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124 A. ILCHMANN

Almost all contributions have in common that lim,,_-r(r) : 0, but the problem of
whether the decay is exponential is an open one. Moreover, the so-called terminal system

i(t) : Ap_x(t), where A,,* t: A - k*bc,

can be unstable. However, computer simulations have shown, that 'hlmost always" the ter-
minal system has its eigenvalues in the open left-half plane only.

The purpose of this article is as follows: first, to introduce a simple modification of the
feedback strategy (2) for a large class of multivariable minimum-phase systems having the
benefit that the state -r(r) decays exponentially to zero; second, to prove topological prop-
erties of the terminal system, that is, that the terminal system is "almost always" exponen-
tially stable; and third, to extend theses results to universal adaptive exponential tracking
of certain signals.

The class of systems under consideration is the following class E of multi-input, multi-
output, linear, minimum-phase systems

i(t) : Ax(t) + Bu(t), y(t) : Cx(t), -r(0) e IRI
(A, B, C) € IR'^n x IR'", x IR.x,, n is arbitrary | f+l
(A, B, q is minimum phase, det(C B) I O )

where the linear system

i(t) : Ax(t) + Bu(t), x(0) € IR

y(t) : Cx(t)

associated with (,4, B, c) < IRn"n x IR'"' x IR-x', is called minimum phase if it satisfies

0 " , [ " ; '  
ä ]  .  0  r o r a r  s € c * .

Instead of continuous gain adapration K(r) in the feedback u(t) : -K(t)-y(/), we will con-
sider piecewise constant gain implementation tuned by the function r(/) : y(t)z and a
prespecified sequence of thresholds To 1 T,
tion. For example, for single-input, single-output systems such as system (l), with known
sign of the high-frequency gain, cb ) o, the adaptive feedback strategy will be

u(t) : -k(t)Y(t)

i ( t ) : y ( t ) 2  , s ( 0 ) : r o
k(t) : 7, , if s(t) ( fT,_1, T,).

At each time when the tuning function s(r) : /6 y(s)zds * zs reaches a threshold l_1,
the feedback law will be changed to u(t) : -Tiye).Eventually, the gain will be so large
that the trajectory of the closed-loop subsystem i(r) : lA - k(t)bclx(t) will decay ex-
ponentially (this is ensured by the minimum-phase assumption). Therefore, the integral

(s)

(6)



ADAPTIVE CONTROLLERS AND ROCI LOCI OF MINIMUM-PHASE SYSTEMS

I'oy!)zds converges, and no more switchings will occur. The idea of using thresholds and
piece-wise constant gain adaptation has been used, for single-input, single-output systems

with positive high-frequency gain, by Ilchmann and Owens [13]; it is different from the

so-called piecewise smooth approach, i.e., u(t) : -k(t)K1,1,9t(t), where k(t) : y(r)2 is

smooth and only K1 depends piecewise constantly on k; see, e.9., [2,3]. This modifica-

tion has the advantage that the closed-loop subsystem (3) is a piecewise constant system.

That such a result is, in principle, possible for a much larger class of systems has been

proved by Mdrtensson [l4] and by Miller and Davison [15]. However, here we taylor an

appropriate switching strategy for the specific class (4), which is simpler, and it is possible

to show that "almost always" the terminal system is exponentially stable. This generic state-

ment is given here in terms of the switching sequence, whereas Townley [16] has proved

similar results in terms of the set of initial conditions xs € IRn.
This article is organized as follows. Basic properties of multivariable minimum-phase

systems are collected in section 2. In section 3, the unstable root-loci ofsingle-input, single-

output, minimum-phse systems are studied in depth. These results have interest in their

own right, and are also used in the following sections. In section 4, a modification of the

Willems-Byrnes controller (2) is introduced that guarantees adaptive stabilization of systems

belonging to D, and, as an improvement to other adaptive feedback strategies, yields ex-

ponential decay of the state, and a terminal system that is "almost always" (with respect

to the sequences of thresholds) exponentially stable. The latter is shown in section 5. In

section 6, it is proved that the stabilization result derived in section 4, in combination with

an internal model, leads to an adaptive feedback strategy capable ofexponentially tracking

reference signals belonging to a certain class. Topological results are also valid in this case.

Nomenclature

llr l l" : [<x: Px> forx ( IR', P : Pr < IR"'positive definite

C*(C-) Open right- (lefr) half complex plane

o(A) The spectrum of the matrix A < Cnn'

GI-(IR) The set of all invertible matrices M € R"'^

A1,..: A - KBKC (A, B,C) € IRNXN X IRNX- X R-'N, K€ IR,",, ft € IR

I2Q) Vector space of measurable functions/: J - IRn, J C IR some

interval, such that I ll/(s)ll2as < -

2. Some properties of multivariate minimum-phase systems

In this section, some results on the system class (4) are collected that give a deeper insight

into the system class and will be used in the following sections.

Remark 1. A multivariable system (A, B, C) € IRnx' x IRnx- x IR"n is minimum phase,

i.e., satisfies equation (6), if and only if it is stabilizable and detectable and the transfer

t25



r26 A. ILCHMANN

function C(sI, - A) tB < IR(s)-'- has no zeros in C*. Fo. a proof. see Ilchmann and
Owens [7]. This shows that condition (6) is an extension of the well-known minimum-
phase dehnition for single-input, single-output systems given usually in the frequency
domain.

I-emma l. If (A, B, C) e D (see (4)), then a useful state-space description of the system
can be achieved by the tansformation

4 . . - \

l /  |  : s - r x ,
l z )

where

s .: tB(c B) ,, vl

and V € IRnx(n-n) denotes a basis matrix of kerC. S has the inverse

f r ] r
g  l -  l -  |"  t r t '

where

T . :  (VrV)-t  Vrf I ,  -  B(C D tq.

The transfomwtion S tx converts equation (5) into

iQ)  :  Ap( t )  +  Azz( t )  +  CBU( t )  r ) (0 ) l  I

z ( t ) : A r y ( t ) + A a z ( t )  l . t o l  l : t - ' " o f  
t t '

L ' )

where A1 € R-t-,  Az (Wx('-^\,  A, < R(n m)xn, r44 € IR('  m)x(n m), so that

f  A ,  A , f
|  

. : ,  ' . . ,  
|  :  S - t . 4S .

lA t  A+  )

If system (5) is miminum phase, then it follows from

sI^ - A1 -Az CB I
-A3 s l , -^  -  A4 0 l  :  l t l , -^  -  A4l ' lC Bll s l - - A  B l

|  ( -  o l
t - " 1 I _ 0 0

that o(A) C C

Another important consequence of the minimum-phase assumption is that the present out-
put is related to the past output and input data via the following inequality, where no infor-
mation of the state variables is required.
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Proposition l. Suppose (A, B, C) € D, and a(') : [0, @) - IR- is locally integrable. Then

for every initial condition x(O) : .6o € R" and positive definite matrix P : Pr € R"n,
there exists M > 0, such that for all t > 0 we have

1 i lyrr l l l i  < M + u [ '  l lytst l l ' �ds + [ '  ruß). pCBursr)ds.' 2  -  '  J o  J o

Although this inequality has been implicitly used in earlier works [8, 19], or in a more
general framework, including nonlinear disturbances [7] and Zo-functions [5] forp > 1,
we would like to give a straightforward proof in the present simple situation. The inequal-
ity is a basic tool for the proof of stability of the universal adaptive stabilizer presented
in section 4.

Proof. Without restriction of generality, we may assume that system (5) is in the form of
equations (7). Since ,4a is exponentially stable, there exist M1, o ) 0 such that

l l z ( r ) l l  < M ( - ' ' + M { L y ( . ) ) ( t )  f o r a l l  / > 0  ( 8 )

where

(ry(')X/) :: l '  s-'(t- ') l lY(s)l lds.
J 0

Integration of

I  d . , ,  . ' ) .
l rttilrtslllä) 

: (y(s), PAtß) + PA2z(s) + PCBU(s))

< Mrl ly( ') l l '+ uzl ly( ') l l  l lz( ') l l  + (y(s), PCBu(s))

where M2:: llP,lrll + llPA2ll, yields

l l l r r , ,11',  = j i l r ,o, l lä * M, Iol lv(sl l l2ds * M, Ioi lv(sr l l ' l lztsr1ds

+ 
Jo 

(r(t),  PCBU(s))ds. (10)

Since L is a stable operator, we have for all r > 0,

f ' r t v ( . r ) t r r a ,  = \ [ '  l l y t s t l l 2 d s .  ( u )
J o  d ' J o
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fo. u p-of, see, for example, Vidyasagar 1201, p.252. Using inequalities (8) and (ll),
and applying Hölder's inequality twice, yields for all I > Q

/ ' l lrt ' l l l ' l lz(s)llds - , ' I:e-'"lly(s)llds * ,, I:l ly(slll(ry(.)Xs)ds
f  

- \ r t z  (  ) r r z
3 Mr |  [ '  ,  , *a ' l  I  f ' i lyr ' l l l 'a ' l

L ' �o  )  [ ' o  )
( -  - \ u z  (  l v z

* ,,1 [^ ttrr'l1'a' | | [^<ryot\'>a'l
L ' �o  )  [ ' o  )

(  f r rz
- u,(2,)-,,r1 l^ i lyr,l l l 'a, l- * *, * lo i lrr,rl l ,a,

L ' O  )  
* J

=** / ' l l - v t , l l l ' a ,  *+ l ' r l l y ( s r l l 2ds .  u2 , ;

Inserting inequality (12) into inequality (10) yields the desired inequality for

u :: M?l2a + rlzlly(O)llzp + I + Mlta r M2. n

3. Root loci of minimum-phase systems

Suppose that for ft € IR and K € IR-^-, output feedback of the form

u(t) : -kKY(t)

is applied to system (5). Then the closed-loop system is given by

*(t) : Ap(t), x(0) : rs,

where throughout this section we use the notation

Ar ' . :  A -  kBKC. (14)

We will study the unstable root loci of the parameterized matrix A1,, in particular, if
(4, B, C) is single-input, single-output, and minimum phase. The results may be of interest
in their own right and are basic to derive topological properties of the terminal system
in section 5.

(13)
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Remark 2. Basic properties of the linearly perturbed matrix Apparameterizedby k € IR,
with no extra assumptions on A, B, C, K, are derived by Kato [21], who shows that the
number of eigenvalues of ,41 is a constant / independent of k, with the exception of some
exceptional poinls. Theses points originate from the algebraic singularities ofthe (branches
of; the solutions of det(X/, - A*) : 0. In each compact set of IR, there is only a finite
number ofsuch exceptional points in k.Let I C IR be an interval not containing any excep-
tional points. Then the eigenvalues \;(ft) of ,4p depend analytically on ft € 1. Moreover,
the total projection P1-(ft) on the total eigenspace associated with \r(/<) is analytic in
k < I, and so is the eigennilpotent D1-(k), which satisfies

Dx,(ft) : (\,(ftX" - A) P\t(k).

Since D1.(k) is analytic in k < I, there exists an analytic vector lrx,(t) # 0 such that w1-(k)
€ kerDl-(ft) (see, e.g., Gohberg et al. 1221, p. 388). Therefore,

v1.(ft):: Px.(ft)wr(k)

is an eigenvector of,41 belonging to \;(/<), and depending analytically on k e. L

It is well known that single-input, single-output, minimum-phase systems are stabilizable
by high-gain feedback u : -lq). This property carries over to multivariable systems in
the following sense.

Remark 3. Suppose (A, B, C) eD, K € IR"', and o(CBI9 c C*.Then, if k tends to
infinity, the eigenvalues of ,4p are approaching the eigenvalues of -kCBK and z4a, where
Aais a stable matrix. This follows from the decomposition (7) together with Schur's for-
mula (see, e.g., Gantmacher [23]), which yields

deth.f, - (A - kBKC)l: o.t I 
N' - At + kCBK A2

;  
- A :  \ 1 , - ^ - l o )

: det(X/. - Ar r kCBn' det[(\I,-- - Ai - Az(N^ - At * kcBn-t A2].

Thus, in the limit we obtain

lim o(A - kBCK) : lim o(-kCBI9 U o(A).
/ < - o  k - a

Therefore, there exists ak* > 0 such that o(Ak) C C- for all ft > k*. Note that the
set {ft > O I o(A1) n C* * 0} is not necessarily connected.

The following proposition shows, interestingly, that if k varies, then all unstable eigen-
values of .,4p are moving.

129
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hoposition 2. suppose (A, B, c) € D and K € IR-'-. If )r2 : I - c. * denotes an anaryicparameterization of any unstable eigenvalue of A1, on some open interval I c IR, then
ltp # constant on I.

Proof. The decomposition of (A,9, C) given in equations (7) yields

t
det[sln - Ar'] :O"tl 4 - At + kCBK A2 

l
L _Az sI,_^ _ AoJ

: det(sln_^ - A+) . de(sL - Ar * kCBK _ A2(sIn-^ _ Aq),tAz).

Suppose, for some \ e C*, we have \r : \ for all k € f. i.e..

det(\1, - Ar) : 0 forall k < I.

Sincedet(\I,_^ - A+) * O,it followsthatfor M:: N^ _ At _ Az(M, ^ _ Ao)-rAz,
we have

det(M + kCBn : O for all /< € 1.

or equivalently,

det(frI + kI^) :0 for all k < I,

where frI is a Jordan form of MlCBK;-r. Thus,

det(fu + kI^) : fi,rr,+ ft) : 0 for all k < r,
i : l

where p,, ..., Fm denote the eigenvalues of rü. Since the p; do not depend on k, this is
a contradiction, and the proposition is proved !

The following proposition shows in particular, that for single-input, single-output, minimum_
phase systems with positive high-frequency gain cb > o, ttre mat.i* A1, has, for alr but
finitely many t, otly distinct unstable eigenvalues (see also Ilchmann and owens [17]).

t
Proposition t If (A, b, c) e D is single-input, single_output, then the set

S :  { k € l R l , 4 r :  A -  k b c  h a s e i g e n v a l u e s i n C * o f  m u l t i p l i c i t y l -  2 }
is finite.

Proof. Choose coprime polynomials €(.), üC) € IR[s] so that

c(s ln -  , lS to :  e !s)

ü ( s ) '
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It can easily be seen that

c(srn -  Ar)- tb:  f f i ,

where

ür(s) :: r/(s) + fte(s).

Coppel ([24], theorem l0) has proved that, if (A, b, c) is detectable and stabilizable, then
s € C* is a zero of t(') (including multiplicity) if and only if it is a zero of det(.l, - A).
Since (,41, ä, c) is detectable and stabilizable (see remark 1), it follows that

\ :  { k  €  R  l , i l . )  h a s a z e r o  i n C ,  o f  m u l t i p l i c i t y  I -  2 \ .

Next we will derive a necessary condition for r/1(') having a repeated zero al s e C *,
which is equivalent to

t / s ) : ü l ( s ) : 0 ,

respectively,

ü(s) : -ke(s) A ü'(s) : -te '(s). (15)

Since e(') and r/(') are coprime, this can hold only if /< : 0 or

k * o  A  e ( s ) 1 0  A  r / ( s ) t 0 .

Now equations (15) yield

ü(s) : ü'(s)
e(s) e'(s) '

which is equivalent to

4(s) : :  r / (s)e ' (s)  -  r / ' (s)e(s)  :0 .

But r/(s)/e(s) cannot equal ry''(s)/e '(s) for all s € C1, since the denominator polynomial
of the latter is smaller than the former, so it must be that q(s) is not the zero polynomial,
which means that is has a finite number of zeros. Hence, equations (15) yield

s c {o} ,  
{- :  

-8: - f f i  
|  ,u, :0, s. d.J
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Therefore, S is finite, and the proof is complete. n

Proposition 3 does not hold true for multivariable minimum phase systems. This can easily
be seen from the example A : B : C : 1n, so that At : (l - k)1,.

Therefore, the important consequence of proposition 3 that the unstable subspace of ,41
is spanned by piecewise analytic eigenvectors is no longer valid.

The following lemma shows that, for single-input, single-output systems, the projection
of each fixed nonzero vector f € R' onto the k-depending unstable subspace of Ap is
nonzero, with the exception of discrete points k € IR.

r-emma 2. suppose the system (A, b, c) € IRnx' x IRn x al"n is minimum phase and
controllable. Let I c IR be an open interval such that Xp : 1 + E* is an analytic
parameterizlttion of an unstable eigenvalue of Ao : A - kbc with eigenvector v1r. Then,
for ( ( IR", we have

( r r , l ) : 0  f o r a l l  k < I  < +

Proof. Suppose ( v1, l) : 0 for all k ( 1. Since

f  x o t , - t o  b l f  t ,  o l
L  f  o J L - r .  r ^ )

it follows from the controllability assumption that

n < rk l  ^0,^. ;  n bf  -  - , . f  xot ,  -  , to
L  r ,  0 l : f t l  r

Since vp is a right eigenvectoq we have

f  x o r , : n o  b j  [ * - l  : n
L  r '  o l L o J : " '

and equation (16) yields

, k l  ) 'o t^ . ;  A  b f
L  f '  , l : n  f o r a l l  k < l '

proposition 2), equation (17) yields

' f  s l - - A  b f  : n  f o r a l l  s ( c ,' * l  
{  o - 1

r : 0 .

f xot, - ,q bl
L  r '  o J '

b l
0 l ' (16)

(r7)

(18)

Using the identity theorem of analytic functions and the fact that \ is not constant (see

and hence the (n * l) x (n * l) matrix in equation (lg) is singular over the field IR(s).
Thus there exists a nonzero pair (9(.), d(.)) € IR[s], x IR[s] such that

e(s)r(sl, - A) : a(s)fr and p(s)rb : o f o r a l l  s € C . ( le)
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If, for every nonzero pair (rpo, e(.)) satisfying equations (19), it holds that a(.) = 0, then

eg)rfsl, - A, b) : 0,

and, by right invertibility of f,sl, - A, bl, po : e which contradicts (<pt), cu(.)) + 0.
Therefore, there exists a pair with d(.) + 0. considering (sI, - r4)-r as un etement or
IR(s)n^n, we obtain

o :  a (s ) i r ( s In -  A ) - t b ,

and hence
@

0 :  l r \ s - { i + t ) / 6 ,
i : 0

whicll yields

o  :  { t b ,  A b ,  . . . ,  A n - t b l .

Since (,4, b) is controllable, the controllability matrix is right invertible, which implies
that f : 0. This proves the lemma. D

The controllability assumption in lemma 2 is essential. Lemma 2 does not hold true for
systems (A, b, c) € D that are not controllable. Consider, for example,

A :  [ o  o l .  r r ]  l _ *  r lA :  
l o  - r l "  c : ( r ' 0 ) '  ' : [ ö J '  a n d  ' t r : 1 0  - r ] '

For k € (- -, 
9), the right eigenvector corresponding to \o : -t is vp : (1, 0)r. However,

for; : (0, l)2, we obtain (rr, l) : 0 for all lc e 1--, O;.
Before the main result of this section is proved, a technical lemma is required.

I-emma 3. If A € IR'xn, xe € IRn. and\, € C* so that

Av : )s and (v, xs) # 0,

then the solution of the initial-value problem

i(t) : Ax(t), -r(0) : "o

is such that 4xs * O as t + @.

Proof. The solution x(r) can be written

x(t1 : /'xo : a(xo)e\tv + i(t),
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where i(l) is linearly independent of en'v. a(xe) denotes the coordinate of the projection
of xs on vIR, which is given by

cv(xs) : v(vrv)-'rr*s : a* uto.
l l v l l '

Now, ( v, xs) * 0 yields a(xs) I Q and the result follows, since \ is an unstable eigen-
value. I

We are now in a position to prove the main result of this section, which, in particular,
says the following. Suppose (A, b, c) is a controllable minimum-phase system such that
the closedloop system t(t) : lA - kbclx(t) is stable for k sufficiently large. Let I C

[0, o) be a finite union of closed intervals so that Ar : A - kbc is exponentially stable
whenever k e [0, oo)\/. We obtain the result that, if rs € IR is fixed, then the solution
of i(t) : Ap(t), x(0) : xs, is unstable for all but finitely many k € /.

Theorem l. If the system

i(t) : Ax(t) + bu(t), x(0) : "o

Y(t) : cx(t) '

is controllable, minimum phase, and of relative degree l, and xs € IR", -rs I O, is fixed,
then the solution of the initial value problem

i(t) : IA - kbclx(t), -{(0) : ro

satisfi es the following :

(\) The set

{ f t ( R .  l o ( A - k b c ) l r C + # b and limetA kb'l'xo : o\

is discrete in ß..
(\1) If cb > O, then the set

{ f t - 0 l o G - k b c ) f r E , * g limetA b.ltro : 0)

lim /1xo : 0)

and

is finite.

Proof. Let 6 denote the discrete set of exceptional points k defined in remark 2. (i) is proved
if it can be shown that the set

{ f t € R \ 6 | o ( l r ) f i E , * 6  a n d
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is discrete. Let IR \ 6 : U i.n4 be the countable union of disjoint open intervals. It re-
mains to prove that for every i € IN the set

{k < I , l  o(Ar,)  i  E* + A and lim 4(xo : O)
t J o

is discrete. Let I :: /,; for some i0 € IN, and \1 : 1- C*, vp i I + C'denote analytic
parameterizations of an unstable eigenvalue-eigenvector pair. It follows from lemma 2 that
the analytic map fr * (ur, xo) is not identicalzero on 1. Thus, the set of zeros of fr *
(vr, xo) is discrete in 1. Now (i) is a consequence of lemma 3. (ii) follows from the fact
that there exists a Ä* > 0 such that o(Ar) I C. for all k > /C, and hence the set con-
sidered in (i) is bounded and therefore finite. I

Remark 4. Unfortunately, previous results cannot be extended to multivariable systems.
Consider, for example, the controllable and observable minimum-phase system i(t) : Ax(t)
+ Bu(t), y(t) : Cx(r) given by

2  [ r  o  IA :  l ö  _ " ,  1  B : C r : r z .

vr : (1, 0)ris an unstable eigenvector of A - kBC : diag{l - k, -l - A} with eigen-
value (l - k) for all k € [0, l]. Since (vu ez) : 0 for all ft € IR, lemma 2 cannot be
generalized. The same is true for theorem 1, since the set considered in (i) (respectively,
(i i)) forxo : (1,0)r, is the continuum (--, 1l (respectively, t0, U).

4. Universal adaptive exponential stabilization

In this section we will show that a simple modification of the Willems-Byrnes controller
(2) can be applied to a large class of systems to achieve exponential stabilization. In the
most general case of the system class (4), where no special assumptions about the high-
frequency gain are made apart from det(CB) I 0, the switching strategy is based on the
following result from linear algebra.

Irmma 4. There exists a finite set

{ K , , . . . , K r y }  q  G L . ( I R )

so that, for any M < GL^(R) there exists i ( {1, . .., N} such that

o(MKi)  I  Cn.

Proof. See Mdrtensson 13, 251. T
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The set given in lemma 4 is often called a spectrum unmixing set for Ga-(IR). unfor-
tunately, the cardinality of the unmixing sets constructed by Märtensson [3, 251is far too
large to be convenient for applications. Little is know about the minimum cardinality of
unmixing sets (see [26]). However, for m : 1, the set {1, -1} is obviously unmixing, while
for m : 2 there exists an unmixing set of cardinality 6. It has been shown by zhu l27l
that G/4flR) can be unrnixed by a set having cardinality 32. We frrst introduce a universal
adaptive stabilizer for the class (4), which ensures exponential decay to zero of the state.

Theorem 2. Suppose {Kv . .. , Krv} E GI-(IR) is a spectrum unmixing set and {4},=o
C IRIN is a sequence of thresholds satisfying

T.
r i  1  r i * , .  

I ' T  * : 0 .

If the adaptive control scheme

u ( t ) :  - K ( t ) Y ( t )
s(/) : lly(r)ll'� , r(0) :

K(t) : Ti. Ki.oaN , if s(t)

is applied to any system

x(t) : Ax(t) + Bu(t), x(0) : ro

Y(t) : Cx(t)

belonging to the class (4), with arbitrary initial condition x() ( lRn, then the closed-loop
system (2I), (22) has a unique solution x(t), and

(i) x(r) decays exponentially to zero as t tends to @,
(ä) there exist is € IN, r* > O such that

IA - BK(t)Cl : A - TioBKio,odNC for all t > t*.

The intuition behind this control strategy is as follows. By the minimum-phase property,
it follows from remark 3 and lemma 4 that there exists ls ( {1, . ., N} such that

u(t) : -TK,*"o1,9(t)

yields an exponentially stable system

i(t) : l,A - TBKio..oTsClx(t),

(20)

r o j
e l T i t , T ) , i : 1 , 2 , . . . )  Q l )

(22)
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provided Tnis sufficiently large. As long as the trajectory x(t) is not decaying fast enough
tQ zero, then s(t) hits the next threshold, K(/) in equations (21) travels through the spec-
trum unmixing set and increases the gain l, until finally the gain T; is large enough and
A - TiBKi,.o1,'c is exponentially stable. The growth condition (20) ensures that the
system stays, for longer and longer periods, with an exponentially stable A - TiBKi^.duC
so that there exists a period that gives the system time to settle down. Exponential decay
of the solution is then a simple consequence of the fact that A - BK(I)C becomes finally
a constant matrix. Therefore, asymptotic decay of the trajectory implies exponential decay.

Proof of theorem 2. (a) Discontinuities of the right-hand side of the closed-loop system
occur whenever s(r) leaves an interval fTi_t, T), which at times is

r , : :  m i n { /  >  0  |  s ( r )  :  T i } ,  i  :  1 , 2 ,  . . .

If the minimum does not exist for some f, then put /j : @.
There exists a unique solution on the interval [0, /0), and, if /s 4 o, then the finite limit

x(tü :: lin;-ax(t) exists. Proceeding in this way for the next intervals, it follows that the
solution x(t) of the closed-loop system exists on [0, t'), where lim;-- ti : t,.

O) We show that s(.) € Z-(0, r'). Suppose the contrary, i.e., infinitely many switches oc-
cur. By_assumption, there exists Kr € {&, ..., KN\ such that o(CBK;) E C*. Let
P : Pr € IR'x' be the unique positive-definite solution of

K{GDrp + PCBKi :21^.

C h o o s e c Y ) 0 s o t h a t

-K{(cryrp - PCBKT < 2aI^ for all /  €  { 1 ,  . . . ,  N }  .  ( 2 4 )

It then follows from proposition 1 that for all / ( IN and for some M > 0, we have

Qs)

Without restriction of generality, one may assume that i : N; otherwise, start at a different
time t with initial condition x(4). Equations (23) and (24), ngether with the tuct that K(r)
is constant on [r1, l1*1), yield
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(26)

- 
f ; ."r 

(v(r), PCBK(r)v(r))dr

T , , , , , * l o T l i , r , N  t  -  T , i ' r w  t T i N  *  I i * , , r u  t -  l - l'  
L  T f1* r ,N Tr j - r tu  - l

o7];*r';ru-r(l j+l)N-r - Til) - 
l;*r1,,, '(Trj+l)N 

- 7r;*rtr,, r)

Since equation (26) tends to -T(,*r,,, for j + o, there exists a Mr > 0 such that

s  f l r , + t ' r u-  
L  l ' '  ( y ( r ) .  P C B K ( r ) y ( r ) ) d r  <  M 1  f o r a l l  /  (  I N .
i :0  r  t l

(21)

Equation (26) also yields

-- l  S"N (v(r\.  PCBK(.tv(rt)dr = Ti l  
f  oTlu-t 

- 
lw rTtN * l ' t '  I  -  ' l  .

T w - T o r t ( t \ N  T w - T o l  r k  T w  l
(28)

and the right-hand side of equation (28) tends to -4rv as / * o.
Therefore, by inserting equations (Tl) and (28) into equation (25), the right-hand side

of equation (25) tends to -6 as / - oo. This contradicts the positivity of the left-hand
side of equation (25), and it is proved that s(.) € Z-(0, r'). ,

(c) It follows from (b) that t' : oo, and part (ii) of theorem 2 is proved.
To prove part (i), let r* > 0 such that

K(t) : TuKu,oar,r for all t > t*.

By lemma l, the terminal system

i(t) : IA - TMBKM-oo,,uC]x(/), x(0) : x(tu_),

can be expressed as

y(/) : (At - TMKM^ooryCB)y(r) + A2z(t)
z ( t ) : \ y ( t ) + e 4 z ( t ) .

Since y(') ( I4(0, o) and,4a is stable, it follows that z(.) < hQ, o). Furthermore, y(.),
i(') e I2Q, o). Therefore (see, e.g., Ilchmann and Owens [7]), lim,--y(l) : lin1,-z(r)
: 0. Since the system becomes constant after finite time, asymptotic decay of r(r) implies
exponential decay, which proves part (i). This completes the proof of the theorem. tr
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Remnrk 5. If additional information on the spectrum of CB is available, then the output
feedback and assumption (20) on the growth of the thresholds can be considerably simplified
as follows:

(i) If it is assumed in theorem 2 that o(CB) I C*, then the output feedback can be
simplified to

u(t) : -K(r)y(t). K ( t ; : 7 , , i f
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where the right-hand side becomes negative for i sufficiently large. This contradiction
proves s(') € a-(0, t'), and hence parts (i) and (ii) of theorem 2 follow as in the proof
of theorem 2.

(ii) If it is assumed in theorem 2 that o(CB) C C* or o(CB) C C- @ut which half plane
actually contains the spectrum is unknown), then the output feedback can be simplified
to

u ( t ) :  - K ( t ) y ( t ) ,  K ( t ) :  ( - l ) ' T i  i f  s ( r )  €  [ 4 - r ,  T , ) , i : 1 , 2 ,  . . . ,  ( 3 1 )

where 7e < Tt < . . . is requierd to satisfy the following discrete version of a
Nussbaum switching function (for the concept of Nussbaum switching functions, see
Nussbaum [28] and Willems and Byrnes [1]):

(2e)

where the sequence of thresholds has to satisfy

To  I  T t  1  . . .  and l i m $ - 4 - r l : - .
i + o

(30)

To prove statements (i) and (ii) of theorem 2 for this case, only part (b) in the proof
needs a change. By using the same argument, we can derive the inequality

.  ^ E1-,(- l ) ' �T,(7, -  T,_,t
r n l  ' - "  

;  
' '  

;  
' '  :  - o o .

1 € I N  r l  -  1 0

_ _E j : , ( - l ) 'T i (T i  -  T i11
eer --------------T- 

T
1 € I N  r l  -  t 0

: *o (32)

Equation (32) is weaker than inequality (20). For example, it can be easily seen that
Ti'.: i2 satisfies equation (32) but does not satisfy inequality (20).
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To prove theorem 2 in this case, only part (b) in the proof needs a change. By using
the same argument, we can derive the inequality

- zd - 
I t- DiTi(Ti - Ti_)
i : 0

: M * (rt - rülu *zl"G?'r'<rt- r '  t1 -
t  T r - T o  I

Now equation (31) yields that the right-hand side of the above inequality takes arbitrary
large negative values, thus contradicting the positivity of the left-hand side. This proves
s(') e L-(0, /'), and statements (i) and (ii) of theorem 2 follow as in the proof of
theorem 2.

5. Topological aspects of the terminal system

In theorem 2 it is proved that x(r) decays exponentially to zero. This does not imply that
the terminal system

i(t) : tA - (-t)MTMBKM^oauCl x(t)

is exponentially stable, where

M :: inf{i ( IN I l im r(/) < r.}.

In this section, we will consideq for fixed initial condition xs, controllable single-input,
single-output, minimum-phase systems of relative degree l, that are systems of the form

) t l t o , t l l i < M + ( r t

x ( t ) : A x ( t ) + b u ( t ) ,

y(t) : cx(t),

r(0) : rs I
j (33)

with (,4, b, c) ( IRn*n x Rn x Alxr and cb I 0.
We will show that the set of sequences of thresholds that lead to an exponentially stable

terminal system is dense and that, at each time /; where the gain ?] switches, the new
trajectory

elA-(-  t ) i+ tT i+pcl( t - t )x( t  
)

is not exponentially decaying with probability I whenever IA - (-I)i+tTi*1äc] is not ex-
ponentially stable. To make this more precise, let
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l : :  {T :  { 4 } i . n r  €  RN I  I  sa t i s f i es  (30 ) } ,

and define a subspace of 5 that is relevant for the switching strategy (31) as

3 :: {T( 3 | f satisfies (32)\.

For e ) 0, we define the open ball with center Z : {4}i.nr € IRN to be

G. ( I ) : :  {S :  {S i } i . nq  (  R IN  l l s ,  -  f J  <  e  f o ra l l  t  €  IN } .

Using this terminology we have the following.
Consider a controllable, minimum-phase system of the form (33), with fixed x6 ( IRn,

xs I O. Then the set oftle sequences ofthresholds 5" (respectively, 3"), i.e., all sequences
7 € 5 (respectively, 7 € 5) so that 7 in combination with equation (29) (respectively, equa-
tion (31)) leads to an exponentially stable terminal system, is dense in 5 (respectively, 5).

Theorem 3. Suppose system (33) ls a controllable, minimum-phase system with cb * 0
and fixed re € IRn, xs # O. If T < 3 and equation (29) (respectively, T < 3 and equation
(31)) ts applied to system (33), thenfor every e > 0 there exists T € G.(? such that T,
instead of T, leads to an exponentially stable terminal system and T and T dffir in only

finitely many points.

Proff. We consider the switching strategy (31) only; (29) is simpler. Suppose the switching
algorithm using the nominal sequence 3 leads to a terminal system lA - (-DMTMbcl,
which is not exponentially stable. Then, in particular, s(t) < [Ty 1, Ty) for aIl t > ty-t,
the last switch occurs at time ty 1, a\d

4e-{-r)Mr*orl(t-tu,)*17r_r) - 0 as t - @.

By theorem I (i), the set of ft ( IR so that

o(A - kbc) A C.* * A and lim etA-(-'t)MrMbcl(t-tM t)a11r-r1 : g

is discrete. Thus we can choose €' ( (0, e) and Sy instead of Z,y so that

Tu,r  1 Tu -  e '  1  Su I  Tu *  e '  1  Tu+r.

and

6,t { r)Msru,11t tu-)x(tu,r) * 0 as t - 6 -

Since (,4, ä, c) is detectable (see remark l), s(t) will leave the interval [Ty1, Sy). Pro-
ceeding in this way, and changing the nominal switching sequence at each switch, so that

t4l
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the projection of the state on the unstable subspace is nonzero, the switching strategy will,
according to theorem 2, stop after finitely many switches. Therefore, the terminal system
must be exponentially stable. This completes the proof. n

An immediate consequence of theorem 1 (i) is the following observation.

Remark 6. Suppose 7 € 3, and equation (29) (respectively, z < 3 and equarion (31)) is
applied to a controllable minimum phase system (33) with xs I 0 and cb ) 0 (respec-
trely, cb I 0). Then at each time

t ,  : :  i n f { r  2  t i _ t  l s ( r t  :  4 } .  r s  : :  0

when a new gain is chosen, the new trajectory

x(t; t) - "lA-r1aPc)(t t)x1i)

(respectively, .

i ( t :  r )  :  , lA r - t t i ' tT , , f t ' l r t - t ) *1r . r ,

satisfies

x(t; t,) * 0 (respectively, x(r; l,) r+ 0)

as / + oo, with probability 1 with respect to ?]*1 € IR if

o ( A - T , r f t c \ f r C . t  * A

respectively,

o ( A  -  ( - l ) i * t T i , p c )  ( \  E ,  *  A ) .

6. Universal adaptive exponential tracking

In this section, we will show how to apply theorem 2 in order to obtain an adaptive track-
ing controller for the class of reference signals defined by

f  ' -D  ^6 -  .  ,  f  a )  
- l

U,er::  
1]*n., :  

IR - rR-a€--tunct ion l" lä)y,.dr) = 0f ,

where cv(s) € IR[s] is a knownmonic polynomial with zeros in e . onrj
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The objective is to construct an adaptive control laq such that for any linear system
belonging to class (4) and any reference signal y."r(.) ( !,.r, the closed-loop output re-
sponse y(t) generates an error e(t) y(t) - y.e(t) that decays exponentially to zero.

The main idea, which, for single-input, single-output systems, goes back to Mareels [6]
and Helmke et al. I I I ] , is to use the knowledge of o(') to construct an internal model (that
is a duplicated model of the dynamic reference signals) as part of a precompensator in
the feedback loop. More precisely, let 0O € IR[s] be a monic Hurwitz polynomial of degree
p : deg cv('), and choose a minimal realization of p(s)/o(s) denoted by (A, B, C, l) (
IR2'p x IRP x Rl'r' x IR. Then we will apply the precompensator

tO : Ä.tO + B-v(r). u(t) :  ö-g1r; + I^v(t), {(0) e n'z (34)

where

t43

A. : diag{A,

0. : diag{e,

e ( t ) : y ( t ) - . I , " r ( / )

' ( r ) :  l l y ( r ) l l ' �
v(t) : - K(t)e(t)

K(t) : Ti ' Kimoay

t ( / ) : Ä . t @ + f i - v ( t )
u ( t ) : e . 1 9 1  + t - u 1 t ,

F- :  diag{6, , t41 < IR'P",A \

öt

(  RmPnmP

€ IR.X.P.

The internal model (34) is connected in series with previous adaptive stabilizers to obtain
the following adaptive tracking result.

Theorem 4. Suppose (A, B, C) is a member of system (4) and lKr, . . , Kru) C Gt (IR)
is a spectrum unmixing set. Let {4},=o € IRN äe a sequence of threshods satisfying

T ,  I 7 , , , .  f i m  3 : O
i - o  , i  r  I

and (Ä-, Ä., e.) be defined as in precompensator (34). If tQ) € IR'P, an initial condi-
tion, and )r"(') € \r"t, a reference signal, are arbitrary, then the error feedback controller

, s(0) : ro

,  i f  s ( r )  e  [T i - r ,  T i ) ,  i  :  1 ,2 ,

, {(0) < ut'P l (3s)

applied to any system belonging to class (4), with arbitary initial condition.r(0) ( IR',
yields a unique solution

(x('), t( '), s(')) : t0, t ') + IRn+zP+r

with the following properties:
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( i )  t '  :  o .
(1i) e(t) decays expoanentially as t tends to a.

(ili) There exists io € IN sucft that s(t) < T;nfor all t > o, i.e., the switching mechanism
stops afier finitely many switches.

(iv) There exists a c ) 0 such that for all t > O,

l l tgl/),  xr7Dr l l  .  .(r * maxsero,rt{ l ly..r(r) l l}).

Proof. The input-output behavior v(') * y(') of the series interconnection formed by pre-
compensator (34) and (A, B, C) is described by

i(t) : zi(t) + Ev@, y@ : ei@, r(o) ( rR-+"

where

, : lt uf..f , ' :  [ f . ] ,ö :  I c ,  o l ,  t :  
[ ; ]

A. ILCHMANN

(36)

(3'�7)

(38)

It is easy to see that (A, B, C) is minimum phase. The essential ingredient of the present
proof is the following lemma due to Miller and Davison [29] (see also Townley and Owens
[30]):

[,emma. For every ]."r(.) € \r.1, there exists an ie € IRr+.2 such that

y,.,1t; : öi1t'5, i1t1 : 1;1rr, ;(0) : ;o,

( r
l l ; t r l l l  <  c  I  t  +  max{ l ly - r ( ' ) l l }  |  fora l l  r  >  0.

L se[0,r ]  )

By equations (37) and (38), x"(t) :: i(t) - f1r; satisfies

i"(0 : ti"1t;) + Ei1t1, t(0) : t(0) - ;(0)

eQ) : Öx"Q).

The problem has hence been converted into a standard stabilization problem for the error
e(t). By the Miller-Davison lemma above, and since cB : cB, theorem2 canbe applied.
This proves (D-(iii), (vi) is a consequence of inequality (38), and lim,--x"(r) : 0. This
completes the proof. tr

Remark Z The topological properties of the terminal system are valid in a similar manner
for tracking of single-input, single-output systems. For brevity, the proof is omitted.
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7. Concluding remarks

We have introduced a simple universal adaptive stabilizer for the class of multivariable
minimum phase systems (A, B, C) with de(CB) I 0. The switching strategy is piecewise
constant between discrete points of time and is tuned by the function /ot ll y(s) ll2ds and
a given sequence of thresholds. The feedback controller u(t) : -T;Ki^o1yy(t) increases
the gain ! with each switch, and travels through a finite-spectrum unmixing set in order
to find a stabilizing feedback matrix Kr. The minimum-phase assumption guarantees that,
if necessary finally the matrix A - BTiKi^o6,1C is exponentially stable. Therefore, the
switching algorithm stops after finitely many times, and the state of the terminal system
i(t) : IA - TyBK;^o4yC]x(r) decays exponentially. For single-input, single-output sys-
tems, the root loci of minimum-phase systems yield that the set of thresholds that produce
an exponentially stable terminal system lies densely in the set of thresholds. Moreover,
each time a new gain is implemented and the overall system is unstable, the probability
is 1 that the new trajectory is unstable. In combination with an appropriate internal model,
the previous results are applied to solve the adaptive tracking problem for a class ofrefer-
ence signals that are solutions of a known differential equation.
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