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Adaptive Sampling Control of
High-Gain Stabilizable Systems

Achim llchmann and Stuart Townley

Abstract—t is well known that proportional output feedback control
can stabilize any relative-degree one, minimum-phase system if the sign
of the feedback is correct and the proportional gain is high enough.
Moreover, there exist simple adaptation laws for tuning the proportional
gain (so-called high-gain adaptive controllers) which do not need to know
the system and do not attempt to identify system parameters.

In this paper the authors consider sampled versions of the high-
gain adaptive controller. The motivation for sampling arises from the
possibility that the output of a system may not be available continuously,
but only at sampled times. The main point of interest is the need to
develop techniques for adapting the sampling rate, since the stiffness of
the system increases as the proportional gain is increased. Our main result
shows that adaptive sampling stabilization is possible if the produckk of
the decreasing sampling intervalk and the increasing proportional gain
k decreases at a rate proportional tol/ log k.

Index Terms—Adaptive stabilization, minimum-phase systems, propor-
tional control, sampled-data control.

I. INTRODUCTION

In this paper, we will show that the ideas and techniques of high-
gain adaptive output feedback stabilization carry over when the output
of the system is not available continuously but is only available at
sampled instants of time. This situation arises naturally when digital
computations of control inputs are used.

It is well known (see, [13]) that

u(t) = —k(t)y(t), ii(t) = y2(t)

is a continuous-time, high-gain adaptive stabilizer for the class of

minimum-phase systems with positive high-frequency gain. This

controller arose from the work of [6] and has been developed by

[5], [4], [2], [11], [3], [1], and [12], to name but a few. While not all

of these papers deal with adaptive control of minimum-phase systems,
they are all similar in spirit in the sense that the adaptation of the

controller gain is not based on any attempt to identify the parameters
of the system. We continue in this spirit but focus on developing a

mechanism to deal with the restriction that the output is only available

at sampled time instants. The main novelty, which distinguishes this
problem from either continuous or discrete-time adaptive control, is

the need to develop suitable mechanisms for adjusting a variable
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sampling rate. Reference [9] is the only paper we are aware of whiefith ¢, = 0 andk, > 1. Then the closed-loop system (1), (7), and (8)
deals with this issue. admits a unique solution(-) defined on the whole half-ax($, oc).
We focus on adaptive stabilization of minimum-phase multiFurthermore:
input/multi-output systems with the spectrum of the high-frequency 1) limi .oc ki = koo € IR;
gain unmixed. These systems are high-gain stabilizable. While thisp) Iim; ., h; = heo > 0;
might be considered a restriction, it is precisely in this high-gain 3) {yi}ieINO c 2.
case that the conflict between gain adaptation and sampling is MOk afore proving this result we discuss the underlying adaptation,
apparent. Variable sampling could of course be considered in maéypecially the adaptation of the sampling rate.

other situations in adaptive control. . Remark 2.2—1):The basic ideas underlying Theorem 2.1 can be
More precisely, we consider systems to be stabilized to be of g ated by considering the simplest situation of scalar systems

form
2(t) = ax(t) + bu(t), y(t) = ca(t), z(0)=x0 (9)

2(t) = Ax(t) + Bu(t y(t) = Cx(t), 2(0) = x 1 .
#(t) o(t) + Bu(t), y(t) (t), w(0) =0 (1) wherea, b, ¢, zo € IR all unknown. It is well known (see, e.qg., [13])
where A € R"™",B,CtT € R"*™, 20 € IR" andn are all that the continuous-time adaptive control law

unknown. The assumption that (1) nsinimum phaseneans that u(t) = —k(t)y(t), k() = y2(t) (10)
dot |:SIn —A B} £0.  foral seCy. (2) Will stabilize any system given by (9) withb > 0. The reason,
C 0 loosely speaking, is that in the resulting closed-loop system
The assumption that the high-frequency gaiB is unmixedmeans #(t) = [a — k(t)cb|x(t) (11)
that

k(t) must increase untit — k(¢)cb is negative, after whick(¢) tends
o(sCB)C C, for some unknown s € {—1,1}. (3) to zero exponentially anél(t) converges to a finite limit.

A Euler discretization of thé dynamics in (10), with a step length
The sign of the high-frequency gain is called positive if and only i,f,],‘, is given by

a(CB) C C.. (4) Fjpr =Ky _ y (12)

ny
On the other hand, sampling (11) on a sampling interval of length
h; gives z(t;) determined approximately by a Euler discretization

The control objectivesare described as follows. Design a simple
scalar adaptation law

Fivr = fksaus)s tivs = g(tj, ky) (5) of (11) with step lengthh;. Since the “stiffness” of (11) increases
affinely with k(¢), one would to need to sample (11) at a rate faster
so that the proportional sampled-data output feedback than 1/k(¢). It is also natural to sample the-dynamics (which
a(t) = —kyy;, EE [t t41) (6) are responding to changgs n more rapidly than.the .num.erical
integration of thek-dynamics. With these observations in mind we
which uses only sampled output informatign := y(¢;), when choose
applied to a system (1) satisfying (2) and either (3) or (4), yields 1
a closed-loop system (1), (5), (6) with convergent gain adaptation, n; = log &, (13)
positive sampling interval length, and stabilized sampled output, i.e., ’
and

lim kj =k € IR, lim tjy1 —t; =heo >0
j—o0 J—oo

lim y; =0. hj =t —t; = [k;log kj]fl = o(1;). (14)
]

The paper is organized as follows. Section Il is devoted to sampled-NOte that (12) and (13) coincide with (8} is monotonically

dgta adaptive stabilizgtio_n of mu_ItivariabIe systems sa_tisfying (2)_ a+2r;2a2'nnfugﬂd2 oglt\kllear;] l_)yk(ctlli)slsn;g(;rt‘i(\)/fr;;zlIi/hgeg;i%?ggﬁf_ﬁme
either (3) or (4), while in Section Ill we study the |ntersampllngS stem (2.5) ils stable, and the sampling petgds small enough
behavior and prove that under additional mild assumptions we Cﬁén expo.nential deca{y of(£) can be expected ’

guarantee that the continuous-time stafe) tends to zero. 2): The idea of using a variable sampling rate has been considered
by [9]. Our approach differs from this work in two crucial aspects.

Il SAMPLING STABILIZATION OF MULTIVARIABLE SYSTEMS In Owens the functional dependence betwéeand & (k = k(h))
The following theorem is the main result of this section. An adags such that
tive gain and sampling time mechanism is presented which stabilizes lim hk(h) = Fo >0 (15)
the output at the sampling instants and guarantees convergent gain h—0
and sampling period adaptation. whereas in our approac;lLii% hk(h) = klggo (1/kloghk)k =

Theorem 2.1:Suppose the system (1) satisfies (2) and (4), i., More significantly, in the context of adaptive control without
(1) is minimum phase with positive high-frequency gain. Define thigentification, we require neither the extra assumptions (15) nor that
adaptive-sampling output feedback law by 0 < NkoCB < 2 holds for N = +1 or —1, imposed in [9].

o L 3): We stress that, in general, we cannot expegt) — 0 as
ult) = —kays, teltintiv) ) t — oo. However, in the case = 1, boundedness and monotonicity
wherey; := y(t:), and {k;} N, and{t;} .\, are generated by of k; and h; gives
the gain and sampling-time adaptation mechanism

1
P = tiy1 =t + h;
kilog ki ‘ Since{y;},cN, € I° ande # 0 it follows that; tends to zero,
Figr =k + Ehillys||?,  forall i € No (8) so thatlim;—., =(t) = 0.

|z(t)] < [elalho +cbh e‘“lhokmhoﬂxﬂa for ¢ € [tj,tj4+1).
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The crucial step in proving Theorem 2.1 is the investigation of ComputingAV; := V(yit+1, zi+1) — V(y., z;) along the solution
fixed (nonadaptive) high-gain feedback control. Indeed, if a feedback (21) gives
of the form AV = [F (UF 4 + R2UL DIRIY s g+ B2Un )] — o) Ry,
u(t) = —ky;, t € [hi,h(i+1)) _ )
Let k; > 1. Then there existdd; > 0, so that
with fixed gaink and sampling lengtth = (k log k)™, is applied

1 R _
to (1), with sufficiently high gairk, then every solution of the closed- ¥ k] + i 1Ukk|l £ My, forall k> k.
loop system tends to zero exponentially. The following lemma, which o8
is of interest in its own right, clarifies this “high-gain” idea. Hence, there existd/; > 0 so that

Lemma 2.3: Consider a system (1) satisfying (2) and (4), and let

) J AV, =27 O}  RU,, cvi — x! Rai
h = (k logk)~'. Then there exist& > 1 sufficiently large such F T Thoa T kT T G R

that for all k > k, the feedback + 2072 Uyl w RY, i + B! Uy RU g
T T
w(t) = —kyi,  t€[hi,h(i+1)) (16) S (Wi Bk — Rl
h 9 h? Py
i i i - My | ——||x: il|”
applied to (1) yields an exponentially stable closed-loop system + _<\/m||1« "+ gk lla:| )

(t) = Ax(t) — kBCux;, t € [hi,h(i+1)). 17) for all k > Fr. Now

Herex; = z(t;). Moreover, the associated discrete-time system 7
. 9T RU, . = (T +h —kECB+ 4, A
ziyt =L, + h(A — kBC) + Uy 4] (18) bk Rk = As Ay
where Uy« := Th(A)[A — kEBC] and T,(A4) = (1/2HA + |Po I+h —kCB+ A A
(1/30)hA% + ..., is power stable, i.e., there exists some > 0 0 Q Az A
and ¢, € (0,1), independent of:, so that so that by using (22)
s M0, P> .
||‘rl+l|| S AI()IL ||'1L0||7 for a” v 2 0. (19) ‘Ilflzvl,r-,R\IIh,k _ R
Proof: Applying variation-of-constants to (17) yields N kI, 0
~h N |: O In—‘nl :|
zig1 = e — & " ds BC' | ;. 1 7
o ' A{P+PA; AYQ+PAs
’ 4Py oa. 0
Equation (18) follows from the uniform power series expansion 2 o .
h + h2 —]\CB + 1-11 ‘42 B —]\CB + Al ‘4'_7
et — k/ e ds BC As As As Ay |’
0

Therefore, there exist84; > (0 so that

1 2 42
= |L.+hA+ =1 A‘—i—---} ) ‘ N ‘
{ 2l AV: < = hllyl[* = Bll=? + RAL Lyl + gl D=1

2
_k{,,ln o A+..} BC. + 0P[R yall® + Kllyall D=0l + 112:117]
; TSV [ T
Since (1) is minimum phase anttC' B # 0, the state space can 2 Viogk = logk g e

be decomposed intan B @ kerC' so that without loss of generality ) , T,
(see, e.g., [1, p. 11]), we may assurheB, C, andz are of the form and hence, by usinfly|| - [|=[| < 2Ms|lyl|” 4+ (2M3)™ || =[°

A=t A] p_[CB AV < - hk[1 3 (1 + 25 ey 2%11)
As A4 0 k k
, M, h )
‘ 1Y _ 1 i
with o(A44) C C- and blocks structured according goc R™, = € —h B - % — Mzh — % - %} (B
R"~ ™. Setting viegh o logk 23)
._ L |¢B 0 Al As _ o
Y g :=In = ]"h{ 0 ()} +h {43 AJ (20)  for all & > k1. By choosingk > . sufficiently large, we obtain
for all % k
(18) becomes ~ ; ;
2 AV _l« . 2_l |2
Tiy = [‘I’h,k + h"‘LTh’k]l»i' (21) AV; < 41‘”1]7” 1 ||«1|| . (24)

To prove that there exists sufficiently large so that (19) holds for Hence

all k > %, we consider h

h 2 ,
er Vi) < =2z < = -V (as
Viy, z) = <Z> R(z) with R = {0 Q} for all i > io. Therefore
as a Lyapunov-function candidate. Hefe = P” ¢ R™*™, Vizigr) < (1= hERID™H T 0V ().

—_0OF ‘(nfm)x(nfm) e . .
Q=@ ”6 R denote th? positive-definite solutions of Then (19) follows, with(, := /T — KA. by using the
(CB)Y'P+P(CB)=1I, and A;Q+ QA4 =—I,_,. (22) standard inequalitiesi.(R)|x||> < " Rz < ||R| |l=|*.
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It remains to prove exponential stability of (17). Again by
variation-of-constants applied to (17) fere i[i, (i + 1)) we have,
for some suitablelf, > 0, that

: tain e —1 )
lle(@)]] < [ + & WHBCH [l
L=L+1
Mu|R|| iy
< ———— x
< 2L Gt
and, for—a := (1/h) log ¢x < 0, we conclude that
My||R|| _anisn) My||R|| -
ll=(t)]| < me llzol| < me [lzo]|- O Si=1 =i+ 1 [ S;i=-1

Proof of Theorem 2.1:Existence and uniqueness of the solution
to the closed-loop system (1), (7), and (8) is obvious. Cleary
{ki}.eN, is nondecreasing. To prove convergence{éf} |, .
suppose to the contrary thdim; ... k; = oc. Consider the (k.S
associated discrete-time system Xi = xi(k, )

tig1 = [In + hi(A = ki BC) + RIUn, 1] (25)
which we derive from (17) as in the proof of Lemma 3.3; see (20) al
(21). Analogously to (24) we obtain, for sufficiently large € INo
(recall thatlim;—~, k; = o0) and alli > iq

hi . 1
AVi< -7 killyill* = =7 (ki = ki),

Hence
V(yn,on) = V(ins zig) Fig. 1. The switching procedure.
N—-1 1 N—-1
=) AV(yi,zi) < 1 D (kirr = ki) to choose the feedback
1=tg i=iq
1 u(t) = —kiSiyi,  tE[titig). (27)
= —I[k,’\f b k,‘o]
so that This switching procedure is similar to the one used in [9]. However,
N . our implementation is direct and does not use a “switching activation
1EN <V (Yigs zig) + 5 Kigs for all N > iq. sequence.”
This contradicts the unboundedness{éf}, |, . Hence{ki}, N, Theorem 2.5: Suppose the system (1) satisfies (2) and (3). Let
converges. So = 1 andko > 1. Then the adaptive-sampling output feedback law

Now the statements 1) and 2) are immediate from boundednesg2i), wherey; := y(¢;), and the gain and sampling-time are adapted
{ki}icN,- The proof is completed by noting that 3) follows fromaccording to (8) in Theorem 2.1, with switching sequefise}, -y,

the inequality defined by Algorithm 2.4, applied to (1) yields a closed-loop system
1 N N 1 which admits a unique solution(-) defined on the whole half-axis
will? < il = Enar = ko < koo, 0, oc). Furthermore:
Tog Fe ; lly:ll” < ; fog F; llyill” = kngr — ko < K [0, 00)

1) lim k = ke € IR;

O 2) Tm hi = hoe > 0;

If the sign of the high-frequency gaifi B is unknown, so that we 3) EE’ i = e € (=L 1J;
only know that (3) holds, then the adaptation law has to additionally = i— . ) L S
find the sign for the feedback. For continuous-time feedback this™) therre exists somé such thats; = 5;, for all i > io;
problem was solved by the famous contribution of [7]. Nussbaum’s 5) {yi},-,qu € _ o
idea was to introduce sign-switching feedbacks of the fari) = Propf: .ThIS proqf |.s very .S|m|Iar to the proof of Theorem 2.1.
—k(t) sin \/E(£)y(t). The analogue for adaptive-sampling feedbackh® main difference is in proving convergence{éf} |y, and the
control is obtained by replacing the continuous sign changing functigfmainder is straightforward and is omitted.
sin vk by a piecewise continuous sign changing function as follows. Suppose tha{ki}ielNo is not bounded. For suitable= +1 or

Algorithm 2.4: For a monotone nondecreasing sequéneek, < —1 we have

ki < --- define aswitching sequencgS; }t, ., C {—1,1} by the (CBY P+ P(CB) = sI,..

flow chart shown in Fig. 1, initialized with = L = 0, So = 1 ‘

and where If % in (20) is replaced by:S, then we can deduce, as in the proof

L if kozl =k of Lemma 2.3 [see in particular (23)] that
L i
Xilh §) =9 =7 ;0 (ki = ki)S;, (26) AVi < — shikiSillyill* + {Mg(hi + 2Msh; + B2k + 2MshZks)
otherwise /
If {k:},cN, diverges to infinity, then the Algorithm 2.4 ensures - le‘l" <1 + hi‘ , )} llyal?

that x; € (=1,1) for all i > io (for io sufficiently large) andy; has Viog k: Viogk

the two accumulation pointg-1 and—1. ThusS; will stay at +1, — bk F _ hiki Msh; — Mohi  _ M?hi}”%”?.

respectively—1, for longer and longer intervals and it is then natural 22 logk; loghi
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Therefore, there exists, sufficiently large and\/; > 0, so that (7) wherey, := y(¢;), and {ki}, N, and {t.},.N, are generated

for all i > io by the gain and sampling-time adaptation mechanism
~ 1
Ai[s 9 hz == h
AV, < | = = shikiSi |1yl J
log k; where
= [J[g - SSZ'] [ki+1 - kl] .. 1 1 1
is such thath; = - -
J i logh: =~ |j+1j
Hence, for allN > 4 tiv1 =t +h; and kg = ki + kihilyi||* (30)

with to = 0, ko > 1, applied to (1) yields a closed-loop system

1/7 N, ZN _"7’,', PR . . . . . .
(s 2v) (Wio: 00) which admits a unique solutior(-) defined on the whole ax[8, o).

N-—1
Moreover:
< Mslkn — kig] — s Silkiv1 — K
> ‘%[ N 0] ,;:Zio [ +1 ] 1) lim, o ki = ko € IR; )
N1 2) there exists som&, jo. € IN such thath; = (1/j.)n for all
= (ky = kig) [ M5 — ————— > Silkips — k]| 2 o
kv = ki S 3) {yitieN, € 1?;

4) lim;—o a(t) = 0.

Now it is easy to show, by construction of the switching sequence,Remark 3.2—1):If an upper bound of4 in the spectral norm is
that the right-hand side above tends-toc, whilst the left-hand side known, i.e., for someM > 0 we have|4| < M, then we can
is bounded. Hence we have a contradiction and therefforg; .y,  chooseh € (0, (3/M)). This is an immediate consequence of
is bounded. This completes the proof. A—p y 3 2M

e | S o

0<

Ill. STABILIZATION OF THE STATE BY SAMPLING OUTPUT FEEDBACK .
from which (29) follows.

In Remark 2.2-3), we indicated that we would not expect the 2): If A is rational, then (29) holds for anj € Q. To see
adaptive controller in Section Il to stabilize the whole state, N@his, note that sincelet(\,, — A) is a polynomial with rational
even the state at sampling instants. In fact, while the sequeiice  coefficients, the real and imaginary parts of the eigenvalues of
converges to zero, the following example (see [9] for the detail§}e algebraic numbers. And since the difference of any two algebraic
shows that the continuous-time outpytt) need not converge t0 yympers is algebraic (see, e.g., [10]), we have for Any @ that

zero. Consider the minimum phase system h(\ — p) ¢ 2wiZ and therefore the claim follows.
Proof of Theorem 3.1:This proof is similar to the proof of
&(t) = Ax(t) 4+ Bu(t) Theorem 2.1 but withh; replaced byh,. Existence and uniqueness
y(t) =Cx(t) with of the solution is again straightforward.
0 1 1 Step 1: We will prove boundedness C{ﬁ’?i}i€|N0. Suppose to the
A= {—4# 0}’ B = L}, C'=(1,0) (28) contrary thatlim;,—.. k; = occ. Analogously to (24) we can find

7o € IN such that for alli > ig

for which the high-frequency gaif’B = 1. It is easy to see that N D : 1,
gn-fedueney 9 y AVi € =5 Killyil* = =5 (ki = ko)

with initial data z(0) = (02x)T.# = 0, and ke > 1 such that
ho = (ko logko)™" = 1, the adaptive feedback law (7), (8) appliedanq 1) follows as in part 1) of the proof of Theorem 3.2.

to (28) yieldsy; = 0,h; = 1,k; = ko for all j € No andu(-) = 0. Step 2: Sincek; converges td:.., there exists somg.. € IN and
but x(t) = (sin 27t, 27 cos 27t). io € IN such that

Note that this example is pathological since the sampling times
occur exactly where the continuous-time output vanishes. Since the p, = 1 { 1 L) forall i > io.
continuous-time system (1) is detectable (this is a consequence of ki loghi Jeot 1 joo /0 B

the minimum phase assumption; see, [1]), we could overcome thisthis proves 2), and 3) follows from
problem by choosing the sampling periods in such a way that

. e o N N
sampling preserves detectability. Now it is well known that the h wll? < Ehllel? = & ke <k
sampled system (with constant sampling pertodt 0) is detectable log koo ZO lyill” < ZO illyill” = Envg 0 < koo
if and only if B B

Step 3: It remains to prove 4). To this end consider

0
/ 4B ds
0

We shall modify the adaptive sampling time algorithm (8) und&fich is the sampled version of (1) on a sampling interval of length
the additional assumption that (29) holds for some kndwrThis  j,. Sinceh, € [(1/jo + 1), (1/j=0)) for all i > i, it follows that

detectability of the sampled system at some known sampling/tiree hi = (h/js) := h for all i > io. Hence
used in [8] in constructing sampled-data identification-based adaptive o
controllers. The main benefit of the extra assumption is that (29) then he
holds for a sampling perioél /q. for any ¢ € IN. We exploit this in /0 ¢ Bds
the following result.

Theorem 3.1: Suppose the system (1) satisfies (2) and (4) Ll By the minimum phase assumptidal, ') is detectable. Using
such that (29) holds. Then the adaptive sampling output feedback 129) it follows that (¢, C') is detectable. Since by 3) we have

2\ —

Iz : .
— h¢Z forany X#p, A p €a(A)U{0}.  (29) vi = Ahig 4 s, i = Cos

Ah
Tiy1 = e i + wi, yi = Cua,.
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lim,—. y: = 0, it follows thatlim,_... z; = 0. Now for all
t € [ti,ti+1) we have

t:

1

ot
|z(t)]] = He‘“titi) x; — ki / e BCuids

Ak _ ¢
e
+ ke W“BC”

This showslim;—.., x(t) = 0 and completes the proof. |

< PRI |21

IV. CONCLUSIONS

In this paper we have considered the problem of how to adapt
a variable sampling rate in the high-gain adaptive stabilization of
minimum phase, relative degree one systems. The adaptive sampling
rate is used to counter the increasing stiffness of the closed-loop
system caused by an increased gain which is needed to exploit the
stability of the zero dynamics. The ideas explored in this paper
are prototypical of many problems in adaptive sampled-data control
where the possible conflict between variable stiffness, caused by
adaptive gains, and adaptive sampling rates has to be resolved.
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