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On Gain Adaptation in Adaptive Control gain values of unnecessarily large magnitude. Clearly, itis of interest to
ascertain whether the gain adaptation law can be modified [while still
A. lichmann and E. P. Ryan maintaining properties 1) and 2)] in order to restrict the gain growth

rate: for example, is it possible to replace the quadratic term in (2) by

Abstract—The adaptive high-gain output feedback strategyu(t) = U ([ly(®)ll), wherey is aboundedunction? A corollary (pertaining to
—k(t)y(t), (d/dt)k(t) = |ly(t)||? is well established in the context linear systems of class) to the main result of the present note answers
of linear, minimum-phase, m-input m-output systems (A, B, C) with  the latter question affirmatively; for example, the bounded function on
the property that speCB) C Cy; the strategy applied to any such the right hand side of the gain adaptatioft) = min{||y(¢)(|%, <} is
linear system achieves the performance objectives of: 1) global attractivity admissible for every > 0 andz > 0.

of the zero state and 2) convergence of the adapting gain to a finite limit. . . .

Here, these results are generalized in three aspects. First, the class of sys- 1€ overall purpose of this note is to re-examine the above control
tems is enlarged to a class\V; (1), encompassing nonlinear systems mod- Structure in a more general context of a clA§g(x:) of nonlinear sys-
eled by functional differential equations, where the parameterh > 0 tems, described by functional differential equations of the form
quantifies system memory and the continuous functionx : [0, c0) —

[0, o0), with £(0) = 0, relates to the allowable system nonlinearities. J(#) = ).yt (Ty)(t Ty) (1), u(t
Second, the linear control law is replaced byu(t) = —k(t)[y(t) + §0) = £ .y, (T9)®) + 9 (Ty)(8), u(t) }
w(ly(@®) ) /ly(t)||]]y(t), wherein the additional nonlinear term coun- Ylino = € C ([=h,O}; R™)

teracts the system nonlinearities. Third, the quadratic adaptation law is
replaced by the law(d/dt)k(t) = +(||y(t)||), where the continuous . I,
function ) satisfies certain growth conditions determined by (in partic- Yvhere, I(?’osely Speak'”g' the parameberz 0 quantifies Sysltem
ular cases, e.g., linear systems, a bounded functiap is admissible). Per- “Memory” and the continuous funCthp : _RZO - RZO' with

formance objectives 1) and 2) above are shown to persist in the generalized 1(0) = 0, relates to the allowable nonlineariti¢: = 0 in the case

framework. of systems of the linear class and&aC N;(0)). In the context of the
Index Terms—Adaptive control, functional differential equations, min-  classA% (1) (which will be made precise in Section 11-A), we establish
imum-phase systems. that the stability properties 1) and 2) persist when (2) is replaced by
(1) = —k(t)[1 [ t t t
L ITroseTon #(0) = =K [+ IO/ IOl >} @
k(t) =4 Hh, k(0) =k R
Consider the clasg of finite-dimensional, real, linear, minimum- (&)= (lly®ID (0) €
phase;n-input (u(t) € R™), m-output(y(t) € R™) systems of the \\herey : Rwy — R, is any continuous function satisfying
form ' - -
T(f) — ‘4'77(1;) + B?l,(f) —|—p(f), T(O) = 20 |) ’QL‘(S) =0 |f, and Only if,S =0
. . . SQL,(S)
y(t) = Cl(t) ||) ll}igf () >0 ) (5)
det |:SInC— A g] £0Vs € Ty (1) iii) ¥(s) = O (s* +spu(s))ass | 0

When compared with the strategy for the linear cldsghe pro-
portional output feedback law in (2) is augmented by the inclusion of
with n, m € N, n > m, 2° € R", and wherep € L?(Rso;R") the nonlinear feedback function — n(llyIDllyll ™"y in (4) to coun-
is a perturbation,{, B, C) is a triple of real matrices of conforming teract the nonlinearities allowable in (3): by continuity,ofind since
formats,R>o := [0, 00) andC := {\ € C|Reg\) > 0} denotes the ©(0) = 0, this nonlinear feedback function is deemed to take the value
open right-half complex plane, with closute. . The condition on the Z€ro whery = 0 and s continuous. The gain adaptation law in (4) may
determinant in (1) characterizes the minimum-phase assumption &fdailored, through choice of, to the needs of a designer to avoid, for
the spectrum condition spe€B) C C, is a multiple-input-multiple- €xample, possible intervals of rapid increase in gain which potentially
output counterpart of the “positive high-frequency gain” assumptidifnerate asymptotic gain values of unnecessarily large magnitude (as

spe¢C'B) C Cy

for single-input—single-output systems. alluded to earlier in the context of the linear cla3s Note that ii) is a
As is well known (see, for example, the seminal work in [1], [3], angrowth condition at infinity and iii) is a growth condition at zero, each
[4]), the adaptive output feedback control being (loosely speaking) related, via the functjorto the “strength”

of the system nonlinearities. For exampleyifs) = O(s) ass — oo,
w(t) = —k(#)y(t) l:a(t) = ||y(t)||2§ k(0) = I eR (2) thenthe bounded functiof : s — min{s® + su(s), <} is admissible
for every= > 0; or, if u(s) = s (in which case, quadratic nonlineari-
is an£-universal stabilizer in the sense that the control, applied to atigs are admissible in (3)), then the function s — min{s?, ¢ s} is
member of the clas8, ensures that: 1) the zero state is globally attra@dmissible for every > 0.
tive and 2) the adapting gain converges to a finite limit. Whilst simple,
the quadratic nature of the gain adaptation law in (2) can result in in- II. ADAPTIVE STABILIZATION

tervals of rapid increase in gain which potentially generate asymptotic . )
A. The ClassV: (u) of Nonlinear Systems

Manuscript received December 5, 2002; revised January 9, 2003. Reccwl-'et h 2 0and le.tll' : Rzo _; R, be co_ntlnuous withu(0) = 0.
mended by Associate Editor K. Gu. e now make precise the clas (1) of nonlinear systems of the form

A. lichmann is with the Institute of Mathematics, Technical Univer{3) by imposing assumptions on the functigng, g and the operator
sity llmenau, 98693 limenau, Germany (e-mail: ilchmann@mathemati®. The class\}, (u) is the set of systems of form (3) such that the

tu-ilmenau.de). _ , ~__ following holds.
E. P. Ryan is with the Department of Mathematical Sciences, University ofA tion A:F al, d N

Bath, Bath BA2 7AY, U.K. (e-mail: epr@maths.bath.ac.uk). Ssump I?n -For somety, dz €
Digital Object Identifier 10.1109/TAC.2003.811276 1) p € L*(R>0; R™) (with norm denoted byjp||,-);
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2) f : R x R™ x R¥> — R™ is continuous and there existswhere the minimum-phase assumption ensures the latter spectrum con-

¢y > 0 such that

1oy y, )l < epllloll + Nyl + e lylD + lwll]

forall (v,y, w) € R x R™ x R%;

3) g : R™? x R™ — R™ is continuous and there exists a posi

tive—definite, symmetricG € R”*™ such that
(u, Gglw, w) 2 [lul?

for all (w,u) € R™2 x R™;
4) T :C([—h,o0);R™) — Lfﬁc(RZU;H"z) is a causal operator
with the following properties:
i) there exists:r > 0 such that

(Ty) Ol < er max ly(s)]]

s€[—h,t]
foralmost allt > 0 and ally € C([—h,c0);R™);
i) for eachy € C([—h,o0); R™), there exists, > 0 such
that

t t
Ji@neitas < e, [lseras vezo
0 —h

i) for all ¢+ > 0 and for all continuoug : [-h.t] —
R™, there existr, §,¢ > 0 such that, for allz, ¢ €
C([~h,o0); RM)y with #|(_y g = ¢ = €]—n, andz(s),
£(s) € Bs(C(t)) forall s € [t,t + 7],

esssup [|(T)(s) — (TE)(s)[| < e llz(s) =€)l

s€[t,t+7]

sup
s€(t,t+7]

whereB;(((t)) denotes the open unit ball of radiéis> 0
centered at(¢).

Remarks 1: We identify (3) with the quadruples( f, g, T) and, if
Assumption A holds, we writép, f, g, T) € N (p).

dition spe¢—A4.) C C4 (thatis,A4 is a Hurwitz matrix). Also

P

=S5 € L*(Rs0;R").
P2

Define the linear operatdf and functionp by

(Ty)(t) := Ary(t)

;
4+ A, / (exp Aa(t — 5)) Asy(s)ds
0

, : @
p(t) :=p1(t)Az(exp Asat)z
t
+ A, / (exp A4(t — 3)) p2(s)ds.
0
The initial-value problem (6) may now be expressed as
g(t) = (Ty)() + CBu(t) +p(t),  y(0)=y"  (8)

which is of form (3) withh = 0, f : (v,y,w) — v + w and
g : (w,u) — CBu. Sincep € L*(R>o;R") and 44 is a Hurwitz
matrix, it follows thatp is in LQ(HZO; R™); therefore, Assumption
A1l holds. Clearly, Assumption A2 holds witty = 1 andu(-)
0. Since speCB) C C., there existsd = G? > 0 such that
GCB + (CB)"G = 21, whence

(u,Gg(w,u)) = (u, GCBu) = |Jul]> Y(w,u) € R x R™

and so Assumption A3 holds. Finally, singl is a Hurwitz matrix,
it is readily verified that the operatdr satisfies Assumption A4, with
h = 0. Therefore(p, f.g,T) € No(0) and so the linear class is
subsumed by, (0).

Example 3 (Infinite-Dimensional Regular Linear System§he
finite-dimensional class of systems of the form (6), considered in

Assumption A3 is a counterpart of the spectrum conditioBxample 2, can be extended to an infinite-dimensional setting by
spe¢C'B) C C4 imposed in the context of the linear cla8s assuming thap; € L?(Rs>o;R™), p2 € L*(R»0;X) (X a real

Assumptions A4 i)-ii) essentially form a counterpart of the minHilbert space) and reinterpreting the operatdrs 4., A; and A4
imum-phase condition imposed in the context of the linear class. Ags the generating operators of a regular linear system (regular in
sumption A4 iii) is a rather weak technical assumption of a local Lighe sense of [6]). In particular, in this settind, is assumed to be
schitz nature imposed to allow application of the existence theory die generator of a strongly continuous semigr@up= (S;).;>o of
veloped in [2]. bounded linear operators on the Hilbert spacavith norm|| - || x.

Example 2 (Finite-Dimensional Linear Prototypejet Let X; denote the space ddm,) endowed with the graph norm
(p, A, B,C) define a linear system of clas§. SinceCB is in- and X_, denotes the completion ok with respect to the norm
vertible,R” = im B & ker C' and there exist§” € R* "= with  ||z||_y = ||(sol — 44)~"z||x wheres, is any fixed element of the
im V' = ker C, such that resolvent set ofd4. Then, A3 is assumed to be a bounded linear
operator fromR™ to X_; and A, is assumed to be a bounded linear
operator fromX; to R". 4, € R™*' is the feedthrough operator
of the regular linear system.

If we assume that the semigroSpis exponentially stable and that
defines an invertible linear transformation the operator!, extends to a bounded linear operator (again denoted by

As) from X to R™, then the operatdF given by
T = [‘f:| S .

S =

B(CB)™* 1]

(Ty)(t) := Ary(t) + A2 /St—sAgy(S)dS 9)

which takes (1) into the equivalent form J

§(t) = Ay (t) + A22(t) + CBu(t) + p1(1) satisfies Assumption A4 (for details, see [5]). Moreover, the function
2(t) = Asy(t) + Aaz(t) + p2(1)
(6) t

((0),2(0)) = (v, 2") t p(t) = p1(t) + A28:2° + Ay /Stfspg(s)ds
spe¢C'B) C C4+ spe¢—As) C Ct 0
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is in L*(Rx>o; R™) and so Assumption Al holds. Therefore, system By Assumptions A2 and A3
representation (8) carries over to the current infinite-dimensional set-

ting. _ _ LT Z (12)
Example 4 (Nonlinear Delay Elementshet functions?,, : R x dt !
R™ — R : (t,y) — U, (t,y),n = 0,..., N, be measurable in :2<y(t),(;[f (p(t),y(£), (Ty)(t))

t and globally Lipschitz iry uniformly with respect ta: precisely, i)
for each fixedy, ¥, (-, y) is measurable and ii) there exists a constant + 9 ((Ty)(t), k@) [L+ u(ly®ID Ny y(®) ] >

¢ such that < 241G Ny O+ Iy Ol + 1 (ly()])
10, (t,y) — T, (£, 2)]| < elly — 2| FI(Ty) DI = 2k [ly ¢+ e Uy OIDI Ty O
<er G TN + 41l + 20 Q@D v

forall¢t € R and ally, = € R™. Assume further tha¥’,,(-,0) = 0. +||(Tt)(t)||2] — 2k(t) [”y(t)HQ + o (ly D Iyl

Forn = 0,...,N, leth,, > 0 and defineh := max, h,. Fory €

C([=h,00); R™), let for almost all (a.a.} € [0,w) (13)
oA N and so, invoking (11), there exists a constant> 0 such that
(Ty)(#):= / o (5,5t +5)) dst S W, (foy(t — b)) ¥E> 0.
“ho ! pr ly()llg, < = [er k(1) — 1]
The operatof’, so defined, satisfies Assumption A4; for details, see x [ly®NE + w Ty D) ly@®1]

[5]. Therefore, for example, the system +e [l + 1T D)*] aat€[0,w). (14)

0
S By integration, together with (11) and Assumptions Al and A4 ii),
g(t) = Liy(t) + / Loy (t 4 5)ds we may conclude the existence of a constant ¢ [||p||7 - + 1] such
—ho that
+Lsy (t = ha) + [y (£l Lay(t) + Bu(t)

with spe¢B) C C; and matriced; € R™*™(i = 1,...,4), is of lyIIE < Ny + ez + o / ly(s)IIE; ds
classV;, (1), whereh := max{ho,h1} andp : s — s°. Zh
t
B. Stabilty Analysis = [ ats) )+ o)y 1] ds
We now arrive at the main result. e
Theorem 5:Let h > 0, letx : R — R>o be contin- vt, 7, 0 <7<t < w (15)
uous with #(0) = 0, and let¢y : R>py — R>¢ be contin-

uous and such that (5) holds. Lép, f,9.7) € N.(u) and wherein, for notational convenience, we have introduced the nonde-
(y°, k%) € C([-h,0;R™) x R. Then, the application of (4) to creasing function given by

(3), with initial datay® € C([—h,0];R™), yields the closed-loop

initial-value problem als) := ¢ 'k(s) — ca. (16)

§() = £ (e(®),3(0), (Tw)(#) The proof of Assertion IlI) now proceeds in three steps. First, by a
+9((Ty)(t), —k(t) contradiction argument, we show thats bounded. Second, we prove
X (14 p (ly@ID Iy~ y()) (10) thaty is also bounded and so = oo, whence Assertion I1-) and,
i;(t) = (v by bogndednesg and__r_nonotonlcnlefAssertlon lI-ii). Finally, we
: establish Assertion Il-iii).
(¥, F)li—no) = (y°. k") Step 1) For contradiction, suppose thas unbounded. Choosee

0, h that
with the following properties. [0,w) such tha

)] There exists a solution of (10) and every solution can be ex- a(r) = 'k(r) — 2 > 1. (17)
tended to a maximal solution.
1)) Every maximal solutior(y, k) : [-h,w) — R™ x R of (10) Then, by (15)

is such that
) w = oc; 2 2 r 2
i) lim,_ o k(t) exists and is finite; ly(Ollg < ly(Dllg + 2 +e2 / ly(s)llgds=:8  Vte[rw).
i) y(t) — 0 ast — oo. —h

(18)
By continuity ofy, we conclude thag € L*°([—h,w); R™) and so,
continuity of’, we may infer boundedness bf-) = ¢ (|ly(-)|]).
Let(y. k) : [~h,w) — R™ x R be a maximal solution of (10). Let By the supposition of unboundgdnesskoft fc_)II_ows thatw = oc.
G = GT > 0 be such that the inequality in Assumption A3 holds. BY (14) and (17), together with monotonicity of boundedness of
Define the norm| - [l onR™ by [|ull¢ := («.Gu) and note the y and Assumption A4-i), we may conclude the existencesof> ¢,

inequalities such that

Proof: That (10) has a solution and every solution has a maximal
extension follow from [2, Th. 2.3] (see also the first paragraph of tl"be
proof of [2, Th. 3.2)). y

. d . . . .
IG™ 1 ull® < lull? < (GNP Yu €R™. (A1) Sy < —alto) gl + e [lp@I*+1] 29)
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for almost allty, t with 7 < ¢y < ¢. Integration yields

lly(t)]]7

2 < e~ (to)(i—t0) lly(to) 2

lle

t

_|_/ —a(to)(t— s) [Hp(é)” —1—1] ds
to
Sc—ﬂ'(fo)(f—fo) sup ||
t>—h

Cc3
+ a(to)

t

e [0 o) as

to

forall t, to with 7 < to < t. Now, as a convolution of the' functions
t 1 e~ andt — ||p(t)||%, we have

t

/ e 100=) ()| ds

to
< ( / e—““oﬂdt) ( / ||p<t>||2dt> <
to to

forallt > to > 7. Therefore

lIpll72

(Jz’(f())

es [llpllz, + 1]
a(to)

e~ (o)

sup ||
t>—h

for all to > 7. Sincea(ty) — oo asto — oo, it follows that
limy—o y(t) = 0

Invoking (11), (17), monotonicity ofc and (15), together with the

definition of 3 in (18), we have

t

/ [y + 1 () ) ()] ds

T
t

< @G [ U + o) o)1)
< (67 / ) I+ Q)1 ()]s
< (1+||G‘1ll)ﬁ Ve [r,00).

Therefore

gy + 1 UyGID Iyl € L]

Recalling thaty(¢) — 0 ast — oo and invoking property (5) iii) of
¢, there existg® > 0 and K > 0 such that

oy < K [y + e Q@D @] ¥t > ¢

Hence () = ¢(|ly(-)||) € L*([~h,o0); R) which contradicts the
supposition of unboundednessiofTherefore % is bounded.

Step 2) For contradiction, suppose that the functioN—h,w) —
R™ is unbounded. For each € N, define

([=h,00)R™).

7 o= inf {t € [0, w)| ly(®II5 = o)

g i=sup {t € [0,7.)] [ly(DIIZ; = n+ [ly(O)[IZ} -
Note that

ax [ly()[I* < G max fly(o)lle

<NGI™ (4 1+ ly(O)lE)
< 2G4+ ly(O)lIE)
< 2||G||_1 lly(t) z; Vtelon,m|VneN
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and so, invoking Assumption A4-i), there exists a constant 0 such
that

TN <eally®OlE Vi €lon.]  VneN
In passing, we also note that
1< ly(®la Yt €lon, Tn VYneN.

We may now infer, from (14) together with boundednes$ othe
existence of a constant > 0 such that

|| o+ e (ly®OID Ny + e @)
< (es [1 + w (ly@® Dy ly(Oll57]
+e1 o) Nyl

G
Vi€ [6n,m]Vn EN.

< Cs [”

(20)
By property (5) ii) of the continuous function, there exists > 0

so that
U(s) > e |: N‘(s):| ’
S

which, in conjunction with (11) and the fact thig()||Z > » +
ly(0)||& for all t € [¢,.,7,] and alln € N, implies the existence
of N € N such that

L+ e (ly@ID Ny @I
SLTHNG e Uy Nyl
< [1 HIGHI] L+ 1 Uy g1 ]
< e NG (ly@I) Vi€ (o, 7]
Writing ce := cse'[L+||G7'||] > 0, then, by (20), it follows that

= g ),
< cov (@)D + 1 Ip@)* Vi € [on, 7] ¥ > V.

Therefore, by integration

for all s > 0 sufficiently large

Vn Z N.

d
S llylle

ln”y(Tn 1n||y(an

Tn

<a [olu@lderen [Ip@Fa Yoz N

Tn

which, in turn, implies that

L (M AL+ Ol
N+ ly0)lIZ;
M

Y- Mullya)lls = nlly(oa)lIE]

Tn

?’; —Inlly(on)llg

) =In ly(7a)

n=N
M M Tn
e S [etmarte S [l
7 :]VUH n:f\fo_n
=co [k(tm) — k(on)] +cillpllle YM >N, (21)

Sincek is bounded, the right-hand side of (21) is bounded, contra-

dicting the fact that the left-hand side tends to infinityds — oo.
Therefore, the supposition of unboundednesg wffalse and s@ €
L=([—h,w); R™).

By boundedness of;( k) on [0, w) and maximality ofw it follows

thatw = oo, where Assertion II-i) and, by boundedness and mono-

tonicity of k£, Assertion Il-ii) immediately follows.
Step 3: Again seeking a contradiction, suppose iat /4~ 0 as

t — oc. Then, there exist8 > 0 and an unboundeR-,-valued

sequence(s,,) such that||y(s,)|| > 36 for all » € N. Define
A = inf{y(s)|s > 6}. By properties ofy, we haveA > (. Since
¥(|ly()|)) is of classL', there exists an unbounde®,-valued
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sequencét, ) such that)(||y(¢.)|]) < A foralln € N and so, by
definition of A, we have||y(t.)|| < & for all n € N. Extracting
subsequences if necessary, we may asstimes (s.,s.41) for
all » € N. By continuity of y and since||y(s»)|| > 36 and
ly(tx)|| < 6, for eachn € N, there exists,, € (s,.t,) such that

899

linear systems of clas§ implies that, ifk is unbounded, thep de-
caysexponentiallyto zero and so the requisite conclusiofy(+)||) €
L' (R>¢; R™) still holds if property iii) in (5) (withx = 0 in the current
context of the system clags C A5 (0)) is replaced by the following
weaker property: for some > 0, ¢(s) = O(s?) ass | 0.

lly(r.)|] = 26. Again extracting a subsequence if necessary, we mayTherefore, we may conclude the following.

assumer, 41 — r, > 1foralln € N. By the first of equations (10)

and Assumption A, together with boundedness of the solugjok),
there exists a constant > 0 such that

1§l < er L+ [Ip(0)ll)  foraat > 0.

An application of Holder’s inequality yields

t+7 t+r

/ (1+ [lp(s)l]) ds = 7 + / lp(s)llds < 7+ V7 lpll2

VE> 0T >0.

Chooser € (0,1) sufficiently small so that

6
T+ VTl < —
cT7

in which case, we have

t+71
It + )=yl < [ lis)las <
t
forallt € R>o and alle € [0, 7]. Therefore

Ny(ro + )l > ly(ra)ll = lly(ra + o) = y(ra)]]
=26~ |ly(ra +0) —y(ra)|| > 6

foralle € [r.,7. + 7] and alln € N, and so

D(ly)l) > AVEE€ Unen [rn, o + 7]

which (on noting that the intervals,.,r.. + 7], n € N, are each of

Corollary 7: Letv : R0 — Rx>o be continuous and such that

i) ¢(s)=0if,andonlyif, s=0
i) liminfs—o ¢(s) >0
iii") for someg > 0,¢(s) = O(s?) ass | 0

(22)

Let(p, 4, B,C) € £ and(x°, k") € R™ x R. Then, application of
the control
u(t) = —k(yt) k=v(ly®l), kO)=k eR
to system (1) yields a closed-loop initial-value problem with the fol-
lowing properties.

1) There exists a solution and every solution can be maximally
extended.
1)) Every maximal solutionz, k) : [0,w) — R"™ x R is such
that
i) w = oc;

i) lim, . k(t) exists and is finite;
i) «(t) — 0ast — oo.

Proof: Invoking Example 2, modifying Step 1) of the proof of
Theorem 5 as indicated above, and applying Step 2), Assertions | and
I1'i—ii) readily follow. Moreover, the argument in Step 3) also applies to
concludey(t) — 0 ast — oo. Consider the equivalent representation
of (1) given by (6). Sincg- € L*(R>o;R™), spe¢—44) C C4 and
y(t) — 0 ast — oo, it follows thatz(¢) — 0 ast — oo and so

ey o |¥(®) ‘

z(t) =8 |:z(t):| — () ast — oc.

This completes the proof. O
Example 8: For everyg > 0 andz > 0,

E(0) = K°

w(t) = —k(t)y(t) k(t)=min{|ly()||7.c},

lengthT > 0 and form a mutually disjoint family) contradicts the fact

that«(||y(-)|) is of classL'. Thereforey(t) — 0 ast — oo. This
completes the proof. O
Example 6: Leth > 0 andy : s — s%, with ¢ > 0. Define
go :=min{2,¢q+ 1} ¢oo := max{l,q}—1.

Then, for eaclk > 0

u(t) = = k(t) [L+ ly()1“ ] y(t)

k() = min {ly®)|* . elly@l*=}.  kl—no =&’

defines anV}, (11)-universal strategy.

C. Linear Subclasg C A (0) Revisited

Inspection of the proof of Theorem 5 reveals that property iii) in (5)
plays a rdle only in Step 1: in particular, it is shown therein thak, if

is unbounded (in which case = o), then, by property iii) in (5),

U(|ly()])) € L' (R>o; R™). Now, a well-known high-gain property of

is anL-universal feedback strategy.
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