
                 
 
 
 
 
 
 

 
 
 
 
 
 
 

Ilchmann, Achim ; Townley, Stuart: 
 

Adaptive Sampling Control of High-Gain Stabilizable Systems 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Zuerst erschienen in: 
IEEE Trans. on Autom. Control 44 (1999), S.1961 - 1966 
DOI: 10.1109/9.793786  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digitale Bibliothek Thüringen

https://core.ac.uk/display/224764724?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/9.793786


IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 44, NO. 10, OCTOBER 1999 1961

Adaptive Sampling Control of
High-Gain Stabilizable Systems

Achim Ilchmann and Stuart Townley

Abstract—It is well known that proportional output feedback control
can stabilize any relative-degree one, minimum-phase system if the sign
of the feedback is correct and the proportional gain is high enough.
Moreover, there exist simple adaptation laws for tuning the proportional
gain (so-called high-gain adaptive controllers) which do not need to know
the system and do not attempt to identify system parameters.

In this paper the authors consider sampled versions of the high-
gain adaptive controller. The motivation for sampling arises from the
possibility that the output of a system may not be available continuously,
but only at sampled times. The main point of interest is the need to
develop techniques for adapting the sampling rate, since the stiffness of
the system increases as the proportional gain is increased. Our main result
shows that adaptive sampling stabilization is possible if the producthk of
the decreasing sampling intervalh and the increasing proportional gain
k decreases at a rate proportional to1= log k.

Index Terms—Adaptive stabilization, minimum-phase systems, propor-
tional control, sampled-data control.

I. INTRODUCTION

In this paper, we will show that the ideas and techniques of high-
gain adaptive output feedback stabilization carry over when the output
of the system is not available continuously but is only available at
sampled instants of time. This situation arises naturally when digital
computations of control inputs are used.

It is well known (see, [13]) that

u(t) = �k(t)y(t); _k(t) = y
2(t)

is a continuous-time, high-gain adaptive stabilizer for the class of
minimum-phase systems with positive high-frequency gain. This
controller arose from the work of [6] and has been developed by
[5], [4], [2], [11], [3], [1], and [12], to name but a few. While not all
of these papers deal with adaptive control of minimum-phase systems,
they are all similar in spirit in the sense that the adaptation of the
controller gain is not based on any attempt to identify the parameters
of the system. We continue in this spirit but focus on developing a
mechanism to deal with the restriction that the output is only available
at sampled time instants. The main novelty, which distinguishes this
problem from either continuous or discrete-time adaptive control, is
the need to develop suitable mechanisms for adjusting a variable
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sampling rate. Reference [9] is the only paper we are aware of which
deals with this issue.

We focus on adaptive stabilization of minimum-phase multi-
input/multi-output systems with the spectrum of the high-frequency
gain unmixed. These systems are high-gain stabilizable. While this
might be considered a restriction, it is precisely in this high-gain
case that the conflict between gain adaptation and sampling is most
apparent. Variable sampling could of course be considered in many
other situations in adaptive control.

More precisely, we consider systems to be stabilized to be of the
form

_x(t) = Ax(t) +Bu(t); y(t) = Cx(t); x(0) = x0 (1)

where A 2 IRn�n; B; CT 2 IRn�m; x0 2 IRn and n are all
unknown. The assumption that (1) isminimum phasemeans that

det
sIn � A B

C 0
6= 0; for all s 2 C+: (2)

The assumption that the high-frequency gainCB is unmixedmeans
that

�(sCB) � C+ for some unknown s 2 f�1; 1g: (3)

The sign of the high-frequency gain is called positive if and only if

�(CB) � C+: (4)

The control objectivesare described as follows. Design a simple
scalar adaptation law

kj+1 = f(kj ; yj); tj+1 = g(tj ; kj) (5)

so that the proportional sampled-data output feedback

u(t) = �kjyj ; t 2 [tj ; tj+1) (6)

which uses only sampled output informationyj := y(tj); when
applied to a system (1) satisfying (2) and either (3) or (4), yields
a closed-loop system (1), (5), (6) with convergent gain adaptation,
positive sampling interval length, and stabilized sampled output, i.e.,

lim
j!1

kj =k1 2 IR; lim
j!1

tj+1 � tj = h1 > 0

lim
j!1

yj =0:

The paper is organized as follows. Section II is devoted to sampled-
data adaptive stabilization of multivariable systems satisfying (2) and
either (3) or (4), while in Section III we study the intersampling
behavior and prove that under additional mild assumptions we can
guarantee that the continuous-time statex(t) tends to zero.

II. SAMPLING STABILIZATION OF MULTIVARIABLE SYSTEMS

The following theorem is the main result of this section. An adap-
tive gain and sampling time mechanism is presented which stabilizes
the output at the sampling instants and guarantees convergent gain
and sampling period adaptation.

Theorem 2.1: Suppose the system (1) satisfies (2) and (4), i.e.,
(1) is minimum phase with positive high-frequency gain. Define the
adaptive-sampling output feedback law by

u(t) = �kiyi; t 2 [ti; ti+1) (7)

whereyi := y(ti); andfkjgj2IN andftjgj2IN are generated by
the gain and sampling-time adaptation mechanism

hi =
1

ki log ki
; ti+1 = ti + hi

ki+1 = ki + kihikyik
2; for all i 2 IN0 (8)

with t0 = 0 andk0 > 1: Then the closed-loop system (1), (7), and (8)
admits a unique solutionx(�) defined on the whole half-axis[0;1):
Furthermore:

1) limi!1 ki = k1 2 IR;
2) limi!1 hi = h1 > 0;
3) fyigi2IN 2 l2:

Before proving this result we discuss the underlying adaptation,
especially the adaptation of the sampling rate.

Remark 2.2—1):The basic ideas underlying Theorem 2.1 can be
motivated by considering the simplest situation of scalar systems

_x(t) = ax(t) + bu(t); y(t) = cx(t); x(0) = x0 (9)

wherea; b; c; x0 2 IR all unknown. It is well known (see, e.g., [13])
that the continuous-time adaptive control law

u(t) = �k(t)y(t); _k(t) = y2(t) (10)

will stabilize any system given by (9) withcb > 0: The reason,
loosely speaking, is that in the resulting closed-loop system

_x(t) = [a � k(t)cb]x(t) (11)

k(t) must increase untila�k(t)cb is negative, after whichx(t) tends
to zero exponentially andk(t) converges to a finite limit.

A Euler discretization of thek dynamics in (10), with a step length
�j ; is given by

kj+1 � kj
�j

= y2j : (12)

On the other hand, sampling (11) on a sampling interval of length
hj gives x(tj) determined approximately by a Euler discretization
of (11) with step lengthhj : Since the “stiffness” of (11) increases
affinely with k(t); one would to need to sample (11) at a rate faster
than 1=k(t): It is also natural to sample thex-dynamics (which
are responding to changes ink) more rapidly than the numerical
integration of thek-dynamics. With these observations in mind we
choose

�j =
1

log kj
(13)

and

hj = tj+1 � tj = [kj log kj ]
�1 = o(�j): (14)

Note that (12) and (13) coincide with (8),kj is monotonically
increasing andhj given by (14) is monotonically decreasing. Ifk is
large enough, so thata � kcb is negative and the continuous-time
system (2.5) is stable, and the sampling periodhj is small enough,
then exponential decay ofx(t) can be expected.

2): The idea of using a variable sampling rate has been considered
by [9]. Our approach differs from this work in two crucial aspects.
In Owens the functional dependence betweenh and k (k = k(h))
is such that

lim
h!0

hk(h) = k̂1 > 0 (15)

whereas in our approachlim
h!0

hk(h) = lim
k!1

(1=k log k)k =

0: More significantly, in the context of adaptive control without
identification, we require neither the extra assumptions (15) nor that
0 < Nk̂1CB < 2 holds forN = +1 or �1; imposed in [9].

3): We stress that, in general, we cannot expectx(t) ! 0 as
t!1: However, in the casen = 1; boundedness and monotonicity
of kj and hj gives

jx(t)j � [ejajh + cb ejajh k1h0]jxj j; for t 2 [tj ; tj+1):

Sincefyjgj2IN 2 l2 andc 6= 0 it follows that xj tends to zero,
so that limt!1 x(t) = 0:
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The crucial step in proving Theorem 2.1 is the investigation of
fixed (nonadaptive) high-gain feedback control. Indeed, if a feedback
of the form

u(t) = �kyi; t 2 [hi; h(i+ 1))

with fixed gaink and sampling lengthh = (k log k)�1; is applied
to (1), with sufficiently high gaink; then every solution of the closed-
loop system tends to zero exponentially. The following lemma, which
is of interest in its own right, clarifies this “high-gain” idea.

Lemma 2.3: Consider a system (1) satisfying (2) and (4), and let
h = (k log k)�1: Then there existsk > 1 sufficiently large such
that for all k � k; the feedback

u(t) = �kyi; t 2 [hi; h(i+ 1)) (16)

applied to (1) yields an exponentially stable closed-loop system

_x(t) = Ax(t)� kBCxi; t 2 [hi; h(i+ 1)): (17)

Herexi = x(ti): Moreover, the associated discrete-time system

xi+1 = [In + h(A� kBC) + h2Uh;k]xi (18)

where Uh;k := Th(A)[A � kBC] and Th(A) := (1=2!)A +
(1=3!)hA2 + � � � ; is power stable, i.e., there exists someM > 0
and �h 2 (0; 1); independent ofk; so that

kxi+1k �M�i+1�ih kxi k; for all i � i0: (19)

Proof: Applying variation-of-constants to (17) yields

xi+1 = eAh � k
h

0

eAs ds BC xi:

Equation (18) follows from the uniform power series expansion

eAh � k
h

0

eAs dsBC

= In + hA+
1

2!
h2A2 + � � �

� k hIn +
h2

2!
A+ � � � BC:

Since (1) is minimum phase anddetCB 6= 0; the state space can
be decomposed intoim B � kerC so that without loss of generality
(see, e.g., [1, p. 11]), we may assumeA;B;C; andx are of the form

A =
A1 A2

A3 A4
; B =

CB
0

C = [Im; 0]; x =
y
z

with �(A4) � C� and blocks structured according toy 2 IRm; z 2
IRn�m: Setting

	h;k := In � kh
CB 0
0 0

+ h
A1 A2

A3 A4
(20)

(18) becomes

xi+1 = [	h;k + h2Uh;k]xi: (21)

To prove that there existsk sufficiently large so that (19) holds for
all k > k; we consider

V (y; z) :=
y
z

T

R
y
z

; with R =
P 0
0 Q

as a Lyapunov-function candidate. HereP = P T 2 IRm�m;
Q = QT 2 IR(n�m)�(n�m) denote the positive-definite solutions of

(CB)TP + P (CB) = Im and AT
4Q+QA4 = �In�m: (22)

Computing�Vi := V (yi+1; zi+1)� V (yi; zi) along the solution
of (21) gives

�Vi = [xTi (	
T
h;k + h2UT

h;k)]R[(	h;k + h2Uh;k)xi]� xTi Rxi:

Let k1 > 1: Then there existsM1 > 0; so that

k	h;kk+ 1

k
p
log k

kUh;kk �M1; for all k � k1:

Hence, there existsM2 > 0 so that

�Vi =xTi 	
T
h;kR	h;kxi � xTi Rxi

+ 2h2xTi U
T
h;kR	h;kxi + h4xTi U

T
h;kRUh;kxi

�xTi [	
T
h;kR	h;k �R]xi

+M2
hp
log k

kxik2 + h2

log k
kxik2

for all k � k1: Now

	T
h;kR	h;k = I + h

�kCB + A1 A2

A3 A4

T

� P 0
0 Q

I + h
�kCB + A1 A2

A3 A4

so that by using (22)

	T
h;kR	h;k �R

= �h kIm 0
0 In�m

+ h
AT
1 P + PA1 AT

3Q+ PA2

AT
2 P +QA3 0

+ h2
�kCB + A1 A2

A3 A4

T

R
�kCB +A1 A2

A3 A4
:

Therefore, there existsM3 > 0 so that

�Vi � � hkkyik2 � hkzik2 + hM3(kyik2 + kyik kzik)
+ h2M3[k

2kyik2 + kkyik kzik+ kzik2]

+ M2
hp
log k

+
h2

log k
[kyik2 + kzik2]

and hence, by usingkyk � kzk � 2M3kyk2 + (2M3)
�1kzk2

�Vi � � hk 1�M3
1

k
+

2M3

k
+ hk + 2M3h

� M2

k
p
log k

1 +
hp
log k

kyik2

� h
1

2
� hk

2
�M3h� M2hp

log k
� M2h

log k
kzik2

(23)

for all k � k1: By choosingk > k1 sufficiently large, we obtain
for all k > k

�Vi � �h

4
kkyik2 � h

4
kzik2: (24)

Hence

V (xi+1)� V (xi) � �h

4
kxik2 � � h

4kRkV (xi)

for all i � i0: Therefore

V (xi+1) � (1� h(4kRk)�1)i+1�i V (xi ):

Then (19) follows, with�h := 1� h(4kRk)�1; by using the
standard inequalities�min(R)kxk2 � xTRx � kRk kxk2:
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It remains to prove exponential stability of (17). Again by
variation-of-constants applied to (17) fort 2 h[i; (i + 1)) we have,
for some suitableM4 > 0; that

kx(t)k � ekAkh + k
ekAkh � 1

kAk kBCk kxik

� M4kRk
�min(R)

�i+1h kx0k

and, for�� := (1=h) log �h < 0; we conclude that

kx(t)k � M4kRk
�min(R)

e��h(i+1)kx0k � M4kRk
�min(R)

e��tkx0k:
Proof of Theorem 2.1:Existence and uniqueness of the solution

to the closed-loop system (1), (7), and (8) is obvious. Clearly
fkigi2IN is nondecreasing. To prove convergence offkigi2IN ;

suppose to the contrary thatlimi!1 ki = 1: Consider the
associated discrete-time system

xi+1 = [In + hi(A� kiBC) + h2iUh ;k ]xi (25)

which we derive from (17) as in the proof of Lemma 3.3; see (20) and
(21). Analogously to (24) we obtain, for sufficiently largei0 2 IN0

(recall thatlimi!1 ki = 1) and all i � i0

�Vi � �hi
4
kikyik2 = �1

4
(ki+1 � ki):

Hence

V (yN ; zN)� V (yi ; zi )

=

N�1

i=i

�V (yi; zi) � �1

4

N�1

i=i

(ki+1 � ki)

= �1

4
[kN � ki ]

so that
1
4kN � V (yi ; zi ) + 1

4 ki ; for all N � i0:

This contradicts the unboundedness offkigi2IN : Hencefkigi2IN
converges.

Now the statements 1) and 2) are immediate from boundedness of
fkigi2IN : The proof is completed by noting that 3) follows from
the inequality

1

log k1

N

i=0

kyik2 �
N

i=0

1

log ki
kyik2 = kN+1 � k0 � k1:

If the sign of the high-frequency gainCB is unknown, so that we
only know that (3) holds, then the adaptation law has to additionally
find the sign for the feedback. For continuous-time feedback this
problem was solved by the famous contribution of [7]. Nussbaum’s
idea was to introduce sign-switching feedbacks of the formu(t) =

�k(t) sin k(t)y(t): The analogue for adaptive-sampling feedback
control is obtained by replacing the continuous sign changing function
sin

p
k by a piecewise continuous sign changing function as follows.

Algorithm 2.4: For a monotone nondecreasing sequence1 < k0 �
k1 � � � � define aswitching sequencefSigi2IN � f�1; 1g by the
flow chart shown in Fig. 1, initialized withi = L = 0; S0 = 1

and where

�i(k; S) :=

1; if k0 = � � � = ki

1

ki � k0

i�1

j=0

(kj+1 � kj)Sj;

otherwise:

(26)

If fkigi2IN diverges to infinity, then the Algorithm 2.4 ensures
that�i 2 (�1; 1) for all i � i0 (for i0 sufficiently large) and�i has
the two accumulation points+1 and�1. ThusSi will stay at +1,
respectively�1, for longer and longer intervals and it is then natural

Fig. 1. The switching procedure.

to choose the feedback

u(t) = �kiSiyi; t 2 [ti; ti+1): (27)

This switching procedure is similar to the one used in [9]. However,
our implementation is direct and does not use a “switching activation
sequence.”

Theorem 2.5: Suppose the system (1) satisfies (2) and (3). Let
S0 = 1 andk0 > 1: Then the adaptive-sampling output feedback law
(27), whereyi := y(ti); and the gain and sampling-time are adapted
according to (8) in Theorem 2.1, with switching sequencefSigi2IN
defined by Algorithm 2.4, applied to (1) yields a closed-loop system
which admits a unique solutionx(�) defined on the whole half-axis
[0;1): Furthermore:

1) lim
i!1

ki = k1 2 IR;

2) lim
i!1

hi = h1 > 0;

3) lim
i!1

�i = �1 2 (�1; 1];
4) there exists somei0 such thatSi = Si for all i � i0;
5) fyigi2IN 2 l2:

Proof: This proof is very similar to the proof of Theorem 2.1.
The main difference is in proving convergence offkigi2IN ; and the
remainder is straightforward and is omitted.

Suppose thatfkigi2IN is not bounded. For suitables = +1 or
�1 we have

(CB)TP + P (CB) = sIn:

If k in (20) is replaced bykS; then we can deduce, as in the proof
of Lemma 2.3 [see in particular (23)] that

�Vi � � shikiSikyik2 + M3(hi + 2M3hi + h2i k
2
i + 2M3h

2
i ki)

� M2hip
log ki

1 +
hip
log ki

kyik2

� hi
1

2
� hiki

2
�M3hi � M2hip

log ki
� M2hi

log ki
kzik2:
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Therefore, there existsi0 sufficiently large andM5 > 0; so that
for all i � i0

�Vi �
M5

log ki
� shikiSi kyik

2

= [M5 � sSi] [ki+1 � ki]:

Hence, for allN � i0

V (yN ; zN)� V (yi ; zi )

�M5[kN � ki ]� s

N�1

i=i

Si[ki+1 � ki]

= (kN � ki ) M5 �
s

kN � ki

N�1

i=i

Si[ki+1 � ki] :

Now it is easy to show, by construction of the switching sequence,
that the right-hand side above tends to�1; whilst the left-hand side
is bounded. Hence we have a contradiction and thereforefkigi2IN
is bounded. This completes the proof.

III. STABILIZATION OF THE STATE BY SAMPLING OUTPUT FEEDBACK

In Remark 2.2-3), we indicated that we would not expect the
adaptive controller in Section II to stabilize the whole state, not
even the state at sampling instants. In fact, while the sequencey(ti)
converges to zero, the following example (see [9] for the details)
shows that the continuous-time outputy(t) need not converge to
zero. Consider the minimum phase system

_x(t) =Ax(t) +Bu(t)

y(t) =Cx(t) with

A =
0 1

�4�2 0
; B =

1
1

; C = (1; 0) (28)

for which the high-frequency gainCB = 1: It is easy to see that
with initial data x(0) = (02�)T ; t0 = 0; and k0 > 1 such that
h0 = (k0 log k0)

�1 = 1; the adaptive feedback law (7), (8) applied
to (28) yieldsyj = 0; hj = 1; kj = k0 for all j 2 IN0 andu(�) � 0;
but x(t) = (sin 2�t; 2� cos 2�t):

Note that this example is pathological since the sampling times
occur exactly where the continuous-time output vanishes. Since the
continuous-time system (1) is detectable (this is a consequence of
the minimum phase assumption; see, [1]), we could overcome this
problem by choosing the sampling periods in such a way that
sampling preserves detectability. Now it is well known that the
sampled system (with constant sampling periodh > 0) is detectable
if and only if

�� �

2�i
h =2 for any � 6= �; �; � 2 �(A) [ f0g: (29)

We shall modify the adaptive sampling time algorithm (8) under
the additional assumption that (29) holds for some knownh: This
detectability of the sampled system at some known sampling timeh is
used in [8] in constructing sampled-data identification-based adaptive
controllers. The main benefit of the extra assumption is that (29) then
holds for a sampling periodh=q; for any q 2 IN: We exploit this in
the following result.

Theorem 3.1: Suppose the system (1) satisfies (2) and (4). Leth be
such that (29) holds. Then the adaptive sampling output feedback law

(7) whereyi := y(ti); and fkigi2IN and ftigi2IN are generated
by the gain and sampling-time adaptation mechanism

ĥi =
1

j
h

where

j is such thathi =
1

ki log ki
2

1

j + 1
;
1

j

ti+1 = ti + ĥi and ki+1 = ki + kiĥikyik
2 (30)

with t0 = 0; k0 > 1; applied to (1) yields a closed-loop system
which admits a unique solutionx(�) defined on the whole axis[0;1):
Moreover:

1) limi!1 ki = k1 2 IR;
2) there exists somei0; j1 2 IN such thatĥi = (1=j1)h for all

i � i0;
3) fyigi2IN 2 l2;
4) limt!1 x(t) = 0:

Remark 3.2—1):If an upper bound ofA in the spectral norm is
known, i.e., for someM > 0 we havekAk � M; then we can
chooseh 2 (0; (3=M)): This is an immediate consequence of

0 < h
�� �

2�i
�

3

M

2M

2�
< 1

from which (29) follows.
2): If A is rational, then (29) holds for anyh 2 : To see

this, note that sincedet(�In � A) is a polynomial with rational
coefficients, the real and imaginary parts of the eigenvalues ofA
are algebraic numbers. And since the difference of any two algebraic
numbers is algebraic (see, e.g., [10]), we have for anyh 2 that
h(� � �) =2 2�i and therefore the claim follows.

Proof of Theorem 3.1:This proof is similar to the proof of
Theorem 2.1 but withhi replaced bŷhi: Existence and uniqueness
of the solution is again straightforward.

Step 1: We will prove boundedness offkigi2IN : Suppose to the
contrary thatlimi!1 ki = 1: Analogously to (24) we can find
i0 2 IN such that for alli � i0

�Vi � �
ĥi
2

kikyik
2 = �

1

2
(ki+1 � ki)

and 1) follows as in part 1) of the proof of Theorem 3.2.
Step 2: Sinceki converges tok1; there exists somej1 2 IN and

i0 2 IN such that

hi =
1

ki log ki
2

1

j1 + 1
;
1

j1
; for all i � i0:

This proves 2), and 3) follows from

h

log k1

N

i=0

kyik
2 �

N

i=0

kiĥikyik
2 = kN+1 � k0 � k1:

Step 3: It remains to prove 4). To this end consider

xi+1 = eAĥ xi +
ĥ

0

esAB ds ui; yi = Cxi

which is the sampled version of (1) on a sampling interval of length
ĥi: Sincehi 2 [(1=j1 + 1); (1=j1)) for all i � i0 it follows that
ĥi = (h=j1) := ĥ for all i � i0: Hence

xi+1 = eAĥxi +
ĥ

0

esAB ds ui; yi = Cxi:

By the minimum phase assumption(A;C) is detectable. Using
(29) it follows that (eAĥ; C) is detectable. Since by 3) we have
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limi!1 yi = 0; it follows that limi!1 xi = 0: Now for all
t 2 [ti; ti+1) we have

kx(t)k = e
A(t�t )

xi � ki

t

t

e
A(t�s)

BCxids

� e
kAkĥ + k1

ekAkĥ � 1

kAk
kBCk kxik:

This showslimt!1 x(t) = 0 and completes the proof.

IV. CONCLUSIONS

In this paper we have considered the problem of how to adapt
a variable sampling rate in the high-gain adaptive stabilization of
minimum phase, relative degree one systems. The adaptive sampling
rate is used to counter the increasing stiffness of the closed-loop
system caused by an increased gain which is needed to exploit the
stability of the zero dynamics. The ideas explored in this paper
are prototypical of many problems in adaptive sampled-data control
where the possible conflict between variable stiffness, caused by
adaptive gains, and adaptive sampling rates has to be resolved.
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et Modèles Mathématiques pour l’Automatique, l’Analyze de Syst`emes et
le Traitment du SignalI. D. Landau, Ed. 1983, pp. 733–740.

[7] R. D. Nussbaum, “Some remarks on a conjecture in parameter adaptive
control,” Syst. Contr. Lett.vol. 3, pp. 243–246, 1983.

[8] R. Ortega and G. Kreisselmeier, “Discrete-time, model reference adap-
tive control for continuous-time systems using generalized sampled-data
hold functions,” IEEE Trans. Automat. Contr., vol. 35, pp. 334–338,
1990.

[9] D. H. Owens, “Adaptive stabilization using a variable sampling rate,”
Int. J. Contr., vol. 63, no. 1, pp. 107–119, 1996.

[10] H. E. Rose,A Course in Number Theory. New York: Oxford Univ.
Press, 1988.

[11] E. P. Ryan, “Adaptive stabilization of a class of uncertain nonlinear
systems: A differential inclusion approach,”Syst. Contr. Lett., vol. 10,
pp. 95–101, 1988.

[12] S. Townley, “Topological aspects of universal adaptive stabilization,”
SIAM J. Contr. Optim., vol. 34, no. 3, pp. 1044–1070, 1996.

[13] J. C. Willems and C. I. Byrnes, “Global adaptive stabilization in the
absence of information on the sign of the high frequency gain,” in
Lect. Notes in Control and Inf. Sciences, vol. 62. Berlin, Germany:
Springer-Verlag, 1984.




