least 2, but f(Ψ, λ) =

−f(−Ψ, λ) indicates that the order is not less than 3 [6].

In Ȳ and Z̄ we define the inner product as follows

< Ψ1,Ψ2 >:=

∫ 1

0
Ψ1(σ)Ψ2(σ)dσ.

With the help of Liapunov-Schmidt method, we have bifurcation function

F (a,4λ) =

∫ 1

0
f(ac sin

π

2
σ + r̄(ac sin

π

2
σ,4λ),

π2

4
+4λ)d sin

π

2
σdσ.

Expanding f(Ψ, λ) as the Taylor series of Ψ at Ψ = 0,

f(Ψ,
π2

4
+4λ) = Ψ′′ + (

π2

4
+4λ)(Ψ− 1

6
Ψ3 + 0(Ψ5)),

substituting Ψ = ac sin π
2σ + r̄(ac sin π

2σ,4λ) into this expression and then into F gives

f(ac sin
π

2
σ + r̄(ac sin

π

2
σ,4λ),

π2

4
+4λ)
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= r̄′′ +
π2

4
r̄ + ac4λ sin

π

2
σ − π2

4

1

6
ac sin

π

2
σ

3
+ 0(|4λ|a3, a5)

and

F (a,4λ) =

∫ 1

0
(r̄′′ +

π2

4
r̄

+ac4λ sin
π

2
σ − π2

24
acsin

π

2
σ

3
+ 0(|4λ|a3, a5))d sin

π

2
σ dσ,

because

r̄′′ +
π2

4
r̄ ∈ Rang(B(

π2

4
))

and

sin
π

2
σ ∈ Kern(B∗(

π2

4
)) = N̄ = Range(B(

π2

4
))

⊥
,

we have
∫ 1

0
(r̄′′ +

π2

4
r̄) sin

π

2
σ dσ = 0,

so

F (a,4λ) = c1a4λ− c3a3 + 0(|4λ|a3, a5)

with

c1 = cd

∫ 1

0
sin2 π

2
σdσ =

1

2
cd,

c3 =
π2

24
c3d

∫ 1

0
sin4 π

2
σ dσ =

π2

64
c3d,

here c, d are arbitrary constants, take c, d > 0, then c1, c3 > 0, so near (π
2

4 , 0) the bifurcation

function is strongly equivalent to

F̄ = c1a4λ− c3a3,

therefore in a sufficiently small neighborhood of (π
2

4 , 0), the equilibriums of bifurcation

equation F = 0 are near the equilibriums of F̄ = 0 and have the same stability behavior,

which can be determined via

da

dt
= c1a4λ− c3a3. (5.22)

The singular points of last equation satisfy

c1a4λ− c3a3 = 0,

According to the stability behavior of equilibrium of ODE with separable variables [43], if

4λ < 0, a = 0 is the only singular point, it is stable, the corresponding solution of (2.2)

is P -stable. If 4λ > 0, there are three singular points: a0 = 0, a1,2 = ±
√

c1
c3
4λ, satisfying
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a1 < a0 < a2, that means 4λ = 0 is a critical value for bifurcation equation. With the

same discussion as before, we know, a0 = 0 is unstable, while the other two are stable, so

the correspond solutions of (2.2) are P -unstable and P -stable respectively.

Here we should indicate that a in our discussion acts as ω0 and 4λ corresponds the

perturbation of p in our model, so we have the result

Theorem 5.2 For pendulum equation (2.2) with α = π, γ = 0, there exists a critical value

pc of p, such that (0, 0) is P -stable for p < pc, P -unstable for p > pc and furthermore the

numerical value of pc is π2

4 .

Note: For the original model of straight elastic rod, this critical value of p corresponds to
π2EI
4L2 of the acting force.

Using ω0, λ to replace a,4λ we show our stability result near (π2, 0) in figure 5.11,

p

0omega

Figure 5.11: The stability diagram of (5.20) near the first bifurcation point.

in figure 5.11 equilibriums on the solid branches are P -stable and those on dashed branch

are P -unstable as discussed above. A sample of corresponding configurations of (2.3) in

this case can be seen in figure 4.7.

Note: In choosing constants, say c, d, we have considered the practical background of our

model, for instance, we know the straight form (or zero solution) of the elastic rod is stable

for sufficiently small p according to its mechanical meaning, which corresponds to 4λ < 0,

so we choose c, d > 0.
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Now we use this method to stability study of a deformed straight rod, whose left end is

fixed and the right end can move horizontally along its axis, the acting force on it points

to the left(see figure 5.12)[60]. The deflection of the rod follows the differential equation

X

Y
L

P

Figure 5.12: The originally straight elastic rod with an axial acting force.

EI
d2Y

dX2
+ PY [1− (

dY

dX
)2]

1
2 = 0, (5.23)

with boundary value condition

Y (0) = 0, Y (L) = 0.

Introducing the following transformation

λ =
PL2

EI
, σ =

S

L
, y =

Y

L

gives






ÿ + λ(1− ẏ2)
1
2 y = 0

y(0) = 0, y(1) = 0,
(5.24)

where ˙ represents the derivative with respect to σ. The corresponding partial differential

equation is






∂y
∂t − ÿ − λ(1− ẏ2)

1
2 y = 0

y(t, 0) = 0, y(t, 1) = 0
(5.25)

Now we use Liapunov-Schmidt method again to get the bifurcation equation. Let

f(y, λ) = ÿ + λ(1− ẏ2)
1
2 y,

concerning the boundary condition of (5.24), we have f(0, λ) = 0 for any λ, that means

y = 0 is a solution of f(y, λ) = 0 for any λ.

The two sets of functions defined in last model are now

Ȳ = {y|y ∈ C2[0, 1]; y(0) = y(1) = 0},
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Z̄ = {z|z ∈ C0[0, 1]},

in these two sets, norm is defined as in last model. The linear part of f is

B(λ)y = ÿ + λy.

From B(λ)y = 0 we have

λn = n2π2, yn = cn sinnπσ, n = 1, 2, ....

For the smallest eigenvalue λ = λ1 = π2, y = c sinπσ and

Kern(B(π2)) = Span[sinπσ]

Ȳ = Span[sinπσ]⊕M,

where

M = Kern(B(π2))
⊥

= {y ∈ Ȳ :< y, q >= 0, q ∈ Kern(B(π2))}.

Using the procedure as in last example, we get the bifurcation function

F (ω0, λ) = c̄1λω0 − c̄3ω0
3 + 0(|λ|ω0

3, ω0
4)

with

c̄1 = cd

∫ 1

0
sin2 πσdσ =

1

2
cd,

c̄3 =
1

2
c3dπ4

∫ 1

0
sin2 πσcos2 πσdσ =

π4

16
c3d,

here c, d are arbitrary constant, take c, d > 0, then c̄1, c̄3 > 0, so near (π2, 0) the bifurcation

function is strongly equivalent to

F̄ = c̄1λω0 − c̄3ω0
3,

therefore with the same discussion as in last model, we know, near (π2, 0), the stability of

this model can be also presented with figure 5.11.

Now we try to discuss a typical case, for example γ = 0.25π, α = 0, having turning point

at the first bifurcation (see figure 8.1). In this case, according to the concept of strong

equivalence and some results from [32], [41], we could make the assumption that in a

sufficiently small neighborhood of the first bifurcation, the bifurcation function is strongly

equivalent to

F̄ (ω0, λ) = −ω0(ω0
2 − λω0 + c), λ = p, c > 0,
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The negative sign in the function is determined according to the fact that when p is small

the unique solution of equation (2.2) is P -stable. If λ2− 4c < 0, F̄ (ω0, λ) = 0 has only one

equilibrium ω0 = 0, it is P -stable. If λ2 − 4c > 0, then there are two more equilibriums:

ω1,2
0 =

1

2
(λ±

√

λ2 − 4c), 0 < ω1
0 < ω2

0,

so ω1
0(ω

2
0) in P -unstable (stable). The stability diagram is shown in 5.13 (left).
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Figure 5.13: The stability diagram of the equilibrium of (2.2) for γ = 0.25π, α = 0

(left) and γ = 0, α = 0.25π (right).

Some corresponding phase curves of equation (2.2) and configurations of equation (2.3) are

shown in figure 5.14.

The same discussion on the case of γ = 0, α = 0.25π gives the stability behavior shown

in figure 5.13(right) and some correspond phase curves of (2.2) and configurations of (2.3)

are shown in figure 5.15.

Referring bifurcation diagrams and above examples, the P -stability of solutions of pendu-

lum equation (2.2) could possibly be lost or gained at the first turning point, bifurcation

point of pitchfork type or X-type.
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Figure 5.14: The phase curves of (2.2) (left) and configurations of (2.3) for γ =

0.25π, α = 0 and p = 30 (right).
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Figure 5.15: The phase curves of (2.2) (left) and configurations of (2.3) (right) for

γ = 0, α = 0.25π and p = 25.



Chapter 6

Characteristics as nonlinear

springs and gripper elements

6.1 Spring characteristics

α=0.5π γ=0.25π

(a) (b)

Figure 6.1: The undeformed elastic circular arcs with a fixed direction of force α = π
2

(a) and a arc γ = π
4

with different directions of force(b).

Using ω0 obtained with the methods given in section 4, we can get the implicit solution of

equations (2.2) and (2.3). Taking the elastic circular rod as a nonlinear spring, we should

discuss the displacement of the free end of the rod, particularly y(1) = h(γ, α, p). The

aim is to make it clear how h changes with the parameters. Figure 6.2(a) shows a sample

relation between h and p for fixed α (say π
2 ) and different γ (γ = 0(π8 )π, the corresponding

undefromed arcs are shown in figure 6.1), or in other words, this figure shows the half

openings of different arcs with fixed direction of acting force. The result says that, for

91
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0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

p

h

0 2 4 6 8 10

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

p

h

(a) (b)

Figure 6.2: (a): h vs. p for α = π
2

and γ = 0(π
8
)π (on the left from top to the

bottom). (b): h vs. p for γ = π
4
, α = 0(π

8
)7π

8
(in the middle from the curve above

the p axis to the top) and π (under the p axis).

-1 -0.5 0 0.5 1
0.15

0.2

0.25

0.3

0.35

p1

h

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

p2

h

(a) (b)

Figure 6.3: (a): h vs. p1 for γ = π
4
( π

16
)π

2
(from bottom to the top), p2 = 1. (b): p2

vs. h for γ = π
4
, µ = 0.1 (dotted line), 0.3 (dashed line), 0.5 (solid line).

fixed γ, h increases with p (not too big). That means: for each original rod of fixed form,

the bigger the acting force is, the larger the half opening h will be. But for fixed and smaller

p, h(., π2 , p) decreases with γ, and for relatively bigger p, h increases with γ first, reaches a

maximal value for some γ and then decreases with γ. It means that it is easier (harder) to

deform the rod with smaller (bigger) curvature, when p is relatively small. Figure 6.2(b)

shows a sample result for fixed γ (say π
4 ) and different α (the corresponding undeformed

rod is shown in figure 6.1), or the half opening of one special rod with different direction of

acting force. The result states that for each α < 7π
8 , h(π4 , α, .) increases with p (not too big),

while h(π4 , α, .) has a maximal value for α ≥ 7π
8 . When p is fixed, h(π4 , ., p) has a maximal

value for some value of α. In order to determine the influence of the weight grasped on the
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Figure 6.4: (a): The tracks of the end points of the solutions of (2.3) for γ = π
2
, p ∈

(0.1, 10) and α = 0(π
8
)π

2
from right to the left. (b): The tracks of the end points of

the solutions of (2.3) for α = π
4
, p ∈ (0.1, 10) and γ = 0(π

8
)π

2
from right to the left).

half opening, we discussed also the dependence of h on p1 for fixed p2 (see figure 6.3(a)),

here p1, p2 represents the horizontal, vertical components of the acting force. The result

shows that when γ ≤ 5π
16 , h increases with p1, it decreases with p1 when 3π

8 ≤ α ≤ π
2 .

The result about the relation between h and p2 for different µ = 0.1(0.2)0.5 (µ denotes

the friction coefficient at rest) is described in figure 6.3(b). Figure 6.4 shows the track

of the end points of the deformed arcs.γ = π
2 Figure 6.4(a) shows the result for the half

ring with different directions of force, the result states that for half ring, when p ∈ [0, 10],

the maximal half opening increase as α increases in [0, π2 ]. Figure 6.4(b) shows the result

for different arcs with a fixed direction of force α = π
4 . One can get the information how

the free ends of the deformed elastic rods move under the acting force and how they are

affected by parameters.

6.2 Gripper characteristics
The use of the double symmetric circular rods as a gripper relies on Coulomb’s law in

equilibrium: |p1| ≤ µp2, practically µ ranges from 0.1 to 0.7. The peculiarity of this

gripper type is: no external force needed for clamping the object, but needed for to loosen

it. G = 2|p1| is the normed weight to be grasped. The maximal value of G (i.e., p1 =

±µp2, tanα = ± 1
µ) is determined for given half opening h of the rods. For fixed µ, taking

α = arctan 1
µ or α = π−arctan 1

µ , through (2.2) and (2.3), h can be considered as a function

of p (0 ≤ p ≤ pmax), here pmax is the value of p, under the action of which the tangent of

the rod at its free end is parallel to the x axis. The reason for choosing this value is: in
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Figure 6.5: (a): Deformed rod with its tangent at the free end parallel to x axis for

µ = 0.2, γ = π
8
(π

8
)π (from right to left) and p = pmax. (b): p1 vs. h for µ = 0.2, and

γ = π
8
(π

8
)π(from bottom to the top).

practice, the gripper device composed of two circular rods holds a body, which is in touch

with only the two free ends of circular rods, the case corresponds to 0 < p ≤ pmax. When

p > pmax, the free ends of the deformed circular rods are no more in touch with the object,

provided the device and the body held are as shown in 2.1, but other part could touch the

body. Figure 6.5(a) shows the configurations for µ = 0.2 and γ = π
8 (π8 )π with p = pmax.

In the following discussion, the configurations are confined from the original undeformed

form to the one corresponding to pmax. As p1 = p cosα, then p1 vs. h can be constructed.

The result for µ = 0.2 is taken as an example (see 6.5(b)). For any h the ordinate p1 in

figure 6.5(b) is half of the maximal weight G to be held. The results show that G is an

increasing function of h. As α ranges from 0 to π, p1 can be positive or negative and for

some h there are more than one interesting and practical results. In order to compare the

results for both cases, we considered also the relation between maximal p1 (acting along

positive x axis (α = arctan 1
µ) and negative x axis (α = π − arctan 1

µ)) and h. The results

are shown in figure 6.6 and 6.7 (note: in these two figures p might be greater than pmax).

From figure 6.5(b) we know that for the same half opening h, the weight grasped (described

by p1) increases as γ grows. So the device composed of two symmetric circular rods with

large curvature is better than that composed of two circular rods with small curvature.
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Figure 6.6: (a): Maximal p1 vs. h for γ = 0.75π, µ=0.1 (dashed line), 0.3 (dotted

line) and 0.5 (solid line). (b): Maximal p1 vs. h for µ = 0.3, and γ = π
4

(dotted line),
π
2

(dashed line) and 3π
4

(solid line).

G=2p1

x

y0

G=-2p1

x

y 0

G=-2p1

x

y 0

(a) (b) (c)

Figure 6.7: γ = π
2
, µ = 0.5, h = 0.1054, p1 = 0.266188 (a), p1 = −0.343999 (b),

p1 = −2.23605 (c).
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6.3 Maximum point of the bending moment for

γ = π/2

0 0.2 0.4 0.6 0.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.2 0.4 0.6 0.8

0.1

0.2

0.3

0.4

0.5

Figure 6.8: σ vs. h for α = 0( π
10

)π
2

from bottom to the top (left), σ vs. h for

µ = 0.1(0.1)0.7 from bottom to the top (right).

In this section we intend to discuss the bend of the deformed elastic half ring, one of

the typical characters of the deformation is the curvature of the deformed configuration,

therefore we are interested in the maximum of the curvature, this is in turn connected with

the bending moment of the half ring. The bending moment is a function of arc length s:

M(s) = EI(θ′(s)− κ). (6.1)

Thus, using (2.1)

M′(s) = EI

{

1

EI
[P1 sin θ(s)− P2 cos θ(s)]

}

= P sin [θ(s)− α]. (6.2)

If s̄ is an extreme point of the bending moment, then s̄ must be a root of the equation

θ(s)− α = nπ,

here n takes some certain different integers for different α and p. The above equation is

also identical to Ψ(t) = (n+ 1)π. So we have:

M′′(t) = −PΨ′(t) cos Ψ(t)

with t =
√
p σ, s = Lσ.

From the above listed equations we can determine the values of t, then σ and finally s,

which are the maximum points of |M|. It is obvious that both σ and h are functions of
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α and p. So we can take σ as a function of h. Its diagrams for α = 0( π10)π2 are shown in

figure 6.8 (left).

From this result one can numerically determine at which point on the halfring the bending

moment reaches its maximum value for a given half opening h.

For practical use, we have also investigated the same problem for µ = 0.1(0.1)0.7 and p

from 0.01 to 25 (tanα = 1
µ , i.e., under maximal grasped weight acting to the right). The

result is shown in figure 6.8 (right).



Chapter 7

Conclusion

In this dissertation the discussions were concentrated on large deformations of elastic

clamped-free circular arcs under force load acting at their free ends. The topic of the

research originated from practical problem in mechanics and engineering, it is of practical

significance in connection with gripping devices and spring elements. The mathematical

treatment is based on qualitative analysis of phase curves and numerical calculations of a

pendulum equation with three parameters, which represent the concentrated force acting

at the free end and the original shape of undeformed arc. For different values of these

parameters the multiplicity and bifurcation of the pendulum equation were studied with

manifold method introduced in this dissertation. For p ≤ 50 the result was represented

by bifurcation diagram, which showed the number of solutions, the value of parameters

for multiplicity and change tendency of phase curves and configurations of (2.2) and (2.3).

For p ≤ 50, (2.2) has at most 7 solutions, its bifurcation diagrams include turning point,

hysteresis point, bifurcation point of pitchfork and X− type, they are the only points

at which the stability behavior of motion and structural stability may change, the set of

parameters corresponding to these points divides the parameter plane (one of the three

parameters γ, α and p is fixed) into several zones, in each of them equation (2.2) and (2.3)

have the same number of solutions. In stability study of nontrivial equilibriums the con-

cept of P -stability was introduced. The methods introduced and used in this work were

explained in general form and could be of importance in investigation on bifurcation and

stability of boundary value problems of ordinary differential equations. In application the

load-displacement characteristics (spring behavior) were given a particularly consideration,

exploiting this, for a gripper that consists of two such arcs in symmetric configuration, the

grasping forces at given opening width and friction coefficient were found, the principle for

gripper is: opening the gripper by mens of auxiliary force, then holding a body by elasticity

98
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and friction. At the same time the maximal bending moment was also studied.



Chapter 8

Appendix

8.1 Liapunov -Schmidt reduction

Liapunov-Schmidt reduction method is a very useful tool in the study of bifurcation for

autonomous differential equation. Here we give a brief introduction to this method, the

detailed description can be found in [6] and [16].

Let Y and Z be two completely normed linear spaces, in our applications, they are func-

tion spaces, satisfying certain regularity conditions. And y ∈ Y satisfies some boundary

condition. Let

F : Y × IR −→ Z

and without loss of generality, we assume that

F (0, λ) = 0.

Her F is a non-linear operator, λ is a parameter. We intend to discuss the problem

F (y, λ) = 0

under the boundary condition

R(y(ξ), λ) = 0, ξ ∈ [0, 1].

Our task is to find the solution of the bifurcation problem







F (y(ξ), λ) = 0, ξ ∈ (a, b)

R(y(ξ), λ) = 0, ξ ∈ {a, b},
(8.1)

100
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Without loss of generality, we suppose that a = 0, b = 1, F (y(ξ), λ) is differentiable at

point (0, λ). Denote the Frechét derivative of F at (0, λ) with B(λ), that is

lim
||h||Y →0

||F (y + h, λ)− F (y, λ)−B(λ)h||Z
||h||Y

= 0,

here ||.||Y , ||.||Z are norms on Y,Z separately, and later we will use ||.|| to replace both of

them. Suppose further that B(λ) be compact linear operator and the above formula be

analytic, first let y = 0 in the above formula, and then for convenience denote h with y

instead, we have

F (y, λ) = B(λ)y + T (y, λ)

with

lim
||y||→0

T (y, λ)

||y|| = 0.

If B(λ) = L0 + λ, the already known result states that a necessary condition for (0, λ0) to

be a solution of F (y, λ) is that λ0 is an eigenvalue of L0.

Now at λ = λ0 define

Kern(B(λ0)) = {y|y ∈ Y,B(λ0)y = 0}

and

Range(B(λ0)) = {z|z ∈ Z, ∃y ∈ Y such thatB(λo)y = z}.

Since B is compact linear operator, Kern(B) is finite dimensional and

codimRange(B(λ0)) is also of a finite dimension. Under the assumption that the Fredholm

index of B

i(B) = dimKern(B)− codimRange(B) = 0,

Y, Z could be decomposed as

Y = Kern(B(λ0))⊕M,Z = N ⊕Range(B(λ0))

with

M = Kern(B(λ0))
⊥ = {y|y ∈ Y,< y, q >Y = 0, for all q ∈ Kern(B(λ0))},

N = Range((B(λ0)))
⊥ = {z|z ∈ Z,< z,w >Z= 0, for allw ∈ Range(B(λ0))},

provided that inner products < ., . >Y , < ., . >Z can be defined in Y,Z respectively (later

we use < ., . > to replace them). Let P̂ be continuous projection defined on Z satisfying

Range(P̂ ) = Range(B(λ0)).
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We try to find the solution (y, λ) of (8.1) near (0, λ0) with ||y|| small and λ = λ0 +4λ
(4λ small), since F (y, λ) ∈ Z and P̂ has the same range as B(λ0), therefore the solution

of (8.1) near (0, λ0) is the solution of the equations







P̂F (y, λ0 +4λ) = 0

(I − P̂ )F (y, λ0 +4λ) = 0,
(8.2)

where ||y||, ||4λ|| are very small. Decomposing y as y = y0 + r with

y0 ∈ Kern(B(λ0)), r ∈M and substituting it into (8.2) give







P̂ (B(λ0 +4λ)(y0 + r) + T (y0 + r, λ0 +4λ)) = 0,

(I − P̂ )(B(λ0 +4λ)(y0 + r) + T (y0 + r, λ0 +4λ)) = 0.
(8.3)

As B(λ0)y0 = 0, P̂ y0 = 0 since y0 /∈ Range(B(λ0)) and P̂Br = Br since B(λ0)r ∈
Range(B(λ0)), the first equation of (8.3) is now

B(λ0 +4λ)r + P̂ T (y0 + r, λ0 +4λ) = 0,

denoting the inverse of B(λ0) restricted to M with B−1, the last equation can be solved

for r,

r = r̂(y0, λ0 +4λ)

with r̂ = 0(||y||2) when y → 0 since r̂(0, λ0) = 0 and Dy0 r̂(0, λ0 +4λ) = 0. Substituting

it into the second equation of (8.3), as B(λ)r̂ = 0 and B(λ0)y0 = 0, we get

f(y0,4λ) = (I − P̂ )F (y0 + r̂(y0, λ0 +4λ), λ0 +4λ)

= (I − P̂ )(B(λ0 +4λ)(y0 + r̂) + T (y0 + r̂, λ0 +4λ))

= (I − P̂ )(L0 + λ0 +4λ)y0 + (I − P̂ )T (y0 + r̂, λ0 +4λ)

= (I − P̂ )((L0 + λ0)y0 +4λy0) + (I − P̂ )T (y0 + r̂, λ0 +4λ)

= 4λy0 + (I − P̂ )T (y0 + r̂, λ0 +4λ) = 0. (8.4)

This function f is called the bifurcation function and equation (8.4) is called the bifurcation

equation of bifurcation problem (8.1).

Now choosing a basis {yi}, i = 1, 2, ... for Kern(B(λ0)) and a basis {wi}, i = 1, 2, ... for

N , these bases contain the same number base vectors. Sometimes the basis for N could

be chosen as the eigenvectors of B∗(λ0)(here B∗(λ0) is the adjoint of B) owing to N =

Range(B(λ0))
⊥ = B∗(λ0). Now

y0 =
n

∑

i=1

aiyi, ai ∈ IR,
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substituting it into the bifurcation equation, we get

fi(ai, λ0) =< wi, F (
n

∑

i=1

aiyi + r̂(
n

∑

i=1

aiyi, λ0 +4λ)) >= 0, i = 1, 2, ....

From these equations we could get ai, i = 1, 2, ..., then y0 and at last y = y0 + r.

This is the so called Liapunov-Schmidt method, we divided it into the following steps:

• Decompose

Y = Kern(B(λ0))⊕M,

Z = N ⊕Range(B(λ0));

• Write the original bifurcation problem in the form of (8.2);

• Let y = y0 + r with y0 ∈ Kern(B(λ0)), r ∈M , solve the fist equation of (8.3) to get

r = r̂(y0, λ0 +4λ);

• Build bifurcation equation (8.4);

• Choose basis {yi}, i = 1, 2, ... for Kern(B(λ0)) and basis {wi}, i = 1, 2, ... for N =

Range(B(λ0))
⊥ = B∗(λ0), then solve

fi(ai, λ0) =< wi, F (
n

∑

i=1

aiyi + r̂(
n

∑

i=1

aiyi, λ0 +4λ)) >= 0, i = 1, 2, ...

to get ai, i = 1, 2, ....

8.2 Structural stability

Here we intend to give a description to structural stability (see [2], [45]) as a complement

to the definition in section 5.

We consider the differential equation

x′ = f(x), x ∈M,

we say that this equation defines a dynamic system and denote it as (M, v).

Definition 8.1 Two systems (M1, v1), (M2, v2) are said to be diffeomorphic if there exists

a diffeomorphism h : M1 →M2 transferring the vector field v1 into v2.
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This kind of equivalence is somewhat too fine, because if a diffeomorphism converts a

singularity of v1 into a singularity of v2, then the linearization of these two systems at

singularity have same eigenvalues. Under this kind of equivalence, the following two systems

x′ = 2x, x′ = 3x are not diffeomorphic at x = 0, but the qualitative structures of these

two systems have no big difference. The following is a less strong equivalence by replacing

diffeomorphism with homeomorphism.

Definition 8.2 Two systems (M1, v1), (M2, v2) are topologically equivalent if there exists a

homeomorphism of the phase space of the system (M1, v1) onto the phase space of (M2, v2),

which converts the phase flow of (M1, v1) into the phase flow of (M2, v2).

Under this definition x′ = 2x, x′ = 3x are obviously topologically equivalent. If we take the

orientation of the flow into consideration, we have the following definition of topologically

orbitally equivalent.

Definition 8.3 Two systems (M1, v1), (M2, v2) are topologically orbitally equivalent if

there exists a homeomorphism of the phase space of the system (M1, v1) onto the phase space

of (M2, v2), which converts the oriented phase curves of (M1, v1) into the phase curves of

(M2, v2), no coordination of the motion on corresponding phase curves is required.

According to this definition, x′ = 2x, x′ = 3x are topologically orbitally equivalent., Finally

we give the definition of structural stability.

Definition 8.4 Let M be a compact manifold of class Cr−1 (r ≥ 1), v be a vector field of

class Cr. The system (M, v) is said to be structurally stable if there exists a neighborhood

of v in the space C1 such that every vector field in this neighborhood defines a system topo-

logically orbitally equivalent to (M, v), and the homeomorphism realizing the equivalence is

close to the identity homeomorphism.

From this definition we see x′ = 2x is structurally stable, in the neighborhood of this

equation, we define y′ = (2 + ε)y and denote x0(t) = e2t, y0(t) = e(2+ε)t, choose a mapping

x → y with x(t) = cx0(t) → y(t) = cy0(t) = cx0(t)
(1+ ε

2
), then this mapping is the

homeomorphism needed in the definition.

8.3 Bifurcation diagrams of (2.2)

In this section we put most of the bifurcation diagrams obtained in section 4 together.
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8.3.1 The bifurcation diagrams for fixed γ
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Figure 8.1: Bifurcation diagram {(p, α, ω0)|α fixed, p ∈ [0, 50]} for γ = 0.25π, (α

values above diagrams).
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Figure 8.2: Bifurcation diagram {(p, α, ω0)|α fixed, p ∈ [0, 50]} for γ = π, (α values

above diagrams).
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8.3.2 The bifurcation diagrams for fixed α
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Figure 8.3: Bifurcation diagram {(p, α, ω0)|γ fixed, p ∈ [0, 50]} for α = −0.5π, (γ

values above diagrams).
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Figure 8.4: Bifurcation diagram {(p, α, ω0)|γ fixed, p ∈ [0, 50]} for α = −0.25π, (γ

values above diagrams).
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Figure 8.5: Bifurcation diagram {(p, α, ω0)|γ fixed, p ∈ [0, 50]} for α = −0π, (γ

values above diagrams).
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Figure 8.6: Bifurcation diagram {(p, α, ω0)|γ fixed, p ∈ [0, 50]} for α = 0.25π, (γ

values above diagrams).
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Figure 8.7: Bifurcation diagram {(p, α, ω0)|γ fixed, p ∈ [0, 50]} for α = 0.5π, (γ

values above diagrams).



112 CHAPTER 8. APPENDIX

1020304050

-2

-1

0

1

2
0.75Pi

1020304050

-2

-1

0

1

2
0.875Pi

1020304050

-2

-1

0

1

2
Pi

1020304050

-2

-1

0

1

2
0.375 Pi

1020304050

-2

-1

0

1

2
0.5Pi

1020304050

-2

-1

0

1

2
0.625Pi

1020304050

-2

-1

0

1

2
0

1020304050

-2

-1

0

1

2
0.125Pi

1020304050

-2

-1

0

1

2
0.25Pi

Figure 8.8: Bifurcation diagram {(p, α, ω0)|γ fixed, p ∈ [0, 50]} for α = 0.75π, (γ

values above diagrams).
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Figure 8.9: Bifurcation diagram {(p, α, ω0)|γ fixed, p ∈ [0, 50]} for α = π, (γ values

above diagrams).
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Figure 8.10: Bifurcation diagram {(p, α, ω0)|γ fixed, p ∈ [0, 50]} for α = 1.25π, (γ

values above diagrams).
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8.3.3 The bifurcation diagrams for fixed p
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Figure 8.11: Bifurcation diagram {(p, α, ω0)|p fixed, α ∈ [−0.5π, 1.5π]} for γ = 0, (p

values above diagrams).
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Figure 8.12: Bifurcation diagram {(p, α, ω0)|p fixed, α ∈ [−0.5π, 1.5π]} for γ = 0.25π,

(p values above diagrams).

-10 1 2 3 4
-2

-1

0

1

2
20

-10 1 2 3 4
-2

-1

0

1

2
30

-10 1 2 3 4
-2

-1

0

1

2
35

-10 1 2 3 4
-4

-3.5

-3

-2.5

-2
1

-10 1 2 3 4
-2.5

-2
-1.5

-1
-0.5

0
0.5

1
5

-10 1 2 3 4
-2

-1

0

1

2
10

Figure 8.13: Bifurcation diagram {(p, α, ω0)|p fixed, α ∈ [−0.5π, 1.5π]} for γ = 0.5π,

(p values above diagrams).
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Figure 8.14: Bifurcation diagram {(p, α, ω0)|p fixed, α ∈ [−0.5π, 1.5π]} for γ = 0.75π,

(p values above diagrams).
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Figure 8.15: Bifurcation diagram {(p, α, ω0)|p fixed, α ∈ [−0.5π, 1.5π]} for γ = π, (p

values above diagrams).
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Figure 8.16: Bifurcation diagram {(p, α, ω0)|p fixed, γ ∈ [0, π]} for α = −0.5π, (p

values above diagrams).
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Figure 8.17: Bifurcation diagram {(p, α, ω0)|p fixed, γ ∈ [0, π]} for α = −0.25π, (p

values above diagrams).
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Figure 8.18: Bifurcation diagram {(p, α, ω0)|p fixed, γ ∈ [0, π]} for α = 0, (p values

above diagrams).
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Figure 8.19: Bifurcation diagram {(p, α, ω0)|p fixed, γ ∈ [0, π]} for α = 0.25π, (p

values above diagrams).
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Figure 8.20: Bifurcation diagram {(p, α, ω0)|p fixed, γ ∈ [0, π]} for α = 0.5π, (p

values above diagrams).
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Figure 8.21: Bifurcation diagram {(p, α, ω0)|p fixed, γ ∈ [0, π]} for α = 0.75π, (p

values above diagrams).



8.3. BIFURCATION DIAGRAMS OF (2.2) 121

0 1 2 3
-3
-2
-1
0
1
2

20

0 1 2 3
-3
-2
-1
0
1
2

30

0 1 2 3
-3
-2
-1
0
1
2

35

0 1 2 3

-6

-4

-2

0

2
1

0 1 2 3
-3
-2
-1
0
1
2

5

0 1 2 3
-3
-2
-1
0
1
2

10

Figure 8.22: Bifurcation diagram {(p, α, ω0)|p fixed, γ ∈ [0, π]} for α = π, (p values

above diagrams).
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Figure 8.23: Bifurcation diagram {(p, α, ω0)|p fixed, γ ∈ [0, π]} for α = 1.25π, (p

values above diagrams).
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Birkhäuse Verlag Basel, 1991, PP 243-247.

[45] K. K. Lee, Lectures on Dynamic Systems, structural stability and their Applications,

World Scientific, Singapore, New Jersey, london, Hong Kong, 1992.

[46] H. Leipholz, Stabilitätstheorie, B. G. Teubner, Stuttgart, 1968.

[47] Q. Y. Li, Numerical Method of Ordinary Differential Equations, Publishing House of

High Education, Beijing, 1992.

[48] D. Luo, X. Wang, D. Zhu and M. Han, Bifurcation Theory and Methods of Dynamical

Systems, World Scientific, 1997.

[49] J. H. Maddocks, Stability of nonlinear elastic rods, Arch. Rational Mech. Anal. 85.

1984.

[50] J. E. Marsden and T. J. R. Hughes, Mathematical Foundations of Elasticity, Dover

Publications, Inc. 1994.

[51] A. A. Martynyuk, Stability Analysis: Nonlinear Mechanics Equations, Gordon and

Breach Publishers, 1995.



126 BIBLIOGRAPHY

[52] G. Moore, The numerical buckling of a visco-elastic rod, International Series of Nu-

merical Mathematics, Vol. 70, Birkhäuser Verlag Basel, 1984, PP 335-343.
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