ilmedia

Hinrichsen, D. ; Ilchmann, Achim ; Pritchard, A. J.:

A stability radius for time-varying linear systems

[^0]
A stability radius for time-varying linear systems

D. IIinrichsen
A. Ilchmann
A. J. Pritchard

Notation

$\mathbb{R}_{+}=\{z \in \mathbb{R} \mid z \geq 0\}$
$\mathbb{C}_{-}=\{z \in \mathbb{C} \mid \operatorname{Rez}<0\}$
$\sigma(A)$ spectrum of $A \in \mathbb{C}^{n \times n}$
$G L_{n}(\mathbb{C})$ the set of all invertible matrices $T \in \mathbb{C}^{n \times n}$
$\|x\|$ Euclidean norm of $x \in \mathbb{C}^{n}$
$\|D\|$ induced operator norm for $D \in \mathbb{C}^{m \times p}$
$\|D(\cdot)\|_{L_{\infty}}=\sup _{t_{0}<t<t_{1}}\{\|D(t)\|\} \quad$ for $\quad D(\cdot) \in P C\left(\left(t_{0}, t_{1}\right) ; \mathbb{C}^{m \times p}\right)$
$L_{2}\left(t_{0}, t_{1} ; \mathbb{C}^{m}\right) \quad$ space of functions $u:\left(t_{0}, t_{1}\right) \rightarrow \mathbb{C}^{m}$ s. t .
$t \mapsto\|u(t)\|^{2}$ is integrable over $\left(t_{0}, t_{1}\right)$
$P C\left(\left(t_{0}, t_{1}\right) ; \mathbb{C}^{n \times m}\right) \quad$ set of piecewise continuous matrix functions $D(\cdot):\left(t_{0}, t_{1}\right) \rightarrow \mathbb{C}^{n \times m}$
$P C_{b}\left(\left(t_{0}, t_{1}\right) ; \mathbb{C}^{n \times m}\right) \quad$ set of all bounded matrix functions in $P C\left(\left(t_{0}, t_{1}\right) ; \mathbb{C}^{n \times m}\right)$
$P C^{1}\left(\left(t_{0}, t_{1}\right) ; G L_{n}(\mathbb{C})\right) \quad$ set of all piecewise continuously differentiable functions $D(\cdot):\left(t_{0}, t_{1}\right) \rightarrow G L_{n}(\mathbb{C})$
$C^{1}\left(t_{0}, t_{1} ; \mathbb{C}^{n \times m}\right) \quad$ set of all continuously differentiable $D(\cdot):\left(t_{0}, t_{1}\right) \rightarrow \mathbb{C}^{n \times m}$

1 Introduction

In recent years problems of robust stability have received a good deal of attention. Most of the work on time-invariant linear systems - including the successful H^{∞} approach (see [4], [12]) - is based on transform techniques. However, in [7], [8] a state space approach via the concept of stability radius is proposed. In the present paper this approach is extended to a time-varying setting.

Consider a nominal system of the form

$$
\begin{equation*}
\dot{x}(t)=A(t) x(t), \quad t \geq 0 \tag{1.1}
\end{equation*}
$$

where $A(\cdot) \in P C\left(\mathbb{R}_{+}, \mathbb{C}^{n \times n}\right)$. Assume that (1.1) is exponentially stable, i.e. there exist $M, w>0$ so that

$$
\begin{equation*}
\|\phi(t, s)\| \leq M e^{-w(t-s)} \quad \text { for all } t \geq s \geq 0 \tag{1.2}
\end{equation*}
$$

where $\phi(t, s)$ denotes the transition matrix of (1.1). Many authors (see [1], [2], [3], [5], [10]) have determined bounds $\delta>0$ so that exponential stability of the disturbed system

$$
\begin{equation*}
\dot{x}(t)=[A(t)+D(t)] x(t) \quad, t \geq 0 \tag{1.3}
\end{equation*}
$$

is preserved whenever

$$
\begin{equation*}
\|D(\cdot)\|_{L_{\infty}}<\delta \quad \text { for } \quad D(\cdot) \in P C\left(\mathbb{R}_{+}, \mathbb{C}^{n \times n}\right) \tag{1.4}
\end{equation*}
$$

These bounds are conservative. Our problem is to determine a sharp upper bound. We call this bound the (complex) ${ }^{1}$ stability radius and define it by

$$
\begin{align*}
& r_{\mathbf{C}}(A)=\inf \left\{\|D(\cdot)\|_{L_{\infty}} \mid D \in P C_{b}\left(\mathbb{R}_{+}, \mathbb{C}^{n \times n}\right)\right. \tag{1.5}\\
&\text { and }(1.3) \text { is not exponentially stable }\}
\end{align*}
$$

We also consider the case where A is subjected to structured pertubations, so that the perturbed system is

$$
\begin{equation*}
\dot{x}(t)=[A(t)+B(t) D(t) C(t)] x(t), \quad t \geq 0 \tag{1.6}
\end{equation*}
$$

where $D(\cdot) \in P C_{b}\left(\mathbb{R}_{+}, \mathbb{C}^{m \times p}\right)$ is an unknown bounded time-varying disturbance matrix and $B(\cdot) \in P C\left(\mathbb{R}_{+}, \mathbb{C}^{n \times m}\right), C(\cdot) \in P C\left(\mathbb{R}_{+}, \mathbb{C}^{p \times n}\right)$ are given "scaling matrices" defining the "structure" of the perturbation. Then the structured stability

[^1]radius is
$$
r_{\mathbb{C}}(A ; B, C)=\inf \left\{\|D(\cdot)\|_{L_{\infty}} \mid D \in P C_{b}\left(\mathbb{R}_{+}, \mathbb{C}^{m \times p}\right)\right.
$$
and (1.6) is not exponentially stable \}

In the unstructured case $r_{C}(A)$ is simply the distance of (1.1) from the set of not exponentially stable systems with respect to the L_{∞}-norm.

Remark 1.1 The following properties are easily obtained:
(a) $r_{\mathbb{C}}(A)=0 \quad \Longleftrightarrow \quad$ (1.1) is not exponentially stable
(b) $r_{\mathbb{C}}(\alpha A)=\alpha r_{\mathbb{C}}(A)$ for all $\alpha \geq 0$
(c) $A(\cdot) \mapsto \boldsymbol{r}_{\mathbf{C}}(A)$ is continuous on $P C_{b}\left(\mathbb{R}_{+}, \mathbb{C}^{n \times n}\right)$

2 Bohl exponent and Bohl transformation

For the stability behaviour of (1.1) the number

$$
\begin{gather*}
k_{B}(A):=\inf \left\{-w \in \mathbb{R} \mid \exists M_{w}>0:\right. \\
\left.t \geq s \geq 0 \Longrightarrow\|\phi(t, s)\| \leq M_{w} e^{-w(t-s)}\right\} \tag{2.1}
\end{gather*}
$$

introduced by Bohl [1] is useful. We call $k_{B}(A)$ the Bohl exponent of (1.1). It is possible that $k_{B}(A)= \pm \infty$. The following properties are easily seen.

Proposition 2.1 Let $A(\cdot) \in P C\left(\mathbb{R}_{+}, \mathbb{C}^{n \times n}\right)$. Then
(a) $k_{B}(A)<0 \quad \Longleftrightarrow \quad$ (1.1) is exponentially stable
(b) If $A(\cdot) \equiv A \in \mathbb{C}^{n \times n}$ then

$$
k_{B}(A)=\max _{i \in \underline{n}} \operatorname{Re} \lambda_{i}(A), \quad \text { where } \lambda_{i}(A) \text { are the eigenvalues of } A .
$$

(c) In the scalar case, i.e. $n=1$, we have

$$
r_{\mathbb{C}}(A)=-k_{B}(A)
$$

(d) For the matrix case only an inequality is valid:

$$
r_{\mathbb{C}}(A) \leq-k_{B}(A)
$$

Remark 2.2 We want to emphasize that $k_{B}(A)$ may be a bad indicator for the robustness margin of (1.1). Consider

$$
A_{k}=-\left[\begin{array}{cc}
k & k^{3} \\
0 & k
\end{array}\right], \quad D_{k}=k^{-1}\left[\begin{array}{rc}
1 & 0 \\
-1 & 1
\end{array}\right], \quad \text { for } k \in \mathbb{N}
$$

Then $\lim _{k \rightarrow \infty} k_{B}\left(A_{k}\right)=-\infty$. However, $\sigma\left(A_{k}+D_{k}\right)=\left\{\frac{1}{k}, \frac{1}{k}-2 k\right\}$ although $\lim _{k \rightarrow \infty}\left\|D_{k}\right\|=$ 0 . Thus $\lim _{k \rightarrow \infty} r_{C}\left(A_{k}\right)=0$.

The following properties of the Bohl exponent can be found in [3].
Proposition 2.3 Let $A(\cdot) \in P C\left(\mathbb{R}_{+}, \mathbb{C}^{n \times n}\right)$. Then
(a) $k_{B}(A)$ is finite if $A(\cdot)$ is bounded.
(b) $k_{B}(A)$ is finite iff $\sup _{0 \leq|t-s| \leq 1}\|\phi(t, s)\|<\infty$.
(c) If $k_{B B}(A)<\infty$ then

$$
k_{B}(A)=\limsup _{s, t-s \rightarrow \infty} \frac{\log \|\phi(t, s)\|}{t-s}
$$

We now analyse the effect of time-varying linear coordinate transformations

$$
\begin{equation*}
z(t)=T(t)^{-1} x(t), \quad T(\cdot) \in P C^{1}\left(\mathbb{R}_{+}, G L_{n}(\mathbb{C})\right) \tag{2.2}
\end{equation*}
$$

on the system (1.1) which yields

$$
\begin{equation*}
\dot{z}(t)=\hat{A}(t) z(t), \quad \text { where } \hat{A}=T^{-1} A T-T^{-1} \dot{T} \tag{2.3}
\end{equation*}
$$

These transformations will not, in general, preserve exponential stability. Therefore we introduce the set of Bohl transformations $\quad \mathcal{B}_{n}$, i.e. the set of all $T(\cdot) \in P C^{1}\left(\mathbb{R}_{+}, G L_{n}(\mathbb{C})\right)$ such that

$$
\begin{equation*}
\inf \left\{\varepsilon \in \mathbb{R} \mid \exists M_{\varepsilon}>0: \forall t, s \geq 0 \Rightarrow\left\|T(t)^{-1}\right\| \cdot\|T(s)\| \leq M_{\varepsilon} e^{\varepsilon|t-s|}\right\}=0 \tag{2.4}
\end{equation*}
$$

Remark 2.4 It is obvious that
(a) the set \mathcal{B}_{n} forms a group with respect to (pointwise) multiplication
(b) \mathcal{B}_{n} contains the group of Lyapunov transformations, i.e. all $T(\cdot) \in P C^{1}\left(\mathbb{R}_{+}, G L_{n}(\mathbb{C})\right)$ so that $T(\cdot), T(\cdot)^{-1}, \dot{T}(\cdot)$ are bounded,
(c) $k_{B}(A)=k_{B}\left(T^{-1} A T-T^{-1} \dot{T}\right) \quad$ for all $T \in \mathcal{B}_{n}$

The following proposition shows that even in the time-invariant case a similarity transformation may drastically change the stability radius.

Proposition 2.5 [7] If $A \in \mathbb{C}^{n \times n}$ with $\sigma(A) \subset \mathbb{C}_{-}$then $\left\{r_{\mathbb{C}}\left(T^{-1} A T\right) ; T \in\right.$ $\left.G L_{n}(\mathbb{C})\right\}$ is equal to the interval $\left(0,-\max _{i \in \underline{n}} R e \lambda_{i}(A)\right]$ with possible exception of the right extremum.

In the scalar case we can prove

Proposition 2.5 If

$$
\begin{equation*}
\dot{x}(t)=a(t) x(t), \quad a(\cdot) \in P C\left(\mathbb{R}_{+}, \mathbb{C}\right) \tag{2.5}
\end{equation*}
$$

has a strict Bohl exponent, i.e.

$$
k_{B}(a)=\lim _{s, t-s \rightarrow \infty} \frac{\log \|\phi(t, s)\|}{t-s}
$$

then there exists $\Theta \in \mathcal{B}_{1}$ so that $z(t)=\Theta(t)^{-1} x(t)$ converts (2.5) into

$$
\dot{z}(t)=k_{B}(a) z(t)
$$

3 The perturbation operator

In the time-invariant setup, where $(A, B, C) \in \mathbb{C}^{n \times n} \times \mathbb{C}^{n \times m} \times \mathbb{C}^{p \times n}$, the structured stability radius can be characterized via the convolution operator

$$
\begin{align*}
L_{0}: L_{2}\left(0, \infty ; \mathbb{C}^{m}\right) & \rightarrow L_{2}\left(0, \infty ; \mathbb{C}^{p}\right) \\
u(\cdot) & \mapsto\left(t \mapsto \int_{0}^{t} C e^{A(t-s)} B u(s) d s\right) \tag{3.1}
\end{align*}
$$

as follows
Proposition 3.1 [8] If $\sigma(A) \subset \mathbb{C}_{-}$and $G(s):=C\left(s I_{n}-A\right)^{-1} B$ then

$$
r_{\mathbb{C}}(A, B, C)= \begin{cases}\left\|L_{0}\right\|^{-1}=\left[\max _{w \in \mathbb{R}}\|G(i w)\|\right]^{-1} & \text { if } G \neq 0 \\ \infty & \text { if } G=0\end{cases}
$$

In order to explore the possibility of obtaining similar results for time-varying systems, we consider the parametrized family of perturbation opcrators $\left(L_{t_{0}}^{\Sigma}\right)_{t_{0} \in \mathbb{R}_{+}}$ defined by

$$
\begin{align*}
L_{t_{o}}^{\mathbb{\Sigma}}: L_{2}\left(t_{0}, \infty ; \mathbb{C}^{m}\right) & \rightarrow \quad L_{2}\left(t_{0}, \infty ; \mathbf{C}^{p}\right), \quad t_{0} \geq 0 \\
u(\cdot) & \mapsto \quad\left(t \mapsto \int_{t_{0}}^{t} C(t) \phi(t, s) B(s) u(s) d s\right) \tag{3.2}
\end{align*}
$$

associated with

$$
\begin{gather*}
\Sigma=(A, B, C) \in P C\left(\mathbb{R}_{+}, \mathbf{C}^{n \times n}\right) \times P C_{b}\left(\mathbb{R}_{+}, \mathbf{C}^{n \times m}\right) \times \\
\times P C_{b}\left(\mathbb{R}_{+}, \mathbb{C}^{p \times n}\right), k_{B}(A)<0 \tag{3.3}
\end{gather*}
$$

Basic properties of $L_{t_{0}}^{\Sigma}$ are summarized in the following

Proposition 3.2 [6]

(a) $L_{t_{0}}^{\Sigma}$ is a bounded operator
(b) $t_{0} \mapsto\left\|L_{t_{0}}^{\Sigma}\right\|$ is monotonically decreasing on \mathbb{R}_{+}
(c) $\left\|L_{t_{0}}^{\Sigma}\right\|=\left\|L_{t_{1}}^{\Sigma}\right\|$ for all $t_{0}, t_{1} \in \mathbb{R}_{+}$if A, B, C are periodic with a common period
(d) $\left\|L_{i_{0}}^{\Sigma}\right\|^{-1} \leq r_{C}(A ; B, C)$
(e) For the unstructured case, i.e. $B(\cdot)=C(\cdot)=I_{n}$, if $M, w>0$ satisfy (1.2) then

$$
\frac{w}{M} \leq\left\|L_{t_{0}}^{\Sigma}\right\|^{-1} \leq \lim _{t_{0} \rightarrow \infty}\left\|L_{t_{0}}^{\Sigma}\right\|^{-1} \leq r_{\mathbb{C}}(A)
$$

As opposed to the time-invariant case $\left\|L_{t_{0}}^{\Sigma}\right\|^{-1}$ or $\lim _{t_{0} \rightarrow \infty}\left\|L_{i_{0}}^{\Sigma}\right\|^{-1}$ do not necessarily coincide with $r_{\mathbb{C}}(A ; B, C)$. Even in the simple case when $a(\cdot) \in P C\left(\mathbb{R}_{+}, \mathbb{R}\right)$ is periodic and $b=c=1$, we have worked out an example in [6] for which

$$
\left\|L_{t_{0}}^{\Sigma}\right\|^{-1}=\left\|L_{t_{1}}^{\Sigma}\right\|^{-1}<r_{\mathbf{C}}(a) \quad \text { for all } \quad t_{0}, t_{1} \in \mathbb{R}_{+}
$$

However note that scalar Bohl transformations $\Theta \in \mathcal{B}_{1}$ do not change the stability radius but will change the norm of the perturbation operator. Let

$$
\Sigma_{\Theta}:=\left(A-\frac{\dot{\Theta}}{\Theta} I_{n} ; B, C\right)
$$

By using Proposition 2.5 and 3.1 one can show
Proposition 3.3 Suppose $a(\cdot) \in P C\left(\mathbb{R}_{+}, \mathbb{C}\right)$ has a strict Bohl exponent $k_{B}(a)<0$ and $b, c \in \mathbb{C}$. Then there exists a $\quad \Theta \in \mathcal{B}_{1} \quad$ such that

$$
r_{\mathbb{C}}(a ; b, c)=\left\|L_{t_{0}}^{\Sigma_{\theta}}\right\|^{-1} \quad \text { for all } \quad t_{0} \geq 0
$$

For the matrix case we have the following
Conjecture 3.4 Suppose $\Sigma=(A, B, C)$ satisfies (3.3), then

$$
r_{\mathbb{C}}(A ; B, C)=\sup _{\Theta \in \mathcal{B}_{1}}\left\{\lim _{t_{0} \rightarrow \infty}\left\|L_{t_{0}}^{\Sigma_{\Theta}}\right\|^{-1}\right\}
$$

4 The associated parametrized differential Riccati equation

In the time-invariant setup another useful characterization of $r_{\mathbb{C}}(A ; B, C)$ is possible via the parametrized algebraic Riccati equation, ARE $_{\rho}$

$$
A^{*} P+P A-\rho C^{*} C-P B B^{*} P=0, \quad \rho \in \mathbb{R}
$$

Proposition 4.1 [8] Suppose $(A, B, C) \in \mathbb{C}^{n \times n} \times \mathbb{C}^{n \times m} \times \mathbb{C}^{p \times m}$ and $\sigma(A) \subset \mathbb{C}_{-}$:
(a) If $-\infty<\rho<r_{\boldsymbol{C}}^{2}(A ; B, C)$ then there exists a unique stabilizing Hermitian solution P_{ρ} of $\mathbf{A R E}_{\rho}$, that is a solution $P_{\rho}=P_{\rho}^{*}$ which satisfies
$\sigma\left(A-B B^{*} P_{\rho}\right) \subset \mathbb{C}_{-}$.
If $\rho=r_{\mathbb{C}}^{2}$ then there exists a unique Hermitian solution $P_{r_{\mathbb{C}}^{2}}$ of $\mathbf{A R E} \mathbf{E}_{r_{\mathbb{C}}^{2}}$ having the property $\sigma\left(A-B B^{*} P_{r_{\mathbb{C}}^{2}}\right) \subset \overline{\mathbb{C}_{-}}$.
(b) If there exists a Hermitian solution P_{ρ} of $\mathbf{A R E} E_{\rho}$ then necessarily $\rho \leq r_{\mathbb{C}}^{2}(A ; B, C)$.

Guided by this result we study, in the time-varying setting, the parametrized differential Riccati equation, DRE $_{\rho}$

$$
\dot{P}(t)+A^{*}(t) P(t)+P(t) A(t)-\rho C^{*}(t) C(t)-P(t) B(t) B^{*}(t) P(t)=0, \quad t \geq t_{0}
$$

associated with the system

$$
\left.\begin{array}{ll}
\dot{x}(t)=A(t) x(t)+B(t) u(t), & x\left(t_{0}\right)=x_{0} \in \mathbb{C}^{n} \tag{4.1}\\
y(t)=C(t) x(t), & t \geq t_{0} \geq 0
\end{array}\right\}
$$

Throughont this section we assume $\Sigma=(A, B, C)$ satisfies (3.3).
Kalman [9] and Reghis and Megan [11] among others, have studied differential Riccati equations, however their results cannot be applied to DRE ${ }_{\rho}$ if $\rho>0$.

Just as in the time-invariant case we consider the parametrized optimal control problem $\mathbf{O C P}_{\rho}$:

Minimize over $u \in L_{2}\left(t_{0}, t_{1} ; \mathbb{C}^{m}\right)$

$$
J_{\rho}\left(x_{0},\left(t_{0}, t_{1}\right), u(\cdot)\right)=\int_{t_{0}}^{t_{1}}\left[\|u(s)\|^{2}-\rho\|y(s)\|^{2}\right] d s
$$

where $y(\cdot)$ is defined via (4.1) and $\rho \in \mathbb{R}$. If $\rho<0$ this is the usual linear quadratic regulator problem LQR, whereas in our situation $\rho>0$, so that the state penalty is negative. To consider a cost functional with negative state penalty is quite natural in this context since we are concerned with a minimum norm destabilization problem while the classical LQR problem is concerned with stabilization.

The analysis of the $\mathbf{D R E} \mathbf{E}_{\rho}$ and its relation to the $\mathbf{O C P}_{\rho}$ is quite involved, details may be found in [6]. Here we only state the main results.

Proposition 4.2 (finite time) If $\rho<\left\|L_{i_{0}}^{\Sigma}\right\|^{-2}, 0 \leq t_{0}<t_{1}<\infty$, then
(a) there exists a unique Hermitian solution $P^{t_{1}}(\cdot)$ of DRE $_{\rho}$ on $\left[t_{0}, t_{1}\right]$ with $P^{t_{1}}\left(t_{1}\right)=0$
(b) $P^{t_{1}}(t) \leq 0$ (resp. ≥ 0) for all $t \in\left[t_{1}, t_{0}\right]$ if $\rho \geq 0$ (resp. $\rho \leq 0$).
(c) the minimal cost of OCP ρ_{ρ} is

$$
\left.\inf _{u \in L_{2}\left(t_{0}, t_{1} ; \mathbb{C}^{m}\right)} J_{\rho}\left(x_{0},\left(t_{0}, t_{1}\right), u(\cdot)\right)=<x_{0}, P^{t_{1}}\left(t_{0}\right) x_{0}\right\rangle
$$

(d) the optimal control is given by

$$
u(t)=-B^{*}(t) P^{t_{1}}(t) x(t)
$$

where $x(\cdot)$ solves $\dot{x}(t)=\left[A-B B^{*} P^{t_{1}}\right](t) x(t), x\left(t_{0}\right)=x_{0}$.
The next proposition is obtained by studying what happens if $t_{1} \rightarrow \infty$.
Proposition 4.3 (infinite time) If $\rho<\left\|L_{t_{0}}^{\Sigma}\right\|^{-2}, t_{0} \geq 0$, then
(a) $P^{+}(t)=\lim _{t_{1} \rightarrow \infty} P^{t_{1}}(t)$ exists for all $t \geq t_{0}$ and yields a bounded Hermitian solution of $\mathbf{D R E} \mathbf{E}_{\rho}$;
(b) $P^{+}(\cdot)$ is the only solution so that $k_{B}\left(A-B B^{*} P^{+}\right)<0$;
(c) for any other bounded Hermitian solution $Q(\cdot) \in C^{1}\left(t_{0}^{\prime}, \infty ; \mathbb{C}^{n \times n}\right)$, $t_{0}^{\prime} \geq t_{0}$ of $\mathbf{D R E}_{\rho}$ we have $Q(t) \leq P^{+}(t)$ for all $t \geq t_{0}^{\prime}$;
(d) the minimal cost is

$$
\left.\inf _{u \in L^{2}\left(t_{0}, \infty ; \mathbb{C}^{m}\right)} J_{\rho}\left(x_{0},\left(t_{0}, \infty\right), u(\cdot)\right)=<x_{0}, P^{+}\left(t_{0}\right) x_{0}\right\rangle ;
$$

(e) the optimal control is

$$
u(t)=-B^{*}(t) P^{+}(t) x(t), \quad t \geq t_{0}
$$

where $x(\cdot)$ solves

$$
\dot{x}(t)=\left[A-B B^{*} P^{+}\right](t) x(t), \quad x\left(t_{0}\right)=x_{0}, t \geq t_{0}
$$

As a partial converse of Proposition 4.3 we have
Proposition 4.4 If $Q(\cdot) \in C^{1}\left(t_{0}, \infty ; \mathbf{C}^{n \times n}\right)$ is a bounded Hermitian solution of $\operatorname{DRE}_{\rho}$ on $\left(t_{0}, \infty\right)$ then necessarily $\rho \leq\left\|L_{t_{0}}^{\Sigma}\right\|^{-2}$.

While the previous two propositions yield a complete characterization of the norm $\left\|L_{t_{0}}^{\Sigma}\right\|$ in terms of the associated parametrized differential Riccati equation, they do not provide a full generalization of Proposition 4.1 to the time-varying case. To find a complete characterization of the stability radius $r_{\mathbb{C}}(A ; B, C)$ for time-varying systems is an open problem.

5 Robust Lyapunov functions and nonlinear perturbations

The following proposition shows how solutions of the parametrized differential Riccati equation DRE ρ can be used to construct robust Lyapunov functions for the system (1.1).

Proposition 5.1 Suppose $0<\rho<\left\|L_{i_{0}}^{\Sigma}\right\|^{-2}$. If $P_{\rho}(\cdot)$ solves DRE $\boldsymbol{\rho}_{\boldsymbol{\rho}}$ then

$$
V(t, x):=-<x, P_{\rho}(t) x>, \quad t \geq t_{0}, x \in \mathbb{C}^{n}
$$

is a common Lyapunov function for all perturbed systems

$$
\dot{x}(t)=[A+B D C](t) x(t), \quad t \geq t_{0}, \quad x\left(t_{0}\right)=x_{0}
$$

with $\|D(\cdot)\|_{L_{\infty}}^{2}<\rho$.
If (A, B, C) are constant matrices and $\sigma(A) \subset \mathbb{C}_{-}$a similar result to Proposition 5.1 holds true for $\|D(\cdot)\|_{L_{\infty}}<r_{\mathbf{C}}(A ; B, C)$, see [8].

Using the above Lyapunov function it is possible to extend our robustness analysis to nonlinear perturbations of the form $\Delta(t)=B(t) N(C(t) x, t)$ so that the perturbed system is

$$
\begin{equation*}
\dot{x}(t)=A(t) x(t)+B(t) N(C(t) x(t), t), \quad x\left(t_{0}\right)=x_{0}, t \geq t_{0} \tag{5.1}
\end{equation*}
$$

where (A, B, C) satisfy (3.3) and $N: \mathbb{R}^{p} \times \mathbb{R}_{+} \rightarrow \mathbb{R}^{m}$ is continuously differentiable. We assume $N(0, t)=0$ so that 0 is an equilibrium state of (5.1). The following result shows that no nonlinear perturbation with global gain smaller than $\left\|L_{t_{0}}^{\Sigma}\right\|^{-1}$ can destabilize the system.

Proposition 5.2 Suppose $\gamma<\left\|L_{i_{0}}^{\Sigma}\right\|^{-1}$ and

$$
\|N(y, t)\| \leq \gamma\|y\| \quad \text { for all } \quad t \geq t_{0}, y \in \mathbb{C}^{p}
$$

Then the origin is globally exponentially stable for the system (5.1).
It is not clear whether an analogous statement holds (over a suitable time interval $\left.\left(t_{0}, \infty\right)\right)$ if the gain of the nonlinear perturbation is strictly less than $r_{\mathrm{C}}(A ; B, C)$.

References

[1] Bohl, P. (1913) Ueber Differentialgleichungen; J. Reine Angew. Math. 144, 284-313
[2] Coppel, W.A. (1978) Dichotomies in Stability Theory; Lect. Notes Math. 629, Springer-Verlag, Berlin et al.
[3] Daleckii, Ju.L. and Krein, M.G. (1974) Stability of Solutions of Differential Equations in Banach Spaces; AMS, Providence, Rhode Island
[4] Francis, B. and Zames, G. (1983) Feedback minimax sensitivity and optimal robustness; IEEE Trans. Autom. Control 28, 585-601
[5] Hahn, W. (1969) Stability of Motion; Die Grundlehren der math. Wissenschaften Bd. 138, Springer-Verlag, New York
[6] Hinrichsen, D., Ilchmann, A. and Pritchard, A.J. (1989) Robustness of stability of time-varying systems; J. Diff. Eqns Vol 82. 219-250.
[7] Hinrichsen, D. and Pritchard, A.J. (1986) Stability radii of linear systems; Syst. Control Lett. 7, 1-10
[8] Hinrichsen, D. and Pritchard, A.J. (1986) Stability radius for structured perturbations and the algebraic Riccati equation; Syst. Control Lett. 8, 105-113
[9] Kalman, R.E. (1960) Contributions to the theory of optimal control; Bull. Soc. Math. Mexico 5, 102-119
[10] Perron, O. (1930) Die Stabilitätsfrage der Differentialgleichungen; Math. Z. 32, 703-728
[11] Reghis, M. and Megan, M. (1977) Riccati equation, exact controllability and stability; Scm. Ecuat. Funct., Univ. Timisoara 42
[12] Zames, G. (1981) Feedback and optimal sensitivity: model reference transformation, multiplicative seminorms and approximate inverses; IEEE Trans. Autom. Control 16, 301-320

[^0]: Aus:
 The mathematics of control theory : based on the proceedings of a Conference on Control Theory / organized by the Institute of Mathematics and Its Applications and held at the University of Strathclyde in September 1988. Ed. by N. K. Nichols .. - Oxford : Clarendon Press, 1992. (The Institute of Mathematics and its Applications conference series ; N.S., 37). - ISBN 0-19-853640-2, S. 281-290.

[^1]: ${ }^{1}$ The real stability radius is defined analogously. In spite of its prime importance it is not studied here, since even in the time-invariant setup only rudimentary results are available.

