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On Gain Adaptation in Adaptive Control

A. Ilchmann and E. P. Ryan

Abstract—The adaptive high-gain output feedback strategy ( ) =
( ) ( ), ( ) ( ) = ( ) is well established in the context

of linear, minimum-phase, -input -output systems ( , , ) with
the property that spec( ) ; the strategy applied to any such
linear system achieves the performance objectives of: 1) global attractivity
of the zero state and 2) convergence of the adapting gain to a finite limit.
Here, these results are generalized in three aspects. First, the class of sys-
tems is enlarged to a class ( ), encompassing nonlinear systems mod-
eled by functional differential equations, where the parameter 0
quantifies system memory and the continuous function : [0 )
[0 ), with (0) = 0, relates to the allowable system nonlinearities.
Second, the linear control law is replaced by ( ) = ( )[ ( ) +
( ( ) ) ( ) ] ( ), wherein the additional nonlinear term coun-

teracts the system nonlinearities. Third, the quadratic adaptation law is
replaced by the law( ) ( ) = ( ( ) ), where the continuous
function satisfies certain growth conditions determined by (in partic-
ular cases, e.g., linear systems, a bounded function is admissible). Per-
formance objectives 1) and 2) above are shown to persist in the generalized
framework.

Index Terms—Adaptive control, functional differential equations, min-
imum-phase systems.

I. INTRODUCTION

Consider the classL of finite-dimensional, real, linear, minimum-
phase,m-input (u(t) 2 m), m-output(y(t) 2 m) systems of the
form

_x(t) = Ax(t) +Bu(t) + p(t); x(0) = x0

y(t) = Cx(t)

det
sIn � A B

C 0
6= 0 8s 2 +

spec(CB) � +

(1)

with n, m 2 , n � m, x0 2 n, and wherep 2 L2( �0;
n)

is a perturbation, (A, B, C) is a triple of real matrices of conforming
formats, �0 := [0;1) and + := f� 2 jRe(�) > 0g denotes the
open right-half complex plane, with closure+. The condition on the
determinant in (1) characterizes the minimum-phase assumption and
the spectrum condition spec(CB) � + is a multiple-input–multiple-
output counterpart of the “positive high-frequency gain” assumption
for single-input–single-output systems.

As is well known (see, for example, the seminal work in [1], [3], and
[4]), the adaptive output feedback control

u(t) = �k(t)y(t) _k(t) = ky(t)k2 ; k(0) = k
0 2 (2)

is anL-universal stabilizer in the sense that the control, applied to any
member of the classL, ensures that: 1) the zero state is globally attrac-
tive and 2) the adapting gain converges to a finite limit. Whilst simple,
the quadratic nature of the gain adaptation law in (2) can result in in-
tervals of rapid increase in gain which potentially generate asymptotic
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gain values of unnecessarily large magnitude. Clearly, it is of interest to
ascertain whether the gain adaptation law can be modified [while still
maintaining properties 1) and 2)] in order to restrict the gain growth
rate: for example, is it possible to replace the quadratic term in (2) by
 (ky(t)k), where is aboundedfunction? A corollary (pertaining to
linear systems of classL) to the main result of the present note answers
the latter question affirmatively; for example, the bounded function on
the right hand side of the gain adaptation_k(t) = minfky(t)kq; "g is
admissible for everyq > 0 and" > 0.

The overall purpose of this note is to re-examine the above control
structure in a more general context of a classNh(�) of nonlinear sys-
tems, described by functional differential equations of the form

_y(t) = f (p(t); y(t); (Ty)(t)) + g ((Ty)(t); u(t))

yj[�h;0] = y0 2 C ([�h; 0]; m)
(3)

where, loosely speaking, the parameterh � 0 quantifies system
“memory” and the continuous function� : �0 ! �0, with
�(0) = 0, relates to the allowable nonlinearitiesf (� = 0 in the case
of systems of the linear class and soL � N0(0)). In the context of the
classNh(�) (which will be made precise in Section II-A), we establish
that the stability properties 1) and 2) persist when (2) is replaced by

u(t) = �k(t) [1 + �(ky(t)k)= ky(t)k] y(t)

_k(t) =  (ky(t)k) ; k(0) = k0 2
(4)

where : �0 ! �0 is any continuous function satisfying

i)  (s) = 0 if, and only if,s = 0

ii) lim inf
s!1

s (s)
s+�(s)

> 0

iii)  (s) = O s2 + s�(s) ass # 0

: (5)

When compared with the strategy for the linear classL, the pro-
portional output feedback law in (2) is augmented by the inclusion of
the nonlinear feedback functiony 7! �(kyk)kyk�1y in (4) to coun-
teract the nonlinearities allowable in (3): by continuity of� and since
�(0) = 0, this nonlinear feedback function is deemed to take the value
zero wheny = 0 and is continuous. The gain adaptation law in (4) may
be tailored, through choice of , to the needs of a designer to avoid, for
example, possible intervals of rapid increase in gain which potentially
generate asymptotic gain values of unnecessarily large magnitude (as
alluded to earlier in the context of the linear classL). Note that ii) is a
growth condition at infinity and iii) is a growth condition at zero, each
being (loosely speaking) related, via the function�, to the “strength”
of the system nonlinearities. For example, if�(s) = O(s) ass!1,
then the bounded function : s 7! minfs2 + s�(s); "g is admissible
for every" > 0; or, if �(s) = s2 (in which case, quadratic nonlineari-
ties are admissible in (3)), then the function : s 7! minfs2; " sg is
admissible for every" > 0.

II. A DAPTIVE STABILIZATION

A. The ClassNh(�) of Nonlinear Systems

Let h � 0 and let� : �0 ! �0 be continuous with�(0) = 0.
We now make precise the classNh(�) of nonlinear systems of the form
(3) by imposing assumptions on the functionsp, f , g and the operator
T . The classNh(�) is the set of systems of form (3) such that the
following holds.

Assumption A:For somed1, d2 2

1) p 2 L2( �0;
d ) (with norm denoted bykpkL );

0018-9286/03$17.00 © 2003 IEEE
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2) f : d � m � d ! m is continuous and there exists
cf > 0 such that

kf(v; y; w)k � cf [kvk+ kyk+ � (kyk) + kwk]

for all (v; y; w) 2 d � m � d ;
3) g : d � m ! m is continuous and there exists a posi-

tive–definite, symmetricG 2 m�m such that

hu;Gg(w; u)i � kuk2

for all (w; u) 2 d � m;
4) T : C([�h;1); m) ! L1loc( �0;

d ) is a causal operator
with the following properties:

i) there existscT � 0 such that

k(Ty)(t)k � cT max
s2[�h;t]

ky(s)k

for almost allt � 0 and ally 2 C([�h;1); m);
ii) for eachy 2 C([�h;1); m), there existscy > 0 such

that

t

0

k(Ty)(s)k2 ds � cy

t

�h

ky(s)k2 ds 8t � 0;

iii) for all t � 0 and for all continuous� : [�h; t] !
m, there exist�; �; c > 0 such that, for allx, � 2

C([�h;1); M) with xj[�h;t] � � � �j[�h;t] andx(s),
�(s) 2 �(�(t)) for all s 2 [t; t + � ],

esssup
s2[t;t+� ]

k(Tx)(s)� (T�)(s)k � c sup
s2[t;t+� ]

kx(s)� �(s)k

where �(�(t)) denotes the open unit ball of radius� > 0
centered at�(t).

Remarks 1: We identify (3) with the quadruple (p, f , g, T ) and, if
Assumption A holds, we write(p; f; g; T ) 2 N (�).

Assumption A3 is a counterpart of the spectrum condition
spec(CB) � + imposed in the context of the linear classL.

Assumptions A4 i)–ii) essentially form a counterpart of the min-
imum-phase condition imposed in the context of the linear class. As-
sumption A4 iii) is a rather weak technical assumption of a local Lip-
schitz nature imposed to allow application of the existence theory de-
veloped in [2].

Example 2 (Finite-Dimensional Linear Prototype):Let
(~p;A; B; C) define a linear system of classL. SinceCB is in-
vertible, n = im B � kerC and there existsV 2 n�(n�m), with
im V = kerC, such that

S := B(CB)�1
...V

defines an invertible linear transformation

x 7!
y

z
:= S

�1
x

which takes (1) into the equivalent form

_y(t) = A1y(t) + A2z(t) + CBu(t) + p1(t)

_z(t) = A3y(t) + A4z(t) + p2(t)

(y(0); z(0)) = (y0; z0)

spec(CB) � + spec(�A4) � +

(6)

where the minimum-phase assumption ensures the latter spectrum con-
dition spec(�A4) � + (that is,A4 is a Hurwitz matrix). Also

p1

p2
= S

�1~p 2 L
2( �0;

n):

Define the linear operatorT and functionp by

(Ty)(t) :=A1y(t)

+ A2

t

0

(expA4(t� s))A3y(s)ds

p(t) := p1(t)A2(expA4t)z
0

+ A2

t

0

(expA4(t� s))p2(s)ds:

(7)

The initial-value problem (6) may now be expressed as

_y(t) = (Ty)(t) + CBu(t) + p(t); y(0) = y
0 (8)

which is of form (3) withh = 0, f : (v; y; w) 7! v + w and
g : (w;u) 7! CBu. Since~p 2 L2( �0;

n) andA4 is a Hurwitz
matrix, it follows thatp is in L2( �0;

m); therefore, Assumption
A1 holds. Clearly, Assumption A2 holds withcf = 1 and�(�) �
0. Since spec(CB) � +, there existsG = GT > 0 such that
GCB + (CB)TG = 2I , whence

hu;Gg(w; u)i = hu;GCBui = kuk2 8(w;u) 2 d � m

and so Assumption A3 holds. Finally, sinceA4 is a Hurwitz matrix,
it is readily verified that the operatorT satisfies Assumption A4, with
h = 0. Therefore,(p; f; g; T ) 2 N0(0) and so the linear classL is
subsumed byN0(0).

Example 3 (Infinite-Dimensional Regular Linear Systems):The
finite-dimensional class of systems of the form (6), considered in
Example 2, can be extended to an infinite-dimensional setting by
assuming thatp1 2 L2( �0;

m), p2 2 L2( �0;X) (X a real
Hilbert space) and reinterpreting the operatorsA1, A2, A3 andA4

as the generating operators of a regular linear system (regular in
the sense of [6]). In particular, in this setting,A4 is assumed to be
the generator of a strongly continuous semigroupS = (St)t�0 of
bounded linear operators on the Hilbert spaceX with norm k � kX .
Let X1 denote the space dom(A4) endowed with the graph norm
and X�1 denotes the completion ofX with respect to the norm
kzk�1 = k(s0I � A4)

�1zkX wheres0 is any fixed element of the
resolvent set ofA4. Then,A3 is assumed to be a bounded linear
operator from m to X�1 andA2 is assumed to be a bounded linear
operator fromX1 to m. A1 2 m�m is the feedthrough operator
of the regular linear system.

If we assume that the semigroupS is exponentially stable and that
the operatorA2 extends to a bounded linear operator (again denoted by
A2) fromX to m, then the operatorT given by

(Ty)(t) := A1y(t) +A2

t

0

St�sA3y(s)ds (9)

satisfies Assumption A4 (for details, see [5]). Moreover, the function

t 7! p(t) := p1(t) + A2Stz
0 + A2

t

0

St�sp2(s)ds
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is in L2( �0;
m) and so Assumption A1 holds. Therefore, system

representation (8) carries over to the current infinite-dimensional set-
ting.

Example 4 (Nonlinear Delay Elements):Let functions	n : �
m ! d : (t; y) 7! 	n(t; y), n = 0; . . . ; N , be measurable in

t and globally Lipschitz iny uniformly with respect tot: precisely, i)
for each fixedy, 	n(�; y) is measurable and ii) there exists a constant
c such that

k	n(t; y)�	n(t; z)k � cky � zk

for all t 2 and ally, z 2 m. Assume further that	n(�; 0) � 0.
For n = 0; . . . ; N , let hn � 0 and defineh := maxn hn. For y 2
C([�h;1); m), let

(Ty)(t):=

0

�h

	0 (s; y(t+ s))ds+

N

n=1

	n (t; y(t� hn)) 8t � 0:

The operatorT , so defined, satisfies Assumption A4; for details, see
[5]. Therefore, for example, the system

_y(t) = L1y(t) +

0

�h

L2y (t+ s)ds

+L3y (t� h1) + ky(t)kL4y(t) +Bu(t)

with spec(B) � + and matricesLi 2 m�m(i = 1; . . . ; 4), is of
classNh(�), whereh := maxfh0; h1g and� : s 7! s2.

B. Stability Analysis

We now arrive at the main result.
Theorem 5: Let h � 0, let � : �0 ! �0 be contin-

uous with �(0) = 0, and let  : �0 ! �0 be contin-
uous and such that (5) holds. Let(p; f; g; T ) 2 Nh(�) and
(y0; k0) 2 C([�h; 0]; m) � . Then, the application of (4) to
(3), with initial datay0 2 C([�h; 0]; m), yields the closed-loop
initial-value problem

_y(t) = f (p(t); y(t); (Ty)(t))

+ g ((Ty)(t);�k(t)

� 1 + � (ky(t)k)ky(t)k�1 y(t)

_k(t) = (ky(t)k)

(y; k)j[�h;0] =(y0; k0)

(10)

with the following properties.

I) There exists a solution of (10) and every solution can be ex-
tended to a maximal solution.

II) Every maximal solution(y; k) : [�h; !)! m� of (10)
is such that

i) ! = 1;
ii) limt!1 k(t) exists and is finite;
iii) y(t) ! 0 ast ! 1.

Proof: That (10) has a solution and every solution has a maximal
extension follow from [2, Th. 2.3] (see also the first paragraph of the
proof of [2, Th. 3.2]).

Let (y; k) : [�h; !)! m � be a maximal solution of (10). Let
G = GT > 0 be such that the inequality in Assumption A3 holds.
Define the normk � kG on m by kukG := hu;Gui and note the
inequalities

kG�1k�1kuk2 � kuk2G � kGkkuk2 8 u 2 m
: (11)

By Assumptions A2 and A3

d

dt
ky(t)k2

G
(12)

=2 y(t); G f (p(t); y(t); (Ty)(t))

+ g (Ty)(t);�k(t) 1 + � (ky(t)k)ky(t)k�1 y(t)

� 2cfkGk ky(t)k [kp(t)k+ ky(t)k+ � (ky(t)k)

+ k(Ty)(t)k]� 2k(t) [ky (tk+ � (ky(t)k)]ky(t)k

� cfkGk kp(t)k2 + 4 ky(t)k2 + 2� (ky(t)k)ky(t)k

+ k(Tt)(t)k2 � 2k(t) ky(t)k2 + � (ky(t)k)ky(t)k

for almost all (a.a.)t 2 [0; !) (13)

and so, invoking (11), there exists a constantc1 > 0 such that

d

dt
ky(t)k2

G
� � c

�1
1 k(t)� c1

� ky(t)k2
G
+ � (k y(t)k)ky(t)k

+ c1 kp(t)k2 + k(Ty)(t)k2 a.a.t 2 [0; !): (14)

By integration, together with (11) and Assumptions A1 and A4 ii),
we may conclude the existence of a constantc2 > c1[kpk

2
L +1] such

that

ky(t)k2
G
� ky(� )k2

G
+ c2 + c2

�

�h

ky(s)k2
G
ds

�

t

�

�(s) ky(s)k2
G
+ � (ky(t)k)ky(s)k ds

8t; �; 0 � � � t < ! (15)

wherein, for notational convenience, we have introduced the nonde-
creasing function� given by

�(s) := c
�1
1 k(s)� c2: (16)

The proof of Assertion II) now proceeds in three steps. First, by a
contradiction argument, we show thatk is bounded. Second, we prove
that y is also bounded and so! = 1, whence Assertion II-i) and,
by boundedness and monotonicity ofk, Assertion II-ii). Finally, we
establish Assertion II-iii).

Step 1) For contradiction, suppose thatk is unbounded. Choose� 2
[0; !) such that

�(�) = c
�1
1 k(�)� c2 � 1: (17)

Then, by (15)

ky(t)k2
G
� ky(�)k2

G
+ c2 + c2

�

�h

ky(s)k2
G
ds=:� 8 t 2 [�; !):

(18)
By continuity ofy, we conclude thaty 2 L1([�h; !); m) and so,

by continuity of , we may infer boundedness of_k(�) =  (ky(�)k).
By the supposition of unboundedness ofk, it follows that! = 1.

By (14) and (17), together with monotonicity of�, boundedness of
y and Assumption A4-i), we may conclude the existence ofc3 � c1
such that

d

dt
ky(t)k2

G
� ��(t0)ky(t)k

2
G
+ c3 kp(t)k2 + 1 (19)
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for almost allt0, t with � � t0 � t. Integration yields

ky(t)k2
G
� e��(t )(t�t ) ky(t0)k

2
G

+

t

t

e
��(t )(t�s)

c3 kp(s)k2 + 1 ds

� e��(t )(t�t ) sup
t��h

ky(t)k
G
+

c3

�(t0)

+ c3

t

t

e
��(t )(t�s) kp(s)k2 ds

for all t, t0 with � � t0 � t. Now, as a convolution of theL1 functions
t 7! e��(t )t andt 7! kp(t)k2, we have

t

t

e
��(t )(t�s) kp(s)k2 ds

�

1

t

e
��(t )t

dt

1

t

kp(t)k2 dt <
kpk2L
�(t0)

for all t � t0 � � . Therefore

ky(t0 + 1)k2
G
� e

��(t ) sup
t��h

ky(t)k
G
+
c3 kpk2L + 1

�(t0)

for all t0 � � . Since�(t0) ! 1 as t0 ! 1, it follows that
limt!1 y(t) = 0.

Invoking (11), (17), monotonicity of� and (15), together with the
definition of� in (18), we have

t

�

ky(s)k2 + � (ky(s)k)ky(s)k ds

� 1 + kG�1k

t

�

ky(s)k2
G
+ � (ky(s)k)ky(s)k ds

� 1 + G
�1

t

�

�(s) ky(s)k2
G
+� (ky(s)k)ky(s)k ds

� 1 + kG�1k � 8 t 2 [�;1):

Therefore

ky(�)k2 + � (ky(�)k)ky(�)k 2 L1 ([�h;1); m) :

Recalling thaty(t)! 0 ast!1 and invoking property (5) iii) of
 , there existst� > 0 andK > 0 such that

 (ky(t)k) � K ky(t)k2 + � (ky(t)k)ky(t)k 8 t � t
�
:

Hence,_k(�) =  (ky(�)k) 2 L1([�h;1); ) which contradicts the
supposition of unboundedness ofk. Therefore,k is bounded.

Step 2) For contradiction, suppose that the functiony : [�h; !) !
m is unbounded. For eachn 2 , define

�n := inf t 2 [0; w)j ky(t)k2
G

= n+ 1 + ky(0)k2
G

�n := sup t 2 [0; �n)j ky(t)k
2
G

= n+ ky(0)k2
G

:

Note that

max
s2[0;t]

ky(s)k2 � kGk�1 max
s2[0;t]

ky(s)k2
G

� kGk�1(n+ 1 + ky(0)k2
G
)

� 2kGk�1(n+ ky(0)k2
G
)

� 2kGk�1 ky(t)k2
G
8 t 2 [�n; �n] 8 n 2

and so, invoking Assumption A4-i), there exists a constantc4 > 0 such
that

k(Ty)(t)k2 � c4 ky(t)k
2
G

8 t 2 [�n; �n] 8 n 2 :

In passing, we also note that

1 � ky(t)kG 8 t 2 [�n; �n] 8 n 2 :

We may now infer, from (14) together with boundedness ofk, the
existence of a constantc5 > 0 such that

d

dt
ky(t)k2

G
� c5 ky(t)k2

G
+ � (ky(t)k)ky(t)k + c1 kp(t)k

2

� c5 1 + � (ky(t)k)ky(t)kky(t)k�2
G

+c1 kp(t)k
2 ky(t)k2

G

8 t 2 [�n; �n] 8 n 2 : (20)

By property (5) ii) of the continuous function , there exists" > 0
so that

 (s) � " 1 +
�(s)

s
; for all s > 0 sufficiently large

which, in conjunction with (11) and the fact thatky(t)k2G � n +
ky(0)k2G for all t 2 [�n; �n] and alln 2 , implies the existence
of N 2 such that

1 + � (ky(t)k)ky(t)kky(t)k�2
G

� 1 + kG�1k� (ky(t)k)ky(t)k�1

� 1 + kG�1k 1 + � (ky(t)k)ky(t)k�1

� �
�1 1 + kG�1k  (ky(t)k) 8 t 2 [�n; �n] 8 n � N:

Writing c6 := c5"
�1[1+ kG�1k] > 0, then, by (20), it follows that

d

dt
ln ky(t)k2

G
= ky(t)k�2

G

d

dt
ky(t)k2

G

� c6 (ky(t)k) + c1 kp(t)k
2 8 t 2 [�n; �n] 8 n � N:

Therefore, by integration

ln ky (�n)k
2
G
� ln ky(�n)k

2
G

� c6

�

�

 (ky(t)k)dt+ c1

�

�

kp(t)k2 dt 8 n � N

which, in turn, implies that

ln
M + 1 + ky(0)k2

G

N + ky(0)k2
G

= ln ky(�M )k2
G
� ln ky(�N)k2

G

=

M

n=N

ln ky(�n)k
2
G
� ln ky(�n)k

2
G

� c6

M

n=N

�

�

 (ky(t)k)dt+ c1

M

n=N

�

�

kp(s)k2 ds

= c6 [k(�M )� k(�N)] + c1kpk
2
L 8M � N: (21)

Sincek is bounded, the right-hand side of (21) is bounded, contra-
dicting the fact that the left-hand side tends to infinity asM ! 1.
Therefore, the supposition of unboundedness ofy is false and soy 2
L1([�h; !); m).

By boundedness of (y, k) on [0; !) and maximality of! it follows
that! = 1, where Assertion II-i) and, by boundedness and mono-
tonicity of k, Assertion II-ii) immediately follows.

Step 3: Again seeking a contradiction, suppose thaty(t) 6! 0 as
t ! 1. Then, there exists� > 0 and an unbounded�0-valued
sequence(sn) such thatky(sn)k � 3� for all n 2 . Define
� := inff (s)js > �g. By properties of , we have� > 0. Since
 (ky(�)k) is of classL1, there exists an unbounded�0-valued
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sequence(tn) such that (ky(tn)k) < � for all n 2 and so, by
definition of �, we haveky(tn)k � � for all n 2 . Extracting
subsequences if necessary, we may assumetn 2 (sn; sn+1) for
all n 2 . By continuity of y and sinceky(sn)k � 3� and
ky(tn)k � �, for eachn 2 , there existsrn 2 (sn; tn) such that
ky(rn)k = 2�. Again extracting a subsequence if necessary, we may
assumern+1 � rn � 1 for all n 2 . By the first of equations (10)
and Assumption A, together with boundedness of the solution (y, k),
there exists a constantc7 > 0 such that

k _y(t)k � c7 (1 + kp(t)k) for a.a.t � 0:

An application of Hölder’s inequality yields

t+�

t

(1 + kp(s)k)ds = � +

t+�

t

kp(s)kds � � +
p
�kpkL

8 t � 0 8 � > 0:

Choose� 2 (0; 1) sufficiently small so that

� +
p
�kpkL <

�

c7

in which case, we have

ky(t+ �)� y(t)k �
t+�

t

k _y(s)kds < �

for all t 2 �0 and all� 2 [0; � ]. Therefore

ky(rn + �)k � ky(rn)k � ky(rn + �)� y(rn)k
= 2� � ky(rn + �)� y(rn)k > �

for all � 2 [rn; rn + � ] and alln 2 , and so

 (ky(t)k) � � 8 t 2 [n2N [rn; �n + � ]

which (on noting that the intervals[rn; rn + � ], n 2 , are each of
length� > 0 and form a mutually disjoint family) contradicts the fact
that (ky(�)k) is of classL1. Therefore,y(t) ! 0 ast ! 1. This
completes the proof.

Example 6: Let h � 0 and� : s 7! sq, with q > 0. Define

q0 := minf2; q + 1g q1 := maxf1; qg � 1:

Then, for each" > 0

u(t) = � k(t) 1 + ky(t)kq�1 y(t)

_k(t) = min fky(t)kq ; � ky(t)kq g ; kj[�h;0] = k
0

defines anNh(�)-universal strategy.

C. Linear SubclassL � N0(0) Revisited

Inspection of the proof of Theorem 5 reveals that property iii) in (5)
plays a rôle only in Step 1: in particular, it is shown therein that, ifk

is unbounded (in which case! = 1), then, by property iii) in (5),
 (ky(�)k) 2 L1( �0;

m). Now, a well-known high-gain property of

linear systems of classL implies that, ifk is unbounded, theny de-
caysexponentiallyto zero and so the requisite conclusion (ky(�)k) 2
L1( �0;

m) still holds if property iii) in (5) (with� = 0 in the current
context of the system classL � N0(0)) is replaced by the following
weaker property: for someq > 0,  (s) = O(sq) ass # 0.

Therefore, we may conclude the following.
Corollary 7: Let : �0 ! �0 be continuous and such that

i)  (s) = 0 if, and only if; s = 0

ii) lim infs!1  (s) > 0

iii') for someq > 0;  (s) = O(sq) ass # 0

: (22)

Let (p;A; B; C) 2 L and(x0; k0) 2 n � . Then, application of
the control

u(t) = �k(t)y(t) _k =  (ky(t)k) ; k(0) = k
0 2

to system (1) yields a closed-loop initial-value problem with the fol-
lowing properties.

I) There exists a solution and every solution can be maximally
extended.

II) Every maximal solution(x; k) : [0; !) ! n � is such
that

i) ! = 1;
ii) limt!1 k(t) exists and is finite;

iii) x(t) ! 0 ast ! 1.

Proof: Invoking Example 2, modifying Step 1) of the proof of
Theorem 5 as indicated above, and applying Step 2), Assertions I and
II i–ii) readily follow. Moreover, the argument in Step 3) also applies to
concludey(t)! 0 ast! 1. Consider the equivalent representation
of (1) given by (6). Sincep2 2 L2( �0;

m), spec(�A4) � + and
y(t)! 0 ast!1, it follows thatz(t)! 0 ast!1 and so

x(t) = S
y(t)

z(t)
! 0 ast!1:

This completes the proof.
Example 8: For everyq > 0 and" > 0,

u(t) = �k(t)y(t) _k(t) = min fky(t)kq ; "g ; k(0) = k
0

is anL-universal feedback strategy.
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