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1. Introduction

Once upon a time ancient Greeks came up with the idea that all matter consists
of some fundamental entities. While Anaximenes assumed the element Air to be
the fundamental origin [1], soon afterwards Democrit and Leukipp supposed that
matter consists of elementary particles which they called atoms according to the
Greek word for indivisible. Since then, more than twothousand years passed by dur-
ing which no considerable progress in particle physics was made. Things, however,
changed dramatically within the last hundred years due to the invention of quantum
field theory and the development of particle accelerators. In addition, theoretical
and experimental physics have been crucially affected by the evolution of computer
technology. Thanks to those efforts, a theoretical framework of particle physics has
emerged which is known as the Standard Model. This is a gauge theory with sym-
metry group SU(3) x SU(2) x U(1) where the SU(2) x U(1) symmetry is associated
with the electro-weak theory [2, 3, 4], a unified description of two fundamental forces
corresponding to electromagnetic and weak interactions. The SU(3) gauge group is
associated with strong interactions between hadrons' described by Quantum Chro-
modynamics (QCD). Gravitation as the fourth fundamental force, however, is not
captured by the Standard Model. As shown in Tab. 1.1, on the subatomic level it
is many orders of magnitudes weaker than all the other forces. Thus it is expected
to play no role in this regime. Nevertheless, theoretical physicists and mathemati-
cians keep working hard on finding an even more fundamental theory that treats all
four forces in a unified way and thus might even describe phenomena near the very

beginning of the universe.

The strong interactions provide the forces acting between quarks and gluons which
yield the binding of protons and neutrons in nuclei. Many fundamental questions

in particle physics are related to this force. On the other hand, however, the study

1Strongly interacting particles are called hadrons.
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force strong electromagnetic weak gravitational
rel. strength 1 1072 107° 10739
range [m] ~ 1071 00 ~ 10718 o0

acts on quarks, hadrons | electr. charges | leptons, quarks | all matter
mediator gluons photons W= /Z%-bosons gravitons

Table 1.1.: Properties of fundamental interactions. The relative strengths are mea-
sured between two up-quarks at distance 3 - 10~"m.

of QCD is a very demanding task. It is this field where the present work aims to

contribute to the scientific understanding of Nature.

Phenomenology of Strong Intercation

In the early twentieth century, Rutherford concluded from his scattering experiments
that the atom is mostly empty space except for a small and dense core containing
positively charged particles, the protons. But if so, one would expect this nucleus to
burst apart due to the electromagnetic repulsion between the equally charged protons.
Chadwick’s discovery of the neutron as a second constituent of the nucleus still did
not answer the question why it is stable. Obviously, there had to be another, yet

unknown, mechanism responsible for that.

In the middle of the last century cosmic ray experiments and, even more important,
the availability of newly developed particle accelerators led to a plethora of known
particles, the ‘particle zoo’, which called for an explanation to bring order into this

chaos.

The great variety of hadrons, subdivided into baryons and mesons, has been classified
by Gell-Mann [5] and Zweig [6]. They invented the quark model according to which
hadrons can be grouped into multiplets of SU(3) associated with the quantum num-
ber ‘flavor’. However, particles in the fundamental triplet carry fractional electric

charge, a property which has never been observed in any experiment.

Later on, electron-nucleon scattering experiments confirmed Bjorken’s prediction of
the scaling of structure functions [7, 8] which could be explained by Feynman’s parton

model [9], stating that hadrons consist of point-like sub-particles, called partons. In
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1971 scattering experiments with neutrinos and nucleons indicated that the data could
indeed be accounted for if the partons had exactly the properties of the particles in the
fundamental triplet of SU(3);. Therefore, Feynman’s partons got identified with the
quarks and antiquarks. These particles are fermions and come in six flavors as listed
in Tab. 1.2. For example, the proton with charge 1 is built up from two up-quarks

and a down-quark, uud, whereas the charge-zero neutron is a udd-state.

quark u (up) | d (down) | s (strange) | ¢ (charme) | b (bottom) | ¢ (top)
mass [GeV] | 0.003(2) | 0.007(2) | 0.117(38) | 1.2(2) 4.25(25) | 174(5)
charge [¢] 2/3 -1/3 -1/3 2/3 -1/3 2/3

Table 1.2.: Masses and electromagnetic charges of the six quark flavors [10].

However, implementing the quark scheme ran into trouble because the properties
of the A**-resonance, originally discovered by Fermi, forced one to combine three
identical fermions u into a completely symmetric ground state, A™" = wuu. This
is, of course, forbidden by the Pauli principle. Another unsatisfactory issue was that
a number of possible combinations like quark-quark, antiquark-antiquark or single
quarks had never been observed. Both problems were solved by introducing a new
quantum number of quarks, called color, with corresponding symmetry group SU(N,).
Quarks are supposed to come in three colors, red, green and blue, which implies
N, = 3. Thus, the quarks in the A-ground state are now distinguishable and hence
not forbidden anymore. But in contrast with observations, there seem to be different
kinds of protons or neutrons if one thinks of all color combinations of the quarks
and d. For this reason one assumes all particles observed in Nature to be colorless,
or equivalently, to be unchanged under rotations in color space. In other words,
observable particles are represented as color singlets, i.e. states combining all three
colors or color-anticolor states. Quite recently, several groups have announced the
observation of colorless combinations of five quarks [11, 12, 13, 14]. The fact that
there are no isolated particles in Nature with non-vanishing color charge [15] is known
as ‘color confinement’. Due to the different quark masses the flavor symmetry is not

exactly realized in Nature in contrast to the color symmetry which is unbroken.

2See, however, [16] where weak confinement, i.e. the absence of free quarks and gluons, is distin-
guished from strong confinement which refers to an indefinitely rising potential. See Fig. 1.1.
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QCD

This last fact prepared the ground to formulate a theory for the strong interaction,
known as Quantum Chromodynamics [17, 18, 19]. Being a gauge theory with the
non-Abelian symmetry group SU(N,) it describes the interaction of quarks with
dim SU(N,) = N? — 1 color charged gauge bosons, the gluons. It is a local the-
ory like all other theories in the Standard Model.

The QCD-Lagrangian,
EQCD:,Cf—l-Eg , (1.1)

decomposes into a fermionic part including the quarks,

N. Ny
L= €y D —myppd™ )y (1.2)
a,f=1f,f'=1

and a purely gluonic part
N2—1

]‘ a va
Lg — —4—92 Z FuVF# ) (]_3)
a=1

which describes the kinematic of the gluons and by itself is a non-trivial Yang-Mills
theory. The field strength tensor belongs to the adjoint representation, and in terms

of the Lie algebra valued gauge field A, = A}T* it is given by

F;LLV = aﬂAg - aVAZ + fabcAZA,Cj ; (14)

where the f,;. are the structure constants. The T'* denote a complete set of generators

of the gauge group normalized according to
1
tr(T°T") = 55@” [T T = ifuTC (1.5)

The quark fields ¢, with masses my are labelled by their flavor and color quantum
number, f and « respectively. ¢ is the strong coupling constant, and the covariant

derivative D, = 0, — iA,, ensures local gauge invariance.
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Let us note that it is possible to add a ‘f-term’,
Ly x —tr(e FoB FH) (1.6)
0 16 ) afBuv ) .

to the Lagrangian as a source for C'P violation. Usually, such a term is discarded
because it can be expressed as a divergence of a current and thus appears as a surface
term in the action. However, a term of this form survives in non-Abelian gauge
field theories because there are non-trivial instanton configurations. We nevertheless

discard this term in this thesis because of the very small experimental upper bound
for the QCD @ parameter, § < 107° [20].

Apart from the realistic N, = 3 for QCD, of great theoretical interest is also the
study of Yang-Mills theory with arbitrary N, > 2. There are crucial effects like
asymptotic freedom and confinement of color charges that are generally believed to be
a consequence of the non-Abelian nature of the gauge group and thus should occur for
all SU(N,). Of particular interest, on the one hand, is the large NNV, limit, where typical
leading corrections scale with the small parameter 1/N,. On the other hand, there is
the SU(2)-case which is the simplest for analytical and numerical investigations but

nevertheless leads to reasonable results in understanding confinement.

Confinement

The most essential property of QCD is confinement [21] and its understanding is one

of the most exciting challenges of modern physics [22].

Confinement and asymptotic freedom are closely related to the running coupling of
QCD which has its origin in the non-Abelian nature of the theory. The gluons,
also carrying color, not only interact with quarks but also among themselves. By
turning into pairs of gluons they spread out the effective color charge of the quark
and the closer one approaches the quark color charge, the more the measured charge
decreases due to this anti-screening. This behavior shows up in the running coupling
which decreases for high energy (short distance) and increases for low energy (large
distance). The first fact leads to a vanishing interaction in the ultraviolet region at
energy scale Q% — 0co. Quarks become essentially free in this limit, and perturbation
theory can be applied. The second fact signals the occurence of nonperturbative

effects in the infrared region of the theory. However, this is the regime where one
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has to investigate issues like the hadron spectrum, the topological structure of the

vacuum, the Uy (1)-problem, chiral symmetry breaking and also confinement of color.

The latter denotes the fact that color charges have never been observed in free space,
i.e. at distances of about 1 fm, though visible in deep-inelastic scattering experiments
at scales < 1 fm. To get some intuition one may imagine to separate a quark ¢ and
an antiquark ¢ from each other. Inspired by superconductors where the electromag-
netic field lines are expelled from the interior, Nambu proposed the QCD vacuum to
behave like a dual superconductor where the chromoelectric field lines between quark
and antiquark are squeezed into a thin flux tube with constant energy density per
unit length, the string tension o. Thus, the total energy of such a configuration is
proportional to the gg-separation. If the increasing energy is sufficiently large, an en-
ergetically favorable new quark-antiquark pair is created from the vacuum and breaks
the string into two short pieces. This procedure ends when their energy has degraded
into clusters of quarks and gluons, each colorless, while the strong color coupling turns

them into hadrons as the particles to be detected.

To some extend the effects are already present in the gluonic part of the theory and
it is much easier to restrict to that and look for their remnants in pure Yang-Mills

theory.

In pure Yang-Mills theory the phenomenon of confinement is described by introducing
a static quark potential V' (R) for quarks in the fundamental representation which is
of Coulomb type for small distances R and rises linearly for large distances [23].
Due to the emerging virtual quark-antiquark pairs in full QCD or color charges in
higher representations the string breaks and the potential flattens off, see Fig. 1.1.
In that case the linear behavior is valid only in an intermediate range. Comparing
different representations of the sources one observes Casimir scaling of the string
tension [24, 25|, which means that potentials of sources in different representations are
proportional to each other with ratios given by the corresponding ratios of eigenvalues
of the quadratic Casimir operators. It should be mentioned that there is another
approach. According to [26, 27|, for SU(N) with N > 4 typical sources may be
thought of as k£ fundamental charges, and there are new stable confining strings,
called k-strings. For SU(N) there are non-trivial stable k-strings up to a k-value
equal to the integer part of N/2 with string tensions o depending on £ and N. The
different models (e.g. Casimir scaling, M-theory approach to QCD [28], bag model
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Ay,
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V xoR YM
ST T T T T T QCD
string breaking
R

Coulomb
Vx1/R

Figure 1.1.: Qualitative picture of the quark potential. At about 1 fm, which is ap-
proximately the size of a hadron, the string breaks in QCD.

[29]) predict different dependences of o, on N and k. Computations in respect thereof

are under way.

Moreover, one expects glueballs in the pure glue sector of QCD at low energies.
These are bound states of gluons the lowest masses of which are predicted by lattice
simulations to be around 1.7 GeV [30]. Such a mass gap would lead to an exponential
decay of any correlation function, thereby explaining the absence of long ranged fields.

In experiments several candidates for glueballs have been found (see e.g. [31, 32]).

At sufficiently high temperature or density, QCD shows a phase transition. In Nature
this is realized when hadrons start to overlap and the quarks and gluons therein are
free to travel over larger distances which is assumed to happen in the early universe
and neutron stars. This new state of matter, where color charges are not confined
anymore, is referred to as quark-gluon plasma. Lattice simulations predict a critical

temperature for this deconfinement phase transition of about 170 MeV?[34].

As physical problems have different scales, for practical reasons it is quite useful to
restrict oneself to the scale of interest while effects outside of this scope are absorbed in
an adequate manner. One of the most powerful such tools is the effective field theory
approach [35, 36]. The phenomena we are interested in belong to the nonperturbative

sector of QCD which amounts to the low energy regime.

3Here for zero baryonic chemical potential and 2+1 flavors. For a review see e.g. [33].
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Effective Theories

The basic idea of this approach is to introduce an energy scale u, or equivalently a
distance p~!, separating the low and high energy regime of the theory. Short distance
effects are put together into the coefficients or couplings of the effective field theory

L are described by operators

while low energy effects from distances longer than p~
in the effective theory. The degrees of freedom are chosen to reproduce the features
of the underlying theory when only processes of energy lower than p are considered.
Compared to the underlying theory, the number of effective degrees of freedom might
be remarkably reduced. Thus the effective theory is expected to be much simpler and

less complex.

There are several effective theories for QCD aiming towards different aspects. Well
established approaches are, for example, the Nambu-Jona-Lasinio model [37], heavy-
quark effective theory [38, 39] as well as non-relativistic QCD (NRQCD) [40, 41] and
the dual Abelian Higgs model (DAHM) [42, 43, 44] where it is argued that glueballs
correspond to closed vortices or flux-tube excitations [45]. Also a couple of effective

string theories for Yang—Mills [46] have been derived.

Most interesting in the context of this thesis are, however, yet two other attempts.
First, there is the Faddeev-Niemi action [47], the main ingredient of which is a unit
vector in color space. It can be viewed as a generalization of the non-linear o-model
but is just as well obtained from the Skyrme model [48]. The action supports stable
solitons [49], i.e. static solutions of minimal energy, and a rich variety of linked
and knotted solitons has been revealed in recent years [50, 51]. The most remarkable
point is that this model serves as a possible low energy effective action for pure SU(2)

Yang-Mills theory where the knot-like solitons are identified with glueballs.

A second class of models is inspired by the fact that the deconfinement phase transi-
tion in pure Yang-Mills theory [52, 53] is controlled by the dynamics of the Polyakov
loop (see Chapter 4). The expectation value of the traced Polyakov loop serves as an
order parameter associated with spontaneous breaking of the center symmetry, as it
is nonzero above the critical temperature and vanishes below. There is a conjecture
by Svetitsky and Yaffe who have argued that finite-temperature SU(N) Yang-Mills
theory in d dimensions lies in the universality class of a Zx spin model in dimension

d — 1 [54, 55]. Mapping the microscopic theory (YM) onto a macroscopic one (Ising)
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should thus provide an effective model describing the deconfinement phase transi-
tion. Instead of the (discrete) Ising spins one may establish an effective model for the
(traced) Polyakov loop variable itself [56, 57, 58].

Both, the Faddeev-Niemi conjecture and the Svetitsky-Yaffe conjecture are subject to
our investigation throughout this thesis. We test a possible relation of SU(2) Yang-
Mills theory to the proposed effective actions in a numerical and analytical manner.
The method we use is the inverse Monte Carlo technique (see Section 2.5) based on

Schwinger-Dyson equations and Ward Identities.

As already pointed out, the effective theories we consider are designed for low energies.
At this scale perturbation theory fails, and obviously one has to apply some nonper-
turbative technique to access the structure of this regime. One of the most powerful
nonperturbative approaches at present, and thus the method we use, is lattice gauge

theory, originally invented by Wilson in his pioneering work [59].

The outline of this thesis is as follows. Chapter 2 summarizes some very basic facts
about lattice gauge theory as the method we focus on. In particular, we briefly address
the Inverse Monte Carlo (IMC) technique. Its application to the Faddeev-Niemi model
including additional symmetry breaking terms is the content of Chapter 3. Chapter 4
deals with the Polyakov loop model where we also derive the constraint effective

potential. We conclude with a summary in Chapter 5.



2. Lattice Gauge Theory

As already mentioned in the introduction, lattice gauge theory provides a systematic
approach to the nonperturbative sector of quantum field theories, in the present case
Yang-Mills theory. In this chapter we will briefly introduce some basic concepts of
this approach. However, the wide variety of this subject calls for a restriction on
the techniques which have been used in this thesis. Readers interested in additional
details on field theory on the lattice are referred to the literature, e.g. [60, 61, 62, 63,
64, 65, 66, 67].

2.1. Discretization

The key feature of lattice gauge theory is that it provides an ultraviolet cutoff from
the outset by replacing continuous spacetime with a discrete hypercubic lattice. Due
to limited computer power the lattice volume in practical simulations is finite which
provides also an infrared regulator. Choosing periodic boundary conditions turns the
finite lattice into a torus. The computational methods are very similar to those in

statistical mechanics.

Let us define a Euclidean lattice in d dimensions,
A= {r=(zo,71,...,24-1) €aZ*|0<z, <a(N,—1)¥Y pu=0,...,d—1} (2.1)

which extends over N, lattice spacings a into direction fi. In this thesis we restrict
ourselves to the case d = 4 with zy denoting the temporal coordinate and x;, + =
1,...,3, the spatial coordinates where Ny = Ny and Ny, = Ny = N, = N3. Two
neighboring lattice sites in a particular direction fi are separated by a distance of one
lattice spacing, i.e. z and x + afi = x + . The number of lattice points, or sites, is

denoted by V = N3N, = QN; describing a physical volume of a*V in spacetime. The

10
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temporal extension is proportional to the inverse temperature, N; ~ 1/aT. Using

anisotropic lattices where N; < N, refers to finite temperature.

To set up quantum field theory on the lattice, first of all the physical fields defined
in the continuum must be attached to the elements of the lattice. The natural choice
is to assign a scalar field to a site of the lattice, ¢,, and a vector field, which is
characterized by a site and a direction, to the link U; = U, ,. Also plaquette variables
H, = H, ,, can be defined corresponding to a tensor field in the continuum as shown
in Fig. 2.1.

site link plaquette

o -
U { |

Pz
T Y=x+u -
& —
I a

1%

Figure 2.1.: Tllustration of site, link and plaquette and corresponding variables on a
two-dimensional lattice.

In the case of SU(N,) Yang-Mills theory the Lie-algebra valued gauge field A,(z) is
reexpressed as a parallel transporter U, , between two neighboring lattice sites  and

x + p which is defined as the path ordered exponential
T+afl )
Uz, = Pexp (1/ Au(y)dy> —5 @ 4540 . (2.2)

Out of these link variables the lattice action is constructed in such a way that one
recovers the continuum action in the limit ¢ — 0. As in the continuum case, the QCD-
action splits up into a purely gluonic and a fermionic part, S = S,[U] + Sf[¥, ¥, U].

Following Wilson [59], at each site x a plaquette variable U, is constructed as a path
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ordered product of links around an elementary plaquette located at =,
U, =U, Upsn Ul U (2.3)
P T,p~ rHpry Y rtr,u~ ey o '

to write the gluonic part of the action as
1
S,U1=8%" (1 — < Metr Up) . (2.4)
P (&

The usage of plaquettes (2.3) in this construction ensures local stress gauge invariance

since a link transforms under gauge transformation g, according to
Ux,u — gmUm,ug;-i-u .

The lattice Yang-Mills coupling is f = 2N,./g®. In the fermionic part the Dirac
operator gets replaced by its discrete version, the lattice Dirac operator (for example
the Wilson operator) D(z,z'), and the quark fields are rescaled by the appropriate
power of the lattice spacing, 1(z) = a=3/?¥,.

S0, 0, U] =Y U, D(x,2")[UW, . (2.5)

z,x’

2.2. Measuring Observables

The goal of lattice simulations is to estimate expectation values of observables O[¥, ¥, U]

calculated from
1 B B _
(0) =~ / DUDIDY OV, ¥, U] e SV 50U (2.6)
where the partition function is given by

7 = / DUDIDV ¢ oIV 0.U] (2.7)
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For observables which do not contain fermions the quark field integration separates

giving rise to a fermion determinant,

/ DUDYD Ve %UI=5:1¥.%.U] — / DU detD[U] e~ 5011 . (2.8)

However, computing the fermion matrix is a very demanding task and one of the most
computer-time consuming parts in lattice simulations. Therefore lots of simulations
today, including those done in this work, used the quenched approximation [68, 69, 70]
which amounts to replacing the determinant by a constant, say detD[U] = 1. Of
course, this does not mirror QCD correctly. However, neglecting the fermion deter-
minant is just a reweighting of the gauge configurations in the Monte Carlo update.
Quenched approximation allows for a rather precise determination of phenomena that
are substantially independent of dynamical fermion contributions [71] and it is also
supported by phenomenological arguments [72, 73, 6] suggesting that closed quark

loops contribute only small effects.

In what follows we restrict to the pure gauge sector. As already mentioned in the
introduction, it still covers many crucial properties of QCD, in particular confinement

and its phase transition which are due to non-Abelian nature of the theory.

Due to the extremely high multidimensionality of the integrals in (2.6)and (2.7) the
partition function can never be summed up exactly and a statistical treatment is
in order. As a simple example let us consider a rather small 4*-lattice with link
variables taking on just two different values +1. Even in this case there are of order
103% possible configurations. Hence, on the lattice the computation of (O) is done

by Monte Carlo integration.

2.3. Monte Carlo

The aim of Monte Carlo simulation is to generate a sample {U™ n = 1,..., N}
containing a sufficiently large number N of field configurations which are typical of
thermal equilibrium in the sense of statistical mechanics. These configurations will

strongly dominate in the partition function. The sample average as a good estimator
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for the expectation value is defined as

(0) = S 0w (2.9)

For this to work, the distribution of configurations in the sample has to follow the
Boltzmann weight exp(—S[U]). This property, commonly referred to as importance
sampling, is essential for an effective Monte Carlo simulation. The configurations in

the sample are generated as a sequence
G A R — (2.10)

starting from a given initial configuration U, Not every configuration in the sequence
belongs to the sample. The latter is rather an approriate subset of the former (see
Section 2.6). The step from UM to U™, during which every single link U, on
the lattice is updated once, is called a sweep. The updating is a stochastic process
done by a specific algorithm depending on the theory under consideration. It has to
be designed in such a way that every configuration, say U’, can be reached by any
other one, U, with a nonzero transition probability, P(U' <— U) > 0. This property
is called ergodicity and ensures that the whole configuration space is covered such
that no particular configurations are excluded by the algorithm. A third important
condition on the updating algorithm is that it takes any initial configuration whithin
a sufficiently large but finite number of updating sweeps to equilibrium. This implies
in particular that the equilibrium distribution is a (unique) fixed point of the Markov

process. A sufficient condition for this to occur is detailed balance,
PU + U)e W = p(U « U")e 5T (2.11)

which most algorithms in practice satisfy.

All update algorithms, although they may differ very much in detail, have one ba-
sic feature in common namely the acceptance-rejection-step. It defines the update
procedure in the following schematical way. Given a configuation of fields, e.g. link
variables U, let us choose a particular link U; to be updated. First, a new trial value
U] for this particular link is suggested while all other links are left untouched. Sys-

tematically finding a reasonable value U] is a big challenge since speed and efficiency
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of the algorithm crucially depend on it. The different approaches are reflected in
different algorithms like Metropolis [74, 75] which has been widely used in statistical
mechanics. Another famous algorithm which is particularly suited for SU(2) gauge
theory is the heatbath algorithm [76] invented by M. Creutz and its generalization
to the so called pseudo-heatbath algorithm [77] for larger SU(N) groups. There are
also cluster algorithms [78, 79] available where not only a single site or link but whole
regions of the lattice are updated. Unfortunately, to the best of my knowledge there

is no cluster algorithm known for non-Abelian gauge theories.

The Metropolis algorithm is rather easy to explain. After picking up the trial U] one
has to compute the change in the action §S = S[U/]—S[U;] to compare the Boltzmann
weights. In the case that 05 < 0, i.e. if the action decreases under replacing the value
of U; by U] which amounts to increasing the Boltzmann weight of the configuration,
this change is accepted in terms of assigning the new value U] to the link while the old
one is dismissed. On the other hand, if S > 0 the pseudo-randomness of the Monte
Carlo procedure comes into play. Choosing an equally distributed random number
R € [0,1] the value U] is also accepted if exp(—dS) > R whereas it is definitely

rejected otherwise.

It is this last but important step where quantum fluctuations are taken into account.
As one can imagine, only small fluctuations are allowed for. Huge jumps with large 6.5
are exponentially suppressed. On the other hand, rejecting all updates with 65 > 0

would just yield a minimization of the action leading to the classical limit.

In this thesis we used the Metropolis algorithm for the Polyakov loop fields, the cluster
algorithm for the n field and the SU(2) Yang-Mills ensembles were generated by the
heatbath algorithm.

2.4. Overrelaxation

Let us briefly mention a tool the aim of which is to speed up the Monte Carlo process
and which thus enjoys great popularity. It goes under the name of overrelaxation
[80, 81, 82] and is used not only for updating but also for maximizing functionals as
will be done for gauge fixing in Section 3.2. The concept is the same in both cases,

namely to choose the new value of the variable as far as possible from the old one.
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Figure 2.2.: The two contributions to a sta- Figure 2.3.: Geometric illustration
ple at link U; in a hyperplane of of (2.12).

the lattice.

For updating SU(2) link variables this is achieved by setting the trial value to U] =
sTU'sT. Here s € SU(2) is the sum over all staples at the link U, projected onto
the group. A staple, as shown in Fig. 2.2, is a plaquette with a missing link. This
proposal U] is always accepted since the action is unchanged, which is special for
SU(2). Moreover, the constant action implies that this algorithm is not ergodic. One
way out to get a reasonable updating is to mix overrelaxation with some ergodic steps,
since a combination of ergodic and non-ergodic procedures is always ergodic. In this
work we have mixed overrelaxation and heatbath at a ratio of about one to three for
the gauge fields. The ratio has to be chosen appropriately by observing the effect on

Monte Carlo time for different ratios.

On the other hand, an overrelaxation step for maximizing functionals may be imple-
mented as follows. If the functional can be expressed as a sum over scalar products,

Yz @, - Wy, then the new scalar field is simply chosen to be

¢, =20, w,— ¢, . (2.12)

This amounts to a planar reflection of the field ¢, with respect to the direction w,, as
depicted in Fig. 2.3. Obviously, the functional is unchanged since the projection onto
w,, is the same for both, ¢, and ¢’,. The amount of acceleration due to overrelaxation
depends on the process under consideration and can be quite remarkable as shown in

Fig. 3.4 for the gauge fixing procedure.
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2.5. Inverse Monte Carlo

Given an action, a Monte Carlo simulation provides a set of field configurations dis-
tributed according to the corresponding Boltzmann weight as described above. This
allows for a computation of expectation values, for instance n-point functions, out of
which one can extract intrinsic parameters of the theory like masses, critical expo-

nents, magnetization or energies.

On the other hand, Inverse Monte Carlo, as the name implies, solves the inverse
problem of statistical mechanics. It reconstructs the interactions if the distribution
is known. More precisely, within the scope of this thesis, we want to learn some-
thing about the action according to which a given sample of field configurations is
distributed. The direct approach would be to explicitely solve the expectation value
(2.6) or even (2.9) for the action, but, of course, this is not possible at all. However,
according to Wightman’s reconstruction theorem [83], the knowledge of all (infinitely
many) n-point functions is equivalent to solving the underlying theory. Therefore,
there must be a way to extract at least some basic details of the action from the
configurations. Due to the finite extension of the lattice, the number of accessible
n-point functions is restricted, which, however, is not a serious handicap since, in

practice, a finite but characteristic subset suffices.

In addition to numerical investigations also analytical arguments based e.g. on sym-
metries turn out to be very powerful because they allow to constrain the structure
of the action. This fact is of great advantage since it provides the opportunity to
make an ansatz for the action where only a number of coupling constants are left
to be evaluated. Possible models for instance are a gradient expansion in powers of
derivatives while the potential term may be given as a polynomial or power series in
the field. Varying the number of terms taken into account one can study how the
couplings of leading operators are affected by truncation. The latter makes sense if

there are only minor deviations and potentially a stabilisation within the error bars.

A similar technique has already successfully been used in studying the flow of cou-
plings [84, 85] in the context of renormalization group transformations [86, 87]. Ap-
plied to a scalar theory, critical exponents, the fixed point and truncation effects were
discussed [88]. However, these investigations have started with a definite action to

generate configurations which are then subjected to a block spin transformation with
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Figure 2.4.: Monte Carlo and Inverse Monte Carlo technique. In this thesis we follow
the way indicated by the solid arrows.

tunable parameter to see how the initial couplings change under coarse graining.

This is different from what is done in this thesis. Here we are interested in determining
effective actions describing the low energy sector of QCD. To do so we numerically
integrate out degrees of freedom in Yang-Mills theory with the exception of those
which are supposed to be relevant for physics at low energies. What is left are
‘effective configurations’ of field variables distributed with respect to the effective
action Ser (see Fig. 2.4). Our goal now is to verify to which extent the proposed
effective action is actually able to describe physical phenomena at the desired energy
scale. As stated above, the effective action can be written as a sum of operators, each

of which attached with a coupling constant.

A naive method to calculate the latter would be to scan iteratively all the parameter
space by Monte Carlo simulation, adjusting the input couplings by guess and com-
paring the result to the effective configurations. Certainly this is a very consumptive
and clumsy procedure since a single Monte Carlo simulation still requires much time
and computer resources. As one can imagine, even for only two parameters to be

fixed dozens of simulations have to be performed which is a hopeless venture.

Therefore, in this work we develop a much more efficient and transparent way to
determine the effective action from expectation values taken in the effective sample of
configurations. Basic ingredients are the Schwinger-Dyson equations following from
the invariance of the functional measure. In general this provides an overdetermined

system of equations for the couplings to be solved by least square method [89] (see also
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App. E). The fact that there are more equations than unknowns makes it possible to
check truncation effects which may appear due to the finite number of terms in the

ansatz for the action.

Once a sensible ansatz is established a cross check is in order to verify whether the
effective ensemble obtained from the full theory is indeed recovered. The most nat-
ural way is to generate configurations by Monte Carlo using the obtained action for
which a set of expectation values of characteristic observables is computed. These can
be compared to the values taken in the effective configurations to check for coinci-
dence. Another test is already contained in the method itself, since Schwinger-Dyson
equations involve both, the ansatz for the action and the expectation values within
the effective sample. Supposed they do not mainly match up the Schwinger-Dyson
equations would not be valid and solving the overdetermined system would barely

result in a stable solution for the couplings.

2.6. Technical Pitfalls

As a Monte Carlo simulation can be viewed as an experiment measuring specific
data, there are of course certain sources of errors present. Reasonable results are

nevertheless obtained by sticking to the following rules.

Due to the statistical nature of the procedure there are first of all statistical fluctua-
tions which decrease with the square root of computer time as the sample is enlarged.
Additionally, there is a couple of systematic errors. A serious one is made if mea-
surements are taken before equilibrium is reached in the updating sequence (2.10).
Though measuring observables on a sample which is not yet in equilibrium produces
some numbers, they are completely meaningless with respect to the action under
consideration. Apart from the algorithm used, how fast a configuration is brought
to equilibrium also depends on the lattice volume and the initial conditions. In the
present work we ran several hundred up to a few thousand thermalization sweeps

before the measurement was started.

Quite a similar problem are autocorrelations in subsequent configurations. A sin-
gle sweep in the updating (2.10) may change only a small fraction of variables and

therefore these two configurations would be almost identical. A measurement over
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highly correlated configurations typically results in small error bars but the mean
value is unphysical. This problem is avoided when the configurations in the sample
are each separated by a sufficiently large number of sweeps. A few hundred did it in

our simulations.

Another important point to be aware of is the finite and discrete structure of the
lattice. Discretization of the continuum theory yields lattice artifacts which grow as
the lattice spacing a is increased away from the continuum value, a = 0. Important
quantities are often related to the decay of correlation functions. Thus the lattice
spacing has to be small enough to trace the signal over several slices before it goes
down in the noise. It should be mentioned that there is the concept of improved ac-
tions [90, 91, 92] where lattice artifacts are suppressed by adding additional operators.
Moreover, there are global symmetries of the original theory, like Poincaré invariance,
which are partially or even completely lost on the lattice. However, the construction
of a lattice theory is done in such a way that the most important symmetry, namely

gauge invariance, remains intact.

Another technical point is that the lattice size is very much restricted by computer
power. Therefore, in a reasonable simulation the extension of the lattice is at most a
few Fermi. This has consequences for what is accessible to measurement, since only
objects or distances smaller than the lattice size can be observed. It is also known that
spontaneous symmetry breaking does not occur in finite volume. However, tunneling
effects among degenerate states are exponentially supressed with increasing volume.
In general, one requires a < & < N, where £ is the correlation length defined by the

exponential decay of the correlation functions.
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3.1. Introduction

Confinement in pure Yang-Mills theory is still a theoretical challenge. The problem
actually has two faces. On the one hand, there is confinement of static external sources
in the fundamental representation which manifests itself through the appearance of
a linear potential (nonzero string tension). On the other hand, there should be gluon
confinement implying a finite range of the gluonic interactions, i.e. a mass gap. How

the two faces are related is largely unclear at the moment.

Recently, Faddeev and Niemi (FN) have suggested that the infrared dynamics of glue
might be described by the following low—energy effective action [47],

1
SFN = /d4]) [mQ(aun)2 + ;HMVHMV . (3].)

Here, m is a unit vector field with values on S?, n? = n%® =1, a = 1,2,3; m is
a dimensionful and e a dimensionless coupling constant. The FN ‘field strength’ is
defined as

H,=n-0,nx0on. (3.2)

Faddeev and Niemi argued that (3.1) “is the unique local and Lorentz-invariant action
for the unit vector m which is at most quadratic in time derivatives so that it admits
a Hamiltonian interpretation and involves all such terms that are either relevant or

marginal in the infrared limit” [47].

It has been shown that Sgy supports string-like knot solitons [49, 50, 93], character-
ized by a topological charge which equals the Hopf index of the map n : S® — S2.
Here, n is supposed to be static and approaches a uniform limit at spatial infinity,

N = €,. In analogy with the Skyrme model, the H? term is needed for stabilization.

21
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The knot solitons can possibly be identified with closed gluonic flux tubes and are
thus conjectured to correspond to glueballs. For a rewriting in terms of curvature—free

SU(2) gauge fields and the corresponding reinterpretation of Spy we refer to [94].

In order for the model to really make sense, however, the following problems have to
be solved. First of all, neither the interpretation of m nor its relation to Yang-Mills

theory have been fully clarified. An analytic derivation of the FN action requires

e an appropriate change of variables, A — (n, X), relating the Yang—Mills poten-

tial A to n and some remainder X

e the functional integration over X to arrive at an effective action S.g for the
n-field.

Some progress in this direction has been made [95, 96, 97, 98, 99, 100] on the basis
of the Manton—Cho decomposition [101, 102],

A, =Cn—-nxon+W,, (3.3)

where C'is an Abelian connection and n - W, = 0.

Second, there is no reason why in a low—energy effective action for the n—fields both

operators in the FN ‘Skyrme term’, which can be rewritten as
H?> = (0,n-9,n)* — (O,n-0,n)*, (3.4)

should have the same coupling. Third, and conceptually most important, Sy has the
same spontaneous symmetry breaking pattern as the nonlinear o—model, SU(2) —
U(1). Hence, it should admit two Goldstone bosons and one expects to find no mass
gap. In order to exclude these unwanted massless modes we have suggested to break
the global SU(2) explicitly [LRD1], an idea that has subsequently also been adopted
by Faddeev and Niemi [103].

In what follows the FN hypothesis will be tested on the lattice. To avoid the appear-
ance of Goldstone bosons we allow for explicit symmetry-breaking terms. The main
part of this chapter is based on [LRD2].
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3.2. Generating SU (2) lattice configurations of

n—fields

The conceptual problem to be solved in the first place is to obtain a reasonable
ensemble of n—fields. The (lattice version of the) decomposition (3.3) is of no help:
it assumes some particular choice of n on which the decomposition is then based.
One way of defining an n—field is via Abelian gauge fixing, originally introduced by
‘t Hooft [104]. A prominent example in this class of gauges is the maximally Abelian

gauge (MAG) which is obtained via maximizing the functional [105]

FuaclU; 9] = Ztr (739U, gU;#) = Ztr (”xe,u”eruU;,u) = FuaglU;n] ,
T, T,

(3.5)
with respect to the gauge transformation g. The maximizing g then defines the n—field

according to
Ne =gl g =my-T . (3.6)

Instead of maximizing Fyiag with respect to g one can equivalently maximize FMAG

with respect to n [106] which results in the condition
AU ng = Aeny - (3.7)

Here, A[U] denotes the covariant Laplacian in the adjoint representation (see App.
A), while )\, is a Lagrange multiplier imposing that n, is normalized to unity, locally
at each lattice site x. In principle, (3.7) can be solved for the field n associated
with the background U. However, as this background is distributed randomly along
its orbit we will in turn obtain a random ensemble of n—fields characterized by the
two—point function

G = (nopby = %5@”% | (3.9)

Thus, nontrivial correlations are absent. Fig. 3.1 shows that this is indeed what one
gets in a typical Monte Carlo run. One way out of this problem is to follow the
continuum approach of [97] which starts out with a covariant gauge fixing. After
having generated SU(2) lattice configurations using the standard Wilson action we

therefore fix to lattice Landau gauge (LLG). The latter is defined by maximizing the
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Figure 3.1.: Behavior of the two—point function ng along a lattice axis for a random
ensemble of n—fields, obtained via MAG and (3.6). Note that also the
value 1/3 for a = b, x = 0 and = Nj is correctly reproduced.
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Figure 3.2.: Gauge invariant definition of n = ¢fr3¢9. The gauge equivalent configu-
rations A; and A, are both mapped onto the same ‘representatives’ on

the LLG or MAG slices (ignoring Gribov copies). Thus, they are both
associated with the same gauge transformation g defining n.
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functional

FLLG = ZtrQUm,u, (39)
M

with respect to the gauge transformation €2. In this way we impose some ‘precondi-
tioning’ [107] which (i) eliminates the randomness in our Yang—Mills configurations
and (ii) leaves a residual global SU(2)-symmetry. The Landau gauge configurations
are then plugged into the MAG functional (3.5) which subsequently is maximized with
respect to g. The gauge transformation g obtained this way determines n according
0 (3.6). One may say that g (and hence n) measure the gauge—invariant (!) distance
between the LLG and MAG gauge slices (see Fig. 3.2). In App. B we show that LLG
and MAG are ‘close’ to each other. Therefore, the maximizing ¢ is on average close
to unity, hence, on average, n will be aligned in the positive 3-direction. In this way
we have explicitly broken the global SU(2) down to a global U(1).

All computations have been done on a N*-lattice with N = N, = N, = 16 and Wilson
coupling g = 2.35, lattice spacing 0.13 fm and periodic boundary conditions. For the
LLG we used Fourier accelerated steepest descent [108] (see Fig. 3.3). The MAG was

no FFT acceleration

—10 FFT acceleration with optimal 7
step size parameter

—12+ i

—14t 4

—16 L

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

iterations

Figure 3.3.: Behavior of the LLG-functional using different algorithms. The param-
eter © measures the ‘distance’ from the LLG, i.e. for © = 0 the LLG is
achieved.
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Figure 3.4.: Behavior of the MAG-functional using different algorithms.

achieved using two independent algorithms, one (AI) using iterations based on el-
ementary geometric manipulations (including overrelaxation steps), the other (AII)

being analogous to LLG fixing (see Fig. 3.4).

3.3. Numerical Results

As expected, we observe a non-vanishing expectation value of the field in the 3—
direction, a 'magnetization’ 9 defined through (n®) = 9 §*®. Thus, the global sym-
metry is indeed broken explicitly according to the pattern SU(2) — U(1). We demon-
strate this by exhibiting the angular distribution of the n—field on its target space S>
in Fig. 3.5. The azimuthal angle ¢ is equally distributed, while the distribution of the
polar angle # has a maximum near 7 /2 corresponding to the north pole, n = (0,0, 1).
Explicit symmetry breaking also shows up in the behavior of the two—point functions
as depicted in Fig. 3.6. The longitudinal correlator, GIl = (n3n3) ~ (n3)(n3) = M2,

exhibits clustering for large distances, the plateau being given by the magnetization
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Figure 3.5.: Distribution of polar and azimuthal angles (0 and ¢) associated with the
unit vector n on S2. The uniform distribution for ¢ and the maximum
for # = /2 shows that n is located near the north pole, n = (0,0, 1).

(squared). The transverse correlation function (of the would—be Goldstone bosons)
]2
Gr=GL = 5 Z<n;ng> , (3.10)

decays exponentially as shown in Fig. 3.7. This means that there is a nonvanishing
mass gap M whose value can be obtained by a fit to a cosh—function (see Fig. 3.7).

The numerical values of the observables, 9t, M and the transverse susceptibility,
x'=) G, (3.11)
x

which all can be derived from the two—point functions, are summarized in Tab. 3.1

for both algorithms.

The disagreement between Al and AlI is statistically significant. We attribute it to
the ubiquitous Gribov problem [109] (for Abelian gauges, see [110, 111]). On the

lattice, this is the statement that maximizing gauge fixing functions like Fyag or
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Figure 3.6.: Behavior of the two—point correlators of the n-field along a lattice axis
(labelled by coordinate z). Note the difference between algorithms ATl
and AII (FFT). Error bars exhibit the statistical error of the Monte Carlo
simulation.

F11q is equivalent to a spin—glass problem with an enormous number of degenerate
extrema. This implies that the algorithms AT and AIT will almost certainly end up
in different local maxima, which explains the difference between rows one and two in
Tab. 3.1.

As shown in the last column of Tab. 3.1, the numerical results for the mass gap M
lead to a value of about 1 GeV in physical units.

n® is a local functional of the n?, n® = (1 — n'n’)'/2. Thus, one expects the same

exponential decay for the longitudinal correlator G!l. This can be confirmed with a

numerical value for the mass gap of M = 0.66 a~!.

To improve statistics, we have calculated the time-slice correlator,
CHt) =N Gy, (3.12)
xr

In the continuum, for purely exponential decay of G, this would become proportional
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Figure 3.7.: The transverse correlation function along an arbitrary lattice axis, fitted
as G (x) = ay cosh(M (z — N,/2)) + ay with a; = 0.0048, ay = —0.0053,
M = 0.6084. Data points are obtained with algorithm Al.

algorithm 9 o *xt aM M [GeV]
Al 0.438 92.57 0.61 0.95
All 0.366 79.66 0.67 1.03

Table 3.1.: Numerical results for some observables as obtained from the longitudinal
and transverse two—point functions, G!l and G, respectively.

to a modified Bessel function K5. An associated fit works very well as is shown in
Fig. 3.8. Fitting the time-slice correlator according to Fig. 3.8, we obtain for the
mass gap

aM =0.642 ie. M =0.97 GeV . (3.13)

This is the value with the smallest statistical errors.

The mass gap obtained differs significantly from the SU(2) mass gap, Mgy ~ 1.5
GeV, obtained directly from Wilson configurations with § = 2.4 [30]. We believe
that the difference is due to the highly nonlocal relation between the original Yang-

Mills degrees of freedom (the link variables) and the color spin m. After all, we
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Figure 3.8.: The time-slice correlator fitted to a (properly symmetrized) Bessel func-
tion, C+(t) = ¢ [PKy(Mt) + (t — N)2Ko(M(N; — t))] + co, where
c1 = 0.0006, co = 0.0001 and M = 0.6423. Data points are obtained
with algorithm AT.

have implicitly solved the partial differential equation (3.7) with link variables U in
Landau gauge entering the adjoint Laplacian. The solution n will clearly be a nonlocal
functional of these U’s. Consequently, we cannot expect that the exponential decay

of G+[n] will be governed by the lowest excitation of the U—ensemble.

3.4. Effective Action and Schwinger—Dyson Equations

At this point it is natural to ask whether there is an effective action Seg[n] that

reproduces the distribution of n—fields leading to the results of the previous section.

At low energies, it should make sense to employ an ansatz in terms of a derivative

expansion,

Ser = D A;Siln] + ) X; Sjln. ], (3.14)
j j
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with O(3) invariant operators S and noninvariant operators S, which are ordered

by increasing mass dimension. Up to dimension four, one has the symmetric terms,

$1 = (n,An), S: = (n, A%n) (3.15)

Sy = (n -An,n - An) ,  Sy= (n . 8;6,,71, n- 82:3,,71) ,

and the symmetry-breaking terms including a unit vector ‘source field” h [LRDI1]

(which can be thought of as the direction of an external magnetic field),
Si=(n,h), Sy=(Mm-hn-h), Si=Mnm-An,n-h). (3.16)
In the above, we have introduced the scalar products

(fag)Efog:va u'vzuava, (317)

and the usual lattice Laplacian A (see App. A).

Note that the n—field configurations are classified by the Hopf invariant irrespective
of the particular form of the (effective) action. This, together with the usual scaling
arguments, shows that the action (3.14) with the operators (3.15) and (3.16) should
still support classical knot soliton solutions. Our ansatz thus does not exclude this

important feature.

The couplings in (3.14) can be determined by inverse Monte Carlo techniques. The
notion is suggestive: instead of creating an ensemble from a given action, one wants
to compute a (truncated) action which gives rise to the given ensemble of n—fields. A
particular approach uses the Schwinger—Dyson equations [112, 88]. These represent, an
overdetermined linear system which can be used to solve for the couplings in terms of

correlation functions. The latter are nothing but the coefficients of the linear system.

For an unconstrained scalar field ¢, the Schwinger-Dyson equations follow from trans-

lational invariance of the functional measure, implying

0= [ Dor{Figlesn(-S[oD} (3.18)

where P, = —i0/0¢, is the (functional) momentum operator, and F' an arbitrary
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functional of the field ¢. Usually one chooses F[¢] = ¢(z1) ... ¢(xy). For a constrained
field like nn with a curved target space things are slightly more subtle [112]. There is,
however, a rather elegant way to derive the Schwinger-Dyson equations if one exploits

the isometries of the target space S? [113]. The target space measure,

Dn=[]dn,é6(n2 - 1), (3.19)

is obviously rotationally invariant, i.e. under n — Rn, R € O(3). This implies the
modified Schwinger-Dyson identity

/Dn L, {F[n] exp (— Se[n, h])} =0, (3.20)

where L, denotes the angular momentum operator (at lattice site x),

0 J
iL, =n, x . T iLe = eabcng% : (3.21)
In shorthand-notation, (3.20) can be rewritten as
(L, Fn] — F[n|L, Seg[n]) =0 . (3.22)

These exact identities can be used to determine the unknown couplings A;. To this
end one chooses a set of field monomials F;[n] and plugs them into (3.22) together

with the form (3.14) of the action. This yields the local linear system

J

which, in principle, can be solved numerically, for instance by least—square methods.
The identities obtained so far hold for arbitrary actions Seg[n]. In particular, we have
not made use of any symmetries. Taking the latter into account will lead to Ward

identities.

Let us specialize to our lattice effective action (3.14). It is a sum of a symmetric part

S containing the terms (3.15) and an asymmetric part S’ containing the terms (3.16),

Set = S[n] + S'[n, k] . (3.24)
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Due to the invariance of S under global O(3) rotations it is an O(3)-singlet and hence

annihilated by the total angular momentum,

LS=0, L=) L,, (3.25)

such that LSeg = LS’. Thus, summing over all lattice sites  in (3.22) yields the
(broken) Ward identity,

(LF[n] — Fln]LS'[n,h]) =0, (3.26)

where the second term contains the infinitesimal change of the non-invariant part S’
of the effective action under rotations of n. Note that the coupling constants \; of
the O(3)-symmetric operators S; have disappeared in the Ward identity (3.26) so
that only the symmetry-breaking couplings \; are present. We have collected the
explicit lattice Schwinger—Dyson and Ward identities used in our simulations in App.
C. As the former are local relations, they naturally contain more information than

the global Ward identities. In particular, one does have access to length scales.

3.5. Comparing Yang—Mills and FN Configurations

3.5.1. Leading—Order Ansatz

To leading order (LO) in the derivative expansion we have a standard nonlinear sigma

model with symmetry—breaking term,

Sog = Z()‘"fv -Ang+Nn,-h), h=e,. (3.27)

x

Inverse Monte Carlo amounts to determining the couplings A and )\ such that the
probability distribution associated with the LO action (3.27) fits the observables of the
Yang-Mills ensemble of n-fields'. The associated Schwinger-Dyson equation (3.23),

with F[n] = n%, can be written as

AH,yy 4+ NGy = =M b,y (3.28)

!Throughout this section, we refer to algorithm Al
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where H denotes the (antisymmetrized) two—point function of n’ and the operator
n*An?,

Hyy = (nini And) — (niniAnl) = (nfvng[fAan : (3.29)

To analyse (3.28) we define a ‘reduced’ two—point function h,, and magnetization s,

hoy = Hgyy/GE (3.30)

Ty

p = M/GL (3.31)

T )

and rewrite (3.28) as the inhomogeneous system (using translational invariance to

replace x — y — ),

Mg +N =0, z=1,...,8, (3.32)
Mo+ N = —pu. (3.33)

The solution is found to be

A= i, (3.34)

N o= — /", (3.35)

with the numerical boundary value given by hy = 0.1410 (cf. Fig. 3.9). Clearly, the
system (3.32) with (3.33) is overdetermined since there are nine equations for two
unknowns. This is reflected in the fact that A and A in (3.34) and (3.35) depend
on the lattice distance x via h,. If the Yang-Mills ensemble were exactly described
by the LO action (3.27), there would be no such z—dependence. Rather, for any
x=1,...,8, we would have the same values for A and X, respectively. Thus, to test
the quality of the LO ansatz, we divide (3.35) by (3.34) showing explicitly that h,
should be constant, ,

hy = _)\X =—x'=const., xT#0. (3.36)
Fig. 3.9 shows that this is not the case. Therefore, a minimal sigma model with
symmetry-breaking term does not yield a good representation of our Yang-Mills
ensemble of n—fields. If we nevertheless insist on the LO description, we have to ‘fit’

h, by a horizontal line so that the numerical determination of the couplings via (3.34)
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and (3.35) is beset by large errors,

A = —1.41+525, (3.37)
XN = —1.334+0.74. (3.38)

Obviously, A (including its sign) remains essentially undetermined. For \' the situa-

tion is slightly better.

In order to assess the errors it is worthwhile to check whether our numerical accuracy
is sufficient to really validate the Schwinger—Dyson identity (3.28) for the LO action
(3.27) on the lattice. To this end we have simulated (3.27) with a combination of
Metropolis and cluster algorithms producing configurations using the central values
(3.37) and (3.38) as the input couplings. The result for h, in the LO ensemble is
presented in Fig. 3.10.

It is reassuring to note that the simulation of the minimal sigma model reproduces
the input value ' = 0.943 very well (for z # 0), the error being of the order of one
percent. The prediction (3.36) thus can be verified with high accuracy for the LO
action (3.27). We conclude that inverse Monte Carlo works quite well when applied

to the minimal oc—model.

The discrepancy between the LO and Yang-Mills ensemble can be further visualized
by looking at the susceptibility. For the action (3.27) and the choice F[n] = n%, the
Ward identity (3.26) assumes the simple form

Xt =-Mm/\ . (3.39)

A consistency check is provided by noting that this can directly be obtained by
summing (3.28) over z. Plugging in the magnetization from Tab. 3.1 and X' from
(3.38) we find

X =0.33+£0.18, (3.40)

This is way off the Yang—Mills value of 92.57 displayed in Tab. 3.1. For magnetization

and mass gap the simulation of the LO ensemble yields the values
M=093, M=15, (3.41)

which are both larger than the Yang-Mills values of Tab. 3.1.
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The discussion of this subsection thus shows quite clearly that more operators will
have to be included in order to possibly make inverse Monte Carlo work reasonably

well.

3.5.2. FN Action with Symmetry—Breaking Term

In this subsection we consider the FN action (3.1) with a LO symmetry-breaking

term,

Sef = Z {)\nx ANy + Apy [(n -An)? — (n- 8;8,,n)2] +An, - h} i (3.42)

This ansatz does not include all terms of next-to-leading order (NLO) in the deriva-
tive expansion. It should be viewed as a minimal modification of the original FN

action by adding an explicit symmetry—breaking term to obtain a mass gap.

The Schwinger-Dyson equation generalizing (3.28) becomes
AHgy + Aen Hypy + NGy = =M by (3.43)

The new two—point function H"™™ is given by (C.19). The local identities (3.43) are
to be solved for the three unknown couplings A, A" and Apy. Introducing another
reduced two—point function,

his = HiY /G (3.44)

Y zy

which is plotted in Fig. 3.11, we obtain, instead of (3.32) and (3.33), the (overdeter-

mined) system,

Mg+ Aexhiy+ N = 0, z=1,...,8; (3.45)
Ay 4+ Aexh,)N + XN = 0, y>ua; (3.46)
Mg+ Apnhgt + N = —p, (3.47)

to be solved for each pair of lattice distances (x,y), y > x. The number of independent
pairs is 7(7 + 1)/2 = 28 for lattice extension L = 16. Defining the determinant

Aoy = ho(BEY = BEN) = B3N (hy — hy) + hohE — e (3.48)
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Figure 3.11.: ALY for the Yang—Mills ensemble. The boundary value hg¥ = —31.24 is
not displayed.

the solutions, labelled by x and y, are

hEN _ hFN
A= Yy, (3.49)
day
hghEN — hyhEN
o= Y o, (3.50)
day
hy — h
Aey = ——— 2y, (3.51)
day

We have checked that the numerical values for d,, are not close to zero so that there
is no problem with small denominators in the solutions. For each pair of lattice
distances (x,y) we thus have a certain value for any of the three couplings (3.49-
3.51). For each particular coupling those would all agree (within statistical errors)
if the NLO action (3.42) would exactly describe the Yang-Mills ensemble. Again,
however, analogous to the LO case, the couplings do vary with lattice distances x

and y. For larger distances, however, the data seem to deviate less from the central
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values. Numerically, one finds,

A = —0.23240.035, (3.52)
XN o= 025740014, (3.53)
Aex = —0.0402 £ 0.0004 . (3.54)

Several remarks are in order. First of all, the relative errors, given by the standard
deviation from the mean, are small compared to the LO ansatz. In particular, the
signs of all couplings are fixed. Interestingly, the addition of the FN coupling Agy,
although small numerically, has a large effect: it reverts the sign of A" as compared
to (3.38), implying a negative magnetization. This follows, for instance, from the
Ward identity (3.39), which still holds for the action (3.42), and the positivity of the
susceptibility, hence

M=—-Ny"<0, (3.55)

in contradistinction with the positive Yang-Mills value of Tab. 3.1.

To further analyse the result for the couplings, we divide (3.45) by A, leading to a

linear relation between h and A™ (for x # 0),
hy = =K' — Kexhi ) Kex = Aex/A - (3.56)

Thus, plotting h, against ALY should yield a straight line with intercept —«’ and slope
—Kpn. The numerical values (3.52-3.54) yield

K'=—1.108 £0.228 , Kkpy = 0.173+0.024 . (3.57)

In analogy with the LO case, we have numerically checked the prediction (3.56) for
the NLO action (3.42) by a Monte Carlo simulation using the input couplings (3.52—
3.54). Fig. 3.12 clearly demonstrates the expected linear behavior. A corresponding
fit results in

k'=—=1.120, £Kpy=0.171, (3.58)

being consistent with the central values of (3.57) to within one percent. We thus
conclude that inverse Monte Carlo also works quite well for the NLO ensemble. For
the sake of explicit comparison with Fig.s 3.9 and 3.11 we display the reduced two—
point functions obtained by simulating the NLO action in Fig.s 3.13 and 3.14. As
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Figure 3.12.: h vs. h*™ for the NLO action (3.42).

expected, the NLO simulation yields a negative magnetization,
M =—-0.49, (3.59)

while the mass gap becomes M = 1.2, i.e. slightly larger than the value listed in
Tab. 3.1.

If the Yang—Mills ensemble has anything to do with the FN one, then plotting A vs.
h*™ (as obtained from Yang-Mills) should also show straight-line behavior, at least

approximately. Fig. 3.15 displays a linear fit to the Yang-Mills data with parameters

K =—1.232, Kp =0.170. (3.60)

Again, within error bars, these values are consistent with the preceding analysis (3.57).
Note that reverting the sign of A’ amounts to reverting the sign of the intercept in
Fig. 3.15. The data points clearly do not support anything like that. On the contrary,
it seems that, for small A™ (corresponding to small distances x, see Fig. 3.11), the

data points deviate from a straight line. Playing around with different fits indicates
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that h rises with a negative power of A for small A™Y so that in reality there may

be no intercept at all.

The behavior of k" as a function of lattice distances x and y may also be investigated.
Dividing (3.50) by (3.49) we find
_ hghy™ = hyhgY

K= N A= e = 138 40,29, (3.61)
z Yy

where, in the analytic expression, the determinant d,, has dropped out. Fig. 3.16
shows the variation of ' with z and y. Again, a different sign for s’ is completely

out of reach.

Following the logic of gradient expansions, one may argue that the effective action
(3.42) is supposed to represent the Yang—Mills ensemble only for large distances.
Fig. 3.15, for instance, seems to indicate that the straight-line fit works particularly
well for the last three points to the right which correspond to x = 6, 7, 8, respectively.
In physical units, this amounts to distances R larger than six lattice units, i.e. R 2 0.8

fm. Restricting to the analogous data points, we obtain for the couplings in (3.42),

A = —0.27754+0.026 , (3.62)
No= 0.2661£0.012, (3.63)
AT = —0.040 + 0.0005 , (3.64)
and for the ‘reduced’ ones,
k' =-0.97+£013, ™ =0.1540.01. (3.65)

All these do not differ significantly from the values (3.52-3.54) and (3.57) obtained
by using the unrestricted data set. In particular, the sign of A’ remains positive. We

therefore conclude that, also at large distances, the minimally modified FN action
(3.42) fails to describe the Yang-Mills ensemble of n—fields.
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3.6. Remarks I

We have found strong evidence that the ensemble of unit color vector fields n gen-
erated from SU(2) Yang—Mills theory cannot be described by the FN action plus a
minimal symmetry-breaking term, introduced to allow for a mass gap. This follows
from a number of discrepancies between the two ensembles. First, and most promi-
nent, the sign of )\’ is positive, implying negative magnetization 901, at variance with
the value from the Yang-Mills ensemble. Second, the reduced two—point function A
(h™) from the NLO ensemble increases (decreases) with lattice distance z, while for
Yang—Mills the behavior is just the opposite. Third, the size of the mass gap is larger
than for the Yang—Mills ensemble of n—fields.

It is quite conceivable that magnetization (and susceptibility) can be recovered cor-
rectly by adding more (symmetry—breaking) terms to the NLO action (work in this
direction is under way). The same remark applies to the mass gap. Note, however,
that one cannot naturally expect the Yang—Mills and c—model mass gaps to coincide
due to the nonlocal relation between n and the link variables U. Whether this rep-
resents a problem is a question of scales. If the effective c—model were valid only for
distances of, say, R 2 0.8 fm corresponding to energies E' < 0.25 GeV, as suggested by
the discussion of Section 3.5, then it would make no sense to address questions like
the glueball spectrum. An analogous situation holds for the Fermi theory of weak

interactions which also is only effective much below the W and Z scales.

One should also say that we have only ruled out the Faddeev—Niemi conjecture for
one particular choice of an n—field. As there is no unique or natural definition for n,
one may try alternative prescriptions for n = n[U]. A fairly local one is the following.
Write the (gauge fixed) links as Uy, = u , + ;. Then define 7, = @,/|t,| with
the link average u, = Zu ugz . Under global gauge transformations this transforms

properly such that n is another color unit vector.

To check the Faddeev—Niemi conjecture in the most general way possible is clearly
beyond the scope of this work. The following caveat, however, holds irrespective of the
choice made for the n—field in the effective c—model. Allowing for finite temperature,
the latter is in the universality class of the 4d Heisenberg model, while SU(2) Yang-
Mills theory is in the 3d Ising class [54]. This issue has been discussed recently in

the context of constructing effective actions via Abelian projections [114, 115, 116].
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Again, if the c—model scale were below the critical temperature, the effective theory
would only be valid in the confined phase and would have nothing to say about the
behavior of Yang-Mills theory close to the phase transition. Otherwise, an infinite
number of operators would be required which, of course, is anything else but an
‘effective’ description. Summarizing, we conclude that, while a reasonable effective
model generalizing the FN action may exist in principle, it will be of little practical

use.



4. Polyakov Loop Model

4.1. Introduction

The deconfinement phase transition in pure Yang—Mills theory [52, 53] is controlled by
the dynamics of the Polyakov loop variable ;. Above a critical temperature T, the
singlet part Ly = tr B, /2 develops a nonvanishing vacuum expectation value (VEV).
In this high—temperature phase one expects to find a plasma of liberated gluons (and,
in QCD, also quarks). The VEV of L, thus represents an order parameter associated
with spontaneous symmetry breaking. The symmetry in question is a global Zy sym-
metry, Zy being the center of the gauge group SU(N). While the Yang—Mills action is
center symmetric, L,, although gauge invariant, transforms nontrivially, L, — 2L,
2 € Zy. Combining renormalization group ideas and dimensional reduction, Svetit-
sky and Yaffe have conjectured that finite-temperature SU(N) Yang—Mills theory
in d dimensions is in the universality class of a Zy spin model in dimension d — 1
[54, 55]. For some recent and rather sophisticated confirmations of the statement on
the lattice the reader is referred to [117, 118, 119, 120].

The universality argument implies that effective field theory methods may be put to
use. It should make sense to map the microscopic theory, here Yang—Mills, onto a
macroscopic one, described by an effective action with Zy symmetry. For gauge group
SU(2), for instance, one can try to coarse—grain the gauge fields all the way down to Z,
Ising spins [121, 122, 123]. An intermediate procedure is to establish an effective action
for the Polyakov loop variable itself [56, 57, 58]. This may be achieved analytically
using strong—coupling or, equivalently, high—temperature expansions [57, 124, 125].
Doing so for SU(2), one obtains a local effective action depending on all characters
X;j(PBz) [124, 125]. The index j € N/2 labels the irreducible representations of SU(2).
In this most elementary case, x; can be expressed in terms of powers of L, (the

character of the fundamental representation, j = 1/2). For larger gauge groups,

46
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however, more and more characters/representations become relevant. This fact has
recently been employed for model building, regarding the untraced holonomy P,

[126] or, equivalently, its eigenvalues [127] as the fundamental degrees of freedom.

Generalizing old ideas for the traced Polyakov loop [58] we parametrize the (lattice)

effective action as
Seff — Z)\as’a (41)

where the operators S,[L] are symmetric under center symmetry and the couplings
A, are to be determined. As stated above, for SU(2) it is sufficient to work with only

L, and the Z, center symmetric (Ly — —Lg) effective action may be written as

SerlLa] = VLI + > LoK@Ly+ > LalyKG)Luly+...,  (42)

Ty TYUv

where the couplings )\, are absorbed into the kernels K(® and potential V. This
representation is rather general and incorporates a multitude of operators composed of
the compact dimensionless and unconstrained variable L. In respect of determining an
effective action we will have to choose an appropriate subset of all possible operators
to capture essential physics. On that score it turns out useful to follow [126] and view
the effective action (4.1) as being embedded into a ’sigma-model’ depending on Py,
Seft[L] = Serr[Pz]. This yields an additional global SU(2) symmetry,

Bz — 9Pz 9_1 , g€SU2), (4.3)

which is a remnant of the underlying SU(2) gauge invariance. The Haar measure
DY has an even larger symmetry, namely SU(2) x SU(2), corresponding to the

transformation law

Pz — 9Pz h, g,heSUQ2). (4.4)

The invariance of the measure leads to novel Schwinger-Dyson identities which will
be an important ingredient in our derivation of the effective couplings A\, inherent in
(4.1).
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4.2. Haar Measure and Schwinger—Dyson Identities

The Polyakov loop variable on the lattice is given by a holonomy or parallel transport

connecting the (periodic) boundaries in temporal direction,

Ny

PBe = [[ Vo - (4.5)

t=1

where the U’s are the standard link variables on a lattice of size N; x N2. The
effective action for the Polyakov loops is obtained by inserting unity into the Yang-

Mills partition function, such that (the trace of) (4.5) is imposed as a constraint,
Zym = /DU exp(—Sw(U])
N
_ / DUDP 5 (69 — tr [ [ Uy ) exp(~Siw (1)
=1
= [ Dpexp(-Sul¥) . (4.6

with DU and D the appropriate Haar measures (see below) and Sy, the standard
Wilson action. Of course, the integration over link variables U in the last step can-
not be performed exactly. For this reason one has to resort to effective actions as
given by (4.1) and (4.2), for instance [54, 55, 58]. Using inverse Monte-Carlo (IMC)
techniques one should be able to determine a reasonable effective action from Yang-
Mills configurations. In what follows, we will derive the Schwinger-Dyson equations
for the action (4.1) corresponding to the symmetry (4.4). To do so we choose the
parametrization

Be = Po1+it" Pl = Phot | (4.7)

which is in SU(2), ‘]3];,*1333 = 1, if the components P# define a three-sphere S* ac-
cording to

PYPE = (P)*+ PiPi=1. (4.8)

- T

We mention in passing that the points & where the Polyakov loop is given by center
elements, P, = +1, correspond to the positions of monopoles in the Polyakov gauge
[128, 129, 130], a particular realization of ‘t Hooft’s Abelian projections [131].

In terms of the coordinates (4.7), the traced Polyakov loop becomes L, = P2, while
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the functional Haar measure can be written as

DR = [[d' P 6(PLPL—1). (4.9)

Obviously, this is invariant under rotations R € SO(4) generated by the angular

) )
v = (P;; 5pr — Pr 6P;,.‘) . (4.10)

momenta

These can be split up into ‘electric’ and ‘magnetic’ components (or ‘boosts’ and 3d

‘rotations’),

0 0

LY = P)— Pl =K 4.11

e “9pg Topy e (4.11)
0 9 1

iLy = Pigmy —Plog, =ie" Ly, Ly= "Ly (4.12)

Summarizing, the SO(4) generators L% rotate the four—vector P¥, while the SO(3)

x)

generators L% rotate the three-vector Pg. The self— and anti-selfdual combinations

1

My = (Ly - K3). (4.13)
1

Ny =Ly + K3). (4.14)

generate left and right multiplication, respectively,

Bz = 9Pz, Pz —Pzh, g,heSUQ). (4.15)

Global SU(2) (gauge) transformations of the Polyakov loop as given by (4.3) are
generated by L% (or L%) which do not differentiate with respect to the trace PY and

thus leave any functional of P2 = L, invariant. Typical such invariants are

P, PP'=1-P°P°, . .. . (4.16)

€T - T b A

The Schwinger-Dyson equations that follow from the SO(4) invariance of the Haar

measure (4.9) are given by

/ DR L2 { FIR] exp(—SuglR])} = 0, (4.17)
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where F'[B] is an arbitrary functional of PBz. As the effective action depends on
Pz solely through the SU(2) invariant P2, Seg[B] = Seg[P°], only the generators

LY% = K¢ lead to nontrivial relations which can be written as

(K FIB] — FIPIKGSea[B]) =0, (4.18)

using the expectation value notation,

©)=2" [ DY ORI exp(-Sual¥) (4.19)

Because K¢ transforms like a vector under gauge rotations, (4.18) in general will not
be gauge invariant. However, we are still free to choose the functional F[B] at our
will. If we pick

Fo[B] = P, GIP] (4.20)

with an arbitrary functional G[P°], we have the action of K2,
KyF) = —i(6"04y PyG — PgP, G1,) (4.21)

where we have denoted G!, = 0G/OPY. Plugging this into the Schwinger-Dyson
equation (4.18), setting « = y and taking the trace one finds,

(3PYG — PPY(G!, — GSige)) =0. (4.22)

The same result is obtained using FA[R] = K2 H[P"] instead of (4.20) and identifying

H) = —G,. Let us rewrite (4.22) as a functional integral,
/D%B [3P£G — PPy (Gy — Gséff,a;)] exp(—Ser) =0, (4.23)
and parametrize P, according to
Pz = expit?0% = Lcos by + iT%nlsinf, , n’ = P*/(P.P%)Y?. (4.24)

Then, the traced Polyakov loop is L, = cos 6, while the Haar measure (4.9) becomes

b, d?ng
DR = [[sin? 6, —2 5" . (4.25)

472
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As the functional integral (4.23) only depends on invariants we can integrate over the
directions n (yielding an irrelevant volume factor) so that we are left with an integral

involving only the reduced Haar measure,
DL = H DL, = Hdﬁm sin? 6, = H d(cos ) sin b, = H dLe\/1— L2, (4.26)

namely,

/H dfy sin® Oy [3 cos O,G — sin® 0, (G, — GSig )] exp(—Ser) =0 . (4.27)

Yy

A more compact notation is achieved in terms of total derivatives,

0 = /Hdey sin’ Gy/dﬁm% {sin® 0, G exp(—Ser)}

y£x

= /Hde sin? %/d(cos&ﬁ@{sin?’ 0z G exp(—Ser)} . (4.28)

y#x

Note that the sin®# term ensures the absence of surface terms. As already stated
in [LRD3], with (4.28) we have found the Schwinger-Dyson relations of the reduced
theory involving only the invariant L = cosf. We do not have a simple geometrical
explanation for the invariance of the reduced Haar measure DL leading to (4.28).

The SO(4) symmetry of the measure D, however, is very natural.

In terms of the Polyakov loop L, (4.27) is the expectation value
(3LaG — (1 — L3)(Gy — GSig ) = 0. (4.29)

Comparing with (4.22) we notice that it does not matter whether the expectation
value is taken with the full or reduced Haar measure as long as G = G[L]. Plugging
in the ansatz (4.1) the Schwinger-Dyson equations (4.29) become a linear system for

the couplings A,
S = 12)GS) ) Ao = (1= L2) Gl — 3L, G) . (4.30)

To solve this unambiguously we need at least as many choices for the operator G

as there are couplings A\,. A particularly natural procedure which also turns out to
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be rather stable numerically is to choose G, = S, ,. This operator contains an odd
number of L;’s so that the minimal set of Schwinger-Dyson equations relates only

nontrivial expectation values. In matrix notation this is

ZHba)\a = Up, (431)
i = ((1-12)S},5..) (1.32)
w, = ((1—=L3)Syye) —3(LaShy) (4.33)

with a symmetric matrix Hp, and inhomogeneity u,. At this stage, keeping « and y
fixed, the problem of determining the couplings ), is well posed mathematically. Nu-
merically, of course, it is better to use all the information one can get, for instance by
scanning through all possible distances © = |z — y|, x < N,/2. The resulting overde-
termined system is then solved by least—square methods. Another possibility is to
add new equations to (4.31) by choosing some appropriate monomials or polynomials
in L, for the operator GG. This philosophy will be extensively adopted in Section 4.6.

Before that, however, we will try to proceed in a (semi-)analytical fashion.

4.3. Single-Site Distributions of Polyakov Loops

4.3.1. Definitions

From the effective action of Polyakov loops Seg[L] one can derive new probability
densities by integrating over (part of) the loop variables L. Of course, this amounts
to some kind of course—graining so that via the new densities one will only have
access to gross properties of the effective action. Nevertheless, these densities, if
chosen properly, exactly reproduce certain expectation values calculated within the

full effective ensemble. Consider, for instance, the local moments,

b, = (LP) = 21/HDLy L2 exp (—Seg[L]) , (4.34)
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where, as usual, the partition function Z is the integral over exp(—Seg). Splitting off

the Lp—integration, (4.34) can be rewritten as

1
b= (2= [ DL ILpwiLe) = (L, (4.35)
~1
with the probability density py obtained via integrating over all L, # L,

pw|Lls] = 77! / [ DLy exp (= Sest[La, Ly]) = Z ' exp (-W[Ly)) (4.36)

yFa

Due to translational invariance, py (like £,) does not depend on the site . Thus,
DL pw[L] is the probability to find the value of the Polyakov loop in the interval
[L,L + dL]. The Zy-symmetry of the effective action implies that the power p in
(4.34) and (4.35) has to be even, p = 2q, at least for finite volume (no spontaneous
symmetry breaking). Therefore, knowing py gives access to all local moments ¢5, and
(by taking the logarithm) to all local cumulants ¢y, as well. A particularly important

quantity is the Binder cumulant [132, 133], defined as the quotient

C4 Uy
g 0

by

-3, (4.37)

which measures the deviation from a Gaussian distribution. This will be analysed in

some detail later on.

From the definition (4.36) it is obvious that py is blind against spatial correlations
of Polyakov loops. In other words, one cannot calculate two—point functions like
Gzy = (LgLy). In principle, this can be remedied by a slight generalization of (4.36).
To this end we define a new probability density depending on L, and Ly,

Pwy[Lay Lyl = 271 / [ DL. exp (—Se[L]) = Z " exp (—Wa[La, Ly]) . (4.38)
z#£x,y

Then, one can calculate the following two—point correlators,

(LBL1) = / DLy DLy LELY py,[La, Ly) - (4.39)
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Obviously, py and py, are related according to

pwllel = [ DL b (Lo L) (4.40)

and one would have factorization, pw,[Lz, Ly] = pw|[Lz]pw|[Ly], if there were no

correlations.

4.3.2. Determination of Single—Site Distributions

At first glance, there seems to be not much of a gain by introducing densities like
the single—site distribution py . Note, however, that py/[L] is much simpler than our
original density ps = Z ! exp(—Seg) which depends on N? variables rather than just
one. In addition, py can rather easily be obtained from our Monte Carlo data. The
results are fairly smooth histograms which are displayed in Fig. 4.1 (for details see
App. D). The most important observation, however, is the finding that py is flat
below T,, that is, one has an equipartition for L,. Apparently, this is a remnant of
the SO(4) symmetry discussed in Section 4.2. Taking the (negative) logarithm of py,
we obtain the single-site potential W[L| shown in Fig. 4.2.

We are thus led to employ the following ansatz for the potential W below (—) and

above (+) the critical temperature T,

W_[L] = const, (4.41)

pwlll = exp(-W.)/Z_=2/m, (4.43)
pwlL] = exp(=W.[L])/Z, . (4.44)

Things are particularly straightforward below T, so let us discuss this case first. The
result (4.43) shows that, after normalization, the single-site distribution of Polyakov

loops below T, is known exactly. Furthermore, it is simple enough so that the asso-
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Figure 4.1.: Single-site density pw[L] for temperatures above (x,*) and below T,
(+). For T < T, (B < B, ~ 2.299), the density is flat, py = 2/7.
N, =20, N; = 4.

ciated (local) moments can be determined analytically,

2 [ 1 I'(¢g+1/2) (2¢ — 1!
(5 = (L% :—/ dLV1 — 12 1% = —— "2 —9=1 "% 0 (445
2g = (L)w- ) VT T(g+2) (g +1)! (4.45)
The generating function for these moments can also be calculated explicitly,
Z_(t) = (eFyy = z/DLe“ S RN (4.46)
IR T — (21)! t ’ '

I, being the standard modified Bessel function. For the Binder cumulant (4.37) we

thus find the result p 18
by = —— —3= —3=-1. 4.47
OGS ER (Ve (47

We have checked that (4.45) and (4.47) hold numerically both for the histograms
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Figure 4.2.: The single-site potential W[L] shifted by the offset w. For T' < T, (8 <
fe =~ 2.299) it is constant. Ny = 20, N; = 4.

pw and the effective Yang—Mills probability density pgs. The results for the Binder
cumulant are displayed in Fig. 4.3.

It may seem strange that we get a flat distribution py, below T,.. However, this does
not imply that the effective potential, which defines the distribution of the mean field

L, becomes trivial (see Section 4.5).

To proceed further, we have to specify our ansatz for the effective action beyond
(4.1) and (4.2). Svetitsky and Yaffe have argued [54, 55, 58] that, close to the phase
transition, the effective interactions should be short ranged so that S.g is of Ginzburg-

Landau type,

A
St =MD Lolerit Y QLI:(Lm)Qk = XS+ AaSa + -+ . (4.48)

z k>0

Note that the high-temperature character expansion mentioned in the introduction



4. Polyakov Loop Model o7

-0.98

-1.02

-1.04

by

-1.06

-1.08

1.1

Figure 4.3.:

T
YM ——
single-site -——>K--

2.2 2.25 23 2.35 24

The Binder cumulant b4 as obtained from the simulated Yang—Mills con-
figurations (OJ) with Ny = 20, N; = 4 compared to the single-site dis-
tribution py (x). Below . ~ 2.30, the exact result (4.47) for py (i.e.
W = const) has been used. The small deviation near the critical coupling
is due to finite size effects. Above ., W has been fitted to a polynomial
(see below).

yields additional hopping terms of the form L5 L7 [124, 125, 134]. The relevance of

these operators will be discussed in Section 4.6.

Let us investigate the consequences of the ansatz (4.48) for the single site distribution.
Plugging (4.48) into the definition (4.36) and using (4.43) we obtain

/ I] oL, exp< )\OZL Lywi— Y 226sz>

Lye y,k>0

exp (—Z A%L?’“) / [ DLy exp (—AoLoM,) exp(—Sig[Ly)) , (4.49)

k>0 y#m

where, in the last line, we have introduced a new field representing the sum of nearest
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neighbors of L.,

~3S,
M, = 3L, = D (Laoti+ Lai) - (4.50)

i

Additionally, a modified action® S has been defined which is obtained from Seg by

setting L, = 0 at one particular single site x,
trlL] = Ser[L]] - (4.51)

Now, the left-hand side of (4.49) is independent of L,. Thus we may put L, = 0
everywhere on the right—hand side yielding the identity,

1
V- = / T DLy exp(~SiylLy)) = 7' (4.52)

“lyze
Accordingly, e "= is the partition function associated with action Siz. We can go

one step further and expand the exponential containing the nearest-neighbor field
M, on the right-hand side of (4.49). This is actually a hopping—parameter expansion
in \g which, upon using (4.52), implies

1 =exp (— > %Li’“) > (_2!0)nL;(M;j>’ : (4.53)

k>0 n>0

Here, we have defined modified expectation values associated with Sl and Z,
(O[L)) = / H DL, O[L] exp(—Se|L])/Z" . (4.54)
y#w

The Zy—symmetry of the effective action requires n to be even, n = 2m. Denoting

(M2 = 119, we finally have

N V- A
> (02 Tg; L¥™ = exp (Z%Li’“) : (4.55)
m=0 ’

k=1

To lowest order in L, (m = 0) this consistently reproduces the normalization (4.52),

'In contrast to the previous section the prime does not refer to any derivative here and from now
on.
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(1) =1 = eW=/Z'. A general interpretation can be given as follows. To have
equipartition requires a delicate balance between the hopping term (\y) and the ‘po-
tential’ terms (Agx). Setting A\g = 0 (so that the effective action leads to a product

measure) implies that all Ay, have to vanish and vice versa: Ao, = 0 implies \g = 0.

To further evaluate the identity (4.55) we note that it can be viewed as a particular
example of a linked—cluster or Mayer expansion [135, 136, 137] expressing the moments

A2™ 19, in terms of the cumulants
A= (2% — D) Mgy . (4.56)

The relation between moments and cumulants can actually be solved for arbitrary m
(see e.g. [138]),

| - (2m)! -
2m _ !
N e = D n! 2 (2k)!. .. (2k,,)! [T %, (4.57)
n=1 Epyeenskn=1 =1

This somewhat clumsy formula yields for the first few orders

4.58
4.59
4.60
4.61

)\3“2 = )‘,27
Nota = Ny+327,
Mous = Xg+ 150\, + 1575,

(
(
(
Mg = M4 28 MM 435 M2+ 210 A2 + 105\ (

)
)
)
)

[t is quite obvious that by inverting (4.57) we can express the couplings Ag; (or cumu-
lants A},) in terms of the moments fio,. Alternatively, one may take the logarithm

of (4.55) and compare coefficients. In any case, the first few cumulants are

4.62
4.63
4.64
4.65

Xy = Agpz,

Ny o= N =343)

Ao = A0 (k6 — 15 papiz + 30 113)

Ny = A8 (s — 28 jrpia + 420 prapi — 630 1 — 3543

(4.62)
(4.63)
(4.64)
(4.65)

These identities almost solve our problem of determining Sz as they express the

unknown couplings Ay in terms of A\ (unknown as yet) and the modified expectation
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values fiop,.

Things become simple if one allows for only a finite number (say K') of couplings Agg.
Then, there is only a finite number of independent moments po, K = 1,... K. This
is quite obvious from e.g. (4.65). Setting Ag = 0 = A\§ determines the moment ug and

all higher ones in terms of us, j14 and pg.

For K =1, (4.55) yields the general expression

)\ m
fiom = (2m — 1)!! (A_;) =2m-D)"pur, m=1,2,.... (4.66)
0
We thus have found factorization: all higher moments pis,, m > 1 can be expressed
in terms of the lowest one, s = Ao/A2. Of course, this is consistent with Seg being

quadratic in L, (vanishing of quartic and higher cumulants A}, ).

For K = 2, we have three couplings, \g, A2 and 4. In this case, (4.55) implies the

following generalization of (4.66),

fiom = (2m — 1)1 %/:2] (;i) (2k — 1) (% - 1>k , (4.67)

=0 125

which shows that all moments ps, can be expressed in terms of ps and py. The
first two factors in the sum count the number of ways in which one can form k pairs
out of m elements. The term raised to power k is actually (one third of) the Binder

cumulant associated with the moments ps,. If it were zero we would get back at
(4.66).

Clearly, in order to determine the couplings A9, one does not want to calculate the
moments pior by performing a new and costly Monte Carlo simulation with the action
S

lattices and high dimensionality, one will have the approximate identity

@, setting L, = 0 at a particular site . One expects, however, that, for large

(M*™Y ~ (M*™) | m >0, (4.68)

where the latter expectation is taken in the full Yang-Mills ensemble. This can be
appreciated as follows. The particular site & is just one among several thousand
others in the lattice. Even locally there are 2d nearest neighbors of x, i.e. 6 in case

of d = 3. These are in turn affected by 18 other nearest neighbors different from «.
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A 0 1 10 100 1000 10000
1.951 1.947 1.962 1.954 1.939 1.961
18.79 18.87 18.83 18.78 18.80 18.78

(MZ)a

Table 4.1.: The expectation value (M?2), as a function of the parameter A suppressing
the single—site variable L,. Input parameters are N, = 16, Ay = —0.3
(symmetric phase, upper line) and Ay = —1 (broken phase, lower line).

Furthermore L is anyhow restricted to [—1, 1] so that the effect of changing one single
L, to zero is probably smaller than the statistical error. For our numerical evaluation

we have tested assumption (4.68) as follows. Define the expectation values
(M2™ ) = 7! / H DLy M2™ exp ( — Seg[Ly] — ALZ) (4.69)
y

so that one has
(MZ™) = (MZ2™)o ,  (MZ™) = (MZ™)s - (4.70)

If (4.68) is to hold then (M2™), must be approximately independent of A. We have

checked this by simulating the leading—order action,

A
Sy = 30 > LoLy+ALL=X Y LgLgsi+ALL, (4.71)
(zy) @,
for different values of A on a lattice of size 163 with \y = —0.3 (symmetric phase).

The calculated expectation values (M2), displayed in Tab. 4.1 show that (M2), is

indeed independent of A to an accuracy of about 0.5 %.

For T > T, we use the ansatz (4.42). This implies that formulae (4.53-4.65) still hold,
however, with Ay, now replaced by Aoy, — kor. We have checked that the identification
(4.68) also holds in the broken phase (choosing Ay = —1, see Tab. 4.1).

The couplings ko can be obtained by fitting W, [L] (see Fig. 4.2) according to (4.42).
The fit values are displayed in Tab. 4.2. Summarizing we note that we have good
analytical and numerical control of the single—site distribution py, or, equivalently, the
histograms displayed in Fig. 4.1. Below T, the histogram is flat, p,,, = const, above

T., W+ ~ log pw is a simple polynomial in L? with coefficients given in Tab. 4.2.
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6] Ka/2 Kq/4 Ko /2 Kq/4 Kg/6
2.40 | —0.4468 0.0703 | —0.4531 0.0901 —0.0152
2.34 | —0.2712 0.0526 | —0.2626  0.0249 0.0216
2.32 | —0.1772 0.0261 | —0.1612 —0.0259 0.0408
2.30 | —0.0717 0.0120 | —0.0666 —0.0087  0.0133

Table 4.2.: Two— and three-parameter fit to W [L].

g | 220 225 228 229 230 232 234 240
e | 1.938  2.086 2.242 2.327 2.466 2.946 3.336 4.173
g | 1016 11.55 13.07 13.89 15.27 20.16 24.22 33.60
e | 80.88 96.06 113.0 121.7 137.6 194.1 241.5 357.6
ps | 8293 1019 1237 1341 1551 2297 2922 4536

Table 4.3.: The moments ps,, for different values of the Wilson coupling 8 (N =
20, N, = 4).

4.4. Determination of the Effective Action

The calculation of the couplings Agx, £ > 0, in the effective action proceeds in three
steps. First we determine the moments iy, from the Polyakov loop ensemble using
the approximate identity (4.68). Second, from (4.62-4.65), we obtain the couplings
Ao = Ay /(2k— 1)1, k > 0, in terms of the moments po; and Ag. Third, we determine
Ao-

The first step consists of straightforward numerics based on our Wilson ensembles
obtained for several values of 3 near (.. The results for the pus, are displayed in

Tab. 4.3. With the moments s, at hand we find the couplings
Dow = MFag, , k>0, (4.72)

where the g, can be expressed in terms of the o according to (4.62-4.65). The final

step consists in the determination of A\y. To this end we make use of the Schwinger—



4. Polyakov Loop Model 63

Dyson relations (4.30) choosing the operators G = LZ~! which results in

(1=L3) Mo Ly Ao+ (1= Ly) LT h = (21— 1) (1~ L3) L) = 3(L3).

(4.73)
We begin with T' < T, where the single-site distribution is known exactly. In this
case the right—hand side of (4.73) vanishes. This can either be inferred from the exact

result (4.45) or by noting that the term in question is a total derivative,

2 (1 0
(21— 1) (1 — I2) L2=?) — 3 (L) = —_/ L 21— PP =0, (474)
)., OL
Upon inserting (4.72), all Ay, in (4.73) can be reexpressed in terms of Ay and agy.
Dividing the resulting equation by )¢ (assumed to be nonzero), the Schwinger-Dyson

equation (4.30) becomes nonlinear of degree 2k — 1 in Ay,

kz N e g = (0 LML (4.75)
>1

With the coefficients o and all (nonlocal) expectation values determined numerically
this finally yields the coupling Ag. As there are 2k — 1 solutions we take the one which
is approximately independent of the number K of couplings Ag;x. The resulting values
of all couplings (for K = 2 and K = 3) are displayed in Tables 4.4 and 4.5.

With the effective couplings determined we are in the position to check our results
by simulating the effective action. For both g = 2.20 and # = 2.40 we have produced
10000 configurations distributed according to Seg using the couplings from Tab. 4.5
(K =3, Ny =20, N, =4). In Fig.s 4.4 and 4.5 we compare the single-site distri-
butions obtained from the effective theory with those of Yang—Mills. The outcome is
quite satisfactory. In particular, one notes that the inclusion of a L°~term (K = 3)
still improves the matching of the histograms compared to the case K = 2. A further
important check is provided by reproducing the input couplings of Tab. 4.5 via our
IMC procedure. The results displayed in Tab. 4.6 show quite convincingly that the
method works. If we allow for additional operators in the numerics (which are not
present in the effective action) the numbers of Tab. 4.6 remain unchanged while the

couplings of the new operators are conistently of order 1075, i.e. compatible with zero.
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o] 2.20 2.25 2.28 2.29 2.30 2.32 2.34 2.40
Ao | —0.438 —0.473 —-0.500 —0.509 | —0.630 —0.685 —0.697 —0.725
Ao /2 0.186 0.233 0.280 0.301 0.453 0.603 0.675 0.873
As/4 | —0.002 —0.003 —0.005 —0.007 | —0.019 —0.053 —0.088 —0.212

Table 4.4.: Numerical values for the couplings A\g and Aoy /2k, k < K = 2. The critical
Wilson coupling is 3. = 2.299 (N, = 20, N, = 4).

Ié] 2.20 2.25 2.28 2.29 2.30 2.32 2.34 2.40

Ao —0.438 —-0.476 —0.507 —0.510 | —=0.628 —0.690 —-0.705 —0.760
Ao /2 0.186 0.237 0.288 0.303 0.453 0.621 0.698 0.979
A/4 | —=0.002 —0.003 —0.006 —0.007 | —0.020 —0.057 —0.093 —0.256
A¢/6 | 0.000039 0.00011 0.00027 0.00037 | 0.0020 0.0106 0.0244  0.116

Table 4.5.: Numerical values for the couplings A\g and Aoy, /2k, k < K = 3. The critical
Wilson coupling is . = 2.299 (N, = 20, N, = 4).

B Ao A2 A4 A6
2.20 | input | —0.43803 0.37182 —0.00681 0.00024
2.20 | output | —0.43824 0.37351 —0.00621 0.00020
240 | input | —0.76000 1.9572 —1.0216 0.69761
2.40 | output | —0.76027 1.9605 —1.0222 0.69039

Table 4.6.: Comparison of couplings used as input of simulation with couplings ob-
tained as output of inverse Monte Carlo applied to the effective action.
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Figure 4.4.: Comparison of single-site histograms based on simulating Yang—Mills (x)
vs. the effective action for 7' < T,.. The curves for two and three couplings
Aok, i.e. K =2 (+) and K = 3 (x), respectively, fall on top of each other.
Input: g =2.20, Ny =20, N, =4.
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Figure 4.5.: Same as in Fig. 4.4 for T' > T,; f = 2.40, Ny, = 20, N; = 4.
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4.5. The Constraint Effective Potential

With the effective action being found, one could go on and calculate the constraint

effective potential [139] which defines the distribution of the constant mean field,

__1 3
L:azm:Lm, Q=N (4.76)

In perturbation theory, the effective potential has been evaluated long ago [140, 141].
It describes a ‘gas’ of gluons at high temperature, i.e. deep in the deconfined phase.
Recent models for the effective potential which also describe the confined phase are
based on the eigenvalues of the Polyakov loop Pz [127] and not just their sum L.

As stated in the introduction, this difference becomes obsolete for SU(2).

It thus seems of interest to investigate the effective potential on the lattice. This
apparently requires further Monte-Carlo simulations of the effective action Seg[L]
with the mean field L held fixed, following the approach adopted in [139, 142]. Tt
turns out, however, that these additional efforts can be avoided by making use of some

statistical properties of the single—site distribution py, discussed in Section 4.3.2.

The constraint effective potential V' is defined in terms of the probability density of
the mean field (4.76),

pylL] = Zple VI = Z-1 /DL&(L —o! ZLm) exp(—Seq[L]),  (4.77)

with the normalization Zy given by the partition function

1 —
Zy = Zy(0) = / dL eI (4.78)
-1
In what follows, we will try to obtain the mean—field distribution py from the single—
site distribution py,. We note, first of all, that, due to translational invariance, the

first moments coincide,

(Lyy = /dE Lpy|L] = Q‘IZZ‘I/HDLy Ly e % = (L), = (L) . (4.79)
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The higher moments, on the other hand, are different,

(IP\w = / [P, 1z et = (7) (4.80)

L)y = Q7 Y (Lg, ... Lg,) =xP . (4.81)

T1,...Tp

For the mean-field distribution we thus get generalized susceptibilities x(?), while py
yields expectation values of arbitrary powers of L at a single spatial site, taken in the
ensemble of Polyakov loops extracted from Yang—Mills. This has been discussed at
length in Section 4.3.2.

To obtain a connection between arbitrary moments we assume that the generating

functions associated with py and py are related according to
Zy(t) = (exptL)y = Hexp tLy /)y H exp(tL/Q))w = [Zw (t/Q)]7 . (4.82)

Here, we have made the assumption that only a small fraction of the random variables
{Lg : © € Q} are statistically dependent. This is justified for large volumes and short—
range correlations. According to the Law of Large Numbers we expect the collective
random variable L = > La/S2 to have a Gaussian distribution if the L, are randomly

distributed?. Let us check to which extent this is realized.

Below T., Zw = Z_ is exactly known from (4.46) so that
20) “ 2k
20~ | Then] =X g, 2=t s

Thus, by expanding the Bessel function (to power ) we know all moments or sus-

ceptibilities of py. Explicitly, one finds

i 1
L? = 4.84
Ty = (480
i 1 301

4 _
@y = 20D (1.85
7 5 15(Q—1) 15(Q—1)(Q—2)
LS = : 4.
LW = Gzt o T 6405 (4.86)

2Note, however, that with L being a compact variable, we cannot, strictly speaking, expect a
Gaussian.
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In the large—volume limit we get

(2% — 1)!

<E2k>v — (4Q)k

= (2k — DL}, (4.87)

an identity typical for a Gaussian distribution. As a cross check, we calculate the

Binder cumulant associated with py. From (4.84) and (4.85) we have

biy = (4.88)

which obviously vanishes in the infinite-volume limit in accordance with (4.87). Sum-

ming up the moments (4.87), we obtain the large—volume partition function
Zy(t) ~ exp(t?/89Q) , (4.89)
which turns out to be Gaussian in ¢. Substituting ¢ = iu, we have
Zy (iu) = /dL exp(—QV[L] + iuL) ~ exp(—u?/8Q) . (4.90)

To extract the mean-field distribution py = exp(—QV') we take the Fourier transform

with respect to u and find

pv[L] ~ /29Q/7 exp(—2QL?%) , (4.91)
which is a perfect Gaussian distribution with variance

o2 =1/4Q = (L*)y . (4.92)

The fact that L is compact does not really matter as in the large-volume limit as-
sumed, the Gaussian is sharply localized at L = 0. This is indeed seen from Fig. 4.6
which shows that a Gaussian fit to the distribution of L,

pvat[L] = exp(—L*/20%) , (4.93)

2o
works perfectly well.

This is corroborated by comparing the fit values for ¢ with the expectation values
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Figure 4.6.: Gaussian fits to the distribution py[L] obtained from simulating Yang—
Mills on lattices of size 163 x 7 and 73 x 7. The values for the temporal
extension N; correspond to the symmetric phase.

calculated from Yang-Mills as displayed in Tab. 4.7 for different volumes and bin

sizes.

The agreement between the fitted width and the expectation value <Iz2>%//2 is quite

impressive, in particular for large volumes, as expected. Due to the approximations

made, however, we do not reproduce the absolute numbers given by (4.92). If we

define
0'2 (Ql) . QQ

o’(L) @
we get for Q) = 73 and Q, = 16% the numerical value v = (16/7)® = 11.94 while the
results of Tab. 4.7 yield

¥ (4.94)

= 111404, N, =6, (4.95)
= 115+09, N, =7, (4.96)

where the error has been estimated by varying the bin sizes. Thus, at least for

sufficiently low temperature (large INV;) we obtain the correct scaling of the width
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Q x N; config.s/bin o (L2)}/*
%6 120 0.0837 0.0773
X6 80 0.0845 0.0773
X7 120 0.0582  0.0549
X7 80 0.0588  0.0549
163 x 6 250 0.0249 0.0252
163 x 7 150 0.0167 0.0164
163 x 7 250 0.0167 0.0164

Table 4.7.: Width o of the Gaussian fit (4.93) compared to the expectation value

(I_ﬂﬁf/ ? calculated from the SU(2) Monte Carlo ensemble. The values for
the temporal extension N, correspond to the symmetric phase.

with the volume.

Things are different in the broken phase, T" > T,, where the single-site distribution
is not flat. Thus, we cannot derive the generating functional and the distribution of
the mean-field L in an analogous way. However, in contrast to the symmetric phase
where the maximum of py[L] is located at L = 0, the broken phase apparently has
to show two degenerate maxima at L = 4b # 0. It turns out that, as shown in Fig.s
4.7 and 4.8, a fit to a double-Gaussian

_ 1
Ll =
pv’ﬁt[ ] 2V 2mo!

exp(—(L — b)%/20") + exp(—(L + b)?/20") (4.97)

does the job in this case. ¢’ denotes the width of each of the two peaks, and it
should be clear that a relation of the form (4.92) relating the width to the mean
value (I_ﬂ)%//? does not hold. By increasing the (spatial) volume or by decreasing the
temperature (moving deeper into the broken phase) the curves become more and more
sharply peaked in agreement with the scaling behavior (4.94). In the large volume
limit one can therefore expect the value of (I_ﬂ)%//? being close to b. This is indeed
true as shown in Tab. 4.8. Furthermore, a comparison of Fig. 4.7 and Fig. 4.8 shows
how tunneling between the degenerate minima of the potential (which are maxima
of the distribution) gets suppressed with increasing spatial volume. The green curve

(Ny = 4) is close to the critical temperature in the broken phase. However, for volume
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Figure 4.7.: Gaussian and double-Gaussian fits to the distribution py[L] obtained
from simulating Yang—Mills on lattices of size 73 x N;. N; = 6 corresponds
to the symmetric phase and N; = 2,4 to the broken phase.
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Figure 4.8.: Same as Fig 4.7 for lattices of size 16> x ;.
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OxN, o b (L2)1/2
%1 0.0159(8) 0.8571(7) 0.8600
7% 2 0.0226(2) 0.6248(3) 0.6230
73 %3 0.0421(1) 0.4088(2) 0.4049
x4 0.0619(9) 0.2430(2) 0.2338
163 x 1 0.0067(4) 0.8515(9) 0.8611
163 x 2 0.0070(3) 0.6244(4) 0.6239
163 x 3 0.0125(2) 0.4055(2) 0.4051
163 x 4 0.0198(2) 0.2268(2) 0.2266

Table 4.8.: Width ¢’ and peak-separation b of the double-Gaussian fit (4.97) and the
expectation value (L2)'/2 calculated from the SU(2) Monte Carlo ensem-
ble. The values for the temporal extension N; correspond to the broken
phase.

Q = 7 the distribution shows an overlap among the peaks and, as expected, the
double-Gaussian is a less good approximation. For a larger volume, Q = 163, the
peaks are more narrow and well separated, indicating that tunneling is more strongly

supressed.

4.6. Reproducing the Two—Point Function

The procedure developed so far is based on the single—site distribution of the Polyakov
loop which is under good (semianalytic) control. By construction, the effective action
obtained in this way reproduces the Yang—Mills distribution quite well (recall Fig.s
4.4 and 4.5). At this point it is natural to ask how well we are reproducing correlators
of the Polyakov loop. After all, these are intimately related to the confining potential
(T < T,) or the Debye mass (7' > T), see e.g. [58]. In Fig.s 4.9 and 4.10 we compare
the Yang-Mills two—point function with the one obtained from the Svetitsky—Yaffe
effective action (4.2) using the couplings from Tab. 4.6. The figures suggest that we
are doing quite well in the symmetric phase (8 = 2.20, i.e. T < T,). In the broken
phase (8 = 2.40, i.e. T > T,.), however, there is room for improvement both in the

exponential decay and the value (L)? of the plateau. To assess the (dis)agreement
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quantitatively we fit all two—point functions according to
Guo = (LoLo) = af exp(—bx) + exp(—b(N; — z))] +c. (4.98)

The values for the fit parameters are listed in Tab. 4.9 and corroborate the qualitative

statements made above.
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Figure 4.9.: The Yang-Mills two—point function (YM) compared to the one obtained
from the Svetitsky—Yaffe effective action with four couplings (sim). Input:
8 =2.20, N, = 20.

In order to improve the matching between the effective theory and Yang—Mills we ob-
viously have to include more operators. In previous applications this has mainly been
done for Ising systems [122, 143, 144, 123, 145] or twodimensional nonlinear sigma
models [146, 113]. In these cases, the set of operators is restricted as they square to
unity. For the Polyakov loop, the situation is different, as arbitrary (ultralocal) powers
as well as hopping terms associated with arbitrary powers are allowed, i.e. terms like
LR LP2LFe ... It turns out that the IMC procedure tends to get destabilized upon

including more and more monomials in L,. As a result, the values for the couplings
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Figure 4.10.: The Yang—Mills two—point function (YM) compared to the one obtained
from the Svetitsky—Yaffe effective action with four couplings (sim). In-
put: 8 =2.40, Ny, = 20.

6] a b c
220 | YM | 0.2493 1.9627 0.0009
sim | 0.1971 1.8309 0.0001
240 | YM | 0.2006 2.0715 0.0752
sim | 0.1295 1.4499 0.0802

Table 4.9.: Comparison of the fit parameters from (4.98) associated with Fig.s 4.9 and
4.10.

depend rather strongly on the number of operators present and of equations used in
the overdetermined linear system. Inspired by the results from the high—temperature
expansion on the lattice [124, 125] we have therefore changed our operator basis from
the monomials to characters. Being orthogonal class functions these seem to be the

natural candidates for an economic set of operators. At this point it should be noted
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that for an effective action with a finite number of terms different choices for bases are
not equivalent. As stated in Section 4.1, for SU(2) the characters can be expressed

as polynomials in the traced Polyakov loop, L = trf3/2 = cos ), according to

: : 7] .
sin (25 + 1)) 27+ 1Y\ ;9 o . .
(L :E:—ll’ LH-2(1 — L2y =0
X]( ) Sin9 ( ) 2p_|_1 ( ) 9 j )

(4.99)
This formula allows to reobtain the L-representation from the characters. The first

few relations are
Xipp=2L, x1i=4L*—1, x30=8L"—4L, .... (4.100)

These are sufficient to obtain monomials up to terms of order L®. To streamline
notation it is useful to define a basic link variable associated with lattice points @

and y and SU(2) ‘color spin’ j,

Xjiay = Xi(La)xi(Ly) (4.101)

which we represent graphically as

*—o X1/2;11:y = 4LmLy , (4102)
«»® = Xy, =16L2L)—4AL2 4L} +1, (4.103)
& = Xy .y =04L)L; —32L, L, —32L, L, + 16LyL, , (4.104)

A link with n ‘internal’ lines thus corresponds to the representation labelled by j =
n/2. These links are the basic building blocks of our basis of effective operators.
The leading order of the high—temperature expansion [124, 125] is then given by the

expression

S10 =Y NXjizari s (4.105)

x)i,j
with A; a known function of the temporal Wilson coupling 3, and extension NV, that
decreases rapidly with ‘color spin’ j. If we denote the basic link as X,z z4r, we have
two parameters controlling our basis, the representation number j and the effective

range (link length) r = |r|. Several test runs of the IMC routines confirm good
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— < L4 N o

—0.11150 —0.02003 —0.00477  0.00257  0.00368 0.00191 —0.00052
—0.15908 —0.06020 —0.00614 0.00649 0.00535 0.00547  0.00003

Lol H N K o a

0.00090 —0.00085 0.00070 —0.00004 0.00021 —0.00833 0.00008
0.00096 —0.00053 0.00052 —0.00055 0.00001 0.04305 —0.00061

Table 4.10.: Effective operators and couplings for § = 2.20 (upper entries) and § =
2.40 (lower entries), N, = 20.

convergence in j so that we will restrict ourselves to the lowest representations. The
maximum range we allow for is the plaquette diagonal, r < v/2. To further restrict
the number of operators, we limit ourselves to a maximum number of four links of
type (4.101) that can be drawn within a single plaquette. A typical term, for instance,
is thus given by

K = Xl/Z;az,a:+iX1/2;a:,a:+jX1/2;a:,a:+i+jX1/2;a:+i,a:+j . (4106)

Altogether we have 14 operators corresponding to 18 monomials in L. They are

displayed in Tab. 4.10 together with the couplings associated with them.

Several comments are in order at this point. By allowing for all possible distances
x = 0,1,...,10 in the Schwinger-Dyson equations (4.31), we obtain a maximum
number of 140 equations for our 14 operators. The values of the couplings remain
fairly stable if we vary the number of equations used in the IMC least—square routine
(changes approximately 1% for the relevant couplings). The smallest x? per degree

of freedom is 5 - 10™° for the maximum number of 140 equations.

For the operators (4.102 — 4.104) we find rapid decrease with spin j. Similarly, if we
increase the number of links within the elementary plaquette, the associated couplings

tend to decrease. The leading order hopping term, &—e (r = 1) dominates by one
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order of magnitude compared to the terms with = v/2. This already indicates that
the effective interactions are short-ranged in accordance with the Svetitsky—Yaffe

conjecture.

If we denumerate the couplings by g¢1,...¢g14 from left to right, we may express the

new effective action as

14
Set = 9aSa s (4.107)
a=1

Note that, according to (4.102 — 4.104), the old LO coupling ), is given by a (rapidly

convergent) series in j,

—0.445 for B =2.20
Ao =4¢; + 16 g14 + terms with 7 > 3/2 =

—0.646 for B =2.40
(4.108)
These numerical values for Ay agree reasonably well with those of Table 4.6, where only
four operators had been used. The benchmark test to be performed is the calculation
of the two-point function G o using the new effective couplings ¢,. Fig.s 4.11 and
4.12 show that we have indeed improved the matching between Yang—Mills and the

effective action.

This is quantitatively confirmed by repeating the fit of (4.98) and Tab. 4.9. The
results displayed in Tab. 4.11 convincingly show the improvement in the effective

action, in particular in the broken phase.

6] a b c
220 | YM | 0.2493 1.9627 0.0009
sim | 0.2509 1.9837 0.0001
240 | YM | 0.2006 2.0715 0.0752
sim | 0.2051 1.9257 0.0758

Table 4.11.: Comparison of the fit parameters from (4.98) associated with Fig.s 4.11
and 4.12.
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Figure 4.11.: The Yang—Mills two—point function (YM) compared to the one obtained
from the character action with 14 couplings (sim). Input: g = 2.20,
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Figure 4.12.:

Same as in Fig 4.11 for g = 2.40.
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4.7. Remarks |l

We have derived effective actions describing the dynamics of the (traced) Polyakov
loop variable L, = trB;/2, and hence of the deconfinement phase transition. It has
turned out useful, however, to regard the effective action as being derived from a more
general theory depending on the untraced Polyakov loop Py [126]. The corresponding
symmetry SU(2) x SU(2) is not a symmetry of the effective action but nevertheless
it is inherited in the Haar measure which implies novel Schwinger-Dyson equations
for Polyakov loop correlators. It seems that a remnant of this symmetry shows up
in the single-site distribution py of L, which is flat below 7, meaning that By is
distributed uniformly over the group manifold. It would be desirable to really prove

this equipartition for which we have found convincing numerical evidence.

By definition, one cannot calculate correlations from single-site distributions. Vice
versa, the matching of these distributions does not imply that the correlation functions
match as well. A direct comparison shows that the two—point functions of the Yang—
Mills and Svetitsky—Yaffe ensembles differ somewhat, in particular in the broken
phase. To improve the matching we included more terms, in particular hopping terms
ranging up to a distance of /2. Technically, this is a trickily task since, depending on
the number of operators and Schwinger—Dyson equations used, the procedure becomes
astable. This may be a numerical problem as the determinants of the matrices to be
inverted become as small as 107%°. To overcome these difficulties we changed out
operator basis from monomials in L, to characters being orthogonal polyomials in
L. Doing so the inverse Monte Carlo procedure stabilized, even if the number of
operators is large. Furthermore, the determinants are of order one or higher, which

is advantageous for numerical reasons.

Further research should be devoted to the following issues. The predictions of the
effective actions for the dynamics of the phase transition should be investigated in
detail. This includes an analysis of the effective potential(s) near and beyond the
transition point as well as calculations of critical exponents. The latter will yield a
check whether the effective action Seg[L] is indeed in the universality class of the Za—
[sing—model. In addition, it should be possible to generalize the methods developed

in this thesis to higher SU(N) gauge groups.
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The present thesis is devoted to a long standing and yet unsolved problem in modern
physics, color confinement. This phenomenon is one among a couple of interesting
features occuring in QCD at low energies. In order to learn something about these ef-
fects it should be sufficient to restrict oneself to the relevant energy scale while degrees
of freedom corresponding to large energies are absorbed into low-energy parameters.
This method, known as the effective field theory approach, is adopted throughout this
thesis. Furthermore, at low energies the running coupling is large and perturbation
theory has no predictive power. For this reason we have to apply some nonpertur-
bative technique. The method of choice is lattice gauge theory, presently being the

most powerful nonperturbative approach.

In this thesis we tested and developed low-energy effective models for confining theo-
ries using inverse Monte Carlo (IMC) techniques based on Schwinger—Dyson relations
and Ward identities which we derived analytically. As a result we have found strong
evidence that the Faddeev—Niemi conjecture does not hold whereas our finite tem-

perature calculations support the Svetitsky—Yaffe conjecture.

The first model studied is an effective action for a unit color vector m proposed by
Faddeev and Niemi (FN). They originally stated that low—energy SU(2) Yang—Mills
theory is equivalent to a Skyrme-type sigma model. More specifically, FN suggested
that the knot solitons of their model might be related to the Yang—Mills glueball

spectrum. We have performed a lattice test of this conjecture as follows.

Using standard Monte Carlo techniques, we have generated an ensemble of SU(2)
link fields from the Wilson action. This ensemble was used to extract an associated
ensemble of m, parametrizing the gauge invariant distance between the maximally—
Abelian and lattice Landau gauge slices. As these gauges are close to each other,

there is a preferred direction for the n—field which corresponds to explicit symmetry

80
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breaking. In this way we avoid the appearance of massless Goldstone bosons and thus
generate a nonvanishing mass gap. A study of the exponential decay of correlators
yields a mass gap close to 1 GeV. To find the effective action describing the Yang—Mills
ensemble of n—fields we have employed inverse Monte Carlo techniques. The relevant
Schwinger-Dyson relations and Ward identities have been evaluated numerically for
the Yang—Mills ensemble on the one hand, and for ensembles stemming from the
effective FN action on the other hand. To allow for explicit symmetry breaking
we have added a minimal symmetry breaking term to the effective action which
is of leading order (LO) in the derivatives, in contrast to the FN term which is
next to leading order (NLO). As a result, we have found strong evidence that the
ensemble generated from Yang—Mills theory cannot be described by the FN action
plus a minimal symmetry-breaking term to allow for a mass gap. This follows from

a number of discrepancies between the two ensembles.

First, and most prominent, the sign of the coupling associated with the symmetry
breaking term is positive, implying negative magnetization. The value from Yang-
Mills theory, however, is positive. Second, the reduced two—point functions show
just the opposite monotonic behavior compared to Yang—Mills. Third, the size of the
gluonic mass gap is larger than for the Yang—Mills ensemble of n—fields. A coincidence
of both, however, cannot be expected due to the nonlocal relation between effective
and Yang-Mills degrees of freedom. Comparing the disagreement for different scales
separately, we have found indications that the Schwinger-Dyson relations of both
theories agree much better for large distances, corresponding to energies of about 0.25
GeV or even less. This is far below the glueball spectrum, and addressing the question
of the mass gap makes no sense at this scale. However, by adding more (symmetry—
breaking) terms to the action, magnetization, mass gap and susceptibility probably
can be rendered correctly. Since we have worked with only one choice of an n—field,
our results rule out the Faddeev—Niemi conjecture only for this particular example.
But irrespective of this choice, the following statement holds. For finite temperature,
the o-model is in the universality class of the 4d Heisenberg model, while SU(2) Yang-
Mills theory is in the 3d Ising class if the Svetitsky—Yaffe conjecture is true (which
is numerically supported). If the c—model scale were below the critical temperature,
the effective theory would be valid in the confined phase only. In this case the former

is not capable of describing Yang—Mills theory close to the phase transition.

Inspired by recent work on finite temperature QCD we have extended our IMC pro-
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cedure to another type of effective models. It was argued by Svetitsky and Yaffe
that finite temperature SU(N) Yang-Mills theory in d dimensions lies in the same
universality class as a Zy spin model in d — 1 dimensions. To be closer to SU(2)
Yang—Mills theory, however, we have not chosen Zy Ising spins as effective variables
but Polyakov loops. Since the expectation value of the traced Polyakov loop serves
as an order parameter for the confinement-deconfinement phase transition, such an

effective model should be capable of describing physics near the critical temperature.

From a general theory depending on the untraced Polyakov loop with symmetry
SU(2) x SU(2) ~ SO(4) we have derived an effective action Seg[L] for the (traced)
Polyakov loop variable L. The SO(4) symmetry is not a symmetry of the effective
action but inherited by the Haar measure. On this basis we have derived novel
Schwinger-Dyson equations for Polyakov loop correlators. Computing the single-site
distribution py/[L] this symmetry shows up as py is flat in the symmetric phase
(I' < T¢), which means that the untraced Polyakov loop is distributed uniformly
over the group manifold. As the single-site distribution of L is exactly known in
the confinement phase, we can give exact predictions for all moments (L?*) and thus
for the Binder cumulant, by = —1. Above T,, we have fitted the log—distribution
W ~ logpw by polynomials so that also in this case we have good quantitative
control of the distribution. It turns out that W[L] and Seg[L] are related in a manner
that is simple enough to proceed by analytic means. Assuming that expectations
taken in the effective action are unchanged if L is changed at a single site we have
been able to express the effective couplings Seg[L] in terms of the fitted parameters
of W and the coupling Ay of the hopping term. The latter has been determined
by means of the Schwinger-Dyson equations. The single-site distributions resulting
from the effective theory agree very well with those obtained directly from Yang—Mills.
Furthermore, the effective action perfectly reproduces the Schwinger-Dyson equations
based on the SO(4) invariance of the Haar measure. We have also determined the
(constraint) effective potential from the single-site distribution py by applying the
Law of Large Numbers. As expected for the confined phase (T' < T.), we obtain a
Gaussian distribution for the mean field L if the volume is large and the temperature
small enough. In the broken phase (7" > T.) we have found that the distribution can
be fitted very well to a double-Gaussian. Doing so also shows that close to the critical

temperature tunneling becomes suppressed by enlarging the volume.

Since correlation functions cannot be computed from single—site distributions, the
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matching of the latter does not imply matching of the former. In order to improve
the matching of the correlation functions we have extended our model by including
more terms, in particular hopping terms corresponding to larger distances. To achieve
progress in this direction we have replaced the operators (monomials in L) in the
effective action by characters, which are orthogonal polynomials in L. Doing so, the
IMC procedure turns out to be very stable, even for a large number of operators
and Schwinger-Dyson equations. The couplings decrease rapidely with increasing
characters so that we have restricted the ansatz to leading first three (nontrivial)
representations. In this way we have obtained the effective couplings for a total
number of 14 operators. The resulting effective theory has short-range interactions
and reproduces the Yang—Mills two—point function very well. This is consistent with

the conjecture of Svetitsky and Yaffe.

On the technical side we have clarified some details concerning the methods of singular
value decomposition and least squares in the context of inverse Monte Carlo. We have
demonstrated that missing operators in the ansatz to be fitted by the data show up
as a systematically floating least square solution as the number of equations is varied.
This effect is more serious the more important the neglected operator is. The use of
different sizes of the system of equations is therefore crucial to obtain a reasonable
solution, and also helps to improve the ansatz. Using the singular value decomposition
one should be very careful in distinguishing the singular values. Whether a very small
diagonal entry is treated as zero (and thus left out) depends on the particular problem.
Is the smallness caused by almost linear dependent columns of the matrix the singular

values have to be regarded as nonzero.
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A. Conventions

Left and right lattice derivatives are defined as

8,ufx = fm+,u - fm ) (Al)
8fo = fxf,u - fm : (AQ)
The ordinary lattice Laplacian A = —8;2@ is a negative semi-definite operator. Its

action on lattice functions f is given by

Afe==Y 2fe = forp— Fau) - (A.3)
m
The covariant Laplacian A[U] in the adjoint representation acts as
Aab[U]fﬁ = - Z (2f§ - Ri{)u £+u - Rgaf,u,,u i)f,u) ) (A4)
m

where we have defined the adjoint link

R, = —tr(7"Up,m"UL ) . (A.5)

DN | =
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B. Relating LLG and MAG

From (3.9) it follows immediately that the LLG minimizes the functional [147]
Fuc=)Y tr@-20), 1= (2,p), (B.1)
!

and thus tends to bring the links U; close to 1. The MAG, on the other hand,
minimizes
FMAG = Z(]_ — QR??)) s (B2)
!

and thus wants to bring the 33-entry of the adjoint link R close to 1. From (A.5)
it is obvious that, if U, equals unity, the same will be true for ;. This can be made

more precise: if U; ~ 1 + iaA;, A; hermitean, then it is an easy exercise to show that
R¥ =1+ O(a?). In this sense, the LLG is close to the MAG.
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C. Schwinger—Dyson Equations and
Ward ldentities

We begin with computing the infinitesimal rotations of the various contributions in
(3.15) and (3.16) to the effective action. It turns out that, for all S;, the action of

the angular momentum can be written as
ZLmS] =n,; X Kjx R (Cl)

(and analogous for the S};) with the vectors K;, and K, given by

K,, = 2An, (C.2)
K,, = 2A%’n, (C.3)
K;, = 2[An,(n,-An,) + A (ny(n, - Any))] (C.4)
K, = 2 [Glﬁynx(nx : GL&,nx) + 82:8,, (ny(n, - 6;&,1%))] (C.5)
K|, = h (C.6)
K, = %h(n,-h) (1)
K,, = h(n, An,) + Ang(ng-h)+ Ang(ng-h)). (C.8)

Choosing the F’s in (3.26) as n%, n%n! and n%nln, respectively, results in the Ward

identities
GEN +2G3 X+ GRN = —2G3 (C.9)
G N+ 2GR N, + GRIB N, = 2G84+ Gl (C.10)
U N+ 263 N, + Goi Ny = =263, +2G)20 . (C)
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Here, the superscript (i3) denotes symmetrization in ¢, 3, and we have introduced the

shorthand notations

Gaver = (ngnpn$...), (C.12)
Gor = ) G (C.13)
Gﬁy = Z(nin;n; ) (C.14)
Gon- = Z((niﬂni)nén; ) (C.15)

with z denoting summation over all lattice sites x. In particular, one has

3 — i — oL i — ol 33 —
Gi=am, GI =2, GI=2G,, GE=dl. (C.16)
[t seems that a particular recurrence pattern arises in (C.9-C.11) that could be used
to derive a Ward identity for an insertion of an arbitrary number of n’s. For the
NLO derivative expansion, however, the three identities are sufficient to determine

the symmetry-breaking couplings \'.

a
T

For the particular case that F' in (3.23) equals n, F¢ = nf, we can give the general

Schwinger-Dyson equation in closed form,
> NHjoy+ Y ANH;,, = —M6yy | (C.17)
j k

where we have introduced the two—point function

i i3
jay = <nwng[4 Kjg}/> ) (C.18)

and, completely analogous, Hy ,, . The FN terms are (C.4) minus (C.5), so that the

relevant two—point function becomes

H'S = Hypy — Hyy (C.19)

Ty —

which has been used in (3.43).



D. Histograms and Bins

Given a probability density py [L] one defines the associated (cumulative) distribution

function

Pull] = / j AL T = TP p|L] . (D.1)

Density py and distribution Py, are related to our histograms as follows. We have
a total number N of ‘events’ or ‘measurements’ saying that a Polyakov loop at site
x belonging to an arbitrary configuration takes its value in some prescribed interval

(‘bin’). Accordingly, N is a fairly large number,
N = N? X Neonsig = 20° x 400 = 3.2 x 10° . (D.2)

The number of bins (labeled by integers i) is denoted by I, the number of events in bin
¢ by C;. This number represents the height of the ith column in the histogram counting
the absolute numbers of events with values in [L; 1, L;] . The relative counting rate

is obtained by normalization,

where AL; = L; — L; 1 and L; € [L; 1, L;] chosen appropriately. The situation is
depicted in Fig. D.1.

Good statistics is achieved if the counting rate ¢; is approximately constant because
then all bins will be equally ‘populated’. This can be achieved by suitably choosing the
bin sizes AL; which, however, is somewhat tricky because of the nontrivial measure

in (D.1). If we ignore this for the moment and choose an equidistant partition,

AL =AL=2/I, (D.4)
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Figure D.1.: General histogram for distribution function Py [L].

the total count in bin ¢ becomes

0= 2wl 1 Iz (D.5)
This yields rather bad statistics near the boundaries L = 41, in particular for T" > T,
due to the suppression by the measure. For instance, choosing 5 = 2.4, I = 100, i.e.
AL = 1/50, one typically finds C; ~ 14000 data points in the first bin (near L = —1),
while the population of the bins near L = 0 is larger by a factor of five, C5y >~ 73000.
The suppression by the geometry thus ‘wins’ against the density which is peaked near

L = +1. In the quantity of interest, the probability density,

Ci I

N7 7 IN (D.6)

pW[Ei] =
one divides by the measure factor which tends to zero near L = +1. This yields the
peaks near L = +1 but at the same time further enhances the statistical error close to
the boundaries. For T" < T,, this is not much of a problem as we have equipartition,
pw|L] = const = p;;; = 2/m, and the density is known anyhow. For T' > T,, however,
(D.6) implies that the bulk of the density is located where the statistical error is
largest. On the other hand, the behavior of py in this regime determines the higher
order couplings k9. The lesson to be learned is that the partition should be modified

such as to correctly incorporate the effect of the measure. To this end, we demand
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that the counting rate be constant, ¢; = ¢, for T' < T, hence, from (D.3),

c=py\/1—L2AL; =1/I. (D.7)

Thus, in order to properly take into account the measure, the bin size AL; has to be

- 1
1— L2 AL; = const = ¢/w_ = —— (D.8)
’ I

Py

This can be achieved by going over to continuum notation,

chosen such that

¢/ oy — /L ALV = PulL] - Pullid] . (D.9)

i—

and solving this recursion for L; numerically with Py (L) given by
1
PwlL] = 5 [L VI— L2 + arcsin(L)] . (D.10)

Alternatively, one may produce an ordered list of all data points for L, and partition
this list in such a way that all bins contain the same number C' of ‘events’. The
sampling points L; are then given by the smallest (or largest, depending on the

counting convention) value of L in bin i.

For T' > T,, the density py is then given by

— Ins
pwllLi] = %Ci : (D.11)

This has been displayed in Fig. 4.1. Obviously, measure effects are now absent and

the difference between C; and C' represents the deviation from equipartition.



E. Least Squares, Singular Value

Decomposition and IMC

E.1. Least-Square Method and SVD

Given an overdetermined system of m equations for n < m unknowns A\;,7 =1,...,n,
AN=0b, (E.1)
the least square solution is given by
A= (ATA)1AT) (E.2)
which minimizes
X2 =|AN — b . (E.3)

Implementing this procedure numerically runs into problems in case the matrix AT A
is ill-conditioned, i.e. det(ATA) is very small (numerically zero). Here, the singular
value decomposition (SVD) comes into play which decomposes the m x n matrix A

as

U1

A= (w]... |uy)diag(wy,...,w,) | * | =UWVT (E.4)
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with column-orthogonal m x n-matrix U, n X n semi-positive diagonal matrix W and
n x n orthogonal matrix V. Such a decomposition is always possible and unique
up to permutation of columns in the three matrices or forming linear combinations
of those columns of U and V where corresponding elements of W are equal [89].
The decomposition is based on an orthonormal basis {v;, i = 1,...,n} of R” via the

definitions

0 if w; =0
wy = [[Avel| ;s = : (E.5)

The basis {v;} can always be chosen such that Av;, - Av; = 0, Vi # j [148]. In

this case, the vectors u;, i = 1,...,n are pairwise perpendicular and {u; # 0,i =
1,...,k < n} is an orthonormal basis of a k-dimensional subspace of R™. With
{u;,i = k+1,...,m} being an orthonormal basis for the (m—k)-dimensional subspace
perpendicular to span{ui,...,u;} one can extend (E.4) to
w1 0
U1
0
0 Wi
A= (uy|...|ug|ugsr] .. |um) (E.6)
0 0 o
Un

where left and right hand side agree on the basis {v;}. The least square solution of
(E.1) is then given by

Uy

A= (v1]...|v) diag(1/wy,..., 1 wp) | ¢ | b= ATb=

Uk

where AT is called pseudo-inverse of A. Starting from (E.7), there are further least

square solutions which differ by linear combinations of vectors from the null-space of
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A,
A=ATb+ i1V + -+ 0y

The SVD even solves homogeneous equations where b = 0. Since those v; with
corresponding w; = 0 form a orthonormal basis of the null-space of A, any column v;

of V' is a solution of the homogeneous system.

Note that in the solution (E.7) the singular values w; = 0 have been left out. This
is crucial in the case that they are identically zero. In real numerics w; may be very
small but finite. Whether such a wj; is treated as zero depends on the particular
problem. Reordering the singular values wy < wy < --- < w, one defines a condition
number w;/w, being large if there is a singular value very small compared to the
others. A matrix with a large condition number is called ill-conditioned and often

displays extreme sensitivity, even to small changes of the right hand side b.

However, experience teaches to use all information one can get and not to throw
away anything. In particular, if there are small singular values due to columns of
A that are almost (!) linear dependent, increasing the number of digits to achieve
higher accuracy has turned out to be the better choice compared to throwing away

the entries corresponding to small singular values.

E.2. Avoiding Trouble with IMC

Here we want to give a technical remark which may be important for people having
trouble in solving (over)determined systems in IMC. Based on the Schwinger-Dyson
relations we want to provide an optimized system including the most relevant oper-
ators in the ansatz 4.1. The best choice is to take first of all the set of operators
appearing in the equations of motion, i.e. S, differentiated with respect to the basic
fields. This yields as many equations as there are unknowns and one has to invert a
symmetric matrix. The x? tells how good the solution is. However, there is a way to
learn something more. Successively enlarging the number of equations and observing
the behavior of the (least-square-)solution we have found a systematic flow in case
there is an operator missing in our ansatz. The flow is larger the more important

the neglected term is. Furthermore, the calculated couplings are far off the correct
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ones. Playing around with a toy model we have checked all these features, and also
that couplings corresponding to dispensable terms in the action come out as zero (see
Tab. E.1). The action is

S = Z)\aSa

=M Y LoLy+ Y [ML2 + 3Ly + ML) + A5 Y LoLy + X6 Y LoLy (E.8)

<xy>1 T <wy>ﬁ <wy>\/§

with <xy>, denoting all neighbors & and y of distance | —y| = r. In the first row of
Tab. E.1 the input data are given. The simulated action includes a hopping term Sy
and a potential of orders 2, 4 and 6 in the variable, Sy, S5, S;. Below we see how this
is reproduced using different ansitze for the action. In the first case we have checked
that we reproduce the input couplings by testing the simulated action. Second, we
have added some more terms to the action to see whether they come out as zero.
Both tests work very well, and do not depend on the number of equations (minimal
set up to fifteen) used. Dropping the leading potential term, Sy, however, there is no
stable solution. As seen in the lowest row the couplings start to float systematically
by increasing the number of equations, here shown for 3, 8, 12 and 15 equations. In

particular, the resulting potential couplings differ drastically from the input.

A1 A2 A3 A4 As A6 x?%/dof
input | —0.7600 | 1.9572 | —1.0215 | 0.6976 0 0 -
—0.7602 | 1.9602 | —1.0222 | 0.6914 — — 3.2-10712
—0.7604 | 1.9605 | —1.0221 | 0.6904 | 0.00010 | —0.00009 | 3.5- 107
output —0.7343 — 7.6591 | —7.7944 — — 5.2-1077
—0.7296 - 7.0143 | —6.7781 — — 1.0-10°7
—0.7274 - 6.7289 | —6.3344 — — 3.9-10°°
—0.7259 — 6.5349 | —6.0351 — — 1.7-1075

Table E.1.: Testing IMC with a toy model. The output date are given for different
ansatze. Included terms are those where a numerical value of the coupling
is given.



Zusammenfassung

Die vorliegende Arbeit befaflt sich mit dem niederenergetischen Bereich der Quan-
tenchromodynamik (QCD). Dort gibt es einige dufierst interessante, aber noch nicht
zur vollsten Zufriedenheit verstandene Phanomene, wie zum Beispiel das ‘color con-
finement’, das besagt, dafl es keine freien farbgeladenen Teilchen gibt. Theoretische
Untersuchungen zeigen, daf} sich diese Tatsache auch schon in der reinen Yang-Mills—
Theorie (ohne Quark-Felder) in einem mit dem Abstand linear anwachsenden Quark—
Potential widerspiegelt. Um das zu untersuchen, liegt es daher nahe, sich auf die
ohnehin schon nichttriviale Yang—Mills—Theorie beschranken, und die Ursache fiir ein

solches Verhalten in deren nicht—Abelscher Struktur zu suchen.

Der theoretische Zugang zu dieser Theorie wird dabei noch zusatzlich durch die
laufende Kopplung erschwert, die im Bereich kleiner Energien grof3 ist und eine
storungstheoretische Behandlung ausschlie8t. Da die fiir uns interessante Problem-
stellung offensichtlich von der Energieskala abhéngt, scheint es sinnvoll, nur den dafiir
relevanten Bereich zu betrachten und Effekte von auflerhalb dieser Skala geeignet in
Koeffizienten oder Parameter zu absorbieren. Durch diese Abintegration der Hoch-
energiefreiheitsgrade sollte sich eine einfacher zu handhabende Theorie ergeben, die
aber im zugehorigen Energiebereich dieselben Effekte aufweist wie die volle Theorie.
Erstere tragt den Namen ‘Effektive Theorie’. Wie bereits angedeutet, ist deswei-
teren die Benutzung nicht—storungstheoretischer Behandlungsweisen unerlafllich, um
den Bereich niedriger Energien zu erschlieflen. Eine der leistungsfihigsten Metho-
den dieser Art ist die numerische Simulation (Monte—Carlo) von Gittereichtheorien.
Diese wird in der vorliegenden Arbeit benutzt, um Kandidaten fiir effektive Theorien
fiir den Niederenergiebereich der SU(2) Yang-Mills-Theorie zu testen und zu erwei-
tern bzw. deren Kopplungskonstanten zu berechnen. Die dazu benutzte (numerische)

Methode ist inverses Monte—Carlo (IMC), das auf Schwinger-Dyson—Gleichungen und
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Ward-Identitaten aufbaut. Diese werden analytisch aus den Symmetrieeigenschaften

der betrachteten Theorie hergeleitet.

Das erste hier behandelte Modell geht auf Faddeev und Niemi zuriick, die einen
Ansatz fir eine effektive Wirkung vorschlugen, die nicht nur die Gluon—Dynamik bei
niedrigen Energien beschreiben sondern auch alle im Infraroten wichtigen Terme bein-
halten sollte. Dieser mogliche Zusammenhang mit Yang—Mills sollte in einem ersten
Schritt naher untersucht werden. Ausgehend von mittels Monte—Carlo-Simulation
generierten Yang—Mills—Konfigurationen wurden aus den Eichfeldern die effektiven
Felder extrahiert. In diesem Fall geschah das iiber die Fixierung der Landau—FEichung,
die noch eine globale SU(2) iibrig 148t, welche in einem zweiten Schritt durch die
Maximal-Abelsche Eichung zu einer globalen U(1) gebrochen wurde. Das effektive
Einheitsvektorfeld n kann daher als Mafl fiir den eichinvarianten Abstand dieser
beiden Eichungen angesehen werden. Da beide Eichungen nicht weit voneinander
entfernt sind, ergibt sich eine Vorzugsrichtung fiir n, was einer expliziten Symme-
triebrechung entspricht, durch welche masselose Goldstone-Bosonen vermieden wer-

den und ein Massengap erzeugt wird.

Die fiir niedrige Energien sinvolle Gradientenentwicklung erlaubt zunachst einen mini-
malen Ansatz (fiihrende Ordnung) fiir die Wirkung eines c—Modells, der ein zusétzli-
cher symmetriebrechender Term hinzugefiigt wurde. Uber die zugehorigen Schwinger -
Dyson—-Gleichungen lassen sich die in diesem Modell noch freien Kopplungen be-
stimmen. Es zeigt sich jedoch, dafl die Schwinger-Dyson Gleichungen, geometrisch
veranschaulicht als eine Gerade, nicht mit den Daten aus Yang-Mills zusammen-
passen. Im IMC-Verfahren zeigt sich das in einem systematischen Laufen der berech-
neten Kopplungen bei Variation der Bestimmungsgleichungen im iiberbestimmten
System. Weitere signifikante Diskrepanzen ergeben sich in der Ward-Identitit, der
Suszeptibilitdt und der Magnetisierung. All das ist ein deutlicher Hinweis darauf, dafl

das minimale Modell nicht in der Lage ist, die Yang—Mills—Theorie zu reprasentieren.

Um eine Verbesserung zu erzielen, wurde daraufhin das Modell um einen Term nachst—
hoherer Ordnung, den Faddeev—Niemi-Term, erweitert. Die Berechnung der nun-
mehr drei Kopplungen gestaltet sich wesentlich stabiler. Der FN-Term hat jedoch
zur Folge, daf} sich das Vorzeichen des Symmetriebrechungsterms umkehrt, was einer
negativen Magnetisierung entsprechen wiirde. Das steht jedoch im Widerspruch zu

der Beobachtung aus Yang-Mills. Die Simulation dieses erweiterten Modells zeigt eine
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sehr gute (numerische) Genauigkeit der Schwinger—Dyson—Gleichungen, und auch die
oben angesprochene negative Magnetisierung wird reproduziert, so dafl die Theorie
in sich konsistent ist. Das (erweiterte) FN-Modell ist aufgrund dieser Tatsachen
(zumindest mit unserer Wahl des Feldes n) nicht geeignet, die Yang—Mills—Theorie
zu beschreiben. Wir fanden jedoch Indizien dafiir, dafl die Erweiterung des Mo-
dells auf noch mehr (symmetriebrechende) Terme (héherer Ordnung) und insbeson-
dere die Beschrankung auf grofle Abstinde (kleinere Energien) zu einer besseren
Ubereinstimmung mit Yang-Mills fiihrt. Das deutet darauf hin, da dieses Modell
hochstens sehr weit unterhalb der Glueball-Massenskala eine effektive Beschreibung
liefern konnte. Daher sollte es auch nicht verwundern, dafl das erhaltene Massengap
von ungefahr 1.2 GeV nicht dem Yang-Mills-Wert von ca. 1.7 GeV entspricht.

In einem zweiten Schwerpunkt wurden die im Kontext der FN-Modelle entwickelten
IMC-Methoden auf eine Klasse von effektiven Theorien angewandt, die ihren Ur-
sprung in der Beschreibung des confinement—deconfinement Phaseniibergangs haben.
Die Freiheitsgrade in der effektiven Theorie werden dabei durch den (gespurten)
Polyakovloop reprasentiert. Ausgehend von der SO(4)-Symmetrie des Integrations-
mafles wurden zunachst Schwinger-Dyson-Gleichungen sowohl fiir den ungespurten
als auch den gespurten Polyakovloop hergeleitet, um im IMC—Verfahren zur Bestim-
mung der Wirkung Verwendung zu finden. Angeregt durch die Tatsache, dafi der
Erwartungswert des Polyakovloops als Ordnungsparameter fiir den Phaseniibergang
dient, wurde zunachst dessen Wahrscheinlichkeitsdichte bestimmt. Unterhalb der
kritischen Temperatur ergibt sich ein flaches Histogramm, was einer Gleichverteilung
des gespurten Polyakovloops entspricht. Oberhalb der kritischen Temperatur hinge-
gen werden die Zentrumselemente bevorzugt. Die flache Verteilung ermoglichte in
der symmetrischen Phase die exakte analytische Berechnung der Erwartungswerte
samtlicher Potenzen des Polyakovloops, der zugehorigen erzeugenden Funktion und
somit auch die Bestimmung der Binderkumulante, b = —1. In der gebrochenen
Phase konnte die Verteilung polynomiell gefittet werden. Um diese Verteilungen
mit Hilfe einer effektiven Theorie zu reproduzieren, wurde zunéchst versucht, soweit
wie moglich in analytischer Vorgehensweise fortzufahren. Ein Ginzburg-Landau—
artiger Ansatz bestehend aus einem Wechselwirkungsterm und Potentialtermen er-
wies sich dafiir gerade noch als einfach genug. Damit gelang es, alle Potentialkop-
plungen Ay durch die Wechselwirkungskopplung Ay und numerisch zu bestimmende

hohere Momente des Nachste-Nachbar—Feldes auszudriicken. Durch die abgeleit-
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eten Schwinger-Dyson—Gleichungen wurden mittels IMC Ay und somit alle Ay be-
stimmt. Eine Simulation dieser so bestimmten effektiven Theorie zeigt sowohl in der
gebrochenen als auch in der symmetrischen Phase ein sehr gutes Ubereinstimmen
der Wahrscheinlichkeitsverteilungen mit den Yang-Mills-Daten, das durch Hinzu-
nahme weiterer Potentialterme sogar noch verbessert werden kann. Aufbauend da-
rauf wurde das effektive Potential berechnet, das die Verteilung des mittleren Feldes
L bestimmt. Im Grenzfall groBen Volumens und unter Benutzung des Gesetzes
der grofien Zahlen erhiillt man eine um L = 0 lokalisierte GauBverteilung mit einer
Varianz, die dem Erwartungswert des quadrierten mittleren Feldes entspricht. Ein
Fit der Yang-Mills-Daten zeigt eine sehr gute Ubereinstimmung mit diesem Ergeb-
nis, insbesondere fiir grofe Volumen. Auch das vorausgesagte Skalenverhalten der
Halbwertsbreiten in Abhéngigkeit vom Volumen wird sehr gut reproduziert. Ober-
halb der kritischen Temperatur, also in der gebrochenen Phase, erwartet man zwei
Maxima der Verteilung, jedoch ist eine analytische Herleitung aufgrund der nicht-
flachen Wahrscheinlichkeitsdichte nicht méglich. Ein Fit der Daten an eine doppelte
GauBkurve zeigt aber auch in diesem Fall eine sehr gute Ubereinstimmung. Insbeson-
dere zeigt sich beim Phaseniibergang ein Verschmelzen der beiden Kurven zu der
oben genannten Gauf3verteilung in der symmetrischen Phase. Beziiglich der Volu-
menabhangigkeit zeigt sich das erwartete Verhalten; das Tunneln ist mit wachsendem

Volumen unterdriickt und die Halbwertsbreiten werden schmaler.

Da es sich bei diesen Betrachtungen um einen semianalytischen Zugang handelt, der
auf der Verteilung des einzelnen Polyakovloops aufbaut, kann im allgemeinen nicht
erwartet werden, dafl Korrelationsfunktionen richtig reproduziert werden. Um die ef-
fektive Theorie dahingehend zu verbessern wurden noch weitere Terme zur Wirkung
hinzugezogen, insbesondere Hoppingterme, die hohere Abstiande beinhalten. Fiir
[sing-Modelle ist diese Vorgehensweise bekannt, jedoch quadriert dort das Feld zu
eins, im Unterschied zu unserem Modell. Hier sind im Prinzip alle ultralokalen
Potenzen des Polyakovloops als auch Hoppingterme mit beliebigen solchen Potenzen
erlaubt. Die Schwierigkeit besteht also darin, einen moglichst kleinen Satz solcher
Terme zu finden, der sowohl das IMC—Verfahren stabilisiert als auch die Korrela-
tionsfunktion gut reproduziert. Das gelang durch den Wechsel von Monomen im
Polyakovloop zu deren Linearkombinationen, den Charakteren der Gruppe. Beide
Darstellungsweisen konnen ineinander umgerechnet werden. Dadurch war es moglich,

auch Wechselwirkungsterme mit Abstinden bis 7 = v/2a zu beriicksichtigen. Die
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Berechnungen zeigen ein schnelles Abfallen der Kopplungen hin zu héheren Charak-
teren, was eine Beschrinkung auf die ersten drei rechtfertigt. Desweiteren wurden
zu den drei Nachste-Nachbar—Termen aus Konsistenzgriinden insgesamt elf weitere
Terme zu héheren Abstanden hinzugezogen. Mit dieser Wahl ist das IMC sehr stabil,
und die so erhaltene Theorie zeigt kurzreichweitige Wechselwirkung, im Einklang mit
der Vorhersage von Svetitsky und Yaffe. Die Simulation der effektiven Theorie mit
den so berechneten Kopplungen zeigt eine wesentliche Verbesserung der Zweipunkt-
funktion, die jetzt sowohl in der symmetrischen als auch in der gebrochenen Phase

gut mit der aus Yang—Mills iibereinstimmt.

Vom technischen Standpunkt her wurde der Zusammenhang von Singular—Value-
Decomposition und Least-Square-Methode zur Losung iiberbestimmter Gleichungs-
systeme innerhalb der inversen Monte—Carlo-Methode ndher untersucht. Es wurde
gezeigt, in welcher Weise sich das Fehlen relevanter Operatoren im Ansatz des zu be-
stimmenden Funktionales auf das Verhalten der Least-Square-Losung niederschlagt.
Demzufolge ist ein systematisches Laufen des Losungsvektors unter Erhohung der An-
zahl Gleichungen ein deutliches Anzeichen dafiir, daf§ der gewéhlte Ansatz nicht aus-
reicht, um die zugrunde gelegten Erwartungswerte im Gleichungssystem zu beschrei-
ben. Die Stirke des Laufens ist proportional zur Wichtigkeit des fehlenden Operators.
Daher ist es bei der Least-Square-Methode nicht ausreichend, nur einen moglichen
Satz von Gleichungen zu untersuchen, zumal die so erhaltene (instabile) Losung auch
weit entfernt ist von der richtigen. Weiterhin ergab sich, daf§ bei Verwendung der
Singular—Value-Decomposition die sehr kleinen Diagonaleintrige nur mit duflerster
Vorsicht auszusortieren sind. Es kommt hier auf die Ursache der Kleinheit an. Ist
sie dadurch begriindet, dafl Zeilen oder Spalten in der Koeffizientenmatrix fast linear
abhéngig sind, fiilhrt ein Weglassen der zugehorigen Komponenten (und damit der
enthaltenen Information) zu einer vergleichsweise schlechten Lésung. Sinnvoller ist es
in diesem Fall, auch die kleinen Beitrige beizubehalten und im Gegenzug die Anzahl
mitgenommener Digits zu erhohen. Als Orientierungsmafl dient dabei die Grofle der

Determinante der zu invertierenden Matrix.
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