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List of Symbols

General Symbols and Conventions

N set of the natural numbers

Q set of the rational numbers

R set of the real numbers

Rn space of real vectors of dimension n

A, . . . , Z sets in a topological space

∅ empty set
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≥, >, etc. component wise comparative relations for vectors in Rn

f : A → B function f from the set A into the set B

f−1 inverse of the function f
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a ∈ A a belongs to (an element of) the set A

A ∪ B, A ∩ B union, intersection of the sets A and B

A \ B set A without the elements of set B

int (A) interior of the set A

∂ A boundary of the set A

cl (A) the closure of the set A

min A, max A minimum and maximum element of the set A

inf A, supA infimum and supremum of the set A

dist(x, A) distance from the point x to the set A

x → y convergence of x to y, or x tends to y

dom (ϕ) domain of the mapping ϕ

Graph (ϕ) graph of the mapping ϕ

M+1, M−1 upper and lower inverse of a set-valued map, resp.

∂ϕ sub-differential of the function ϕ

DxG(x, y, t) a row (column) vector for the partial derivative

of a function of several variables w.r.t. x

¤ end of a proof

Abbreviations

cf. confer (meaning refer, compare or see)

et al. and others

w.r.t. with respect to

e.t.c. and so on

resp. respectivley

l.s.c. lower semi-continuous

u.s.c. upper semi-continuous

l.r. lower robust

u.r. upper robust

l.a. lower approximatable
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u.a. upper approximatable

SCQ Slater Constraint Qualification

SSC Strong Slater Condition

MFCQ Mangasarian-Fromovitz constraint qualification

EMFCQ Extended Mangasarian-Fromovitz Constraint Qualification

SNH Semi-neighbourhood

SV − map Set-Valued Map

(PSIP),(GSIP),(SIP) parametric, Generalized, semi-infinite optimization problems, resp.

(BL) Bi-level optimization problem

IGOM the Integral Global Optimization Method

Reserved Symbols and Notations

M feasible set of a generalized semi-infinite programming problem

X, Y, T topological spaces

M : X −→→ Y a set valued map from set X to set Y

M(·) a set valued map

int BA relative interior of the set A in the set B

Bε the ball of radius ε > 0 and center at 0

ess inf f essential infimum of a function f

h = (h1, . . . , hp) a vector of real valued functions

[f ≤ α] lower level set of the function f at the level α

µ Lebesgue-measure in the space Rn

α, β, δ, θ, γ, ε, τ, µ real parameters

ϕ marginal function of a (PSIP)

Λ, Ω sets of parameters or indices

(GSIP)red finite reduced (GSIP)
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Introduction

In recent years, several practical engineering, approximation, optimal control and discrete

optimization problems have been found to lead into a class of optimization problems

known as generalized semi-infinite optimization (GSIP) problems. Among such problems

are: maneuverability of a robot Grettinger-Krogh [20], time-optimal control Krabs [40],

reverse Chebychev approximation Hoffmann & Reinhard [29], terminal variational prob-

lems Kaplan & Tichatschke [35], optimal control of discrete structures Weber [83, 87]

etc. Hence, there arose the need for both theoretical investigation and numerical solution

methods for (GSIP)s.

It seems, currently, that the theoretical aspects of (GSIP) are maturely developed. Thus,

we find results on optimality conditions (both first and second order), studies on the

structure of the feasible set, regularity and stability, local reducibility and connection of

(GSIP) with other optimization models. It is observed that, under general assumptions,

the feasible set of a (GSIP) may not be closed, not convex, not connected, even could

exhibit some disjunctive structures, may also have re-interant corner points, etc; several

of which are strange to the feasible set of a standard semi-infinite optimization (SIP)

problem. These are sticking points for existing numerical methods of (SIP) (or their gen-

eralizations) to be applied for the treatment of (GSIP). But, recently, we have a successful

approach being proposed, by Stein & Still [74, 75, 77, 78], in tackling a class of (GSIP)

with convexity structures. However, so much work still remains to be done to come up
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5

with computational methods that could handel a general class of (GSIP)s. Hence, re-

search is still in progress in tackling problems of somehow generalized nature. Therefore,

the presentation made in this manuscript might be taken as one of such attempts.

The problem that is to be considered here has the form:

(GSIP ) f(x) → inf

s.t.

G(x, t) ≥ 0, ∀t ∈ B(x)

x ∈ X,

where

• X ⊂ Rn and T ⊂ Rm are compact sets in their respective topologies;

• the functions f : X → R; G : X × T → R are at least continuous;

• the index B : X −→→ T is a set-valued map.

We will also take X and T as being topological or metric spaces as required and further

specific assumptions on the problem data will be given as the discussion progresses. To

avoid certain computational difficulties associated with the method suggested to solve

(GSIP) and for simpler theoretical presentations (both from literature), we exclusively

consider (GSIP) with inequality constraints. Moreover, the index set-valued map may

have the structure:

B(x) := {t ∈ T | hi(x, t) ≤ 0, i ∈ I},

where I is a finite index set. The (GSIP) will reduce to a standard semi-infinite op-

timization (SIP) problem if the index set-valued map B(·) is a constant map, i.e. if

B(x) ≡ B 6= ∅,∀x ∈ X. What actually makes (GSIP) a generalization of (SIP) is that

it is an optimization problem over a finite dimension (since x ∈ Rn) w.r.t. infinite num-

ber of constraints, where the (usually) infinite index set B(·) of the constraints varies

w.r.t. x. A comprehensive coverage of issues related to standard (SIP) could be found in
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[19, 25, 51, 52].

In [33] it has been shown that the feasible set of (GSIP) is closed if the index set-valued

map B(·) is lower semi-continuous. This has been one of the major assumptions in

the numerical algorithms proposed in [47, 49, 74, 75, 77, 78, 79, 80]. However, in this

manuscript two approaches are presented without exclusively making such an assumption.

At the same time, the proposed approach will be seen to include problems with the ’nice’

structures.

The two approaches discussed in Chap. 4 are: a conceptual penalty method (cf. Abebe

and Hoffmann [1]) and an exact penalty discretization method. In the first approach, there

is defined a discontinuous penalty function for the (GSIP) based on the marginal func-

tion of a certain auxiliary parametric semi-infinite optimization problem (PSIP) . The

solution of the resulting penalized problem is shown to yield a generalized minimizer of

the (GSIP). In the second approach, we define two penalty functions: one based on the

marginal function of the lower level problem and, a second, based on the feasible set of

(GSIP). By introducing a descretization of the index map B(x), it has been verified that

the discretized penalty problems could give an upper and a lower bound for the optimal

value of the (GSIP), in the limit.

In both the proposed approaches we need to be able to solve discontinuous optimization

problems. For this, the aim is to use the Integral Global Optimization Method (IGOM).

The (IGOM) was first initiated by Chew and Zheng [13, 88] and was further developed

by Hoffmann, Phú and Hichert [26, 27, 28, 48]. In fact, Hichert [26] wrote a program

code, which he called (BARLO), for a generalized version of (IGOM) and (BARLO) is

found to be computationally efficient for global optimization problems with fairly dis-

continuous data. Where the fairness of the discontinuity is characterized by the notions

of robustness. Since the (IGOM) has its theoretical root in measure theory and robust
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analysis, to use (BARLO), we needed to verify some robustness and measurability prop-

erties of the involved marginal functions and that of the feasible set of the (GSIP). To

this end, Chap. 3 presents relatively new results on robustness of marginal functions and

of set-valued maps with given structures. The results obtained in Chap. 3 have been

effectively applied for the proposed computational approaches in Chap. 4. Furthermore,

to show the validity of the methods, certain computational experiments are also presented.

The material of the document has been organized into five chapters. Chap. 1 presents

a review of ideas from set-valued analysis, emphasizing on set-valued maps with given

structures; Chap. 2 contains a review on the current state of the art of (GSIP). Chaps.

3 & 4 make up the bulk of the manuscript. Specifically, in chapter 3, we will extend

the theory of robust analysis and, in Chap. 4, we show how the ideas of Chap. 3

could be applied to solve some class of (GSIP)s. Chapter 5 presents some computational

experiments which are carried through the descretization method.
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Chapter 1

Facts from Set-Valued Analysis

Set-valued maps (SV-maps)1 are indispensable tools in optimizations problems whose

problem data depend on some parameter(s). They are basically used in characterizing

the variation of feasible sets and/or stationary points, of optimization problems, with

respect to a chosen or a prescribed set of parameters. This is particularly the case in

parametric optimization; hence, in generalized semi-infinite optimization as well. In fact,

both theoretical and numerical investigations of (GSIP) are based on properties and as-

sumptions made on the set-valued map B(·). We, thus, find here a brief review of those

definitions and properties which are relevant to the forthcoming discussions. Leaving out

the detailed features to the specialized literature, we are mainly interested here in the

basic issues of continuity. Furthermore, special emphasis is given to those maps which are

defined using a parametric family of functions. These are known as set-valued maps with

given structures. For details on general issues of set-valued maps one is referred to the

books of Aubin and Cellina [4], Aubin and Frankowska [5], Berge [8], Hu and Papagor-

gious [32], Rockafellar and Wets [57], etc. And set-valued maps with given structures are

also given due treatment in the book of Bank et al. [7], in the paper of Hogan [31], etc.

1The terms ’set-valued map’Aubin and Frankowska [5],’point-to-set map’Hogan [31],’correspondences’
Aliprantis and Boder [3] and ’multi-valued maps’Robinso [53, 54] are usually used interchangeably; while
the first being frequently used in current literature.
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1.1 Set-Valued Maps - General Definitions and Properties 9

1.1 Set-Valued Maps - General Definitions and Prop-

erties

In the following, unless explicitly specified, the spaces X and T are taken to be Hausdorff

topological spaces.

Definition 1.1.1. A set-valued map B(·) from X into T , written B : X −→→ T , is a relation

that associates with every x ∈ X a subset B(x) of T . The domain of B(·), denoted by

Dom(B), is defined as:

Dom(B) := {x ∈ X|B(x) 6= ∅};

and the graph of B(·), dented by Graph(B), is defined as

Graph(B) := {(x, t) | t ∈ B(x), x ∈ Dom(B)}.

Definition 1.1.2 (lower inverse of a SV-map, [5]). Let B : X −→→ T .

1. For any t ∈ T , the (lower) inverse image of t under B(·) is defined as:

B−1(t) := {x ∈ X | t ∈ B(x)}.

2. For any V ⊂ T the (lower) inverse image of V under B(·) is denoted by B−1(V )

and is defined as:

B−1(V ) := {x ∈ X | B(x) ∩ V 6= ∅} =
⋃

t∈V

B−1(t).

Definition 1.1.3 (upper inverse of a SV-map, [5]). Let B : X −→→ T . Then for any

S ⊂ T , the upper inverse of S by B(·), denoted by B+1(S), is defined as:

B+1(S) := {x ∈ X | B(x) ⊂ S}.

The terminologies lower- and upper -inverse are from Berge [8]; while in the book of Aubin

and Frankowska [5] the former is simply termed inverse, and B+1(S) is termed the core

of the set S under B(·). Moreover, the above two definitions of inverses of a SV-map lead

into two types of continuities - upper and lower semi-continuity.
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1.1 Set-Valued Maps - General Definitions and Properties 10

Definition 1.1.4 (upper semi-continuous SV-map).

Let B : X −→→ T and Dom(B) 6= ∅. Then B(·) is said to be upper semi-continuous (u.s.c)

at x0 ∈ X iff for any open set V ⊂ T , where B(x0) ⊂ V , there exists a neighborhood

U ⊂ X of x0 such that

∀x ∈ U : B(x) ⊂ V, i.e. U ⊂ B+1(V ).

The map B(·) is said to be u.s.c. on X if it is u.s.c. at every x ∈ X.

Definition 1.1.5 (lower semi-continuous SV-map). Let B : X −→→ T . Then B(·)

is said to be lower semi-continuous (l.s.c.) at x0 ∈ X iff for any t0 ∈ B(x0) and any

neighborhood V ⊂ T of t0, there exists a neighborhood U ⊂ X of x0 such that

∀x ∈ U : B(x) ∩ V 6= ∅; i.e. U ⊂ B−1(V ).

The map B(·) is said to be l.s.c. on X if B(·) is l.s.c. at every x ∈ X.

A set-valued map which is both lower and upper semi-continuous is called continuous.

Furthermore, Def. 1.1.5 has an equivalent formulation using sequences, if both T and X

are metric spaces.

Definition 1.1.6. Let X and T be metric spaces, B : X −→→ T and x0 ∈ Dom(B). B(·) is

said to be lower semi-continuous (l.s.c.) at x0 iff for any t0 ∈ B(x0) and for any sequence

{xk} ⊂ Dom(B) such that xk → x0, there exists a sequence {tk} ⊂ T , where tk ∈ B(xk)

and tk → t0.

Proposition 1.1.1 (Thm. 2.9, Kisielewicz [37]). If both X and T are metric spaces,

then Def. 1.1.5 and Def. 1.1.6 are equivalent.

Definition 1.1.7 (closed SV-map, Hogan [31]). Let X and T be metric spaces and

B : X −→→ T be a set-valued map. Then B(·) is said to be closed at x0 ∈ X iff for

sequences {xk}k∈N and tk ∈ B(xk) such that xk → x0 and tk → t0 implies t0 ∈ B(x0).

Moreover, B(·) is called a closed set-valued map if it is closed at every point x ∈ X.
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1.1 Set-Valued Maps - General Definitions and Properties 11

For B : X −→→ T , if, for each t ∈ T , B(t) is a closed (compact or convex) set in X, then

B(·) is called closed (compact or convex) valued. However, the notions: a closed valued

SV-map and a closed SV-map are different. In the former, closed qualifies the values of

the SV-map; while, in the latter, the SV-map itself.

Hence, a similar sequential characterization of an u.s.c. SV-map also exists if B(·) is

assumed to be compact valued. In fact, such a characterization is of interest when the

set-valued map is defined using a parametric system of functions, such as in the index set

of a (GSIP).

Proposition 1.1.2 (Thm. 2.2, Kisielewicz [37]). Let X and T be metric spaces.

B : X −→→ T is u.s.c. and compact valued iff for every x0 ∈ X and every sequence

{xn} ⊂ X, xn → x0 and every sequence {tn} ⊂ T , with tn ∈ B(xn), there is a convergent

subsequence {tnk} of {tn} such that tnk → t0 ∈ B(x0).

In accordance with the sequential characterization of upper semi-continuity given in Prop.

1.1.2, the following statement relates the closedness and the upper semi-continuity of a

set-valued map.

Proposition 1.1.3. Let X and T be metric spaces and B : X −→→ T be a set-valued map.

If B(·) is u.s.c. at x0 and B(x0) is a closed set in X, then B(·) is a closed SV-map at x0.

Proof. Follows from Prop. 2.22, Hu and Papageorgiou [32] and Lem. 1, Hogan [31].

Remark 1.1.1. Let X and T be metric spaces such that B : X −→→ T . Hence, B(·) is a

closed set-valued map iff Graph(B) is a closed set in X × T . Consequently, Prop. 1.1.3

implies that, an upper semi-continuous closed valued SV-map has a closed graph.

Nevertheless, the converse of Prop. 1.1.3 may not hold; i.e. the closedness of B(·) at

x0 may not imply its upper semi-continuity at x0, even if B(x0) is a compact set (cf.

for instance Rem. 2.1 of Kisielewicz [37] for an example). Hence, more is required

to conclude that a closed set-valued map is also upper semi-continuous. For this the

following definition is needed.
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1.1 Set-Valued Maps - General Definitions and Properties 12

Definition 1.1.8 (local uniform boundedness, see also Hogan[31]).

Let B : X −→→ T . Then B(·) is called locally uniformly bounded at x0 ∈ X iff there is a

neighborhood U of x0 such that the set

⋃

x∈U

B(x)

is a bounded set in T . And B(·) is called locally uniformly bounded iff it is locally

uniformly bounded at every x ∈ X.

Note that, B(·) is locally uniformly bounded implies that, for each x ∈ X, there is a

neighborhood U of x such that

cl

(
⋃

x∈U

B(x)

)

is bounded - thus, compact in T ; when T is a compact metric space. That is, B(·) is

locally uniformly compact. Consequently, the following statement is nothing but that of

Hogan [31].

Proposition 1.1.4 (see also Thm. 3 in Hogan [31]). Let X be a metric space and

T be a compact metric space. Then B : X −→→ T is u.s.c. and compact valued iff B(·) is

closed and locally uniformly bounded.

Corollary 1.1.5. Let X and T be metric spaces. If B : X −→→ T is an u.s.c. SV-map

with compact values, then the set

{x ∈ X | B(x) = ∅}

is open in Rm; equivalently, the set

{x ∈ X | B(x) 6= ∅}

is a closed set.

Proof. Follows from Prop. 1.1.4 and Cor. 3.2 of Hogan [31].
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1.2 Set-Valued Maps with given Structures 13

Note that, if B : X−→→ T is a closed valued SV-map and T is compact, then the upper

semi-continuity of B(·) follows automatically from Prop. 1.1.4. This will be so, as we are

going to consider, later on, a (GSIP) with the index set-valued map B : X −→→ T defined

w.r.t. T being a compact set.

1.2 Set-Valued Maps with given Structures

Set-valued maps which are defined using a parametric family of functions play a vital

role in parametric optimization, in sensitivity and perturbation analysis of optimization

problems. The main issue, behind set-valued maps with such given structures, is to char-

acterize them through the topological properties of their defining functions. As such, one

obtains u.s.c property under weaker assumptions, while the l.s.c. requires stronger ones.

Of interest are set-valued maps B : X −→→ T and M : X −→→ Y with structures:

B(x) := {t ∈ T | gj(x, t) = 0, j ∈ J ; hi(x, t) ≤ 0, i ∈ I};

and

M(x) := {y ∈ Y | fk(x, y) = 0, k ∈ K; G(x, y, t) ≤ 0, t ∈ B(x)} , x ∈ X,

under the following general assumptions

• I = {1, . . . , p}, J := {1, . . . , q} and K := {1, . . . , r} are finite index sets;

• X ⊂ Rn, T ⊂ Rm and Y ⊂ Rl;

• hi : Rn × Rm → R, i ∈ I; fk : Rn × Rl → R, k ∈ K; and G : Rn × Rl × Rm → R are

continuous functions.

The map B(·) appears as an index set of a GSIP; while, M(·) usually appears as a feasible

set of some parametric semi-infinite optimization problem (PSIP). Frequently, one finds

in the literature that B(x) ≡ B, i.e. B(·) is a constant SV-map. SV-maps with finite

number of constraints has been extensively studied by Bank et al. [7]; while the latter
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form is a subject of current research interest (cf. Henrion and Klatte [22, 39], Cánovas et

al. [11]).

Proposition 1.2.1 (Thm. 3.1.1 Bank et al. [7]). Let

B(x) = {t ∈ T | gj(x, t) = 0, j ∈ J ; hi(x, t) ≤ 0, i ∈ I}.

If the sets X and T are closed and the functions gj, j ∈ J ; hi, i ∈ I are continuous, then

B(·) is a closed set valued map.

Corollary 1.2.2. Let X and T be closed sets and B(x) = {t ∈ T | hi(x, t) ≤ 0, i ∈

I; gj(x, t) = 0, j ∈ J} and the functions hi, i ∈ I; gj, j ∈ J are continuous. Then B(·) is

locally uniformly bounded iff B(·) is u.s.c. and compact valued.

Proof. Follows directly from Prop. 1.1.4 and Prop.1.2.1.

Remark 1.2.1.

(i) Obviously, by the continuity of the gj, j ∈ J ; hi, i ∈ I, B(·) is a closed valued

SV-map. Moreover, Prop. 1.2.1 indicates that, if T is a compact set, then

B(x) = {t ∈ T | gj(x, t) = 0, j ∈ J ; hi(x, t) ≤ 0, i ∈ I}

will be locally uniformly bounded. Hence, applying Prop. 1.1.4, B(·) is an u.s.c.

map with compact values.

(ii) Recently, Cánovas et.al. [11] have established the upper semi-continuity of a set-

valued map of the form

M(x) := {y ∈ Y | G(x, y, t) ≤ 0, t ∈ B}; i.e. B(x) ≡ B ⊂ T,

where the G : X × Y × T → R is a continuous function and, for each fixed x ∈ X

and t ∈ T , G(x, ·, t) : Y → R is a convex function. The assumptions on G yield that

M(·) is a closed-convex-valued SV-map. This map has been used in the stability

analysis of linear and convex semi-infinite optimization problems. Let

M ε(x0) := cl


conv




⋃

x∈Bε(x0)

M(x)
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represent the ε-reinforced map associated with M(·) (where Bε(x
0) is an ε−neighborhood

of x0). Then Prop. 2 in [11] states that M(·) will be u.s.c. at x0 ∈ X if M is a closed

SV-map at x0 and, for some ε > 0, M ε(x0)\M(x0) is a bounded set. Moreover, if Y

is a compact set, then the boundedness assumption on M ε(x0) \ M(x0) is trivially

satisfied. And the result follows by part (i) of this remark.

That B(·) has compact values could also be algebraically enforced, for instance, by mod-

ifying B(·) as

B(x) = {t ∈ Rm | gj(x, t) = 0, j ∈ J ; hi(x, t) ≤ 0, i ∈ I; l ≤ t ≤ u}

for l, u ∈ Rm. Such a map B(·) has been used for an index SV-map of a (GSIP) by Stein

and Still in [77].

Thus, the above discussion reveals that the upper semi-continuity of a SV-map with a

given structure could be seen to hold true under somehow weaker assumptions. However,

to guarantee the lower semi-continuity one may need certain regularity conditions, like

Metric regularity and constraint qualifications, etc.

In case when B(·) is defined by a linear inequality system, lower semi-continuity could

be easily obtained. Such a map has also been used by Stein and Still [77] w.r.t. a linear

(GSIP).

Corollary 1.2.3 (Prop. 3.2, Thoai [81]). Let B : X −→→ T , h(x, t) := Rx + Qt + b,

where the matrices R ∈ Rr×n, Q ∈ Rr×m, the vector b ∈ Rr and

B(x) := {t ∈ T | h(x, t) ≤ 0}.

If T is a closed set, then B(·) is a l.s.c. SV-map on Dom(B).

March 22, 2005



1.2 Set-Valued Maps with given Structures 16

1.2.1 Regularity Conditions and their Consequences

In order to make sure that the lower semi-continuity of the maps B(·) and M(·) holds

true, we may require stronger conditions known as regularity conditions. For this, the

minimal assumption is that the functions hi, i ∈ I; gj, j ∈ J and G to be continuous, in

their respective domains. We suppose here that the sets X,Y and T to be normed spaces,

each with a metric defined through its corresponding norm.

Definition 1.2.1 (r-Regularity - the finite case). Let t0 ∈ Rm and x0 ∈ Rn. Then

the defining system of B(·)

gj(x, t) = 0, j ∈ J ; hi(x, t) ≤ 0, i ∈ I

is called r-regular at (x0, t0) iff there are open neighborhoods U(x0) of x0 and V (t0) of t0,

and a non-decreasing continuous function r : R+ → R+ (here R+ := [0, +∞)) such that

dist(t, B(x)) ≤ r

(
max

{
max
1≤j≤q

|gj(x, t)|, max
1≤i≤p

[hi(x, t)]+
})

,∀x ∈ U(x0),∀t ∈ V (t0),

where h+
i (x, t) = max

{
0, hi(x, t)

}
, for each i ∈ I.

Similarly, we can give an r−regularity condition for the parametric semi-infinite system

of functions defining M(·).

Definition 1.2.2 (r−Regularity - the semi-infinite case). Suppose that B(x) 6= ∅,

for each x ∈ X and B(·) is compact valued. Let x0 ∈ X and let y0 ∈ M(x0). We say that

the system

fk(x, y) = 0, k ∈ K; G(x, y, t) ≤ 0, t ∈ B(x) (1.2.1)

satisfies the r−regularity condition at (x0, y0) if there exist open neighborhoods U(x0) of

x0 and W (y0) of y0, a non-decreasing continuous function r : R+ → R+ such that

dist(y,M(x)) ≤ r

(
max

{
max
k∈K

|fk(x, y)|, max
t∈B(x)

[
G(x, y, t)

]+
})

,∀x ∈ U(x0),∀y ∈ W (y0).
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If we take the function r(t) = Ct, C > 0, then Def. 1.2.1 is the same as the regularity

condition given in Def. 1.2 by Auslender [6]. At same time, Def. 1.2.2 is similar to the

metric regularity (MR) condition given by Klatte and Henrion [22, 39].

Remark 1.2.2. Observe that

1. from Def. 1.2.2, r−regularity implies that the set M(x) 6= ∅ for x sufficiently close

to x0, since, by definition, we have that dist(y, ∅) =: +∞;

2. if, for all x ∈ X, B(x) ≡ B is a constant and B is a finite set, then the metric

regularity given in Def. 1.2.2 is equivalent to the one in Def. 1.2.1. Therefore, the

finite case could be taken as a special instance.

It is worth mentioning that the definition of metric regularity given by Klatte and Henrion

[22, 39] are w.r.t. some right hand-side perturbations of the parametric systems 1.2.1.

However, it is believed here that the perturbations are not required for the discussion at

hand.

Theorem 1.2.4. Let x0 ∈ X and B(·) is compact valued and u.s.c. If for every y0 ∈

M(x0) the system (1.2.1) is r−regular at (x0, y0), then for every sequence {xn}n∈N ⊂ X,

such that xn → x0 there is a sequence {yn}n∈N ⊂ Y where yn ∈ M(xn) such that yn →

y0, i.e. M(·) is l.s.c. at x0.

Proof. Let U(x0) and W (y0) are neighborhoods which exist according to the r-regularity

of (1.2.1). Since, xk → x0, there is a sufficiently large positive integer k0 such that

xn ∈ U(x0),∀n ≥ n0. Hence,

dist(y,M(xn)) ≤ r

(
max

{
max
k∈K

|fk(x
n, y)|, max

t∈B(xn)
[G(xn, y, t)]+

})
,∀y ∈ W (y0), n ≥ n0

This implies that

dist(y0,M(xn)) ≤ r

(
max

{
max
k∈K

|fk(x
n, y0)|, max

t∈B(xn)

[
G(xn, y0, t)

]+
})

,∀n ≥ n0
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That means that, for each n ≥ n0, there is an yn ∈ M(xn) such that

∥∥y0 − yn
∥∥ ≤ r

(
max

{
max
k∈K

|fk(x
0, yn)|, max

t∈B(xn)

[
G(x0, yn, t)

]+
})

+ d(xn, x0),∀n ≥ n0.

If we define

ψ(x0, y) := max
t∈B(x0)

[
G(x0, y, t)

]+

then, using the assumption made on the function G and the SV-map B(·), we have ψ(x0, ·)

is u.s.c. (cf. Thm. 5, p.52, Aubin and Cellina [4]). Hence, we have that

∥∥y0 − yn
∥∥ ≤ r

(
max

{
max
k∈K

|fk(x
0, yn)|, ψ(x0, yn)

})
+ d(xn, x0),∀n ≥ n0.

Then taking the limit, and using the continuity of the functions fk, k ∈ K, the up-

per semi-continuity of ψ(x0, ·), and the properties of the function r, we obtain that

limn→∞ ‖y0 − yn‖ = 0. Therefore, according to Def. 1.1.6, M(·) is l.s.c. at x0.

Corollary 1.2.5. Let x0 ∈ X. If for t0 ∈ B(x0) the system

gj(x, t) = 0, j ∈ J ; hi(x, t) ≤ 0, i ∈ I

is r−regular at (x0, t0), then the set-valued map B(·) is lower semi-continuous at x0.

Remark 1.2.3. 1. Observe that, if B(x0) = ∅ and the equality constraints are deleted

from the definition of M(·), then M(x0) = Y . Hence, the SV-map M(·) may fail to

be lower semi-continuous at such a point x0. This could be verified, if one considers

semi-continuity properties in the ε−sense (cf. pp. 45 & 46 of Aubin and Cellina

[4]).

2. We can, in fact, weaken the r-regularity given in Def. 1.2.2 as: the system (1.2.1)

is r-regular at (x0, y0) iff there is a neighborhood U0(x
0) such that

dist(y0,M(x)) ≤ r

(
max

{
max
k∈K

|fk(x, y0)|, max
t∈B(x)

[
G(x, y0, t)

]+
})

,∀x ∈ U0(x
0).

Hence, if y0 ∈ M(x0) and the system (1.2.1) is r−regular at (x0, y0), then M(·) is

l.s.c. at x0. To see this, let

g(x, y0) := max
t∈B(x)

[
G(x, y0, t)

]+

and f(x) := max
k∈K

fk(x, y0).
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Then g(·, y0) and f are u.s.c at x0. Thus, given ε > 0, there is a neighborhood

U1(x
0) such that, for each x ∈ U1(x

0)

g(x, y0) ≤ g(x0, y0) + ε ⇒ g(x, y0) ≤ ε.

Similarly, there exists a neighborhood U2(x
0) such that

f(x) ≤ ε,∀x ∈ U2(x
0).

Consequently, by r−regularity, for each x ∈ U3(x
0) := U0(x

0) ∩ U1(x
0) ∩ U2(x

0) we

have

dist(y0,M(x)) ≤ r(max{ε, ε}) = r(ε).

Let W (y0) be any neighborhood of y0. Then there is an ε > 0 such that the open

ball B2r(ε)(y
0) ⊂ W (y0) and a corresponding Uε(x

0) such that

M(x) ∩ B2r(ε)(y
0) 6= ∅,∀x ∈ U3(x

0) ∩ Uε(x
0).

From which follows that

M(x) ∩ V (y0) 6= ∅,∀x ∈ U3(x
0) ∩ Uε(x

0).

Which implies that M(·) is l.s.c. at x0.

1.2.2 Constraint Qualifications and their Consequences

In many cases regularity conditions are difficult to verify2. Thus, if the defining systems

of B(·) or M(·) satisfy conditions known as constraint qualifications, then lower semi-

continuity properties could be guaranteed. In general, constraint qualifications require

certain differentiability (or convexity) properties of the functions defining B(·) and M(·).

2For this reason, much effort has been invested by various authors to characterize regularity conditions
through relatively simpler equivalent conditions; for instance, using constraint qualifications. Such work
have been undertaken, for instance, by Auslender [6], Klatte and Henrion [22, 39], etc.
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For the sake of simplicity, we consider in this section the set-valued maps B(·) and M(·)

without equality constrains. That is

B(x) = {t ∈ T | hi(x, t) ≤ 0, i ∈ I}

and

M(x) = {y ∈ Y | G(x, y, t) ≤ 0,∀t ∈ B(x)}.

Definition 1.2.3 (Slater constraint qualification (SCQ)). Let T ⊂ Rm be convex

and bounded and, for each i ∈ I, hi(x, ·) : Rm → R is convex. We say that the system

hi(x, t) ≤ 0, i ∈ I.

satisfies the Slater constraint qualification (SCQ) at x0 ∈ Rm if there exists t∗ ∈ T such

that

hi(x
0, t∗) < 0,∀i ∈ I.

Proposition 1.2.6 (Thm. 12, Hogan [31]). Let T be a convex subset of some normed

space and let x0 ∈ X. If, for each i ∈ I, hi(·, ·) is continuous on {x0}×B(x0), hi(x
0, ·), i ∈

I, is convex and the (SCQ) is satisfied at x0, then the map

B(x) = {t ∈ T | hi(x, t) ≤ 0, i ∈ I}.

is l.s.c. at x0.

Proof. See Hogan [31].(cf. also Thm. 3.1.5 of Bank et al. [7] for a similar discussion).

In the presence of differentiability and convexity properties of the defining functions of

B(·), the SCQ can be shown to follow from the the Mangasarian-Fromovitz Constraint

Qualification (MFCQ). Thus, we have the following well known constraint qualifications.

Definition 1.2.4 (Mangasarian-Fromovitz Constraint Qualification (MFCQ)).

Let B(x) = {t ∈ T | hi(x, t) ≤ 0, i ∈ I}; the functions hi, i ∈ I be continuous in Rn × Rm

and, for each x ∈ Rn, hi(x, ·) : Rm → R is continuously differentiable; and for x0 ∈ Rn,
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let t0 ∈ B(x0). The Mangasarian-Fromovitz constraint qualification (MFCQ) is said to

hold at (x0, t0) iff there exists a vector ξ ∈ Rm such that

ξ∇thi(x
0, t0) < 0,∀i ∈ I(x0, t0);

where I(x0, t0) = {i ∈ I | hi(x
0, t0) = 0}. The vector ξ with the above property is known

as an (MFCQ) vector.

Auslender [6] indicated that the validity of (MFCQ) at (x0, t0), t0 ∈ B(x0), implies the

metric regularity (Def. 1.2.1 with r(t) = Ct) of the defining system of B(·) at (x0, t0) (cf.

Thm. 1.1. in Auslender [6]). However, the lower semi-continuity of B(·) at x0 could also

be directly verified under the satisfaction of (MFCQ).

Definition 1.2.5 (Linear Independence Constraint Qualification (LICQ)). Let

B(x) = {t ∈ T | hi(x, t) ≤ 0, i ∈ I}; the functions hi, i ∈ I be continuous in Rn × Rm

and, for each x ∈ Rn, hi(x, ·) : Rm → R is continuously differentiable; and for x0 ∈ Rn,

let t0 ∈ B(x0). The Linear Independence constraint qualification (LICQ) is said to hold

at (x0, t0) iff the system
{
∇thi(x

0, t0) | i ∈ I(x0, t0)
}

is linearly independent.

Remark 1.2.4. The satisfaction of (LICQ) at t0 ∈ B(x0) implies that of (MFCQ). In fact,

for ε > 0, the system

ξ⊤∇thi(x
0, t0) = −ε, i ∈ I(x0, t0)

has a solution ξ ∈ Rm; implying that (MFCQ) is satisfied. However, the converse is not

always true; i.e. (LICQ) is stronger than (MFCQ).

Proposition 1.2.7. If t0 ∈ B(x0) and (MFCQ) holds at (x0, t0), then the map B(·) is

lower semi-continuous at x0.

Proof. Follows using standard arguments (see Sec. 3.6.4 for a more general discussion).

March 22, 2005



1.2 Set-Valued Maps with given Structures 22

For the system (1.2.1) (without equality constraints) we define the set of active constraints

as

E(x, y) := {t ∈ B(x) | G(x, y, t) = 0}.

Definition 1.2.6 (Extended Mangasarian-Fromowitz Constraint Qualification).

Let (x0, y0) ∈ Rn × Rq, the function G : Rn × Rq × T → R (T ⊂ Rm) is continuous, and

G(x, ·, t) differentiable w.r.t. y and ∇yG(·, ·, t) is continuous for each t ∈ B(x). Then the

extended Mangasarian-Fromowitz constraint qualification (EMFCQ) is said to be satisfied

at (x0, y0) if there exists a vector ξ ∈ Rq such that

∇yG(x0, y0, t)⊤ξ < 0,∀t ∈ E(x0, y0).

Proposition 1.2.8. Let B(·) be u.s.c. and compact valued and y0 ∈ M(x0). Then if

(EMFCQ) is satisfied at (x0, y0), then M(·) is l.s.c. at x0.

Actually under the assumptions of Prop. 1.2.8, the system (1.2.1) is metrically regular

(cf. Klatte and Henrion [39]).

All in all, the (MFCQ) and (LICQ) play a pivotal role in the characterization of a (GSIP).

In several literature of (GSIP), (MFCQ) is usually assumed to hold. Optimality condi-

tions, local reducibility conditions and numerical methods for (GSIP) are usually based

on (MFCQ). Therefore, constraint qualifications do not only guarantee the lower semi-

continuity of the index map, they are also the tickets for a ”well-behaving” (GSIP).

In Chap. 3, the lower robustness (upper robustness) of a set-valued map has been intro-

duced, which is weaker than l.s.c. (u.s.c.) and has been shown to follow from a weaker

regularity condition. Further particular definitions and properties of set-valued maps are

also given later on, as is relevant.
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Chapter 2

A Review of Generalized
Semi-infinite Optimization

2.1 Introduction

While problems of type (GSIP) might have appeared, in some form or other, elsewhere

in the mathematical literature, the first well established (GSIP) model appeared in 1987

(Krabs [40]); particularly, in 1988 Graettinger & Krogh [20] coined the term generalized

semi-infinite programming (GSIP). Beginning the 1990’s the number of practical prob-

lems of type (GSIP) started to pick up. For instance, in 1991 Hettich & Still formulated a

robot maneuverability problem into a (GSIP); in 1994 Hoffmann & Reinhardt [29] came

up with a (GSIP) model out of an approximation problem; in 1997 Kaplan & Tichatschke

[35] published a (GSIP) model from a terminal variational problem, etc.

The first publication that directly deals with theory of (GSIP) was that of Hettich & Still

in 1995. In [23] Hettich & Still established first and second order optimality condition

based on the local reducibility of the lower level problem of (GSIP). Actually, a study

on the local reducibility of the lower level problem of (GSIP) was, by then, already pub-

lished by Klatte [38] in 1991. In the same year, 1995, Rückmann, Jonge & Stein [34]

recognized the special structure of (GSIP) in a preprint (cf. also Levitin [42]). There they

gave a summery of practical (GSIP) models, established theoretical examples indicating
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the difficult structure of (GSIP) and they also set up a first order optimality condition

which culminated into a publication in 1998. After 1998 we find a quick succession of

publications dealing on both the theoretical investigation and computational algorithms

of (GSIP)s.

Given the structural difficulty of (GSIP), it is only recently (Stein [74, 75], Still & Stein

[77, 78]) that we have witnessed a viable and practical method that could successfully

tackle certain class of these problems. The method of Still & Stein transforms a given

(GSIP) into an equivalent Bi-level optimization(BL for short) problem, so that well es-

tablished algorithms of (BL) could be used for the computation. However, for such a

transformation to work properly, the index map B(·) of (GSIP) needs to be lower semi-

continuous and certain convexity properties are also expected of the problem data. There

are also computational algorithms being proposed by other authors, but we are still wait-

ing for the news of their computational experiments.

The literature on (GSIP) could be roughly put into four categories:

• special (GSIP) models arising from practical problems [2, 20, 29, 35, 36, 40, 83];

• topological and stability issues [43, 62, 70, 71, 72, 85];

• optimality conditions [21, 23, 34, 38, 59, 60, 62, 73, 87, 84];

• reducibility of (GSIP) into problems of somehow manageable types; for instance, into:

finite, semi-infinite, bi-level optimization problems, [38, 43, 42, 71, 74, 77, 78, 80, 84];

• numerical solution methods [47, 49, 74, 75, 77, 78, 79, 80]
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2.2 Structure of the Feasible Set

We consider the problem

(GSIP ) f(x) → inf

s.t.

G(x, t) ≥ 0, ∀t ∈ B(x)

x ∈ X,

where we make

Assumption (A1) The sets X ⊂ Rn, T ⊂ Rm are compact nonempty, the function

f : X → R and G : X × T → R are continuous and upper semi-continuous(u.s.c.)

on X and X ×T ; respectively. The set-valued map (SV-map) B : X −→→ T is at least

compact valued, but may have empty values for some x ∈ X and may also be given

by

B(x) = {t ∈ T | hi(x, t) ≤ 0, i ∈ I},

in which the functions hi : X × T → R are at least upper semi-continuous and

I = {1, . . . , p}.

Hence, the the feasible(admissible) set of (GSIP) is given by

M := {x ∈ X | G(x, t) ≥ 0, t ∈ B(x)}.

The parametric optimization problem

(GO(x)) G(x, t) → inf

hi(x, t) ≤ 0, i ∈ I, t ∈ T.

is known as the lower level problem associated with the (GSIP).

Thus, we could also write the feasible set of (GSIP) as

M = {x ∈ X | inf
t∈B(x)

G(x, t) ≥ 0} = {x ∈ X | v(x) ≥ 0}

March 22, 2005



2.2 Structure of the Feasible Set 26

where

v(x) :=

{
inft∈B(x) G(x, t) if B(x) 6= ∅
+∞ else.

is the optimal value function of the (GO(x)).

The following example shows that (GSIP) may not posses a solution

Example 2.2.1.

f(x) := (x1 − 2)2 + (x2 + 3)2 → min

s.t.

x1 + x2 − t ≥ 0, ∀t ∈ B(x)

x ∈ X = [−5, 5]2,

where

B(x) := {t ∈ T | t + 2 ≤ x1,−2t − 3 ≤ x2}, T = [−10, 10].

Obviously, the minimum of f over R2 occurs at x0 = (2,−3). A trivial calculation reveals

that M = {x ∈ X | 2x1 + x2 < 1} ∪ {x ∈ X | x2 + 2 ≥ 0, 2x1 + x2 ≥ 1}, x0 ∈ cl(M) \M

and infx∈M f(x) = f(x0) = 0.

However, if B(x) ≡ B (a constant SV-map), then the (GSIP) reduces to a (SIP) and we

have

M =
⋂

t∈B

{x ∈ X | G(x, t) ≥ 0}

which is a closed set, because of the u.s.c. assumption on G. Moreover, M will be convex

if, for each fixed t ∈ T , G(·, t) : X → R is a convex function and X is a convex set.

Therefore, in contrast to the feasible set of a (SIP), the feasible set M of a (GSIP) may

not be closed; not be convex (cf. Jongen et al. [33], Levitin [43]); even if all its defining

functions are affine) and it may also have disjunctive structures (cf. Rückmann & Stein

[61, 62]). Hence, various attempts have been made to characterize the global and local
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structure of the set M (see Stein et al. [34, 70, 71, 72] and Weber [87, 85, 86]).

Obviously, the nature of (GSIP) mainly depends on the properties of the lower level

problem (GO(x)). Thus, the theory of finite parametric optimization plays a major role

in the characterization of (GSIP).

2.2.1 Global Structure of the Feasible Set

Recall that using the marginal function v of (GO(x)) we had

M = {x ∈ X | v(x) ≥ 0};

which indicates that M is the upper level set of a marginal function. Characterization of

M as a level set of the marginal function v was carried out by Stein [70, 72].

Thus, if G is u.s.c. on X × T and B(·) is a l.s.c. SV-map, then v(·) will be u.s.c. on X

(cf. Thm. 4, p 51, Aubin & Cellina [4]) yielding that M is a closed set. However, if B(·)

is not a l.s.c. SV-map, the closedness of M may not be sure.

The above result have also been verified by Jongen et al. [34].

Proposition 2.2.2 (Prop. 2.1., [34]). If B(·) is lower semi-continuous, then M is

closed.

That is, the lower semi-continuity of B(·) is a sufficient condition for M to be closed.

Corollary 2.2.3. Let G be an u.s.c. function on X × T . If x0 belongs to the boundary

∂M of M but x0 /∈ M, then B(·) is not lower semi-continuous at x0.

Proof. Let {xk} ∈ int(M) such that xk → x0. Since x0 /∈ M, there is t ∈ B(x0)∗ such

that

G(x0, t) < 0

∗W.l.o.g. we assume that B(x0) 6= ∅. But, obviously, if B(x0) = ∅, then x0 ∈ M.

March 22, 2005



2.2 Structure of the Feasible Set 28

But xk ∈ M implies that G(xk, t) ≥ 0,∀t ∈ B(xk). Let {tk} be any sequence where

tk ∈ B(xk) for each k. If we assume that tk → t, then by the u.s.c. of G we have

that 0 ≤ lim supG(xk, tk) ≤ G(x0, t), which is a contradiction. Consequently, every such

sequence {tk} either diverges or converges to an element other than t. Which concludes

that B(·) will not be lower semi-continuous at x0.

We easily deduce that: among the points on the boundary of M, but which do not belong

to M, are those at which B(·) fails to be lower semi-continuous.

Remark 2.2.1. Let G be a continuous function. If B(·) is assumed to be u.s.c. and

compact valued (which is often a standard assumption in (GSIP)), then the continuity of

G, implies that v(·) is l.s.c. (see Thm. 5, p. 52, Aubin & Cellina [4]). Moreover, B(·) is

u.s.c. implies that {x ∈ Rn | B(x) = ∅} is, by Cor. 1.1.5, an open set and we have

{x ∈ Rn | B(x) = ∅} ⊂ {x ∈ Rn | v(x) > 0} ⊂ int(M). (2.2.1)

Note that, by definition, v(x) = inft∈B(x)=∅ G(x, t) = +∞. Hence, v(x) > 0 when

B(x) = ∅. In other words, [DomB]c ⊂ int(M).

However, in general, M would be closed if v is u.s.c., which is assured if B(·) is l.s.c.; i.e.

the relation {x ∈ Rn | v(x) = 0} ⊂ M always holds if B(·) is l.s.c.

2.2.2 Disjunctive Structures in GSIP

The following simple example further elaborates what bad global structure M could have.

Example 2.2.4 (Stein [72]). If

G(x, t) = t and B(x) = {x ∈ R2 | t ≥ x1, t ≤ x2}

then

M = {x ∈ R2 | t ≥ 0, ∀t ∈ B(x)}
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that is

M = {x ∈ R2 | x1 ≤ x2, x1 ≥ 0} ∪ {x ∈ R2 | x1 > x2}

which is not-closed and not-convex. A simple sketch of M also reveals that, it has a re-

interant corner point at x = (0, 0)†. Observe that, G is a linear function depending only

on the index parameter t.

Considering the given structure of B(·); i.e.

B(x) = {t ∈ Rm | hi(x, t) ≤ 0, i ∈ I},

there is a second global characterization of M, by setting:

G := {(x, t) ∈ Rn × Rm | G(x, t) ≥ 0}

B := {(x, t) ∈ Rn × Rm | hi(x, t) ≤ 0, i ∈ I}.

The following statement (by Rückmann & Stein [62]) shows the direct role played by the

index SV-map B(·) on the structure of the feasible set M of (GSIP).

Proposition 2.2.5 (Lemma 2.1, [62]). The feasible set M of (GSIP) is given by

M =
[
Prx(B ∩ Gc)

]c

,

where Prx : Rn ×Rm → Rn represents the canonical projection map w.r.t. the component

x of (x, t).

Prop. 2.2.5 shows that disjunctive structures are inherent in the feasible set of a (GSIP)

(see Jongen et al. [33]). This could be more obvious if all the defining functions of G and

hi, i ∈ I, are affine linear w.r.t. (x, t). In such a case, M will be the union of a finite

number of closed and open half spaces.

†A re-interant corner point x0 of M is a point where the set M fails to be locally approximatable
(around x0) using convex sets.
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To further elucidate the nature of the feasible set M, Rückmann and Stein [62] considered

very simple forms of affine linear function for the lower level problem (GO(x)).

G(x, t) := c⊤t + d(x)

and

hi(x, t) := a⊤
i t + bi(x), i ∈ I,

where in both cases the variations in x are attached only to the constant terms. Set

A =




...

a⊤
i

...


 , b(x) =




...

bi(x)
...




Then the Lagrange function of the lower level problem (GO(x)) will be

L(x, t, α, γ) := α
[
c⊤t + d(x)

]
+ γ⊤

[
At + b(x)

]

which is a continuous function. Consequently, Rückmann and Stein [62] stated and proved

that

Proposition 2.2.6 (Cor. 2.5, [62]).

M =
⋃

γ∈V1

{x ∈ Rn | L(x, t, 1, γ) ≥ 0} ∪
⋃

γ∈V0

{x ∈ Rn | L(x, t, 0, γ) > 0}

where V0 and V1 are some finite index sets.

Prop. 2.2.6 stress the prevalence of a disjunctive structure in M even in the simplest

possible cases. Detailed discussion on this and related issue are found in [62] and also in

Stein [72, 74, 75].

2.3 Convexity Structures in GSIP

The discussion in the last two sections reveal that, even a (GSIP) (with all) linear con-

straints may not have a convex feasible set. Consequently, it would be advantageous,
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both theoretically and numerically, to identify and characterize convexity structures that

may exist in a given (GSIP). Thus, if the objective function f is convex and the feasible

set M is a convex set, then we have a convex (GSIP). This is what is known as the

completely convex case. Such considerations have been made, for instance, by Still [79].

Moreover, the convexity of the lower level problem (GO(x)) also plays an important role

in the derivation of optimality conditions, development of numerical algorithms and for a

simple description of the feasible set (see for instance Prop. 2.2.6).

2.3.1 Convexity of the feasible set M

Observe that, if the marginal function v of (GO(x)) is a concave function then M will be

a convex set; hence, connected. We next have conditions on G and the set-valued map

B(·) that yield the convexity of the feasible set M.

Definition 2.3.1 (Fiacco & Kyparisis [16]). Let G : Rn × Rm → R be any function.

G is said to be bi-convex iff it is convex w.r.t. (x, t) ∈ Rn ×Rm; i.e., for (x1, t1), (x2, t2) ∈

Rn×Rm and λ ∈ [0, 1] we have G(λ(x1, t1)+(1−λ)(x2, t2)) ≤ λG(x1, t1)+(1−λ)G(x2, t2).

Definition 2.3.2 (concave set-valued map, Fiacco & Kyparisis [16]). Let B : Rn−→→ Rm

be a set-valued map. If for each x1, x2 ∈ Rn and λ ∈ [0, 1]

B(λx1 + (1 − λ)x2) ⊂ λB(x1) + (1 − λ)B(x2),

then B(·) is said to be concave.

A trivial example of a concave set-valued map is given by

Lemma 2.3.1. Let B : Rn −→→ Rm and

B(x) :=
m∏

i=1

[ai(x), bi(x)],

where for each i ∈ {1, . . . ,m}, ai, bi : Rn → R are continuous functions and ai(x) ≤

bi(x),∀x ∈ Rn. If, for each i ∈ {1, . . . ,m}, ai is a concave while bi is a convex function,

then B(·) is a concave map.

March 22, 2005



2.3 Convexity Structures in GSIP 32

Proposition 2.3.2 (Lem.2, Still [79]; Prop. 3.1, Fiacco & Kyparisis [16]).

Consider the function G and the marginal function v of (GSIP). If −G is bi-convex and

B is a concave SV-map, then v is concave function; hence, M is a convex set .

The proposition next gives another situation in which the set-valued map B(·) is concave.

Below, for a function s, ∂s(·) represents the sub-differential in the sense of Rockafellar

[55].

Proposition 2.3.3 (see Prop. 3.4, p112, [16]). Let h : Rn → R and s : Rm → R such

that both h and s are convex and for all t ∈ Rm, 0 /∈ ∂s(t), then the set-valued map

B(x) = {t ∈ Rm | h(x) + s(t) ≥ 0}

is concave.

Proof. The idea is taken from the proof of Prop. 3.4. of [16] in a modified sense. Choose

arbitrary x1, x2 ∈ Dom(B), λ ∈ [0, 1] and t ∈ B(λx1+(1−λ)x2). Set xλ := λx1+(1−λ)x2.

Hence, h(xλ) + s(t) ≥ 0. By assumption, there exists ξ ∈ ∂s(t) such that ξ 6= 0 and

s(t) − s(t) ≥ ξ⊤(t − t),∀t ∈ Rm.

Let b := s(t)− ξ⊤t, from which follows that s(t) ≥ ξ⊤t+ b,∀t ∈ Rm (where equality holds

when t = t). Observe also that h(xλ) + ξ⊤t + b ≥ 0. After using the convexity of h, we

set

△λ = λh(x1) + (1 − λ)h(x2) + ξ⊤t + b ≥ 0.

One can find a vector η ∈ Rm such that the following holds





ξ⊤η = 0

t = η + ξ⊤t

ξ⊤ξ
ξ

since ξ 6= 0. The latter is a sort of (scaled) decomposition of t along the orthogonal vectors

η and ξ.
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Let

t1 = η + (△λ − h(x1) − b)
ξ

ξ⊤ξ

t2 = η + (△λ − h(x2) − b)
ξ

ξ⊤ξ
.

It then easily follows that

h(x1) + s(t1) ≥ 0 and

h(x2) + s(t2) ≥ 0.

These mean, t1 ∈ B(x1) and t2 ∈ B(x2); furthermore,

t = λt1 + (1 − λ)t2.

Hence, t ∈ λB(x1) + (1 − λ)B(x2). Therefore, B(·) is a concave set-valued map.

The assumption 0 /∈ ∂s(t), t ∈ Rm is satisfied if, for instance, s is taken to be a non-trivial

affine linear function.

2.3.2 Convex Lower Level Problem in a GSIP

As stated earlier convexity structures in the lower level problem are advantageous. Thus,

for

(GO(x)) G(x, t) → inf

hi(x, t) ≤ 0, i ∈ I,

(GO(x)) is a convex lower level problem if, for each fixed x, the functions G(x, ·) : Rm → R

and hi(x, ·) : Rm → R, i ∈ I, are convex.

Note that, the convexity of the lower level problem may not imply the convexity of the

feasible set M.
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Example 2.3.4. Let the feasible set of a (GSIP) be defined as

M = {x ∈ R2 | x1 + x2 ≥ t,∀t ∈ B(x)}

with B(x) = {t ∈ R | t + 2 ≤ x1,−2t − 3 ≤ x2}. Then, the lower level problem will be

(GO(x)) x1 + x2 − t → inf

− x1 + t + 2 ≤ 0

− x2 − 2t − 3 ≤ 0.

Obviously, (GO(x)) is a convex problem, while the feasible set could be rewritten as

M = {x ∈ R2 | 2x1 + x2 < 1} ∪ {x ∈ R2 | x2 + 2 ≥ 0, 2x1 + x2 ≥ 1}

which is a non-convex set.

Remark 2.3.1. The following is one simple example which shows the existence of convexity

in both the lower and upper problems.

(GSIP ) f(x) → inf

s.t. x ∈ {x ∈ Rn | a⊤x + b⊤t ≥ 0,∀t ∈ B(x)};

where B(x) = {t ∈ Rm | h(x) + d⊤t ≥ 0} with a ∈ Rn; b, d ∈ Rm are vectors and

f, h : Rn → R being convex functions (Prop. 2.3.3 has been used here). Note that, for

total convexity to be attained G needs to be a linear function in both variables.

In any case, the convexity of (GO(x)) yields simpler descriptions for the directional deriva-

tive of the marginal function v(·) (cf. Hogan [30]). Such simpler descriptions of the

directional derivatives of v(·), in turn, are helpful to drive first and second optimality

conditions. Issues based on the convexity of the lower level problem have been taken, for

instance, by Rückmann & Stein [61], Stein [73, 74], Stein & Still [77, 78], etc.
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2.4 First Order Optimality Conditions

First order optimality conditions for (GSIP) are recently given by Hettich & Still [23],

Jongen et al. [34], Rückmann & Shapiro [60], Stein & Still [76], Stein[73] and Weber

[84, 87]. In [73], the derivation of first order conditions not only follows a similar line of

argument as for standard (SIP) (see Hettich & Zencke [25]), but it is also a generalization

of similar results obtained in [21, 23, 34, 60, 76, 84, 87]. Thus, we follow the approach of

Stein [73].

We suppose that the following standard assumption holds true for the rest of this chapter.

Assumption (USC): The index map B : Rn −→→ Rm of (GSIP) is locally uniformly

bounded (cf. also Cor. 1.2.2 in chapter 1).

Recall that, using the marginal value function v of (GO(x)) the feasible set M is written

as

M = {x ∈ Rn | v(x) ≥ 0}

where v is given by

v(x) = inf
t∈B(x)

G(x, t).

In general, the function v is not differentiable. In other words, under general assumptions,

(GSIP) is a non-smooth optimization problem. Thus, first and second order optimality

conditions require certain differentiability properties of the function v. Hence, the study

of differentiability properties of marginal functions of parametric optimization problems

plays a significant role here. The idea is to use approximates of the first and second order

directional derivatives of the function v (at a given x ∈ M) in terms of the derivatives

of the Lagrange function of (GO(x)); as required by first and second order optimality

conditions, respectively. Differentiability of marginal functions are discusses, for instance,

by Gauvin & Debeau [18], Bonans & Shapiro [9, 10], Hogan [30], Levitin [44, 45, 46] and

Shapiro [63, 64, 65], etc. However, we bypass the differentiability properties of v here,
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and concentrate on assumptions and results that lead to first and second order optimality

conditions.

First order optimality conditions for (GSIP) are also based on the following basic assump-

tion :

Assumption (FO): The functions f,G and hi, i ∈ I, are at least one time continuously

differentiable w.r.t. x and t, correspondingly.

Definition 2.4.1 (local minimizer). Let x0 ∈ M. Then x0 is a local minimum point

of (GSIP) iff there exists a neighborhood U of x0 such that

f(x) ≥ f(x0),∀x ∈ M∩ U.

Definition 2.4.2 (strict local minimizer). Let x0 ∈ M. Then x0 is called a strict

local minimizer of (GSIP) of order κ = 1 or κ = 2 iff there exist a constant γ > 0 and a

neighborhood U of x0 such that

f(x) ≥ f(x0) + γ‖x − x0‖κ,∀x ∈ M∩ U.

Remark 2.4.1.

(i) If a local optimizer x0 of (GSIP) lies in the interior intM, then (GSIP) could be

considered locally, around x0, as an unconstrained problem. Thus, the well known

first order optimality conditions, i.e. Df(x0) = 0, holds. In reality, optimality

conditions (both first and second order) are considered for local optimal points that

lie on the feasible boundary of M; i.e., when a local minimizer x0 ∈ ∂M∩M. Such

points are called feasible boundary points Stein[72]. Moreover, if x0 is a feasible

boundary point, then we have B(x0) 6= ∅. (Recall that, the feasible set M of

(GSIP) may not contain all of its boundary points, unless B(·) is l.s.c.).

(ii) If x0 ∈ intM is a local minimizer of (GSIP), then x0 cannot be a strict local

minimizer of order one (cf. Stein & Still [76]). Usually, strict local minimizers
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of order one occur w.r.t. Chebychev approximation problems; for instance, w.r.t.

reverse Chebychev approximation problems (cf. Hoffmann & Reinhardt [29]).

Accordingly, we proceed with the following definition as was given in [73].

Definition 2.4.3 (contingent cone). Let M be any set and x0 ∈ M. The contingent

cone of M at x0 is denoted by Γ∗(x0,M) and is defined as: d0 ∈ Γ∗(x0,M) iff there exists

a sequence {τ k}k∈N ⊂ R and {dk}k∈N ⊂ Rn such that

τ k ց 0, dk → d0 and x0 + τ kdk ∈ M,∀k ∈ N.

Definition 2.4.4 (inner tangent cone). Let M be any set and x0 ∈ M. The inner

tangent cone of M at x0 is denoted by Γ(x0,M) and is defined as: d0 ∈ Γ(x0,M) iff

there exists τ > 0 and a neighborhood U(d0) such that

x0 + τd ∈ M,∀τ ∈ (0, τ ], d ∈ U(d0).

For alternative definitions of inner and contingent cones (outer tangent cones) consult p.

33. of Hettich & Zencke [25].

The following statement has been a forerunner for first order conditions in [25] for (SIP)

problems. And this same statement has been effectively used in [73].

Lemma 2.4.1 (Lemma 2.4 in [73], also Thm. 2.1.3 & pp. 38 - 39 in Hettich &

Zencke [25] ).

(i) If x0 is a local minimizer of (GSIP), then

{d ∈ Rn | Df(x0)d < 0} ∩ Γ∗(x0,M) = ∅. (2.4.1)

(ii) x0 is a strict local minimizer of order one for (GSIP) iff

{d ∈ Rn | Df(x0)d ≤ 0} ∩ Γ∗(x0,M) = {0} (2.4.2)
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The basic work done in [73] is in (approximately) describing the cones Γ∗(x0,M) and

Γ(x0,M) in terms of the lower level problem of (GO(x)) of (GSIP). These have been

achieved through the Lagrange function of the lower level problem (GO(x0)) at the local

optimal point x0.

Given a point x0 ∈ M, define the indices of the active constraints of (GSIP) at x0 by

E(x0) := {t ∈ B(x0) | G(x0, t) = 0}.

Then E(x0) contains the set of global minimizer of the problem

(GO(x0)) G(x0, t) → inf

s.t. hi(x
0, t) ≤ 0, i ∈ I.

Thus, for a point t ∈ E(x0), let I(x0, t) denote the set of active constraints of the lower

level problem GO(x0) at t and be define as

I(x0, t) := {i ∈ I | hi(x
0, t) = 0}.

Furthermore, let the Lagrange function corresponding to x0 and t ∈ E(x0) be given as

L(x0, t, λ) := λ0G(x0, t) +
∑

i∈I(x0,t)

λihi(x
0, t), (2.4.3)

where λ ∈ R|I(x0,t)|+1.

Consequently, the well known Fritz-John Optimality condition, that t ∈ E(x0) is a local

minimizer of GO(x0), states that:

(i) there is a multiplier vector λ ∈ R × R|I(x0,t)|+1 with the property that

λ0 +
∑

i∈I(x0,t)

λi = 1; λ0 ≥ 0, λi ≥ 0, i ∈ I(x0, t), (2.4.4)

such that
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(ii)

DtL(x0, t, λ) = 0. (2.4.5)

Definition 2.4.5. The set of Fritz-John multipliers at t ∈ E(x0) for GO(x0) is given by

Λ(x0, t) := {λ ∈ R|I(x0,t)|+1 | λ satisfies (2.4.4) and (2.4.5) }.

Lemma 2.4.2 (Lem. 2.8., Stein[73]). Let x0 ∈ ∂M ∩ M. Then for each t ∈ E(x0)

the set Λ(x0, t) is non-empty and compact.

Remark 2.4.2. With the satisfaction of constraint qualifications w.r.t. the lower level

problem (GO(x0)), the set of multipliers Λ(x0, t) displays special structures. For instance,

under the validity of (MFCQ) at (x0, t), t ∈ E(x0), one can choose λ0 > 0 in the definition

of Λ(x0, t) (because of the relation (2.4.4)); there by obtaining a Kuhn-Tucker condition for

the optimality of t w.r.t. GO(x0). Furthermore, under (MFCQ), Gauvin[17] proves that

Λ(x0, t) is a convex Polytope (hence a compact set; in fact, regardless of the satisfaction

of 2.4.4). If one further assumes the stronger constraint qualification (LICQ), then the

set of multipliers Λ(x0, t) will be a singleton (cf. Kyparisis [41]).

Using the assumption (USC) on the SV-map B(·), we have, for each x0, E(x0) is a compact

set. This fact along with the compactness of Λ(x0, t) (Lem. 2.4.2) at t ∈ E(x0) yield that

Proposition 2.4.3 (Lem. 3.3, Jongen et al. [33]).

Let x0 ∈ ∂(M) ∩M. Then the set

V (x0) :=
{
DxL(x0, t, λ) | t ∈ E(x0), λ ∈ Λ(x0, t)

}
(2.4.6)

is compact in Rn.

Corollary 2.4.4. The set {−Df(x0)} ∪ V (x0) is compact.

To state algebraic equivalents to the local optimality conditions given in Lem. 2.4.1,

Stein [70] used the description of the directional derivatives of the marginal function v(·)

of (GO(x)) through Lagrange function as defined in (2.4.3).
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Theorem 2.4.5 (Thm. 2.15(i), Stein [70]). Let x0 ∈ Rn. The following inclusions

holds true

{
d ∈ Rn

∣∣∣∣ max
t∈E(x0)

max
λ∈Λ(x0,t)

DxL(x0, t, λ)d > 0

}
⊂ Γ(x0,M)

⊂ Γ∗(x0,M) ⊂
{

d ∈ Rn

∣∣∣∣ max
t∈E(x0)

min
λ∈Λ(x0,t)

DxL(x0, t, λ)d ≥ 0

}

Corollary 2.4.6 (Thm. 2.15(iii), Stein [70]). Let x0 ∈ Rn. If, for each t ∈ E(x0),

the set Λ(x0, t) = {λ(t)} is a singleton, then the following inclusion holds

{
d ∈ Rn

∣∣∣∣ max
t∈E(x0)

DxL(x0, t, λ(t))d > 0

}
⊂ Γ(x0,M)

⊂ Γ∗(x0,M) ⊂
{

d ∈ Rn

∣∣∣∣ max
t∈E(x0)

DxL(x0, t, λ(t))d ≥ 0

}

Trivially, the assumption of Cor. 2.4.6 is satisfied, if the (LICQ) holds true w.r.t. each

t ∈ E(x0) (see Rem. 2.4.2).

Definition 2.4.6 (EMFCQ, Jongen. et al. [33], see also Stein & Still [76]).

Let x0 ∈ M∩M. Then the Extended Mangasarian-Fromovitz Constraint Qualification

(EMFCQ) is said to hold at x0 if there is a vector ξ ∈ Rn such that

DxL(x0, t, λ)ξ > 0,∀t ∈ E(x0),∀λ ∈ Λ(x0, t).

Lemma 2.4.7 (see also Guerra & Rückmann[21]). Let x0 ∈ ∂M ∩ M. Then the

following hold true

(i)

{
d ∈ Rn

∣∣ DxL(x0, t, λ)d > 0, for all t ∈ E(x0), and all λ ∈ Λ(x0, t)
}
⊂ Γ(x0,M)

(ii) If the (EMFCQ) holds at x0, then

{
d ∈ Rn

∣∣ DxL(x0, t, λ)d ≥ 0, for all t ∈ E(x0), and all λ ∈ Λ(x0, t)
}
⊂ Γ∗(x0,M)

Proof. (i) follows directly from the left hand-side inclusion in Thm. 2.4.5.
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(ii) has been shown, by Guerra & Rückmann [21], to follow from a constraint qualification

weaker than (EMFCQ).

In the standard semi-infinite case, the inclusions (i) and (ii) of Lem. 2.4.7 are actually

equalities (cf. Hettich & Zencke [25]), but this is not always the case with (GSIP)‡. For

instance, Stein [73] takes (EMFCQ) along with an additional assumption to verify equality

in Lem. 2.4.7(ii). In any case, using (EMFCQ), one can easily reckon that

{
d ∈ Rn

∣∣ DxL(x0, t, λ)d ≥ 0, for all t ∈ E(x0), and all λ ∈ Λ(x0, t)
}
⊂ clΓ(x0,M).

Nevertheless, according to Lem. 2.4.1, the inclusions given in Lem. 2.4.7(i) & (ii) are

enough to set up algebraic primal optimality conditions.

Theorem 2.4.8 (Primal Optimality Conditions, Thm. 3.1 Stein & Still [76]).

Let x0 ∈ ∂M∩M.

(i) If x0 is a local minimizer of (GSIP), then the system

Df(x0)d < 0; DxL(x0, t, λ)d > 0, for all t ∈ E(x0), λ ∈ Λ(x0, t)

has no solution.

(ii) If (EMFCQ) is satisfied at x0 and x0 is a strict local minimizer of order κ = 1 of

(GSIP), then the system

Df(x0)d ≤ 0; DxL(x0, t, λ)d ≥ 0, for all t ∈ E(x0), λ ∈ Λ(x0, t)

posses only the trivial solution.

The following corollary is a reiteration of Thm. 2.4.8(i) (in light of Lem. 2.4.7(i))

Corollary 2.4.9. Let x0 ∈ ∂M∩M. If x0 is a local minimizer of of (GSIP), then

{
d ∈ Rn | Df(x0)d < 0

}
∩

{
d ∈ Rn | d⊤s > 0,∀s ∈ V (x0)

}
= ∅.

‡This in fact refers to the general case. For instance, in the special case of Cor. 2.4.6 we obtain
equality in Lem 2.4.7(ii) through (EMFCQ).
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In other words, there is no d ∈ Rn such that

d⊤s > 0,∀s ∈ {−Df(x0)} ∪ V (x0).

The following statements are important in connecting primal and dual optimality condi-

tions in the theory of (SIP).

Lemma 2.4.10 (Cheney [12], also Hettich & Zencke [25], Stein [70] ).

(i) Let S ⊂ Rn be a non-empty and compact set. Then the inequality system

d⊤s < 0,∀s ∈ S

is inconsistent for d ∈ Rn iff 0 ∈ conv(S).

(ii) Let S ⊂ Rn be arbitrary and s0 ∈ Rn. If s0 posses a representation

s0 =
n∑

i=1

γisi

with si ∈ S linearly independent and γi > 0, i = 1, . . . , n, then the inequality system

d⊤s0 ≤ 0, d⊤s ≥ 0,∀s ∈ S

has only the trivial solution d = 0. Moreover, if |S| ≤ n, then the converse of this

statement also holds true.

Thus, using Cor. 2.4.9 and Lem. 2.4.10 we obtain

Theorem 2.4.11 (Thm. 3.3(i), Stein [70], also [33, 60, 76]). If x0 ∈ ∂M ∩ M

is a local minimizer of (GSIP), then there exist t
i ∈ E(x0), λ

i ∈ Λ(x0, t
i
) and non-trivial

multipliers α ≥ 0, µi ≥ 0, i = 1, . . . , n such that

αDf(x0) −
n∑

i=1

µiDxL(x0, t
i
, λ

i
) = 0.

Proof. Using the compactness of {−Df(x0)} ∪ V (x0), by Cor. 2.4.4, the claim follows

from Cor. 2.4.9 and Lem. 2.4.10 by applying Carathoédory’s theorem.
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Corollary 2.4.12 (Thm. 3.3(i), Stein [70], also [33, 60, 76]). If x0 ∈ ∂M∩M is

a local minimizer of (GSIP) and the set Λ(x0, t) = {λ(t)} for each t ∈ E(x0), then there

exist t
i ∈ E(x0) and non-trivial multipliers α ≥ 0, µi ≥ 0, i = 1, . . . , n such that

αDf(x0) −
n∑

i=1

µiDxL(x0, t
i
, λ(t

i
)) = 0.

Kuhn-Tucker type optimality condition for (GSIP) are also obtained under the satisfaction

of the (EMFCQ) at the local optimal point x0.

Theorem 2.4.13 (Kuhn-Tucker Optimality Conditions). If x0 ∈ ∂M∩M is local

minimizer of (GSIP) and the (EMFCQ) holds at x0, then the multiplier α in Thm. 2.4.11

and Cor. 2.4.12 can be chosen to be equal to 1; i.e. α = 1.

Remark 2.4.3. In case when the index set map B(·) does not depend on x; i.e. B(x) ≡ B,

the (GSIP) reduces to a (SIP). That is

B(x) ≡ B = {t ∈ Rn | hi(t) ≤ 0, i ∈ I}.

Then, for t ∈ E(x), the Lagrange function

L(x, t, λ) = λ0G(x, t) +
∑

i∈I0(x,t)

λihi(x, t)

reduces to

L(x, t, λ) = λ0G(x, t) +
∑

i∈I0(t)

λihi(t).

Consequently,

DxL(x, t, λ) = λ0DxG(x, t).

In other words, the optimality conditions in Thms. 2.4.11 and 2.4.13 also contain first

order optimality conditions for (SIP).

Considering strict local minimizers, one finds the following necessary and sufficient con-

dition.

March 22, 2005



2.5 Second Order Optimality Conditions 44

Theorem 2.4.14 (necessary and sufficient condition, Thm. 3.4. Stein [73],

Thm. 3.3 [76]). Let x0 ∈ ∂M∩M, (EMFCQ) holds at x0 and |E(x0)| = q0 ≤ n. Then

for each t
l ∈ E(x0), there exists λ

l ∈ Λ(x0, t
l
) and multipliers µl > 0, l = 1, . . . , q0, such

that the vectors DxL(x0, t
l
, λ

l
), l = 1, . . . , q0, are linearly independent and

Df(x0) −
q0∑

l=1

µlDxL(x0, t
l
, λ

l
) = 0

iff x0 is a strict local minimizer of (GSIP) of order κ = 1.

Proof. Uses Lem. 2.4.10(ii) (cf. Stein [70]).

2.5 Second Order Optimality Conditions

Second order optimality conditions for (GSIP) were first given by Hettich & Still [23].

Recently, Rückmann & Shapiro [59] also came up with a generalization of those opti-

mality conditions of Hettich & Still [23]. Basically, there are two major approaches in

setting up second order conditions of optimality. One is based on reduction assumption,

meaning that, when (GSIP) could be reduced to an equivalent finite problem in some

neighborhood of a given local minimizer (cf. [23]); and the second, with out requiring

local reducibility(cf. [23] & [59]).

2.5.1 Second Order Optimality with Local Reducibility

The reducibility of (GSIP) into a finite programming problem is of paramount importance

from both numerical and theoretical point of view. In particular, knowledge of the exis-

tence of a finite non-linear optimization problem (NLP) which is equivalent to (GSIP),

in some neighborhood of a given point x0 ∈ M, allows one to use suitable algorithms

of (NLP) to solve (GSIP). In [23], such local reducibility, in a neighborhood of a local

minimizer, has also been used to prove conditions of optimality.
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Let x0 ∈ M. If x0 ∈ intM (note that this also includes the case E(x0) = ∅), then

(GSIP) will be reduced locally (in some neighborhood of x0) to an optimization problem

without constraints. In this case, for x0 to be a local minimizer the necessary second

order condition takes the well known form: Df(x0) = 0 and D2f(x0) is positive semi-

definite. Thus, for local reducibility of (GSIP), usually it is assumed that E(x0) 6= ∅ and

x0 ∈ ∂M∩M; i.e.local reducibility of (GSIP) to a finite problem in a neighborhood of a

feasible boundary point. However, for x0 ∈ ∂M∩M, B(·) may or may not be l.s.c. at x0.

Hence, Hettich & Still [23] and Klatte [38] consider local reducibility with the satisfaction

of (LICQ) at each point t ∈ E(x0) w.r.t. GO(x0). Which implies that B(·) is lower semi-

continuous at x0. In this case, the ideas of reducibility are mainly generalizations of the

corresponding issues for standard (SIP) (cf. Hettich & Zencke [25]). Conditions for local

reducibility of (GSIP) without lower semi-continuity assumption on B(·) are considered

by Stein [71].

Given x0 ∈ ∂M ∩ M and E(x0) 6= ∅, there are two fundamental ideas behind local

reducibility. These ideas constitute what is known as the Reduction Ansatz (or the Re-

duction Assumption, cf. [71]) in the literature of (SIP) and (GSIP).

RA1. For each t
l ∈ E(x0), there is a neighborhood V (t

l
) such that t

l
is a unique local

minimizer of GO(x0) on B(x0)∩V (t
l
). Consequently, the family {V (t

l
) | tl ∈ E(x0)}

will generate an open covering of E(x0). By the compactness of E(x0) (due to the

continuity of G and compactness of B(x0)), there is a finite covering {V (t
l
) | l =

1, . . . , q0} of E(x0); i.e. E(x0) ⊂ ⋃q0

l=1 V (t
l
). Since, each t

l
is a unique local minimizer

of GO(x0), it follows that E(x0) = {t1, . . . , tq0}. Which is a finite set.

RA2. Let E(x0) = {t1, . . . , tq0} be a finite set. There exist open neighborhoods U(x0)

of x0 and Ṽ (t
l
) of t

l
, l = 1, . . . , q0; and (at least) continuous functions tl(·) :

U(x0) → Ṽ (t
l
) with tl(x0) = t

l
such that for each l ∈ {1, . . . , q0} and for all

x ∈ U(x0), tl(x) is the unique local minimizer of (GO(x)) in B(x) ∩ Ṽ (t
l
). So
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that the following hold true:

• The functions vl(x) = G(x, tl(x)), l = 1, . . . , q0, are well defined and continuous

on U(x0).

• The following equality holds

M∩ U(x0) = {x ∈ U(x0) | vl(x) ≥ 0, l = 1, . . . , q0}.

Meaning that, the feasible set M of (GSIP) is locally representable with finite

number of constraints.

Definition 2.5.1 (reducibility). Let x0 ∈ ∂M ∩ M. If both (RA1) and (RA2) hold

true in some neighborhood U(x0) of x0, then (GSIP) is said to be locally reducible at x0.

Consequently, if one could guarantee (RA1) and (RA2), then (GSIP) will be locally

reducible. Thus, the following general assumption is required.

Assumption (SO): The functions f,G and hi, i ∈ I are twice continuously differen-

tiable.

Recall that the Lagrange function (2.4.3)

L(x, t, λ) = λ0G(x, t) +
∑

i∈I(x,t)

λihi(x, t)

with λ ∈ R|I(x,t)|+1. For x0 ∈ ∂M∩M, each t ∈ E(x0) is (global) minimizer of (GO(x0))

with I(x0, t) = {i ∈ I | hi(x
0, t) = 0}. If the (LICQ) holds at t ∈ E(x0), then there is a

unique multiplier λ(t) ∈ R
|I(x0,t)|
+ such that the KT-condition

DtL(x0, t, λ) = DtG(x0, t) +
∑

i∈I(x0,t)

λi(t)Dthi(x
0, t) = 0

holds for (GO(x0)).

Theorem 2.5.1 (Thm. 2.2 Hettich & Still [23], Prop. 2.2. Klatte [38]). Let

x0 ∈ ∂M∩M. Suppose the functions G and hi, i ∈ I, are twice continuously differentiable.

Furthermore, the following assumptions hold true
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(LICQ): The (LICQ) holds at each t ∈ E(x0). (Hence, there is a unique multiplier λ(t)

corresponding to each t ∈ E(x0)).

(SSOSC): For each t ∈ E(x0), the strong second order sufficient optimality condition

(SSOSC)

ξ⊤DttL(x0, t, λ(t))ξ > 0,∀ξ ∈ T (x0, t) \ {0} (2.5.1)

holds at (t, λ(t)) w.r.t. GO(x0); where

T (x0, t) := {ξ ∈ Rm | ξ⊤Dthi(x
0, t) = 0, i ∈ I+(x0, t)}, (2.5.2)

known as the tangent space of B(x0) at t w.r.t. (GO(x0)), and I+(x0, t) := {i ∈

I(x0, t) | λi(t) > 0}.

Then E(x0) = {t1, . . . , tq0}; i.e. E(x0) is a finite set (with corresponding unique set of

multiplier vectors {λl | l = 1, . . . , q0}) and there exists a neighborhood U(x0) of x0 and

there are functions

tl : U(x0) → Rm, l ∈ {1, . . . , q0};

such that for each t
l
, l ∈ {1, . . . , q0},

1. tl(x0) = t
l
;

2. tl(x) ∈ B(x) for x ∈ U(x0);

3. tl(·) is Lipschitz-continuous and directionally differentiable in every direction ξ ∈ Rn

on U(x0);

4. For each l ∈ {1, . . . , q0} and each x ∈ U(x0), tl(x) is a unique local minimizer of

(GO(x)) with a unique Lagrange multiplier λl(x). Furthermore, the multiplier func-

tion λl(·) : U(x0) → R|I(x0,t
l
)| is Lipschitz continuous and directionally differentiable

in every direction ξ ∈ Rn on U(x0);
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5. For each l ∈ {1, . . . , q0}, the function

vl(x) := G(x, tl(x))

is continuously differentiable and twice directionally differentiable in every direction

ξ ∈ Rn and Dvl(x) is Lipschitz continuous on U(x0).

Theorem 2.5.2 (reducibility theorem, Thm. 2.2. Hettich & Still [23]). Let

x0 ∈ ∂M ∩ M. If the (LICQ) and the (SSOSC) assumptions in Thm. 2.5.1 hold true,

then

1. The marginal value function v of (GO(x)) is the maximum of a finite number of

continuously differentiable functions on U(x0); in particular,

v(x) = max
1≤l≤q0

vl(x), x ∈ U(x0).

2. The feasible set M of (GSIP) could be described in terms of a finite number of

constraints in a neighborhood U(x0) of x0; i.e.

M∩ U(x0) = {x ∈ U(x0) | vl(x) ≥ 0, k = 1, . . . , q0}

= {x ∈ U(x0) | G(x, t
l
(x)) ≥ 0, k = 1, . . . , q0}.

In other words, (GSIP) is locally reducible at x0 into the finite optimization problem

(GSIPred) f(x) → min

s.t. x ∈ {x ∈ U(x0) | G(x, tl(x)) ≥ 0, l = 1, . . . , q0}.

Remark 2.5.1.

(i) In Thms. 2.5.1 and 2.5.2, the assumptions (LICQ) and (SSOSC) imply the lower

semi-continuity of the map B(·) at x0 (cf. Chap. 1, Prop. 1.2.7). Thus, the

local reducibility given in Thm. 2.5.2 is based on an implicit lower semi-continuity

assumption of B(·) at x0. However, in Stein [72] one finds a local reduction approach

at a feasible boundary point without making an apriori assumption on the lower

semi-continuity of B(·) at x0.
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(ii) If, instead of the tangent space given by (2.5.2), one considers the cone

Z(x0, t) = {ξ ∈ Rm | Dthi(x
0, t)ξ = 0, i ∈ I+(x0, t); Dthi(x

0, t)ξ ≤ 0, i ∈ I(x0, t)\I+(x0, t)},

then Z(x0, t) ⊂ T (x0, t). Hence, Rückmann and Shapiro [59] assumed the satisfac-

tion of the sufficient second order condition

ξ⊤DttL(x0, t, λ(t)) > 0,∀ξ ∈ Z(x0, t) \ {0},

which is obviously weaker than the (SSOSC). In fact, in [59] examples are given

showing that, if in Thms. 2.5.1 and 2.5.2 (SSOSC) is replaced by the above weaker

condition, then the local reducibility of (GSIP) may not hold true. Hence, the

second order optimality conditions given for (GSIP), in [59], could be taken as a

generalization of the one given by Hettich and Still [23].

(iii) Besides the reducibility of (GSIP) into a finite NLP, Weber [87, 84], Still [80] and

Levitin [43] considered conditions for local and global reducibility of (GSIP) into a

standard (SIP) (cf. also Levitin [42]). Such reduction approach has been success-

fully used by Weber [85, 86] in the study of structural and topological stability of

the feasible set M of (GSIP) and, in Weber [84], for the derivation of first order

optimality conditions for (GSIP).

Thm. 2.5.2(2) indicates that if the required differentiability assumptions are satisfied, then

both first and second order optimality conditions, for local optimality of x0 ∈ ∂M∩M,

could be obtained through the corresponding conditions of the finite NLP (GSIPred).

This is what has been done by Hettich & Still [23]. (see also Hettich & Still [24] for a

recent review).

Theorem 2.5.3 (Thms. 3.2 & 3.3 in Hettich & Still [23], Thm. 4.2 in Rückmann

& Sapiro [59]). Suppose that the functions f,G and hi, i = 1, . . . , p of (GSIP) are

twice continuously differentiable. Let x0 ∈ ∂M ∩ M and the (LICQ) and the (SSOSC)

assumptions of Thm. 2.5.1 hold true w.r.t. G(x0).
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1. Then if x0 is a local minimizer of (GSIP), then for every ξ ∈ K(x0), where

K(x0) := {ξ ∈ Rn | Df(x0)ξ ≤ 0; DxL(x0, t
l
, λ

l
)ξ ≥ 0, l = 1, . . . , q0},

there exists a vector µ ∈ Rq0+1 of multipliers with µ0 := µ(ξ) ≥ 0 and µl := µl(ξ) ≥

0, l = 1, . . . q0 not all equal to zero such that

µ0Df(x0) −
q0∑

i=1

µlDxL(x0, t
l
, λ

l
) = 0 (2.5.3)

and

µ0ξ
⊤D2f(x0)ξ − Θ(x0; ξ, µ) ≥ 0, (2.5.4)

where

Θ(x0; ξ, µ) :=

q0∑

l=1

µlξ
⊤DxxG(x0, t

l
)ξ +

q0∑

l=1

µlDtl(x0; ξ)DttL(x0, t
l
, λ

l
)Dtl(x0; ξ)

+

q0∑

l=1

µl




∑

i∈I(x0,t
l
)

(
λ

l
ξ⊤Dxxhi(x

0, t
l
)ξ + 2Dλl(x0; ξ)Dxhi(x

0, t
l
)ξ

)

 .

Furthermore, if, for l ∈ {1, . . . , q0}, DxL(x0, t
l
, λ

l
)ξ > 0, then the multipliers µl

can be chosen to be equal zero; and µ0 could also be chosen as equal to zero if

Df(x0)ξ > 0.

2. If for every ξ ∈ K(x0), there exists µ(ξ) ∈ Rq0+1, µ⊤(ξ) := µ = (µ0, . . . , µq0
) with

µ0 ≥ 0, µl ≥ 0, l = 1, . . . , q0, such that

µ0Df(x0) −
q0∑

i=1

µlDxL(x0, t
l
, λ

l
) = 0 (2.5.5)

and

µ0ξ
⊤D2f(x0)ξ − Θ(x0; ξ, µ) > 0, (2.5.6)

then x0 is a local minimizer of (GSIP).
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2.6 Numerical Solution Methods for GSIP

Owing to the existence of infinite number of constraints coupled with the variability of the

index set of these constraints, the development of computational algorithms for (GSIP)s

is not a straightforward matter. Consequently, a number of authors have attempted to

transform or approximate (GSIP)s by problems of more manageable nature, for which

there are well developed computational algorithms. To date, we have the following three

major approaches:

• (global) transformation of a (GSIP) into a bi-level optimization problem (Stein [74, 75],

Stein & Still [77, 78]);

• successive local linearization approach (Pickl & Weber [49], Weber [87]);

• a branch-and-bound method for a class of (GSIP) (Levitin & Tichatschke[47]).

Almost all of the above three approaches assume convexity structures in the lower level

problem and also take the index set-valued B(·) as lower semi-continuous (thereby the

feasible set M is a closed set). Among the three, we have computational experiments

being reported by Stein [74, 75] and Stein & Still [77, 78]. Thus, here is given a brief

review leaning towards the approaches of Stein & Still.

2.6.1 GSIP as a Bi-level Optimization Problem

In [74, 75, 77, 78] the possibility transforming a (GSIP) into an equivalent Bi-level opti-

mization (BL) problem has been considered (for a more general and detailed discussions

cf. Stein [74, 75]).

Consider the (GSIP)

(GSIP ) f(x) → inf

s.t. G(x, t) ≥ 0 ,∀t ∈ B(x).
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where

B(x) := {t ∈ T | hi(x, t) ≤ 0, i ∈ I}, I := {1, . . . , p};

under the following usual assumption

Assumption (USC): B(·) is u.s.c. and compact valued on Rn.

Now, define

F (x, t) := f(x)

and consider the bi-level optimization problem (BL)

(BL) min
x,t

F (x, t)

s.t. G(x, t) ≥ 0,

where t is a solution of the problem

(GO(x)) mint G(x, t)

s.t. hi(x, t) ≤ 0, i ∈ I.

The following notations are used:

• M = {x ∈ Rn | G(x, t) ≥ 0,∀t ∈ B(x)};

• E(x) := {t ∈ Rm | t is a global solution of (GO(x))};

• S := {(x, t) | t ∈ E(x)} = GraphE(·);

• MG := {(x, t) ∈ Rn × Rm | G(x, t) ≥ 0};

• MBL := {(x, t) | (x, t) ∈ MG, t ∈ E(x)} ⊂ Rn × Rm.

Remark 2.6.1. According to the definition of the problem (BL) (see Dempe [15]), the

lower level problem (also known as the follower’s problem) (GO(x)) need not have a

unique solution for each feasible x; i.e. E(x) need not be a singleton. However, it should

be the case that E(x) 6= ∅, so that (BL) is well defined.
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Thus, one needs to know the relations that do exist between the feasible sets and solutions

sets of (GSIP) and (BL)§. Recall that, if B(x) = ∅, then x ∈ intM. However, if B(x) = ∅,

then x /∈ MBL, by definition of (BL). In general, Prx(MBL) ⊂ M, where Prx represents

the (canonical) projection into Rn. Nevertheless, the equality of Prx(MBL) and M is

important if one intends to solve (GSIP) through (BL).

Proposition 2.6.1 (see Stein & Still [77]). If for all x ∈ Rn, B(x) 6= ∅ (i.e. DomB(·) =

Rn), then M = prx(MBL).

Proof. Let x ∈ M be given. Since G(x, ·) is continuous and B(x) is compact and non-

empty, there is t ∈ B(x) which is a solution of (GO(x)); i.e., t ∈ E(x) and G(x, t) ≥ 0.

Hence, (x, t) ∈ MBL. From which follows that x ∈ Prx(MBL). Hence M ⊂ Prx(MBL).

Similarly, if x ∈ Prx(MBL), then (x, t0) ∈ MBL for some t0 ∈ E(x) and G(x, t0) ≥ 0.

Hence, t0 is a global solution of (GO(x)) and G(x, t0) ≥ 0. That is

0 ≤ G(x, t0) ≤ G(t, x),∀t ∈ B(x).

Which implies that x ∈ M. Hence, Prx(MBL) ⊂ M, which completes the proof.

Remark 2.6.2. Properly speaking, the problem (BL) is equivalent to the problem

(BL) min
x

F (x, t(x))

s.t. G(x, t(x)) ≥ 0, t(x) ∈ E(x),

where E(x) is the set of global solutions of the problem

(GO(x)) mint G(x, t)

s.t. hi(x, t) ≤ 0, i ∈ I.

In fact, this is the standard formulation of a bi-level optimization problem (see Dempe [15]

and Shimizu et al. [69]). Hence, Prx(MBL) = {x ∈ Rn | G(x, t(x)) ≥ 0, t(x) ∈ E(x)}.
§For foundations on bi-level optimization problems consult the books of Dempe [15] and Shimizu et

al. [69].
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Accordingly, if B(x) 6= ∅, for all x ∈ Rn, we have M = {x ∈ Rn | G(x, t(x)) ≥ 0, t(x) ∈

E(x)}. In this sense, we can say that (GSIP) could be written into an equivalent bi-level

optimization problem.

Rem. 2.6.2 reveals that (GSIP) could be taken as a special case of a bi-level optimization

problem. Thus, all those solution methods for (BL) could generate solutions for (GSIP). It

then remains to know : under what conditions does (BL) have a solution? Nevertheless,

the feasible set MBL may, in general, fail to be closed (see Examples 1 & 2 in [77]).

The lack of closedness of MBL may cause certain difficulties for the numerical methods

designed for (BL). Thus, for MBL to be closed the map B(·) needs to be lower semi-

continuous. Note that in Prop. 2.6.1, the lower semi-continuity of B(·) is not required.

Proposition 2.6.2. Let (USC) be satisfied and B(x) 6= ∅ for all x ∈ Rn. If B(·) is a

lower semi-continuous SV-map, then the feasible sets M and MBL are closed.

Proof. Note that MBL = MG ∩ S. By the continuity of G on Rn × Rm, the set MG

is closed. Moreover, by the assumptions (USC) and the lower semi-continuity of B(·),

we have that B(·) is a continuous map. Which implies that the map E(·) is a closed

set-valued map (Thm. 6.3.5, Shimizu et al. [69]). Consequently, S = GraphE(·) is a

closed set (cf. Def. 1.1.7 and Rem. 1.1.1 in Chap. 1). Hence, MBL is a closed set.

Furthermore, M is closed set, since it is a continuous projection of a closed set. (cf. also

Prop. 2.2.2 for closedness of M).

It is to be recalled that the map B(·) is lower semi-continuous if (MFCQ) holds (Prop.

1.2.7) w.r.t. (GO(x)), for each x ∈ Rn.

Remark 2.6.3. Supposing DomB(·) = Rn, the set

{(x, t) ∈ Rn × Rm | hi(x, t) ≤ 0, i ∈ I}

is compact; the (MFCQ) holds true at all points (x, t) where t ∈ B(x); and the lower

level problem (GO(x)) has a unique solution for each x ∈ Rn, then the problem (BL) has

global optimal solution (cf. Thm. 5.1, Dempe [15]).
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For each fixed x, the requirement of the existence of a unique solution of the lower level

problem (GO(x)) in Rem 2.6.3 could be actually guaranteed if (GO(x)) is a convex lower

level problem and the (SSOSC) holds true (cf. Thm. 2.5.1). Furthermore, with the sat-

isfaction the (LICQ) (along with other additional assumptions), Thm. 5.5 in [15] claims

the existence of a local optimal solution for (BL). These are actually what have been

assumed by Stein & Still in [74, 75, 77, 78].

Consequently, given the assumptions made above hold true, currently, one could apply

any one of available algorithms for the treatment of (BL); so that one could determine (ap-

proximate) solutions for (GSIP). Stein & Still [78] introduced an interior point algorithm

by transforming the (BL) into mathematical programming problems with equilibrium

constraints. Convergence properties of the proposed algorithm is also given in Stein [74].

In this connection, Levitin & Tichatschke [47] have also suggested a Branch-and-bound

method for a class of (GSIP), whose objective function is a generalized supremum func-

tion. In particular, the objective function is taken as the supremum function of a linear

parametric optimization problem; where the lower level problem is also a linear parametric

optimization problem. Their problem has the general form

f0(x) + h0(x) → inf

s.t. x ∈ M :=

{
x ∈ X

∣∣∣
hi(x) + 1

2
(Aiti)

⊤ ti+

(bi + Gix)⊤ ti ≤ 0,∀ti ∈ Bi(x), i ∈ I

}

with

h0(x
0) := max

t0

{
1

2
(A0t0)

⊤ t0 + (b0 + G0x)⊤ t0 ≤ 0,∀t0 ∈ B0(x)

}
,

where

Bi(x) :=

{
ti ∈ Ti

∣∣∣
p⊤ijti + qij(x) ≤ 0, j ∈ Ji1;

p⊤ijti + qij(x) ≤ 0, j ∈ Ji2

}
, i ∈ I ∪ {0};

so that

• X ⊂ Rn is closed and convex;
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• I; Jij, i ∈ I and j ∈ {1, 2}, are finite index sets;

• Ai : Ti → Ti are symmetric negative definite linear operators in the Euclidean space

Ti for each i ∈ I;

• bi, pij ∈ Ti, i ∈ I and j ∈ {1, 2}, are vectors;

• Gi : X → Ti, i ∈ I ∪ {0}, are arbitrary linear operators;

• for each i ∈ I , the functions f0, hi and −qij, j ∈ Ji1 are convex on X and continuous

on Rn ; and the functions qij, j ∈ Ji2 are affine on Rn.

Hence, the objective function is, in general, non-convex (since B0(·) is dependent on x

and h0 may fail to be convex). So that, the above (GSIP) could be treated as a non-

convex (GSIP) with a convex lower level problem. Under certain duality assumptions,

this (GSIP) has been shown in [47] to be re-written, equivalently, as a finite number of

convex quadratic semi-infinite problems (see Thm. 4.1. p. 310 in [47]), which is rather

a global transformation than a local one. Furthermore, a Branch-and-Bound algorithm

is suggested to approximately determine a global optimal solution of the (GSIP) through

these convex problems. Again it is to be observed that, the index set-valued maps Bi(·), i ∈

I, are also continuous here (and have compact values) with in their respective spaces.

2.6.2 Iterative Linear Approximation of a GSIP

Pickl and Weber [49] considered a (GSIP) with index set-valued map B(·) defined in terms

of affine equality and convex inequality constraints. Hence, for x ∈ X, let

E(x) := {t ∈ B(x) | G(x, t) = 0}

be the active set-valued map of (GSIP). Given x ∈ M and a bounded open neighborhood

U of x, (GSIP) is considered under the assumption of the satisfaction of a variant of (EM-

FCQ) at all points x ∈ M∩ cl(U). Furthermore, they gave a linearization of the function

f at x and a corresponding linearization of G (i.e. a linearization of the feasible set M)
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locally at points (x, t) assuming (LICQ) is satisfied at each t ∈ E(x) (i.e. at each solution

t of the lower level problem (GO(x)), for each x ∈ cl(U). By doing so they generated a

sequence of locally approximative finite dimensional linear optimization problems to the

(GSIP) constrained to U . The sequence of optimal solutions obtained from these linear

programs has been also shown to converge to a global solution of the (GSIP) restricted

to cl(U). The theoretical foundation of this iterative procedure is deeply embedded in

the study of the topological structure of the (GSIP). Observe, that in this approach the

assumption of (LICQ) on cl(U) leads to the lower semi-continuity of B(·) on cl(U), which

implies (with local uniform boundedness) that B(·) is continuous on cl(U). Hence, it

follows that M∩ cl(U) is a closed set. In other words, implicitly, the feasible set M has

been taken to be locally closed.

Summing up, the theoretical and practical algorithms proposed so far for

(GSIP), assume (or make assumptions that yield): the lower semi-continuity

of the index set-valued map B(·) on the whole problem space; and the ex-

istence of a convex lower level problem . However, there are even practical

problems that do not have convex lower level problems, such as the reverse-

Chebychev Approximation Problem (Hoffmann & Reinhardt [29], Kaplan &

Tichatschke [35]), as indicated by Stein [74]. Furthermore, if one drops the

lower semi-continuity assumption on B(·), then one needs to have a different

theoretical basis than the one traditionally accepted - at least to guarantee

an approximate, in some sense, generalized solution of the (GSIP). Clearly

then such an approximate solution could be infeasible, but might be assumed

to belong to cl(M). Hence, as presented in the Chapters 3 & 4, one such an

approach would be to use the theory of robust analysis.
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Chapter 3

Robustness of Set-Valued Maps and
Marginal Value Functions

3.1 Introduction

The concept of robust sets and functions was first initiated by Chew & Zheng [13, 88]

as a weakening of the continuity requirements of certain global optimization methods.

Later on this theory was elaborated and extended by Shi, Zheng & Zhuang [66, 67, 68],

Hoffmann, Phú, and Hichert [26, 27, 28, 48]. Furthermore, Zheng et al. [66] have also

introduced robustness of general set-valued maps with the same purpose of weakening

set-valued continuity - a concept which is tantamount to an almost (semi-) continuity

property.

As was observed in chapter 2, the feasible set M of a (GSIP) may not be closed, as well

as, the marginal function v of (GO(x)) may not be continuous if the index map B(·) is not

lower semi-continuous. Furthermore, lack of convexity in the upper level problem may

also entail a disjunctive structure in M. Taking these difficult structures in a (GSIP) for

granted, we would like to characterize them in this chapter.

Moreover, this chapter lays the theoretical background for the numerical approaches pro-

posed for a class of (GSIP) in Chapter 4. The major aim here is to extend the theory of
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robust analysis to that of robust analysis of marginal value functions and set-valued maps

with given structures. Consequently, relatively new results on

• approximatable functions (Sec. 3.3);

• robustness of marginal value functions (Sec. 3.5); and

• robustness of set-valued maps with given structures (Sec. 3.6)

have been presented. Moreover, attempt has been made to give the robust versions of some

well-known and standard results of set-valued maps; there by pointing out connections,

differences and similarities between robustness and continuity of such maps.

3.2 Preliminaries

We begin with basic definitions and results from robust analysis. The results mentioned

in this section are mainly taken from Zheng et al. [13, 67, 88]. At the same time, minor

complementary results have been supplied for the sake of later discussions.

Definition 3.2.1 (robust set, Zheng [88]).

Let X be a topological space and let D ⊂ X. Then D is called a robust set iff clD =

cl(intD).

Where clD and intD denote the topological closure and the interior of D, resp., in the

topology of X.

Remark 3.2.1. In Zheng [88] we find that ∅, X and open sets are robust, the union of an

arbitrary collection of robust sets is again robust; the intersection of an open and a robust

set is again robust. However, the intersection of two robust sets may not be robust.

Corollary 3.2.1 (see also Zheng [88]).

Let D ⊂ X. If D is convex (or star-shaped) and intD 6= ∅, then D is a robust set.
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Definition 3.2.2 (robust point, Zheng [88]).

Let D ⊂ X. A point x ∈ clD is said to be a robust point to D if N(x) ∩ intD 6= ∅ for

each neighborhood N(x) of x. If, further x ∈ D, then x is said to be a robust point of D.

Proposition 3.2.2 (Zheng [88]).

1. A set D is a robust subset of X if and only if each point x ∈ D is a robust point of

D.

2. Any accumulation point of a set of robust points to D is also a robust point to D.

Moreover, an open set is a neighborhood of each of its points. Hence, robustness of a set

is connected with a weaker notion of a neighborhood.

Definition 3.2.3 (semi-neighborhood (SNH), Zheng [88]). A set D is called a

semi-neighborhood of a point x iff x is a robust point of the set D.

Corollary 3.2.3 (Zheng [88]). A robust set D is a semi-neighborhood of each of its

points.

We also have the following properties, which we may frequently make use of:

Proposition 3.2.4 (Zheng [88]).

1. If D is a semi-neighborhood of x and intD ⊂ A, then A is also a semi-neighborhood

of x.

2. If D is a semi-neighborhood of x and x ∈ O, where O is an open set, then D ∩O is

also a semi-neighborhood of x.

Remark 3.2.2. The union of a family of semi-neighborhoods of x is again a semi-neighborhood

of x; whereas, intersection of two semi-neighborhoods of x may not be again a semi-

neighborhood of x. Consequently, the collection of all semi-neighborhoods of a point x

(or of robust sets) cannot define a topology.
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Definition 3.2.4 (upper robust (u.r.) function, [88]).

A function f : X → R is called upper robust (u.r.) [upper semi-continuous] on X iff for

all c ∈ R the set

Fc := {x ∈ X | f(x) < c} =: [f < c]

is a robust [open] set.

The upper robustness of a function can also be defined pointwise in the traditional way.

Definition 3.2.5 (upper robustness at a point).

Let X be a topological space, f : X → R and x0 ∈ X. If for each given ε > 0 there is a

semi-neighborhood SNHε(x
0) of x0 such that

f(x) ≤ f(x0) + ε,∀x ∈ SNHε(x
0)

then f is said to be upper robust at x0.

Proposition 3.2.5.

Let X be a topological space and f : X → R. Then f is upper robust at each x ∈ X iff f

is an upper robust function.

Proof. a) Suppose f is upper robust at each x ∈ X. Let c ∈ R be arbitrary, then we show

that Fc = {x ∈ X | f(x) < c} is a robust set. If Fc = ∅, then we are done. Thus, let

Fc 6= ∅ and x0 ∈ Fc be any. Then f(x0) < c. Choose ε such that 0 < ε < c− f(x0).

Then, by assumption, there is a semi-neighborhood SNHε(x
0) such that

∀x ∈ SNHε(x
0) : f(x) < f(x0) + ε.

This implies that

x0 ∈ SNHε(x
0) ⊂ Fc.

Since x0 is a robust point of SNHε(x
0), x0 is a robust point of Fc (cf. Prop. 3.2.4(i)).

Since x0 ∈ Fc is arbitrary, we conclude that Fc is a robust set. Hence, f is an upper

robust function.
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b) Suppose that f is an upper robust function. Let x0 ∈ X and ε > 0 be given. Then

the set

SNHε(x
0) := {x ∈ X | f(x) < f(x0) + ε}

contains x0 and, by assumption, SNHε(x
0) is a robust set. Consequently, SNHε(x

0)

is a semi-neighborhood of x0 and

∀x ∈ SNHε(x
0) : f(x) < f(x0) + ε.

This yields that

∀x ∈ SNHε(x
0) : f(x) ≤ f(x0) + ε.

Hence, f is upper robust at x0. Since x0 ∈ X is arbitrary, we conclude that f is

upper robust at each x ∈ X.

Among lots of properties of upper robust functions we find the following statements.

Corollary 3.2.6 (Zheng [88]). Let D ⊂ X and f : D → R. If D is a robust set and f

is u.s.c., then f is u.r.

The converse of Cor. 3.2.6 is not always true (cf. Zheng [88] for an example).

Definition 3.2.6 (lower robust (l.r.) function, Zheng [88]). A function f : X → R

is called lower robust (l.r.) on X iff −f upper robust on X.

Proposition 3.2.7 (upper robustness of composition). Let X be a topological space.

If f : X → R be an u.r. and r : R → R is a strictly increasing functions, then the

composite function r ◦ f (i.e. (r ◦ f)(x) = r(f(x))) is upper robust.

Proof. Trivial!

Remark 3.2.3. It is to be noted that, the concept of robustness (like openness) of sets

depends on the topology of the underlying space. Likewise, robustness of a function

is also dependent on the topologies of both its domain and images spaces. Hence, the
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definitions of robustness here are w.r.t. the relative topology on the set X, when X

assumed to be a subset of some topological space. Such issues of relative robustness are

discussed in Section 2.2.4 of [88].

3.3 Approximatable Functions

The notion of approximatability has been discussed in relation with robustness by Shi,

Zheng & Zhuang [66, 67]. This concept would be seen to reveal the possibility of nu-

merical approximation of the values of a robust function or SV-map at a given point.

Roughly spoken, when a function is approximatable at a point x0, then f(x0) could be

approximated by those values of f at which it is continuous. The same holds true of

SV-maps (cf. Sec. 3.4.5). In fact, the concept of approximatability reveals the practical

usability of robustness for computational purposes (at least in optimization); especially,

when robustness is guaranteed to be equivalent to approximatability. Hence, in this sec-

tion, the definition of approximatable functions (of [67]) will be extended to that of upper

approximatable functions. And a statement of equivalence between upper approximatable

and upper robustness is also stated and proved.

We proceed by citing relevant definitions and results.

Definition 3.3.1 (robust function, Zheng et al. [67, 88]). Let f : X → Y and let

x ∈ X. Then f is called robust at x iff for any neighborhood U ⊂ Y of y = f(x), x is a

robust point of f−1(U).

Clearly,

Corollary 3.3.1. If f : X → Y is continuous, then f is robust.

Definition 3.3.2 (approximatable functions, [67]). Let X and Y be topological

spaces and let f : X → Y be a function. Suppose that S ⊂ X is the set of points of

continuity of f . Then f is said to be approximatable iff
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1. S is dense in X; and

2. for any x0 ∈ X, there exists a net (a Moor-Smith sequence) {xα}α∈Λ ⊂ S such that

lim
α

xα = x0 and lim
α

f(xα) = f(x0).

Definition 3.3.2 requires only the existence of a net to guarantee the approximatability,

in contrast to its continuity counter part, where property 2. is expected to hold true for

every net.

Corollary 3.3.2 (Thm. 2.1. in Zheng et al. [67]). Any approximatable function is

robust.

The converse of Cor. 3.3.2, in general, may not be true. However, if X is a Baire space

and Y is second countable, then approximatability is equivalent to robustness.

Proposition 3.3.3 (Thm 3.1. Zheng et al. [67]). Let X be a Baire and Y be a second

countable topological spaces and f : X → Y . Then f is robust iff f is approximatable.

Remark 3.3.1. If X is a complete metric space and Y = R, then assumption of Prop.

3.3.3 will be easily satisfied. However, it should be stressed that, the result in Prop. 3.3.3

is based on general topological spaces. That is what to be exploited next.

Hence, we give below a generalization of Def. 3.3.2 in case when X is a metric space and

Y = R.

Definition 3.3.3 (upper approximatable functions). Let X be a metric space and

f : X → R. Suppose that S ⊂ X be the set of points where f is u.s.c. Then f is upper

approximatable (u.a.) iff

1. S is dense in X; and

2. for any x0 ∈ X, there is a sequence {xk} ⊂ S such that

lim
k

xk = x0 and lim sup
k

f(xk) ≤ f(x0).
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We show next that upper approximatability implies upper robustness.

Proposition 3.3.4. Let X be a metric space and f : X → R. If f is upper approximat-

able, then f is upper robust.

Proof. Let x ∈ R be any and

[f, c] = {x ∈ X | f(x) < c}.

Take an arbitrary x0 ∈ [f, c]; i.e. f(x0) < c. We show that x0 is a robust point of [f, c].

There are two cases to consider:

Case a: If f is u.s.c. at x0, then for every ε > 0, there is a neighborhood N(x0) in X,

such that

f(x) ≤ f(x0) + ε,∀x ∈ N(x0).

In particular taking ε with 0 < ε < c − f(x0) we have

∀x ∈ N(x0) : f(x) < c.

This implies that x0 ∈ int([f, c]). Hence, x0 is a robust point of [f, c].

Case b: If f is not u.s.c. at x0, then there is a sequence {xk} ⊂ S such that

lim
k

xk = x0 and lim sup
k

f(xk) ≤ f(x0)

and lim supk f(xk) implies (by definition of lim sup) that there exists k0(ε)

f(xk) ≤ f(x0) + ε,∀k ≥ k0(ε).

Choosing 0 < ε < c − f(x0) it then follows that

xk ∈ [f, c],∀k ≥ k0(ε).

But then for each k ≥ k0(ε), by Case(a), xk is a robust point of [f, c]. Moreover,

limk xk = x0. Consequently, by Prop. 3.2.2(2), x0 is a robust point of [f, c]. This

completes the proof.
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A statement of equivalence between upper robustness and upper approximatability could

be given if X is assumed to be a complete metric space. For this we recall the standard

definition of topological spaces.

Definition 3.3.4 (topological space, Royden [58]).

A topological space < X, τ > is a non-empty set X together with a family of subsets τ

of X having the properties:

1. X ∈ τ , ∅ ∈ τ ;

2. O1, O2 ∈ τ implies O1 ∩ O2 ∈ τ ; and

3. for any family {Oα | α ∈ Ω} ⊂ τ :
⋃

α∈Ω Oα ∈ τ .

Proposition 3.3.5. Let X be a complete metric space and f : X → R. Then f is upper

robust iff f is upper approximatable.

Proof. It remains to show only the forward implication (the revers implication is already

contained in Prop. 3.3.4). Take the following family of subsets of R

i := {(−∞, q) | q ∈ Q ∪ (−∞,∞)}.

Obviously, < R, i > is a topological space with countable basis of open sets (but it is not

Hausdorff). Moreover, < R, i > is a separable topological space (i.e. it satisfies the first

axiom of countability). We now consider,

f :< X, τ > → < R, i > .

Then the upper robustness of f in the usual topology of R is now the robustness of f

w.r.t. the topology i on R (cf. Def. 3.3.1). Hence, Thm. 3.1. of Zheng et al. [67] yields

that f is approximatable w.r.t. i in R. That is, there exists a set S ⊂ X such that

(i)f is continuous at each x ∈ S w.r.t. i on R;
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(ii) S is dense in X; and

(iii) for each x0 ∈ X, there is a sequence {xk} ⊂ S such that

lim
k

xk = x0 and (i) lim
k

f(xk) = f(x0).

(Observe that the limit w.r.t. i is not unique). We next formulate (i)limkf(xk) =

f(x0) in the traditional notation. Thus, for any ε > 0, there exists q(ε) ∈ Q, f(x0) <

q(ε) < f(x0) + ε, such that (−∞, q(ε)) ∈ i and f(x0) ∈ (−∞, q(ε)). Consequently,

(i)limkf(xk) = f(x0) implies that there is k0(ε) such that

f(xk) ∈ (−∞, q(ε)) ⊂ (−∞, f(x0) + ε),∀k ≥ k0(ε).

Hence,

f(xk) < f(x0) + ε,∀k ≥ k0(ε).

From this follows that

lim sup
k

f(xk) ≤ f(x0) + ε.

It remains now to show that S contains the set of points of X where f is upper semi-

continuous w.r.t. the usual topology on R. Thus, let x0 ∈ S, then by the continuity of

f :< X, τ > → < R, i > it follows that for any ε > 0,∃U(x0) ⊂ X such that

f(x) ∈ (−∞, f(x0) + ε),∀x ∈ U(x0).

This concludes that

f(x) ≤ f(x0) + ε,∀x ∈ U(x0).

This is the usual upper semi-continuity of f at x0. Hence, the claim is justified.

3.4 Robustness of Set-Valued Maps

As an open set is to a robust set; a continuous map corresponds to a robust map. Thus,

beginning with the basic definitions of robustness of SV-maps, one may like to find out:

how much of continuity could be re-writable in terms of robustness. Furthermore, Section

3.6 refines this concept to set-valued maps with given structures.
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3.4.1 Definitions and Results

For a set-valued map M : X −→→ Y and U ⊂ Y , recall the definitions of upper inverse

M+1(U) and lower inverse M−1(U) of the set U , as were given in Sec. 1.1 of Chap. 1.

Definition 3.4.1 (lower robust SV-map, Zheng et al. [66, 88]). Let X and Y be

topological spaces and M : X ⇉ Y be a set-valued map. Then M(·) is lower robust

[l.s.c.] at x ∈ X iff for each y ∈ M(x) and each neighborhood U(y) ⊂ Y of y, M−1(U(y))

is a semi-neighborhood [neighborhood] of x in X. The map M(·) is lower robust (l.r.)

[l.s.c.] iff M(·) is lower robust [lower semi-continuous] at x, for all x ∈ X.

Corollary 3.4.1. M(·) is l.r. iff M−1(U) is a robust set in X for every (nonempty) open

set U ⊂ Y .

Corollary 3.4.2. If M : X ⇉ Y is l.s.c., then M(·) is l.r.

But, the converse of Cor. 3.4.2 is not always true.

Example 3.4.3. The set-valued map

M(x) :=





[1, 4] if x > 0,

{4} if x = 0,

[2, 3] if x < 0,

is a simple example of a map which is l.r., but not l.s.c. at x = 0.

Definition 3.4.2 (upper robust SV-map, Zheng et al. [66, 88]).

Let X and Y be topological spaces and M : X −→→ Y be a set-valued map.

1. The map M(·) is said to be upper robust (u.r.) [u.s.c.] at x ∈ X iff for any neighbor-

hood U of M(x); i.e. M(x) ⊂ U , M+1(U) is a semi-neighborhood [neighborhood]

of x. (i.e. x is a robust point of M+1(U)).

2. The map M(·) is said to be upper robust [u.s.c.] iff M(·) is upper robust [u.s.c.] at

every x ∈ X.

March 22, 2005



3.4 Robustness of Set-Valued Maps 69

Correspondingly, we have

Corollary 3.4.4.

1. The map M(·) is u.r. iff for any open set U ⊂ Y , M+(U) is a robust set in X.

2. If M(·) is an u.r. SV-map, then the set

E := {x ∈ X | M(x) = ∅}

is robust in X. (cf. Chap. 1, Cor. 1.1.5 that E is an open set if M(·) is u.s.c.)

Corollary 3.4.5 (Zheng [88]). If M(·) is u.s.c., then M(·) is u.r.

Example 3.4.3 demonstrates that there is a l.r. set-valued map which is not l.s.c. A similar

example could be set up for upper robustness. Furthermore, the SV-map in Example 3.4.3

is lower robust, but not upper robust. To see this, for ε > 0, we find that

M+1((−ε, ε) + 4) = {0}.

Which shows that M(·) is not upper robust.

At this juncture one may pose the question: ”How much discontinuous is a l.r. (u.r.)

set-valued map?” One crude answer could be ”a l.r. (u.r.) set-valued map is almost l.s.c.

(u.s.c.)”. A formal answer has been supplied by Zheng et al. [66]. (cf. sec. 3.4.4).

3.4.2 ε−Robustness of set-valued Maps

In the following, we would like to see how far the notions of Hausdorff or ε-semi-continuity

could be carried over to that of robustness.

Hence, let X and Y be normed linear spaces, M : X −→→ Y be a set-valued map, and

denote by Bε the open ball of radius ε at the zero element of Y , with ε > 0.
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Definition 3.4.3 (ε-upper robust SV-map). We say that M(·) is ε-upper robust

[ε-upper semi-continuous] at x0 if given ε > 0, there exists a semi-neighborhood [neigh-

borhood] SNHε(x
0) such that

∀x ∈ SNHε(x
0) : M(x) ⊂ M(x0) + Bε.

And M(·) is called an ε-upper robust [ε-upper semi-continuous] map, if it is ε-upper

robust [ε-upper semi-continuous] at every x0 ∈ X.

Proposition 3.4.6. If M(·) is upper robust, then M(·) is ε-upper robust.

Proof. Given ε > 0 and x0 ∈ X, let U := M(x0) + Bε (which is an open set). Hence,

M(x0) ⊂ U . By assumption M+1(U) is a semi-neighborhood of x0. Set SNHε(x
0) :=

M+1(U). Thus

∀x ∈ SNHε(x
0) : M(x) ⊂ U = M(x0) + Bε.

And that completes the proof.

Proposition 3.4.7. If M(·) is compact valued and ε-upper robust, then M(·) is upper

robust.

Proof. Let U ⊂ Y be an open set. We need to show that M+1(U) is a robust set in X.

Let x0 ∈ M+1(U). Hence, M(x0) ⊂ U . This implies that, for each y ∈ M(x0), there exists

ε(y) > 0 such that Bε(y) ⊂ U . But, since M(x0) is compact, there are y1, . . . , ym ∈ M(x0)

and

M(x0) ⊂
m⋃

i=1

Bε(yi)(yi) ⊂ U.

Let ε0 := min1≤i≤m ε(yi). From this follows that

M(x0) + Bε0
⊂ U.

By ε-upper robustness, there is a semi-neighborhood SNH(x0) such that

∀x ∈ SNH(x0) : M(x) ⊂ M(x0) + Bε0
.
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Consequently,

SNH(x0) ⊂ M+1(M(x0) + Bε0
) ⊂ M+1(U).

Therefore, x0 is a robust point of M+1(U). Since x0 ∈ M+1(U) is arbitrary, we conclude

that M(·) is upper robust.

Similarly, we define

Definition 3.4.4 (ε-lower robust SV-map).

We say that M(·) is ε-lower robust at x0 iff for any ε > 0 there exists a semi-neighborhood

SNHε(x
0) such that

∀x ∈ SNHε(x
0) : M(x0) ⊂ M(x) + Bε.

We say that M(·) is ε-lower robust, if it is ε-lower robust at every x0 ∈ X.

Proposition 3.4.8. If M(·) is ε−lower robust, then M(·) is lower robust.

Proof. Let U ⊂ Y be an open set. We show that M−1(U) is a robust set in X; i.e., we show

for arbitrary x0 ∈ M−1(U), x0 is a robust point of M−1(U). But then, M(x0) ∩ U 6= ∅.

Which implies, there is y0 ∈ M(x0) ∩ U . Hence, for some ε > 0, we have

Bε(y
0) ⊂ U and M(x0) ∩ Bε(y

0) 6= ∅.

By ε-lower robustness, there is a semi-neighborhood SNHε(x
0) of x0 such that

∀x ∈ SNHε(x
0) : M(x0) ⊂ M(x) + Bε.

From this follows that

∀x ∈ SNHε(x
0) : y0 ∈ M(x) + Bε.

Consequently,

∀x ∈ SNHε(x
0) : y0 ∈ M(x) ∩ Bε(y

0) 6= ∅.
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Since Bε(y
0) ⊂ U , we have

∀x ∈ SNHε(x
0) : y0 ∈ M(x) ∩ U 6= ∅.

That is

SNHε(x
0) ⊂ M−1(U).

Hence, M−1(U) is also a semi-neighborhood of x0. Since x0 is arbitrary, it follows that

M−1(U) is a robust set; therefore, M(·) is a lower robust map.

The converse of prop. 3.4.8 may not hold true even if M(·) is compact valued. Hence,

a similar statement of equivalence, as in the case of l.s.c set-valued maps with compact

values (see p. 45, paragraph 3, of Aubin & Cellina [4]), fails to exist between lower robust

and ε-lower robust set-valued maps.

Example 3.4.9. Consider the set-valued map M : R −→→ R given by

M(x) :=





[2, 5] if x < 0,

[1, 2] ∪ [3, 5] if x = 0,

[1, 3] if x > 0.

Let ε = 1
2
. For any semi-neighborhood SNH(0) and neighborhood N(0) of 0, there

is x ∈ SNH(0) ∩ N(0). Hence, if x > 0, we have M(x) = [1, 3], but then M(0) =

[1, 2] ∪ [3, 5] 6⊂ [1, 3] + (−1
2
, 1

2
). Similarly, if x < 0, we have M(x) = [2, 5], so that

M(0) = [1, 2] ∪ [3, 5] 6⊂ [2, 5] + (−1
2
, 1

2
). Consequently, M(·) is both not l.s.c. and not

ε-lower robust at x = 0.

Obviously, M(·) is lower robust (also l.s.c) at x, for either x < 0 or x > 0. And, if

y0 ∈ M(0), then either y0 ∈ [1, 2] or y0 ∈ [3, 5]. Hence, for any neighborhood Bε(y
0), we

have

• if y0 ∈ [1, 2], then M−1(Bε(y
0)) = [0,∞); or

• if y0 ∈ [3, 5], then M−1(Bε(y
0)) = (−∞, 0].
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In both cases, M−1(Bε(y
0)) is a semi-neighborhood of x = 0. Consequently, M(·) is a

lower robust SV-map with compact values.

3.4.3 Further Examples of Robust set-valued Maps

Additional examples are given below, to make the differences and similarities of robust-

ness and continuity of set-valued maps more transparent. The point of interest in the

examples is x = 0.

Example 3.4.10.

M(x) =





[1, 4] if x < 0,

[2, 3] if x ≥ 0.

Then M(·) is

• not u.s.c., but u.r.;

• l.s.c.; hence l.r.

Example 3.4.11.

M(x) =





[1, 4] if x ≤ 0,

[2, 3] , if x > 0.

Then M(·) is

• u.s.c.; hence u.r.;

• not l.s.c., but l.r.

Example 3.4.12.

M(x) =





[1, 4] if x 6= 0,

[2, 3] , if x = 0.

Then M(·) is

• not u.s.c.; while not

u.r.;

• l.s.c.; hence l.r.

Example 3.4.13.

M(x) =





[1, 4] if x = 0,

[2, 3] if x 6= 0.

Then M(·) is

• u.s.c.; hence u.r.;

• not l.s.c.; while not

l.r.

Example 3.4.14.

M(x) =





[2, 4] if x ≤ 0,

[1, 3] if x > 0.

Then M(·) is

• not u.s.c., but u.r.;

• not l.s.c., but l.r.
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3.4.4 Piecewise Semi-continuous set-valued Maps

Again following Zheng et al. [66] we define piecewise semi-continuity. Analogously, as a

sort of extension, we also consider piecewise robustness properties for set-valued mappings

(and of functions in Sec. 3.5.3). Here we have the property that piecewise robustness im-

plying robustness, which is not true of semi-continuity. Thus some suitable decomposition

of the domain space is possible under the weaker robustness assumptions. Such a decom-

position will be important in characterizing disjunctive structures that could crop in a

(GSIP), due to the arising and vanishing of components of the index map B(·).

Definition 3.4.5. Let X and Y be two topological spaces. We say that X1, X2, . . . , Xr

is a partition of X iff the sets Xi are pairwise disjoint and X is the union of all Xi. The

partition is called robust iff each Xi is robust w.r.t. X.

Definition 3.4.6. A set-valued map M : X ⇉ Y is said to be piecewise l.s.c. (l.r.) [u.s.c.] {u.r.}

iff there exists a robust partition X1, X2, . . . , Xr of X such that for all i ∈ {1, . . . , r} the

restriction of M(·) to Xi is l.s.c. (l.r.) [u.s.c.] {u.r.} with respect to the relative topology

of Xi induced by the topological space X.

The proofs of the following two theorems are not available in their original source Zheng

et al. [66]. Hence, they are supplied here because of their simplicity.

Theorem 3.4.15 (Zheng et al. [66]). If M(·) is piecewise l.s.c., then M(·) is l.r.

Proof. Let U ⊂ Y be any open set. We want to show that M−1(U) is a robust set in X.

Since, for each i = 1, . . . , r, M |Xi
: Xi

−→→ Y is l.s.c. with respect to the relative topology

of Xi, we have that M−1(U) ∩ Xi is a relatively open set in Xi. Hence, there is an open

set V ⊂ X such that Xi ∩ V = M−1(U) ∩ Xi. But then Xi ∩ V is a robust set in X by

Rem. 3.2.1. Hence, for each i ∈ {1, . . . , r}, M−1(U) ∩ Xi is a robust set. From which

follows that
r⋃

i=1

M−1(U) ∩ Xi = M−1(U)
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is a robust set in X.

Similarly, we have

Theorem 3.4.16 (Zheng et al. [66]). If M(·) is piecewise u.s.c., then M(·) is u.r.

Proof. Let V ⊂ Y be any open set. We show that M+1(V ) = {x ∈ X | M(x) ⊂ V } is a

robust set in X. Since, M : Xi
−→→ Y is u.s.c. in the relative topology of Xi, we have, for

each i,

(M |Xi
)+1(V ) = {x ∈ Xi | M(x) ⊂ V }

is a relatively open set in Xi. The rest of the proof is as in Thm. 3.4.15.

Lemma 3.4.17. Let X be a topological space and A be a non-empty robust subset of X.

If B ⊂ A is such that intBA 6= ∅ , then intBX 6= ∅, where intBA is interior of B relative

to the topology of A induced by X.

Proof. Clearly, intBA is an open set in A. Hence, there exists O ⊂ X open in X such

that B ⊃ intBA = O ∩ A. Since A is robust in X and O ∩ A 6= ∅ (while intBA 6= ∅ and

A 6= ∅) we have that O ∩ intAX 6= ∅. This yields B ⊃ intBA = O ∩ A ⊃ O ∩ intAX 6= ∅

and intBX ⊃ O ∩ intAX 6= ∅ which completes the proof.

If the set A ⊂ X is not assumed to be robust, then the above implication fails to be true.

Take for e.g. X = R, A = B = Q ( Q - set of rational numbers). Observe that intBA 6= ∅.

However, intBX = ∅ and A = Q is not robust in X = R.

Lemma 3.4.18. Let X0 be a robust subset of a topological space X and assume that

X̂ ⊂ X0. If X̂ is robust in X0 in the relative topology of X0 w.r.t. X, then X̂ is a robust

set in X.

Proof. Let x ∈ X̂ and N(x) be any open neighborhood of x w.r.t. X. Then N(x) ∩ X0

is neighborhood of x in the relative topology of X0. Since X̂ is robust in the relative

topology of X0 we have

int
(
N(x) ∩ X0 ∩ X̂

)
X0

6= ∅
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(note that X0 ∩ X̂ = X̂) and

int
(
N(x) ∩ X0 ∩ X̂

)
X0

⊂ N(x) ∩ X0.

Since N(x) is open in X, N(x) ∩ X0 is robust in X (cf. Rem. 3.2.1). Hence, we get, by

Lem. 3.4.17, that

int(N(x) ∩ X0 ∩ X̂) 6= ∅.

Since N(x) is arbitrary, it follows that x is a robust point of X̂. Therefore, using Prop.

3.2.2, X is robust set.

Theorem 3.4.19. If M(·) is piecewise l.r. [u.r.], then M(·) is l.r. [u.r.].

Proof. Taking M(·) piecewise-l.r. and U ⊂ Y as an open set, we have to show that

M−1(U) = {x ∈ X | M(x) ∩ U 6= ∅}

is a robust set. Since, M : Xi
−→→Y is l.r. in the relative topology of Xi, we have, for each i

(M |Xi
)−1(U) = {x ∈ Xi | M(x) ∩ U 6= ∅}

is a robust subset of Xi in the relative topology of Xi w.r.t. X. The rest of the proof

follows by a similar argument as in Thm. 3.4.15 using Lem. 3.4.18.

3.4.5 Approximatable Set-Valued-maps

Corresponding to approximatability of functions (cf. Sec. 3.3), there are results related

with approximatability of SV-maps.

Definition 3.4.7 (lower approximatable SV-map, Def. 2.4. Zheng et al. [66]).

Let X and Y be topological spaces and M : X −→→ Y be a SV-map. Suppose that S is the

set of points of lower semi-continuity of M(·). Then M(·) is called lower approximatable

iff
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1. S is dense in X; and

2. for any x0 ∈ X and y0 ∈ M(x0), there exist a net {xα}α∈Λ ⊂ S and a net {yα}α∈Λ

with yα ∈ M(xα) for every α ∈ Λ such that

lim
α

xα = x0 and lim
α

yα = y0.

Comparing the definition for lower semi-continuous SV-map (in Chap. 1, Def. 1.1.6) with

lower approximatability in metric spaces X and Y , we observe that Def. 3.4.7 requires

only the existence of sequences. It then immediately follows that, a lower semi-continuous

SV-map is lower approximatable. Furthermore, we have

Proposition 3.4.20 (Thm. 2.1 Zheng et al. [66]). Any lower approximatable set-

valued map is lower robust.

Definition 3.4.8 (upper approximatable SV-map, Zheng et al. [66]).

Let X and Y be topological spaces and M : X −→→ Y be a SV-map. Suppose that S is the

set of points of upper semi-continuity of M(·). Then M(·) is called upper approximatable

iff

1. S is dense in X;

2. for any x0 ∈ X there is a net {xα}α∈Λ in S such that for each neighborhood U of

x0 there is some α(U) with

∀α ∈ α(U) : M(xα) ⊂ U.

Proposition 3.4.21. Any upper approximatable set-valued map is upper robust.

Proof. Follows by a similar argument as for Prop. 3.4.20 (see the proof of Thm. 2.1. in

[66]).

It has been indicated by Zheng et al. [66, 67] that robustness of SV-maps is weaker than

approximatability. However, if a lower or upper robust map has a dense set of upper or

lower semi-continuity, then it will be approximatable (cf. Prop. 2.3. in [66]).
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3.5 Marginal Value Functions

3.5.1 Upper Robustness of Infimum

Let us next come to the investigation of the behavior of marginal functions w.r.t. ro-

bustness properties of its defining data. Hence, we first consider the marginal function ϕ

defined by

ϕ(x) := inf
y∈M(x)

ψ(x, y). (3.5.1)

Theorem 3.5.1 (upper robustness of infimum). Let ψ : X × Y → R be u.s.c. on

{x0} × M(x0), where M : X ⇉ Y is a l.r. set-valued map, then ϕ is u.r. at x0.

Proof. Let c ∈ R and x0 ∈ Φc := {x | ϕ(x) < c}. We have to show that Φc is a semi-

neighborhood of x0. Let ε > 0 be arbitrary, then there exists yε ∈ M(x0) such that

ψ(x0, yε) < ϕ(x0) + ε. Since ψ is u.s.c. on {x0} ×M(x0), there exist open neighborhoods

N(x0) of x0 and N(yε) of yε such that

∀x ∈ N(x0),∀y ∈ N(yε) : ψ(x, y) ≤ ψ(x0, yε) + ε.

Moreover, M(·) is l.r., yε ∈ M(x0) and N(yε) is a neighborhood of yε imply that

M−1(N(yε)) is a semi-neighborhood of x0. Hence, Q := N(x0) ∩ M−1(N(yε)), by Propo-

sition 3.2.4(2), is a semi-neighborhood of x0, too. Thus, we have for all x ∈ Q, ỹ ∈

M(x) ∩ N(yε)

ϕ(x) = infy∈M(x)ψ(x, y) ≤ ψ(x, ỹ) ≤ ψ(x0, yε) + ε < ϕ(x0) + 2ε.

Choosing ε > 0 such that 0 < 2ε < c − ϕ(x0), we have Q ⊂ Φc. Hence Φc is a semi-

neighborhood of x0.

Corollary 3.5.2 (lower robustness of supremum). Let ψ : X × Y → R be l.s.c.

on {x0} × M(x0), where M : X ⇉ Y is a l.r. set-valued map, then the marginal value

function

φ(x) := sup
y∈M(x)

ψ(x, y)

is l.r. at x0.
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Proof. The claim follows trivially if we write

−φ(x) := inf
y∈M(x)

−ψ(x, y)

and observe that −φ is upper robust by Thm. 3.5.1. From which follows that φ is lower

robust.

Corollary 3.5.3. Let (X, ρ) be a metric space and M : X ⇉ Y be a set-valued map. If

M(·) is l.r., r : R+ → R+ is continuous and strictly increasing on R+, then the function

ϕ(x) = r (dist(x,M(x))) := inf
ξ∈M(x)

r (ρ(x, ξ))

is u.r.

Proof. The functions ρ and r are continuous and infξ∈M(x) r (ρ(x, ξ)) = r
(
infξ∈M(x) ρ(x, ξ)

)
.

Then, using Thm. 3.5.1 and Prop. 3.2.7 the claim follows.

This corollary guarantees that, when r is as above, X is normed space, ψ : X ×X → R+,

ψ(x, ξ) := r (‖x − ξ‖) and the map M(·) is l.r., then the marginal function ϕ(x) =

dist(x,M(x)) is u.r. In general (see Remark 3.2.1), the upper semi-continuity assumption

on ψ cannot be replaced by upper robustness.

Hu & Papageorgiou [32] stated and proved the following.

Proposition 3.5.4 (Prop. 2.26, Hu & Papageorgiou [32]).

If Y is a metric space, M : X −→→ Y and M(x) 6= ∅,∀x ∈ X. Then M(·) is l.s.c. if and

only if for every fixed ξ ∈ Y , the function ϕξ : X → R, ϕξ(x) := dist(ξ,M(x)) is u.s.c.,

where

ϕξ(x) = inf
y∈M(x)

ρ(ξ, y).

A similar statement of equivalence will be

Proposition 3.5.5. Let X and Y be metric spaces, with a metric ρ on X, M : X −→→ Y

and M(x) 6= ∅,∀x ∈ X. Then M(·) is l.r. if and only if for every fixed ξ ∈ Y , the function

ϕξ : X → R, ϕξ(x) := dist(ξ,M(x)) is u.r.
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Proof. The forward implication follows from Thm. 3.5.1 with ψ(x, y) = ρ(x, y). To show

the backward implication (which follows with some modification of the proof of Prop.

2.26, in [32]), we let V ⊂ Y be any open set. We need to show that M−1(V ) is a robust

set in X; i.e. if x ∈ M−1(V ), we have to show that x is a robust point of M−1(V ). Hence,

M(x) ∩ V 6= ∅. Let ξ ∈ M(x) ∩ V and Bǫ(ξ) ⊂ V , for some ǫ > 0. Hence, we have

{x ∈ X | ϕξ(x) < ϕξ(x) + ǫ}

is a non-empty robust set, since x ∈ {x ∈ X | ϕξ(x) < ϕξ(x) + ǫ} = {x ∈ X | ϕξ(x) < ǫ}

as ϕξ(x) = 0. Thus, for any neighborhood N(x) of x we have

N(x) ∩ int{x ∈ X | ϕξ(x) < ǫ} 6= ∅.

It then follows that, there is x∗ ∈ N(x)∩int{x ∈ X | ϕξ(x) < ǫ} and an open neighborhood

U(x∗) ⊂ N(x) ∩ int{x ∈ X | ϕξ(x) < ǫ} of x∗. Consequently,

∀x ∈ U(x∗) : ϕξ(x) < ǫ.

That is

∀x ∈ U(x∗) : dist(ξ,M(x)) < ǫ.

Subsequently,

∀x ∈ U(x∗),∃y ∈ M(x) : ‖ξ − y‖ < ǫ.

From this follows that

∀x ∈ U(x∗) : M(x) ∩ Bǫ(ξ) ⊂ M(x) ∩ V.

Hence, U(x∗) ⊂ M−1(V ). Which yields N(x) ∩ intM−1(V ) 6= ∅. However, since N(x)

is an arbitrary neighborhood, we conclude that x is a robust point of M−1(V ). As

x ∈ M−1(V ) was chosen arbitrarily, we have that M−1(V ) is a robust set in X.

3.5.2 Upper Robustness of Supremum

Let again

φ(x) = sup
y∈M(x)

ψ(x, y).

March 22, 2005



3.5 Marginal Value Functions 81

Theorem 3.5.6 (upper robustness of supremum).

Let X and Y be topological spaces and x0 ∈ X. If M : X −→→ Y is compact valued and u.r.

at x0; and ψ : X × Y → R u.s.c. on {x0} × M(x0), then φ is upper robust at x0.

Proof. (follows word for word from Thm. 2, p. 52 in [4]). Let c ∈ R be arbitrary and

define

[φ, c] := {x ∈ X | φ(x) < c}.

Let x0 ∈ [φ, c] be any. Then we show that x0 is a robust point of [φ, c] or, equivalently,

[φ, c] is a semi-neighborhood of x0. Since, ψ is u.s.c. on {x0} × M(x0), we have, for each

y ∈ M(x0) and ε > 0 neighborhoods N ε(y) and N ε
y (x0) of y and x0, respectively, such

that

∀y ∈ N ε(y),∀x ∈ N ε
y (x0) : ψ(x, y) ≤ ψ(x0, y) + ε.

The compactness of M(x0) implies the existence of {y1, . . . , yn(ε)} ⊂ M(x0) such that:

M(x0) ⊂
n(ε)⋃

i=1

N ε(yi).

We define the open set:

N :=

n(ε)⋃

i=1

N ε(yi).

Since, M(·) is upper robust at x0, M(x0) ⊂ N and N is open, there is a semi-neighborhood

S(x0) of x0 such that

∀x ∈ S(x0) : M(x) ⊂ N

(as M(·) is u.r. at x0 and M(x0) ⊂ N , we may take the set S(x0) := {x ∈ X | M(x) ⊂

N}). Hence, the set

Nε(x
0) := S(x0) ∩

n(ε)⋂

i=1

N ε
yi

(x0)

is a semi-neighborhood of x0 (see Prop. 3.2.4(2)). If D(x0) is any open neighborhood of

x0 in X, then D(x0) ∩ Nε(x
0) is also a semi-neighborhood of x0. Let x ∈ D(x0) ∩ Nε(x

0)

be arbitrarily chosen. Then it follows that

x ∈ S(x0), x ∈
n(ε)⋂

i=1

N ε
yi

(x0) and y ∈ M(x) ⊂ N.
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Hence, for some i0, 1 ≤ i0 ≤ nε(x), y ∈ N ε(yi0
) and x ∈ ⋂n(ε)

i=1 N ε
yi

(x0) ⊂ N ε
yi0

(x0). Which

implies that ψ(x, y) ≤ ψ(x0, yi0
) + ε. Moreover, since x ∈ D(x0) ∩ Nε(x

0) and y ∈ M(x)

are arbitrary, we have that

∀x ∈ D(x0) ∩ Nε(x
0) : sup

y∈M(x)

ψ(x, y) ≤

≤ ψ(x0, yi0
) + ε ≤ φ(x0) + ε.

This yields

∀x ∈ D(x0) ∩ Nε(x
0) : φ(x) ≤ φ(x0) + ε.

Now, since x0 ∈ [φ, c] and ε > 0 are arbitrary, we can choose 0 < ε < c − φ(x0). It then

follows that

∀x ∈ D(x0) ∩ Nε(x
0) : φ(x) ≤ φ(x0) + ε <

< φ(x0) + c − φ(x0) = c.

From this follows that

∀x ∈ D(x0) ∩ Nε(x
0) : φ(x) < c.

Hence, D(x0) ∩ Nε(x
0) ⊂ [φ, c]. Therefore, [φ, c] is a semi-neighborhood of x0 and the

claim follows from Prop 3.2.4(2).

Corollary 3.5.7 (lower robustness of infimum). Let X and Y be topological spaces

and x0 ∈ X. If M : X −→→ Y is compact valued and u.r. at x0; and ψ : X ×Y → R l.s.c.

on {x0} × M(x0), then the marginal value function

ϕ(x) = inf
y∈M(x)

ψ(x, y)

is lower robust at x0.

Proof. Use

−ϕ(x) = sup
y∈M(x)

[−ψ(x, y)]

and apply Thm. 3.5.6; i.e. −ϕ will be u.r. at x0. Which implies that ϕ is lower robust

x0.
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3.5.3 Upper Robustness over a Robust Partition

Definition 3.5.1. We call the function ϕ : X → R piecewise u.r. (l.r.) iff there exists

a robust partition X1, X2, . . . , Xr of X such that for all i ∈ {1, . . . , r} the restriction of ϕ

to Xi is u.r. (l.r.) with respect to the relative topology of Xi induced by the topological

space X.

Theorem 3.5.8. Let X be a topological space and ϕ : X → R. If ϕ is piecewise u.r.

(l.r.), then ϕ is u.r. (l.r.).

Proof. Let c ∈ R, such that Fc := {x ∈ X | ϕ(x) < c}. Then Fc =
⋃

i∈I (Xi ∩ {x ∈ X | ϕ(x) < c}).

Assume now x ∈ Fc and N(x) be any open neighborhood of x w.r.t. X. Then x ∈ Xi∩{x ∈

X | ϕ(x) < c} for some i ∈ I. Hence, N(x)∩Xi is a neighborhood of x relative to Xi. Since

ϕ is u.r. w.r.t. the relative topology on Xi, int[Xi∩{x ∈ X | ϕ(x) < c}∩N(x)]Xi
6= ∅ and

int[Xi ∩ {x ∈ X | ϕ(x) < c} ∩ N(x)]Xi
⊂ N(x) ∩ Xi. Since N(x) is open and N(x) ∩ Xi

is robust in X, Lemma 3.4.17 yields:

int[{x ∈ X | ϕ(x) < c} ∩ N(x)]X ⊃ int[Xi ∩ {x ∈ X | ϕ(x) < c} ∩ N(x)]X 6= ∅.

As a result

N(x) ∩ int ({x ∈ Xi | ϕ(x) < c}) 6= ∅.

From this follows that x is a robust point of {x ∈ Xi | ϕ(x) < c}. Consequently, by Rem.

3.2.1, we have that the set {x ∈ X | ϕ(x) < c} is robust. Therefore, ϕ is u.r. on X. The

proof for l.r. follows the same line of argument.

Theorem 3.5.9. Let ψ : X × Y → R be an u.s.c. function and let M : X ⇉ Y be a

piecewise l.s.c. (l.r.) SV-map on X. Then the marginal function ϕ is u.r. on X.

Proof. Since M(·) is piecewise l.s.c. (piecewise l.r.), there is a robust partition X1, ..., Xr

of X such that for each i ∈ I := {1, ..., r}, Xi is robust in X and the restriction of M(·)

to Xi is l.s.c. (l.r.). Thus, using Thm. 4 of Aubin & Cellina [4] (or Theorem 3.5.1), we

see that ϕ is u.s.c. (ϕ is u.r. ) on Xi, which implies that ϕ is u.r. on Xi for each i ∈ I.

Therefore, by Thm. 3.5.8, ϕ is u.r. on X.
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Similarly,

Theorem 3.5.10. If ψ : X × Y → R is u.s.c. and M : X −→→ Y is a piecewise u.s.c.

(u.r.) compact valued SV-map, then the marginal function φ is u.r.

Furthermore, Cor. 3.5.2 and Cor. 3.5.7 could be reformulated to provide lower robustness

properties of marginal functions, based on the corresponding piece-wise semi-continuity

of M(·).

Remark 3.5.1. Obviously, to verify the upper robustness of ϕ and φ in Thms. 3.5.9 and

3.5.10 we need only the upper semi-continuity of ψ on Xi × Y w.r.t. relative topology.

3.5.4 Approximatable Marginal Function

Proposition 3.5.11 (upper approximatability of infimum). Let X and Y be metric

spaces. Suppose that the function ψ : X × Y → R is u.s.c. and M : X −→→ Y is a lower

approximatable SV-map, then the function ϕ is upper approximatable.

Proof. Let x0 ∈ X be any. Since

ϕ(x0) = inf
y∈M(x0)

ψ(x0, y)

given ε > 0, choose y ∈ M(x0) such that

ψ(x0, y) < ϕ(x0) +
ε

2
.

By the u.s.c. of ψ, there are neighborhoods U(x0) and V (y) of x0 and y, respectively,

such that

∀x ∈ U(x0),∀y ∈ V (y) : ψ(x0, y) ≤ ψ(x0, y) +
ε

2
.

Since M(·) is lower approximatable, there is a set S ⊂ X such that

(i) M(·) is lower semi-continuous on S and S is dense in X; and

(ii) there are sequences {xk} ⊂ S and {yk} with yk ∈ M(xk), such that

lim
k

xk = x0 and lim
k

yk = y.
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Using Thm. 4, Aubin & Cellina [4], ϕ is u.s.c. at each of the points in S. Moreover, since

xk → x0 and yk → y, there exists a k0 ∈ N (i.e., k0 = k0(ε)) such that

xk ∈ U(x0) and yk ∈ V (y),∀k ≥ k0.

Hence, ψ(xk, yk) ≤ ψ(x0, y) + ε
2
,∀k ≥ k0, which implies that

ϕ(xk) = inf
y∈M(xk)

ψ(xk, y) ≤ ψ(xk, yk) ≤ ψ(x0, y) +
ε

2
,∀k ≥ k0.

By passing to the limit we find that

lim sup
k

ϕ(xk) ≤ ψ(x0, y) +
ε

2
≤ ϕ(x0) + ε.

As ε > 0 was chosen arbitrarily, we conclude that lim supk ϕ(xk) ≤ ϕ(x0). Therefore, ϕ

is upper approximatable.

To guarantee the upper approximatability of a supremum we require the following lemma.

Lemma 3.5.12. Let X be a metric space, φ : X → R be a function and S ⊂ X be the set

of points of upper semi-continuity of φ. If φ is upper robust and S is dense in X, then φ

is upper approximatable.

Proof. (The idea of the proof is identical to the one given by Zheng et al. for a robust

function (cf. Prop. 3.4 in [67])). Take an arbitrary x0 ∈ X. For each n ∈ N consider the

set

Φn :=

{
x ∈ X | φ(x) < φ(x0) +

1

n

}
.

Then for all n ∈ N, x0 ∈ Φn and Φn is a robust set in X. Moreover, if B 1

n
(x0) is any

open neighborhood of x0, then x0 ∈ B 1

n
(x0) ∩ Φn,∀n ∈ N, and B 1

n
(x0) ∩ Φn is a robust

set in X. Hence, int
(
B 1

n
(x0) ∩ Φn

)
6= ∅. Since S is dense in X, for each n ∈ N, there is

xn ∈ S ∩
(
B 1

n
(x0) ∩ Φn

)
. Consequently, there is a sequence {xn} ⊂ S such that

lim
n→∞

xn = x0 and

φ(xn) < φ(x0) +
1

n
,∀n ∈ N.

The latter implies that lim supn φ(xn) ≤ φ(x0). Therefore, φ is upper approximatable by

Def. 3.3.3.
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Remark 3.5.2. In contrast to Prop. 3.3.5, we do not need here that the set X to be a

complete metric space, but we have to assume the existence of a dense set S of upper

semi-continuity of φ.

Theorem 3.5.13 (upper approximatability of supremum). Let X and Y be metric

spaces. If M : X −→→ Y is upper approximatable and compact valued; and ψ : X × Y → R

is u.s.c., then φ is upper approximatable.

Proof. (i) Since M(·) is upper approximatable, M(·) is upper robust. Moreover, since

M(·) is compact valued, Thm. 3.5.6 assures that φ is upper robust.

(ii) At the same time, M(·) is upper approximatable implies that M(·) has a dense set

S of upper semi-continuity. From this follows that φ(x) = supy∈M(x) ψ(x, y) is u.s.c.

on S (Thm. 5, Aubin & Cellina [4]); i.e. φ has a dense set of upper semi-continuity.

Consequently, using (i) and (ii), the claim follows from Lem. 3.5.12.

3.6 Robustness of SV-maps with given structures

Subsequently, we consider the robustness of set-valued maps with given structures. Ac-

cordingly, it is necessary to characterize the robustness of such maps through the prop-

erties of their defining functions. For similar issues related with continuity properties of

these maps see the review given in chapter 1.

3.6.1 The Finite Parametric Case

Lower Robustness

Let X and T be topological spaces and B : X −→→ T be a SV-map given by

B(x) = {t ∈ T | hi(x, t) ≤ 0, i ∈ I},

where hi : X×T → R, i ∈ I; and I := {1, . . . , p}. We would like to characterize robustness

properties of B(·) through the properties of the functions hi, i ∈ I. This has been done
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below under three sets of conditions. Two of them are discussed in this subsection and a

third one is found in Sec. 3.6.4.

Conditions-1

Proposition 3.6.1. Let B(·) be as given above and suppose that for each fixed t ∈ T the

set

△(t) :=

p⋂

i=1

{x ∈ X | hi(x, t) ≤ 0}

is non-empty and robust in X. Then for every open set U ⊂ T , the set B−1(U) is robust;

i.e., B(·) is a lower robust SV-map.

Proof. Let U ⊂ T be any open set. It suffices to show that B−1(U) is a robust set in X.

Then

B−1(U) =
⋃

t∈U

B−1(t)

=
⋃

t∈U

{x ∈ X | t ∈ B(x)}

=
⋃

t∈U

{x ∈ X | hi(x, t) ≤ 0, i ∈ I}

=
⋃

t∈U

p⋂

i=1

{x ∈ X | hi(x, t) ≤ 0}.

By assumption △(t) =
⋂p

i=1{x ∈ X | hi(x, t) ≤ 0} is robust; hence, B−1(U) is a union of

robust sets. Therefore, Remark 3.2.1 implies that B−1(U) is a robust set.

Corollary 3.6.2. Let B(·) and △(t) be as given in Prop. 3.6.1. If

(i) for every fixed t ∈ T and for each fixed i ∈ I, the functions hi(·, t) are quasi-convex;

equivalently, the set

Ni(t) := {x ∈ X | hi(x, t) ≤ 0}

is convex;

(ii) for all t ∈ T, h(x̂, t) < 0 for at least one x̂ ∈ X;

(iii) x 7→ hi0(x, t) is upper robust;
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(iv) x 7→ hi(x, t) is upper semi-continuous w.r.t. x for each i ∈ I \ {i0};

then △(t) will be a convex set with a non-empty interior, which is a robust set (cf. Cor.

3.2.1).

Conditions-2

Proposition 3.6.3. Let X be a topological space, T be a non-empty subset of a normed

linear space, and B : X −→→ T be given according to

B(x) = {t ∈ T | hi(x, t) ≤ 0,∀i ∈ I},

where I = {1, . . . , p}. If

(i) for every pair (x0, t0) ∈ X × T , and every neighborhood V (t0) of t0, there exists

t̃ ∈ V (t0) such that

hi(x
0, t0) ≤ 0 implies hi(x

0, t̃) < 0,∀i ∈ I;

(ii) hi0(·, t) is u.r. on X for each t ∈ T ;

(iii) hi(·, t) u.s.c. on X for each t ∈ T, i ∈ I \ {i0};

then B(·) is l.r. on X.

Proof. Let x0 ∈ X and t0 ∈ B(x0) and V (t0) is a neighborhood of t0. Then we want to

show that B−1(V ) is a semi-neighborhood of x0, i.e. x0 is a robust point of B−1(V ).

By (i) we have some t̃ ∈ V (t0) with hi(x
0, t̃) < 0. And using the upper semi-continuity,

there is some neighborhood U(x0) such that for all x ∈ U(x0)

hi(x, t̃) < 0, i ∈ I \ {i0}

and we know, by the upper robustness of hi0(·, t̃), that x0 ∈ {x ∈ X | hi0(x, t̃) < 0} =: H

and that H is robust. Hence, U(x0) ∩ H is a robust set containing x0 (cf. Rem. 3.2.1 ).

Furthermore, B−1(V ) ⊃ U(x0) ∩ H ∋ x0, i.e. B−1(V ) is a semi-neighborhood of x0.
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Note that assumption (i) of Prop. 3.6.3 is Slater type condition. Nevertheless, convexity

is not demanded from the functions. In contrast to Cor. 3.6.2, we require next quasi-

convexity w.r.t. to t.

Corollary 3.6.4 (cf. also Thm. 3.1.6., Bank et al. [7]).

Let X be a topological space, T be a normed linear space and B : X −→→ T be given by

B(x) = {t ∈ T | hi(x, t) ≤ 0, i ∈ I}.

If the following hold true:

(i) for each fixed x ∈ X, B(x) 6= ∅ and is not a singleton;

(ii) for each fixed x ∈ X and each i ∈ I, hi(x, ·) : T → R is strictly quasi-convex;

(iii) for each fixed t ∈ T and one i0 ∈ I, hi0(·, t) is upper robust on X;

(iv) for each fixed t ∈ T and each i ∈ I \ {i0}, hi(·, t) is u.s.c.;

then B(·) is lower robust on X.

Proof. It suffices to show that assumptions (i) & (ii) imply assumption (i) of Prop. 3.6.3.

Let x0 ∈ X be any. By (i), B(x0) 6= ∅. Hence, there is some t0 ∈ B(x0). Suppose

t ∈ B(x0) be arbitrary and let U(t) be any neighborhood of t. Thus, hi(x
0, t0) ≤ 0

and hi(x
0, t) ≤ 0 for each i ∈ I. Then we could find an α with 0 < α < 1 such that

tα := (1 − α)t0 + αt ∈ U(t). Since, the hi(x, ·)’s are strictly quasi-convex and u.s.c, for

each i ∈ I \ {i0}, there is a neighborhood Vi(x
0) such that

hi(x, tα) < 0,∀x ∈ Vi(x
0).

Set V (x0) :=
⋂

i∈I\{i0}
Vi(x

0). (Clearly, V (x0) is an open neighborhood of x0). Hence, for

each x ∈ V (x0)

hi(x, tα) < 0,∀i ∈ I \ {i0}.

The rest of the proof is as in the proof of Prop. 3.6.3.
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Remark 3.6.1. Let X be a topological space, T be a normed linear space, x0 ∈ X and

t0 ∈ T . If hi(x
0, ·) : T → R, i ∈ I are convex and there is some t̃ ∈ T \ {t0} such that for

all i ∈ I :

hi(x
0, t0) ≤ 0 ⇒ hi(x

0, t̃) < 0, (Slater’s Condition),

then condition (i) of Prop. 3.6.3 is satisfied.

Proof. Let hi(x
0, t0) ≤ 0,∀i ∈ I. Hence, by assumption, there is t̃ 6= t0 such that

hi(x
0, t̃) < 0,∀i ∈ I. Accordingly,

tn =
1

n
t̃ + (1 − 1

n
)t0 → t0 for n → ∞.

Hence, for a given neighborhood V (t0) and sufficiently large n we have that tn ∈ V (t0).

Furthermore,

hi(x
0, tn) ≤ 1

n
hi(x

0, t) + (1 − 1

n
)hi(x

0, t̃) < 0.

To relate lower robustness to a well-known result of Bank et al. [7], we consider a contin-

uous function h : X → R and define its level set map as

Lh,X(α) := {x ∈ X | h(x) ≤ α}.

Thm. 3.1.7 of Bank et al. [7] claims that Lh,X(·) is l.s.c. on X if and only if h has only

global minima on X. However, the statement next indicates that the lower robustness of

Lh,X(·) does not preclude the existence of local minima of h; furthermore, the continuity

of h : T → R is not even required.

Proposition 3.6.5. Let X ⊂ Rn, T ⊂ Rm, X a robust set in Rn and B(x) := {t ∈

T | hi(t) ≤ xi, for all i, 1 ≤ i ≤ n}, where hi : X → R, 1 ≤ i ≤ n, are functions. If, for

each fixed t ∈ T, int{x ∈ X | hi(t) ≤ xi, for all i, 1 ≤ i ≤ n} 6= ∅, then the set-valued

map B : X −→→ T is lower robust on X.
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Proof. Given x0 ∈ X and a t0 ∈ B(x0), observe that

n∏

i=1

[
hi(t

0), +∞
)
∩ X = B−1(t0)

= {x ∈ X | hi(t
0) ≤ xi, i = 1, . . . , n}.

Hence, x0 ∈ ∏n

i=1

[
hi(t

0), +∞
)
∩ X and int

[∏n

i=1

[
hi(t

0), +∞
)
∩ X

]
6= ∅. Thus, x0 is a

robust point of
∏n

i=1

[
hi(t

0), +∞
)
∩ X. Consequently, intB−1(t0) 6= ∅ and x0 is a robust

point of B−1(t0) (cf. Prop. 3.2.4(1)). Since, x0 is arbitrary, B(·) will be a lower robust

SV-map.

In the special cases when X is a compact set, X is an open set or X = Rn, the assumption

int{x ∈ X | hi(t) ≤ xi, for all i, 1 ≤ i ≤ n} 6= ∅ of Prop. 3.6.5 is obviously satisfied.

Note also that, in Prop. 3.6.5, the functions hi, i ∈ I, are not required to be continuous.

Upper Robustness

Once again, reiterating Def. 3.4.2, we have that B : X −→→ T is upper robust at x0 ∈ X if

for each neighborhood U of B(x0) there is a semi-neighborhood SNH(x0) of x0 such that

∀x ∈ SNH(x0) : B(x) ⊂ U.

In contrast to the lower robustness of B(·), its upper robustness could follow from rel-

atively weaker assumptions. One standard result (Thm 3.1.2, Bank et al. [7]) is that:

if X is a closed and T is a compact sets and hi, i ∈ I, are lower semi-continuous, then

B : X −→→ T with B(x) = {t ∈ T | hi(x, t) ≤ 0} is u.s.c. (cf. also Chap. 1, Cor. 1.2.2).

To give further results of upper robustness, we introduce the following definition:

Definition 3.6.1. Let X and T be topological spaces and h : X × T → Rp. Then h(·, t)

is called lower robust [l.s.c.] at x0 uniformly for all t ∈ T iff for all ε > 0 there exists a

semi-neighborhood SNHε(x
0) [a neighborhood U(x0)] of x0 such that

hi(x, t) > hi(x
0, t) − ε,∀x ∈ SNHε(x

0),∀t ∈ T,∀i ∈ I

[
hi(x, t) > hi(x

0, t) − ε,∀x ∈ U(x0),∀t ∈ T,∀i ∈ I
]
.
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Moreover, we need the regularity condition given by (see also Def. 1.2.1)

Definition 3.6.2. Let X be a topological space and T be a metric space. The function

h : X × T → Rp is called strictly r-regular at x0 ∈ X, for all t ∈ T , iff there is a strictly

increasing function r : R+ → R+, r(0) = 0, such that

dist(t, B(x0)) ≤ r

(
max

i=1,...,p

[
hi(x

0, t)+
])

.

Proposition 3.6.6. Let X be a topological space, T be a compact metric space, h :

X × T → Rp, h := (h1, . . . , hp), and let B : X−→→T be a set-valued map, such that for each

x ∈ X,B(x) is bounded and is given by

B(x) = {t ∈ T | h(x, t) ≤ 0}.

If

(i) h(·, t) is lower robust [l.s.c.] at x0 uniformly for all t ∈ T ; and

(ii) h is strictly r-regular at x0 for all t ∈ T ,

then B(·) is upper robust [u.s.c.] at x0.

Proof. (In the following, to prove the upper semi-continuity, replace SNH by neighbor-

hood). Thus, for any neighborhood U of B(x0) we have to find some semi-neighborhood

SNHU(x0) such that

∀x ∈ SNHU(x0) : {t ∈ T | h(x, t) ≤ 0} ⊂ U.

But, since B(x0) is bounded, there is ε > 0 such that

Uε := {t ∈ T | dist(t, B(x0)) < ε} ⊂ U.

Consequently, we need only to show that: there is a semi-neighborhood SNHUε
of x0 such

that

∀x ∈ SNHUε
: {t ∈ T | h(x, t) ≤ 0}

⊂ {t ∈ T | dist(t, B(x0)) < ε}.
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From the lower robustness of h(·, t) at x0 uniformly for t ∈ T , we get, for any τ > 0,

a semi-neighborhood SNHτ (x0) such that, for each x ∈ SNHτ (x0) and each t ∈ {t ∈

T | hi(x, t) ≤ 0, i = 1, . . . , p}, the following holds

hi(x, t) > hi(x
0, t) − τ.

Hence,

hi(x
0, t) < τ, ∀i = 1, . . . , p.

This implies

max
i=1,...,p

[
hi(x

0, t)
]+

< τ.

Using strict r-regularity and the monotonicity of r, we obtain

dist(t, B(x0)) < r(τ).

Taking SNHUε
:= SNHε(x

0) (i.e. ε := r(τ)) the proof is complete.

3.6.2 A Semi-infinite Case

Consider the following SV-map defined by using a semi-infinite system of constraints

M(x) := {ξ ∈ Y | G(ξ, x, t) ≤ 0, t ∈ B(x)},

where G : Y × X × T → R and B : X −→→ T is a SV-map. Define the marginal function

m(ξ, x) :=

{
supt∈B(x) G(ξ, x, t), if B(x) 6= ∅;
−∞, if B(x) = ∅.

Obviously, we have that

M(x) = {ξ ∈ Y | m(ξ, x) ≤ 0}.

The following is a consequence of Prop. 3.6.3.

Corollary 3.6.7. Let M(x) := {ξ ∈ X | m(ξ, x) ≤ 0}. If

(i) for every (ξ0, x0) ∈ Y × X, and every neighborhood U(ξ0) of ξ0, there is ξ̂ such that

m(ξ, x0) ≤ 0 implies m(ξ̂, x0) < 0;
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(ii) for each fixed ξ ∈ Y , m(ξ, ·) is upper robust;

then M(·) is a lower robust SV-map.

Proof. See Prop. 3.6.3.

In particular, from Cor. 3.6.4 we obtain

Corollary 3.6.8. Let M(x) := {ξ ∈ X | m(ξ, x) ≤ 0}. If

(i) for each fixed x ∈ X,m(·, x) is strictly quasi-convex and M(x) is not a singleton; and

(ii) for each fixed ξ ∈ Y,m(ξ, ·) is upper robust;

then M(·) is lower robust.

Proof. See Cor. 3.6.4.

Assumption (ii) of both Cor. 3.6.7 and Cor. 3.6.8 is guaranteed by the following propo-

sition.

Proposition 3.6.9. If, for each fixed ξ ∈ Y,G(ξ, ·, ·) is u.s.c. and B(·) is upper robust

and compact valued, then m(ξ, ·) is upper robust.

Proof. For a fixed ξ ∈ Y we could write

m(ξ, x) := sup
t∈B(x)

G(ξ, x, t).

Thus, if we let φ(x) := m(ξ, x) and ψ(x, t) := G(ξ, x, t), then the claim follows from Thm.

3.5.6.

Furthermore, assumption (i) of Cor. 3.6.7 follows if we suppose that: G(·, ·, ·) is upper

semi-continuous, B(·) is compact valued and, for each fixed x ∈ Dom(B), there is ξ̃ ∈ Y

such that

G(ξ̃, x, t) < 0,∀t ∈ B(x).

Next we try to guarantee the assumption (i) of the Cor. 3.6.8 through the properties of

G and B(·). We use the following notions of quasi-convexity of functions.
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Definition 3.6.3 (γ-strong convex function). Let Y be a linear space and f : Y → R.

If for any ξ1, ξ2 ∈ Y and α ∈ (0, 1) there are some fixed c > 0 and 0 < γ ≤ 2 such that

f(αξ1 + (1 − α)ξ2) ≤

αf(ξ1) + (1 − α)f(ξ2) −
1

2
cα(1 − α)‖ξ1 − ξ2‖γ ,

then f is called γ−strongly convex.

In Def. 3.6.3, when γ = 2, f is called strongly convex (cf. Urruty & Lemaréchal [82]).

Definition 3.6.4 (γ-strongly quasi-convex function). Let Y be a linear space and

f : Y → R. If for any ξ1, ξ2 ∈ Y and α ∈ (0, 1) there are some fixed c > 0 and 0 < γ ≤ 2

such that

f(αξ1 + (1 − α)ξ2) ≤

max
{

f(ξ1), f(ξ2)
}
− 1

2
cα(1 − α)‖ξ1 − ξ2‖γ ,

then f is called γ-strongly quasi-convex.

One may wonder if there is any γ-strongly quasi-convex function.

Theorem 3.6.10. If f : [a, b] → R, f ′(x) ≥ d > 0, for all x ∈ [a, b], then f is γ-strongly

quasi-convex

(i) for γ = 1; or

(ii) for γ > 0, whenever [a, b] is a bounded interval.

Proof. Given x, x0 ∈ [a, b], w.lo.g. x < x0, we have to show that

f(αx + (1 − α)x0) ≤ f(x0) − 1

2
xα(1 − α)|x − x0|γ

for some c > 0. Denote by xα := αx + (1 − α)x0. By Mean-Value-Theorem, there is

ξ ∈ (xα, x0) such that:

f(xα) = f(x0) + f ′(ξ)(xα − x0) ≤ f(x0) + d(xα − x0).
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Thus we look for c and d for which the following holds true:

(f(xα) ≤)f(x0) + d(xα − x0) ≤ f(x0) − 1

2
cα(1 − α)|x − x0|γ (3.6.1)

⇔ αd(x − x0) ≤ −1

2
cα(1 − α)|x − x0|γ

⇔ 2d(x0 − x) ≥ c(1 − α)|x − x0|γ

⇔ 2d|x0 − x| ≥ c(1 − α)|x − x0|γ

⇔ 2d|x0 − x|1−γ ≥ c(1 − α),∀α ∈ (0, 1)

⇔ 2d|x0 − x|1−γ ≥ c.

Hence,

(i) if γ = 1, then (3.6.1) is satisfied for 2d ≥ c;

(ii) else if γ > 0, then (3.6.1) is satisfied for 2d|b − a|1−γ ≥ c.

But the satisfaction of (3.6.1) implies that f(xα) ≤ f(x0) − 1
2
cα(1 − α)|x − x0|γ , which

shows the γ-strong quasi-convexity of f .

To give a concrete example

Example 3.6.11. Consider f(x) = x3 + x. Then f is γ-strongly quasi-convex

(i) for γ = 1 and x ∈ R; or

(ii) for γ > 0 and x ∈ [a, b], where [a, b] is a bounded interval,

for appropriately chosen c and d.

Obviously, a γ−strongly quasi-convex function is strictly quasi-convex. Moreover, we

have

Lemma 3.6.12. γ-strong convexity implies γ-strong quasi-convexity.
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Proposition 3.6.13. Let X and T be topological spaces, Y be a linear space and

B : X −→→ T be a SV-map with compact values. If, for any fixed x ∈ X and t ∈ T ,

G(·, x, t) is γ−strongly (quasi-) convex, then m(·, x) is γ−strongly quasi convex; hence,

strictly quasi-convex.

Proof. For ξ1, ξ2 ∈ Y and λ1, λ2 ∈ [0, 1] we have

m(λ1ξ1 + λ2ξ2, x) = sup
t∈B(x)

[
G(λ1ξ1 + λ2ξ2, x, t)

]

≤ sup
t∈B(x)

[
max

{
G(ξ1, x, t), G(ξ2, x, t)

}

− 1

2
c‖ξ1 − ξ2‖γ

]

= max
{

sup
t∈B(x)

G(ξ1, x, t), sup
t∈B(x)

G(ξ2, x, t)
}

− 1

2
c‖ξ1 − ξ2‖γ

= max
{

m(ξ1, x),m(ξ2, x)
}
− 1

2
c‖ξ1 − ξ2‖γ.

Therefore, m(·, x) γ−strongly quasi-convex; hence, it is strictly quasi-convex.

Summing up, given a linear space Y and

M(x) = {ξ ∈ Y |G(ξ, x, t) ≤ 0, t ∈ B(x)},

M(·) will be a lower robust SV-map

(i) if

(a) G(·, ·, ·) is u.s.c. and M(x) is not a singleton;

(b) G(·, x, t) is (γ−) strong (quasi−) convex, w.r.t ξ ∈ Y for each t ∈ B(x);

(c) B(·) is upper robust and compact valued;

(ii) or

(a) G(·, ·, ·) is u.s.c.;

(b) for each x ∈ X, there exists ξ̂ such that G(ξ̂, x, t) < 0 for all t ∈ B(x) (note

that G u.s.c. implies there is U(ξ̂) : G(ξ, x, t) < 0 for all ξ ∈ U(ξ̂));
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(c) B(·) is upper robust and compact valued.

For a further characterization of robustness the map M(·) through regularity and con-

straint qualifications see sections 3.6.3 and 3.6.4.

3.6.3 Piecewise Semi-continuity of a SV-map with a Structure

In Sec. 3.4.4 we have considered piecewise semi-continuity properties of a general SV-map.

Correspondingly, we would like to characterize piecewise semi-continuity for set-valued

maps with given structures.

Recall that M(x) = {ξ ∈ Y | G(ξ, x, t) ≤ 0, ∀ t ∈ B(x)}. We give now a second

characterization of lower robustness of M(·), besides the ones in Sec. 3.6.2, based on

piecewise upper semi-continuity of B(·), joint upper semi-continuity of G and some weaker

regularity condition of the system defining M(x). Let X be a metric space, with metric

ρ, let Y be a robust subset of some topological space, and T be a topological space.

Assumption (A): The set X has a robust partition (Xi)i∈I , I = {0, 1, 2, ..., r + 1},

where

X0 := {x ∈ X |B (x) = ∅} and Xr+1 := {x ∈ X | M(x) = ∅} are among the robust

partitions.

Assumption (B): The map B : X −→→ T is compact valued and B|Xi
, i = 0, 1, 2, ..., r, r+1

is u.s.c. w.r.t. the relative topology on Xi.

Definition 3.6.5 (local r-regularity). The system

G(ξ, x, t) ≤ 0,∀t ∈ B(x)

ξ ∈ Y

is r-regular at (ξ0, x0) ∈ Y × Xi if there is a semi-neighborhood SNH(x0) ⊂ Xi of x0

w.r.t. the relative topology of Xi and a non-decreasing function rξ0,x0,SNH(x0) : R+ → R+
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continuous at 0, with r(0) = 0 such that

∀x ∈ SNH(x0) : dist(ξ0,M(x)) ≤ r

(
max
t∈B(x)

[
G(ξ0, x, t)

]+
)

.

The r-regularity given in Def. 3.6.5 is quite weaker than the metric regularity condition

given by Klatte & Henrion [39] (see also Chap. 1, Def. 1.2.2). In fact, from the metric

regularity follows the lower semi-continuity of M(·) (cf. Chap. 1, Thm. 1.2.4).

Theorem 3.6.14. Let X and Y be normed spaces. If G is u.s.c. on Y × X × T ,

Assumptions (A), (B) are satisfied; and for all i ∈ {0, 1, . . . , r, r + 1} and all x0 ∈ Xi the

system defining M(x) is r-regular at each (ξ0, x0), for each ξ0 ∈ M(x0), then M(·) is l.r.

on X.

Proof. We show that M(·) is piecewise lower robust. That is, we show that for each

i ∈ {0, 1, . . . , r + 1}, M(·) is lower robust on Xi. If x ∈ X0, then it follows that

M(x) = X, i.e. M(·) is continuous on X0 in the relative topology. For all x ∈ Xr+1

we get, from M(x) = ∅, that M(·) is l.r. on Xr+1. Thus, it remains to discuss the case

1 ≤ i ≤ r.

Thus, let i ∈ {1, . . . , r} and x0 ∈ Xi. Let also ξ0 ∈ M(x0).

a) By definition of M(·) we have that

G(ξ0, x0, t) ≤ 0,∀t ∈ B(x0).

If we let g(ξ, x) := maxt∈B(x)[G(ξ, x, t)]+, then g(ξ0, x0) ≤ 0. Moreover, g(ξ0, x) :=

maxt∈B(x) G(ξ0, x, t) and B(·) is u.s.c on Xi w.r.t the relative topology of Xi. Con-

sequently, g(ξ, ·) is u.s.c. at x0 in the topology of Xi. Hence, given ε > 0, there a

neighborhood Vε(x
0) such that

g(ξ0, x) ≤ ε,∀x ∈ Vε(x
0) ∩ Xi. (3.6.2)

b) By the r-regularity at (ξ0, x0), we obtain that

∀x ∈ SNH(x0)∩
[
Vε(x

0) ∩ Xi

]
: dist(ξ0,M(x)) ≤ r

(
max
t∈B(x)

[
G(ξ0, x, t)

]+
)

= r(g(ξ0, x)).
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Using (3.6.2) and the property of the function r(·), we find that

∀x ∈ SNH(x0) ∩
[
Vε(x

0) ∩ Xi

]
: dist(ξ0,M(x)) ≤ r(ε).

Now, given an arbitrary neighborhood U(ξ0) ⊂ Y of ξ0, there is ε > 0 (and a

corresponding Vε(x
0)) such that the open ball B2r(ε)(ξ

0) is contained in U(ξ0). Ac-

cordingly, for each fixed x ∈ SNH(x0) ∩ [Vε(x
0) ∩ Xi], we deduce that

B2r(ε)(ξ
0) ∩ M(x) 6= ∅.

From this follows that

∀x ∈ SNH(x0) ∩
[
Vε(x

0) ∩ Xi

]
: M(x) ∩ U(ξ0) 6= ∅.

In other words

SNH(x0) ∩
[
Vε(x

0) ∩ Xi

]
⊂ M−1(U(ξ0)).

Since SNH(x0) is robust set w.r.t. the topology of Xi, we have [intXi
SNH(x0)] ∩

[Vε(x
0) ∩ Xi] 6= ∅. Hence, intXi

M−1(U(ξ0)) 6= ∅. Moreover, x0 is a robust point of

SNH(x0)∩ [Vε(x
0) ∩ Xi]; there by, x0 is robust point of M−1(U(ξ0)) in the relative

topology of Xi. Since x0 ∈ Xi is arbitrary, we conclude that M(·) is lower robust on

Xi in the relative topology. Therefore, M(·) is piece-wise lower robust; and hence,

it is lower robust (cf. Thm. 3.4.19).

Observe that the upper semi-continuity of B(·) is not assumed on the whole of

X, except on each of the partitioning sets Xi of X.

Remark 3.6.2. Let X and Y be normed spaces. If the regularity condition given by Def.

3.6.5 holds at (ξ0, x0) ∈ Y ×X, where ξ0 ∈ M(x0), for a neighborhood V (x0) of x0 w.r.t.

X and B(·) is u.s.c. on X, then M(·) will be lower semi-continuous at x0. The verification

of this follows with a slight modification of the proof of Thm. 3.6.14.

For a related result of upper robustness, we make the following assumption:
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Assumption(C): B|Xi
, i = 1, . . . , r is l.s.c. with respect to the relative topology of Xi.

Theorem 3.6.15. Let Y be a compact set. If G is l.s.c. on Y ×X × T and assumptions

(A) and (C) are satisfied, then M(·) is u.r. on X.

Proof. Considering

m(ξ, x) = max
t∈B(x)

G(ξ, x, t),

we get M(x) = {ξ ∈ Y | m(ξ, x) ≤ 0}. Then Assumption(C) and the lower semi-continuity

of G yield, by Thm. 4, Aubin & Cellina [4], that m is l.s.c. on Y × Xi, 1 ≤ i ≤ r, in

relative topology. Furthermore, since Y is compact, we have that M(·) is u.s.c. on Xi in

the relative topology of Xi, for each i ∈ {1, . . . , r} (cf. Chap. 1, Cor. 1.2.2) .

Putting all together, we obtain that M(·) is piecewise-u.s.c. on X. Applying Thm. 3.4.16,

we conclude that M(·) is upper robust.

3.6.4 Characterization of Robustness through Constraint Qual-

ifications

In this section we try to find out some results connecting certain Mangasarian-Fromvitz

type constraint qualifications with the robustness of set-valued maps.

Lemma 3.6.16. Suppose that X and O are robust and open sets, respectively. Then

X ∩ O 6= ∅ implies intX ∩ O 6= ∅

Proof. Obvious.

Definition 3.6.6. In a normed linear space W we define the tangential cone T (X, x̄) of

X ⊂ W at x̄ ∈ clX by

T (X, x̄) = {ξ ∈ W | ∀ε > 0,∀ρ > 0 : (x̄ + [cone (ξ + ρB) ∩ εB]) ∩ X 6= ∅}

which is known to be closed and which has the well-known properties

T (intX, x̄) ⊂ T (X, x̄) = T (clX, x̄) .
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We put, for ξ ∈ W,λ, ρ > 0, the convex set

Kλ (ξ, ρ) = cone (ξ + ρB) ∩ λB

which has a nonempty interior, where B represents the unit-ball of center at 0 of W .

Lemma 3.6.17. If X is a robust set and x̄ ∈ clX then T (X, x̄) = T (intX, x̄).

Proof. Observe that T (intX, x̄) ⊂ T (X, x̄) = T (clX, x̄) = T (cl (intX) , x̄) = T (intX, x̄).

Lemma 3.6.18. Suppose X is a robust subset of W , x̄ ∈ X (or x̄ ∈ clX ). If ξ0 ∈

T (X, x̄) and λ > 0, then int ([x̄ + Kλ (ξ0, ρ)] ∩ X) 6= ∅ and x̄ is a robust point of [robust

point to] the set [x̄ + Kλ (ξ0, ρ)] ∩ X.

Proof. Since T (X, x̄) = T (intX, x̄) and intKλ (ξ0, ρ) 6= ∅ and convex (hence robust)

we get, from Lemma. 3.6.16, that ∀ε > 0,∀ρ > 0 : ∅ 6= int [x̄ + Kε (ξ0, ρ)] ∩ intX ⊂

int ([x̄ + Kε (ξ0, ρ)] ∩ X). For each such ε < λ, we have ∅ 6= intKε (ξ0, ρ) ⊂ Kε (ξ0, ρ) ⊂

Kλ (ξ0, ρ) and intKε (ξ0, ρ) ⊂ εB. Hence, in each ε−ball x̄ + εB of x̄ there are interior

points of [x̄ + Kλ (ξ0, ρ)] ∩ X; i.e., x̄ is a robust point of [x̄ + Kλ (ξ0, ρ)] ∩ X if x ∈ X; or

a robust point to [x̄ + Kλ (ξ0, ρ)] ∩ X if x ∈ clX \ X.

Theorem 3.6.19. Suppose X and T are nonempty subsets of normed spaces, X is robust,

X × T ⊂ W , W is an open set, h : W → Rp and B : X ⇉ T is a set-valued map defined

by

B(x) = {x ∈ X | hi(x, t) ≤ 0,∀i ∈ I := {1, 2, ..., p}}.

If the (MFCQ) is satisfied at all
(
x, t

)
∈ {x̄} × B (x̄), i.e. for each t̄ ∈ B (x̄) with the

active index set

I0 := {i ∈ I | hi (x̄, t̄) = 0} ,

i) hi is Frechet-differentiable at (x̄, t̄) for each i ∈ I0 and hi is continuous at (x̄, t̄) for

each i ∈ I \ I0;
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ii) there are vectors ξ0 ∈ T (X, x̄) and η0 ∈ T (T, t̄) such that, for each i ∈ I0,

Dxhi (x̄, t̄) ξ0 + Dthi (x̄, t̄) η0 < 0;

then B (·) is lower robust at x̄.

Proof. We show that for an arbitrary ε > 0 the pre-image B−1(Vε(t̄)) of the neighborhood

Vε (t̄) = (t̄ + εB) ∩ T is a semi-neighborhood of x̄.

B−1 (Vε (t̄)) =
⋃

t∈Vε(t̄)

{x ∈ X | hi (x, t) ≤ 0,∀i ∈ I } .

By the continuity and linearity of the derivative (Dxh (x̄, t̄) , Dth (x̄, t̄)) , there are positive

radii ρx and ρt such that, for all i ∈ I0,

Dxhi (x̄, t̄) ξ + Dthi (x̄, t̄) η < 0

for each λ > 0 and each (ξ, η) ∈ Kλ (ξ0, ρx)×Kλ (η0, ρt). The Taylor approximation of hi

at (x̄, t̄) for i ∈ I0

hi (x, t) = hi (x̄, t̄) + Dxhi (x̄, t̄) (x − x̄) + Dthi (x̄, t̄) (t − t̄) + o (x − x̄, t − t̄)

yields radii ε > γx, γt > 0 such that for all (ξ, η) ∈ Kγx
(ξ0, ρx) ×Kγt

(η0, ρt)

hi(x̄ + ξ, t̄ + η) < 0

holds and the continuity of hi, for i ∈ I \ I0, yields radii ε > βx, βt > 0 such that, for all

(ξ, η) ∈ βxB × βtB, again the inequality

hi (x̄ + ξ, t̄ + η) < 0

is satisfied. It then follows that

B−1 (Vε (t̄)) ⊃ B−1 ((t̄ + min (γt, βt) B) ∩ T )

⊃ (x̄ + [Kγx
(ξ0, ρx) ∩ βxB]) ∩ X

=
(
x̄ + Kmin(γx,βx) (ξ0, ρx)

)
∩ X.

Hence, by Lemma 3.6.18, x̄ is a robust point of
(
x̄ + Kmin(γx,βx) (ξ0, ρx)

)
∩ X. Which

implies that, B−1 (Vε (t̄)) is a semi-neighborhood of x̄.
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Remark 3.6.3. If the (MFCQ) is satisfied separately at x ∈ X, for all t ∈ B(x); i.e., there

is ξ ∈ Rn such that

Dxhi(x, t)ξ < 0,∀i ∈ I0,∀t ∈ B(x),

then this implies again only the robustness of B(·) at x. However, if the (MFCQ) is

satisfied separately for all t ∈ B(x̄), then , as is well-known, B(·) turns out to be lower-

semi-continuous at x̄, since Kγx
(ξ0, ρx) can be replaced by the full neighborhood x̄+ γxB.

Next, we find a similar characterization for set-valued maps defined with a semi-infinite

system. Thus, in the following we suppose that X,Y, T are nonempty subsets of normed

spaces, B : X ⇉ T is a set-valued map and the set-valued map M : X ⇉ Y is defined by

M (x) = {y ∈ Y | G (y, x,B (x)) ≤ 0} ,

where G (y, x,Q) ≤ 0 means that G (y, x, t) ≤ 0 for all t ∈ Q for a subset Q of T . We use

further the active index set

E (x, y) = {t ∈ T | G (y, x, t) = 0} ⊂ T.

Definition 3.6.7. We say the (EMFCQ) is satisfied for the System

G (y, x,B (x)) ≤ 0

w.r.t. Y × X at (ȳ, x̄) if

1. there is some τ > 0 such that G(·, ·, ·) is F-differentiable at (ȳ, x̄, t) w.r.t. (y, x),

the remainder property is satisfied uniformly in t on a compact subsets of T and

G(ȳ, x̄, ·), DyG(ȳ, x̄, ·), DxG(ȳ, x̄, ·) are continuous for all t ∈ (E(ȳ, x̄)+τB)∩(B(x̄)+

τB) ∩ T and

2. there are directions η0 ∈ T (Y, ȳ) , ξ0 ∈ T (X, x̄) such that for all t ∈ E (ȳ, x̄)∩B (x̄)

DyG (ȳ, x̄, t) η0 + DxG (ȳ, x̄, t) ξ0 < 0.
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Theorem 3.6.20. Suppose the robust subset X, the nonempty subset Y and the nonempty,

compact subset T are supplied with respective induced topologies of their including normed

spaces and G : Y × X × T → R is continuous. If B : X ⇉ T is upper semi-continuous

on X and the defining system

G (y, x,B (x)) ≤ 0, x ∈ X, y ∈ Y

of the set-valued map M : X ⇉ Y satisfies the (EMFCQ) w.r.t. Y × X at (y, x̄) for all

y ∈ M (x̄), then M (·) is lower robust at x̄.

Proof. Let first B (x̄) 6= ∅. We show that for an arbitrary ε > 0 the pre-image M−1(Vε (ȳ))

of the neighborhood Vε (ȳ) = (ȳ + εB) ∩ Y , for an arbitrary ȳ ∈ M (x̄), is a semi-

neighborhood of x̄. We have

M−1 (Vε (ȳ)) =
⋃

y∈Vε(ȳ)

{x ∈ X | G (y, x,B (x)) ≤ 0} .

The (EMFCQ) implies the existence of directions η0 ∈ T (Y, ȳ) , ξ0 ∈ T (X, x̄) such that

for all t ∈ E (ȳ, x̄) ∩ B (x̄)

DyG (ȳ, x̄, t) η0 + DxG (ȳ, x̄, t) ξ0 < 0

holds.

By the continuity and linearity of the derivative (DyG (ȳ, x̄, t) , DxG (ȳ, x̄, t)), the con-

tinuity of (DyG (ȳ, x̄, ·) , DxG (ȳ, x̄, ·)) and the compactness of E (x̄, ȳ) ∩ B (x̄) there are

positive radii ρy, ρx, δ < τ such that

DyG (ȳ, x̄, t) η + DxG (ȳ, x̄, t) ξ < 0

for each λ > 0, each (η, ξ) ∈ Kλ (ξ0, ρy)×Kλ (η0, ρx) and each t ∈ ((E (ȳ, x̄) + δB) ∩ (B (x̄) + δB))∩

T . Because of the upper semi-continuity of B (·) and the compactness of T and B (x)

there is a σ (δ) > 0 such that

B (x) ⊂ (B (x̄) + δB) ∩ T (3.6.3)
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for all x ∈ X ∩ (x̄ + σB) (which is a relative open set in X). The Taylor approximation

of G at (ȳ, x̄, t)

G (y, x, t) = G (ȳ, x̄, t) + DyG (ȳ, x̄, t) (y − ȳ) + DxG (ȳ, x̄, t) (x − x̄) + o (y − ȳ, x − x̄, t)

and the continuity properties w.r.t t and the uniform remainder property in t yields radii

ε > γy, γx > 0 such that for all (η, ξ) ∈ Kγy
(η0, ρy) ×Kγx

(ξ0, ρx) and all

t ∈ ((E (ȳ, x̄) + δB) ∩ (B (x̄) + δB)) ∩ T

the inequality

G(ȳ + η, x̄ + ξ, t) < 0

holds true. The set-valued map (y, x) 7−→ E(y, x) is closed because of the continuity of

G on Y × X × T and the compactness of T implies its upper semi-continuity (cf. Chap.

1, Prop. 1.1.4). Hence, there is ε > µ(δ) > 0 such that for all (y, x) ∈ ((ȳ + µB) ∩ Y ) ×

((x̄ + µB) ∩ X)

E(y, x) ⊂ E(ȳ, x̄) + δB.

Thus, using (3.6.3), we have

[(E (ȳ, x̄) + δB) ∩ (B (x̄) + δB)] ∩ T ⊃ E (y, x) ∩ B (x)

for all (y, x) ∈ ((ȳ + µB) ∩ Y )× ((x̄ + µB) ∩ X). So far we proved the inverse map of the

active constraints contains the intersection of the semi-neighborhood Kγx
(ξ0, ρx) and the

neighborhood [(x̄ + min {σ, µ}B) ∩ X] of x̄.

The complement C of ((E (ȳ, x̄) + δB) ∩ (B (x̄) + δB)) ∩ T w.r.t. cl (B (x̄) + δB) ∩ T is a

compact set in T (note that cl (B (x̄) + δB) ∩ T ⊃ B (x)). Here is G (ȳ, x̄, t) < 0, i.e. non

active. Hence, for all t ∈ C and some βy > 0, σ > βx > 0 we have, by the continuity of

G, that

G(y, x, t) < 0
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for all (y, x) ∈ ((ȳ + βyB) ∩ X) × ((x̄ + βxB) ∩ Y ). It follows

M−1 (Vε (ȳ)) ⊃ M−1 ((ȳ + min (γy, βy, µ) B) ∩ Y )

⊃ (x̄ + [Kγx
(ξ0, ρx) ∩ βxB ∩ µB]) ∩ X

=
(
x̄ + Kmin(γx,βx,µ) (ξ0, ρx)

)
∩ X.

Hence, by Lemma 3.6.18, x is a robust point of
(
x̄ + Kmin(γx,βx,µ) (ξ0, ρx)

)
∩ X which im-

plies that M−1 (Vε (ȳ)) is a semi-neighborhood of x̄.

Furthermore, if B (x̄) = ∅, then there is a neighborhood U of x̄ such that B (x) = ∅ for

all x ∈ U . It follows immediately that M (x̄) ≡ Y on U . This even implies the continuity

of M(·) at x̄.

Remark 3.6.4. In the same manner as for the finite case, we get again lower robustness if

we have the (EMFCQ) being satisfied separately w.r.t. x ∈ X, for all y ∈ M (x̄); and the

lower semi-continuity if we have the (EMFCQ) separately w.r.t. y for all y ∈ M (x̄). In

both proofs, the compactness of B (x) plays an important role.

Remark 3.6.5. Both Theorems 3.6.19 and 3.6.20 can be extended to a piecewise upper

semi-continuous set-valued map B (·). Taking that {Xk}k∈J is a robust partition of the

robust set X, we demand the assumptions of the theorems to hold true for each component

Xk with respect to its relative topology. Naturally, we have to take the tangential cones

w.r.t. Xk and not w.r.t. X. For instance, in Thm. 3.6.20, the piecewise upper semi-

continuity of B (·) with the validity of the regularity condition (EMFCQ) on each Xk

imply that M(·) is piece-wise lower robust. Hence, M(·) will be lower robust (see Thm.

3.4.19). Note that, in this case the regularity separately in t (Thm. 3.6.19) or in y (Thm.

3.6.20) do not yield lower semi-continuity but lower robustness, since a piece-wise lower

semi-continuous set-valued map is at least lower robust.

Klatte & Henrion [39] have shown that the (EMFCQ) (w.r.t. a neighborhood) im-

plies metric-regularity (see Def. 3.6.5). Under such instances, M(·) will be lower semi-

continuous (cf. Chap. 1, Thm. 1.2.4). However, for us the upper semi-continuity of B(·)
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along with a weaker form (EMFCQ) (w.r.t. a semi-neighborhood, Def. 3.6.7) is enough

to derive the lower robustness of M(·). Indeed, it would have been very interesting to

find out the relation between r-regularity (of Def. 3.6.5) and the (EMFCQ) (Def. 3.6.7).

But, this has been left out for a future research activity.

Before passing to the next chapter it might be worthwhile to foretell that, in chapter 4,

we are going to consider a set-valued map of the form

M(x) = {x ∈ X | G(x, t) ≥ 0, t ∈ B(x)}.

where the sets X and Y collapse into one. Hence, the discussion in Sec. 3.6.2 needs to be

carried over in light of the form

M(x) = {x ∈ X | − G(x, t) ≤ 0, t ∈ B(x)}.

Furthermore, for set-valued maps with given structure we have explicitly considered in-

equality constraints. However, when equality constraints are assumed to be present one

may need certain stronger regularity conditions to guarantee the corresponding robust-

ness properties.

In many instances, the upper semi-continuity (upper robustness) of a set-valued map of

the form

B(x) = {t ∈ T | hi(x, t) ≤ 0}

follows easily, if we demand that T is a compact set and hi, i = 1, . . . , p, are continuous.

In this respect, the uniform lower robustness (Def. 3.6.1) and the r-regularity (Def. 3.6.2)

assumptions of Prop. 3.6.6 will become superfluous. In any case, one may need to note

that: the validity of continuity properties on partitioning sets implying robustness on the

whole.
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Chapter 4

A Coarse Solution of GSIP via a
Global Optimization Method

4.1 Introduction

We consider a generalized semi-infinite optimization problem (GSIP) with one semi-

infinite inequality constraint, with no prior assumption on the lower semi-continuity of the

index set valued map. Such a (GSIP) is known to be ill-behaved. In particular, the lack of

lower semi-continuity of the index map indicates that the feasible set M of (GSIP) might

not be closed. Consequently, (GSIP) may not possess a solution in M. Nevertheless, one

may be interested in determining a generalized solution of (GSIP); i.e., a solution that

lies in cl(M). Hence, the intention here is to determine a coarse approximation of such

a generalized solution of (GSIP) through the integral global optimization method (IGOM).

The IGOM was first proposed by Chew & Zheng [13], further elaborated and extended by

Zheng [88], Hoffmann and Phú [48], Hichert [26]. It has been found out that the IGOM

is computationally efficient when the data of the optimization problem possess some rele-

vant discontinuity properties, which are characterized by the notions of robustness [88]. In

fact, Hichert [26] have designed a more general version of (IGOM) into a software routine

called BARLO.
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Thus, the main objective is to verify the validity of the theoretical assumptions of the

(IGOM) in order to apply BARLO to the (GSIP). Since the (IGOM) has its roots in

robust analysis and measure theory, we mainly make use of results of robustness from

Chapter 3 and certain standard results of measurability from the literature.

Subsequently, two penalty approaches have been proposed:

Approach-1: a pure penalty approach; and

Approach-2: a penalty approach coupled with discretization.

In the first approach,

• an auxiliary parametric semi-infinite optimization problem (PSIP) has been set up

in order to characterize the admissible set M of the (GSIP); and

• then a discontinuous penalty function is defined using the marginal function of the

(PSIP), so that, (GSIP) could be re-written as, an equivalent, global optimization

problem;

• finally, relations between the minimizing sequences of the penalty problem and that

of the (GSIP) have been investigated.

In Approach-2,

• the marginal function of the lower level problem of (GSIP) and the well known

distance function are used to define two penalty problems related with the (GSIP);

then

• relations between the minimizing sequences of the penalty problems and that of the

(GSIP) have been examined; finally

• convergence of the considered discretization method have been analyzed.
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In both approaches, to guarantee the satisfaction of the assumptions of (IGOM), we as-

sume piecewise semi-continuity properties (cf. Chap. 3, sec. 3.4.4) of the index map B(·)

- an idea which fits the disjunctive nature of the feasible set M of (GSIP). Thus, we need

to ensure the upper robustness and measurability of the penalty terms and robustness and

measurability properties of the feasible set M.

This chapter has been organized as follows:

• In Section 4.2, the problem has been stated along with a perspective of the index

set-valued map.

• Section 4.4.1 presents an obvious characterization of the feasible set of (GSIP) to be

used in Section 4.4.2 for the construction of a global optimization problem which is

equivalent to (GSIP) under mild conditions.

• In Section 4.4.3 is to be found a brief review of the IGOM and a discussion on the

main assumptions which are necessary for its application.

• Sections 4.4.4 - 4.4.5 contain results that ensure the robustness and measurability

properties of the penalty function and the feasible set of (GSIP).

• Section 4.5 discusses a second type of penalty method; where Sec. 4.5.1 presents

two penalty problems and discusses their relation with the (GSIP). Moreover, Sec.

4.5.2 presents the discretization method used and investigates the convergence of

the proposed penalty methods.
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4.2 Problem and Motivation

We consider the problem

(GSIP ) f(x) → inf

s.t.

G(x, t) ≥ 0, ∀ t ∈ B(x),

x ∈ X.

And make the assumption

Assumption (A1): The sets X ⊂ Rn, T ⊂ Rm are compact and non empty, the func-

tions f : X → R and G : X × T → R are upper semi-continuous (u.s.c.) on X

and continuous on X × T , respectively. The set-valued map B : X ⇉ T is at least

compact valued but may have empty values for some x ∈ X.

Thus, the admissible (feasible) set of the (GSIP) is given by

M = {x ∈ X | G(x, t) ≥ 0, ∀ t ∈ B(x)}

may possess strange properties [70, 71, 72, 80], as was briefly summarized in Chapter 2.

Once more, the following example gives an impression about the situation.

Example 4.2.1. ( Jongen et. al. [34] ) Let X = [−10, 10]2 and put

B(x) :=





[−√
x1,

√
x1] if x1 ≥ 0,

∅ if x1 < 0.

Obviously, B(·) is compact valued, and continuous∗ w.r.t. the relative topology when

restricted to each of the sets X1 := {x ∈ X | x1 ≥ 0} and X2 := {x ∈ X | x1 < 0}.
∗From the usual definitions of the semi-continuity (see e.g. [4, 5]) it follows that a set-valued map

is l.s.c. and u.s.c. at those points where it has empty image, whenever the image is empty in some
neighborhood of such points.
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However, B(·) is u.s.c but not l.s.c. on the whole set X. Even with the single linear

semi-infinite constraint

G(x, t) = t + x2 ≥ 0,∀t ∈ B(x)

we easily find that

M = {x ∈ X | x1 < 0} ∪ {x ∈ X | x1 ≥ 0 ∧√
x1 ≤ x2},

which is not a closed set.

Such a situation is not specific to Example 4.2.1. Actually, several standard examples of

(GSIP) are observed to possess index maps B(·) of this nature. Nevertheless, recall that

Rückmann et al. [34] have shown that if B(·) is a l.s.c. set-valued map, then M will be

a closed set (Prop. 2.2.2). Instead, if B(·) is only piecewise semi-continuous (cf. Chap.

3, Sec. 3.4.4), then B(·) may not be semi-continuous. Consequently, the (GSIP) may not

possess a solution.

In general, we may claim that there is a minimizing sequence for (GSIP), the existence

of which may be assured, for e.g., by assuming boundedness of M and continuity of the

objective function f , etc. Actually, the use of minimizing sequences in optimization is

usually justified when the feasible set is not known to be closed. Such approaches are

frequently used in optimization problems arising from engineering design (see Polak &

Wardi [50]).

4.3 Minimizing Sequence and Generalized Minimiz-

ers - Definitions

Definition 4.3.1 (generalized minimizer). We say x is generalized minimizer of (GSIP)

if x ∈ cl(M) and f(x) = infx∈M f(x). We denote this by

x ∈ arg(GSIP ).
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If a generalized minimizer x belongs to M, then we call x a minimizer of (GSIP). We

also designate this by writing

x ∈ arg(GSIP ).

Since X ⊂ Rn is assumed to be a compact set, the continuity of f implies that arg(GSIP ) 6=

∅, whenever M 6= ∅.

Definition 4.3.2 (minimizing sequence).

A sequence {xn} is called a minimizing sequence of the problem (GSIP) iff

(i) limn→∞ f(xn) = infx∈M f(x);

(ii) there exists n0 ∈ N, such that xn ∈ M for all n ≥ n0 (i.e., feasibility for n ≥ n0).

When {xn} is a minimizing sequence of (GSIP) we write

{xn} ∈ MS(GSIP ).

Moreover, we call {xn} a generalized minimizing sequence of (GSIP) if instead of (ii) we

have

(iii) limn→∞ dist(xn,M) = 0 is satisfied.

In the latter case we use the notation

{xn} ∈ GMS(GSIP ).

Furthermore, let ψ : X → R be given and take the global optimization problem

(Pψ) ψ(x) → inf

x ∈ X.

Then
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Definition 4.3.3. Let x ∈ X. Then

(i) x is called a minimizer of (Pψ) iff

ψ(x) = inf
x∈X

ψ(x); and

(ii) x is called a generalized minimizer of (Pψ) iff

lim inf
x→x

ψ(x) = inf
x∈X

ψ(x)

x ∈ X.

(iii) A sequence {xn} ⊂ X is called a minimizing sequence of (Pψ) iff limn→∞ ψ(xn) =

infx∈X ψ(x).

We use the following corresponding notations:

x ∈ arg(Pψ), x ∈ arg(Pψ) and {xn} ∈ MS(Pψ).

Consequently, we have

Remark 4.3.1. Each accumulation point x of a minimizing sequence {xn} ∈ MS(Pψ)

belongs to arg(Pψ).

4.4 A Conceptual Penalty Method

4.4.1 Problem of Feasibility

To define a penalty function for the (GSIP), take some kind of distance function p from

some open superset W of X −X into the nonnegative reals with the following additional

properties.

Assumptions (A2):

i) The function p : W → R+ is continuous on W .
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ii) p (x) = 0 if and only if x = 0.

Furthermore, for each parameter x ∈ X, consider the problem of feasibility

(PSIP )

p(x − ξ) → inf

s.t.

G(ξ, t) ≥ 0, ∀ t ∈ B(x),

ξ ∈ X.

Problem (PSIP) is a parametric semi-infinite optimization problem, in which, if we fix

x ∈ X, the resulting problem is an ordinary semi-infinite optimization problem (SIP). If

we let

M(x) := {ξ ∈ X | G(ξ, t) ≥ 0, ∀t ∈ B(x)}, (4.4.1)

it can be seen that the sets M(x), x ∈ X, of (PSIP) and M of (GSIP) possess, in general,

entirely different structures. Actually, the set-valued map M : X ⇉ X has closed values,

due to the upper semi-continuity of the function G. For instance, for the example given

above (Exa. 4.2.1), we have

M(x) = {ξ ∈ X | G(ξ, t) = t + ξ2 ≥ 0, ∀ t ∈ B(x)},

which yields

M(x) =

{
{ξ ∈ X | √x1 ≤ ξ2} if x1 ≥ 0,

X if x1 < 0.

That is, M(·) is a closed valued map while the set M is not closed.

The marginal value function ϕ of (PSIP)

ϕ(x) :=





inf
ξ∈M(x)

p(x − ξ) if M(x) 6= ∅,

+∞ if M(x) = ∅.
(4.4.2)

is generally discontinuous.

An obvious but important property of the function ϕ is given in the following proposition.
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Proposition 4.4.1. Assume that (A1) and (A2) are satisfied. Then we obtain the equiv-

alence

x ∈ M ⇐⇒ x ∈ M(x) ⇐⇒ ϕ(x) = 0.

Proof. Trivially, without using the assumptions, we find, by the definitions of M and

M (x), the implications x ∈ M ⇐⇒ G(x, t) ≥ 0,∀ t ∈ B(x) ⇐⇒ x ∈ M(x) =⇒ ϕ(x) = 0.

Now let ϕ(x) = 0. Then 0 = infξ∈M(x) p(x − ξ) yields by (A1) a convergent sequence

(ξn)n∈N
with limit x̄ ∈ M (x) and, by (A2), 0 = limn→∞ p(x − ξn) = p (x − x̄). Hence

x ∈ M (x).

Remark 4.4.1.

1. We have various options for the function p. Some possible choices for p could be

p(x − ξ) := ‖x − ξ‖,

or

p(x − ξ) := ‖x − ξ‖2,

or

p(x − ξ) := r (‖x − ξ‖) ,

where r : R+ → R+ is continuous on R+ and zero only at zero. Consequently, we

have, in the first case (for M (x) 6= ∅), that

ϕ(x) = inf
ξ∈M(x)

‖x − ξ‖ = dist(x,M(x)),

where dist (x,M(x)) is the well known distance from a point x to the set M(x).

In this case, the function ϕ ”measures the extent to which x does not satisfy the

relation x ∈ M(x)”; equivalently, x ∈ M. In other words, the set M is the set of

all fixed points of the SV-map M(·).

2. From Prop. 4.4.1 we also observe that: the feasible points of (GSIP) are the zeros

of the function ϕ, and vice-versa.
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4.4.2 Exact Penalty Approach

Next, we introduce a discontinuous penalty function and verify, under some assumptions,

the penalized problem and (GSIP) possess the same set of minimizing sequences. Following

Proposition 4.4.1 we have, for a fixed d > 0, the discontinuous penalty function

ϕd(x) :=

{
0 if x ∈ M,

ϕ(x) + d if x /∈ M,

of the admissible set M of (GSIP) and consider the associated penalty problem

(PPλd) f(x) + λϕd(x) → inf,

x ∈ X.

Theorem 4.4.2. Let f be Lipschitz-continuous modulo L, let D be the diameter of X

and let d > 0. If {xn} in X is a minimizing sequence of (PPλd) and λd > DL, then {xn}

is a minimizing sequence of (GSIP).

Proof. Let {xn} be a minimizing sequence of (PPλd) and ε > 0 be given. Then, there is

some n0(ε) such that for all n ≥ n0(ε)

β∗ ≤ f(xn) + λϕd(xn) ≤ β∗ + ε (4.4.3)

and corresponding xnε ∈ M such that

‖xnε − xn‖ ≥ dist(xn,M) ≥ ‖xnε − xn‖ − ε. (4.4.4)

It follows that

f(xn) + λϕd(xn) − ε ≤ β∗ ≤ f(xnε) + λϕd(xnε) = f(xnε) (4.4.5)

and

ϕd(xn) ≤ |f(xnε) − f(xn)| + ε

λ
(4.4.6)

≤ L

λ
‖xnε − xn‖ +

ε

λ

≤ L

λ
(dist(xn,M) + ε) +

ε

λ
.
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Hence for xn /∈ M, n ≥ n0(ε) and

ε <
(d − L

λ
D)

L + 1
λ

we get the contradiction

0 < d − L

λ
D ≤ ϕ(xn) + d − L

λ
D ≤ (L + 1)

λ
ε < d − L

λ
D.

Thus for all n ≥ n0(ε0/2) we have xn ∈ M and finally

β∗ = inf
x∈X

{f(x) + λϕd(x)} ≤ inf
x∈M

{f(x) + λϕd(x)} = inf
x∈M

f(x) = α∗, (4.4.7)

β∗ = lim
n→∞

{f(xn) + λϕd(xn)} = lim
n→∞

f(xn) ≥ α∗. (4.4.8)

Therefore, {xn} is a minimizing sequence for (GSIP).

Theorem 4.4.3. Let f be Lipschitz-continuous modulo L, let D be the diameter of X

and let d > 0. If {xn} in X is a minimizing sequence of (PPλd) with λ, d > 0 and assume

that there is some γ > 0 such that

ϕ(x) ≥ γ dist(x,M),∀x ∈ X,

and γ > L
λ
, then {xn} is a minimizing sequence of (GSIP). Furthermore, {xn} is a

minimizing sequence of (GSIP) for each other d > 0 with the above parameter λ.

Proof. Let {xn} be a minimizing sequence of (PPλd) and ε > 0 be given. Then, there is

some n0(ε) such that for all n ≥ n0(ε) and associated xnε ∈ M we have again (4.4.3) –

(4.4.6) and we get

γdist(xn,M) + d ≤ ϕd(xn) ≤ L

λ
(dist(xn,M) + ε) +

ε

λ
,

which implies that

d ≤ (
L

λ
− γ)dist(xn,M) + (

L + 1

λ
)ε.

Moreover, for xn /∈ M, n ≥ n0(ε) and choosing

ε <
d

L + 1
λ
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we obtain that

0 < d − (
L + 1

λ
)ε.

Consequently, we arrive at the contradiction

0 < d − (
L + 1

λ
)ε ≤ (

L

λ
− γ)dist(xn,M)

= (
L

λ
− γ)dist(xn,M) < 0.

Thus for all n ≥ n0(ε0/2) we have xn ∈ M and again (4.4.7), (4.4.8) hold true. Therefore,

{xn} is a minimizing sequence for (GSIP). Since for an arbitrary d > 0, except for a finite

number of elements, the sequence {xn} belongs to M, by a similar argument (as in Thm.

4.4.2) we conclude that {xn} is a minimizing sequence of (GSIP) for the arbitrarily selected

parameter d > 0.

Note that, if we take the set X as compact, then each minimizing sequence of (GSIP) has

a convergent subsequence which converges to a generalized solution of the (GSIP).

Standard Statement - in case when d = 0 (see Clark [14])

If f is Lipshitz continuous, ϕ(x) ≥ γdist(x,M),∀x ∈ M and γ > L
λ
, then each minimizing

sequence of (PPλ0), i.e. d = 0, has the property that

1) limn→∞ dist(xn,M) = 0;

2) limn→∞ f(xn) = α∗ = β∗;

3) there exists a convergent subsequence which converges to a generalized solution x ∈

cl(M).

4.4.3 Coarse Global Optimization Approach

Assuming that (PSIP) could be handled, for fixed x, by known algorithms of semi-infinite

optimization problems (see, for instance, Part II of Reemtsen and Rückmann [52] for a
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recent review of such algorithms), the idea is to determine a coarse approximation to

the solution of (GSIP) by solving (PPλd) using the integral global optimization method

IGOM, with suitable parameters λ and d. Thus, we require here the robustness properties

which we have discussed in Chapter 3.

Essential Infimum and Integral Global Optimization

Let X ⊂ Rn be a Lebesgue measurable, bounded set and let µ be the Lebesgue measure

on Rn. Let also f : X → R be Lebesgue measurable. Then α ∈ R is an essential lower

bound of f iff f(x) ≥ α almost everywhere (a.e.) in X, i.e. µ{x ∈ X | f(x) < α} = 0.

The essential infimum of f over X is the supremum over all essential lower bounds of f

(cf. Def. 2.1, Phú & Hoffmann [48]), i.e.

ess inf f = sup {α ∈ R |µ{x ∈ X | f(x) < α} = 0} .

The IGOM theoretically uses iterations of the form

αk+1 :=

∫
[f≤αk]

f(x)dµ(x)

µ[f ≤ αk]
,

where [f ≤ αk] := {x ∈ X | f(x) ≤ αk} are the level sets of f at the level αk. The IGOM

determines the essential infimum of f over X (cf. Hichert [26]). Indeed we have

Theorem 4.4.4. (Chew & Zheng [13]) If f ∈ L∞(X) and µ(X) < ∞, then limk→∞ αk =

ess infx∈X f(x).

As indicated earlier, Barlo (Hichert [26]) is a software implementation of the IGOM.

The coded routines of BARLO include: Monte-Carlo Sampling methods and Mean-

value/Riemann sum methods, which are developed by Zheng [88] for computation of

integrals; and branch and bound methods for level set approximation (Hichert [26]). Fur-

thermore, the algorithms suggested by Chew & Zheng [13] are improved and sped up

using some duality and Newton techniques (Hichert et al. [27, 28]) through the volume
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function introduced by Phú & Hoffmann [48].

Hence, according to Thm. 4.4.4, BARLO could be used to determine essential infimum.

Thus, to apply BARLO for the purpose at hand, it is required to ensure that infimum

and essential infimum are equal. Hence, we need to answer the question: When is min =

inf = ess inf?

Relation between min, inf, and ess inf

Theorem 4.4.5. (Prop. 3.1, p. 176, Phú & Hoffmann [48]) Let f ∈ L∞(X). If X is

robust, Lebesgue measurable and f is u.r., then ess infx∈X f(x) = infx∈X f(x).

Corollary 4.4.6. Let f ∈ L∞(X). If X is compact, robust, and Lebesgue measurable;

and f is u.r. and l.s.c., then ess infx∈X f(x) = minx∈X f(x).

Thm 4.4.5 indicates that the concept of robustness allows us to minimize special kinds of

discontinuous functions using the IGOM. However, the set of all u.r. functions is not a

linear space (cf. Example 3.1, Phú & Hoffmann [48]), since the sum of two or more u.r.

functions, generally, may not be u.r. Nevertheless, we have

Proposition 4.4.7. (Zheng [88]) Let f : X → R and ϕd be as defined in Sec. 4.4.2. If

f is u.s.c. and ϕd is upper robust, then f + λϕd is upper robust, for every λ > 0.

Proposition 4.4.8. Let ϕ and ϕd be as defined in sections 4.4.1 and 4.4.2, respectively.

If ϕ is an upper robust and measurable function and M is a robust and measurable set,

then ∀d > 0 : ϕd is also upper robust and measurable.

Proof. Given c ∈ R

{x ∈ X | ϕd(x) < c} =





∅ if c < 0

M if 0 < c ≤ d

{x ∈ X | ϕ(x) < c − d} if c > d.

(4.4.9)
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Consequently, it remains to guarantee the upper robustness and measurabil-

ity of the marginal function ϕ of (PSIP) and the robustness and measura-

bility of the admissible set M of (GSIP). While the upper robustness of ϕ follows

from the discussion in Chapter 3 (Sec. 3.5), the rest could be verified by using simple

arguments.

4.4.4 Robustness of the Admissible Set M of GSIP

Consider the lower level problem associated with the (GSIP)

(GO) v(x) := inf
t∈B(x)

G(x, t)

Recall that M = {x ∈ X | G(x, t) ≥ 0,∀ t ∈ B(x)}. Then using v(·) we write M as

M = {x ∈ X | v(x) ≥ 0}. When the defining functions of the lower level problem (GO)

are affine linear, Props. 2.2.5 and 2.2.6 yield the robustness of M (using Cor. 3.2.1 and

Rem. 3.2.1). Along with this observation, the aim here is to provide some supplementary

results based on certain topological assumptions.

Take the function v : X → R and consider the set M := {x ∈ X | v(x) ≥ 0} and let

M0 := {x ∈ Rn | v(x) = 0}.

Strong Slater condition (SSC): For each x0 ∈ M0 and each neighborhood N(x0), in

the relative topology of X, there is some x ∈ N(x0) such that v(x) > v(x0).

Lemma 4.4.9. If v is l.s.c. and (SSC) holds on X, then M is a robust set.

Proof. Clearly {x ∈ X | v(x) > 0} ⊂ int(M) and M = {x ∈ X | v(x) > 0} ∪ {x ∈

X | v(x) = 0}. It then follows M = int(M) ∪ {x ∈ X | v(x) = 0} = int(M) ∪

M0. Obviously, every element of int(M) is a robust point of M. And if x0 ∈ M0, by

assumption, for every neighborhood N(x0) we have N(x0) ∩ int(M) 6= ∅. Then x0 is a

robust point of M. Therefore, the set M is robust.
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Note that under the assumption (A1), if B(·) is u.s.c. and G(·, ·) is l.s.c., then v(·) will be

l.s.c. (cf. Aubin & Cellina [4]). Furthermore, the upper semi-continuity of B(·) follows

from the continuity of its defining functions hi, i ∈ I, and compactness of the set T (cf.

Rem. 1.2.1(i), Chap. 1). In other words, the l.s.c. assumption in Lem. 4.4.9 on the

function v(·) is somehow natural.

Proposition 4.4.10. If B(·) is piece-wise u.s.c. and compact valued, G l.s.c., X0 = {x ∈

X | B(x) = ∅} is robust †, and {Xi, X0}i∈I is a robust partition of X, and v : X\X0 → R

is given with

(GO) v(x) := inf
t∈B(x)

G(x, t)

fulfils the (SSC) on each partition Xi, i = 1, 2, .., r with respect to the relative topology on

Xi, then the admissible set M of (GSIP) is robust.

Proof. M can be equivalently written as

M = {x ∈ X | v(x) ≥ 0} ∪ X0 =
r⋃

i=1

{x ∈ Xi \ X0 | v(x) ≥ 0} ∪ X0.

By assumption we have the robustness of X0. Since B(·) is piece-wise u.s.c. and compact

valued and G is l.s.c., then v is l.s.c. on the partitioning sets Xi w.r.t. the relative

topology ( cf. Thm. 5, p. 52, Aubin & Cellina [4]). The (SSC) on each Xi yields that

Mi := {x ∈ Xi | v(x) ≥ 0} is a robust subset of Xi in the relative topology of Xi (by

Lemma 4.4.9). By Lemma 3.4.17, Mi is robust in X. Therefore, M is a robust set, since

it is a union of robust sets.

Sufficient for the (SSC) may be conditions of the type extended Mangasarian Fromowitz

Constraint qualification (EMFCQ), whenever some differentiability assumptions made on

G and the constraint functions describing the set-valued map B(·). Actually, it needs to

be stressed that, the known strong conditions for nice behavior of a (GSIP) are expected

to hold on each component of a suitable robust partition.

†The robustness of the set X0 = {x ∈ X | B(x) = ∅} follows from the upper robustness of B(·), since
B(·) is piecewise u.s.c. (cf. Chap. 3, Cor. 3.4.4)
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4.4.5 Measurability of Marginal Functions

The measurability of the marginal function ϕ follows from standard arguments from the

literature. Consequently, we require the concept of measurability of set-valued mappings

with given structures. For this, we mainly consult the book of Rockafellar & Wets [57].

Again, only results concerning the partitioning sets Xi, i ∈ I, of X need to be verified.

With respect to functions and sets in Rn, the ordinary notion of Lebesgue measurability

is used. Thus, we simply say measurable instead of Lebesgue measurable.

Assumption (A3): B |Xi
is l.s.c. on Xi in the relative topology of Xi for i = 1, 2, ..., r.

Basic Definitions and Results

Let X,Y ⊂ Rn be closed and measurable sets. The SV-map M : X ⇉ Y is called mea-

surable iff M(·) is closed valued and M−1(C) is measurable for each closed set C ⊂ Y .

Let ψ : X×Y → R∪{−∞, +∞} =: R. Then the map Eψ(x) := {(y, α) ∈ Y ×R | ψ(x, y) ≤

α} is called the epigraphical map associated with ψ.

An extended real-valued function ψ is a normal integrand iff for each x ∈ X the function

y → ψ(x, y) is l.s.c. and its epigraphical map Eψ : X −→→ Y × R is measurable.

Theorem 4.4.11 (Thm. 2K, Rockafellar [56]).

If ψ : X × Y → R is a normal integrand and M : X ⇉ Y is a measurable SV-map, then

the marginal function ϕ(x) = infy∈M(x) ψ(x, y) is measurable.

Recalling the marginal value function ϕ(·) of (PSIP), if M(·) is measurable, then, by

Thm. 4.4.11, ϕ will be measurable, since the distance function p(·) is measurable (due to

its continuity). However, the measurability of the map M(·) still remains to be verified.
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Special Structure of M(x)

The feasible SV-map M(·) of (PSIP) has a special structure defined by the constraint

function G and the index map B(·). Thus, we give conditions on the map B(·) and the

function G to guarantee the measurability of M(·), of the marginal and of the penalty

functions ϕ and ϕd, and of the feasible set M of (GSIP). We say that X0, X1, ..., Xr is

a (robust and measurable) measurable partition of X iff X0, X1, ..., Xr is a partition of

X and all parts Xi are (robust and measurable) measurable. We assume further that

X0 := {x ∈ X |B (x) = ∅} belongs to this partition.

Remark 4.4.2. Note that for an upper robust measurable SV-map B(·), the set X0 = {x ∈

X | B(x) = ∅} is both robust and measurable. The measurability of X0 follows from the

measurability of the set X \ X0 = Dom(B) = {x ∈ X | B(x) 6= ∅}. The robustness has

been guaranteed by Cor. 3.4.4 in Chap. 3.

Proposition 4.4.12. Let X be some measurable subset of Rn and let ϕ : X → R be a

function. Suppose also that X0, X1, ..., Xr is a measurable partition of X. If, for each

i ∈ {0, 1, . . . , r}, ϕ is measurable on Xi, then ϕ is measurable on X.

Proof. Let {Oα}α∈Λ be the family of measurable sets in Rn. Then, for each i ∈ {0, 1, . . . , r},

the family of sets {Xi∩Oα}α∈Λ is the family of measurable sets w.r.t. the relative topology

on Xi. Thus, the σ-algebra σ({Xi ∩Oα}α∈Λ) defines the induced measure on Xi. As ϕ is

measurable w.r.t. Xi, then for any measurable set D ⊂ R we have that ϕ−1(D) ∩ Xi is

measurable in Xi. Since Xi’s are measurable in X, we have ϕ−1(D)∩Xi is measurable in

X. Since the set {0, 1, . . . , r} is finite (countable infinite is also possible here), we conclude

that
⋃

i∈I

(ϕ−1(D) ∩ Xi) = ϕ−1(D)

is measurable in X. Consequently, ϕ is measurable on X.

Hence, based on Prop. 4.4.12, we are required to verify the measurability of the ϕ of

(PSIP) only on each of the partitioning sets Xi of X. For this, we need to assure the
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measurability of M(·). Hence, using the function m(ξ, x) = inft∈B(x) G(ξ, t), we write

M(x) = {ξ ∈ X | m(ξ, x) ≥ 0}.

Proposition 4.4.13. Let (Xi)i∈I a measurable partition of X. If assumptions (A1) &

(A3) hold true, B(·) is u.s.c. with compact values and G : Rn × Rm → R is continuous,

then −m is a normal integrand on Rn × Xi, for each i ∈ I. In this case, the set-valued

map M(x) = {ξ ∈ X | − m(ξ, x) ≤ 0} is measurable on Xi, for each i ∈ I.

Proof. We use the redefinition G̃(ξ, x, t) := G(x, t) and B̃(ξ, x) := B(x). Hence, we can

write

−m(ξ, x) = sup
t∈B̃(ξ,x)

−G̃(ξ, x, t).

By assumption B̃|Rn×Xi
is continuous and compact valued; and G̃(ξ, x, t) is also continu-

ous. These imply that −m is continuous on Rn ×Xi (cf. Thm. 6, p. 53, Aubin & Cellina

[4]). Since, Xi is measurable we conclude that −m is a normal integrand on Rn × Xi

(cf. Exa. 14.31 in Rockafellar & Wets [57]). Moreover, using Prop. 14.33 of [57] and the

closedness of the set X, the map

M(x) = {ξ ∈ Rn | − m(ξ, x) ≤ 0} ∩ X = {ξ ∈ X | − m(ξ, x) ≤ 0}

is measurable on Xi, for each i ∈ I.

Theorem 4.4.14. (Measurability of the marginal function) Let ϕ be the marginal function

of (PSIP) and let (Xi)i∈I be a (robust) measurable partition of X. If ψ is a normal

integrand on X × X and assumptions (A1), (A2) and (A3) hold true, B(·) is u.s.c. with

compact values and G : Rn × Rm → R is continuous, then ϕ is measurable on each Xi;

hence, measurable on X.

Proof. Clearly ψ is a normal integrand and M(·) is closed valued and measurable, by

Prop. 4.4.13, on Xi. Moreover, by Thm. 4.4.11, ϕ is measurable w.r.t. Xi. Therefore, by

Prop. 4.4.12, ϕ is measurable.
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Corollary 4.4.15. If assumptions (A1), (A2) & (A3) hold true, B(·) is u.s.c. with

compact values and G : Rn × Rm → R is continuous, then the feasible set M of (GSIP)

is measurable. Hence, ϕd is also measurable.

Proof. By Prop. 4.4.1 M = ϕ−1(0). Morevoer, under assumptions (A1), (A2) and (A3), ϕ

is measurable, by Thm. 4.4.14. Consequently, M is measurable. Furthermore, for the

function ϕd (see Section 4.4.2), given c ∈ R, we have (Eqn. 4.4.9) from which follows the

measurability of ϕd due to the measurability of ϕ and that of M.

Before winding up this section, it needs to be stressed that, the known strong conditions

for nice behavior of (GSIP) are expected to hold on each component of a suitable robust

measurable partition in the associated relative topology. What is really needed apriori,

in any case, is the robustness of the set of all x where the image of B(·) is empty - which

has been actually guaranteed by Cor. 3.4.4. In the known examples of (GSIP), given

by [34, 70, 72], with ill behavior, the assumptions (A1)-(A3) can be principally satisfied.

However, for a few of these examples the free choice of the functions (G, hi,∈ I) must be

properly done, so that the assumptions made here hold true.

Furthermore, the method suggested is mainly conceptual, waiting a practical implemen-

tation. However, it could serve as a starting point for the development of some fixed point

proximal type algorithm. At the same time, here it is assumed that the function G to

depend on both variables x and t. If G does not depend on x, then we will have

M = {x ∈ X | G(t) ≥ 0,∀t ∈ B(x)}

M(x) = {ξ ∈ X | G(t) ≥ 0, t ∈ B(x)}

and using, for instance, ψ(x, ξ) = ‖x − ξ‖ it follows that

ϕ(x) = inf
ξ∈M(x)

ψ(x, ξ) =





0 if x ∈ M,

+∞ if x /∈ M.
(4.4.10)

which is the indicator function of the set M. Under such instances the proposed approach

might not be interesting. Consequently, practical problems like the Design Centering
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problems (see Stein [75]) have feasible sets of the above type and they are out of the con-

siderations of this approach. However, the second approach can be used for the treatment

of Design Centering problems.

4.5 Penalty Methods with Discretization

In this section we discuss a second variant of penalty method. There are two penalty

problems presented here. One defined using the (marginal) value function of the lower

level problem; and a second defined through the proximity function of the feasible set M

of (GSIP). To justify the relevance of the approach, relations between (GSIP) and the

penalty problems have been studied. The discussion uses mainly minimizing sequences

(cf. 4.3).

The second half of this section indicates how one of the penalty problems could be used

in a numerical computation, to determine a coarse approximation to the optimal value

of a (GSIP). Specifically, we take up the penalty problem defined through the lower level

problem (GO) of (GSIP), introduce a discretization of the underlying set T and show

that the values of the discretized penalty problem provide bounds to the optimal value of

(GSIP) in the limit.

4.5.1 Two Penalty Problems

We consider again

(GSIP ) f(x) → inf

G(x, t) ≥ 0,∀t ∈ B(x)

x ∈ X

and make the stronger assumptions
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Assumption (A4):

• B(x) = {t ∈ T | hi(x, t) ≤ 0, i = 1, . . . , p};

• f : X → R a Lipschitz continuous function modulo Lf ;

• G : X × T → R l.s.c. on X;

• hi : X × T → R, i = 1, . . . , p, are continuous on X × T .

At times X and T may be treated as metric spaces. We also suppose that X ⊂ Rn, T ⊂

Rm. In view of the intention to solve (GSIP) with BARLO, we let X and T to be

compact sets. Hence, if X is a compact set, then each sequence {xn} in X has at

least one accumulation point x in X. Moreover, with the compactness of T , we have

B(x) := {t ∈ Rm | hi(x, t) ≤ 0, i = 1, . . . , p} ∩ T ; i.e., B(·) is compact valued and upper

semi-continuous.

Once more, consider the marginal function v : X → R of the lower level problem (GO) of

(GSIP)

v(x) = inf
t∈B(x)

G(x, t),

and the feasible set M of (GSIP) being written as

M = {x ∈ X | v(x) ≥ 0}.

We require here the strict r−regularity of [−v]+(cf. also Def. 3.6.2); meaning that, there

is a strictly increasing continuous function r from R+ into R+ such that

dist(x,M) =: inf
z∈M

d(x, z) ≤ r([−v(x)]+), ∀x ∈ X.

Specifically, we may take

r(t) = C · t, C > 0,

to obtain simpler forms.
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Assumption (A5): In the following we suppose that B(·) is piece-wise l.s.c. on X, M

is a robust subset of X and (−v)+ is r−regular on X w.r.t. M.

We consider the following two penalty functions:

p(x) = f(x) + λdist(x,M) + α · χ(x), (4.5.1)

q(x) = f(x) + λr([−v(x)]+) + α · χ(x), (4.5.2)

in which the function χ(·) is the indicator function of X \M with

χ(x) :=

{
1, if x /∈ M
0, if x ∈ M.

We also use the short form

s(x) := r([−v(x)]+).

Thus, we consider the following two penalty problems:

(Pλα) p(x) → inf, x ∈ X,

and

(Qλα) q(x) → inf, x ∈ X.

Since the functions χ(·) and s(·) are generally not continuous, we use the notions of min-

imizer, generalized minimizer and minimizing sequences for discontinuous optimization

problems as was introduced in Sec. 4.3.

Proposition 4.5.1 (cf. also Clark [14]).

Let λ > Lf , α ≥ 0 and infx∈M f(x) > −∞. Then the following hold true:

i)

inf
x∈X

p(x) = inf
x∈X

q(x) = inf
x∈M

f(x). (4.5.3)
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ii)

MS(GSIP ) ⊂ MS(Qλα) ⊂ MS(Pλα) ⊂ GMS(GSIP ). (4.5.4)

iii) If, additionally, α > 0, then

MS(Qλα) ⊂ MS(Pλα) ⊂ MS(GSIP )

Proof. (i) If x ∈ M, then dist(x,M) = s(x) = χ(x) = 0. Further, for all x ∈

X : dist(x,M) ≤ s(x). Hence,

inf
x∈X

p(x) ≤ inf
x∈X

q(x)

≤ inf
x∈M

q(x) = inf
x∈M

p(x) = inf
x∈M

f(x).

Therefore, it suffices to show that infx∈M f(x) ≤ infx∈X p(x). Given an arbitrary

x ∈ X and a sufficiently small η > 0, there is zη ∈ M such that

dist(x,M) ≥ dist(x, zη) − η

which implies that

Lf dist(x,M) ≥ Lf dist(x, zη) − Lfη.

Using the Lipschitz continuity of f , we have

Lf dist(x,M) + Lf η ≥ f(zη) − f(x).

From this follows that

f(x) + Lf dist(x,M) + Lf η ≥ f(zη).

Hence,

f(x) + λdist(x,M) + Lf η

≥ f(zη) + (λ − Lf )dist(x,M).
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Moreover,

f(x) + λdist(x,M) + αχ(x) + Lfη (4.5.5)

≥ f(zη) + (λ − Lf )dist(x,M) + αχ(x).

But λ > Lf , α ≥ 0 and χ(x) ≥ 0, for all x ∈ X, imply

f(x) + λdist(x,M) + αχ(x) + Lfη ≥ f(zη).

Thus,

p(x) + Lfη ≥ inf
x∈cl(M)

f(x),∀x ∈ X and η > 0.

Since η > 0 has been chosen arbitrarily, we have

p(x) ≥ inf
x∈M

f(x),∀x ∈ X,

where we used the fact that infx∈cl(M) f(x) = infx∈M f(x), for a Lipschitz-continuous

function f . Consequently,

inf
x∈X

p(x) ≥ inf
x∈M

f(x),

which was what we intended to verify. Therefore,

inf
x∈X

p(x) = inf
x∈X

q(x) = inf
x∈M

f(x).

(ii) Let {xn} ⊂ X and {xn} ∈ MS(Pλα). Then using the relation (4.5.5), we obtain

p(xn) + Lf η ≥ inf
x∈M

f(x) + (λ − Lf )dist(xn,M) + αχ(xn),∀n ∈ N.

Hence,

lim
n→∞

p(xn) + Lfη ≥ inf
x∈M

f(x) + (λ − Lf ) lim
n→∞

dist(xn,M) + lim
n→∞

αχ(xn).

Since {xn} ∈ MS(Pλα), we have

inf
x∈X

p(x) + Lf η ≥ inf
x∈M

f(x) + (λ − Lf ) lim
n→∞

dist(xn,M) + αχ(xn).
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Applying part (i), we get

0 ≤ (λ − Lf ) lim
n→∞

dist(xn,M) + αχ(xn) ≤ Lf η,∀η > 0.

But this, using λ > Lf , implies that

lim
n→∞

dist(xn,M) = 0, (4.5.6)

and

lim
n→∞

χ(xn) = 0.

It then follows that: if α = 0, then {xn} ∈ GMS(GSIP ); and, in case α > 0, then

{xn} ∈ MS(GSIP ).

Let now {xn} ∈ MS(Qλα). By r−regularity we have that

p(x) ≤ q(x),∀x ∈ X ⇒ p(xn) ≤ q(xn),∀n ∈ N

We then observe that

inf
x∈X

p(x) ≤ lim
n→∞

p(xn) ≤ lim
n→∞

q(xn) = inf
x∈X

q(x).

Applying part (i) again, we conclude that

inf
x∈X

p(x) = lim
n→∞

p(xn).

Consequently, {xn} ∈ MS(Pλα). Therefore,

MS(Qλα) ⊂ MS(Pλα).

Furthermore, if {xn} ∈ MS(GSIP ), then there is n0 ∈ N such that xn ∈ M for all

n ≥ n0. This implies that

p(xn) = q(xn) = f(xn),∀n ≥ n0.

Along with part i) we have

lim
n→∞

q(xn) = lim
n→∞

f(xn) = inf
x∈M

f(x) = inf
x∈X

q(x).

From this follows that MS(GSIP ) ⊂ MS(Qλα), and that completes the proof.
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Remark 4.5.1. We make the following observation.

Let {xn} ∈ MS(Pλα) ⊂ X or {xn} ∈ MS(Qλα) ⊂ X and X is a compact set. Then {xn}

has a limit point in X. Suppose x ∈ X is any limit point of {xn}; meaning that, there is

a subsequence {xk
n} ⊂ {xn} such that xk

n → x. Assuming λ > Lf , we know, from (4.5.6),

that

lim
n→∞

dist(xn,M) = 0.

Using the continuity of the distance function φ(x) := dist(x,M) (even Lipschitz contin-

uous, see Clark [14]), we obtain that

dist(x,M) = lim
k→∞

dist(xk
n,M) = lim

n→∞
dist(xn,M) = 0.

From which follows that x ∈ cl(M). At the same time,

lim
k→∞

(f(xk
n) + λdist(xk

n,M) + αχ(xk
n)) =

lim
k→∞

p(xk
n) = lim

n→∞
p(xn) = inf

x∈X
p(x) = inf

x∈M
f(x).

Hence, trivially,

lim
k→∞

f(xk
n) ≤ inf

x∈M
f(x) ⇒ f(x) ≤ inf

x∈M
f(x).

Then, using the continuity of f and x ∈ cl(M),

inf
x∈cl(M)

f(x) ≤ f(x) ≤ inf
x∈M

f(x).

Once again, for a continuous function f , infx∈cl(M) f(x) = infx∈M f(x), yielding

f(x) = inf
x∈M

f(x)

and x ∈ cl(M). Therefore, x is a generalized minimizer of (GSIP); i.e. x ∈ arg(GSIP ).

We then deduce that, given the assumptions made above hold true, every minimizing

sequence of (Pλα) or that of (Qλα) would give us a generalized minimizer of (GSIP).

Furthermore, if we know that M is a closed set, then the result will be a minimizer.

Next, we find a special instances of Prop. 4.5.1.
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Corollary 4.5.2. Let X be a compact set, λ > Lf , α = 0 and infx∈M f(x) > −∞. Then

i)

MS(Qλ0) ⊂ MS(Pλ0) = GMS(GSIP ).

ii) If s(·) is a continuous function and M is a closed set, then for every {xn} ∈

GMS(GSIP ), there is a subsequence {xk
n} ⊂ {xn} such that {xk

n} ∈ MS(Qλ0).

Specifically, each convergent generalized minimizing sequence of (GSIP), is a mini-

mizing sequence of (Qλ0).

Proof. (i) Follows trivially from Prop. 4.5.1(i) using α = 0.

(ii) Let {xn} ∈ GMS(GSIP ). Then limn→∞ dist(xn,M) = 0. In particular, using the

discussion in Rem. 4.5.1, there is a subsequence {xk
n} ⊂ {xn} such that xk

n → x,

for some x ∈ X and x ∈ cl(M). But cl(M) = M implies x ∈ M. Consequently,

s(x) = 0. Then, by the continuity of s(·), we have limk→∞ s(xk
n) = s(x) = 0.

Moreover,

inf
x∈X

q(x) ≤ q(xk
n) ⇒ inf

x∈X
q(x)

≤ lim
k→∞

q(xk
n) = lim

k→∞


f(xk

n) + λ s(xk
n)︸ ︷︷ ︸

→0




= lim
k→∞

f(xk
n) = lim

n→∞
f(xn) = inf

x∈M
f(x).

Using Prop. 4.5.1(i), we have that

inf
x∈X

q(x) = lim
k→∞

q(xk
n).

Therefore, {xk
n} ∈ MS(Qλ0).

Remark 4.5.2.

i) In general, for α = 0, equality in (4.5.4) may not hold even if s(·) is a continuous

function and M is a closed set, as Cor. 4.5.2(ii) indicates.
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ii) When M is a closed set, then the most χ(·) can be is l.s.c. However, this does not

help so much, even to prove part of the equality in (4.5.4).

4.5.2 A Discretization Method

For computational reason, we consider only the penalty problem (Qλα) with α = 0. Thus,

to determine the values of the function [−v]+ from the lower level problem (GO) of (GSIP),

we need to work with a discretization of the set T . In every step of discretization, the

discretized problem (Qλα) will be solved by IGOM.

Thus, to make sure that IGOM is applicable for the purpose at hand, we require to verify

additional properties of robustness. One of these is

Proposition 4.5.3. If B(·) is upper robust, B(x) is compact for each x ∈ X, G is l.s.c.,

then [−v]+ is upper robust.

Proof. Since,

[−v(x)]+ = sup
t∈B(x)

([−G(x, t)]+),

then [−v]+ is upper robust.(cf. Thm. 3.5.6, Chap. 3).

Now we use the following penalty approach under the satisfaction of strict r−regularity of

M with r(t) = Ct.

Assumption (A5):

dist(x,M) ≤ C([−v(x)]+).

For λ > C · Lf , take the problem

q(x) = f(x) + λ · [−v(x)]+ → inf

x ∈ X

and try to find coarse minimizers using the global optimization routine - BARLO.
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Each function value of v(x) needs the global solution of the non-linear programming

problem

(P l) G(x, t) → min

t ∈ B(x).

In the first phase of using BARLO, we need only a coarse solution of P l. Since, B(x) is

embedded in T , B(·) is upper robust, i.e. B−1(U) a robust set for each open set in X.

Therefore, we use a grid Tn = {t1, . . . , tn} ⊂ T and consider the following simplified lower

level problem

(P l
n) G(x, t) → min

t ∈ B(x) ∩ Tn.

The solution of this discretized problem could be realized by simpler routines. Under

upper robustness (or upper semi-continuity) of B(·), the function

[−vn(x)]0 := sup
t∈B(x)∩Tn

[−G(x, t)]+

remains upper robust (upper semi-continuous) as the statement below claims.

Proposition 4.5.4. If B(·) is an u.r. [u.s.c.] SV-map with compact values and G l.s.c.,

then [−vn]+ is u.r. [u.s.c.]

Proof. Let x0 ∈ X. Since B(·) is compact valued and u.r., by Prop. 3.4.6, for every ε > 0,

there is a semi-neighborhood SNHε(x
0) such that

∀x ∈ SNHε(x
0) : B(x) ⊂ B(x0) + Bε.

We can choose a sufficiently small ε > 0, by the closedness of B(x0), so that

[
B(x0) + Bε

]
∩ Tn = B(x0) ∩ Tn. (4.5.7)
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Hence,

B(x) ∩ Tn ⊂ B(x0) ∩ Tn,∀x ∈ SNHε(x
0).

Moreover, by assumption, −G(·, ti) is u.s.c. for every fixed ti ∈ Tn. Hence, there is a

neighborhood U i
ε(x

0) of x0 such that

∀x ∈ U i
ε(x

0) : − G(x, ti) ≤ −G(x0, ti) + ε

Consequently,

N(x0) :=
⋂

ti∈Tn∩B(x0)

U i
ε(x

0) ∩ SNHε(x
0)

is a semi-neighborhood of x0 (by Rem. 3.2.1). Hence, for x ∈ N(x0) we have

[−vn(x)]+ = max
ti∈B(x)∩Tn

{
− G(x, ti), 0

}

≤ max
ti∈B(x0)∩Tn

{
− G(x, ti), 0

}

≤ max
ti∈B(x0)∩Tn

{
− G(x0, ti) + ε, 0

}

≤ max
ti∈B(x0)∩Tn

{
− G(x0, ti), 0

}
+ ε

= [−vn(x0)]+ + ε.

Consequently,

∀x ∈ N(x0) : [−vn(x)]+ ≤ [−vn(x0)]+ + ε.

Hence, [−vn(·)]+ is upper robust (cf. Prop. 3.2.5). To prove the upper semi-continuity,

replace the semi-neighborhood SNH(x0) by a neighborhood U(x0).

In prop. 4.5.4, the upper robustness of B(·) is important. In fact, if B(·) is not u.r.,

[−vn(·)]+ may not be u.r.

Example 4.5.5. Let G : R × R → R be given as G(x, t) = −t and let B : X −→→ T be

B(x) :=





[1, 4] , if x 6= x0

[2, 3] , if x = x0.
, x0 = 1.

March 22, 2005



4.5 Penalty Methods with Discretization 140

Hence, G is a continuous function and B(·) is compact valued and l.s.c. (hence l.r.), but

B(·) is not u.r. Take T = [1, 4] and a fine discretization Tn with 3, 4 ∈ Tn. Consequently,

we have

[−vn(x)]+ = max
ti∈B(x)∩Tn

{
− G(x, t), 0

}
=





4, if x 6= x0

3, if x = x0.

Hence, [−vn(x)]+ is not upper robust.

Remark 4.5.3. However, a similar statement as in Prop. 4.5.4 fails to exist for the lower

robustness of [−vn(x)]+ if we assume that G(·, t) is u.s.c. and B(·) is lower robust.

Remark 4.5.4. Along with Prop. 4.5.3 it is worth to note that, assuming the function

G(·, t) : Rn → R is continuous, the function vn is the infimum of a finite number of

measurable functions; hence, both vn and [−vn]+ will be measurable, for each n ∈ N.

Thus, measurability will not be an issue of further discussion.

The simplified problem (P l
n) can now be solved using BARLO to find a coarse approxima-

tion to the optimal value of the (GSIP). Starting with a coarse grid, in each subsequent

iteration of BARLO, we refine the discretization in the neighborhood of approximate

minimizers of (P l
n).

Since vn(x) ≥ v(x) and BARLO works with Monte-Carlo sampling and level-set shrinking

methods, we get an upper estimate of the infimum of (GSIP). For problems with lower

dimension in t and fast function evaluation of G(x, t), f(x) and h(x, t), BARLO gives

acceptable approximations in a moderate CPU time.

The original intention was to use the penalty problem (see Sec. 4.4.2)

(PPλd) f(x) + λϕd(x) → inf.

in determining an approximate solution for the (GSIP). However, initial computational

experiments indicated that the computation of this penalty problem is too expensive.

Furthermore, the more or less exact evaluation of the problem (P l) does the same job in
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a much shorter time.

If the level sets around the expected generalized solution is determined, one can continue

with (P l) to determine values of v(·) by using fast local methods, in the neighborhood of

the last minima in t.

If the grid density goes to zero, then we get a formal convergence (see next section). But

this might be hard to realize numerically.

4.5.3 Convergence of the discretization method for the penal-

ization approach

Let T ′ be a grid of T , T compact. We call

∆T ′ = max
t∈T

min
τ∈T ′

‖t − τ‖ (4.5.8)

the density of T ′ in T and say that grid T ′′ is finer than T ′ if ∆T ′′ < ∆T ′. From the

triangle inequality, it follows immediately that each grid point t′ ∈ T ′ has at least one

neighboring grid point t′′ ∈ T ′′ with

‖t′ − t′′‖ ≤ 2∆T ′

‖t′ − t′′‖2 ≤
2∆T ′

√
m

in Rm with Euclidean norm.

Actually, this is true if we consider equidistant grid points (cf. p. 140 Hettich & Zencke [25]).

We consider a sequence Tn of grids of T with

lim
n→∞

∆n = 0, where ∆n := ∆Tn.

We further assume that x̄ is a generalized solution of the problem

f (x) → inf

G (x, t) ≥ 0 ∀t ∈ B (x)

x ∈ X,
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where

B(x) = {t ∈ T | hi(x, t) ≤ 0, i = 1, . . . , p}.

And f : X → R, G : X ×T → R and h : X ×T → Rp (i.e. h = (h1, . . . , hp)) are functions

with the following properties:

• f is a Lipschitzian function with Lipschitz constant Lf ;

• G is Lipschitz continuous in t with constant LG uniformly on S ⊂ X; i.e.

∃LG > 0,∀x ∈ S,∀t, t
′ ∈ T :

|G(x, t) − G(x, t
′

)| ≤ LG‖t − t
′‖;

• hi : X ×T → R, i = 1, . . . , p, are Lipschitz continuous at t with constant Lh uniformly

on S̃ ⊂ X.

Furthermore, let for each ε ≥ 0

Bε (x) = {t ∈ T |h (x, t) ≤ ε} ,

Bε
n (x) = Bε (x) ∩ Tn,

and let vε
n be the discrete version of v with respect to B (x) defined as

vε (x) := min
t∈Bε(x)

G (x, t) and

vε
n (x) := min

t∈Bε
n(x)

G (x, t) .

Remark 4.5.5. Given an ε > 0, if we assume that the SV-map Bε(·) is upper robust

with compact values, then we could guarantee the upper robustness of the marginal value

function [−vε
n(·)]+ in the same manner as in Cor. 4.5.4.

Subsequently, we have the functions

q (x) = f (x) + λ [−v (x)]+

qε
n (x) = f (x) + λ [−vε

n (x)]+ , ε ≥ 0, n ∈ N

on X.
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Lemma 4.5.6. Let B be the unite ball of Rm.

i) The Lipschitz continuity of h := (hi)i∈I uniformly on S̃ ⊂ X implies

B(x) +
ε

Lh

B ⊂ Bε(x)

on S̃ for each ε ≥ 0.

ii) Given ε ≥ 0, if the defining system of inequalities of B(·) is r-regular (cf. Chap. 1,

Def. 1.2.1‡) for x ∈ S̃, then

Bε(x) ⊂ B(x) + r(ε)B.

Proof. i) For t ∈ B(x) the statement is obvious. Let t ∈
(
B (x) + ε

Lh
B

)
\ B (x). Then

we find some t′ ∈ B (x) , i.e hi(x, t′) ≤ 0, such that ‖t− t′‖ ≤ ε
Lh

. From hi (x, t) ≤

hi (x, t) − hi (x, t′) ≤ Lh‖t − t′‖ for all i ∈ I, follows that hi(x, t) ≤ ε,∀i ∈ I; i.e.

t ∈ Bε(x).

ii) Let t ∈ Bε(x) be arbitrary; i.e. hi (x, t) ≤ ε, i ∈ I. Which in turn implies that

hi (x, t)+ ≤ ε,∀i ∈ I. Hence, ‖h(x, t)+‖ ≤ ε. Consequently, by r-regularity, we have

that

dist(t, B(x)) ≤ r(‖h(x, t)+‖) ≤ r(ε).

The inclusions in Lem. 4.5.6 are applicable in the convergence analysis of the envisaged

discretization approach, where we use Bε(x) instead of B(x). The significance of the

inclusions, particularly the one in Lem. 4.5.6(ii), lies in the fact that the set Bε(x) could

help not to miss some important discretization points of Tn which might fall out of B(x);

in case B(x) has some difficult structures. Furthermore, given ε > 0, for a grid density

∆n ≤ r(ε), the points that lie in Bε(x) are with in the r(ε) neighborhood of B(x).

We need the following elementary Lemma.

‡The defining system of B(·) is r-regular if dist(t, B(x)) ≤ r(‖h(x, t)+‖),∀x ∈ X, for a continuous
non-decreasing function r : R+ → R+
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Lemma 4.5.7. Let α, β, γ ∈ R. If α ≤ β + γ and γ ≥ 0, then [α]+ ≤ [β]+ + γ.

Proof. We identify the following four cases

Case-1: α, β ≥ 0,

Then α, β ≥ 0 implies α = [α]+ ≤ β + γ = [β]+ + γ.

Case-2: if α < 0 ≤ β,

then [α]+ = 0 ≤ β + γ = [β]+ + γ.

Case-3: if α, β < 0,

then [α]+ = 0 = [β]+ ≤ [β]+ + γ.

Case-4: if α ≥ 0, β < 0,

then [α]+ = α ≤ β + γ ≤ [β]+ + γ.

To prepare the ground for the statement of convergence, we also require the following two

lemmas on the various marginal functions.

Lemma 4.5.8.

i) For each ε ≥ 0

vε (x) ≤ v (x) ;

[−v (x)]+ ≤ [−vε (x)]+ .

ii) Let ε ≥ 0. If the defining system of B(·) is r-regular for each x ∈ S̃, t ∈ Bε(x) and G

is uniformly Lipschitz continuous on S̃, then

vε (x) ≥ v (x) − r (ε) LG;

[−v (x)]+ + r (ε) LG ≥ [−vε (x)]+ .

on S̃.

Proof. i) is trivial!!
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ii)

vε(x) = min
t∈Bε(x)

G(x, t)

≥ min
t∈B(x)+r(ε)B

G(x, t) (using Lem. 4.5.6(ii))

≥ min
t∈B(x)

G(x, t) − r(ε)LG (using the Lip. property of G)

= v(x) − r(ε)LG.

The rest follows from Lem. 4.5.7.

The convergence of the values of the function qn(x) needs to take the grid density ∆n into

account. Accordingly, we have

Lemma 4.5.9.

i) For each ε ≥ 0

vε (x) ≤ vε
n (x) ;

[−vε
n (x)]+ ≤ [−vε (x)]+ .

ii) If h is Lipschitz and G is Lipschitz, both uniformly on S̃, then for δ ≥ ∆nLh

v (x) ≥ vδ
n (x) − ∆nLG;

[
−vδ

n (x)
]+

+ ∆nLG ≥ [−v (x)]+ .

Proof. i) is obvious.

ii) Since B(x) + △nB ⊂ B (x) + δ
Lh

B ⊂ Bδ (x) (Lem. 4.5.6(i)) and using (4.5.8), we

have, for each t ∈ B (x), some t′ ∈ Bδ
n (x) such that ‖t − t′‖ ≤ ∆n (actually,

B(x) ∩ Tn ⊂ Bδ
n(x)). Since B(·) is compact valued,

min
t∈B(x)

G(x, t) = G(x, t), for some t ∈ B(x).
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Hence, there is some ti ∈ Bδ
n(x) such that ‖t − ti‖ ≤ ∆n. Thus, using the Lip.

continuity of G, we obtain

min
t∈B(x)

G(x, t) =≥ G(x, ti) − LG‖t − ti‖ ≥ G(x, ti) − LG∆n

≥ min
ti∈Bδ

n(x)
G(x, ti) − LG∆n.

This implies

v(x) ≥ vδ
n(x) − LG△n.

The rest follows from Lem. 4.5.7.

In Lem. 4.5.9(ii), the δ controls the density of the discretization for which convergence

could be guaranteed. A simple observation also reveals the importance of the Lipschitz

continuity assumptions on the functions G and h. With this remark, we are now ready

to meet the statement of convergence.

Theorem 4.5.10. Let λ > 0. Then

i) if h Lipschitz and G is Lipschitz uniformly on X and δn = ∆nLh, then for each n ∈ N

inf
x∈X

qδn

n (x) + λ ∆nLG ≥ inf
x∈X

q (x) ≥ inf
x∈X

q0
n (x) ;

ii) if, additionally, the defining system of B(·) is r-regular and G is Lipschitz continuous

uniformly on X, then for each n ∈ N, and ε ≥ 0

inf
x∈X

q(x) ≥ inf
x∈X

qε
n(x) − λ r(ε)LG.

Proof. We make use of the results in Lem. 4.5.8 and Lem. 4.5.9.

i) If h Lipschitz, G is Lipschitz continuous uniformly on X and δn = ∆nLh, we have

[
−vδn

n (x)
]+

+ ∆nLG ≥ [−v (x)]+ ≥
[
−v0

n (x)
]+

.

Thus

inf
x∈X

qδn

n (x) + λ ∆nLG ≥ inf
x∈X

q (x) ≥ inf
x∈X

q0
n (x) .
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ii) If the defining system of B(·) is r−regular and G is Lipschitzian, then for each ε ≥ 0

and ∆n

[−v (x)]+ + r (ε) LG ≥ [−vε (x)]+ ≥ [−vε
n (x)]+ . (Lem. 4.5.8)(ii)

Hence

inf
x∈X

q (x) ≥ inf
x∈X

qε
n (x) − λ r (ε) LG.

Corollary 4.5.11. Let h be Lipschitz and G be Lipschitz uniformly on X. With the

absence of regularity we get, by using ε = δn = ∆nLh and both penalty functions qδn
n and

q0
n, an upper and lower estimation of the optimal value of (GSIP), i.e.

lim inf
n→∞

[
inf
x∈X

qδn

n (x)

]
≥ inf

x∈X
q (x) ≥ lim sup

n→∞

[
inf
x∈X

q0
n(x)

]
.

When, additionally, the r-regularity holds, we obtain

lim
n→∞

[
inf
x∈X

qδn

n (x)

]
= inf

x∈X
q (x) ≥ lim sup

n→∞

[
inf
x∈X

q0
n (x)

]
.

Thm. 4.5.10 and Cor. 4.5.11 provide an upper and a lower estimates for the value of

infx∈X q(x). Using Prop. 4.5.1, these are actually estimates for the optimal value of the

(GSIP).

Remark 4.5.6. Observe that the r-regularity assumption in Lem. 4.5.6(ii), Lem. 4.5.8(ii)

and Thm. 4.5.10(ii) leads to the lower semi-continuity of B(·) (cf. Chap. 1 Cor. 1.2.5).

But with out this assumption we are still able to estimate infx∈X f(x) as is shown in Cor.

4.5.11.

4.6 Conclusion

It is now obvious that, the lack of continuity in the index map B(·) of a (GSIP) might

entail difficult structures on the feasible set. Thus, the approaches presented makes use

of piecewise continuity properties of B(·) to characterize the feasible set. But, it needs to
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be stressed that, the known strong conditions for nice behavior of a (GSIP) are expected

to hold on each component of a suitable robust partition. However, for the application

of the (IGOM) such a partition need not be explicitly known. Only the existence of it is

important. Actually, the following two basic facts of robust measurable partitions have

been used:

• robustness on the parts implies robustness on whole; and

• measurability on the parts implies measurability on the whole.

Consequently, the proposed approaches could be used to tackle (GSIP)s with ”ill-behavior”.

At the same time ”well-behaved” (GSIP)s are part and parcel of the discussion. However,

problems of nicer structures (like convexity, etc) better be numerically treated by methods

that exploit their structures.

The discussion considers (GSIP)s only with inequality constraints. It then still remains

to find out the validity of the proposed method in the presence of equality constraints.

Nevertheless, one might imbed equality constraints into the objective as penalties.

Moreover, the approach through an auxiliary (PSIP) could lead to certain fixed point

and proximal point like algorithm. Therefore, this might be taken as a future research

direction.
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Chapter 5

Some Remarks on Numerical
Experiments

The numerical experiments made here are done through BARLO (Hichert[26]). But, the

details of the procedures of BARLO are left to [26].

As explained earlier, the second approach has been used for the computation of some

representative examples of (GSIP). From the theoretical investigations we know that, the

upper robustness of the index set-valued map, the continuity of the semi-infinite con-

straint function and the upper semi-continuity of the objective function of (GSIP) imply

the upper robustness of the objective function of (Qλ0) (second penalty approach). In

the examples considered, we have additionally the upper semi-continuity of the index set

valued map. Thus, the penalty objective is upper semi-continuous. Hence, the essential

infimum is equal to the infimum (Thm. 4.4.5) and we can principally use a stochastic

based method for the determination of the infimum of the objective over the compact set

X. If the penalty parameter is large enough, then the penalty problem is exact and its

solution or minimizing sequence is at least a generalized minimizing sequence of (GSIP)

(see Prop. 4.5.1). Nevertheless, the numerical computation using the global optimiza-

tion method is somehow numerically expensive. Thus, we can only expect to get coarse

approximations of the solution or generalized solution or some elements of a generalized

minimizing sequence of (GSIP) in an acceptable CPU-time for problems of lower dimen-

sions. This, in fact, has been the main aim of the proposed approach. After determining
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such coarse guesses it is necessary to apply local methods for further refinements. But

this has not been the subject of the investigation. Concerning local methods for (GSIP)

or (SIP) one can refer e.g. the latest book of Stein [75] and several papers of Stein, Still

and Tichatschke for details.

The GO procedure BARLO uses Branch And Reduced Level set Optimization method,

which was developed by Zheng and modified by Hichert and Hoffmann. Roughly spoken,

this method uses a uniformly distributed sampling of boxes, decides wether a point does

or does not belong to some level set and determines successful points of the new level,

which yield a new mean value. Then after, the size of the search box is reduced by using

some stochastically based ideas. If the size of the reduced box is too small or the cost to

find a point in a level set is too large, then the box is divided in two boxes. Mainly, the

following five criteria have been used as stopping rules. The first satisfied rule stops the

procedure.

1. maximal number of function evaluation is exceeded;

2. maximal number of iterations is exceeded;

3. maximal length of the box sides relative to the first box X is smaller than ∆b;

4. the variance of the function values in the current level; set relative to the variance

of the first level set is smaller than some V (f);

5. the function values in the level set are all close enough to the current level (∆f).

Whenever the parameters ∆b, V (F ) and ∆t are too small, then, on the one hand, the costs

become extremely high and, on the other hand, the results might not be more exact, since

there is a danger of cutting off a possible global optimum. For the purpose at hand, we

use ∆b, V (f) ∈ [10−5, 10−3] and ∆f ∈ [10−3, 10−1]. The larger the sample size the more

sure is the global search. Since we need an average of 3 - 12 function evaluations, to

find a point in a new level set we use a sampling of 15 - 40 new points. Points of earlier
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searches which also belong to the new level set are used again. After finding an initial

guess with the procedure BARLO, we repeat it several times - each time by decreasing

the box-neighborhood around the current guess. The diameter of the box-neighborhoods

depend on the variance of the previous step is about 1/(10*iter) of the diameter of X.

This strategy has moderate costs, is more successful than high sampling and prevents the

possible cut off of global optima.

Now, let us begin with the first example which shows the major properties of the approach.

Example 5.0.1.

f(x) = (x1 + 0.5 − 1/(1 +
√

5))2 + (x2 − 2.5)2

M =
{
x ∈ [−5, 5]2 | x1 − x2 − t ≥ 0,∀t ∈ B (x)

}

B (x) = {t ∈ [−5, 5] | t ≤ x1 − 2, 2t ≥ −x2 − 3}

The first two figures (Figure 1) show the nature of the admissible set M as determined

by G and B(·). The broken line characterizes the boundary of M, where G plays no role

and is mainly determined by B(x). Only on the feasible boundary (the solid line) we have

the interplay of G and B. We also observe that x = (−0.5, 2) is an inward corner point,

M is connected, robust, but not closed.

−1 −0.8 −0.6 −0.4 −0.2 0
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1.8
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2

2.1

2.2
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B(x) non empty ==>

SIP constraint plays no role 

SIP constraint in action

> 0 

< 0 

B(x) empty = =>

 part 1 
of admissible set   M 

 part 2
of admissible set   M 

= 0 v(x) 

−1 0
1.5

2.5

penalty = 0 

penalty > 0 

jump 

continuous 

continuous 

continuous 

Figure 1: Construction of admissible set, discontinuity of the penalty term.
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It is easy to show that B(·) is u.s.c. and lower robust, piecewise continuous (with 2

components); and G is linear in x and t. In Figure 2., the figure on the left shows the

behavior of the penalty term. It is discontinuous along the boundary of M which does not

belong to M. Such discontinuities accelerate the procedure BARLO to find admissible

points and principally do not create a problem.

Figure 2: Discontinuity of the penalty term v, discontinuity of the penalty term vε
n.

In contrast to (SIP), some difficulties arise in (GSIP) by the descretization of B(x). It

also causes additional discontinuities for the max-penalty function (Figure 2., right). This

plays no significant role in BARLO, but the boundaries of the corresponding approxima-

tions Mn and Mε
n of M are ’rugged’ as is illustrated in Figure 3. Despite this fact,

BARLO finds the global optima with respect to this worse structured boundary.
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−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0
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h
 * dt 

∆t −− jump 

jump 

Mε
n
 "subset"  of    M 

Figure 3: Structure of Mε
n for ε < Lh∆t (left), ε ≥ Lh∆t (right).
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Figure 4. shows the results for different sampling and accuracy without further re-starts of

BARLO. The comments that have been made earlier are really observable in this example.

The exact optimal solutions are indicated by a blue star.
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Figure 4: A coarse solution for several parameters, cf. corresponding colors.

Next, we re-start BARLO several times by using the small sample size of 15 and the

low accuracy of ∆b = 10−1, V (F ) = 10−3 and ∆f = 10−2. At the same time we use

ε = 0.5 and ∆t = 0.1 and reduce ε by half, but not smaller than ∆t. Divide ∆t by 1.2 at

each BARLO re-start (Figure 5.). This variant has about the same computational cost,

exactness and seems to work more stable. In fact, after three or four BARLO re-starts,

one could proceed with a local method.
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        problem 42, iter = 1, ∆t =0.1, ε = 0.5 
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problem 42, iter = 2, ∆ t =0.083, ε = 0.25 
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problem 42, iter = 3, ∆ t =0.069, ε = 0.125 
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f=f*, GO solution
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problem 42, iter = 5, ∆ t =0.048, ε = 0.048 

Figure 5: Function evaluations: 267, 459, 800, 1255, 404; CPU-time:1.05, 2.04, 4.23,

7.75, 3.13.

Now we consider a strange example. Here there is only one feasible point of M for which

B(x) is non-empty and the semi-infinite constraint is satisfied. All other feasible points

are those at which B(x) is empty.

Example 5.0.2. The point x = (−2, 0) is an inward corner of clM which is connected.

The feasible set M is the union of two open sets and the point 0, which belongs to the

interior of clM. Moreover, M is robust and B(·) is u.s.c.

M =
{
x ∈ [−5, 5]2 | −x2

1 + x2t ≥ 0,∀t ∈ B (x)
}

B (x) =
{
t ∈ [−5, 5] | x2 ≤ −t2, t2x1 − 2x2 ≤ 0

}

The following are 3D-representations of the penalty term vε
n (of v) when ε = 0.5, ∆t =

0.02 and ε = 0.0, ∆t = 0.5 (Figure 6.).

March 22, 2005



156

Figure 6: v (left), Mε
n
⊃
≈
M (middle), Mε

n
⊂
≈
M (right).

Under the same set of parameters as above, we get for the quadratic objective function

f(x) = (x1 + 3)2 + (x2 + 1)2 the following (Figure 7).
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problem 71, iter = 3, ∆t =0.069, ε = 0.125

f=f*, GO solution
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f > f* + 2*σ
rejected
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problem 71, iter = 4, ∆t =0.059, ε = 0.063

f=f*, GO solution
f < f* + 2*σ
f > f* + 2*σ
rejected

Figure 7: Function evaluations: 193, 989, 370, 314; CPU-time: 1.7, 4.62, 1.98, 1.92.

Example 5.0.3. Now we consider a design centering problem with non convex non simply

connected container. Here, we look for the largest ball B (x) which is contained in the set

G = {t | Gj (t) ≥ 0, j ∈ J = {1, 2, ..., 7}}

where

G1 (t) = t21 − t2

G2 (t) = −t1 + t22 + 1

G3 (t) = 1 − t2
1

4
− t22

G4 (t) = 2t1 + t22 + 1

G5 (t) = (t1 + 0.5)2 + (t2 + 0.5)2 − 0.04

G6 (t) = (t1 − 0.5)2 + (t2 + 0.5)2 − 0.04

G7 (t) = |t1| + t2 + 0.5.

This problem is restated as a GSIP as follows

f (x) = −πx2
3 → min

x ∈ M = {x ∈ [−1.5, 1.5] × [−1, 1] × [∆t, 1] | Gj (t) ≥ 0,∀t ∈ B (x) , j ∈ J}

B (x) =
{
t ∈ [−1.5, 1.5] × [−1, 1] | (t1 − x1)

2 + (t2 − x2)
2 ≤ x2

3

}
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Since B is continuous we have no strange behavior. But, the GO - approach does not

identify wether a problem has strange behavior or not. It works the same way in both

cases. Naturally, for problems with l.s.c index map B(·), after having a coarse global

guess for the solution, a local refinement can be done by using super linearly convergent

methods along with local reduction.

First (see Figure 8.), during each call of the BARLO routine, we use a fixed descretization

of T and extract, for each evaluation of the penalty objective, those points of the T -grid

which belong to Bε(x). If we use the ’find’ routine of Matlab with respect to the whole

grid in T , then this takes so much time (this was, actually, used for the examples with

one dimensional T , see above). Instead, we choose the nearest point of the T -grid with

respect to the midpoint of the ball and generate a grid-box whose convex hull contains

the ball Bε
n(x). At the same time, ∆t and ε are chosen so that B(x) is contained in the

container G. We also reduce ∆t by the factor 1.2. In order to avoid too early cut off of

global optima, the size of re-start boxes should not be less than a lower bound which is

about 1/25 of the size of X. If a guess is near the boundary of a box, then BARLO is

re-started with a new box having the found guess as a center.
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Figure 8: Design centering with one ball in the container G.

Second (Figure 9.), we use a direct descretization of Bε(x) by taking polar coordinates

and by generating an approximate grid of ∆t along boundary circles of the ball. The

starting angle of the polar coordinates is randomly chosen at each function evaluation.

This procedure is faster than the first one. Thus we can increase the sample size ( 30 )

and sharpen the stopping criteria (V (f) = 10−4, ∆b = 10−2, ∆f = 10−3). This shows,

that the effectiveness of the GO approach depends enormously on how fast we determine

the points of the grid which belong to Bε(x).

Remark 5.0.1. The effectiveness of the evaluation of the penalty term depends on the

possibility of fast determination of a grid with density ∆t which is surely contained in

Bε
n (x). A simple algorithm has been used to test all grid points of Tn wether they belong

to Bε
n (x) (along with the ”find” routine of Matlab) and to compute the penalty value by

using the ”maximum” function of Matlab.

In higher dimensions, such a task requires a lot of computational time for the determina-

tion of one single penalty value. It is believed that, tools of interval mathematics could
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create more effective box inclusions of Bε
n (x). In the case of the design centering problem,

we can directly discretize the set Bε
n (x). In this case the routine BARLO is about 10 to

20 times faster, when T is of dimension 2. However, for the approach to function properly

the discretization procedure must be able to recognize arising and vanishing components

of Bε
n (x), which is true for the above trivial but expensive approach.

A repeated call of BARLO with respect to the box X under different seeds of the ran-

dom generator is usefull to ensure the final result. Different seeds can produce different

local minima, because the box strategy with a repeated call of BARLO prefers the neigh-

borhood of the last guess. The figures next show the design centering using the second

descretization method.
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Figure 9: Design centering with one ball in the container G, several local solutions.
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[41] J. Kyparisis. On uniqueness of Kuhn-Tucker multipliers in non-linear programming.

Math. Prog., 32:242–246, 1985.

[42] E. Levitin. On local convex majorizing approximation of generalized semi-infinite

programming problems. Forshungsbericht, Nr. 96-35, Department of Mathematics,

University of Trier, 1996.

[43] E. Levitin. Reduction of generalized semi-infinite programming problems to semi-

infinite or piece-wise smooth programming problems. Forschungsbericht, Nr. 01-08,

Department of Mathematics, University of Trier, 2001.

[44] E. Levitin. On differential properties of the optimal value of parametric problems of

mathematical programming. Dokl. Akad. Nauk SSSR, 224:1354–1358, 1975.

[45] E. Levitin. Perturbation Theory in Mathematical Programming and its Applications.

John Wiley & Sons Ltd, 1994.

March 22, 2005



BIBLIOGRAPHY 170

[46] E. Levitin. Differential properties of parametric minimum funcitons and extremal

mappings. In Parametric Optimization and Related Topics IV, Gudat et al. (eds.),

pages 213–226. Peter Lang Verlag, 1997.

[47] E. Levitin and R. Tichatschke. A branch-and-bound approach for solving a class of

generalized semi-infinite programming problems. J. Glob. Opt., 13:299–315, 1998.

[48] H. X. Phu and A. Hoffmann. Essential supremum and supremum of summable

functions. Numer. Funct. Anal. and Optim., 17(1&2):167–180, 1996.

[49] S. Pickl and G.-W. Weber. An algorithmic approach by linear programming problems

in generalized semi-infinite optimization. J. Comput. Technol., 5:62, 2000.

[50] E. Polak and Y. Y. Wardi. A study of minimizing sequences. SIAM J. Ctrl. and

Optim., 22(4):599–609, 1984.

[51] H. R. and K. Kortanek. Semi-infinite programming: theory, methods and applica-

tions. SIAM Review, 35:380–429, 1993.

[52] R. Reemtsen and J.-J. Rückmann. Semi-infinite Programming. Kluwer Academic

Publishers, 1998.

[53] S. M. Robinson. Regularity and stability for convex multivalued functions. Math. of

OR, 1(2):130–143, 1976.

[54] S. M. Robinson. Some continuity properties of polyhedral multifunctions. Math.

Prog. Study, 14:206–214, 1991.

[55] R. T. Rockafellar. Convex Analysis. Princton University Press, Princeton, 1970.

[56] R. T. Rockafellar. Integral functionals, normal integrals and measurable selections.

In Nonlinear Operators and Calculus of Variations, Lecture Notes in Mathematics,

V. 543, A. Dold and B. Eckmann (eds.), pages 157–207. Springer Verlag, 1976.

[57] R. T. Rockafellar and R. J.-B. Wets. Varaitional Analysis. Springer Verlag, 1998.

[58] H. L. Royden. Real Analysis. Macmillan Publ. Comp., 3rd. edition, 1988.

March 22, 2005



BIBLIOGRAPHY 171

[59] J.-J. Rückmann and A. Shapiro. Second order optimality conditions in generalized

semi-infinite programming. to appear.

[60] J.-J. Rückmann and A. Shapiro. First order optimality conditions in generalized

semi-infinite programming. JOTA, 101(3):677–691, 1999.

[61] J.-J. Rückmann and O. Stein. On convex lower level problems in generalized semi-

infinite optimization. In Semi-Infinite Programming - Recent Advances, M. A. Gob-

erna, M.A. Lopez (eds.), pages 121–134. Kluwer, Dordrecht, 2001.

[62] J.-J. Rückmann and O. Stein. On linear and liearized generalized semi-infinite opti-

mization problems. Annals of Operations Research, 101:191–208, 2001.

[63] A. Shapiro. Second-order derivatives of extremal-value functions and optimality con-

ditions for semi- infinite programs. Math. of OR, 10(2):207–219, 1985.

[64] A. Shapiro. Perturbation theory of nonlinear programs when the set of optimal

solutions is not a singleton. Appl. Math. Optim, 18:215–229, 1988.

[65] A. Shapiro. Directional differentiability of the optimal value funciton in convex semi-

infinite programming. Math. Prog., 70:149–157, 1995.

[66] S. Shi, Q. Zheng, and D. Zhuang. Set valued robust mappings and approximatable

mappings. J. Math. Anal. Appl., 183:706–726, 1994.

[67] S. Shi, Q. Zheng, and D. Zhuang. Discontinuous robust mappings are approximatable.

American Math. Soc., Trans., 347(12):4943–4957, 1995.

[68] S. Shi, Q. Zheng, and D. Zhuang. On existence of robust minimizers. In The state of

the art in global optimization, C. A. Fouldas and P. M. Pardalos (eds.), pages 47–56.

Kluwer Academic Publishers, 1996.

[69] K. Shimizu, I. Y., and J. Bard. Nondifferentiable and Two-Level Mathematical Pro-

gramming. Kluwer Academic Publishers, Boston, 1997.

[70] O. Stein. On level sets of marginal functions. Optimization, 48:43–67, 2000.

March 22, 2005



BIBLIOGRAPHY 172

[71] O. Stein. The reduction ansatz in the absence of lower semi-continuity. In Parametric

Optimization and Related Topics Vol. V, J. Guddat, R. Hirabayashi and H. Th.

Jongen (eds.), pages 165–178. Peter Lang Verlag, 2000.

[72] O. Stein. The feasible set in generalized semi-infinite optimization. In Approxima-

tion, Optimization and Mathematical Economics, M. Lasdon (ed.), pages 309–327.

Physica, Heidelberg, 2001.

[73] O. Stein. First order optimality conditions for degenerate index sets in generalized

semi-infinite optimization. Math. of OR, 6(3):565–582, 2001.

[74] O. Stein. Bi-level strategies in semi-infinite programming, post-doctoral thesis, 2002.

[75] O. Stein. Bi-level Strategies in Semi-infinite Programming. Kluwer Academic Pub-

lishers, 2003.

[76] O. Stein and G. Still. On optimality conditions for generalized semi-infinite program-

ming. JOTA, 104(2):443–458, 2000.

[77] O. Stein and G. Still. On generalized semi-infinite and bi-level optimization. European

Journal of OR, 142:444–462, 2002.

[78] O. Stein and G. Still. Solving semi-infinite optimization problems with interior point

techniques. SIAM J. Ctrl. and Optim., 42:769–788, 2003.

[79] G. Still. Generalized semi-infinite programming: Numerical aspects. University of

Twente, Faculty of Mathematical Sciences, Memorandum No. 1470, 1998.

[80] G. Still. Generalized semi-infinite programming: Theory and methods. European

Journal of OR, 119:301–313, 1999.

[81] N. V. Thoai. Convergence and applications of a decomposition method using duality

bounds for nonconvex global optimization. JOTA, 113(1):165–193, 2002.
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tangential cone, 101
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Mangasarian-Fromovitz type, 101
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distance function, 115

upper robustness, 79
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essential lower bound, 121

F-Differentiable, 104

feasible boundary, 36

feasible(admissible) set of GSIP, 25, 112

closedness, 27

convexity, 31, 32

local and global structures of, 27

measurability of, 128

robustness of, 123, 124

fixed points, 117

function

approximatable, 63

lower robust, 62

measurable, 122

normal integrand, 125

pointwise upper robust, 61

robust, 63
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Lipschitz continuous, 118, 130
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parametric semi-infinite optimization, 116
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re-interant corner point, 29

Reduction Ansatz, 45
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robust measurable partition, 126

robust partition, 74
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of a set-valued map, 67
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set valued map
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set-valued map, 9
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an example of, 31
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