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Chapter 1

Introduction

Due to the extreme downscaling in modern semiconductor technology one has to deal with
elements in nanometer range. A compromise between performance and cost requires a trans-
formation of microelectronics to nanoelectronics. The definition of “nanotechnology” covers
multidisciplinary interest to objects and means working at an atomic, molecular or supramolec-
ular level, in the length scale range of approximately 1—100 nm, in order to understand and
create materials, devices and systems with fundamentally new properties and functions because
of their small characteristic lengths. Silicon as the basic material of microelectronics provides
the ideal platform for the integration of nanotechnology. The evolution is based on contin-
ued nanoscaling of Complementary Metal-Oxide-Semiconductor (CMOS) technology which
includes materials and lithography innovations at this stage. New architectures and structures
should be implemented to a non-classical CMOS technology and finally transition to novel
devices could take place (see e.g. http://www.intel.com).

The request of transmission of information between electronic elements in one integrated
system as fast, and as cheap as possible led to intensive investigations of possible silicon-based
optoelectronic devices. Optoelectronic integration on a chip, which is based on silicon pho-
tonics, can be characterized as the utilization of silicon-based materials for the generation
(electrical-to-optical conversion), guidance, control, and detection (optical-to-electrical con-
version) of light to communicate information over certain distances. The difficulty in making
a silicon light emitter arises from the indirect band-gap of the material. This indirect band
gap results in radiative (light emitting) decay being less likely compared to other non-radiative
(e.g., Auger recombination) channels, and thus in a less-efficient corresponding light emission.
Forming a laser or even a light emitter from silicon is, therefore, difficult, although not impos-
sible. Research worldwide has shown light emission from silicon and silicon-based materials
by a wide variety of different methods. Intensive photoluminescence has been demonstrated for
textured bulk Si [1], fabricated nano-scale Si [2], porous Si [3], crystalline Si with defects [4]
or doped by exotic ions [5].

One approach to enhance the efficiency of light emission in silicon is to reduce the other non-
radiative mechanisms for electron-hole recombination and to increase the oscillator strength of
the lowest optical transitions. This can be done by restricting carrier diffusion to the non-
radiative recombination centers in the lattice. The confinement also increases the probability
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1. Introduction 4

for radiative transitions and hence increases the light emission efficiency. The achievement
of carrier confinement means the use of nanocrystals which is compatible to Very Large Scale
Integration (\VLSI). Silicon nanocrystals suspended in silicon-rich oxide matrices restrict carrier
movement while still allowing electrical pumping [6]. Pavesi et al. have shown optical gain
in these structures [2]. Franzo et al. have doped silicon nanocrystals with erbium to achieve
electroluminescence (EL) in the infrared region of the optical spectrum [7].

In recent years Ge/Si systems have attracted great attention. Ge has only 4.2 % lattice
mismatch, and is chemically similar, to Si. Carrier confinement and efficient light emission
have been achieved by Ge (Ge/Si) quantum dots [8]. Detection of light for wavelengths typically
used for optical communications (1.31—1.55 wm) is also not possible in bulk silicon, which is
transparent in this region. Therefore, SiGe detectors have been developed in order to push the
responsivity out to longer wavelengths to achieve efficient operation.

One of the fascinating problems concerns the equilibrium shape of nanocrystallites fabri-
cated from germanium and silicon or, in general, the shape of nanocrystallites grown epitaxially
on certain substrates. This topic is strongly related to the formation of self-assembled islands,
or quantum dots, during epitaxial growth [9-11]. The results of self-assembly and possible Ost-
wald ripening are characterized by several distinct island shapes, size distributions, and island
arrangements. There is an understanding of island nucleation [12] and subsequent coarsening
(Ostwald ripening) [13] for the simple case where islands grow with a fixed shape. However,
the island shape, the change in the shape of growing islands, and the precise nature of shape
transitions are the subject of intense discussions [14]. Theories of elastic relaxation at surfaces
predict the formation and stabilization of periodic structures with defined sizes [15]. In these
analyses, the island size is determined by balancing the elastic energy gain associated with the
relaxation at the phase boundary against the energy cost of creating the boundary. However, it is
difficult to establish the link between stress and morphology, because key kinetic or thermody-
namic parameters necessary for a quantitative interpretation are often unknown. Furthermore,
the microscopic rearrangement of the atoms on the surfaces to minimize the local energies may
play an important role [16].

A typical example for the island formation is the Stranski-Krastanov (SK) growth mode
[11, 17] of Ge on Si(100) substrates. The growth of a strained wetting layer, as thick as 3—4
monolayers, is followed by the formation of three-dimensional islands. Eaglesham and Cerullo
[18] have made the surprising discovery that in the initial stages of SK growth, the islands can
be coherent, i.e., dislocation-free. Only later, as the islands grow in size, dislocations develope.
The coherent islands can be up to ~ 150 nm in size and ~ 50 nm high. Before the appearance
of micrometer-sized Ge crystallites, an intermediate phase of metastable clusters has been also
observed [19]. Scanning tunneling microscopy (STM) at low Ge coverage has shown that small
islands (so-called hut clusters [19] or pyramids [20]) with rectangular or square base are formed
by {501} facets. Phase transitions take place when larger islands with a higher aspect ratio,
so-called domes [21, 22], appear at higher Ge coverages and display a multifaceted surface
including {311} facets. Typical Ge nanocrystals with both pyramid and dome shapes grown
on Si(100) examined by STM are shown in Fig. 1.1 (from Ref. [21]). The situation may be
more complicated due to intermixing. Recently, it has been shown [23] that domes contain a
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Figure1.1 STM topograph of Ge nanocrystals on a Si(001) surface showing both pyramids and
domes (from Ref. [21]).

Si-rich core covered by a Ge-rich shell. In any case nanocrystals are bounded by facets which
correspond to certain surface orientations. Faceted islands have been also grown on Si(111) [24]
and SiC(0001) substrates [25], where {113} facets are quite pronounced.

The situation is less clear for Si nanocrystals. Micrometer-scale Si droplets have been
formed on a Si(111) substrate by photolithography [26]. They have been used to determine
the equilibrium shape of a small Si crystal. Well-characterized {111} and {311} facets exist on
the nanocrystal surface. They are separated by rounded regions that display a tangential merging
into the facets. Bermond et al. [26] found that the surface energy increases from {100} to {111}
via a {311} plane, and has local minima at the surfaces {111}, {311}, {110}, and {100}. These
results are in qualitative agreement with measurements [27] of small voids in a Si crystal which
indicate the existence of the same facets. Pyramidal Si nanocrystals can be selectively grown
on Si(100) windows in ultrathin SiO, films [28-31]. These Si pyramids possess four equiva-
lent facets of the types {111}, {311} or even {911} and {1 3 11}. Using a micro-shadow mask
technology or nonplanar prepatterned Si(100) substrates, the self-assembling Molecular Beam
Epitaxy (MBE) growth also leads to nanometer-scale features [32]. Depending on the growth
parameters, pyramid-like tips or long wedges are formed. The sidewalls are free-standing {111}
and {311} facets.

One more group-1V material, diamond (tetrahedral carbon), possesses extraordinary prop-
erties, which suggest a broad range of scientific and technological applications. Diamond is the
hardest and stiffest material known, has the highest room temperature (RT) thermal conductiv-
ity and one of the lowest thermal expansion coefficients of known materials. It is radiation-hard
and chemically inert to most acidic and basic reagents. Diamond has a large band gap, hence
electrical devices can work at higher temperatures (HTs) than Si. Unfortunately, due to the high
cost and preparation difficulties, the applications of natural and synthetic diamond have been
limited in comparison to its great potential [33].

The many ways in which diamonds have been synthesized are clues to the conditions under
which diamonds form naturally. Diamond is the stable carbon phase at pressure p > 5 GPa.
Industrial-scale production of diamond starts from amorphous carbon or graphite at HT (1200-
1400 °C) and high pressure (HP) (5 to 7 GPa). Diamond morphologies vary as a function of
temperature at constant pressure (for example, 6 GPa): Octahedrons form preferentially at HTs
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Figure 1.2 Micrograph of HP-HT synthetic diamond (left) and map of growth sectors (right)
(from Ref. [34]).

1500 to 1600 °C, cubo-octahedrons at 1350 to 1500 °C, and cubes at <1300 °C. Small synthetic
diamonds grown by HT-HP methods have major growth sectors of {100} and {111} type and
some minor sectors of {110} and {311} (see Fig. 1.2) [34]. The most recent industrial method is
to form diamond through Chemical Vapor Deposition (CVD). In this process, a thin (nanometer
to micrometer) metastable diamond film is formed on metal substrates from methane (CHg)
or other hydrocarbons at low pressure (<1 Pa) and at HT (1000 °C), in the presence of excess
hydrogen. The morphology of diamond particles grown by HT-CVD is dominated by {100}
and {111} facets (see Ref. [35] and references therein). In addition, facets of the types {110}
and {311} appear between those with common orientation. However, it is difficult to conclude
that {311} facets exist in a steady state. Using CVD also diamond nanocrystallites can be
grown partially epitaxially or perfectly heteroepitaxially on stepped Si substrates with [110]
orientation [36]. An exact determination of the facet orientations of the crystallites with 2—6 nm
size is, however, hardly possible.

The absolute value of the surface free energy of a crystalline solid is one of the most impor-
tant fundamental quantities which characterizes a large number of basic and applied phenom-
ena. Among them are crystal growth, surface faceting, epitaxy and stability of thin layers, and
the shape of small crystallites. In particular the construction of the equilibrium crystal shape
(ECS) requires the complete determination of the surface free energy y as a function of the
surface orientation n. Despite its significance, a complete and well-accepted set of correspond-
ing experimental data of group-1V materials is not available. There are only few experimental
data for surface free energies and only for Si [27]. In general, the experimental determina-
tion of y remains a challenge [37]. Theoretical data, in particular derived from highly-precise,
parameter-free total-energy calculations, are of great importance. However, calculated absolute
surface energies are also rare.

Due to surface formation, bonds are cut, what requires energy. One may expect that the
resulting surface energy y is proportional to the dangling-bond density. However, in order to
reduce this energy surface atoms relax which leads to a certain distortion of the ideal bulk-like
positions. Such processes take place in particular on metal surfaces. The situation for semi-
conductors is more complicated due to the tendency of significant surface reconstructions. In
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tetrahedrally bonded semiconductors, such as diamond, Si, and Ge strong directional bonds are
present what leads to dramatic effects. Nearly all surface orientations of group-1V elements
observed experimentally possess reconstructions which give rise to a two-dimensional transla-
tional symmetry with unit cells much larger than 1x1, i.e., that of a surface according to the
bulk termination. It is required to understand and determine the precise atomic geometry of a
given reconstruction for a certain orientation depending on the material.

Calculations of absolute surface energies are mainly restricted to semi-empirical methods
as the tight-binding (TB) approach [38] or the use of classical interaction potentials [39, 40].
In most cases they do not consider surface reconstructions. The fully quantum-mechanical
treatment usually gives relative surface energies for different reconstructions but one and the
same orientation. Only for low-index diamond surfaces there are comparative studies which
give absolute surface energies [41, 42]. Moreover, reconstruction elements which appear on
group-1V surfaces are still under debate even considering low-index surfaces. The situation is
really complicated for Si and Ge surfaces. The origin and the driving forces of reconstructions
are not always understood. For that reason the main part of the present work is devoted to
comprehensive studies of diamond, Si and Ge surfaces including low-index (100), (111), (110)
and high-index (113) ones. We try to answer the question as to why surfaces of group-1V ele-
ments behave differently. There are no comprehensive comparative studies of the materials for
different surface orientations considering reconstructions observed experimentally. As a conse-
quence, surface energies have not been determined and the energy dependences of the surface
reconstructions and orientations for these important semiconductors have not been derived.

Based on well converged energies of the most-frequently observed (100), (111), (110), and
(113) surfaces of group-1V semiconductors one may construct the ECSs using the Wulff con-
struction [43]. However, Wulff constructions using theoretical or reliable experimental data
for y have not been presented so far for diamond, Si, and Ge. Yet important conclusions can
be drawn from the equilibrium shapes of the crystals. We attack this problem assuming large
facets. Therefore surface reconstructions are important. The stability evaluation of a certain sur-
face orientation gives information about tendencies for faceting etc. For instance, the question
has to be answered whether the ECS of diamond exhibits only cleavage orientations correspond-
ing to {111} facets? Another one is if there are tendencies for high-index surfaces to contribute
to the ECSs of Si and Ge?

In contrast to free crystallites the actual three-dimensional shape of a nanocrystal grown on
a certain substrate depends on many thermodynamic and kinetic aspects or growth conditions
including strain, alloying, temperature, number of adsorbate atoms, wetting layer, and interface.
For nanocrystallites grown (hetero)epitaxially, strain may play a dominant role for the crystallite
shape [9, 44]. Nevertheless, interesting trends can already be derived studying the influence of
surface energies. We restrict the discussions of the shapes on the latter. Despite such a simplified
picture it could describe the trend for crystallites to be deformed if a certain base orientation and
a certain shape are chosen. Pyramid shapes observed during the growth should be considered
and compared with ECSs (i.e., shapes of free crystallites).

The most powerful tools to study the energetics and the atomic geometry of solids and
their surfaces are ab-initio methods, particularly using the Density-Functional Theory (DFT)
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for total-energy calculations. Parameter-free quantum-mechanical calculations can give a pre-
cise microscopic picture of systems in the ground state. The true bonding behavior allows to
determine the electronic structure and consequently to come close to the understanding of the
nature of studied surface reconstructions.

It is now generally accepted that the (100) surfaces of diamond, silicon, and germanium
show dimer-based reconstructions [45, 46]. Symmetric dimers (SDs) dominate a 2x1 recon-
struction of the C(100) surface [47]. At RT, Si and Ge exhibita 2x1 reconstruction governed by
asymmetric dimers (ASDs) [48]. A staggered arrangement of these dimers explains the c(4x 2)
low-temperature (LT) phase [46]. Recently, however, the atomic configuration of the Si(100)
surface at very low temperature became a subject of debate. That concerns on the one hand the
guestion whether the true surface ground state shows symmetric or asymmetric dimers. On the
other hand, phase manipulation between c(4x2) and p(2x2) has been performed at 4.2 K using
the STM [49]. The dimers were found to prefer the p(2x2) ordered phase when scanned with
a negative tip. Applying a voltage pulse or scanning with a positive tip tends to reverse p(2x2)
to c(4x2). Similar effects have also been observed on Ge(100) surfaces [50].

The origin and nature of reconstructions at (111) surfaces of elemental semiconductors is
one of the most intensively discussed issues in surface physics. The (111) surfaces of diamond,
silicon, and germanium show a manifold and puzzling reconstruction behavior in dependence
on the surface preparation and the considered semiconductor. Silicon and germanium exhibit
a 2x 1 reconstruction following cleavage perpendicular to the [111] direction at RT. However,
such a 2x1 reconstruction can be also found on the C(111) surface after careful preparation [46].
From many experimental and theoretical studies the (111)2x1 surfaces are believed to have a
m-bonded chain geometry [51]. In the case of Si and Ge the 7-bonded chains are tilted [52, 58]
whereas, apart from one exception [53], converged total-energy calculations do not indicate
neither a chain buckling nor a chain dimerization for diamond(111) [41, 54, 55]. For Si and
Ge the -bonded chain reconstruction has two different isomers with the tilt angle of the up-
permost chains in opposite directions [56-58]. The chain-left isomer has been indeed observed
for Ge(111)2x1 by means of scanning tunneling microscopy (STM) [59]. Heat treatment of
cleaved Si(111) and Ge(111) surfaces at elevated temperatures cause the 2x 1 reconstruction
to convert into a 7x7 (Si, [60]) and a c(2 x 8) (Ge, [61]) structure, respectively. Whereas the
Si(111)7x 7 surface is now explained by a dimer-adatom-stacking-fault (DAS) model with cor-
ner holes [62-65], the Ge(111)c(2x 8) surface is represented by a simple adatom model [66, 67].
Recently, it has been shown that a c(2 x 8) reconstruction can be also observed on the quenched
Si(111) surface [68, 69].

There are various ab-initio studies of the basic reconstruction models, the 7-bonded chain
model for 2x1 [41, 53-56, 58], the DAS model for 7x7 [64, 65], and the adatom model for
c(2 x 8) [67, 69]. However, there is no study by one and the same group and one and the same
method of all reconstructions for even one semiconductor, not to speak about the three group-1V
materials under consideration. Therefore, a comparison of the energetics and the driving forces
of the reconstruction is hardly possible. Precise conclusions, why the lowest-energy reconstruc-
tions 2x1, 7x7, and c(2 x 8) of diamond, silicon or germanium are different, cannot be drawn.
Obviously, despite the same valence-electron structure of the atoms and the same crystal struc-
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ture of the corresponding solid, the different atomic sizes and bonding characteristics give rise
to a stabilization of different surface reconstructions. An explanation based on first-principles
calculations is, however, still missing. There are only model considerations comparing the en-
ergetics of 7x7 and c(2 x 8) reconstructions [70].

Among the clean low-index silicon and germanium surfaces, the (110) surfaces are the only
ones whose atomic structures are unknown. Only for diamond(110), Low-Energy Electron
Diffraction (LEED) found a 1x1 diffraction pattern [71], the atomic structure of which can
be characterized by relaxation. At least for silicon, the (110) surface has a free energy only
slightly larger than that of the (111) plane [27]. It should therefore be a stable facet on the
equilibrium crystal shape [44]. However, the preparation of such surfaces is difficult. Only
non-vicinal, clean and well-annealed Si(110) surfaces exhibit a 16 x2 reconstruction [72—75].
Contaminations, for example of very small amounts of Ni, destroy the long-range reconstruction
and give rise to translational lattices with smaller unit cells, e.g. 5x1 [74, 76, 77]. STM
experiments [73-75] suggest that the Si(110)16x2 reconstruction consists of equally spaced
and alternately raised and lowered stripes lying along the [112] direction. The height of the
steps between two stripes is equal to the layer spacing in normal direction. Along the stripes
these experiments reveal arrangements of “pairs of pentagons” which are more pronounced in
empty-state images [75]. The experimental situation is less clear for the Ge(110) surfaces. In
the pioneer’s work Olshanetsky et al. [78] showed that a c(8x10) superstructure appears after
annealing. Despite the existence of STM images for Ge(110)c(8x 10) [79], there are indications
that the c(8x10) structure is transient and unstable and changes into a 16 x 2 superstructure [80,
81]. However, for both periodicities the STM images show sequences of pentagons similar to
the findings for the Si(110) surface.

There are no accepted structural models for the reconstructed Si and Ge(110) surfaces which
consistently explain the energetics, the geometry and the electronic structure, in particular the
STM images. Usually a certain distribution of adatoms and several top layers involved in the
reconstruction are assumed in order to interpret the atomic structures of Si(110)16x2 [72, 75,
82, 83] and Ge(110)c(8x10) [79] or 16x2 [80, 81]. Conglomerates of adatoms which capture
interstitial atoms like in the case of Si(113) surfaces [84] have been suggested by An etal. [75] to
explain the pentagon pairs observed in high-resolution STM images of the Si(110)16 x 2 surface.
The origin of the stabilization of Ge(110) surfaces by certain reconstruction elements is also not
understood. Recently, Ichikawa [81] explained the STM images observed for the Ge(110)16x 2
surface by pairs of five-membered adclusters. However, such structures are questionable from
the energetical point of view.

Apart from one trial [81], theoretical studies have not been performed for the large 16x2
or ¢(8x10) unit cells. Some attempts were devoted to find favorable reconstruction elements
and to understand the bonding behavior by studying smaller unit cells [83, 85, 86]. In par-
ticular, it has been found that a bond-rotation relaxation mechanism should take place on Si
and Ge(110) surfaces [85, 86] where the top-layer atomic chains are buckled like in the case
of 111-V compounds [44]. Dimerization similar to the (100) case has been proposed based on
TB calculations [83]. Possible structures with adatoms have been studied by means of both
ab initio [86] and TB molecular-dynamics calculations [85]. The suggestion of fully bonded
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(i.e., fourfold-coordinated) adatoms which leave no dangling bonds [85, 86] is rather surprising
for group-1V semiconductor surfaces and needs additional studies. In order to understand the
atomic geometry and the bonding of the Si(110)16x2 surface, one has to study the energetic
preference and the structure of the step configuration observed by STM. Until now there is no
idea why steps may occur on a flat, non-vicinal low-index surface, and how they contribute to
the stabilization of the 16 x 2 translational symmetry. First-principles calculations exist only for
the Ge(110)16 x 2 surface [81]. They suggest a higher surface energy when steps are introduced,
in contrast to the experimental observations of images in form of stripes on lower and higher
terraces also for germanium [79].

High-index (113) surfaces of group-1V semiconductors are of interest from both the funda-
mental and applied point of view. In recent years wide flat (113) terraces have been prepared on
Si substrates demonstrating that such surfaces are thermally stable against faceting [27]. Their
inherent structural anisotropy makes (113) surfaces promising substrates for epitaxial growth
of novel optoelectronic devices [87]. Very interesting is the fact that {113} facets have been
observed on islands for all group-1V materials.

The actual atomic structure of the (113) surfaces is also strongly changed by the surface
reconstruction. For Si and Ge, 3x1 and 3x2 translational symmetries have been reported [84,
88-108]. To our knowledge there is neither a theoretical nor a direct experimental study of
clean reconstructed C(113) surfaces. The Si(113) surface exhibits a 3x2 reconstruction at RT,
while a transition to the 3x1 phase is observed at elevated temperature [91, 94, 96, 104, 105].
In the Ge case 3x2 and 3x1 periodicities seem to coexist already at RT [95, 99, 108].

The bulk-terminated (113) surfaces of diamond-structure crystals consist of alternating rows
of twofold-coordinated (001)-like atoms and threefold-coordinated (111)-like atoms. If one
(001)-like atom is removed, the adjacent (111)-like atom looks like an adatom . The additional
formation of a tetramer by bonding two (001)-like atoms leads to a 3x 1 translational symmetry
[88]. Many refinements of such an adatom-dimer (AD) model, including voids, puckering and
buckling, and vertical displacement of the dimers, have been discussed to explain the observed
3x2 translational symmetry, particularly for Si [88, 89, 98, 101-104, 106]. One important
step towards the understanding of the behavior of group-1V(113) surfaces was the introduction
of a novel reconstruction element, a sixfold-coordinated surface self-interstitial similar to the
[110]-split interstitial bulk defects, by Dabrowski et al. [84, 92, 107]. Interstitial distribution
and migration [95, 107, 108] allow the study of additional surface reconstructions, among them
adatom-interstitial (Al) and adatom-dimer-interstitial (ADI) models.

Meanwhile, there are several ab initio studies of 3x1 and 3x2 reconstructions of Si and
Ge(113) surfaces [84, 106-110]. There are also studies using a semiempirical method [111] or
combined methods [106]. However, the energetical ordering of the most important structural
models is not well clarified for both Si and Ge [92, 106, 108]. Details of the geometrical re-
constructions concerning their asymmetries, e.g. buckling, puckering, vertical displacement of
appearing reconstruction elements, tetramers or pentamers, are under discussion. The chemical
trends in energies and geometrical parameters are not understood. This holds for the compar-
ison between Si and Ge(113) but, in particular, for C(113); the properties of this surface are
unknown.
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The driving forces of the various reconstructions have not yet been understood completely.
The relationship between energetics, bonding, displacements of atoms, and the electronic struc-
ture is not clarified. There are only a few simulated images observable in STM [84, 92, 106,
107]. However, their relation to the surface band structures and surface electronic states is
not derived. Calculated band structures are not published, except from those derived within a
TB approach [106], the accuracy of which is, however, limited. The experimental bands for
Si(113)3x2 need an interpretation [102]. It has to be discussed why 3x1 reconstructions are
seemingly observed in several experiments, despite the violation of the general reconstruction
rules [112] and the electron counting rule [113]. Consequently, the metallic or insulating char-
acter of a (113) surface has to be explained in dependence on the translational symmetry but
also the (local) point-group symmetry.

Then questions are addressed in the thesis at hand in the following way: Descriptions of the
theoretical grounds and numerical approaches are given in Chapter 2. The studies of driving
forces and the energetics of diamond, Si and Ge surfaces are presented in Chapter 3 for (100)
and (111) surface orientations. Chapter 4 is devoted to the (113) surface orientation, whereas
Chapter 5 focusses on the (110) surface orientation. A discussion of shapes of free and con-
strained crystallites based on the calculated absolute surface energies is given in Chapter 6.
Summary and conclusions follow in Chapter 7.



Chapter 2

Theoretical background and numerical
approaches

2.1 Many-body problem and steps for the solution

The theory of solids including their surfaces leads to a complicated microscopic description of
interacting atoms. Formally the Hamiltonian H of any system consists of kinetic and Coulomb
interaction energy contributions of all nuclei and electrons involved. The properties of the
system can be derived by solving the many-body Schrédinger equation:

HY = EV, (2.1)

where the wave function W depends on the coordinates of electrons r and nuclei R. However,
the solution of problem (2.1) is almost impossible because of its complexity. One needs to
search for (some) approximations. One idea arises from the difference of the involved particles.
The motion of nuclei is much slower than that of the electrons. Therefore, movements of
the electrons and nuclei can be separated. The motion of the electrons is determined for the
ensemble of nuclei at certain fixed positions. The resulting total energy of the electrons together
with the ion-ion repulsion gives rise to a potential surface for the motion of the nuclei. Using
the Born-Oppenheimer adiabatic approximation, the total wave function can be represented as
a product of the ion and electron wave functions [114]. For the ground state of the electronic
system one has to solve the Schrodinger equation for the many-electron Hamiltonian

~ h? _, Z,€? 1 e

Hd:_ZﬁVi_Z|ri_R||+5§j:|ri—r,-|’ (22)

I,i

where the three terms represent the kinetic energy of electrons Tq, the interaction energy with
the external potential Vi imposed on the electrons for a given nuclear configuration, and the
Coulomb energy of interacting electrons Uee, respectively. Spin is not considered. The prob-
lem of the Hamiltonian (2.2) is still very difficult to solve. While Ty and Veq depend only on
the i-th electron, Uee involves pairs of electrons. According to Hartree a simplification can be
achieved by writing the many-electron wave function as a product of one-electron wave func-
tions i (ri), ¥ = []; ¥i(ri), which leads to an effective one-electron Schrodinger equation.

12
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Such a simple product ansatz describes non-interacting particles. Since we have interacting
particles it is only an approximation, implicitly assuming that adding an interaction to the non-
interacting system does not significantly change the wave function. However, this is not the only
weakness of this ansatz. The Hartree approximation needs to be improved upon by introducing
Pauli’s principle using an antisymmetric many-electron wave function in the form of a Slater
determinant [115]. This is the idea of the Hartree-Fock (HF) approximation which introduces
the spatially nonlocal electron exchange [116, 117]. The HF method requires already heavy
numerical treatments, despite the fact that it does not take into account correlation effects. Cor-
relation is, in fact, defined as the missing part of the HF electron-electron interaction compared
to the exact solution. The HF method is usually only suitable for systems with not too many
electrons. Because of neglecting correlation, it works better for atoms and molecules. In the
case of solids such as metals and semiconductors, bonding and electronic properties are not
reproduced correctly by the HF method. The inclusion of correlation effects using the so-called
configurational interaction (Cl) method is restricted to small molecules. Here, a sum of Slater
determinants is needed which has to be truncated in practical calculations. Only such sums of
Slater determinants allow an exact representation of any arbitrary wave function of a true in-
teracting systems, whereas single Slater determinants are only exact in the case of systems of
non-interacting particles.

2.2 Density-functional theory

A theory for the description of a system with many electrons including correlation effects is
the Density-Functional Theory (DFT). It is based on the theorem of Hohenberg and Kohn that
the ground-state energy is a functional of the electron density only [118]. A practical method
for treating inhomogeneous systems of interacting electrons has been proposed by Kohn and
Sham [119] and makes the DFT an extremely powerful tool for the determination of properties
of matter using a microscopic model according to e.g. Eq. (2.2).

2.2.1 Hohenberg-Kohn theorem

This theorem is usually formulated for an external potential Vet (r) acting on a system of N
electrons, which could be for instance the potential of an electron in the field of all nuclei
which therefore depends on the configuration of the nuclei [cf. e.g. Eq. (2.2)]. The electron
density n(r) determines the ground state energy E[n] of the system no matter what the external
potential is. It has been proven by reductio ad absurdum that Ve (r) is a unique functional of
n(r). The knowledge of the total density n(r) is as good as the knowledge of the wave function
W describing the ground state of the system. Since for a non-degenerate ground state W is a
functional of n(r) [120], so are evidently also the resulting kinetic and interaction energies. For
a given potential Ve (1), the energy functional can be written as

Eln] = / Vet (NN(Ndr + F[n], (2.3)
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where F[n] is an universal functional which contains the total effect of the electron-electron
interaction. For the density n(r) that minimizes the functional (2.3), E[n] equals the ground
state energy Eo. Thereby the admissible densities are restricted by the condition of particle
number conservation

/n(r)dr = N. (2.4)

The ground state density can be calculated, in principle exactly, using a variational method
involving only the density. To determine n(r) one finds

) {E[n] — U [/ n(r)dr — N“ =0, (2.5)

where o is a Lagrange multiplier which may be interpreted as the chemical potential of the
electrons. From Eq. (2.3) one obtains now

SE[n] SFIn]
Iy = Vea + 5o (2.6)

The major part of the complexities of the many-electron problem is now deferred to the deter-
mination of the universal functional F[n].

2.2.2 Kohn-Sham method

In analogy to the Hartree or the HF approximation, it was proposed to separate the total energy
in the components

1
E[n] = Ts[n] + / [Vext(r) + EVH(r)} n(rydr 4+ Exc[n], (2.7)

where Tg[n] is the kinetic energy of a non-interacting electron system which has the same den-
sity n(r) as the real interacting system. The classical Coulomb interaction between the electrons
Is described by the Hartree potential

n(r’)
VH(r) = € dr’ 2.8
an =€ [ S 9
which includes self-interactions. The factor 1/2 avoids that pair interactions are counted twice.
The external potential Ve in Eq. (2.7) is due to the nuclei, and Eyc is the exchange-correlation
energy. The last term includes all the interaction contributions missing in the previous terms,
I.e., electron exchange and electron correlation, a portion of the kinetic energy which is needed
to correct Tg[n] to obtain the true kinetic energy of the real interacting system, and corrections
to compensate the self-interactions introduced by the classical Hartree interaction. According
to Eg. (2.6) one has

SE[n]  48Ts[n] 8 Excln]

+ Vext (1) + VH(r) +

= . (2.9)
an(r) on(r) an(r)
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The last three terms can be expressed by an effective potential Ve, and a Schrodinger-like
equation of noninteracting particles has to be solved. The so-called Kohn-Sham (KS) equation
IS
h2
—%V? + Veit (1) | ¥i (1) = € i (). (2.10)
It describes an auxiliary system of non-interacting particles, the density of which is equal to the

density of the real interacting system. The ground-state density n(r) is derived from the wave
functions,

occC.

nn =Y i (2.11)

The KS Eqg. (2.10) has to be solved self-consistently. After subtraction of doubly counted terms
the total ground-state energy can be expressed as

occC.

Z // nON) 4y _/ch(r)n(r)dr-i— Eyc[n] (2.12)

Ir—r|

where Vyc(r) = 5573[;‘] is the exchange-correlation potential. Wave functions and densities

depend parametrically on the atomic coordinates.

2.2.3 Local density approximation and limitations

The exchange-correlation energy Exc[n] in the KS equation (2.10) can be written in the form

Excln / &[N, rin(r)dr (2.13)

where ecc[n, r] is an exchange-correlation energy density per particle. In the local density
approximation (LDA) exc[n, r] is replaced by the exchange-correlation energy of the homoge-
neous electron gas, ngm(n), where the constant density is replaced by the local density of the
studied inhomogeneous electron gas. It results in

Exc[n / h°m(n)‘  nar. (2.14)

For €l9™ there are several prescriptions available in the literature. The exchange part can be
calculated analytically. For the correlation part, values have to be taken from numerical calcu-
lations. In the present work the Ceperly-Alder results [121] based on Monte-Carlo calculations
and parameterized by Perdew and Zunger [122] are used.

Despite the fact that the LDA is a crude approximation for a strongly inhomogeneous gas, it
is even able to predict bonding properties of solids with covalent bonds. There are quantitative
errors in the evaluation of bond lengths, elastic constants, and cohesive energies which are in
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principle known, and often the situation can be improved by using the generalized gradient ap-
proximation (GGA) [123]. Within the LDA one finds an overbinding tendency: The calculated
cohesive energies come out larger compared to experiment, while lattice constants and bond
lengths are smaller. In the case of Si, the lattice constant is 5.398 A within LDA or 5.464 A
within GGA, while measurements give the value 5.431 A [124]. Itis also expected that absolute
surface energies within GGA are somewhat lower than those calculated within LDA because of
the larger cohesive energies obtained for the latter case.

Measurements such as photoelectron or inverse photoelectron spectroscopies are frequently
directed to the determination of the electronic bands in a crystalline solid. Comparing with the
KS eigenvalues in (2.10) in particular, the band dispersion is reasonably described. There is no
clear justification for interpreting the one-particle eigenvalues in DFT as the band structure. This
is because the KS energies are eigenvalues of the auxiliary system of non-interacting particles
which have a physical meaning only for its density and functionals of the density, like the total
energy. Only the highest occupied level has a real physical meaning and is identical with the
first ionization energy of an N-electron system. However, despite its lack of formal justification
as a description of band energies the KS scheme bears at least some merit for the description
of excitations [125]. DFT transition energies between occupied and empty states, including
the fundamental gap, are clearly underestimated. The underestimation of the fundamental band
gap is a serious problem independent of the LDA or GGA treatment of the exchange-correlation
energy [126]. Within the DFT-LDA (GGA) one obtains about one half of the experimental band
gap for Si and C, and practically a zero gap in the case of Ge.

In order to obtain correctly the quantity corresponding to the experimental band gap one
may calculate quasiparticle energies by using the many-body perturbation theory and deter-
mining the poles of the one-particle Green’s function G. One way to proceed is Hedin’s GW
approximation [127, 128]. It accounts for the response of the electronic system to an elec-
tron or hole by screening. This leads to the occurrence of the screened Coulomb potential
W. Usually, it is sufficient to calculate only the discrepancy between the exchange-correlation
self-energy Xxc = GW in this approximation with respect to the XC potential Vyc(r) =
ehoM(n) + nd—ﬂleﬂgm(n)\n:n(r) already included in the KS Eq. (2.10). Within the first-order
perturbation theory it results in quasiparticle shifts of all KS eigenvalues which open the gaps
and increase transition energies between valence and conduction bands.

However, in general the DFT-LDA method is sufficient for the major purposes of this disser-
tation, in particular for studies of atomic structures of diamond, silicon and germanium surfaces
in the ground state, and the second step, the evaluation of absolute surface energies since we
focus on comparative studies. The KS eigenvalues are only used to discuss qualitatively the
electronic structure of a surface,* in particular their metallic or insulating character and the ap-
pearance of bound surface states in the fundamental gap. Certain remarks will be given in the
text where surface electronic structures of Ge surfaces are discussed.

1The eigenvalues of the KS equation (2.10) are also used to simulate the STM images within the Tersoff-
Hamann approach [129]. A constant-height mode is assumed for the simulation. Smearing-out procedures to
account for the non-ideality of the tip are not used.
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2.3 Total energy and forces

The KS approach allows the determination of the electronic ground-state energy of the system
for a given nuclear configuration. The total energy of the system contains the electronic energy
(2.7) and the energy of interacting ions:

YAWA
Etot = Ze2|R| RJ| E[n], (2.15)

where the first term is the Coulomb repulsion energy of the nuclei. The force F, acting on the
atom at the position R can be obtained by the gradient

FI = —VR, Etat. (2.16)

Eiot depends explicitly on the coordinates of the nuclei. In addition, Eiq also depends implicitly
on these coordinates via the charge density n(r). Consequently two different contributions to
the forces are obtained:

dEtot _/ 8 Etot dn(r)
dR, q on(r) dR,

F = — (2.17)

The force contribution due to the explicit dependence on the energy on the atomic position is
called the Hellmann-Feynman force [130, 131]. Itis of physical origin, in contrast to the second
part in Eq. (2.17). This part is called variational force [132] and vanishes in the ground state for
a given configuration {R,}. We optimize structures until forces are smaller than 10 meV/A.

2.4 Plane-wave expansion

For the numerical treatment, it is advantageous to expand the KS eigenfunctions of Eq. (2.10) in
certain orthonormalized and more or less complete basis sets. Since we apply the repeated-slab
method [44] to model the surfaces, one has to handle an artificial system with huge unit cells.
Because of a translational symmetry a system is expressed by the a Bravais lattice with lattice
points {R}. Consequently it can be expanded in terms of plane waves (PWSs)

1 i(k+G 2.18
ﬁeXp[l( +G)rl, (2.18)
where G is a reciprocal lattice vector with G - R = 27 times an integer number, and K is a vector
within the first Brillouin zone (BZ). The functions (2.18) form an orthonormal and complete set
of wave functions. Performing calculations on periodic systems the KS orbitals in (2.10) with
quantum numbersi = jk can be written as a sum of plane waves

1 .
Vik(h = —= ; Cj 1 ceXPli (K + G)r]. (2.19)

The functions (2.19) fulfill the Bloch theorem. For numerical calculations, only a finite number
of k can be taken into account. Therefore, usually a set of so-called special k points that are
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adapted to the crystal symmetry is used [133-135]. An integral over k points is approximated
by a weighted sum:

(27)3 B
o /B ] f(k)dk = %: wep T (Kep) (2.20)

with €29 as volume of a unit cell and the normalization > o, wgy = 1 for the weights. In
the case of more than one k point, a rather simple but flexible method has been suggested by
Monkhorst and Pack (MP) [134] where the set of k points is generated by division of the lattice
vectors of the reciprocal lattice into P, equal pieces. Every mesh point represents a k point of
the MP set. The points lying within the irreducible part of the BZ (IBZ) are finally used to
calculate quantities such as the electron density or the total energy with weights according to
their symmetry degeneracy. Hence, the number of k points depends on the size of the IBZ and,
therefore, on the symmetry (see also Sect. 2.9).

The expansion of the electronic wave functions would in principle require an infinite plane-
wave basis set. However, the coefficients ¢; kg for the plane waves with small kinetic energy
h/2m|k + G|? are typically more important than for those with large kinetic energy. Thus the
PW basis set can be truncated to include only plane waves that have kinetic energies less than
some particular cutoff energy,

h
5K+ GI* < Bau. (2.21)

The energy Ecyt has to be chosen in a way that, on the one hand, the wave functions may
be reasonably represented and, on the other hand, the numerical effort is not too large. The
convergence has to be carefully tested.

With a plane-wave basis, the KS equation gives the secular equation:

> [%Ik + G|*0c.c + Veir(k + G, k + G’)] Cik+G' = €iGik+G> (2.22)
G

with the Fourier components Vet (K + G, k + G’) of the KS potential. The latter potential is
nonlocal due to the use of nonlocal pseudopotentials. In the local case the Fourier components
only depend on differences of reciprocal lattice vectors, Vet (G — G')) = Vet (G — G)) +
VH(G — G) + V(G — G). In Eg. (2.22) the kinetic energy is diagonal, and the various po-
tentials are described in terms of their Fourier transformations. The system (2.22) of algebraic
equations has to be solved. The size of the Hamilton matrix which has to be diagonalized is
determined by the choice of Eqy. It will lead to rather heavy calculations if the studied sys-
tem contains both valence and core electrons. This problem can be overcome by the use of the
pseudopotential approximation.

2.5 Pseudopotentials

The concept of pseudopotentials supplies smooth wave functions, which can be easily expanded
in PWSs. The core electrons do not contribute appreciably to the properties of interest and can
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be “frozen” in their free-atom configuration, while the bonding is dominated by the behavior
of the valence electrons. In particular, the Si atom consists of a nucleus (14+), core electrons
[1s%25%2 p®] and valence electrons [3s23p?]. The idea is to map the all-electron problem onto
an equivalent problem involving valence electrons only. The consequences are (i) a frozen core
with the nucleus and the core electrons and (ii) smooth orbitals for the valence electrons [136].
The formal transformation of the Hamiltonian is an orthogonalization to core states, giving
pseudowavefunctions and pseudopotentials. It turns out that the orthogonalization “cancels”
to a large extent the ionic attraction in the core region [137]. The pseudowavefunction of the
lowest valence state is nodeless, and all the others are smooth as well. The ionic pseudopotential
consists of a Coulomb attractive term, whose charge is the valence one, plus a short-range part,
mostly due to non-classical orthogonalization repulsion, but which also has contributions from
the true interactions with core electrons. In order to use the pseudopotential approach one has
to ensure that the core overlap between neighboring ions is negligible.

A step forward to modern pseudopotentials has been done by the introduction of the norm-
conservation requirement, in particular for applications in solid-state physics [138]. In this
approach, pseudowavefunctions are constructed. The potentials are then found by inverting
the atomic Schrodinger equation. Together with the matching conditions at Rgy the concept
of norm-conservation guarantees that the pseudocharge distribution exactly reproduces the full
valence charge beyond the core radius. Such pseudopotentials are nonlocal, because the radial
ionic pseudopotential depends explicitly on the angular momentum. One more difficult problem
has to be solved for Ge which has an extended core, 1s%2s%2p®3s23p®3d1°. In particular the
3d-core shell is extended, partial overlap with valence electrons is possible. To include this
effect partially one has to use the so-called nonlinear core corrections which correct errors
due to the linearization of the exchange-correlation energy in the valence and core electron
densities [139, 140]. Si and Ge are best described using norm-conserving pseudopotentials.

There is still a problem for C atoms where the core only consists of the 1s electron shell. For
materials with such a small core a good transferability can only be achieved by pseudopotentials
which are very “hard” and consequently need a PW expansion restricted by a large cutoff in
order to achieve convergence in a given calculation. Egy is required to be of about 700 eV if
norm-conserving pseudopotentials are used [141]. Atoms such as carbon can be better mastered
within the ultrasoft pseudopotential scheme proposed by Vanderbilt [142], tailored to generate
pseudowavefunctions which are smooth, although the condition of norm-conservation is not
used. The missing charge is accurately accounted for by an augmentation procedure in the self-
consistent scheme. As a result, the ultrasoft pseudopotentials achieve both high transferability
(adequate description of the scattering properties of the ion in diverse chemical environments)
and fast PW convergence. We apply the ultrasoft pseudopotentials not only for carbon but also
for silicon and germanium. The details of the pseudopotentials used in this work are given in
Table 2.1. A more detailed description of the construction of the pseudopotentials used can be
found in Refs. [142-144] and the references cited therein. As a consequence of the optimization
of the pseudopotentials the PW expansion of the single-particle eigenfunctions can be restricted
by an E¢y: of only 270 (C), 130 (Si), and 120 eV (Ge). In Fig. 2.1 a series of test calculations is
shown for the total energy Eiqt, lattice constant ag, and isothermal bulk modulus Bg versus Eg.
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Table 2.1 Cutoff radii Rgy and types of pseudopotentials [ultrasoft (US), norm-conserving (NC), all
electron (AE)] for corresponding angular momentum (AM) for C, Si, Ge and H used in the calculations.
For hydrogen two types of pseudopotentials are used, Hgy for Si-H and Ge-H bonds and Hpag for C-H
bonds. In the US case values in parentheses denote cutoff radii of the augmentation charges.

Element AM Reut Potential | Element AM Reut Potential
C S 1.90(1.40) us Si s 2.35(2.00) us
p  1.90(1.40) us p  2.80(2.20) us
d 1.90 NC d 2.80(2.30) us
local dpot local 1.60 cut AE
Heoft S 2.00(1.50) us Ge S 2.45(2.10) us
p  2.20(1.50) us p  2.90(2.30) us
local 1.0 cut AE d 2.80(2.30) uUs
Hhard S 1.25(0.80) us local 1.60 cut AE
p  1.25(0.80) us
local 0.65 cut AE

The figure indicates convergence of the ground-state properties for the chosen energy cutoffs.
The resulting lattice constants ap, chemical potentials 1, and fundamental energy gaps Eg (the
latter ones are determined from bulk band structure calculations) are ag = 3.531, 5.398, and
5.627 A, u = —5.195, —5.957, and —10.147 eV, and Eg = 4.15,0.46, and 0.00 eV for C, Si
and Ge in DFT-LDA.

2.6 Implementation and minimization algorithms

The investigation of the microscopic properties in the framework of DFT-LDA has been done
with the VASP (Vienna ab-initio Simulation Package) code (see Refs. [145, 146]). This com-
plex package allows the minimization of the total energy with respect to both electronic and
ionic degrees of freedom. It also provides tools for generating and testing pseudopotentials if
necessary. Most of the algorithms implemented in VASP use an iterative matrix-diagonalization
scheme: the employed algorithms are based on the conjugate gradient scheme [147, 148], block
Davidson scheme [149, 150], or a residual minimization scheme — direct inversion in the it-
erative subspace (RMM-DIIS) [151, 152]. For the mixing of the charge density an efficient
Broyden/Pulay mixing scheme [152-154] is used. The package VASP is available as a fully par-
allel code. Together with the use of ultrasoft pseudopotentials and the effective minimization-
schemes [145] it allows us to treat large systems, here artificial crystals with diamond, Si, and
Ge surfaces, with up to several hundred atoms in a unit cell.
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Figure 2.1 Convergence with respect to E for bulk properties of C, Si, and Ge.

2.7 Thermodynamical relations for surfaces

2.7.1 Thermodynamical potentials and modification for surfaces

The equilibrium state of a one-component system consisting of N particles at a fixed tempera-
ture T and pressure p is the one with the minimum Gibbs free enthalpy G(T, p, N) [155],

G=F+pV, (2.23)
where F(T,V, N),
F=U—- ST, (2.24)

is the Helmholtz free energy. Itis related to the internal energy U = U (S, V, N) and the entropy
Shby a Legendre transformation. The energy conservation law and the relationship between heat
and work can be written in the form

dU = TdS— pdV + . dN (2.25)

for an infinitesimal change of the internal energy. A variation of the number of particles N
is allowed due to particle exchange with a reservoir characterized by the chemical potential 1
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of the particle. For an isolated system with no heat exchange (dS = 0) and particle exchange
(dN = 0) the internal energy is a constant at constant volume (dV = 0).

The thermodynamical potential G (or F) can be used to derive the thermodynamical quan-
tities of the considered system at constant temperature T, particle number N and pressure p (or
volume V). Infinitesimal changes of the three variables give rise to infinitesimal changes of the
potential, so that

dG = —SdT + Vdp + udN (2.26)
or
dF = —SAT — pdV + xdN. (2.27)

In equilibrium, F is a minimum with respect to the inner variables at constant T, V, and N,
whereas G is a minimum at constant T, p, and N. The chemical potential x in Egs. (2.25),
(2.26), or (2.27) is given by

ou oF G

Under normal pressure of about 1 atmosphere, the difference between the Helmholtz free
energy F and the Gibbs free energy G,

is insignificant for a bulk solid or liquid. This holds in particular for volume-induced changes
—pdV. Thus, it is sufficient to use F for the most cases interesting in solid state physics. The
difference (2.7) is Kramer’s grand potential 2 = Q (T, V, u) [156]. Despite its smallness, more
precisely its vanishing influence on changes in the bulk systems including phase transitions, the
potential is convenient to use for system transformations that occur at a constant temperature T,
volume V, and chemical potential . This may be of particular interest for the surface region
of the systems under consideration. Together with the Gibbs—Duhem equation, SdT — Vdp +
Ndu = 0, infinitesimal changes of the variables result in

dQ = —SAdT — pdV — Ndpu. (2.30)
The comparison of Egs. (2.27) and (2.30) indicates a transformation law
Q=F —uN. (2.31)

This is a consequence of the fact that the Gibbs free enthalpy varies linearly with the number of
particles (cf. 2.29 and 2.31),

G = uN (2.32)

with the proportionality factor « = w(T, p) for each homogeneous phase [155].
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In order to discuss the influence of a free surface of a halfspace, we follow Gibbs’ idea of the
“(equimolar) dividing surface” [156, 157]. It can be presented in terms of the particle density
n = N/V as a function of the distance normal to the surface. Values of n change gradually from
its solid to its vapor value. The total space is divided into a bulk solid volume V1, a bulk vapor
volume V>, and a volume Vs of the transition region, the surface. The corresponding densities
n1 and ny characterize the uniform bulk phases, the (semi-infinite) solid and its vapor with
which the solid coexists and which occupies the other halfspace. The surface region, whose
spatial extent is of atomistic dimensions (about 10 or less atomic layers), is thus a strongly
inhomogeneous region surrounded by two homogeneous phases, the solid and the vapor. The
number of particles in each phase 1 or 2 depends on the number of particles Ns in the surface
transition region. The same holds for the volumes. This uncertainty is of the same order of
magnitude as the surface effect itself. However, in the framework of a macroscopic theory, here
the thermodynamics, the partition is made unique by applying the natural conditions [155]

V =Vi+V,,
N = n1V1 + naVo. (2.33)

In comparison to the total number of particles the number of particles Ng in the surface region
Is assumed to be negligible. In the macroscopic limit it holds that Ng = 0.

The extensive thermodynamical potentials under consideration, the free energy F and the
free enthalpy G, can be written as contributions from phases 1, 2 plus a surface term. We follow
the derivation of Landau and Lifshitz [155] as well as of Desjonquéeres and Spanjaard [156] and
consider Kramer’s grand potential. Since in the thermodynamical equilibrium the pressure p
is the same in the two homogeneous bulk phases, at least for a plane surface [155], equation
(2.29) can be written in the form

Q=—pV1+ Vo) + Qs. (2.34)
The surface contribution Q25 to the grand potential should be proportional to the surface area A,
Qs=vyA (2.35)

with y as the surface excess density of 2.

2.7.2 Surface energy

The proportionality factor y in Eq. (2.35) can be identified as the surface excess free energy
per unit area or surface free energy for short (but imprecisely). For a one-component system
the chemical potential 1 is equal in both phases in the thermodynamical equilibrium. With the
total number of particles according to Eq. (2.33), G = N Eq. (2.26) is still fulfilled. From the
approximate description of the “dividing surface” with Ns = 0, one readily obtains Gs = 0 for
the surface contribution. Thus, with Eq. (2.35)

Fe=Qs=yA (2.36)
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Figure 2.2 Example for the determination of the ECS from the Wulff construction.

holds. The surface excess free energy y is sometimes called surface tension, although this term
is somewhat confusing despite the corresponding common unit of measurement.

The calculation of the surface free energy for a given surface orientation [hkl] and surface
reconstruction is described in detail in Sect. 2.8. Here we assume zero temperature (or at least
a thermal energy small compared to the energy barrier between two reconstructions) and that
the crystal is unstrained. The calculations are restricted to the electronic configuration. The
contribution of the zero-point displacements of the lattice is neglected. Only the core-core
repulsion is taken into account and the system energies are calculated using expression (2.15).

2.7.3 WAuUIff construction

The anisotropy of the surface free energy per unit area, y (hkl), with the orientation of a certain
surface {hkl} determines the equilibrium shape of small free crystals at a particular temperature
T (here: T small compared to the melting temperature). Wulff and later Herring [43, 158, 159]
have derived a thermodynamic theory for the equilibrium shape of small crystals in the case that
the energies y (hkl) for all facets, i.e. the relevant surface orientations (hkl), are known. It is
based on the relation (2.36) for unstretched surfaces. The crystallite is assumed to be of at least
mesoscopic or nanometer size so that edge and apex effects (more precisely, the corresponding
energy terms) can be neglected (compared to the surface energy terms). Then, the equilibrium
crystal shape (ECS) at constant (here: low) temperature T with fixed crystal(like) volume V and
chemical potential . of the group-1V material is determined by the minimum surface excess free
energy Fs with respect to the total surface area A = A(V) of the crystal,

Fs = ﬁs y(hkh)dA, (2.37)
AV)
subject to the constraint of fixed volume V,

V= // av. (2:38)

V(A)
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The direction n of the area element d A is parallel to the facet normal (hkl). In the case of pure
energetical studies of nanocrystals with pyramidal shape one has to take into account additional
constraints such as the orientation and the shape of the basal plane of the pyramid. Formula
(2.37) represents a bridge between microscopic and macroscopic approaches to the properties
of matter. The surface free energies y (hkl) based on a full quantum-mechanical treatment of the
motion of electrons (as discussed below) are combined to calculate a thermodynamic potential
which is minimized with respect to the shape of a crystallite.

The WuIff theorem based on the minimum surface excess free energy (2.37) and the con-
straint (2.38) [43, 158, 159] states that the ECS is not necessarily that of the minimum surface
area of the free crystallite. It may be a complex polyhedron with the lowest total surface energy
for a given volume. A minimal surface area occurs only for perfectly isotropic (i.e., constant)
values of y (hkl). The corresponding ECS is a sphere. The variation of y with the normal n
|| (hkl) produces, on each surface element d A, a force proportional to dy/an which tends to
alter the direction at the same time as y tends to shrink the area. Consequently, in general the
ECS cannot be a sphere. Determination of the ECS from the Wulff construction is equivalent to
solving r (h) = min,(y(n)/n - h), where r (h) is the radius of the crystal shape in the direction
h. A two-dimensional example of the Wulff construction is presented in Fig. 2.2. In a polar
(spherical for 3D case) coordinate system, draw a vector parallel to the normal of the surface
and with length proportional to the energy of the surface y (n). For each of the vectors draw the
perpendicular line. The ECS is described by the interior envelope of these perpendicular lines
(planes).?

2.8 Modeling of surfaces

In order to model the various surfaces we consider periodic arrangements of slabs along the
surface normal. Each slab consists of a certain number of atomic layers and a vacuum region.
Within one supercell the number of atoms in one layer is restricted to the surface unit cell. There
are two types of possible slabs, centrosymmetric and asymmetric ones. In the first case two
identical surfaces are involved as can be shown by applying a space-group transformation. In the
second case one side of the material slab in the unit cell is saturated by hydrogen atoms as shown
in Fig. 2.3. In our studies we use both types. While centrosymmetric slabs are used in order
to obtain accurate absolute surface energies, the ones passivated by H and with substantially
reduced number of layers are used to study surface reconstructions and accompanying band
structures. Relative surface energies are also obtained by using asymmetric H-covered slabs
as described below. They allow the calculations of relative surface energies for reconstructed
surfaces with respect to a surface with a bulk orientation. The combination of such values with
absolute surface energies of unreconstructed surfaces gives the absolute surface energy of a
reconstructed surface.

2In the present work the program Wulffman for interactively examining the Wulff shapes of crystals is used
[160].
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Figure 2.3 Examples for models of centrosymmetric (left) and asymmetric (right) slabs of
(111) surfaces. Together with the vacuum region along the [111] direction the material slabs are
repeated according to the translational symmetry. Two surfaces, an upper one and a lower one,
occur for each system.

The two surfaces of a centrosymmetric slab are physically equivalent and, hence, allow the
direct calculation of absolute (free) surface energies. As an advantage, in the centrosymmetric
case the same surface and, hence, the same surface reconstruction n x m occurs on both sides
of a material slab. For a given atomic configuration {R;} in such a slab the surface energy (per
1x 1 surface cell) can directly be inferred from the total energy of the slab Eit(N, {R;}) with
N atoms by subtracting N times the bulk energy w per atom,

1
EG" = 5o {Etot (N, {Ri}) — N} (2.39)

The introduction of the chemical potential 1« of the constituents allows us to compare surfaces
with different numbers of atoms in the two-dimensional surface unit cell. The values of u
are determined as a bulk energy per atom for a given slab when the vacuum region is filled.
So the same numerical approaches are used to calculate slab and bulk energies. We obtain
values which are identical with those mentioned in Sect. 2.5. In the case of the primitive n x m
reconstructions n - m gives the number of 1x1 unit cells. In the case of a centered structure
c(n x m) this number has to be divided by a factor 2. The prefactor 1/2 in expression (2.39)
indicates that for centrosymmetric slabs two equivalent surfaces are involved in the calculations.
The surface energy per unit area

y™ M= Eg"/A (2.40)

immediately follows dividing expression (2.39) by the area A of an 1x1 cell for a given surface
orientation n.

The quality of the surface calculations depends on the number of atomic layers and vacuum
layers used in a supercell of the repeated-slab approximation. In order to obtain a fully relaxed
geometry of a surface the relaxation of several top layers of the material slab is required. If
the last condition is satisfied the number of additional layers will not really influence the final
geometry. However, the absolute surface energies have to be completely converged. In Table 2.2
we list results of test calculations for a varying number of atomic layers in the material slab and
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Table 2.2 Convergence of the surface energy y (in J/m?) with respect to the number of material layers
and vacuum layers for (111)1 x 1 centrosymmetric slabs with a total number of 18, 24, or 48 layers in
the supercell.

Number of material Diamond Silicon Germanium
layers 18 24 48 18 24 48 18 24 48
6 7.406 7.406 7.406 1.697 1.697 1.698 1.228 1.225 1.221
8 7.866 7.866 7.866 1.798 1.798 1.798 1.312 1.308 1.303
10 8.059 8.059 8.059 1.835 1.834 1.833 1.348 1.342 1.336
12 8.101 8.100 8.100 1.830 1.828 1.826 1.349 1.343 1.335
14 8.115 8.115 1.828 1.827 1.824 1.352 1.344 1.333
16 8.120 8.120 1.827 1.824 1.344 1.330
18 8.120 8.120 1.827 1.823 1.402 1.328
24 1.822 1.328
32 8.120 1.822 1.331
36 1.823 1.334
40 8.120 1.825 1.339
44 1.826 1.345

the “total number of layers” including the vacuum region by atomic layers not occupied with
atoms. The tests have been performed in order to obtain y for ideal (111)1x1 centrosymmetric
slabs for diamond, Si, and Ge. Three different supercells with a total number of 18, 24, or 48
layers are studied. The convergence depends on the element. In the diamond case one needs at
least 16 layers of material and a vacuum region corresponding to 6 layers in order to achieve
convergence. Although the energies change when going from six layers to higher numbers
within one slab, those for the same thickness do not correlate for the different supercells. In the
case of the largest slab with 48 layers the value for y does not change the surface energy with
rising number of material layers with respect to the case with 16 layers. So, the absolute surface
energy in the case of diamond is achieved. For Si small deviations of values at the third digit
are observed. Because of the equal energies for 8 layers of Si for all the supercells, we conclude
that a vacuum region corresponding to 10 layers is sufficient. After 14 layers y shows only a
small variation, which is practically negligible. The most critical case is Ge where, in contrast
to diamond and silicon, a much larger number of atomic and vacuum layers has to be used.
In particular for 14 layers of Ge within the three supercells under consideration, the variation
is found to be 0.02 J/m? (cf. Table 2.2). Moreover, Ge seems not to show a performance like
diamond or even Si with respect to the absolute surface energies. The situation is similar for
other surface orientations. The reason for the required larger supercells is not only related to the
weaker localization of the valence electron states in Ge. The much smaller ionization energies
compared to C and Si and, therefore, the smaller surface barriers make interactions through the
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vacuum more likely. Perhaps, the vanishing gap of Ge in DFT-LDA requires a refined k-point
sampling for the band structure energy.

For Ge we have taken into account 18, 15, 24, or 42 atomic layers and 30, 27, 36, 46
vacuum layers for the (111), (110), (100) or (113) surface orientation. For diamond and Si
the number of vacuum layers can be remarkably reduced without changing the values of y.
Anyway, to represent absolute surface energies we allow for an inaccuracy less than 0.01 J/m?
(= 0.6 meV/A) for diamond and Si, while for the more complicated case of Ge the inaccuracy
of the absolute surface energies may be increased to values of 0.01-0.02 J/m?2, in particular
for a comparison of different surface orientations. This larger inaccuracy for Ge may be also
influenced by the numerical inputs, the use of various unit cells, k-sampling, and even FFT-
meshes, for different orientations and reconstructions.

Equations (2.39) and (2.40) give the precise expressions for surface energies applicable to
arbitrary surface translational symmetries and reconstruction models. However, despite the
consideration of nonpolar group-I1V semiconductors, the numerical effort due to the use of cen-
trosymmetric slabs becomes too expensive for surface reconstructions yielding large unit cells.
Too many atoms have to be taken into account for a converged calculation. This holds in par-
ticular for the long-range reconstructions such as Si(111)7x7 or Si(110)16x 2. For that reason,
we only use the centrosymmetric slabs to obtain absolute surface energies for the unrelaxed
surfaces with a 1x 1 translational symmetry.

In order to reduce the computational efforts for the reconstructed surfaces, we focus the
attention to reconstruction-induced energy changes. Therefore, we use asymmetric slabs with
a reduced number of layers saturated by hydrogen atoms (Fig. 2.3). The H atoms are situated
in directions of the one [(111), (110), (113)] or two [(100), (113)]° bulk bonds cut forming a
surface. For each surface orientation (110), (100) or (113) the group-IV-H bond length dv_H
is optimized to find a minimum of the total energy. We obtain djyv_y = 1.11, 1.48, 1.52
A for (111), djy_y = 1.10, 1.49, 1.57 A for (110), and djy_n = 1.05, 1.44, 1.51 A
for (100) surfaces considering the three materials diamond, silicon, and germanium. Then,
studying the reconstruction of the clean surface, the bottom layers of the hydrogen-covered slab
sides are kept frozen during the surface optimizations. They simulate the bulk regions of the
semiconductors under consideration. The numbers of the atomic layers (vacuum layers) are
reduced to 8 (10), 15 (9), 8 (8), and 22 (22) for the reconstructions of the (111), (110), (100),
and (113) surfaces for all materials considered. The uppermost five atomic layers are allowed to
relax. For (113) surfaces this value increased to 6 double layers. To reduce the computational
efforts and make the computations tractable, the number of atomic layers has been reduced
to 7 for 3x2, 6x2 and 16x2 reconstructions on Si and Ge(110) surface. Also in the case of
the (111)7x 7 surfaces, determining the atomic geometries, we restrict ourselves to six atomic
layers covered by an incomplete layer of adatoms on the upper slab side and a hydrogen layer
on the bottom side.*

3In the case of (113) surfaces two kinds atoms, i.e. (111)-like and (100)-like atoms, appear after the bulk
termination.

4Since the Si(111)7x 7 reconstruction is very well established, with the resulting atomic coordinates the total -
energy calculations have been repeated using eight atomic layersto fi nd converged surface energies.
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According to the idea of expression (2.39), for asymmetric slabs with a given surface orien-
tation one obtains the sum of two absolute surface energies
1
Egr + Baur = —— {Erot (N, Ny, (Ri}) = uN = uniNii}, (2.41)

one for the clean surface, EZ ™, and one for the hydrogen-covered surface, EX .. Thereby, Ny

denotes the number of hydrogen atoms, i.e., Ny = n - m in the case of the (111) orientation,
Ny = 2n - m for (110) and (100), and Ny = 3n - m for non-centered (113) surface reconstruc-
tions. The chemical potential «y of the hydrogen atoms varies in dependence of the reservoir.
Here, we assume that the reservoir is given by free hydrogen atoms, the total energy of which
is taken from a calculation including spin polarization. The spin polarization lowers the total
energy by 0.897 eV. As a consequence of the chosen H chemical potential the energy values of
the hydrogen-covered surfaces, EX ., will be negative. The assumption seems to be reasonable
considering the hydrogen adsorption energy, E(!jds =Eg{" — Egjrf. It measures the energy gain
due to the adsorption of free H atoms on the most stable, reconstructed group-1V surface. If
E;'js is larger than the molecular binding energy per atom of the H> molecule, 2.45 eV/atom,
a dissociative adsorption of H» on the surface should be possible, unless there is a large en-
ergy barrier for the dissociation (Fig. 2.3 right). In this thesis we will however not discuss the
hydrogen-covered surfaces.

Explicitly we do not use Eq. (2.41). It requires an extra calculation to find Eg'mc using a
centrosymmetric slab. Moreover, we avoid an additional inaccuracy due to the computation
of uy for certain preparation conditions. The calculations of the absolute surface energies for
relaxed and reconstructed surfaces does however not really need E{ <. Using expression (2.41)
and computations for asymmetric slabs with the same H-covered slab sides, we only calculate
the energy gain due to an nxm reconstruction by

AEnxm—L[E (N; Nu, {Ri}D) — Etot (N Nu, {Ri}) — AN] (2.42)
= nm tot ( Nideal, NH, 1R\ tot (Nnxm, NH, 1R n .

per 1x1 cell of a relaxed or reconstructed surface with respect to the corresponding unrelaxed
surface. The number AN = Nijgea — Nnxm indicates the variation of the number of group-
IV atoms in the slab in dependence on the surface reconstruction. The non-centrosymmetric
slabs with 8 or 15 atomic layers are sufficient to calculate the energy gain AE"*™ with a high
accuracy of about 1 meV, whereas the absolute surface energies using such slab thicknesses in
the symmetric case possess an inaccuracy of about 20-30 meV. The absolute surface energies,
which are given in the following, are combined by the accurately calculated absolute surface
energies of unreconstructed surfaces and energy gains due to reconstruction. They follow from
the relation

EM — EXYunrelaxed) — AE™™. (2.43)

surf surf

2.9 Two-dimensional Brillouin zones

The k-point sampling in the irreducible part of the BZ varies with orientation and reconstruction
of the surface. In the present studies all five two-dimensional Bravais lattices occur. For that



2.9. Two-dimensional Brillouin zones 30

y y y
X M
X Y’
X X Y X
I I
P (b) Y (c)
Y, y
J K M K’
M
r J X r K x
(d) (e)

Figure 2.4 Brillouin zones of the five two-dimensional Bravais lattices: (a) oblique,
e.g. (113)2x1 and (110)16x2, (b) rectangular, e.g. (111)2x1, (110)1x1, (100)2x1/4x2,
(110)2x2/3x2/6x2, and (113)3x2 (c) c-rectangular, e.g. (111)c(2x8), (d) square, e.g.
(100)1x 1, and (e) hexagonal, e.g. (111)1x1/7x7. High symmetry points and a 2D Cartesian
coordinate system are indicated.

reason, also all BZs of these lattices have to be considered performing the k-point integrations
or summations in (2.20). They are shown in Fig. 2.4 indicating also certain high symmetry
points.® Several aspects have to mentioned. Convergence to a certain accuracy, e.g. for the
total energy of the slab system, requires a high density an a somewhat symmetry-adapted dis-
tribution of the k-points. This becomes very important to compare absolute surface energies
for different surface orientations and especially important to compare different reconstructions
and, therefore, different translational symmetries. They give rise to different local minima on
the total-energy surface. To find out the global one a high precision is required. We reach this
by replacing the final energy minimization by a procedure using a common (in general non-
primitive and, hence, larger) unit cell and therefore a smaller BZ. In the cases of (110)2x1,
1x2, and c(2x2) reconstructions 2x2 unit cells are used to minimize the total energy. On (110)
and (113) surfaces for the variety of 3x1 and 3x 2 reconstructions [in the case of (113) surfaces
also for the 1x1 one], 3x2 unit cells are studied. A 4x2 cell is used for the treatment of p(2x2)
or c(4x 2) reconstructions on (100) surfaces.

SUnfortunately, the notation in the literature is not consistent. In the original papers several modifi cations are
used. Which of the different points should be indicated by prime or not, is not exactly fi xed. In the case of the
rectangular BZ instead of X or M, the notations J and K are also possible.
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Table 2.3 Number of k points in the entire BZ and corresponding grids of
Monkhorst-Pack points being used for different orientations and reconstructions.

Reconstruction MP grid Kk points | Reconstruction MP grid Kk points
(111)1x1 8x8x1 60 (110)1x1 12x8x1 96
(111)2x1 4x8x1 32 (110)2x2 6x4x1 24

(1110)c(2x8)  4x4x1 12 (110)3x2 4x4x1 16
(111)7x7 2x2x1 2 (110)6x2 2x4x1 8
(100)1x1 8x8x1 64 (110)16x2 1x4x1 4
(100)2x1 4x8x1 32 (113)2x1 8x6x1 48
(100)4x2 2x4x1 8 (113)3x2 4x4x1 16

We need also k-point sets to represent the surface band structures. Therefore, we repeat
band calculations versus high-symmetry lines in the BZ. Here, the density of k-points is chosen
to reproduce the curvature of the bands correctly.

The number of k-points used in the BZ is extremely important for converged results for
slab energies. The grids of MP points and and corresponding k points for different surface re-
constructions are presented in Table 2.3. Our tests (which have been partially presented in this
chapter) showed that the used k-point meshes and slab thicknesses give rise to quite accurate
results. Useful test quantities are also the chemical potentials of the bulk materials resulting
within a slab approximation. After filling the vacuum regions by atoms in bulk positions we
calculate chemical potentials i which only vary by maximum deviations from the bulk” val-
ues calculated using the three-dimensional BZ of fcc lattice with an extremely high density of
k-points of 2.2, 0.7 or 0.2 meV for Ge, Si, and C with the slab orientation and the size of the
two-dimensional unit cell. Moreover, the different k-point sets are only used to calculate the
reconstruction-induced energy gains AE"*™M, This also supports to reach the accuracy require-
ments discussed above.



Chapter 3

Low-index surfaces | — (100) and (111)

3.1 (100) surface orientation

The ideal, bulk-terminated {100} surfaces of diamond-structure crystals have a square unit cell,
with one surface atom. The surface atoms possess two dangling sp3 hybrids. However, such
an ideal structure has not been observed experimentally. On a (100) surface a dehybridiza-
tion takes place yielding a bridging py,; orbital and a dangling spy orbital. The number of
dangling bonds can be minimized by a pairing mechanism, more strictly by the formation of
dimers representing a classical picture of reconstruction-induced surfaces. A variety of possible
dimer-based reconstructions observed on (100) surfaces of group-1V semiconductor is shown in
Fig. 3.1. Models represent symmetric and asymmetric dimers within 2 x 1 reconstruction and
asymmetric dimers with different left/right-tilting arrangements within p(2 x 2) and c(4 x 2)
reconstructions.

Figure 3.1 Perspective view of diamond(100)2x 1-SD reconstruction and 2x1-ASD, ¢(4 x 2),
and p(2 x 2) reconstructions on Si or Ge(100) surfaces.

All above mentioned surface geometries are included in the present study. The results for
the surface energies are listed in Table 3.1. We also list values for unreconstructed (i.e. bulk-
terminated and relaxed) surfaces. One notices that relaxation of bulk-terminated (100) surfaces
gives an energy gain of 0.3 eV per 1x1 unit cell for diamond but practically zero for Si and Ge.
The surface energies are substantially lowered allowing a dimerization of two surface atoms

32
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accompanied by a 2x 1 reconstruction. We calculate large reconstruction energies of about 1.6,
0.9, and 0.6 eV for C, Si, or Ge due to the formation of dimers.

Table 3.1 Absolute surface energies EJ " and <™ for various (100) surface reconstructions.

Reconstruction  Egyf (V/1x1 cell) y (I/m?)
C Si Ge C Si Ge
bulk-terminated 3.78 2.17 1.69 9.72 239 171
relaxed 3.65 217 1.69 9.40 239 171
2x1 222 1.32 1.03 571 145 1.05
p(2x2) 1.286 0.993 141 1.00
c(4x2) 1.285 0.985 141 1.00

In Table 3.2 values of the characteristic geometry parameters (see also Fig. 3.2) for different
dimer-based reconstructions are listed. In general, the basic 2x1 reconstruction of the (100)
surfaces indicates an opposite behavior of silicon and germanium on the one side and diamond
on the other side. Dimers with strong bonds are formed. Their bond lengths dgim are close to the
bulk ones for Si and Ge (cf. Table 3.2) but dgim approaches the value of a double bond >C=C<
in the case of diamond. In the C(100)2 x 1 reconstruction dimers are symmetric. Si and Ge(2x 1)
show asymmetric behavior. This asymmetry is well characterized by the different lengths dpack
and dy Of the backbonds of the two dimer atoms. The tilt angles ¢ of the Si and Ge dimers
with about 18 and 19° are in agreement with values of other ab initio calculations [48].

Table 3.2 Geometry parameters of dimer-based reconstruction on (100) surfaces.
Lengths are given in units of the bulk bond length. The dimer buckling is character-
ized by the angle ¢ (in degrees).

Geometry parameter 2x1 p2 x 2) c(4x2)
C Si Ge Si Ge Si Ge

dgim 090 0.98 1.00 1.00 1.03 1.00 1.03

Oback 098 1.02 1.03 1.01 1.03 1.01 1.03

Ap ek 0.98 0.99 1.00 0.99 1.00 0.99 1.00

) 0 184 19.2 19.2 19.7 19.2 1938

The origin of the different reconstruction behavior of diamond as opposed to Si and Ge is
related to the different strengths in o- and w-bonding between the orbitals at the atoms of the
symmetric dimers and the lack of p states in the diamond core. For C 2p orbitals are more
localized that 2s orbitals, while in the case of Si and Ge 3p orbitals are more extended than 3s
ones. For the bonded surface atoms the o and o * bonding and antibonding states cannot modify



3.1. (100) surface orientation 34

ddim ,
dback dback

[100]

[011]

Figure 3.2 Side view of asymmetric 2x1 model with notations of characteristic geometry pa-
rameters. The corresponding values are given in Table 3.2.

the electronic structure around the projected fundamental gap. Only surface bands belonging to
the - and 7 *-like bonding/antibonding states may occur in the fundamental gap.

The surface electronic structures resulting within the SD or ASD model of the (100)2x 1
surfaces are plotted in Fig. 3.3. Each structure shows the projected bulk bands as shaded re-
gion in the surroundings of the fundamental gap. Solid lines represent the surface bands. The
valence-band maximum (VBM) of the bulk band structure is taken as energy zero. As a conse-
quence of the short dimer bond, the z-interaction between the dangling bonds at the C(100)2x 1
surface is strong enough to clearly separate the bonding 7 -band and an antibonding = *-band
energetically appearing in the fundamental gap. !

The situation is different for Si and Ge(100)2x1 reconstructions, where the s -interaction
are not strong enough to open up a surface gap (see e.g. [48]). A Jahn-Teller-like distortion is
expected to open a surface gap between the 7 and 7z * bands. For Si and Ge an insulating surface
only occurs after dimer buckling. The corresponding energy gain via the band structure energy
explains why the symmetry-breaking tilting of the dimers is energetically favorable. Buckled
dimers consist of two atoms, an sp?-like bonded lower atom with a p,-like dangling bond and
upper one with an s-like dangling bond. The charge transfer occurs from the lower atom to the
upper one which becomes fully occupied. Consequently a surface band gap is opened.

Arrangements of the buckled dimers in c(4 x 2) and p(2 x 2) reconstructions lower the Si
and Ge surface energies further (cf. Table 3.1). Corresponding values of the bond lengths and
angles of the buckling are practically equal between c(4 x 2) and p(2 x 2) phases for each
material independently of left/right-tilting of the dimer. Only the characteristic angle is little bit
larger than the one for the 2x1 ASD reconstruction (cf. Table 3.2). Indeed, c(4 x 2) gives the
most stable ground state phase for Si and Ge(100) surfaces. However, there is only a tiny energy
difference between these two reconstructions (i.e. one or eight meV per 1x1 cell for Si and Ge,
respectively). This is in agreement with previous first-principles calculations [161-163]. Taking
into account effects of STM tip such a small preference of the c(4 x 2) reconstruction makes
quite plausible the observation of the p(2 x 2) translational symmetry, in particular on Si(100)

1]t has to be mentioned that the band structure of C(100)2x 1 in Fig. 3.3 has been calculated using symmetric
dabs. Theidea of saturation of the dangling bonds at one slab side by hydrogen atoms cannot be used to obtain
areliable band structure for C(100)2x 1. In the case with two dangling bonds per surface atom the interaction of
neighboring C-H antibondsis so strong that the upper part of fundamental gap isfi lled with hydrogen-related sur-
face states. On the other hand, the idea that the group-1V-hydrogen bonding and antibonding orbital combinations
giveriseto energiesfar away from the fundamental band gap is till valid for silicon and germanium.
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Figure 3.3 Band structures of (100)2x1 surfaces with symmetric dimer (diamond) and asym-
metric dimer (Si and Ge).

surfaces. Recent ab-initio calculation showed a possible mechanism which shifts the energy
balance when external electric fields point along the surface normal and electrons are inserted
into surface states [164].

The absolute surface energies are very interesting. They show a clear chemical trend along
the row C, Si, and Ge, similar to the bulk cohesive energies. In general, the largest surface en-
ergies appear for the diamond surface whereas the smallest ones are calculated for germanium.
Comparing the energies with other findings one gets for Si surfaces with unspecified or 2x1
reconstruction the values y = 1.36 [27], 1.34 [38], 1.49 [39], and 1.16 J/m? [165]. Other cal-
culations [40] give y = 2.32 and 1.21 J/m? for the unrelaxed or relaxed surface. Large values
are reported for diamond(100). Classical potentials give the values y = 9.21 and 3.34 J/m for
the unrelaxed or relaxed surface [40]. The huge reduction of the surface energy per unit area
due to surface relaxation agrees with the ab initio findings listed in Table 3.1.

3.2 (111) surface orientation

3.2.1 Energetics

In Figure 3.4 we present (111) surface reconstructions of group-1V elements for different mod-
els. The results for the absolute surface energies for (111) surface reconstructions are listed in
Table 3.3. All considered rearrangements of surface atoms — the relaxed 1x1 surface [46], the
m-bonded chain model of the 2x1 surface with the two isomers [56, 58], the c(2 x 8) adatom
reconstruction [66, 67], and the 7x7 DAS model [62-65] — give rise to local minima on the
total-energy surface. The (111) surface gains energy during relaxation or reconstruction. The
gain values obtained from other ab initio calculations [41, 54, 55, 58, 166, 167] for the relaxed
1x1 and the r-bonded chain 2x1 surfaces are rather similar. This holds for example for the
remarkable large energy gain due to relaxation of the C(111) surface, which has been traced
back to a tendency for the formation of a graphite overlayer [55]. There is also agreement con-
cerning the preference of the chain-left isomer for Ge [57, 58]. The situation is less clear in the
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Figure 3.4 Various (111) surface reconstructions. (a) Perspective view of 7 -bonded chain model
of (111)2x1; (b) side view of w-bonded chain model of (111)2x 1, chain-right isomer; (c) side
view of w-bonded chain model of (111)2x 1, chain-left isomer; (d) (111)7x7, DAS model (top
and side views); (e) (111)c(2x8), adatom model (top and side views).
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Si case, since the energy differences between chain-right and chain-left isomers are smaller in
agreement with Refs. [56, 57].

nxm

Table 3.3 Absolute surface energies E and ™™ for various (111) surface reconstructions.

surf
Reconstruction  Egyf (€V/1x1 cell) y (3Im?)
C Si Ge C Si Ge

bulk-terminated 2.73 1.43 1.13 8.12 182 1.32
relaxed 216 137 1.12 6.43 1.74 1.30
2x1(right) 1.37 114 0.90 406 145 1.05
2x 1(left) 1.37 113 0.89 406 144 104
c(2x8) 235 1.11 0.86 6.96 1.41 1.01
=7 239 1.07 0.87 7.11 136 1.02

Table 3.3 clearly indicates the different reconstruction behavior of the three group-I1V semi-
conductors under consideration. According to our calculations we find a further lowering of
the absolute surface energy going from the 2x 1 reconstruction (;r-bonded chain model) to the
c(2 x 8) reconstruction (adatom model) and 7x7 (DAS model) in the case of both Ge and Si. In
the case of diamond the large reconstructions are completely unfavorable. This is in agreement
with studies [168] which found that adatoms and vacancies on the diamond(111) surface are
energetically less favorable than the relaxed surface in contrast to the case of Si and Ge. For
instance, the truncated diamond crystal gains more energy by the relaxation in the first atomic
layers than by the addition of adatoms leading to a c(2 x 8) translational symmetry. The in-
crease of the energy gain in the Ge(111)c(2 x 8) and Si(111)7 x 7 cases with respect to the 2x1
surface is in agreement with previous calculations [58, 67]. Here, we also clearly show that in
the Si case the 7x7 reconstruction (DAS model) gives the most favorable reconstruction. In
the Ge case, we observe more or less the same energy for c(2 x 8) and 7x7. This may be
a consequence of numerical inaccuracies, in particular related to the small number of atomic
layers used in the calculations. However, the values in Table 3.3 really calculated with 8 atomic
layers and 16 vacuum layers in the supercell give rise to the preference of c(2 x 8) versus 7x7
in the Ge case. On the other hand the 7x7 surface can be also prepared for germanium in the
presence of biaxial strain [169]. Interestingly, there is the preference of c(2 x 8) against 2x 1 in
the Si case. Indeed, a c(2 x 8) ordering is observed on the quenched Si(111) surface [68]. We
mention that the energy gain of 0.26 eV due to the adatom adsorption between c(2 x 8) and 1x 1
(relaxed) is close to the adatom binding energy measured by means of STM on Ge(111) [170].

The absolute surface energies Egyf for the 1x 1 and 2 x 1-reconstructed diamond surfaces in
Table 3.3 are in complete agreement with results of previous first-principles calculations [41,
42, 171]. On the other hand, computations using classical interaction potentials underestimate
the surface energies with y = 3.39 (unrelaxed) and 0.83 (relaxed) J/m? [40] in the case of
diamond with strong bonds. In the Si case this underestimation is less drastical. The method
using interaction potentials [40] gives 1.15 and 1.02 J/m2. A molecular dynamics simulation
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Table 3.4 Characteristic geometry parameters of relaxed and reconstructed (111)
surfaces. All lengths are indicated in Fig. 3.4 given in units of the bulk bond length.

Reconstruction Geometry parameter Diamond  Silicon Germanium
(111)1x1 (relaxed) 3l 0.50 0.79 0.90
(111)2x1 (right) AV 0.00 0.23 0.33
dehain 0.93 0.97 0.99
(111)2x1 (left) Az 0.00 0.27 0.34
dehain 0.93 0.97 0.99
(111)c(2x8) (adatom) 3l 0.58 0.55 0.58
dag 0.88 0.86 0.88
D 1.04 1.03 1.07
3lrest 0.75 1.41 151
Orest 0.72 0.81 0.83
(111)7x7 (DAS) 3l 1.75 1.67 1.75
Aag 1.06 1.05 1.07
3lreg (faulted) 0.72 1.41 1.50
3lrest (Unfaul.) 0.72 1.35 1.50
Orest 0.98 1.02 1.03
3l corner 0.88 1.44 1.56
ddim 1.08 1.04 1.04

with empirical potentials [39] ends with a value y = 1.41 J/m? for the relaxed Si(111)1x1
surface, whereas tight-binding calculations [38] lead also to y = 1.41 J/m? but for the 2x1
reconstructed surface. Experimentally surface energies for Si(111) have been extracted from the
equilibrium shape of voids as y = 1.23 J/m? [27]. Using a cleavage technique Gilman [172]
measured a surface energy of Si(111) as 1.24 J/m? at a low temperature of —196°C. These
experimental values are close to the theoretical ones calculated for reconstructed surfaces. We
have to mention that with 1.51 and 1.18 eV Stich et al. [65] and Brommer et al. [64] calculated
values for Eg,s Which envelope the surface energy of Si(111)7x7 given in Table 3.3. However,
the energy lowering 0.06 eV of Stich et al. [65] for 7x 7 with respect to 2x 1 exactly approaches
the value obtained here. To our knowledge neither experimental nor theoretical values have
been published in the case of germanium.

3.2.2 Geometry

In Table 3.4 the values of characteristic geometry parameters for the various reconstructions of
the (111) faces are listed. The geometry parameters are introduced in Fig. 3.4. The parameter
| characterizes the distance between the nominal first- and second-atomic layers on the relaxed
(111) surface. In the case of the c(2 x 8) adatom reconstruction and the 7x7 DAS model | gives
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the vertical distances between rest atoms (I eg), adatoms (l59), center-corner-hole atoms (I corer)
and the atoms in the layer below. For the rest atoms and the adatoms we list an average value in
Table 3.4 independent of the atomic position and the faulted or unfaulted area in the 7x7 cell.
We only distinguish between the rest atoms on the faulted and the unfaulted regions. In Table
3.4 we list the triple values of | etc., since on the ideal surfaces with atoms in bulk-like positions
and bulk bond lengths these vertical distances are given by dpyk/3. With exception of |54 for
c(2x8) the values of the vertical distances on the (111) surfaces indicate a completely different
behavior of diamond on the one hand and silicon or germanium on the other hand. For diamond
these distances are usually smaller than dpyk /3 indicating a strong tendency for graphitization
in the first atomic layers. This vertical approach of the atoms in neighboring atomic layers is in
particular well pronounced for the relaxed surface. In this case also Si and Ge(111)1 x 1 surfaces
exhibit a small approach of first- and second atomic layers. However, for the c(2 x 8) and 7x7
reconstructions the adatoms, rest atoms and corner-hole Si or Ge atoms show the opposite
effect. For Si and Ge(111)c(2 x 8) one observes an increase of | eg With respect to the ideal
value, whereas the adatoms are displaced towards the bulk. This geometry is accompanied by a
rehybridization of the rest atoms resulting in s-like dangling bonds. Consequently, the adatoms
should donate their electrons to the s-like dangling bonds of the rest atoms resulting in an energy
gain. The adatoms on the c(2 x 8) surface and 7x 7 surface in T4 position are characterized by
a bond length dyg to the atoms in the nominal first-atomic layer. Interestingly, this parameter
does practically not vary with the group-1V semiconductor, neither in the c(2x8) case nor in the
7x7 case. The adatom heights | 5q above the first-atomic layer depend on the area in the 7x7
case. We confirm the experimental and theoretical result for Si [173-176] that | 4 is larger for
the faulted region than for the unfaulted region. However, this effect (not shown in Table II)
is more pronounced for Ge than for Si. The opposite behavior happens for the rest atoms. In
the 7x7 DAS case, in addition we consider the dimer bond length dgim, which, however, also
does not vary with the element. Another interesting parameter is the vertical distance D of the
adatoms to the second atomic layer. It almost approaches the value of the bulk bond length
indicating the basic idea of the T, adatoms that the wave functions of adatom and second-layer
atom overlap.

The chain-right and chain-left isomers of the 2x 1 w-bonded chain reconstruction are char-
acterized by a bond length dehain and the buckling Az of the chains. A possible dimerization
of the chains on (111) is not indicated. The bonds along the 7r-bonded chains are slightly con-
tracted with respect to the ideal bulk bond length as found by many authors. There is a clear
chemical trend. The contraction is the largest one for diamond. We confirm the remarkable
buckling of the chains on the Si and Ge(111)2x 1 surfaces [56-58] and its vanishing value for
C(111)2x1 [41, 55, 166]. Bond contraction and buckling are rather independent of the chain-
right or chain-left isomer. Only the buckling increases from the chain-right to the chain-left
isomer of Si(111)2x1.

There is a clear difference between Si, Ge, and diamond. Again as for the dimer-based
reconstructions on (100) surfaces diamond shows no asymmetry within the (111)2 x 1 7-bonded
chain model what is due to the strong C-C bonding and, hence, the lack of p electrons in the
core. It is also responsible for the absence of long-range adatom-induced reconstructions on
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Figure 3.5 Band structures of the (111)2x1 surfaces described within the w-bonded chain
model. The upper panels show the bands of the chain-right isomers whereas the lower panels
give the results for the chain-left isomers.

diamond(111). The bigger Si valence electron shell is much more softer and, consequently, a
certain buckling of the chains for (111)2 x 1 is more likely. Values of the tilting angles increase
for Ge as the softest material. The behavior of Ge surfaces is also attributed to the presence of d
electrons in the core. Subsurface stresses must be smaller for Si and Ge than for diamond when
adatoms are present on the surfaces what allows long-range reconstructions (e.g. c(2 x 8))
with an energy gain due to the electron transfer between adatoms and the rest atoms. In the
intermediate case of silicon, additional reconstruction elements occur to balance the different
tendencies observed for diamond and germanium.

3.2.3 Band structures

The different geometries influence the band structures. Their occupied parts may however al-
ready give an explanation of the energetics discussed above via the band structure energies.
This is demonstrated for the 2x1, ¢c(2x8), and 7x7 reconstructions. The band structures of
the sr-bonded chain reconstructions in Fig. 3.5 along the 'J — JK — K J’ — J'T directions
are characterized by an upper 7 *-like and a lower r-like band in the fundamental bulk energy
gap. In the diamond case the surface is metallic within the used DFT-LDA. The two bands are
degenerate at J in the surface BZ. Moreover, both bands widely overlap in energy along the
JK direction. The chain buckling in the case of the Si and Ge atoms with larger cores lifts the
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Figure 3.6 Band structures of (111)c(2x8) (top panel) and (111)7x7 (bottom panel) surface
reconstructions.

band degeneracy. Along arow C — Si — Ge the gap is opened as a consequence of the chain
buckling. The corresponding surfaces for Si and Ge become insulating. The occupied = bands
are shifted below the VBM indicating an energy gain due to the band structure contribution. A
small indirect energy gap appears along the JK line which is smaller for the chain-left isomers.
This fact is accompanied by a slightly higher energy position of the occupied w-band in the
chain-left case. This does not allow to explain the energetic preference of the chain-left struc-
ture, in particular in the case of germanium, simply by an energy gain due to the band structure
energy. Perhaps the changed topology of the five- and seven-fold rings in the layers beneath
plays a role. On the other hand, the alignment of the projected bulk band structure and the slab
band structure may be accompanied by an inaccuracy of the surface band positions by about 0.1
eV.

The band structures of the (111)c(2x8) surfaces are plotted in Fig. 3.6 (top panel) along
the high-symmetry directions 'Y — YY’ — Y'T" in the BZ of the twodimensional c-rectangular
Bravais lattice (see Sec. 2.9). Essentially the dangling bonds belonging to the two adatoms and
the two rest atoms appear in the fundamental gap region of the projected bulk band structure.
The wave functions of two of these bands are represented in Fig. 3.7. The four bands are clearly
observable for diamond because of the weak interaction of the dangling bonds and the similari-
ties of the adatom and rest atom bonding to the underlying atomic layer (cf. Table 3.4). There
is only a vanishing surface-state gap. In the silicon case the adatom dangling bonds become
more pz-like whereas the rest atom dangling bonds increase the s-character. This rearrange-
ment is accompanied by an electron transfer from the adatoms to the rest atoms forming a lone
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Figure 3.7 Contour plots of surface states of the Ge(111)c(2 x 8) surface. The wave function
squares are represented in a (110) plane. State of the lowest empty surface band at a wave vector
on the TY line (cf. Fig. 3.6) mainly localized at a T, adatom (left panel). State of the highest
occupied surface band close to the VBM at a wave vector at the 'Y’ line (cf. Fig. 3.6) mainly
localized at a rest atom (right panel). The distance of the Ge atoms to the plane of adatom and
rest atom is indicated by varying size of the dots.

pair in the dangling-bond orbital of the rest atom. As a consequence, the surface bands belong-
ing to the rest atoms are close to the VBM of the bulk band structure and, hence, completely
filled with electrons. A remarkable gap occurs between the empty and filled dangling-bond
states localized at adatoms or rest atoms. In the Ge case, the occupied rest atom bands are
further shifted into the projected bulk valence bands. The accompanying energy gain via the
band structure energy explains why the ¢(2x8) reconstruction is more energetically favorable
than the w-bonded chain 2x 1 reconstruction as well as why this happens in particular for ger-
manium. The adatom-induced elastic energy is obviously overcompensated more strongly by
lowering the band-structure energy due to the reduction of the density of dangling bonds in the
Ge case. The surface bands are clearly related to the geometry discussed above. Whereas the
adatom structure is similar for C, Si, and Ge, there is an increase of the vertical distance of the
rest atoms to the atomic layer beneath, (see Table 3.4). It is accompanied by a dehybridization
from four sp3- to px-, py-, p,-, and s-orbitals and, hence, a downshift of the surface bands
related to the occupied rest atom dangling bonds.

Figure 3.6 (bottom panel) represents the band structures of the (111)7x 7 surfaces along a
high-symmetry direction in the twodimensional hexagonal BZ (see Sec. 2.9). Explicitly, only
the bands at the center point I" and the point M at the BZ boundary have been calculated.
Here we mainly discuss the electronic structure for silicon. We observe several occupied, half
occupied and empty surface bands within the fundamental gap of the projected bulk band struc-
ture. They belong to the dangling bonds situated at the adatoms, rest atoms and corner-hole
atoms [177]. Corresponding selected states are represented in Fig. 3.8. Within the DFT-LDA
band structure of Si the surface Fermi level is located at about 0.3 eV above the VBM. The
half-filled band that pins the Fermi level shows strong contributions from dangling bonds of
adatoms. Dangling bonds localized at rest atoms and corner-hole atoms contribute to the occu-
pied bands just below the Fermi level. The tendency that the occupied dangling bonds of the
rest atoms dominate this region of surface states has been also found by other authors [177].
The contribution of dangling bonds situated at adatoms near the corner holes or in the center of
the unit mesh are much smaller. The empty surface bands mainly arise from the dangling bonds
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of adatoms. The interpretation of the states at the Ge(111)7 x7 surface is more complicated,
since the fundamental gap in the projected bulk band structure is so small in DFT-LDA. Only
a few surface bands really represent bound states. In the diamond case (not shown in Fig. 3.6)
one observes a dense bunch of dangling-bond-derived bands in a mid-gap position. As a con-
sequence of the weak geometrical changes practically all types of dangling bonds contribute to
the bunch of surface bands around the Fermi level in the center of the fundamental gap.

[111]

T—) [112]

Figure 3.8 Contour plots of surface states of the Si(111)7 x 7 surface. The wave function squares
are represented in a (110) plane for surface bands plotted in Fig. 3.6. (a) Partially filled surface
band in the gap. (b) Occupied slab band just below VBM (not shown in Fig. 3.6). (c) Occupied
surface band above VBM.



Chapter 4

High-index surfaces — (113)

4.1 Reconstruction models and structural parameters

A (113) surface of a truncated bulk Ge, Si or diamond crystal consists of alternating (001)- and
(111)-like atomic rows in the uppermost double layer [Fig. 4.1(a)]. A 1x1 unit cell contains
two atoms. The (001)-like atoms in the upper part of this bilayer are twofold-coordinated and,
hence, possess two dangling bonds. The (111)-like atoms in the slightly lower part of the
topmost bilayer are threefold-coordinated and, therefore, only have one DB. The DBs are half-
filled. According to the general rules [112] such a surface should reconstruct to minimize the
DB density and the surface energy.

The two twofold-coordinated atoms may form a dimer along [110] direction with a char-
acteristic bond length dgim and a possible dimer tilting Azgim. The dimerization of neighbored
(001)-like atoms leads to a 2x 1 translational symmetry [Fig. 4.1(b)]. Together with the two ad-
jacent non-rebonded edge atoms they form a trapezoidal tetramer. A possible asymmetry may
be characterized by the difference AZeqgge Of the vertical positions of the two edge atoms. The
removal of every third (001)-like atom in [110] direction gives a 3x1 translational symmetry.
The adjacent (111)-like atom rebonds and forms an adatom-like reconstruction element. The
adatom is characterized by the displacements Azy and Aygg parallel to the [113] or [332] di-
rection from the bulk-like position. It results an adatom-dimer reconstruction model keeping
the 3x1 translational symmetry [Fig. 4.1(c)] [88].

Refinements of the 3x 1 AD model such as tetramer tilting or puckering (indicated by Azgim
and AzZegge 7 0) may lower the total energy, but still the electron counting rule [112, 113] can-
not be fulfilled. Three partially filled DBs remain. However, if the tetramers [as in the case
of Ge and Si(001)c(4x2) or p(2x2) surfaces (cf. Sect. 3.1)] of adjacent horizontal rows are
tilted/puckered in opposite direction [88, 106], it results a 3x2 periodicity that allows for pair-
ing of all electrons and, hence, an insulating (semiconducting) surface. [106] The generalized
oppositely puckered 3x2 AD(op) structure is shown in Fig. 4.1(c).

The 3x 1 AD surface can transform into another 3x 1 structure by capturing a self-interstitial
atom in the center of the tetramer. It results ina 3x1 Al reconstruction [Fig. 4.1(d)] [84]. The in-
terstitial atom is sixfold-coordinated. Together with the (subsurface) common neighbor (called
subatom) of the two edge atoms, the original tetramer forms a nearly flat pentamer around the

44
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Figure 4.1 Top view of various reconstructions of (113) surfaces. (a) Bulk-truncated surface
with indicated dangling bonds, (b) 2x1 model with symmetric tetramers as reconstruction el-
ements, (¢) 3x2 AD model, (d) 3x2 AD (oppositely puckered) structure, (e) 3x1 or 3x2 Al
reconstruction, and (f) 3x2 ADI model. Filled (open) circles indicate atoms in the top (second)
bilayer. Dots represent atoms in the third bilayer. The interstitial atoms are indicated by shaded
circles. In (b) a 2x1 unit cell is indicated by thin lines. In (c), (d), (e), and (f) the area of a 3x2
unit cell is shown.

interstitial. The subatom is characterized by the vertical distance to the average position of the
edge atoms Azgp. The interstitial may be characterized by the vertical distance Az, of this
atom to the average position of the atoms in the surrounding pentamer. A possible displacement
along the [110] is represented by Axin. However, there is also a substantial interaction with
the atom beneath in the third bilayer, completing the sixfold coordination. The number of DBs
is not reduced with respect to the 3x1 AD surface. Complete electron pairing or completely
empty orbitals may occur by allowing an asymmetry associated e.g. with the opposite tilting
of neighboring pentamers, or with different vertical positions of atoms in adjacent pentamers.
The resulting 3x2 Al reconstruction [also Fig. 4.1(e)] should be insulating. For that reason, we
study possible asymmetric 3x2 Al reconstructions. The AD and Al models differ by the weakly
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Table4.1 Absolute surface energies EJ " and "™ for various (113) surface reconstructions.

Reconstruction Esurt (eV/3x2 cell) y (IIm?)
C Si Ge C Si Ge

bulk-terminated 32.28 20.00 15.83 834 221 161
relaxed 2644 16.71 12.70 6.83 1.85 1.29
2x1symmetric 19.77 14.46 12.66 511 160 1.28
2x1 asymmetric 13.23 10.11 1.46 1.03
3x1AD 21.29 1349 10.58 550 1.49 1.08
3x1 AD(p) 13.37 10.44 1.48 1.06
3x2 AD(op) 13.35 10.42 1.48 1.06
3x1Al 13.16 9.77 1.45 0.99
3x2 Al 13.11 9.72 1.45 0.99
3x2 ADI 12.69 9.77 1.40 0.99

bonded interstitial atoms. The migration of such atoms is likely, resulting in a certain surface
disorder. A stable intermediate structure may only contain one interstitial per 3x2 cell. It results
the mixed 3x2 ADI reconstruction shown in Fig. 4.1(e) [84]. Since there is an even number of
half-filled DBs, also this combined reconstruction model may describe a non-metallic surface.

4.2 Energetics and geometries

The calculated surface energies are summarized in Table 4.1. Important geometry parameters
are listed in Table 4.2. In addition to the most stable reconstruction models with 2x1, 3x1
and 3x 2 translational symmetries with different symmetric and asymmetric variations, we have
also studied the bulk-terminated and relaxed (113) surfaces. Relaxation of bulk-terminated sur-
faces already gives rise for the reduction of the surface energies. Dimerization of two twofold-
coordinated atoms leads to further stabilization of the surface structure. The resulting 2x1
reconstruction gains 4.17 (C), 2.26 (Si), and 1.91 (Ge) eV/2x 1 cell with respect to unrelaxed
surfaces. As for the (111) and (100) group-1V semiconductor surfaces asymmetries play an
important role also in the case of the (113) surfaces. For C(113)2x1 a symmetric tetramer is
the most favorable reconstruction element. The comparison of the energy for 2x 1 with energies
obtained for 3x 1 reconstruction shows clearly that the 2 x 1 reconstruction gives the most stable
structure of the C(113) surface. With respect to the 3x1 AD structure, there is an additional
decrease of the surface energy by about 0.4 J/m2. The formation of a symmetric tetramer per
three 2x1 cells instead of two adatoms in the case of two 3x1 cells lowers the energy of the
diamond surface by 0.51 eV per 2x 1 unit cell. This is expected for diamond since adatoms also
do not lead to a stable reconstruction of the C(111) surface (cf. Sect. 3.2).

The situation is different for the Si and Ge(113) surfaces. In these cases the low-energy
structures with 2x1 translational symmetry are given by puckered tetramers. The tetramer
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Table4.2 Important geometry parameters of 2x 1, 3x1 and 3x 2 reconstructions of (113) surfaces of C,
Si and Ge (in units of the bulk bond length). In the case of 2x 1 translational symmetry values are given
for symmetric tetramers for diamond or for asymmetric ones for Si(Ge). Due to the asymmetry in the
case of 3x2 Al and ADI two values are given for the left (right) part of the reconstructed unit cell [Fig.
4.1(e) and 4.1(f)]. For 3x2 AD(op) only one value of each tilting parameter Az gim and AZegge IS given,
since the buckling in the opposite tetramer only gives a changed sign.

Reconstruction Element  Dimer atoms  Edge at.  Subat. Adatom Interstitial
doim  AZgm AZedge AZsp Al AYag  AZin  AXin
2x1 C 0.99 0 0 —0.22
Si 1.01  0.26 0.33 -0.21
Ge 099 0.27 0.35 -0.22
3x1AD C 0.96 0 0 -022 -019 -0.29
Si 1.00 0 0 -021 -0.19 -0.36
Ge 1.06 0 0 -0.22 -0.01 -0.34
3x2 AD(op) Si 099 0.23 0.26 -0.34 -019 -0.37
Ge 1.01 0.29 0.27 —0.34 0.00 -0.37
3x1Al Si 0.98 0 0 0.00 0.00 -0.28 0.62 0
Ge 1.00 0 0 0.09 0.04 -0.28 0.63 0
3x2 Al Si 099 0.02 0.06 0.03 0.00 -0.27 0.61 -0.03
(0.99) (0.05) (0.21) (0.00) (—0.01) (—0.25 (0.60) (0.10)
Ge 1.00 0.0 0.01 0.09 0.02 -0.26 061 -0.01
(1.02) (0.09) (0.26) (0.01) (0.04) (0.27) (0.63) (0.12)
3x2 ADI Si 1.01 0 0 0.03 -0.01 -0.28 0.62 0
(0.98) (—0.19) (-0.02) (—0.3%)
Ge 1.00 0 0 0.08 0.04 —-0.29 0.64 0
(1.06) (=0.21) (0.01) (-0.33)

atoms belonging to a diagonal pair go up or down with respect to the substrate. The occur-
rence of asymmetric reconstructions is similar to the observations for the dimer reconstruction
of the (001) surfaces and the sr-bonded chain reconstruction in the case of the (111) surfaces (cf.
Sects. 3.1 and 3.2). Interestingly, the asymmetric tetramers also stabilize the Si and Ge(113)
surfaces more than the variety of originally suggested AD models with 3x1 or 3x2 transla-
tional symmetries (see Table 3.5). As for the 2x1 reconstruction in the puckered 3x1 AD
structure diagonal atoms in the tetramer are buckled towards the same direction. In the oppo-
sitely puckered 3x2 AD geometry upper and lower atoms of two tetramers belong to different
diagonals. Apart signs, the geometry parameters (cf. Table 4.2) are almost the same for 3x 1
AD(p) and 3x2 AD(op) models. Only in the Ge case one parameter is somewhat different for
3x1 and 3x2 unit cells, the buckling AZeqgge between the edge atoms (instead of 0.27 it is 0.17
dbuik). The buckling Azege is also different (larger) for both Si and Ge in comparison to the
2x 1 reconstruction.
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Indeed, puckering reduces the surface energy, but only within AD models. For silicon we
calculate an energy gain of 0.12 eV per 3x2 unit cell for the 3x1 AD(p) reconstruction. The
puckered structure with 3x1 translational symmetry is only slightly higher in energy by 0.02
eV compared with the 3x2 AD(op) reconstruction. Similar energy gains are obtained for ger-
manium (cf. Table 4.1). The 3x1 puckered model lowers the surface energy by 0.14 eV for
Ge. The opposite puckering further lowers the surface energy by 0.02 eV, a value of the order
of the thermal energy at room temperature. Consequently, a flipping of the tetramers should
be already possible at room temperature. A phase transition between 3x1 and 3x2 structures
may be easily imaginable in the framework of the AD model as suggested in the literature for
Si [101, 106]. The small energy differences also suggest the local coexistence of phases with
different translational symmetries as observed in the Ge case [95, 99, 108].

The introduction of self-interstitials on Si and Ge(113) surfaces reduces the energy further
in agreement with previous calculations [84, 108]. However, there is a sensitive balance of
different energy contributions. For Si(113), the 3x2 ADI reconstruction [Fig. 4.1(f)] with only
one interstitial atom per 3x2 unit cell gives the lowest-energy structure. The 3x1 and 3x2 Al
structures with more interstitials per unit area are less stable. With respect to the optimized 3x 2
AD(op) structure (Table 4.2), the adsorption of an interstitial atom gains energy of about 0.7
eV within the 3x2 ADI model. Due to the repulsive interaction of the interstitials on the short
distances this value is reduced to 0.2 eV per interstitial for Al geometries. For Ge the energies
of the 3x1 Al and 3x1 ADI models are equal. The novel asymmetric 3x2 Al model gives rise
to the lowest energy structure. There is an energetical ordering 3x1 Al/3x2 ADI and 3x2 Al,
which is different from that observed for Si(113). The repulsive interaction of the interstitials is
much weaker in the germanium case. The energy gain of 0.6 eV by adding an Ge interstitial in
a 3x2 ADI structure is reduced to 0.3 eV per interstitial in the Al cases.

Within the interstitial models pronounced asymmetries are found only for the 3x2 Al re-
construction (cf. Table 4.1). There is a general tendency to break the symmetry between the
two pentamers. Such asymmetries have been observed in STM images for the seemingly 3x1
reconstruction [108]. The unit cell of the 3x2 Al reconstruction is doubled by opposite buck-
ling of the two pentamers, where the interstitial atoms can also change their central positions.
Such a staggered arrangement of buckled pentamers lowers the total energy by about 50 meV
for Si and Ge and results in the 3x2 Al model. Here we present the most favorable asymmetries
which have been found. Other asymmetries, e.g. an average relative vertical displacement of
the two pentamers within the 3x2 Al model, also lower the total energy. One observes different
local minima on the total-energy surface with practically the same surface energies. The band
structures of the two geometries are nearly identical. Particularly for Si the asymmetry opens a
gap. The removal of one interstitial, i.e., the transition to the 3x2 ADI structure, further lowers
the energy in the Si case but not for Ge(113). For the 3x2 ADI reconstruction an additional
asymmetry is not favorable for both materials.

The small energetical differences between ADI and Al models may explain the observed
temperature-induced order-disorder phase transitions [91, 94-96, 99, 104, 105, 108]. The low
temperature of about 120 K for Ge and the high temperature of about 800 K for Si seem to
be correlated with the differences in the corresponding surface energies between Al and ADI
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structures. According to the small binding energy of the second interstitial, surface diffusion
must play an important role, in particular the migration of the interstitial atoms [108]. Such a
migration at a certain temperature may be accompanied by a certain amount of surface disorder
and, hence, explains the coexistence of 3x1 and 3x2 reconstructed domains on a given (113)
surface [94, 97, 99, 101, 108]. In the Si(113) case the observation of 3x1 instead of 3x 2 seems
to be also dependent on the density of the surface defects and the bulk doping [89, 93].

The energetical ordering of the reconstruction models in Table 4.1 is the same as in other ab
initio calculations [84, 92, 106, 108], apart that the 2x 1 and asymmetric 3x 2 Al structures have
not been studied. In particular, interstitial models give the lowest-energy structures. We agree
that 3x2 ADI is the lowest-energy structure for Si(113) and with nearly the same energies for
all interstitial reconstructions of Ge(113). However, the calculated absolute surface energies per
unitarea, y, in Table 4.1 are slightly smaller than those computed by other authors [84, 92, 108].
This holds for both Si and Ge(113).

4.3 Band structures and electronic states

In order to understand the driving forces of the reconstructions and the electronic structures of
the (113) surfaces for diamond, Si and Ge, band structures for all important models have been
calculated. The corresponding resulting band structures of (113)2x1 surfaces are plotted in
Fig. 4.2 versus the variation of the k points between high-symmetry points in the surface BZ of
the oblique lattice (see Sect. 2.9). The C(113)2x1 surface with tetramers shows a significant
insulating behavior. Two neighbored empty surface bands in the upper part of the projected
fundamental gap are well separated from the two completely filled surface bands somewhat
below the VBM of the bulk band structure. The indirect energy gap is related to a transition
from the I" P line to the J point and amounts to 2.1 eV within the DFT-LDA, i.e., half the value
of the bulk gap. Surprisingly, already the symmetric tetramers give rise to the opening of a
surface gap for Si(113)2x 1, though the gap is small with 0.4 eV. This is not the case for the
symmetric-dimer reconstruction of the Si(001)2x 1 surface (cf. Sect. 3.1) for reasons which will
be seen discussing the nature of the electronic states below. A gap opening does not occur for
symmetric tetramers on Ge(113)2x 1. However, the prediction of the surface band structure is
difficult due to the remarkable band-gap underestimate within the DFT-LDA already for bulk
Ge. In any case, for Si and Ge there is a tendency to open the surface gap by puckering of the
tetramers. The occupied bands, in particular for Ge, are shifted into the projected valence bands
and only an empty surface state band remains in the projected fundamental gap. However, due
to its strong dispersion the Ge(113)2x 1 surface with asymmetric tetramers remains metallic.
The low position and the strong dispersion of the lower surface band for Ge(113)2x1 is a
consequence of the bulk electronic structure. The bulk conduction-band states arising not far
from the L point in the fcc BZ repel the surface band at J (which is in contrast empty for
C and Si) towards lower energies even below the VBM. The general tendency of shifting the
surface bands and opening gaps between surface states with the asymmetry of the tetramers is
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Figure 4.2 Electronic band structures of C, Si and Ge(113)2x 1 surfaces. The band structures
in the upper panels are calculated for symmetric tetramers, while the lower ones represent asym-
metric tetramers.

in agreement with similar findings for the (111) and (001) low-index surfaces of Si and Ge (cf.
Sects. 3.1 and 3.2).

The physical/chemical origin of the surface bands is indicated in Figs. 4.3 and 4.4. The
squares of the wave functions are plotted for the two lowest empty surface bands and the two
highest occupied surface bands for symmetric tetramers [C(113)2x 1, Fig. 4.3] and asymmetric
tetramers [Si(113)2x 1, Fig. 4.4]. The character of the four surface bands within the fundamen-
tal gap is dominated by the six dangling-bond orbitals situated at the four tetramer atoms (one
on each (111)-like atom (or edge atom ) and two on each (001)-like atom (or dimer atom) of
the tetramer) as indicated in Fig. 4.1(a) for the surface atoms in bulk positions. Their linear
combinations form the surface-state wave functions. Even for the symmetric case of diamond,
the two sp® orbitals of each (001)-like atom cannot be dehybridized in such a way forming o
and 7 orbitals with respect to the directions [113] and [110] as in the classical dimer picture
of (001) surfaces [48]. In contrast to (111) and (001) surfaces with exact = and o orbitals, six
sp3-like dangling bonds have to be discussed to explain the electronic structure of the tetramer.

As a consequence, for diamond only one bond along the [110] direction is nearly formed
by two sp3-like orbitals located at (001)-like atoms. The remaining dangling bonds strongly
interact with the dangling bonds of the neighbored (111)-like edge atoms of the tetramer. In
the case of C(113)2x1 the distance of the two (001)-like atoms in the tetramer amounts 99%
(Table 4.1) of a bulk bond length dpyk. This is in contrast to a dimer bond length 0.90 dpyk
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Figure 4.3 Wave-function squares of the lowest unoccupied ¢, (a), ¢1 (b) and highest occupied
v1 (€), vy (d) surface bands at P for the C(113)2x1 reconstruction. In (a) and (c) cases side
views are additionally plotted in the left panels in order to show the contributions below the
tetramer plane.

calculated for C(001)2x 1 (Table 3.2). Interestingly the two bond lengths between edge and
dimer atoms in the tetramer are reduced to 0.89 dpyk. The reason is a true dimer-like behavior
of two such atoms. Already in the bulk case a o bond exists. An additional bond is formed by
the two dangling hybrids of the edge and dimer atoms. No asymmetry occurs in the tetramer
because of the strong bonding between the carbon atoms which takes place due to the lack of p
and d electrons in the atomic core. The tetramers nearly show a mirror symmetry along [332].
They are almost planar. Only a small difference of 0.22 A remains between dimer and edge
atoms along the z direction as an artifact of the atomic positions in the bulk-terminated surface.
As a consequence of the weak bonding of the so-called dimer atoms, the occupied tetramer
states in Fig. 4.3(c) and Fig. 4.3(d) are governed by antibonding (bonding) combinations of
dangling orbitals at dimer atoms and bonding (antibonding) combinations of dangling orbitals
located at edge and dimer atoms. However, there are also contributions from the orbitals around
the central atom below the tetramer. The unoccupied states are dominated by antibonding linear
combinations of dangling bonds located at the dimer and edge atoms.

Because of the most favorable asymmetric (puckered) tetramer structures the surface states
are completely changed for the Si and Ge(113)2x 1 surfaces. A tetramer does not anymore
form a planar structure. Starting from the left edge atom, approaching the two so-called dimer
atoms, and going around to the second edge atom one finds the following variations Az in the
vertical positions, 0, 0.91, 0.29, and 0.77 A (0, 0.98, 0.33, and 0.86 A) for Si (Ge). The dimer
bond length between two (001)-like atoms amounts to 1.01 (0.99) dpyk, Whereas the lengths
between (111) and (001) atoms are 0.97 (0.95) dpyk for Si(113) [Ge(113)]. For Si(113)2x1 the
wave-function squares of the surface states are shown in Fig. 4.4. Because of their similarity
those for Ge are not plotted. The consequence of the asymmetry of the tetramers is obvious.
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Figure 4.4 Wave-function squares of the lowest unoccupied c; (a), ¢; (c) and highest occupied
v (C), v (d) surface bands at P for the asymmetric tetramer reconstruction of the Si(113) sur-
face. The band v, (d) occurs in the projected band structure of the valence bands and, hence, is
not indicated in Fig. 4.2. In (a) and (c) side views are also plotted in the left panels.

The different surface states at the P point in the BZ are mainly due to orbitals located at one
tetramer atom. The two lowest unoccupied states are localized at the two down atoms forming
a diagonal of the tetramer. The two considered occupied states are mainly localized at the two
upper atoms. Energetically the lowest one lies already in the projected bulk band structure
(cf. Fig. 4.2). The situation shows similarities to the asymmetric-dimer reconstruction of the
Si(001)2x1 surface. The outgoing atoms become a more s-like dangling orbital, whereas the
atoms displaced towards the substrate show a more p-like character of the dangling orbital.
Electron transfer from the more p,-like orbitals into the more s-like orbitals is expected to
lower the total energy of the system.

Electronic band structures of different 3x1 and 3x2 surface reconstuctions for Si and
Ge(113) surfaces are plotted in Fig. 4.5. In principle, a similar behavior is observed for Si
and Ge. Similar to the 2x 1 case, modifications are related to differences in the bulk band struc-
tures. For Ge a small direct gap at I and a conduction-band minimum (CBM) at L instead of at
0.85 I' X are found. The minima at L points are responsible for the deep projected conduction
bands at the K point of the surface BZ. Moreover, the weaker bonding in Ge plays a role. The
3x1 AD model [Fig. 4.5(a)] clearly gives a metallic behavior of the (113) surfaces in agree-
ment with the three half-filled (without buckling) DBs. DB-related bands overlap partially with
bulk states near the VBM. The Fermi level at an energy near the VBM crosses these bands.
A similar behavior is observed for the lowest-energy AD structure of the C(113)3x1 surface.
The metallic character remains true for the puckered AD, but surprisingly also for the oppo-
sitely puckered 3x2 AD structures [Fig. 4.5(b)]. The DBs at the adatoms still weakly interact
and the splitting of the two bands due to asymmetric displacements and DB interaction is too
small. This is in contrast to the band structure obtained within a TB approximation by Wang
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Figure 4.5 Band structures of Si and Ge(113) surfaces. The shaded regions indicate the pro-
jected bulk band structures. Surface bound-state bands are shown as solid lines. Fundamental
gaps between such states are represented as hatched regions. (a) 3x1 AD, (b) 3x2 AD(op), (c)
3x1 Al (d) 3x2 Al, and (e) 3x2 ADI. In all cases the BZ of the 3x2 reconstruction is used for
the presentation. For Si(113) in (c), (d), (e) surface bands are denoted by v; and ¢;.

et al. [106]. A surface-state gap of about 1 eV [106] would require remarkable differences in
the s- and p-character of the two DBs at the adatoms. Still partially-occupied states belong
to adatoms, and there is not a significant tendency to transfer electrons from tetramers to the
adatoms.

Adding a surface self-interstitial but keeping the 3x 1 translational symmetry in the 3x1 Al
structure, no change in the metallicity occurs. In the upper part of the fundamental gap in the
projected bulk band structure, it appears a half-filled band pair that is degenerate along the BZ
boundaries and pins the Fermi level [Fig. 4.5(c)]. However, giving the system more degrees of
freedom in a 3x2 Al structure and allowing an asymmetric behavior of the two pentamers in the
3x 2 unit cell (relative vertical displacement and/or opposite buckling) the degeneracy is lifted
and a surface-state gap appears [Fig. 4.5(d)]. The fully occupied band moves down in energy.
Therefore, the stabilization of the 3x2 translation symmetry with respect to the 3x1 one, in
Table 4.1, can be explained by an accompanying gain of band-structure energy. The removal of
one interstitial atom within the 3x2 ADI reconstruction model increases the asymmetries in the
3x 2 unit cells. The insulating or semiconducting character of the surface is increased by further
opening of the surface-state gap for both Si and Ge(113) [Fig. 4.5(e)]. The highest occupied
surface-state band completely moves below the VBM. There is only a measurable total-energy
gain for Si (Table 4.1), which is related to the lowering of the band-structure energy. Whereas
for the 3x2 Al model the highest occupied surface-state bands appear in a midgap position, this
band occurs below the VBM in the 3x2 ADI case.
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Figure 4.6 Wave-function squares of the highest occupied and lowest unoccupied surface bands
at K for the Si(113) surface within the 3x1 and 3x2 Al reconstructions. (a) two fully occupied
states vy,3, (b) half-occupied v1/c1 and (c) lowest conduction states c,/3 of 3x1 Al model. (d)
and (e) highest occupied (v1) and lowest unoccupied (c;) bands of 3x2 Al surface reconstruc-
tion. Corresponding electronic structures with band indication are shown in Figs. 4.5(c) and
4.5(d).

The findings of a semiconducting behavior of Si(113)3x 2 surfaces are in agreement with
Photoemission Spectroscopy (PES), Angle-Resolved Photoelectron Spectroscopy (ARPES),
and STM studies. PES of Ranke and Xing [178] gave the Fermi level in a midgap position
of about 0.5 eV above the VBM. This energy region was shown to be free of occupied surface
states as demonstrated in Fig. 4.5(e) for the 3x2 ADI structure. At normal emission and at
higher emission angles ARPES [102] found two surface bands separated by 0.4 eV below the
VBM in a k-vector direction parallel to [110]. Along JK but also along J'T" (but within the
bulk states), we also observe such a pair of surface states in Fig. 4.5(e). Their splitting is smaller
than the measured value. One reason may be the neglect of the quasiparticle corrections. Differ-
ential tunneling conductance spectra taken at various sites in the 3x2 unit cell on topographic
images for both positive and negative voltages also indicate the existence of surface states for
Si(113)3x2 [89]. A broad occupied surface-state feature is observed 0.8 eV below the Fermi
level in agreement with PES [179] or 1 eV in Ref. [105]. The gap of about 1.2 eV is almost free
of surface states in agreement with the calculations for 3x2 ADI.

As in the case of 2x1 reconstructions the interpretation and identification of the surface
bands is more complicated for the Ge(113) surface. However, away from the I" point the situa-
tion becomes clear. The slab band structures show a small gap for both the 3x2 Al and the 3x2
ADI models [Figs. 4.5(d) and 4.5(e)]. The resulting semiconducting behavior is also confirmed
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Figure4.7 Wave-function squares of the high-
est occupied (vp, v1) [(@) and (b)] and lowest
unoccupied (c1, ¢2) [(c) and (d)] surface bands
at K for the Si(113) surface within the 3x2
ADI reconstruction [see Fig. 4.5(e)].

by PES measurements which found the VBM to be 0.22 eV below the Fermi level and this
energy region free of surface states [180].

In order to figure out the true nature of the surface-state bands in the fundamental gap of
the projected bulk band structure, the wave functions of the highest occupied (v1, v2, v3) and
lowest unoccupied (cs, C2, c1) surface bands are plotted in Figs. 4.6 and 4.7. 3x1 and 3x2
interstitial reconstructions of the Si(113) surface are studied at the K point in the BZ of the
3x2 lattice. At least for Si(113) the states at K are well separated from the bulk states and,
hence, show a remarkable localization. In the Ge case there is an energetical overlap of the
empty surface bands with the bulk conduction bands at K. Figure 4.6(a) shows for the 3x1 Al
model that the two degenerate surface bands v/3 below the VBM are localized at the adatoms
and that each DB of an adatom is completely filled. This filling indicates the main effect of the
presence of the interstitials. The DBs at the adatoms are filled and, consequently, adatoms move
up (see Table 4.2). The wave functions of the half-filled bands v1/c;y in the upper part of the
fundamental gap [Fig. 4.5(c)] are localized at edge atoms and the subatoms which are originally
situated in the third atomic layer. Originally the edge atoms possess half-filled dangling bonds.
However, the occurrence of a probability to find electrons at the third-layer atom is somewhat
unexpected. That means, this atom is not anymore completely fourfold-coordinated. Rather,
because of the presence of the interstitial one bond is weakened, allowing the atom in the fourth
atomic layer to form a bond with the interstitial atom. Higher states which appear in the gap
(cy/2) are localized on the dimer atoms [Fig. 4.6(c)].

The asymmetry in the two pentamers of the 3x2 Al reconstruction governs the gap opening
[Fig. 4.5(d)]. The atoms of the pentamer which is closer to the substrate tend to have more p-
like DB states. An electron transfer happens from the electronic states localized at this pentamer
into the more s-like states at the pentamer that is somewhat displaced away from the bulk. The
difference of buckling in the pentamers also plays a role (cf. Table 4.2). Nevertheless, the
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atoms with higher positions are more filled and contribute to the vy [Fig. 4.6(d)]. The lowest
conduction-band states c; are localized at the second pentamer [Fig. 4.6(e)]. The higher states
should be observable at the lower parts of the pentamers (not shown).

For the 3x2 ADI model the filled and empty surface states v1,v2 and c;,Cp are shown in Fig.
4.7. The occupied states in Fig. 4.7(a) and 4.7(b) are again localized at adatoms. The empty
states belong to the pentamer [Fig. 4.7(c) and 4.7(d)]. Surprisingly, the wave functions around
the subsurface interstitial do not contribute to the surface-state bands in the gap. For that reason,
they are not visible in STM measurements for not too large voltages [84, 92].

4.4 STM images

The different contributions of the empty and filled electronic states localized at the pentamers,
tetramers and the two rebonded adatoms in a certain 3x 2 interstitial surface reconstruction will
also dominate the STM images. This is demonstrated in Fig. 4.8 for voltages corresponding to
energy intervals of 2 eV below or above the theoretical Fermi level within the fundamental gap
in DFT-LDA quality. Results are for Si(113), the 3x2 Al structure in Fig. 4.8(a) and the 3x2
ADI reconstruction in Fig. 4.8(b). Those for Ge(113) are very similar. The main differences are
due to the strength of the buckling within the 3x2 Al reconstruction.

The resulting STM images are in accordance with the discussion of the orbital character
of the gap states in Fig. 4.6 and 4.7. Figure 4.8(a) for the 3x2 Al model clearly shows that
the filled-state images are dominated by the wave functions localized at the adatoms. The two
pentamers are less visible. However, the right part of the upper pentamer shows brighter spots.
They are related to the pronounced asymmetry of the two pentamers. The empty-state images
show an opposite behavior. The pentamers are clearly visible whereas only weak contributions
are associated with the adatoms. The asymmetry in the upper pentamer is indicated by some-
what smeared-out spots. The interstitial atoms are not visible. In principle such nonsymmetric
pentamers are observed experimentally for seemingly 3x 1 areas of the Ge(113) surface [108].
Although the asymmetry can be seen there, it is difficult to distinguish whether the 3x1 or
3x2 Al reconstruction appears on the surface, at least in empty-state images. Consequently it is
also difficult to distinguish between 3x 1 or 3x 2 translational symmetries using a local method
such as STM.

The observation of pentamer-like structures in empty-state images [89, 93, 107] should
be taken as an indication for an interstitial. This is clearly shown in Fig. 4.8(b) for the 3x2
ADI model by the differences between spot arrangements related to pentamers or tetramers.
The dimer atoms in the upper-right feature appear in both empty-state and filled-state images,
whereas the pentamer is more (empty-state) or less (filled-state) visible. More in detail, the
filled-state image is dominated by electronic states localized at the adatoms, as in the case with
two interstitials, i.e., the 3x2 Al (or 3x1 Al) reconstruction. For Si(113)3x2 [93], as well
as Ge(113)3x2 [108], such filled-state images have indeed been observed. The adatoms get
electrons from the pentamers to fill their partially occupied states. In the empty-state image
[Fig. 4.8(b), right] the adatoms are not seen. The pentamer can be well identified, while the
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Figure 4.8 STM images of filled (left panel), and empty (right panel) states simulated for the
3x2 Al model (a) and 3x2 ADI model (b) of Si(113) surface for voltages corresponding to —2
and 2 eV with respect to the theoretical Fermi level.

tetramer is only partially visible due to empty 7* dimer states. Images of this type have been
observed for Si(113)3x2 surfaces and voltages of 3 V [93] (see Fig. 4.9). The observation of
the dimer in the tetramer in both images is related to the bonding and antibonding = states of
these atoms discussed above. This is not surprising since the corresponding bands do not appear
in the fundamental gap and are resonant with the projected bulk band structure. Therefore, for
smaller voltages the dimers (and the entire tetramers) should be less visible in both filled-state
and empty-state images. One also has to mention that the images have been calculated assum-
ing the constant-height mode and not a constant-current mode, and that the energy interval of
2 eV used in the calculations of the images means a larger value for the experimental voltage,
since the quasiparticle gap opening is not taken into account.

Figure 4.9 Topographic STM image of
Si(113) surface corresponding to 3 V of
sample bias voltage and 4 nA of the tunnel-
ing current (from Ref. [93]).




Chapter 5

Low-index surfaces Il — (110)

5.1 Translational symmetry of (110)16x2 surfaces

Clean Si(110) [at certain conditions [80, 81] also Ge(110)] surfaces exhibit 16 x2 reconstruc-
tions. It was found by using High-Energy Electron Diffraction (RHEED) or LEED in the cor-
responding patterns, superstructure spots divide the two fundamental spots into 16. Using the
basis vectors a = (-1, 1, 0)ag/2 and b = (0, 0, 1)ag (ap - bulk lattice constant) of the two-
dimensional rectangular Bravais lattice with 1x1 unit cells (see Fig. 5.1), the 16x2 structure
has to be described as v/171x+/6 — R(32.73°, 35.26°) surface within the Wood notation or as

2 )

within matrix notation [44]. The unit cell of the resulting oblique lattice with the primitive
basis vectors & = (—11, 11, —10)ap/2 and b = (=1, 1, 2)ag is also shown in Fig. 5.1. There
is a deviation of 2.5° of the first vector & from the vector (—1, 1, —1)16ap/3 giving rise to a
rectangular unit cell. Nevertheless, we still use the denotation “16 x 2 reconstruction”, since the
unit cell area actually amounts to 32 unit cell areas of the 1x 1 surface.

5.2 Bond-rotation/bond-contraction relaxation mechanism

A 1x1 unit cell of (110) surfaces consists of two atoms with one dangling bond at each atom
connected by two in-plane bonds, introducing in this way a zigzag chain (cf. Fig. 5.2). In
the case of zinc-blende crystals where (110) is the cleavage face this bulk-terminated (1x1)
translational symmetry is preserved. After the relaxation surface atoms possess asymmetric
positions, one atom goes up while the other one moves down, thereby introducing a buckled
chain. The relaxation is characterized by a so-called bond-rotation or bond-contraction model
in dependence on strength and ionicity of the bonds [181]. These chains are characterized by a
bond length dehain and a buckling Az of the two atoms in a 1x1 unit cell. Basically the same
type of relaxation may occur in the case of the group-1V elements. Table 5.1 shows that in
the diamond-structure case the Si and Ge(110)1x 1 surfaces are clearly described by the bond-
rotation mechanism. The bulk bond lengths are conserved but substantial chain bucklings are
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Figure 5.1 Top view of a bulk-terminated (110) surface with 1x1 (dotted line) and possible
16x 2 (solid line) unit cells. Dots (circles) represents first(second)-layer atoms. The directions
of the primitive basis vectors of the 1x1 and 16 x 2 lattices are indicated. The deviation from the
rectangular lattice is demonstrated by the small difference in the directions [11 11 10] and [111].

predicted. Diamond(110)1x 1 exhibits the opposite behavior, i.e., it is characterized by a bond-
contraction relaxation mechanism. There is no buckling but a remarkable shortening of the
chain bonds. In any case relaxation gives rise to an energy gain (cf. Table 5.2)

Figure 5.3 presents the bands of the clean relaxed (110)1x1 surfaces together with the
projected bulk band structures. The two dangling bonds per surface unit cell lead to two bands,
which are situated within the projected bulk fundamental gap. In the diamond case the two
dangling bonds remain equivalent. Consequently the two bands degenerate along the M X line,
i.e., perpendicular to the surface chain orientation. The bands split along the other BZ boundary
MX’. Along the ' X and "X’ directions the surface bands exhibit a remarkable dispersion.

Figure 5.2 Perspective view of zigzag chain on the (110) surfaces.
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Table 5.1 Geometry parameters of (110)1x 1 reconstruction. Lengths are given in
units of the bulk bond length. The chain buckling (rotation) is also characterized by
the tilt angle w (in degrees).

Geometry parameter Diamond  Silicon Germanium

1) 0.0 19.6 19.8
Az 0.00 0.33 0.34
dehain 0.93 0.99 1.00

Table5.2 Absolute surface energies EJ ™ and "™ for various (110) surface reconstructions.

Reconstruction Esur (€V/1x1 cell) y (I/m?)
C Si Ge C Si Ge
bulk-terminated 412 263 213 748 2.04 152
1x1-relaxed 3.26 219 1.66 593 1.70 1.19
1x2-chain 2.18 1.64 1.69 1.17
16 x2-chain 2.19 1.70
16 x 2-chains on terraces 2.17 1.69
2x 1-adatom 2.14 159 166 114
c(2x2)-adatom 226 1.84 1.76 132
3x1-adatom 209 1.72 1.63 1.23
3x2-adatom 223 181 1.72 1.29
16 x 2-adatom-1 2.24 1.74
16 x 2-adatom-2 2.16 1.68
6x2-adclusters — — — —
16 x 2-hexagon 2.45 1.90
3x2 ATI 209 161 163 1.15
16x2 Tl 2.24 1.74
16x2 ATI 2.14 1.66
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Consequently the C(110)1x1 surface is metallic. Along the row C—Si—Ge the chemical
trend is similar to that in the (111)2x1 case (cf. Sect. 3.2). The chain buckling (cf. Table
5.1) lifts the degeneracy of the two bands along M X. However, in the Si case the effect is
not strong enough. The Si(110)2x1 surface becomes semimetallic. For Ge(110)2x1 a true
surface-state gap is opened along the M X line. On the other hand, the bands are shifted towards
the occupied bulk bands and the uppermost band exhibits a strong dispersion as a consequence

of the interchain interaction. It also results a semimetallic surface electronic structure.

For Si and Ge(110) surfaces a bond-rotation or bond-contraction relaxation mechanism is
not the most favorable one assuming not too differing translational symmetries. A more stable
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reconstruction with parallel chains buckled in opposite directions is presented in Fig. 5.4(a).
This 1x2 reconstruction is energetically more favorable than the relaxed 1x1 one for both
materials. The energy gains due to the various buckling contributions of the chains are only of
the order of 10 meV for Si and slightly larger for Ge (about 20 meV) (see Table 5.2). The surface
stabilization in a 1x2 reconstruction by chains in anti-phase agrees with previous theoretical
findings [85, 86]. The values of the buckling amplitudes are 0.75 and 0.80 A for Si and Ge,
respectively. The preference of the 1x 2 reconstruction can be related to a gain of band-structure
energy. The corresponding electronic band structures are plotted in Fig. 5.5(a). In contrast to
the findings for the relaxed 1x 1 surface (cf. Fig. 5.3), the alternate buckling of parallel chains
in the 1x 2 reconstruction opens a fundamental band gap between surface bands. For Si a small
gap is observed along the J’K direction. The interchain interaction is effectively reduced.
The band folding together with the repulsion of bands decrease the band dispersion in chain
direction. For Ge the band structure in Fig. 5.3(a) still indicates a metallic behavior. However,
the interpretation of the Ge electronic states is more difficult because of the underestimation of
the band gaps within the DFT-LDA already for bulk, as discussed above. The dispersion of the
surface bands in Fig. 5.3 is not too large, and the bands mostly overlap near the I" point. There
may be a chance to open a gap using the quasiparticle approach. This also holds for other Ge
surface reconstructions discussed below. In contrast to the Ge case the Si(110)1 x 2 surface with
oppositely buckled parallel chains is semiconducting. The dispersion of the surface bands near
" is much weaker. For Si(110)1x2 the squares of the wave-functions at K are shown for the
highest occupied and lowest unoccupied states in Fig. 5.6. The principal behavior is similar to
the case of equally buckled chains in 1x1 cells. The states localized on upper atoms are fully
occupied and behave as s-like orbitals, while those on lower atoms are empty and have p,-like
character. The surface states are similar for Ge (nhot shown).

Another 1x2 reconstruction may be related to a phase-shifted arrangement of x-bonded
dimers [83], due to the rebonding of dangling bonds of neighboring first-layer atoms belonging
to the same chain along the [110] direction (not shown). The total-energy optimization showed
that such dimer arrangements are not stable. During the atomic relaxation the starting dimer
configuration is transformed back into a chain structure. The reason is that it is not favorable

Energy (eV)

Figure 5.3 Band structure of relaxed (110)1x 1 surfaces.
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Figure 5.4 Side and top views of relaxed atomic positions of Si(110) surfaces (those for Ge are
similar): (a) 1x2 chain buckled model, (b) 2x1 adatom model, (c) c(2x2) adatom model, (d)
3x 1 adatom model, (e) 3x2 adatom model, (f) 6x2 five-membered adatom model, and (g) 3x2
adatom-tetramer-interstitial model. Lateral unit cells are indicated by thin solid lines in the top
views.

to break a o bond which already exists and to create a dimer with a 7= bond which is weaker.
Consequently, it is not possible to cover Si and Ge(110) surfaces by neighboring dimers.

The next important point in the understanding of (110) surfaces, in particular of Si(110)16x 2,
is related to study of the step configuration observed by STM. First we have studied a Si(110)16x 2
reconstruction using the bond-rotation relaxation model where chains are buckled in one direc-
tion like in nominal 1x1 cell. It gives an idea about the convergence of the total-energy and
force calculations using the 16x2 oblique Bravais lattice with primitive vectors & and b indi-
cated in Fig. 5.1. The energy gain of 0.44 eV per 1x1 unit cell (cf. Table 5.2) is the same value
as computed using the 1x 1 rectangular Bravais lattice with primitive vectors a and b.

A structure with two terraces and two steps in a 16x2 unit cell can be prepared by remov-
ing one half of the first-layer atoms along the [112] direction. However, a simple relaxation
of the atoms on both terraces as in the 1x1 case yields an energy gain smaller than the value
0.44 eV/1x1 cell due to the presence of the steps. A more intelligent adaption of steps parallel
to [112] and chains parallel to [110] is needed. One idea is presented in Fig. 5.7(a). It is based
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Figure5.5 Band structures of Si and Ge(110) surfaces. (a) 1x2 with oppositely buckled chains,
(b) 2x 1 adatom model, (c) 3x1 adatom model, and (d) 3x2 adatom-tetramer-interstitial model.
The Brillouin zone of the 2x2 (3x2) structure is used to present the bands obtained for 1x2,
2x1 (3x1, 3x2) translational symmetry. The high-symmetry lines are scaled in such a way that
the ordinate axis has the same extension, independent of the considered translational symmetry.

on the preference of the 1x2 chain reconstruction. As a result of the chain buckling in oppo-
site directions different distances of the chains parallel to [001] occur on both terraces. These
distances "up” and ”down” between chains with raised and lowered atoms are indicated in Fig.
5.7(a). There are also lateral displacements of the chain atoms which nearly conserve the bond
lengths (cf. Table 5.1). Buckled atoms allow two basically different bonding configurations
between chain atoms of the upper and lower terraces across a step. After the formation of the
trench each edge atom on the uppermost terrace possesses two dangling bonds. One of these
DBs may be rebonded with a DB of an atom from the lower terrace if their distance is not too
large. According to Fig. 5.7(a) the lowered atom of a chain of the upper terrace is more prefered
to continue a chain on the lower terrace. By means of the total-energy minimization we found
that within such a step configuration indeed rebonding of each edge atom on the upper and
lower terraces takes place. One has to mention that a similar step structure has been proposed
to explain the stripes by pairs of pentagons [182]. In this model the rest atoms at the chains are
also correspondingly buckled [75].

The described step structure is energetically favorable. The surface energy of the system
with oppositely buckled chains on the terraces and rebonded step atoms is lower in energy by 20
meV/1x 1 unit cell (cf. Table 5.2) compared with the surface without steps. This corresponds to
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Figure 5.6 Wave-function squares at K for the chain model of the Si(110)1x2 surface. Left
panel: highest occupied state, right panel: lowest unoccupied state.

an effective energy gain of 0.16 eV due to one bond across the step. This fact indicates why steps
with an appropriate bonding configuration and the accompanying trenches are favorable for the
16 x 2 reconstruction of the Si(110) surface. The formation of steps without rebonding slightly
increases the surface energy. This loss is overcompensated by the rebonding. The formation
of a trench is accompanied by four additional DBs on the upper terraces in a 16x2 unit cell.
However, their rebonding with DBs of the lower terrace reduces the total number of dangling
bonds by four with respect to the situation of the flat Si(110) surface with 64 DBs. One therefore
expects to reduce the absolute surface energy 2.18 eV/1x 1 cell of the 1 x 2 reconstructed surface
by 6.25%, i.e., by about 0.14 eV/1x 1 cell. The calculated effective reduction is however much
smaller due to the creation of the steps themselves.

5.3 Adatoms

In order to explain the fine structure observed in the STM images of the Si and Ge(110)16x2
surfaces one has to deal with larger reconstruction elements or building blocks consisting of
several atoms. The restriction to chains with only up and down atoms is insufficient. Important
parts of such reconstruction elements or building blocks could be adatoms which reduce widely
the number of dangling bonds. To understand the basic mechanisms of the stabilization by
adatoms we have again considered small unit cells. A variety of reconstruction (Table 5.2)
models have been studied. The most favorable (for Ge) and energetically second (for Si) pure
adatom reconstruction leads to the 2x 1 surface shown in Fig. 5.4(b). One adatom on a 2x1 cell
saturates three DBs of first-layer atoms. The remaining DB belongs to a rest atom. One expects
an energy gain due to an adatom-rest atom mechanism, such as occurs on a Ge(111)c(2x8)
surface (cf. Sect. 3.2). Indeed, the 2x1 adatom model in Fig. 5.4(b) further lowers the surface
energy (see Table 5.1) for both Si and Ge(110) surfaces. However, the energy gain is much
smaller than that computed by Takeuchi [86]. The adatom-rest atom mechanism determines
the surface electronic structure. This is clearly indicated in Fig. 5.5(b). The calculated band
structures exhibit the opening of a band gap, at least in the case of Si. A nearly direct band
gap occurs at the J point. In the Ge case surface bands overlap with bulk states near I". The
squares of the surface wave functions at K are presented in Fig. 5.8 for Si. The localization of
the wave functions and the state occupation confirm the classical picture of an adatom-rest atom
charge transfer. The occupied states with s-like character are observed at the rest atoms which
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Figure 5.7 Top views of relaxed atomic positions of Si(110)16x2 surfaces: (a) oppositely
buckled chain model with steps, (b) adatom-1 model and (c) adatom-2 model. Yellow circles are
adatoms; red circles are atoms in the first layer (or upper stripe atoms); blue circles are atoms
in the second layer and green circles are atoms in the the third layer. The lateral unit cell is
indicated by thin solid lines.
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are displaced from the surface towards the vacuum region. The dangling bond of the adatom is
more p;-like. Consequently, more or less one electron is transferred from the adatom to the rest
atom. The same tendency is observed for Ge. The vertical differences between adatom and rest
atom positions are rather small with 0.31 and 0.26 A for Si and Ge, respectively.

One attempt to accommodate adatoms in appropriate distances and to saturate all dangling
bonds is shown in Fig. 5.4(c). According to a common believe one adatom on a ¢(2x2) unit cell
should allow an arrangement with a complete saturation of the dangling bonds. According to
Ref. [86] the adatom is bonded to four different atoms in neighbored chains. Bonds with lengths
of 2.4 and 2.6 A should give rise to an extremely large energy gain of more than 1 eV/1x1
cell. The results of the careful relaxation of the structure in Fig. 5.4(c) indicate a completely
different behavior. The energy gain in Table 5.2 is much smaller; smaller than those of all bond-
length-conserving chain reconstructions [e.g. that shown in Fig. 5.4(a) and the 2x1 adatom
model]. The structural data are in agreement with the energetical findings. We derive a much
larger distance between the adatom and the fourth (most distant) atom that contributes to the
seemingly fourfold coordination of the adatom. The different results (with respect to Ref. [86])
can be related to a better convergence concerning the number of atomic layers in the slab, the
BZ sampling, and the energy cutoff of the plane-wave expansion. The critical distance between

adatom and fourth atom amounts to 2.87 (3.08) Afor Si (Ge), i.e., in between % and %’% This

value is much larger than the characteristic bond length 2.34 (2.44) A and can be only related to
an extremely weak bond. The physical/chemical reasons for the findings are obvious. Si and Ge
atoms prefer fourfold coordination with tetrahedral bonding. An arrangement of four nearest
neighbors in nearly one plane is rather unfavorable. An adatom with a p,-like dangling orbital
can only have a weak overlap with the dangling bond at the fourth atom. Another configuration
with a stronger wave-function overlap would however induce a remarkable strain in the atomic
layers below. The situation is similar to the case of adatoms on Si and Ge(111) surfaces (cf.
Sect. 3.2) or to the 2x 1 adatom reconstruction discussed above. The resulting geometry allows
another interpretation. The adatom and the fourth atom, the chain atom in [001] direction with
a remaining dangling bond, represent an adatom-rest atom pair but not a pair with true bonding.

Using 3x 1 and 3x 2 unit cells we have optimized structures where all dangling bonds of the
original (110) surfaces are saturated by adatoms. Such 3x 1 and 3x 2 reconstructions are shown
in Figs. 5.4(d) and 5.4(e), respectively. Each adatom is threefold coordinated. There remains
only one dangling bond per adatom. The adatom reconstruction models substantially reduce the
dangling bond density, the number of dangling bonds per 1x1 unit cell. Instead of two in the
1x2 case with buckled chains or one for the 2x 1 and ¢c(2x2) adatom models the dangling bond
density is further reduced to 2/3. However, in contrast to the other adatom reconstructions no
rest atoms occur. The 3x1 arrangement of the adatoms following each other in [001] direction
[Fig. 5.4(d)] is more favorable from the energetical point of view for Si (cf. Table 5.2). In the
Ge case it is less favorable than the 2x 1 adatom reconstruction. These contradictory findings
are similar to those for the (111) surfaces, where the adatom-rest atom pairs on c(2x8) cells are
the most favorable reconstruction elements for Ge but not for Si (cf. Sect. 3.2). Surprisingly, the
out-of-phase arrangement of the adatoms within the 3x2 translational symmetry [Fig. 5.4(e)]
is much higher in energy (cf. Table 5.2). This fact confirms that Si and Ge(110) surfaces are
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Figure 5.8 Wave-function squares at K for the adatom model of the Si(110)2x1 surface. Left
panel: highest occupied state, right panel: lowest unoccupied state.

“sensitive” with respect to the adatom distributions. To reduce probably the surface stress we
also have tested a structure with two adatom-rest atom pairs but in 2x 2 unit cells (not shown).
It gains 20 meV per 1x1 cell for Si and 50 meV in the case of Ge in comparison with the 3x2
periodicity. However, in both cases the values lie quite far from those for the most favorable
adatom reconstructions.

The general weak tendency for a stabilization of a pure adatom structure, in particular for
Ge, is understandable in terms of the nearly identical bonding behavior of the adatoms and the
resulting bands. It is accompanied with metallic band structures as indicated in Fig. 5.5(c) for
both Si and Ge(110)3x 1 adatom structures. The low surface energy of the Si(110)3x 1 adatom
reconstruction and its metallic band structure do not contradict the reconstruction rules for semi-
conductor surfaces [44]. Similar observations have been made for [111] surface orientations.
The Si(111)7x7 surface possesses a metallic band structure but is the energetically most favor-
able reconstruction. In the Ge(111) case the lowest-energy structure c(2x8) is semiconducting
(cf. Sect. 3.2). This is in agreement with the fact that the Ge(110)2x 1 adatom reconstruction is
also the lowest one in energy (cf. Table 5.2).

A possible 16 x 2 reconstruction for Si(110) with a trench where adatoms reduce a maximum
number of DBs on the terraces is shown in Fig. 5.7(b). The same rebonding mechanism of DBs
situated at step atoms is assumed as discussed in the case of Fig. 5.7(a). In the first adatom
model these edge atoms form lines exactly along the [112] direction. Excluding the four step
atoms with nominally two DBs, 28 DBs occur at the surface atoms on the upper terrace before
adatom coverage. The same number of DBs remain on the lower terrace since four DBs are
already saturated by rebonding with DBs of step atoms on the upper terrace. In Fig. 5.7(b) eight
adatoms have been arranged on each terrace to leave only four rest atoms on each terrace which
may contribute to the formation of stripes in the STM images. Together with the unsaturated
four DBs at the uppermost edge atoms a total number of 28 DBs remain in a whole 16 x2 unit
cell instead of the 64 ones in the case of an ideally relaxed (110) surface.

Despite the substantial reduction of the dangling-bond density the model in Fig. 5.7(b) is
less stable than a simple bond-rotation relaxation with chains on an unreconstructed Si(110)
surface (see Table 3.8). The energy gain due to DB saturation is overcompensated by the stress
induced in the surface. Such a tendency has been discussed above. The actual arrangement
of adatoms sensitively influences the system energy. This also holds for the structural element
with two adatoms marked by a circle in Fig. 5.7(b). It has been proposed previously as a
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main structural element on a group-1V (110) surface [72, 83, 184]. Although it may potentially
saturate the highest number of DBs within a 16 x 2 reconstruction, it is rather unfavorable from
the energetical point of view.

In Figure 5.7(c) adatoms are arranged almost along the [001] direction according to findings
for smaller unit cells. In comparison to the first adatom model [Fig. 5.7(b)] the number of
adatoms is reduced with the consequence of a higher number of rest atoms on each terrace.
Electron transfer between adatoms and rest atoms and, hence, the accompanying energy gain
is more likely. The rebonded steps are modified by attachment of adatoms which keep their
character. In particular, as marked by circles in Fig. 5.7(c) rebonded elements can be considered
as natural continuations of the preferable adatom arrangements along the [001] direction on
the lower terrace. On the other hand it can be also interpreted that a step atom is bonded
to an adatom. With the six adatoms on each terrace one counts a total number of 36 DBs.
Despite the larger DB density compared with adatom-1 model [Fig. 5.7(b)] the surface energy is
drastically lowered (cf. Table 5.2). The energy gain is larger by 80 (10) meV/1x 1 cell compared
with the other adatom model (the terraces with oppositely buckled chains). Three reasons may
be mentioned for the substantial energy gain: the favorable arrangement of the adatoms, the
electron transfer between adatoms and rest atoms, and the modified step structure.

5.4 Adclusters

Recently, Ichikawa [81] explained the STM images observed for the Ge(110)16 x 2 surface by
pairs of five-membered adclusters. We have also optimized Si and Ge(110) 6x 2 reconstructed
geometries which consist of two five-membered adclusters. The structure is presented in Fig.
5.4(f). Each of the clusters has three adatoms and two bridge-site atoms. Two bridge-site
atoms belonging to different adclusters form a bond between each other [81]. Along the chain
direction in the underlying atomic layer clusters are separated by four atoms at nearly ideal
positions. However, the above-described structure is not stable for both Si and Ge. We could
not really find local minima on the total-energy surfaces. The atomic forces remain too large.
In contrast to Ref. [81] in our calculations the convergence criterion concerning the forces is
stronger by one order of magnitude. The reason of the structural instability [44] could be an
oversaturation of surface bonds. Two adatoms along the chain in each cluster are located in
such a way that they seemingly saturate the dangling bonds of one atom twice. Additionally the
two bridge-site atoms weaken a o chain bond and give rise to four new bonds. Consequently,
depending on the starting configuration a bridge-site atom may saturate a dangling bond of the
next chain atom or a neighboring adatom.

Simulated STM images of the Ge(110)16x2 reconstruction with five-membered clusters
look similar to the images observed experimentally [81]. This similarity was interpreted as a
proof for the existence of the assumed reconstruction element. Our calculated STM images are
presented in Fig. 5.9 for the Si(110)6x 2 reconstruction. 1 The images show spot arrangements

1 The adatoms of the 6x 2 reconstruction model take remarkably different vertical positions[cf. Fig. 5.4(f)] and,
hence, make it diffi cult to choose an appropriate plane to compute the constant-height STM images. Moreover, the
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Figure5.9 Simulated STM images of empty (top panel) and filled (bottom panel) states of the
6x2 five-membered clusters Si(110) surface for voltages corresponding to 2 and —2 eV with
respect to the theoretical Fermi level.

similar to the observed pentagon-shaped ones. States originating from all adcluster atoms in-
cluding the bridge-site atoms contribute to the empty-state image of the 6 x2 reconstruction. In
contrast, in Fig. 5.9 (bottom panel) occupied states give only contributions at bridge-site atoms
and not at the other adatoms. We have also not found any contribution of occupied states which
are located at adatoms using a three-dimensional representation of the wave functions. If the
plane to plot the constant-height STM images is closer to the surface, it is, however, more prob-
able to see states localized at the four rest atoms belonging to the chain. In general, it is not
possible to observe significant pentagon structures in both empty and occupied images for the
described Si(110)6x 2 reconstruction. This holds also for Ge.

5.5 Missing rows and adatoms

In order to model the 16 x2 reconstruction an additional degree of freedom is due to the possi-
bility of atom removal or even missing rows of atoms [82, 183]. One possible realization was
suggested by the filled-state STM images of Si(110)16x2 with only six protrusions per unit
cell on each terrace. According to Packard and Dow [82] the basic building block consists of
missing rows of atoms along [110] and adatoms. The corresponding relaxed surface geome-
try is shown in Fig. 5.10(a). The atom removal along the [110] direction is clearly visible. In
comparison to the two adatom models in Figs. 5.7(b) and 5.7(c), there is also another type of

comparison of the images obtained in constant-height mode with measured constant-current modeimagesis rather
problematic. We use a plane which crosses the bridge-site atoms.
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adatoms which connect atoms in different atomic layers along [001]. Their situation seems to
be reasonable because these atoms take positions similar to the T4 and H3 adatoms positions
on the Si(111) surface (see Sect. 3.2 and Ref. [44]). Six adatoms form a stretched hexagon
[marked by dotted lines in Fig. 5.10(a)] with one adatom in the center. Additionally two so-
called dimers [82] marked by elongated circles in Fig. 5.10(a) occur between the second and
third atomic layers. These elements have exactly the same bonding nature as the rebonded edge
atoms discussed above.

The 16 x 2 reconstruction in Fig. 5.10(a) results in the highest surface energy for the geome-
tries under consideration. The energy gain amounts to a value being only one half of the gain
for a reconstruction with differently buckled chains shown in Fig. 5.10(a) (cf. Table 5.2). Two
reasons should be mentioned. Locally the adatom distribution is rather similar as in the ¢(2 x 2)
adatom configuration, which was found to be rather unfavorable. Furthermore, the removal of
atoms to generate the missing rows leave dangling bonds bonds in not preferable configurations.

5.6 Tetramers and interstitials

For Si(110)16x2 the trials to explain the details of the stripes found by STM on different ter-
races [72, 75, 82] are focused on structural elements which are able to describe both the empty-
state and filled-state images. Another guiding principle should be oriented to the insulating
behavior observed experimentally for the Si(110)16 x 2 surface [184]. Pure adatom reconstruc-
tions discussed above with partially occupied bands give rise to a metallic character. Dangling
bonds situated at pairs of adatoms and rest atoms may give nonmetallic electronic structures but
double the number of structural elements and, moreover, increase the distance of equally filled
DBs. At least, they have to be combined with other reconstruction elements such as dimers on
Si(100) [44], tetramers on Si(113) (chapter 4) and (114) [165] or pentamers on Si(113) (chap-
ter 4). Indeed, tetramers are able to give rise to different STM images probing empty or filled
states. Using such an element this has been demonstrated for the Si(113)3x 2 surface within the
ADI model and the Si(114)2x1 surface reconstruction with dimers, tetramers, and rebonded
atoms [165]. For the Si(113)2x1 surface it has been proven that the pure tetramer structures
yield to a surface-state gap independently of buckling/puckering of the tetramers. Buckled pen-
tamers have been predicted to be seen in STM images at negative and positive bias voltages of
the Si(113)3x2 surface with an adatom-interstitial reconstruction.

One may expect the occurrence of qualitatively similar reconstruction elements on the
Si(110)16x 2 surface. Based on the idea to explain the STM findings for Si(110)16 x 2 surfaces
by pentagons which are formed by tetramer and interstitial atoms [75], we have studied such
reconstruction elements in 3x 2 unit cells. We followed the ideas developed to interpret the 3x2
reconstruction of Si and Ge(113) surfaces by ADI and Al models (cf. chapter 4). The pentagon
(or pentamer) in one half of a 3x2 cell consists of four adatoms (tetramer) and one atom be-
longing to a chain in the first atomic layer. They saturate five of the six surface dangling bonds.
The interstitial atom is laterally located at the center of the pentamer but below the pentamer
plane. In the second half of the 3x 2 cell two additional adatoms saturate the dangling bonds in
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Figure 5.10 Top views of relaxed atomic positions of Si(110)16x2 surfaces: (a) stretched-
hexagon model, (b) tetramer-interstitial model, and (c) adatom-tetramer-interstitial model. Yel-
low circles are adatoms; red circles are atoms in the first layer (or upper stripe atoms); blue
circles are atoms in the second layer and green circles are atoms in the the third layer. The
lateral unit cell is indicated by thin solid lines.
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Figure5.11 Charge density plot around the interstitial and pentamer atoms for the 32 adatom-
tetramer-interstitial reconstruction of Si(110). Planes used for representation are indicated by
arrows. Bonds lengths are also given for Ge (in brackets).

such a way that one rest atom is left. The resulting 3x2 adatom-tetramer-interstitial (ATI) re-
construction is drawn in Fig. 5.4(g). Origins of tetramers in the case of Si and Ge(110) surfaces
are different from those on Si(113) and Si(114) surfaces which are formed by rebonding of al-
ready existing atoms. Up to now we could only find metastable structures with pure tetramers.
In contrast to that the total-energy minimizations show that the ATI reconstruction is the same
in energy with respect to the most favorable 3x1 adatom Si structure. For Ge the energy gain
is also comparable to that calculated for the 2x 1 adatom reconstruction. However, the recon-
struction with a pentamer and an interstitial atom gains energy only in combination with two
adatoms, at least within the 3x 2 translational symmetry. For Si the energy difference between
the models with and without additional adatoms amounts to 0.21 eV per 1x1 unit cell. The
reason will be discussed below describing the band structure.

The interstitial atom is sixfold coordinated. In Fig. 5.11 the strength of the bonds between
this atom and its neighbors is discussed in terms of the bond lengths and the electron distribu-
tion. The side view in Fig. 5.11 clearly indicates that the interstitial atom creates a strong bond
with the atom below in the second-atomic layer. The shortest bond of 2.36 (2.58) A with the
fifths pentamer atom is strong (weak) for Si (Ge). The bonds to the other four pentamer atoms
are usually weaker with lengths of about 2.5 (2.6-2.7) A. At least for Si, three (of five) strong
bonds between pentamer atoms are indicated by keeping nearly the bulk bond length. This is
also clearly indicated by the electron distribution between the pentamer atoms. The two bonds
with the fifth pentamer atom (i.e., a chain atom in the first atomic layer) are weaker. This is
a consequence of the fact that this atom has five nearest neighbors [cf. Fig. 5.4(g)]. The four
adatoms of the pentagon are fourfold coordinated. However, they do not anymore show an sp®
hybridization.

An indication for the large energy gains arises from the band structures in Fig. 5.5(d). There
is a tendency for the opening of an energy gap between the surface-state bands. The gap of
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Figure 5.12 Simulated STM images of filled (left panel) and empty (right panel) states of the
Si(110)3 x 2 adatom-tetramer-interstitial surface for voltages corresponding to —2 and 2 eV with
respect to the theoretical Fermi level.

the 3x2 ATI reconstruction is the largest one among all studied Si(110) reconstructions. The
opening mechanism is similar to that discussed for the Si(113)3x2 ADI surface. Due to the
weak bonding pentamer atoms donate electrons to the two adatoms in the second half of the
3x2 unit cell. Their dangling bonds are fully occupied with electrons which form lone pairs. As
a consequence the filled-state (empty-state) STM images are dominated by adatom (pentamer-
atom) electronic states. This is demonstrated in Fig. 5.12. For the Si(110)3x2 ATI surface the
STM images simulated for a bias of —2V (2V) mainly show the adatoms (pentamer atoms) in
the lower (upper) half of the 3x2 surface unit cell. The STM image simulated for the empty
states seems to be similar to the characteristic pentagon-shaped element of the empty-state STM
images observed for the Si(110)16x 2 surface.

There is a chance that tetramer-interstitial pairs explain the “pairs of pentagons” as sug-
gested by An et al. [75]. Such a 16x2 tetramer-interstitial (TI1) model is represented in Fig.
5.10(b). We adapted the step configuration discussed in Fig. 5.7(a). The connecting line of the
chain atom and the interstitial in the resulting centered pentamer is almost parallel to the [001]
direction. The uncovered regions of the terraces exhibit the usual bond-rotation relaxation of
the surface chains.

The TI reconstruction gives rise to a minimum on the total-energy surface but the resulting
surface energy is too high (cf. Table 5.2). The energy gain only amounts to 0.39 eV/1x 1 cell.
The small gain is in agreement with the findings for a 3x2 translational symmetry. For that
reason the adsorption of two additional atoms for each pentamer is considered. The resulting
16x2 ATI geometry is represented in Fig. 5.10(c). Indeed, the surface energy is lowered sub-
stantially by 100 meV/1x1 cell with respect to the TI case without additional adatoms. This
strong energy gain is mainly due to the strong s character of the DBs situated at the adatoms
which induces an electron transfer from the pentamers resulting in lone pairs of electrons. In-
stead of the eight adatoms per 16 x 2 unit cell we have also studied geometries with 12 or four
adatoms. The accompanying energy gains were only 10—15 meV/1x 1 cell lower than for the
eight-adatom case. Therefore, we conclude that the number of adatoms per pentamer may vary
on real surfaces at room temperature (with kg T = 25 eV) and above.

In any case the ATI reconstruction in Fig. 5.10(c) yields the lowest surface energy for mod-
els of the Si(110)16 x 2 surface with trenches and terraces. However, the corresponding energy
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gain of 0.49 eV/1x 1 cell is still smaller than the gain of 0.54 eV/1x1 cell obtained for the ATI
reconstruction of the Si(110)3x 2 surface. Since this energy difference is not a consequence of
the numerical inaccuracy of the total energy calculations, it has to be discussed physically. Ei-
ther the 16 x 2 reconstruction does not represent the equilibrium surface phase or a completely
different reconstruction model is needed. Kinetic barriers and hence the surface preparation usu-
ally allow the observation of the 16 x 2 phase only for less doped substrates. Such a preparation
dependence is known for the Si(111) surface with the 2 x 1 reconstruction after low-temperature
cleavage and the 7 x7 translational symmetry after annealing [44]. Perhaps, a completely new,
more complex reconstruction model is needed such as the DAS model with corner holes found
for the Si(111)7x7 surface [62]. At least the total energy investigations of the 16x2 recon-
struction models suggested by several authors [75, 82] and the 16 x2 geometries lead to surface
energies higher than that calculated for the 3x 2 translational symmetry.

Besides the surface energy other important arguments for the validity of a certain recon-
struction model can be derived from STM images simulated for different bias voltages. Such
images are presented in Fig. 5.13 for the 16 x2 ATI reconstruction. Because of the constant-
height mode used in the simulation only spots from upper terraces are visible. The figure shows
that the observed image stripes can really be simulated by an ATI reconstruction. The stripes
parallel to [112] consist of pairs of extended reconstruction elements arranged in zigzag form.
They are based on pentamers and accompanied by an additional pair of adatoms. The interstitial
atoms captured by the pentamers are not seen. Indeed, Fig. 5.13 shows that one and the same
reconstruction element gives rise to different spot distributions in the empty-state or filled-state
images in agreement with the experimental observation [75].

Each element in the empty-state images consists of nearly five spots and represents directly
the pentagon. The filled-state images in Fig. 5.13 show two strong spots due to the filled DBs
at the adatoms and four weak spots from the tetramer which may be unified in the simulation
varying the distance to the surface. Important features found experimentally can be reproduced
but not all. Comparing with the analysis of An et al. [75] (see Fig. 5.14) the fine structure of the
pairs seems to be interchanged in the measured and calculated spot distributions. On the other
hand, the filled-state images measured by Packard and Dow [82] have been interpreted by an
arrangement of spots in a deformed hexagon with a center. In contrast to the images discussed
above only six spots belong to one terrace in a 16x2 unit cell. There is also disagreement
between experimental results. One explanation for the different findings may be related to the
energetics of the adatom-tetramer-interstitial reconstruction mentioned above. The variation of
the number of adatoms (which should give rise at least to spots in the filled-state images) does
hardly influence the surface energy.

Other points to be discussed concern the visibility of the interstitial atoms and the asymme-
try (buckling, puckering) in the pentamer or tetramer structures. Hints follow from the behavior
of the Si(113)3x2 surface. For this surface the ADI model represents a low-energy structure.
After addition of one interstitial to each tetramer the Al 3x2 model appears having two pen-
tamers and two adatoms similar to the ATI reconstruction considered in Fig. 5.13(c). Asymme-
tries between the two pentamers in the Si(113)-Al model allow an additional electron transfer
that lowers the energy. It has been shown that the presence of interstitials and asymmetries
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Figure 5.13 Simulated STM images of filled (left panel) and empty (right panel)
states of the Si(110)16x2 adatom-tetramer-interstitial reconstruction for bias volt-
ages corresponding to 1 and —1 eV with respect to the theoretical Fermi level. Five
unit cells translated along the [112] direction are represented.

significantly changes the STM images for Si(113) surfaces with respect to the number of spots.
Another possibility for the variation of spots may be related to the visibility of adatoms, more
strictly of their DBs. Such atoms might be hidden in missing rows or holes which cannot be
“seen” by an STM tip. For instance, this happens for the DBs of restatoms in corner holes of the
Si(111)7x7 surface which are completely filled (cf. Sect. 3.2) but do not contribute to STM as
protrusions [68]. In the Si(110)16x 2 case such an effect might happen also for the attachment
of such an atom at a step.

Figure 5.14 High-resolution STM topo-
graphic image of the 16x2 structure in
the empty states [V=1.20 V, 1=0.20 nA,
10x10 nm] (from Ref. [75]).




Chapter 6

Shape of free and constrained crystallites:
Influence of surface energies

6.1 Absolute Surface Energies

6.1.1 Dependence on orientation and reconstruction

Here we summarize values of absolute surface energies given in previous chapters for the most
favorable reconstruction and make comparative studies for different orientations and materials.
Resulting values are listed in Table 6.1. If one again imagines cutting a group-I1V crystal at
some plane, one may expect the energy required to be proportional to the number of bonds cut.
In units of ao_2 (ap - bulk lattice constant) the dangling-bond density across a {111} surface
plane is 4/+/3. This is smaller than the density of 2+/2 on a {110} surface, 12/+/11 on a {311}
surface and 4 on a {100} surface. With exception of diamond the trends in the energies of the
unrelaxed/unreconstructed Si and Ge surfaces follow the dangling-bond densities. However, af-
ter inclusion of surface reconstruction the {111} surfaces of diamond possess the lowest energy,
and therefore one may expect the natural cleavage plane or growth surface to be a {111} plane.
There are eight such orientations, forming the eight faces of the natural octahedral crystal for
the homopolar tetrahedral solids. The ordering of the other surface energies is more compli-
cated to understand. With surface reconstruction the {311} faces seem to be favored against
the {110} planes (cf. e.g. in the case of diamond). This is in agreement with the dangling-
bond densities if only the dangling bonds in the uppermost atomic layer of the {311} surface
are counted. The high surface energies y (110) for silicon and germanium in Table 6.1 reflect
the small energy gain of only about 0.5 eV/1 x 1 unit cell even studying the long-range 16 x 2
reconstructions. The absolute surface energies of the reconstructed {111}, {311}, and {100} sur-
faces of germanium are practically equal. The smaller values for {311} and {100} of about 0.01
J/im?2 (i.e., about 1%) with respect to the {111} cases may be considered as the inaccuracy (more
precisely, numerical uncertainties treating slabs with different orientations) of the used ab initio
calculations (see chapter 2).

The order of magnitude of the values measured for Si [27] (see Table 6.1) agrees very well
with the energies calculated for the reconstructed surfaces. This also holds more or less for
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Table 6.1 Surface energies y (in J/m?) for diamond, Si and Ge (see also Tables
3.1, 3.4, 4.1 and 5.2). The first value represents the unrelaxed {hkl} surface, while
the second (lower) value corresponds to the reconstructed/relaxed geometry with
the lowest energy. In the case of Si the results are compared with those of measure-
ments [27] (the absolute scale is set using the value y (111) from fracture experi-
ments [185]) tight-binding calculations [38], and molecular dynamics with empiri-
cal potentials. [39] A reconstruction is not taken into account. Only the measured
y (111) value should be related to the 2 x 1 reconstruction [185].

Crystal {111} {110} {100} {311}  Reference
Diamond 812 748 9.72 834
406 593 571 511 present work
Silicon 182 204 239 221
136 1.63 141 140 present work

123 143 136 138 [27]
141 157 134 1.98 [38]
141 172 149  — [39]

Germanium 132 151 171 161
101 114 1.00 0.99 present work

the energetical ordering y(111) < y(311) < y(100) < y(110). Within the experimental
results only the sequence of the {311} and {100} planes is interchanged. However, their energy
difference is small in theory and experiment. The ordering obtained in other calculations [38,
39] is the same. The other available experiment [26] found a surprisingly small anisotropy of the
surface excess free energy per unit area with a strange hierarchy y (100) < y(311) < y(110) <
v (111) which is not in agreement with the fact that cleavage happens for {111} surfaces. The
anisotropy of the surface energies in Table 6.1 is remarkably increased for diamond, while it
almost vanishes for germanium.

Table 6.1 also shows that the surface reconstruction and hence the actual surface geometry
and preparation should play an important role for the shapes of crystallites or nanopyramids.
The maximum change with respect to the energy of the surface with a bulk atomic arrangement
amounts to 100% for the C(111) surface after a 2 x 1 reconstruction within the z-bonded chain
model. For Si(111) with the most favorable 7 x 7 reconstruction and Ge(111) with the c(2 x 8)
reconstruction the effect is much weaker. Similar observations are made for the 2 x 1 (C) or
c(2 x 4) (Si, Ge) reconstructions of a {100} surface. The energy of Si and Ge(311) surfaces is
substantially lowered by 3 x 2 ADI reconstructions. Indeed, there are experimental indications
for reconstructed {311} surfaces on nanostructures. Pyramidal Si islands appearing at finite
growth temperature on Si(001) substrates have {311} facets with a seemingly 3x1 reconstruc-
tion [31]. In the case of C(311) again a deviating behavior is found with a symmetric 2 x 1
tetramer reconstruction. In the {110} cases the surface relaxation within a bond-contraction or a
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bond-rotation model lowers the surface energy. Complicated long-range 16 x2 reconstructions
give only rise to a small additional energy gain (listed for Si) even considering ATI structural
elements. In Table 6.1 we present the lowest surface energy values found for 3x2 ATl and 2x 1
adatom models for Si and Ge, respectively.

6.1.2 Extrapolation

In order to investigate (100)-oriented nanocrystals with pyramidal shape, one also needs the
surface energies of {501} or {301} planes. Unfortunately, parameter-free calculations are not
available for the absolute surface energies for the surfaces with those orientations. Such cal-
culations [16, 186] are restricted to the reconstruction geometries and the electronic structures.
To estimate the y (501) and y (301) values we use the assumption that the surface free energy y
varies only weakly with the surface crystallographic orientation.

We formally consider a two-dimensional crystal in a plane perpendicular to the [010] direc-
tion with a vicinal surface plane, i.e., a surface plane which consists of a relatively high number
of areas with [100] orientation being separated by steps of a certain height s, [10]. Such a
surface has an orientation angle 6 against the [100] direction. Each step is assumed to make a
contribution § to the total surface energy on the vicinal plane. With a step density tan 6/s, one
can express the surface energy as

5 .
y(0) = y(100) cos 6 + ; sing. (6.1)

The orientation vector [101] of the closest high-index surface (101) is found for 6 =
45°, Assuming a continuous variation of the surface energy between the minima at [100]
to [101] [26, 27], one finds §/sn = ~/2y(110) — y(100). In the case of the [n01] orienta-
tion (n = 5,3,1) it holds & = 11.31°, 18.43°, 45°. Then expression (6.1) gives y(n0l) =
(1/+/n? + D[(n — 1)y (100) + +/2y(110)]. One finds the energy values y (501) = 6.12 (C),
1.56 (Si), and 1.10 (Ge) J/m? and y(301) = 6.26 (C), 1.62 (Si), and 1.14 (Ge) J/m? using the
values for reconstructed low-index surfaces from Table 6.1.

6.2 Equilibrium Crystal Shape

6.2.1 Shape of diamond crystallites

Results of the Wulff construction of the ECS for diamond are plotted in Fig. 6.1. Essentially
the surface energies calculated for the reconstructed low-index surfaces from Table 6.1 have
been used. Taking into account only the surface with the lowest energy y (111) = 4.06 J/m?,
the cleavage face, one expects that the equilibrium geometry is a regular octahedron with eight
{111} facets. However, already the inclusion of one further surface orientation such as {100}
[as shown in Fig. 6.1(a)] makes the octahedron irregular. The corners of the octahedron are
truncated by {100} planes. A cubo-octahedron morphology appears with eight nonideal {111}
hexagons and six {100}-oriented squares. Their areas depend on the surface energies, as long
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(a) . (b)g ;@@ (d)g

Figure6.1 Equilibrium shapes of diamond crystals based on the Wulff construction using basi-
cally y values from Table 6.1. In general, four surface orientations are considered, but in (a) only
{111} and {100} facets. (b): Instead of the energy for the 2 x 1 reconstruction ¢ (311) = 5.11
J/m? that for the 3 x 1 reconstruction y (311) = 5.50 J/m? is taken into account. (c): Values from
Table 6.1. (d): Values as for (b) but the energy of {110} facets is reduced to y (110) = 4.91 J/m?.
The areas with the orientation sequence (100), (311), (110), and {111} are red, green, grey, and
blue.

as v/3y(111) < y(100) [124]. If y(111) is considerably less than y(100) no truncation is
expected. In the opposite limit a constant ratio of the plane areas occurs.

Taking into account more surface planes with other orientations, the resulting shape depends
very much on the absolute values of the surface energies. This is also clearly demonstrated in
Fig. 6.1. Using the energy y(311) = 5.50 J/m? for the symmetric 3x1 AD reconstruction
instead of the lower value given in Table 6.1 [Fig. 6.1(b)], the cubo-octahedral shape of the
nanocrystallites is basically conserved; but the {100} squares are surrounded by stripes corre-
sponding to {311} facets. Diamond particles with exactly such a morphology have been ob-
served after deposition by microwave-plasma CVD [35]. Decreasing the surface energy of the
{311} facets to the value y (311) = 5.11 J/m? (Table 6.1) for the 2 x 1 reconstruction, the corner
truncation does not anymore happen, and no {100} facets occur [see Fig. 6.1(c)]. Instead, the
octahedron corners are rounded by small square-based pyramids with four {311} facets. An-
other example for the strong influence of the absolute y values is shown in Fig. 6.1(d). The
values constructing Fig. 6.1(b) have been used but the surface energy of the {110} planes is
reduced to y (110) = 4.91 J/m2. In contrast to Fig. 6.1(b) the sharp edges between {111} facets
disappear, and {110} planes form stripes along the former edges. Such a shape with {111},
{100}, {311}, and {110} facets has been observed for high pressure-high temperature synthetic
diamonds [34]. Their surfaces have major growth sectors of the {111} and {100} types and some
minor sectors of {311} and {110} types.

Despite the agreement stated for the ECSs in Fig. 6.1with morphologies observed for grown
diamond crystallites, general conclusions are very difficult. There is perhaps not a direct rela-
tionship between absolute surface energies of reconstructed clean surfaces and crystallography
that the above description suggests. The real surfaces may be contaminated by adsorbed species
or influenced by defects. Adsorbates and defects may change the surface reconstruction and,
hence, the corresponding surface energy. In addition, the observed crystallite shapes may tend
to be dominated by the growth process of the crystal rather than the energetics itself. One fact is
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(a)

Figure 6.2 Equilibrium shapes of Si (a, b) and Ge (c, d) crystals based on the Wulff construction
using (a) experimental values, (b, c) calculated values or (d) equal values y for many surface ori-
entations in the stereographic triangle [188]. In (a, b, ¢) four surface orientations are considered.
The areas with the orientation sequence (100), (311), (110), and (111) are red, green, grey, and
blue. In (d) more high-index surfaces are taken into consideration. The facets in yellow, violet,
and light blue represent {331}, {21 9 29}, and {15 3 23} facets, respectively.

related to the orientation dependence of the growth rate. For instance, there are indications that
the CVD growth rate on {100} surfaces is faster than that of the {111} side-growth rate [187].
The preferential growth along a (100) direction clearly influences the resulting morphology of
a crystallite.

6.2.2 Shape of Si and Ge crystallites

Figure 6.2 shows results of the Wulff construction of the ECS for silicon and germanium. In
Figs. 6.2(b) and 2(c) we used calculated parameters of the surface energies y (hkl) for the re-
constructed {111}, {110}, {100}, and {311} surfaces of silicon and germanium given in Table
6.1. For the purpose of comparison the ECS for Si is presented in Fig. 6.2(a) for measured
surface energies [27]. According to energies given in Table 6.1, Fig. 6.2(a) shows that the most
stable surfaces have an (111) orientation with the next lowest ones being {100}, {311}, and
{110} surfaces with similar energies. Large {111} facets and smaller {100} facets occur on the
surface of a crystallite. Between these facets smaller {311} and {110} facets are observable.
No sharp edges between a {111} and a {100} facet or between two {111} facets appear. Ac-
cording to the experimental y values the equilibrium shape is thus to a good approximation a
tetra-kaidecahedron [27]. Taking the calculated y values into account the {110} facets almost
vanish as a consequence of the large y (110) value as shown by their small contributions in the
corners between four {311} facets in Fig. 6.2(b). In addition the areas of the {311} facets are
increased because of the low value of y(311).

One of the results of the ECS construction is the possible stability evaluation of a surface
with a certain orientation. We have checked a possible occurrence of the Si(411) surface on the
ECS. A Si(411)2x 1 reconstruction has been observed experimentally. The value of its surface
energy calculated within an ab initio method lies between those for (111)2x1 and (100)2x 1
surfaces [165]. Consequently, it has been concluded that Si(114) is a stable planar surface [165].
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To be consistent within the computational method used here we assume y of Si(411)2x1 to be
equal to 1.44 J/m? as found for the lowest left buckled 7z -bonded chain Si(111)2x 1 reconstruc-
tion from our calculations. Surprisingly, despite such a low y the {411} facets do not occur on
the ECS indicating that a (114) surface is not stable in the equilibrium in contrast to the (100)
or (311) ones. However, narrow stripes would appear between the {100} and {311} facets if
an additional reduction of about 0.015 J/m? is assumed, what also indicates that the absence of
{411} facets might be related to inaccuracy of our approximations. The sensitivity of the ECS
with respect to the absolute values of the surface energies again shows that modifications of the
facet geometry, e.g. due to reconstruction, may drastically change the surface morphology of a
crystal.

The last tendency is enforced for germanium as demonstrated in Fig. 6.2(c). Since the
energies for the surface orientations (111), (311), and (100) are nearly the same, large {111},
{311} and {100} facets are visible. However, {311} facets give the largest area. Only small
diamond-shaped {110} planes occur between {311} facets (note, larger than in the the case of
Si). Nearly equal energies of the most stable surface orientations give a probability that several
other high-index orientations have a similar y and are therefore stable in the Ge case. To check
this we include possible candidates with equal y. In addition to the above-mentioned four
surface orientations we also study the high-index surfaces {313}, {15 3 23} and {21 9 29} which
have been reported to be stable and, hence, do not facet into other stable surfaces [188]. The
resulting ECS is represented in Fig. 6.2(d). All considered surface orientations appear on it. In
general, a Ge crystal tries to reach a “sphere” shape. The largest facets are {111}, {311} and
{100} ones, while the {110} facets occur with a smaller area. Each of the sets of real high-index
{15323} or {21 9 29} surfaces contributes to the 48 facets. The corresponding values of the total
area per each family are close to that for {311} facets which take the largest area.

6.3 Shape of Pyramidal Nanocrystals

6.3.1 Total energy and surface energy

The shape of a large, isolated, three-dimensional island grown on a certain substrate is deter-
mined by its total energy [9, 189]

Etota = Edastic + Esurface + Eedge- (6-2)

For coherently strained or partially relaxed islands the leading terms are the elastic relaxation
energy Egasic and the surface energy Esurface OF the strained object connected with a substrate.
Eaagic 1S the gain in deformation energy when the material forms a strained island instead of
a biaxially strained film. Egyface IS the cost in surface energy due to the creation of facets
on the sides of the island corrected by the fact that the island base forms an interface to the
substrate or the corresponding wetting layer. Eeqge is the energy cost for the creation of sharp
edges. Because of the interplay of local strain distribution and shape the scaling behavior of
Eaagic With the volume V may also include nonlinear terms in addition to the main linear term.
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Esurface and Eedge Scale with the volume as V23 and V' /3, respectively. For an isolated island
to form at all in preference to a film with the same volume, Eqtq must be negative.

Still, it is questionable if such a model (6.2) based partially on the macroscopic continuum
theory may really apply to nanometer-sized systems. Nevertheless, here we go a step further
in the simplifications and discuss trends restricting essentially to the surface energies listed
in Table 6.1. Usually, Eeqge is estimated to be negligible, provided the island size is not too
small. In the case of I11-VV compounds this fact has been shown for nanometer-sized quantum
dots [189]. The renormalization of the surface free energies per unit area, y, due to surface stress
is also more or less negligible. Changes up to 11% leave the prediction for the equilibrium shape
qualitatively unchanged [189]. The elastic energy Egagic IS Very important for the absolute
value of the total energy of an island. However, for a given qualitative island shape (considering
only low-index surfaces) its variation with the geometry parameters is also small, for InAs
islands on GaAs(001) less than 10% [190]. For large islands which are not dislocation-free, the
energy contribution Egagic Should be mainly determined by the elastic energy of a fictitious two-
dimensional film with the same volume. As a consequence, in the following we qualitatively
discuss the pyramidal shape of islands only on the basis of the surface energies. We are still
using the request of a minimum surface energy Fs Eg. (2.37). In addition to the constraint
of a fixed volume V Eq. (2.38) we also consider two other constraints, the orientation of the
pyramid and the shape of the pyramid base plane. That means, the only considered influence
of the substrate used in the epitaxial growth is the normal of the base (parallel to the surface
normal of the substrate) and its shape. The nanopyramids are assumed to be large enough, so
that the y values for reconstructed surfaces in Table 6.1 can be applied. The relationship of the
pyramidal geometry and the surface energy is discussed in the following subsection.

6.3.2 Deformation of pyramids

During epitaxial growth and ripening the shape of the islands may change. One example is
the truncation of the small pyramids which results in a reduced aspect ratio, i.e., their height h
divided by a characteristic base length a. For any regular pyramid the truncation is described
by a parameter (0 < ¢ < 1)

e=1-— Yo cos 6 (6.3)

Vside

where 6 is the angle between negative orientation of the base (or the orientation of the truncating
plane) and one of the side facets. Thereby, we have assumed that the surface energy of the
pyramid base is zero as a rough approximation for the interface energy between pyramid and
substrate or wetting layer. The deviation (1 — ¢) of the parameter ¢ Eq. (6.3) from the case
of an untruncated pyramid ¢ = 0 dominates the aspect ratio h/a = m(1 — &) tané, where
the geometry parameter m is equal to 1/2+/3 and 1,2 for triangle- and square-based pyramids,
respectively. For a pyramid with volume V the minimum surface energy Fs is given by

2
SYside 3 3 3.1
Fs = V 1-— 3 6.4
Y (smtane ) (1= (6.4)
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Figure 6.3 Top view of frustum of a [111]-oriented pyramid with {311} facets.

where the geometry parameter s is +/3/4 for the triangle base and 1 for the square base. The
comparison of the total surface energies for a given volume V gives an indication for the favored
orientations of the facets and the trend for truncation of the pyramid.

Growth of Ge on Si(111) surfaces leads to nucleation of three-dimensional islands which
consist of {113} facets as side walls and a flat top (111) facet [24]. The model of such a pyra-
midal island is presented in Fig. 6.3 with a (111) triangle base, a (111) top, and three equivalent
(113), (131) and (311) facets. In this case the angle 6 is given by arccos(5/+/33) [i.e., 29.5°].
During the epitaxial growth the aspect ratio of an island may change as a function of the cov-
erage. However, the form of the island is always a frustum of a tetrahedron and the complete
pyramid with {113} facets is never reached [24]. Using values from Table 6.1 one finds for the
parameter ¢ = 0.31 (C), 0.15 (Si), and 0.11 (Ge). The truncation can be interpreted as a conse-
quence of the ECSs presented in Figs. 6.1 and 6.2. They show appearance of large {111} facets
for diamond and relatively small {111} facets for Ge. A reduction of the surface energies of
(111) faces till values corresponding to a 2x 1 reconstruction [i.e., 1.45 (Ge) and 1.05 (Si) J/m?]
also fulfills the condition for the truncation. For Ge the aspect ratio h/a results to 0.145 [with
¥ (111) corresponding to c¢(2 x 8)] or 0.15 [with ¢ (111) corresponding to 2 x 1]. Indeed, this
value varies from 0.1 to 0.135 during the growth [24]. Consequently, taking into account only
surface energies, there is a tendency for truncation of a [111]-oriented triangle-based pyramid
shown in Fig. 6.3.

At low growth temperatures or low Ge coverages the small Ge islands grown on Si(100)
substrates are rectangular-based huts or square-based pyramids with {501} [19-22] or some-
times {301} [16] facets. In the case of InAs quantum dots on GaAs(100) substrates also {101}
facets have been studied [9, 190, 191]. In order to model the pure surface energetics of small
islands of this type, we consider a (001) square base with a [001] normal and four equivalent
facets with [01n], [01n], [10n], and [10n] orientations (n = 1, 3, 5) [see Fig. 6.4(a)]. The tilt
angle 6 of the facets is given by arccos(n/+/1 + n2) [i.e., 45°, 18.43° or 11.31°]. The trunca-
tion of the considered pyramids takes place for all group-1V elements. However, the tendency
to cut a pyramid is stronger for the smaller n. For germanium the parameter Eq. (6.3) amounts
toe =0.37(n=1),0.21 (n = 3) and 0.11 (n = 5). Similar dependencies are found for Si and
C. Assuming the value y(001) = 1.05 J/m? for Ge, which corresponds to a 2x 1 reconstruction,
the value of truncation amounts only to ¢ = 0.06 and the aspect ratio is h/a = 0.006. Experi-
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Figure 6.4 Top view of [100]-oriented pyramids or domes with {n01} (n = 5, 3,1), {n11}
(n =3, 1) and {100} facets. In (d) the facets without denotation represent {15 3 23} facets.

mentally, the latter quantity was observed equal to 0.1 what nearly corresponds to the complete
pyramid.

At higher Ge coverages of Si(100) substrates large Ge islands, so-called domes, appear.
The domes are more rounded and display a multifaceted surface [22]. They are bounded by
{113} and {15 3 23} facets. In the intermediate coverage regime also the occurrence of {105} is
discussed. Here, we neglect the rounding and only study another type of square-based pyramids
with [001] orientation and four equivalent facets with [11n], [11n], [11n], and [11n] surface
normals where usually n = 3 but also other values such as n = 1 may be considered [see Fig.
6.4(b)]. Such shapes have been suggested for Si nanocrystallites [30]. In their case the tilt angle
6 of the facets arccos(n/+/n2 + 2), i.e., 54.74° (n = 1), 25.24° (n = 3), and 6.21° (n = 13),
depends dramatically on the growth time. For short growth times even {1 1 13} facets with
n = 13 have been observed. They change over into {111} facets with n = 1 for longer growth
time.

Within the simplified picture Eq. (6.4) of the restriction to surface energies, one finds that
{n11} facets are more favorable than {n01} facets. For large Ge nanocrystals, this finding is in
agreement with the observation of {311} facets instead of surfaces with (501) orientations [22].
According to Eqg. (6.4) the total surface energy is three times smaller in the case of {311} facets.

Again, we have to state that the total energy reduction may be also a driving force for the
truncation of the pyramids with (n11) facet orientations. The largest parameters ¢ occur forn =
1. Using the values from Table 6.1 one has ¢ = 0.19 (C) and 0.42 (Si and Ge). Consequently,
the tendency for truncation is most pronounced for silicon and germanium. For n = 3 for these
materials the values of ¢ with 0.09 (Si) and 0.08 (Ge) are much smaller. Truncation will not
happen for n > 1 in the diamond case. For Si islands it has been observed that pyramids with
{111} facets transform into ones with (311) orientation at elevated temperature. Allowing that
both {113} and {111} facets appear on the side walls the ratio of their heights h(311)/h(111) is
given by 2y (001)/[+/11y(311) — /3y (111)] — 1. According to Table 6.1 this results to 0.23
(0.30) for Si (Ge) or 0.32 (0.37) if the energy of (111) surface is reduced to the value for the
2x 1 reconstruction.
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For Si and Ge the main difference between the ECSs derived by Wulff constructions shown
in Fig. 6.2 and pyramid shapes discussed in this section (i.e. models of experimentally observed
crystallites) is the number of occurring steep facets. In particular, for [100]-oriented pyramids
one may consider another shell of {311} facets. This would give eight additional {311} ones.
But they do not appear on islands during epitaxial growth. The reason seems to be related to
the very large angle 6 of these facets with the (100) orientation, namely 72.45°. Other facets
corresponding to orientations with smaller 6 are more likely. Surfaces with (111) and (110)
orientations with 6 equal to 54.74° and 45°, respectively, are good candidates. It is interesting
that {110} facets which almost disappear on the ECS [see Figs. 6.2(b) and 6.2(c)] could lead
to large facets on the [100]-oriented pyramid in addition to the discussed four {113} facets.
For Si and Ge, in this case four facets with (110) orientation will occur near the bottom of the
pyramid and a rounding of the base will take place [cf. Figs. 6.2(a) and 6.2(b)]. Moreover, for
Si pyramids {111} facets have indeed been observed. That is not the case for heteroepitaxially
grown Ge islands, for which also {110} facets have not been detected. Experimentally observed
{15 3 23} facets have only a tilt angle of & = 33.63°. A model of such a pyramid is shown
in Fig. 6.2(d). Taking into account only surface energies the probability for facets with this
surface orientation to appear in the corner between two neighboring {311} facets is rather high.
It happens if the relation y (15 3 23) < 1.7y(311) is fulfilled as the condition for the minimum
of the total surface energy. As mentioned above for Ge (the softest material under consideration)
surface energies of different orientations do not vary so much. Therefore, other effects than the
energetics, e.g. strain, should stabilize such less sloping high-index facets.

For the surface energies given in Table 6.1 with a not too strong variation with the surface
orientation we conclude that deviations from the ideal shape of the pyramids, such as truncation
or rounding, are favorable within considerations restricted to the pure energetics of the facets.
However, these results can only indicate a trend. Taking into account the strain of the pyramids
the volume dependence of the total energy (6.2) is changed from Eigtg = aV3 to Eiota =
aVi— BV [192]. Optimizations of energy functionals of such a type may give modified results.
In particular, it is expected that the effects of truncation and rounding depend on the pyramid
volume. Consequently, shape transitions as the transition from pyramids to domes observed for
Ge on Si(100) can be only described taking into account the strain energy and/or Kinetics effects
and not only using an equilibrium theory with a restriction to the total surface energy.



Chapter 7

Summary and conclusions

We have presented extensive first-principles studies of the energetics and the reconstructions
of the clean low-index (111), (110), (100) and high-index (113) surfaces of the three group-
IV semiconductors diamond, silicon, and germanium. The calculations have been performed
within DFT using the LDA and the repeated-slab approximation. Different reconstructions in-
cluding the largest ones observed experimentally such as Si(111)7x7 and Si(110)16x2 have
been investigated. The atomic geometries have been optimized in order to find the minimum of
the total energy. For these atomic structures the electronic band structures have also been calcu-
lated. For the most interesting surface reconstructions STM images have been simulated in order
to make a “direct” comparison with experimentally observed surface images. A combination
of symmetric slabs and slabs with a hydrogen passivation at one side allowed the determina-
tion of absolute surface energies not only for unreconstructed surfaces. Such a combination of
two different slab approximations makes the computations tractable and not too costly also for
reconstructed surfaces with large unit cells.

In the case of (111) surfaces we have presented studies for the basic reconstructions 2x1,
c(2 x 8), and 7x7. The resulting energetics has been discussed in terms of the most important
structural parameters and surface band structures of the w-bonded chain, adatom, and dimer-
adatom-stacking-fault models. We found that the 2x1 reconstruction gives the lowest energy
only for diamond. Within the theoretical methods used here the strange result of a metallic
band structure of the C(111)2x 1 surface (measurements reveal an insulating behavior) cannot
be avoided. For Si and Ge, the large 7x7 or ¢(2x8) reconstructions are energetically more fa-
vorable. Chemical trends have been derived that indicate clear differences between the carbon
atoms with a lack of p- and d-electrons in the core and the bigger Si or Ge atoms. In particular
the strong C-C bonding is responsible for the absence of long-range adatom-induced recon-
structions on C(111). Si and Ge surface structures gain more energy by the electron transfer
between adatoms and rest atoms because of the accompanying smaller subsurface stresses. In
the intermediate case of silicon, additional reconstruction elements occur to balance the differ-
ent tendencies observed for diamond and germanium.

In general, a similar behavior occurs for the (100) surfaces. For Si and Ge, dimers are always
asymmetric, the c(4x2) reconstructions are lower in energy than the 2x1 ones. We have also
found a very small energy difference between the lowest c(4x2) phase and the p(2x2) one.

86
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In contrast, in the diamond case no asymmetric dimers occur at the (100) face. The tendency
for stabilization of symmetric structures on diamond surfaces and the tendency for symmetry
reductions at the Si and Ge surfaces are observed not only for the (111)2x1 and (100)2x1
translational symmetries but also for the relaxed (110)1x1 faces, the latter being the ground
state in the diamond case. Any buckling of chains or dimers induces a substantial subsurface
strain and, hence, makes a symmetry break unlikely in the diamond case. Tilting of chains and
dimers on Si and Ge surfaces opens energy gaps between surface states. The accompanying
energetical lowering of the occupied bands gives rise to an energy gain. Moreover, such a
tilting allows different chain isomers on the Si and Ge(111) surfaces and the c(4x2) and p(2x2)
translational symmetries of the (100) surfaces of Si and Ge.

The 2x 1 unit cell with symmetric tetramers has been shown to be the most stable C(113)
surface. For the first time, total-energy calculations have been presented for this orientation of
diamond crystals. Interestingly, the tetramer band structure exhibits a clear insulating character.
The surface energy is even lower than that of the C(001)2x 1 surface. It could make the C(113)
surfaces useful for future applications. Also in the Si(113) and Ge(113) cases, the formation
of tetramers tends to give rise to a semiconducting surface. In particular, asymmetries due to
the puckering of the tetramers support the opening of an energy gap between surface states.
However, for Si and Ge the situation is more complicated since 3x1 and 3x2 translational
symmetries have been observed experimentally. The presence of adatoms leads to metallic
structures for all the materials as a consequence of the half-occupied adatom dangling bonds.
No structure with tetramers and adatoms can overcome this problem, even assuming a certain
asymmetry of the tetramer as it was proposed by several research groups. The Si and Ge(113)
surfaces with 3x 1 or 3x2 reconstructions have been confirmed to be stabilized only by subsur-
face self-interstitials. For germanium two considered interstitial-induced reconstructions, 3x 1
Al and 3x2 ADI, can hardly be distinguished from an energetical point of view. The 3x2 Al
reconstruction gives rise to a global minimum on the total-energy surface. Nevertheless, the
small energy differences indicate that interstitial migration and coexistence of different surface
phases should be likely. In the Si(113) case, due to a repulsive interaction of the interstitial
atoms on short distances, the 3x2 ADI structure has been found to be most favorable. How-
ever, the energy differences to the other interstitial reconstructions remain also small. Within the
stable reconstructions of the Si and Ge(113) surfaces only the 3x2 Al and 3x2 ADI structures
give rise to insulating (semiconducting) band structures. The calculated electronic structures,
in particular that of 3x2 ADI for Si(113), seem to agree with the available experimental data
from PES, ARPES and STM. Important facts concern the occurrence of occupied surface states
below the VBM and a strong asymmetry in the filled- and empty-state images. The energetics,
the gap opening, and the similarities of the STM images suggest to interpret the experimental
data available for ordered Si and Ge(113) surfaces in terms of the 3x 2 translational symmetry.

We again conclude that the appearance of reconstruction elements on (113) surfaces, such
as tetramers or interstitials, depends decisively on the group-1V element, C, Si or Ge. Buckling
of the tetramers or subsurface interstitials are completely unfavorable for C(113). This result
agrees with the tendency found for C(001)2x 1 and C(111)2x 1 surfaces that subsurface strains
cost too much energy and that additional atoms are energetically unfavorable.
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In order to understand the driving forces for the long-range Si(110)16x2 and Ge(110)16x 2
[c(8x 10)] surfaces we have first investigated a variety of reconstruction elements within smaller
unit cells. Among the reconstruction elements buckled zig-zag chains, adatoms, rest atoms,
dimers, bridge-site atoms, tetramers, pentamers and interstitial atoms have been studied. In
general neighboring chains buckled in opposite directions and adatoms arranged along the [001]
direction stabilize the (110) surfaces. For Ge adatom-rest atom pairs are the most stable re-
construction elements. In the case of Si the presence of only adatoms can lower the surface
energy. For both semiconductors pure dimer structures and saturation of all dangling bonds
by fourfold-coordinated adatoms are not possible. The tetramer-interstitial reconstructions on
Si and Ge(110) surfaces are stabilized in the presence of additional adatoms. In this case the
resulting pentamer atoms donate electrons to adatoms similar to the case of (113) surfaces. Dan-
gling bonds of adatoms are fully occupied, which leads to a semiconducting band structure (at
least for Si). Simulated empty-state STM images show pentagon-shaped spot distributions. The
reconstruction element with two five-membered rings is completely unfavorable from the ener-
getical point of view for both Si and Ge(110) surfaces, although this metastable structure can
reproduce the two pentagons representing the part of a stripe in the empty-state STM images
which is nearly equivalent to one unit cell.

For the first time we have performed ab initio calculations for the Si(110) surface using
the observed 16x 2 translational symmetry. Its unit cells nominally contain 64 atoms in each
bulk-like atomic layer. We have shown that steps leading to trenches and upper as well as lower
terraces are important reconstruction elements. An appropriate rebonding of the step atoms
stabilizes the Si(110)16x2 surface. This has been demonstrated starting from the adatom-
like behavior of edge atoms and oppositely buckled zigzag chains on the different terraces.
Therefore, the appearance of trenches on Si(110) surfaces in general, has been explained.

In order to model the stripes along the [112] direction as observed by STM on both types of
terraces, we have investigated different arrangements of adatoms. Their energetics significantly
depends on the adatom distribution. An adatom arrangement in parallel lines along [001] di-
rections with a distance of about 3ag/+/2 lowers further the surface energy. A combination of
stretched adatom-hexagons surrounded by partially removed chains yields a local minimum on
the total-energy surface but not to a stable surface reconstruction. A very interesting coverage
of the terraces is described by an ATI model. It gives rise to the lowest energy of all geometries
studied. Still it is somewhat higher than the energy of the corresponding model studied for a
3x2 translational symmetry.

Within the ATl model, together with an interstitial atom four adatoms form a pentamer that
can be combined with a varying number of adatoms. The situation may be more complicated
due to the pentamer buckling. Obviously, such pentamers can yield to pentagonal shapes of
spot arrangements in the STM images. However, their extent seems to be smaller than observed
experimentally. On the other hand, such reconstruction elements can also give rise to spot
arrangements with other shapes. It depends on the number and the occupation of the adatoms.
Also edge atoms with an adatom character or adatoms in regions of removed chain atoms may
drastically change the spot distribution because they may be hidden in the experimental STM
images.
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The ATI model represents a remarkable progress in explaining the atomic geometry of the
Si(110)16x 2 surface. However, the accompanying surface energy gain and the resulting fine-
structure of the STM images suggest to search for additional refinements of the reconstruction
model. On the other hand, there is also no unique interpretation of the measured STM im-
ages. Consequently, more detailed structural, spectroscopic and total-energy studies should be
performed. Further STM investigations with real atomic resolution on both upper and lower
terraces, in particular near the steps are needed. This holds also for Ge.

Our ab initio total-energy and electronic-structure results highlight the physical origins of
the reconstruction behavior in dependence on surface orientation and size of the group-1V
atoms. We have shown clear evidence for an opposite reconstruction behavior of diamond and
Si or Ge surfaces. Adatoms, interstitials, and symmetry-breaking distortions are unlikely for
diamond as a consequence of the short interatomic distances and strong bonds. However, such
elements of the surface reconstruction occur on Si and Ge surfaces. The complicated interplay
of bonding, resulting atomic geometry, and accompanying electronic structure has been derived
and used to discuss driving forces for the surface reconstruction.

The understanding of growth, appearance of thin films or nanocrystals, and the possible
bridging of microscopic and macroscopic properties of the systems require a knowledge of
thermodynamic quantities, in particular surface energies. We have presented a rather complete
data base of absolute surface energies y of group-1V semiconductors. For all the elements,
there is a strong tendency to reduce substantially surface energies by taking into account surface
reconstructions. In general, diamond surfaces possess large values of y, while those for Si or
Ge are about four or five times smaller, respectively. The dependence of the energies on the
surface orientation is also different for diamond, Si and Ge. Apart from diamond, for which
the {111} cleavage faces are really energetically favored, the energy variation for surfaces with
orientations (111), (311), and (100) is rather weak for Si and Ge. Only the value for {110}
facets is substantially larger. Ge surface energies tend to be almost equal independent of the
surface orientation.

The absolute surface energies have been used to discuss the equilibrium shapes of three-
dimensional crystals and [111]- or [100]-oriented pyramids or domes. We have shown that the
ECSs depend very much on the absolute values of the surface energies. As a consequence we
observed a shape variation from diamond via silicon to germanium. Interestingly, we have pre-
dicted that {311} facets should occur on the ECS of diamond. By contrast, in the case of Ge a
more spherical shape has been predicted. The occurrence of high-index surfaces is also quite
likely for Ge. Neglecting the influence of energy contributions due to edge bonding and strain,
we have generally observed tendencies for [111]- and [100]-oriented pyramids to be deformed,
i.e., tendencies towards truncation, base deformation, or faceting. The strength of such a trend
depends on the overall shape and the values of y.

Further steps in the field will have to include investigations of other high-index surfaces, in
particular for Ge and Si. Their energetical relations and contributions to the ECSs are needed.
Of course, models and a desirably quantitative description of nanocrystals in order to predict
shape transitions still remain one of the most interesting topics in modern physics. An important
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contribution to this problem has been done in the this work by presenting surface energies. Pre-
cise atomic arrangements of semiconductor surfaces obtained here are also necessary for further
investigations of surfaces: In particular, optical spectra of Si(113) and Si(110) are very impor-
tant to learn more about the electronic structure. However, in the case of such spectroscopic
investigations self-energy corrections and other many-body effects have to be taken into ac-
count. Adsorption of foreign atoms and molecules usually needs an understanding of the clean
surfaces at the first stage. Recently, the biofunctionalization of surfaces and nanostructures has
become one of the focal points of research. Starting from knowledge about clean systems and
nanostructures it will allow to learn more about the interaction between bio-molecules and metal
or semiconductor surfaces. In this way, qualitatively new effects and devices will be enabled.
The present thesis is thus a step towards the general understanding of such complex systems. It
is hoped that its results spur further developments and motivate new experimental work.
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Zusammenfassung

Auf der Basis erster Prinzipien haben wir umfangreiche Untersuchungen der Energetik und
der Rekonstruktionen von sauberen Oberflachen der drei Gruppe-I1V-Halbleiter Diamant, Silizi-
um und Germanium mit den niedrigen Indizierungen (111), (110), (100) bzw. mit dem hohen In-
dex (113) vorgestellt. Die Rechnungen wurden im Rahmen der Dichtefunktionaltheorie (DFT)
unter Verwendung der N&herung der lokale Dichte (LDA) und periodisch wiederholten Schich-
ten durchgefuhrt. Es wurden unterschiedliche Rekonstruktionen untersucht, einschliel3lich der
groRten experimentell gefundenen Si(111)7x7- und Si(110)16 x 2-Rekonstruktionen. Die ato-
mare Geometrie wurde im Hinblick auf die Minimierung der Gesamtenenergie optimiert. Flr
die daraus erhaltenen Oberfl&chen Strukturen wurden ferner die elektronischen Bandstrukturen
berechnet, und fir die interessantesten Rekonstruktionen wurden auch STM-Bilder simuliert,
um sie unmittelbar mit experimentell beobachteten Bildern der Oberflachen zu vergleichen.
Eine Kombination symmetrischer Schichten und solchen, die auf einer Seite mit Wasserstoff
passiviert sind, ermdglicht die Bestimmung absoluter Oberflachenenergien nicht nur fir die
unrekonstruierten Oberflachen. Eine solche Kombination der unterschiedlichen Schichtnahe-
rungen fiihrt zu handhabbaren Rechnungen, die auch flr rekonstruierte Oberflachen mit grof3en
Einheitszellen nicht zu aufwendig werden.

Fur die (111)-Oberflachen haben wir Untersuchungen der grundlegenden 2x1-, ¢(2x8)-,
und 7 x 7-Rekonstruktionen vorgestellt. Die resultierende Energetik wurde in Hinblick auf die
wichtigsten strukturellen Parameter und die Oberflachenbandstruktur der Modelle mit Ketten
m-gebundener Atome, Adatome bzw. Dimer-Adatom-Stapelfehler diskutiert. Es wurde fest-
gestellt, dal die 2x1-Rekonstruktion nur fir Diamant die niedrigste Gesamtenergie besitzt.
Fur Silizium und Germanium sind die groflen 7x7- bzw. c(2x8)-Rekonstruktionen energe-
tisch glnstiger. Die abgeleiteten chemischen Trends weisen auf deutliche Unterschiede zwi-
schen den Kohlenstoffatomen, die keine p- und d-Elektronen im Rumpf haben, und den gro-
Reren Silizium- bzw. Germaniumatomen hin. Insbesondere die starke C-C-Bindung ist dafir
verantwortlich, dal es keine von Adatomen erzeugten langreichweitgen Rekonstruktionen der
Diamant-(111)-Oberflachen gibt. Silizium- und Germaniumoberflachenstrukturen hingegen er-
fahren einen Energiegewinn durch Elektronentransfer zwischen Adatomen und Restatomen,
weil dies nur mit kleinen Verspannungen unterhalb der Oberflachen verbunden ist. Im interme-
didren Fall des Silizium treten zusatzliche Rekonstruktionselemente auf, die die unterschiedli-
chen Tendenzen, wie sie fur Diamant und fir Germanium vorgestellt wurden, ausbalancieren.

Im allgemeinen tritt ein solches Verhalten auch bei den (100)-Oberflachen auf. Weil die Si-
und Ge-Dimere immer asymmetrisch sind, ergibt sich fiir die c(2 x4)-Rekonstruktionen immer
eine niedrigere Energie als fiir die 2 x 1-Rekonstruktionen. Wir haben auf’erdem eine sehr kleine
Energiedifferenz zwischen der niederenergetischen c(2x4)- und der p(2x2)-Phase gefunden.
Im Gegensatz dazu treten fur Diamant keine asymmetrischen Dimere auf der (100)-Oberflache
auf. Die Tendenz zur Stabilisierung symmetrischer Strukturen bei Diamantoberflachen und bei
Si- und Ge-Oberflachen tritt nicht nur bei den (111)2x1- und (100)2x 1-, sondern auch bei
den (100)2x1- und den relaxierten (110)1x1-Oberflachen auf. Letztere stellt den Grundzu-
stand bei Diamant dar. Jegliche Verkippung von Atomketten oder Dimeren bewirkt eine er-
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Zusammenfassung 101

hebliche Verzerrung unterhalb der Oberflache, die mit einer Erhdhung der elastischen Energie
verbunden ist und daher bei Diamant einen Symmetriebruch unwahrscheinlich macht. Bei Si-
und Ge-Oberflachen fuhrt eine Verkippung von Atomketten bzw. Dimeren zu Energiellicken
zwischen Oberflachenzustéanden. Die damit verbundene energetische Absenkung der besetzten
Bander bewirkt einen Energiegewinn. Darliberhinaus ermdglicht die Verkippung das Vorkom-
men verschiedener isomerer Ketten auf den Si- und Ge(111)-Oberflachen sowie von c(4x2)-
und p(2x2)-Symmetrien auf (100)-Oberflachen von Si und Ge.

Die 2x1-Einheitszelle mit symmetrischen Tetrameren wurde als Element der stabilsten
C(113)-Oberflache identifiziert. Zum ersten Mal wurden Gesamtenergierechnungen fur diese
Oberflachenorientierung von Diamant vorgestellt. Interessanterweise zeigt die Bandstruktur der
Tetramere eindeutig einen isolierenden Charakter. Die zugehdrige Oberflachenenergie ist sogar
niedriger als die der C(001)2 x 1-Oberflache. Dies konnte die C(113)-Oberflache flr zukinftige
Anwendungen interessant machen. Auch bei Si(113)- und Ge(113)-Oberflachen fiihrt die Bil-
dung von Tetrameren zu einer halbleitenden Oberfl&che. Insbesondere die mit der Verzerrung
der Tetramere verbundene Asymmetrie unterstiitzt die Offnung von Bandliicken zwischen den
Oberflachenzustéanden.

Die Situation ist bei Si und Ge jedoch komplizierter, weil auch 3x1- und 3x2-Symmetrien
beobachtet wurden. Adatome fiihren bei allen untersuchten Materialien zu metallischen Struk-
turen infolge der halbbesetzten freien Bindungen der Adatome. Keine Struktur mit Tetrameren
und Adatomen kann dieses Problem beseitigen, selbst wenn man eine gewisse Asymmetrie
der Tetramere annimmt, wie es von verschiedenen Gruppen vorgeschlagen wurde. Es wur-
de bestétigt, dal3 die Si- und Ge(113)-Oberflachen mit 3x1- und 3x2-Rekonstruktionen nur
durch die Besetzung von Zwischengitterplatzen unterhalb der Oberflache stabilisiert werden.
Bei Germanium konnen zwei derartige Rekonstruktionen, das 3x1-Al- und das 3x2-ADI-
Modell, energetisch kaum unterschieden werden. Die 3x2-Al-Rekonstruktion flhrt zu einem
globalen Minimum auf der Gesamtenergieflache. Jedoch weisen die kleinen Energiedifferenzen
darauf hin, daB eine wechselnde Besetzung der Zwischengitterplatze durch Migration sowie
die Koexistenz verschiedener Rekonstruktionen wahrscheinlich ist. Im Fall von Si(113) ist die
3x2-ADI-Struktur aufgrund einer abstoRenden Wechselwirkung der Zwischengitteratome fiir
kleine Abstédnde energetisch bevorzugt. Andererseits fallen auch hier die Energieunterschiede
zu den anderen auf Zwischengitteratomen beruhenden Rekonstruktionen gering aus. Von den
stabilen Rekonstruktionen der Si- und Ge(113)-Oberflache sind nur die 3x2-Al- und die 3x 2-
ADI-Strukturen halbleitend. Die berechneten elektronischen Strukturen, insbesondere die der
Si(113)3x2-ADI-Rekonstruktion, stimmen augenscheinlich mit experimentellen Ergebnissen
Uberein, die aus PES-, ARPES- und STM-Messungen erhalten wurden. Wichtig sind dabei das
Auftreten besetzter Oberflachenzustédnde unterhalb des Valenzbandmaximums sowie eine deut-
liche Asymmetrie zwischen den STM-Bildern fur besetzte und leere Zustande. Insgesamt spre-
chen die Energetik, das Auftreten von Bandliicken und die Ahnlichkeiten der STM-Bilder fiir
eine Interpretation der experimentellen Befunde bei geordneten Si- und Ge(113)-Oberflachen
im Sinne einer 3x2-Symmetrie.

Wir kommen damit wiederum zum SchluB, daR das Auftreten unterschiedlicher Rekonstruk-
tionselemente (wie etwa Tetramere oder die Besetzung von Zwischengitterplatzen) bei (113)-
Oberflachen stark vom Gruppe-1V-Element C, Si oder Ge abhéngt. Verkippung der Tetramere
oder Zwischengitteratome unterhalb der Oberflache sind vollkommen unvorteilhaft fir C(113).
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Dieses Ergebnis stimmt mit den fiir C(001)2x 1 und C(111)2x 1 gefundenen Tendenzen (iber-
ein, dall Deformationen unterhalb der Oberflache zu energieaufwendig sind und daf zusatzliche
Atome energetisch unvorteilhaft sind.

Um die treibenden Kréfte fir die grof3en Si(110)16 x 2- und Ge(110)16 x 2/c(8 x 10)-Rekon-
struktionen zu verstehen, haben wir zundchste einige Rekonstruktionselemente in kleineren
Einheitszellen untersucht, darunter verkippte Zick-Zack-Ketten, Adatome, Restatome, Dime-
re, Atome auf Brlckenplatzen, Tetramere, Pentamere und Atome auf Zwischengitterplatzen.
Im allgemeinen stabilisieren benachbarte Ketten, die in entgegengesetzte Richtungen verkippt
sind, sowie entlang der [001]-Richtung angeordnete Adatome die (110)-Oberflachen. Fir Ger-
manium stellen Paare aus Adatomen und Restatomen das stabilste Rekonstruktionselement
dar. Bei Silizium wird die Oberflachenenergie abgesenkt, wenn nur Adatome vorhanden sind.
Reine Dimerstrukturen sowie Sattigung aller freien Bindungen durch vierfach koordinierte
Adatome treten bei beiden Halbleitern nicht auf. Wir haben festgestellt, da die Tetramer-
Zwischengitterplatz(T1)-Rekonstruktion bei Si- und Ge(110)-Oberflachen in Anwesenheit zu-
satzlicher Adatome stabilisert wird. In diesem Fall gibt es einen Elektronentransfer von den
resultierenden Pentameratomen zu den Adatomen, dhnlich wie bei (113)-Oberflachen. Freie
Bindungen der Adatome sind vollstandig besetzt, was — zumindest fir Silizium — zu einer
halbleitenden Bandstruktur fiihrt. Berechnete STM-Bilder zeigen pentagonférmige Intensitats-
verteilungen. Das Rekonstruktionselement mit zwei fiinfatomigen Ringen ist energetisch voll-
kommen unvorteilhaft sowohl fur die Si- als auch fir die Ge(110)-Oberflache, obwohl diese
metastabile Struktur die beiden Pentagone reproduzieren kann, die jenen Teil des Streifens im
STM-Bild der unbesetzten Zustande ausmachen, der in etwa einer Einheitszelle entspricht.

Zum ersten Mal haben wir ab-initio-Rechnungen fur die Si(110)-Oberflache mit einer 16 x 2-
Periodizitat durchgefihrt. Die zugehorige Einheitszelle umfalit 64 Atome in jeder Lage des Vo-
lumenmaterials. Wir haben gezeigt, daf Stufen, die zu Grabenstrukturen mit oberen und unteren
Terrassen fuhren, wichtige Rekonstruktionselemente sind. Eine geeignete Bindungsgeometrie
der Stufenatome stabilisiert die Si(110)16 x2-Oberflache. Dies wurde anhand des adatomar-
tigen Verhaltens der Kantenatome und entgegengesetzt verkippter Zick-Zack-Ketten auf den
verschiedenen Terrassen gezeigt.

Um die in STM-Aufnahmen auf beiden Terrassenarten beobachteten Streifen in [112]-
Richtung zu modellieren, haben wir unterschiedliche Anordnungen von Adatomen untersucht.
Ihre Energetik hangt empfindlich von der Verteilung der Adatome ab. Eine Anordnung der Ada-
tome in parallelen Linien langs der [001]-Richtung und im Abstand von etwa 3ag/+/2 fiihrt zu
einer weiteren Absenkung der Oberflachenenergie. Eine Kombination gestreckter Hexagone
aus Adatomen, umgeben von teilweise entfernten Reihen, fuhrt zu einem lokalen Minimum der
Gesamtenergiflache, nicht aber zu einer stabilen Oberflachenrekonstruktion. Eine besonders
interessante Bedeckung der Terrassen stellt ein ATI-Modell dar, das zur niedrigsten Energie
aller untersuchten Geometrien fuhrt. Diese Energie ist immer noch etwas hoher als die des ent-
sprechenden Modells einer 3x2-Translationssymmetrie. Im Rahmen des ATI-Grabenstruktur-
Modells formen vier Adatome zusammen mit einem Atom auf einem Zwischengitterplatz einen
Pentamer, der wiederum mit einer unterschiedlichen Anzahl weiter Adatome kombiniert wer-
den kann. Diese Geometrie kann durch eine Verkippung des Pentamers verkompliziert werden.
Offensichtlich kdnnen solche Pentamere zu pentagonalen Anordnungen der Intensitdtsmaxima
von STM-Bildern flhren. Jedoch scheint ihre Ausdehnung kleiner zu sein, als es experimen-
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tell beobachtet wird. Andererseits konnen derartige Rekonstruktionselemente auch zu Inten-
sitatsverteilungen mit anderen Mustern fiihren. Ihr Auftreten héngt von der Anzahl und der
Abséttigung der Adatome ab. Auch Kantenatome, die Adatomcharakter haben, sowie Adato-
me in Bereichen, in denen Kettenatome entfernt wurden, kénnen einen drastischen Einflul auf
die Intensitatsverteilung haben, da sie in den experimentellen STM-Bildern unbemerkt bleiben
kdnnen.

Das ATI-Modell stellt einen bemerkenswerten Fortschritt zur Erklarung der Geometrie der
Si(110)16 x 2-Oberflache dar. Jedoch weisen der zugehdrige Gewinn an Oberflachenenergie
und die Feinstrukturen der STM-Aufnahmen darauf hin, dal? das Rekonstruktionsmodell wahr-
scheinlich weiter verfeinert werden muf. Andererseits ist eine eindeutige Interpretation der
gemessenen STM-Bilder nicht moglich. Daher sind weitere detaillierte strukturelle, spektro-
skopische sowie Gesamtenergieuntersuchungen erforderlich. Am meisten wirden wir STM-
Untersuchungen mit echter atomarer Auflésung sowohl auf der oberen als auch der unteren
Terrasse, insbesondere in der Nahe der Stufenkanten, begruf3en.

Unsere ab-initio-Gesamtenergie- und -Elektronenstrukturergebnisse weisen auf wesentli-
che die Modifikation von physikalischen Ursachen fir die Abh&ngigkeit der Rekonstruktion
von der Oberflachenorientierung und der Grél3e der Gruppe-1V-Atome hin. Wir haben eindeu-
tig gezeigt, dal sich das Rekonstruktionsverhalten von Diamantoberfldchen einerseits und von
Silizium- und Germaniumoberflachen andererseits stark unterscheidet. Adatome, Besetzung
von Zwischengitterplatzen und symmetriebrechende Deformationen sind bei Diamant aufgrund
der kleineren atomaren Abstande und der starkeren Bindungen unwahrscheinlich. Jedoch treten
solche Rekonstruktionselemente bei Si- und Ge-Oberflachen auf. Das komplizierte Zusammen-
spiel von Bindung, resultierender atomarer Geometrie und zugehoriger elektronischer Struktur
wurde aufgezeigt und zur Diskussion der treibenden Krafte der Oberflachenrekonstruktionen
verwendet.

Die prazisen atomaren Anordnungen der Halbleiteroberflachen, die in dieser Arbeit erzielt
wurden, sind dartberhinaus fur weitere Untersuchungen erforderlich. Insbesondere sind opti-
sche Spektren der Si(113)- und Si(110)-Oberflachen wichtig, um mehr Informationen tber ihre
elektronische Struktur zu erhalten. Fir die Beschreibung der Adsorption von Fremdatomen und
Molekiilen (wie zB. Biomolekdilen) ist zundchst ein Verstandnis der unbedeckten Oberflache er-
forderlich. Eine Bedeckung von Si-Substraten mit einer oder wenigen Monolagen Ge-Atomen
deutet auf das Auftreten &hnlicher Rekonstruktionselemente hin, wie etwa Dimere auf sauberen
(100)- und Pentamere auf unbedeckten (113)-Oberflachen.

Die absoluten Oberflachenenergien wurden verwendet, um die Gleichgewichtsform (ECS)
dreidimensionaler Kristallite sowie [111]- bzw. [100]-orientierter Pyramiden und Inseln zu be-
schreiben. Wir haben gezeigt, dal? die ECS empfindlich von den absoluten Werten der Oberfla-
chenenergien abhangt. Als Konsequenz haben wir eine Variation der Kristallform beim Uber-
gang von Diamant Uber Silizium zu Germanium festgestellt. Wir haben vorhergesagt, dal3 in-
teressanterweise {311}-Facetten an der ECS von Diamant beteiligt sind. Fiir Germanium wurde
dagegen eine stérker spharische Form abgeleitet. Das Auftreten von Oberflachen mit groRRen In-
dizes ist bei Germanium ebenfalls recht wahrscheinlich. Unter Vernachléssigung des Einflusses
der Kanten und der Deformation haben wir allgemeine Tendenzen flr die Modifikation [111]-
und [100]-orientierten Pyramiden festgestellt, die sich durch Kappung, Deformation der Grund-
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flache oder Facettierung bemerkbar machen. Die Stérke der jeweiligen Deformation hangt von
der Form der gesamten Pyramide sowie den Werten der Oberflachenenergie y ab.
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