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Abstract. We consider the class of multi-input, multi-output, finite-dimensional, minimum-phase systems x =
Ax + Bu, y = Cx, where it is required that det(CB) # 0, but the state dimension is unknown. For this class,
a simple universal adaptive high-gain controller—not based on any identification mechanism—is introduced that
ensures exponential decay to zero of the solution of the closed-loop system. Moreover, the terminal system is
“almost always” exponentially stable. The switching-type controller switches between constant gains at discrete
points of time and is based on the simple Willems-Byrnes controller u(t) = —k(t)y(¢), Ié(t)z. The results are
extended to solve the adaptive tracking problem for a certain class of reference signals.

1. Introduction

It is well known that for every single-input, single-output, minimum-phase systems belonging
to the class

x(t) = Ax(t) + bu(t), x(0) € IR" (
1y
y(@) = cx(@), cb > 0
the adaptive strategy introduced by Willems and Byrnes [1],
u(t) = —k@)y@)
. \ )
k() = y(t), k@©0) € R

leads to a closed-loop system with convergent finite-gain lim,. ok(t) = k., € IR and asymp-
totically to zero-converging state x(t) of

x(t) = [A — kObclx(t), x(0) € IR". 3

This approach uses neither any identification mechanism nor probing signals. In recent
years, it has been extended and applied to various classes of minimum-phase systems, such
as multivariable [2-5], higher relative degree [6, 7], infinite dimensional [8, 9], nonlinear-
ly disturbed [10], and tracking [6, 11]. This list represents only a selection of references;
see Ilchmann [12] for a survey and bibliography.
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Almost all contributions have in common that lim, ,,,x(tf) = 0, but the problem of
whether the decay is exponential is an open one. Moreover, the so-called terminal system

x(t) = A x(1), where A, = A — kubc,

can be unstable. However, computer simulations have shown, that “almost always” the ter-
minal system has its eigenvalues in the open left-half plane only.

The purpose of this article is as follows: first, to introduce a simple modification of the
feedback strategy (2) for a large class of multivariable minimum-phase systems having the
benefit that the state x(¢) decays exponentially to zero; second, to prove topological prop-
erties of the terminal system, that is, that the terminal system is “almost always”™ exponen-
tially stable; and third, to extend theses results to universal adaptive exponential tracking
of certain signals.

The class of systems under consideration is the following class L of multi-input, multi-
output, linear, minimum-phase systems

x(t) = Ax(t) + Bu(?), y() = Cx(t), x(0) € IR"
(4, B, C) € R x R™" x R™"  n is arbitrary 4)
(4, B, C) is minimum phase, det(C B) # 0

where the linear system

It

x(t)

®)
y(@)

Cx(t)

Ax(t) + Bu(t), x(0) € IR’}

associated with (4, B, C) € IR X IR™™ x R™", is called minimum phase if it satisfies

det[SIEA §J¢0 forall s¢€C,. ©6)
Instead of continuous gain adaptation K(¢) in the feedback u(r) = —K(t)y(r), we will con-
sider piecewise constant gain implementation tuned by the function s(1) = y(t)* and a
prespecified sequence of thresholds Ty < T) < ..., satisfying a certain growth condi-
tion. For example, for single-input, single-output systems such as system (1), with known
sign of the high-frequency gain, cb > 0, the adaptive feedback strategy will be

ut) = —k(r)y(r)
s@t) = y(t)? , 8(0) = Ty
k(t) = T, Jif  s(t) € [Ti_y, T).

At each time when the tuning function s(r) = [} y(s)’ds + T, reaches a threshold T4,
the feedback law will be changed to u(r) = —T;y(z). Eventually, the gain will be so large
that the trajectory of the closed-loop subsystem x(f) = [A4 — k(t)bclx(t) will decay ex-
ponentially (this is ensured by the minimum-phase assumption). Therefore, the integral
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[ y(s)*ds converges, and no more switchings will occur. The idea of using thresholds and
piece-wise constant gain adaptation has been used, for single-input, single-output systems
with positive high-frequency gain, by Ilchmann and Owens [13]; it is different from the
so-called piecewise smooth approach, i.e., u(t) = —k(t)Kyq,y(t), where k@) = y(t)? is
smooth and only K, depends piecewise constantly on k; see, e.g., [2, 3]. This modifica-
tion has the advantage that the closed-loop subsystem (3) is a piecewise constant system.

That such a result is, in principle, possible for a much larger class of systems has been
proved by Martensson [14] and by Miller and Davison [15]. However, here we taylor an
appropriate switching strategy for the specific class (4), which is simpler, and it is possible
to show that “almost always” the terminal system is exponentially stable. This generic state-
ment is given here in terms of the switching sequence, whereas Townley [16] has proved
similar results in terms of the set of initial conditions x, € IR".

This article is organized as follows. Basic properties of multivariable minimum-phase
systems are collected in section 2. In section 3, the unstable root-loci of single-input, single-
output, minimum-phse systems are studied in depth. These results have interest in their
own right, and are also used in the following sections. In section 4, a modification of the
Willems-Byrnes controller (2) is introduced that guarantees adaptive stabilization of systems
belonging to L, and, as an improvement to other adaptive feedback strategies, yields ex-
ponential decay of the state, and a terminal system that is “almost always” (with respect
to the sequences of thresholds) exponentially stable. The latter is shown in section 5. In
section 6, it is proved that the stabilization result derived in section 4, in combination with
an internal model, leads to an adaptive feedback strategy capable of exponentially tracking
reference signals belonging to a certain class. Topological results are also valid in this case.

Nomenclature

lxll = J<x, Px> forx € R", P = P" € R™" positive definite

C.(C) Open right- (left-) half complex plane

a(A) The spectrum of the matrix 4 € C""

GL,(IR) The set of all invertible matrices M ¢ TR™*"

A, = A — kBKC (A, B, C) € R”" x R”" x R™", K € R™", k € R

Ly)(J) Vector space of measurable functions f: J = IR", J C IR some
interval, such that [, | f()|%ds < o

2. Some properties of multivariate minimum-phase systems

In this section, some results on the system class (4) are collected that give a deeper insight
into the system class and will be used in the following sections.

Remark 1. A multivariable system (4, B, C) € R”” X R™™ x R™" is minimum phase,
i.e., satisfies equation (6), if and only if it is stabilizable and detectable and the transfer
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function C(sl, — A) 'B € IR(s)™ ™ has no zeros in C,. Fora proof, see Ilchmann and
Owens [17]. This shows that condition (6) is an extension of the well-known minimum-
phase definition for single-input, single-output systems given usually in the frequency
domain.

Lemma 1. If (A, B, C) € L (see (4)), then a useful state-space description of the system
can be achieved by the transformation

()
Z

S:=[BC B, V]

where

and V € R™"™™ denotes a basis matrix of kerC. S has the inverse

o-[5]
where
T:= vy ' V1[I, — B(C By 'C}.
The transformation S~ 'x converts equation (5) into

y(t) = A + A + CB 0
y(@) 1y (@) 22() u(t)’ [y( )] _ S_lxo} o

t) = Ay(1) + Agz(r) 2(0)

where A; € R™™, Ay € R™"™™ 44 ¢ R ™*™ 4, € R®™*""M 5o that

A Ay | _
[Aa A4:|_S 45

If system (5) is miminum phase, then it follows from

B SIm - A] -AZ CB
sk, C 3 g ‘ = —A; shy_, — A4 0 = |SIn—m - A4|.|CBI
I, 0 0

that a(Ay) C C_.

Another important consequence of the minimum-phase assumption is that the present out-
put is related to the past output and input data via the following inequality, where no infor-
mation of the state variables is required.
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Propeosition 1. Suppose (A, B, C) € L, and u(*) : [0, o) = IR™ is locally integrable. Then
for every initial condition x(0) = x, € IR" and positive definite matrix P = PT ¢ IR"™",
there exists M > 0, such that for all t > 0 we have

Sl = M+ M [ IyePds + [ (36, PCBuGs))ds.
0 0

Although this inequality has been implicitly used in earlier works [18, 19], or in a more
general framework, including nonlinear disturbances [17] and L,-functions [5] for p = 1,
we would like to give a straightforward proof in the present simple situation. The inequal-
ity is a basic tool for the proof of stability of the universal adaptive stabilizer presented
in section 4.

Proof. Without restriction of generality, we may assume that system (5) is in the form of
equations (7). Since A, is exponentially stable, there exist M;, w > 0 such that

[z = Me ™ + Mi(Ly())¢t) forall =0 (8)
where
Ly = [ eI y)lds.
0

Integration of

%(IIy(s)ll%) (y(s), PAy(s) + PAsx(s) + PCBu(s))

1
2

IA

Mly®I* + Maly@)l Izl + (), PCBu(s))
where M, := | PA,|| + | PA,|, yields

1 t 1

S 1yO = 31y + i [TIy@Pds + b4 [ 1yl llds

+ f " (y(s), PCBu(s))ds. (10)
1]

Since L is a stable operator, we have for all + = Q,

[ ayereas < L [ 1yl (11)
0 [0) 0
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~

For a proof, see, for example, Vidyasagar [20], p. 252. Using inequalities (8) and (11),
and applying Holder’s inequality twice, yields for all ¢t = 0,

A

[ 1Ol lewlds < M, ["eIy@lds + M, [ Iy@Idye)eds
0 0 0

1/

2
t t
My | [ eeds| [ lyePds

12

IA

172 1/2

+M1ﬂhw% ﬂmm%m

p 1/2 1 ‘
M@W”Lhw% +M;LMW¢

A

M3 ! 2 M, ! 2
7 * [ Ol + [yl (12)

IA

Inserting inequality (12) into inequality (10) yields the desired inequality for

M:= M{2w + 12|yO)3 + 1 + Mj/w + M,. O

3. Root loci of minimum-phase systems
Suppose that for k € IR and K € IR™*™, output feedback of the form

u(t) = —kKy(r) (13)
is applied to system (5). Then the closed-loop system is given by

x(1) = Ax(r),  x(0) = X,
where throughout this section we use the notation

A, := A — kBKC. 14)
We will study the unstable root loci of the parameterized matrix Ay, in particular, if
(4, B, C) is single-input, single-output, and minimum phase. The results may be of interest

in their own right and are basic to derive topological properties of the terminal system
in section 5.
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Remark 2. Basic properties of the linearly perturbed matrix A; parameterized by k € IR,
with no extra assumptions on A, B, C, K, are derived by Kato [21], who shows that the
number of eigenvalues of A, is a constant / independent of &, with the exception of some
exceptional points. Theses points originate from the algebraic singularities of the (branches
of) the solutions of det(A\l, — A;) = 0. In each compact set of IR, there is only a finite
number of such exceptional points in k. Let / C IR be an interval not containing any excep-
tional points. Then the eigenvalues A, (k) of A, depend analytically on k € I. Moreover,
the total projection Py (k) on the total eigenspace associated with A; (k) is analytic in
k € I, and so is the eigennilpotent D, (k), which satisfies

Dy (k) = (N, — A Py k).

Since Dy (k) is analytic in k € 1, there exists an analytic vector wi (k) # 0 such that wy, (k)
€ kerD)\i(k) (see, e.g., Gohberg et al. [22], p. 388). Therefore,

(k) 1= Py (ywy (k)
is an eigenvector of 4, belonging to A;(k), and depending analytically on k € I.

It is well known that single-input, single-output, minimum-phase systems are stabilizable
by high-gain feedback u = —ky. This property carries over to multivariable systems in
the following sense.

Remark 3. Suppose (4, B, C) € £, K € R™", and ¢(CBK) C C,. Then, if k tends to
infinity, the eigenvalues of A, are approaching the eigenvalues of —kCBK and A4, where
A, is a stable matrix. This follows from the decomposition (7) together with Schur’s for-
mula (see, e.g., Gantmacher [23]), which yields

det[\, — (A — kBKO)] = det[ 4, N — A, }

= det(\,, — A; + kCBK) - det[(M,_,, — Ay) — A3(\,, — A; + kCBK)™! 4,].
Thus, in the limit we obtain

lim o(A — kBCK) = lim ¢(—kCBK) U 0(A,).

k— oo k— o0

Therefore, there exists a k* = 0 such that o(4,) C C_ for all K = k*. Note that the
set {k = 0| a(4y) N C, # B} is not necessarily connected.

The following proposition shows, interestingly, that if k varies, then all unstable eigen-
values of A, are moving.



130 A. ILCHMANN

Proposition 2. Suppose (A, B, C) € T and K ¢ R™". If N : I = C, denotes an analytic
parameterization of any unstable eigenvalue of Ax on some open interval [ C 1R, then
N # constant on 1.

Proof. The decomposition of (4, B, C ) given in equations (7) yields

detls], — A = det [slm A HACBK J

A3 Sln_m - A4
= det(sh,_, — Ag) * det(sh, — A, + kCBK — Ay(sl,_,, ~ A;)"'Ay).

Suppose, for some \ € C,, we have N=ANforallk el ie.,
det\l, — 4)) =0  forall kel

Since det(M,,_,, — A,) # 0, it follows that for M := N, — A; — AN, — Ay)7'4,,
we have

det(M + kCBK) = 0 for all k € I,
or equivalently,
det(M + kI,) =0 forall kel
where M is a Jordan form of M(CBK)™'. Thus,
detM + kb,) = [T+ & =0 forall ke I,
i=1

where p;, ..., u, denote the eigenvalues of M. Since the #; do not depend on k, this is
a contradiction, and the proposition is proved. O

The following proposition shows in particular, that for single-input, single-output, minimum-
phase systems with positive high-frequency gain cb > 0, the matrix Ay has, for all but
finitely many &, only distinct unstable eigenvalues (see also Ilchmann and Owens [17.

\
Proposition 3. If (4, b, ¢) € T is single-input, single-output, then the set

S=1{keR|A =A— kbc has eigenvalues in €, of multiplicity / = 2}
is finite.

Proof. Choose coprime polynomials e(*), ¥(+) € IR[s] so that

csl, — A7 b = %
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It can easily be seen that

€(s)
Yils)’

csl, — A7 'b =

where

Yils) 1= Y(s) + ke(s).
Coppel ([24], theorem 10) has proved that, if (4, b, ¢) is detectable and stabilizable, then
s € C, is a zero of Y(*) (including multiplicity) if and only if it is a zero of det(l, — A).
Since (A4, b, ¢) is detectable and stabilizable (see remark 1), it follows that

&= {keR | Y«()  has a zero in €, of multiplicity [ = 2}.

Next we will derive a necessary condition for y,(*) having a repeated zero at s € C.,
which is equivalent to

Wls) = Yu(s) = 0,
respectively,

sy = —ke(s) A Y'(s) = —ke'(s). 5)
Since e(*) and () are coprime, this can hold only if £k = 0 or

k20 A ) Z0 A JYs) #0.

Now equations (15) yield

¥ _ ')
e(s) e'(s)’

which is equivalent to
q(s) := Y(s)e'(s) — ¢¥'(9e(s) = 0.
But y(s)/e(s) cannot equal ¥ '(s)/e’(s) for all s € C., since the denominator polynomial

of the latter is smaller than the former, so it must be that g(s) is not the zero polynomial,
which means that is has a finite number of zeros. Hence, equations (15) yield

S C {0} U <k= —%: —‘f((ss)) qs) = 0,5 € C,
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Therefore, § is finite, and the proof is complete. J

Proposition 3 does not hold true for multivariable minimum phase systems. This can easily
be seen from the example A = B = C = I,, so that 4, = (1 — i,.

Therefore, the important consequence of proposmon 3 that the unstable subspace of 4,
is spanned by piecewise analytic eigenvectors is no longer valid.

The following lemma shows that, for single-input, single-output systems, the projection
of each fixed nonzero vector { € IR” onto the k-depending unstable subspace of A is
nonzero, with the exception of discrete points k € IR.

Lemma 2. Suppose the system (A, b, c) € IR™”"* x R" x IR is minimum phase and
controllable. Let I C IR be an open interval such that \y : I > C, is an analytic

parameterization of an unstable eigenvalue of A, = A — kbc with eigenvector V. Then,
Jor { € R", we have

(Vb Yy =0 forall kel = ¢=0.

Proof. Suppose (v, ) = 0 for all k € I. Since

N, — A b I, 0 _ M,—A b
e 0 —kc I, - el 0|’
it follows from the controllability assumption that
N, —A4 b | N, — Ay b

Since v, is a right eigenvector, we have

(i 2] (3)-» .

and equation (16) yields

rk [ )"‘I"SJ_ 4 g] =n forall kel (17)

Using the identity theorem of analytic functions and the fact that At is not constant (see
proposition 2), equation (17) yields

k |:51n§; A g] =n for all s€C, (18)

and hence the (n + 1) X (n + 1) matrix in equation (18) is singular over the field IR(s).
Thus there exists a nonzero pair (¢(*), (")) € R[s]* X IR[s] such that

o) sI, — A) = a)¢T and  @)h =0 forall sc¢€C. (19)
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If, for every nonzero pair (¢(*), a(*)) satisfying equations (19), it holds that a(-) = 0, then
¢(s)'[sl, — A, b] = 0,
and, by right invertibility of [sI, — A4, b], ¢(*) = 0, which contradicts (0(), a()) = 0.
Therefore, there exists a pair with a(*) # 0. Considering (sI, — A)~' as an element of
IR(s)"*", we obtain
0 = as)¢(sl, — A) 7 'b,

and hence

0= K.T Z s—(i+l)Aib’
i=0

whicff yields
0 = {ib, 4b, ..., A" 'p).

Since (A, b) is controllable, the controllability matrix is right invertible, which implies
that { = 0. This proves the lemma. ]

The controllability assumption in lemma 2 is essential. Lemma 2 does not hold true for
systems (A, b, ¢) € L that are not controllable. Consider, for example,

0 0 , _ (1 | =k 1
A—[O _1:', c = (1, 0), b_[O]’ and Ak—[o _1].

For k € (— o0, 0), the right eigenvector corresponding to A, = —k is v, = (1, 0)”. However,
for { = (0, 1)7, we obtain (v, {) = 0 for all k € (—oo, 0).
Before the main result of this section is proved, a technical lemma is required.
Lemma 3. [f 4 € R™", xy € IR", and \ € C, so that
Av =N and (v, xy) # 0,
then the solution of the initial-value problem
x(t) = Ax(t),  x(0) = x,
is such that e*xy + 0 as t — .

Proof. The solution x(¢) can be written

x(t) = ey = alx)eMv + (1),
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where x(¢) is linearly independent of Mv. a(x) denotes the coordinate of the projection
of x; on vIR, which is given by

_ 1
alxg) = v(vTv) 1vTxO = —vTxO.

Ivl®

Now, (v, x5) # 0 yields a(xg) # 0, and the result follows, since A is an unstable eigen-
value. 0

We are now in a position to prove the main result of this section, which, in particular,
says the following. Suppose (4, b, ¢) is a controllable minimum-phase system such that
the closed-loop system x(t) = [A — kbc]x(t) is stable for k sufficiently large. Let I C
[0, o) be a finite union of closed intervals so that A, = A — kbc is exponentially stable
whenever k € [0, o0)\]. We obtain the result that, if x; € IR is fixed, then the solution
of x(¢) = Ax(t), x(0) = x;, is unstable for all but finitely many k € I.

Theorem 1. If the system

(1) = Ax(t) + bu(t), x(0) = x
y@) = cx(r),

is controllable, minimum phase, and of relative degree 1, and xy € IR", xq # 0, is fixed,
then the solution of the initial value problem

x(t) = [A — kbclx(D), x(0) = xq
satisfies the following:
Q) The set

(ke R |04 —kbc)y N C, #0 and limel *y, = 0}

2ol

is discrete in IR.
(i) If cb > O, then the set

{(k=0]0d—-—kbc) NC, #@ and  lime ™y = 0}

t— o
is finite.

Proof. Let & denote the discrete set of exceptional points k defined in remark 2. (i) is proved
if it can be shown that the set

(ke R\&|od) NC, #0 and lime*xy = 0}

oo
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is discrete. Let IR \ & = U /; be the countable union of disjoint open intervals. It re-
mains to prove that for every i € IN the set

kel |o(A) NC, #08 and  limeMix, = 0}

{— o

is discrete. Let I := I; for some iy € IN, and N : 1 C,, v : I > C" denote analytic
parameterizations of an unstable eigenvalue-eigenvector pair. It follows from lemma 2 that
the analytic map k — (v, xy) is not identical zero on I. Thus, the set of zeros of k —
(v, Xg) 1s discrete in I. Now (i) is a consequence of lemma 3. (ii) follows from the fact
that there exists a k* > 0 such that o(4;) S C_ for all k = k* and hence the set con-
sidered in (i) is bounded and therefore finite. U

Remark 4. Unfortunately, previous results cannot be extended to multivariable systems.
Consider, for example, the controllable and observable minimum-phase system x(t) = Ax(t)
+ Bu(t), y(t) = Cx(r) given by

-~
— 1 0 — T _
A—I:O —1}’ B=Cl=1,.

v = (1, 0)7 is an unstable eigenvector of A — kBC = diag{l — k, —1 — k} with eigen-
value (1 — k) for all k € [0, 1]. Since (v, ;) = O for all k € IR, lemma 2 cannot be
generalized. The same is true for theorem 1, since the set considered in (i) (respectively,
(ii)) for x, = (1, 0)7, is the continuum (—oo, 1] (respectively, [0, 1]).
4. Universal adaptive exponential stabilization
In this section we will show that a simple modification of the Willems-Byrnes controller
(2) can be applied to a large class of systems to achieve exponential stabilization. In the
most general case of the system class (4), where no special assumptions about the high-
frequency gain are made apart from det(CB) # 0, the switching strategy is based on the
following result from linear algebra.
Lemma 4. There exists a finite set

{Kl’ tee KN} < GLm(IR)
so that, for any M € GL,(R) there exists i € {1, ..., N} such that

o(MK;)) € C,.

Proof. See Martensson [3, 25]. O
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The set given in lemma 4 is often called a spectrum unmixing set for GL,,(IR). Unfor-
tunately, the cardinality of the unmixing sets constructed by Martensson [3, 25] is far too
large to be convenient for applications. Little is know about the minimum cardinality of
unmixing sets (see [26]). However, for m = 1, the set {1, —1} is obviously unmixing, while
for m = 2 there exists an unmixing set of cardinality 6. It has been shown by Zhu [27]
that GL3;(IR) can be unmixed by a set having cardinality 32. We first introduce a universal
adaptive stabilizer for the class (4), which ensures exponential decay to zero of the state.

Theorem 2. Suppose {K,, ..., Ky} € GL,(IR) is a spectrum unmixing set and {T;};»
C RN is a sequence of thresholds satisfying
T
T, < Ty, lim = 0. 20)
inw Tig

If the adaptive control scheme

u@w) = = K(1)y (1)
s = |y®|? , s(0) =Ty
K(t) = Tl : I(imodN » lf S([) € [Ti-la T1)7 i = 1? 2v e (21)

is applied to any system

x(ty = Ax(t) + Bu(r), x(0) = xg

22
y@) = Cx(@)

-
belonging to the class (4), with arbitrary initial condition xy € R", then the closed-loop
system (21), (22) has a unique solution x(t), and

(i) x(t) decays exponentially to zero as t tends to oo,
(i1) there exist iy € IN, r* = O such that

[A — BK(#)Cl = A — T, BKipoenC  forall t = t*

The intuition behind this control strategy is as follows. By the minimum-phase property,
it follows from remark 3 and lemma 4 that there exists i; € {1, ..., N} such that

u(t) = - TKiOmodNy (t)
yields an exponentially stable system

x(t) = [A - IBKiOmodNC]x(t)a
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provided T is sufficiently large. As long as the trajectory x(¢) is not decaying fast enough
to zero, then s(¢) hits the next threshold, K(t) in equations (21) travels through the spec-
trum unmixing set and increases the gain T}, until finally the gain 7} is large enough and
A — TBK;, .C is exponentially stable. The growth condition (20) ensures that the
system stays, for longer and longer periods, with an exponentially stable 4 — T;BK, C
so that there exists a period that gives the system time to settle down. Exponential decay
of the solution is then a simple consequence of the fact that 4 — BK(¢)C becomes finally
a constant matrix. Therefore, asymptotic decay of the trajectory implies exponential decay.

Proof of theorem 2. (a) Discontinuities of the right-hand side of the closed-loop system
occur whenever s(7) leaves an interval [T,_,, T;), which at times is

ti=min{r =2 0|s() =T}, i=12,...
If the minimum does not exist for some T}, then put 5 = oo
There exists a unique solution on the interval [0, ), and, if f, < oo, then the finite limit
x(to)' = lim,,, x(¢) exists. Proceeding in this way for the next intervals, it follows that the
solution x(¢) of the closed-loop system exists on [0, ¢'), where lim;_, ¢; = ¢’
(b) We show that s(*) € L, (0, ¢'). Suppose the contrary, i.e., infinitely many switches oc-
cur. By assumption, there exists K; € {K;, ..., Ky} such that 6(CBK)) < C,. Let
P = PT ¢ IR™™ be the unique positive- deﬁmte solutlon of
K'(CB)'P + PCBK; = 21, (23)
Choose o > 0 so that

—K[(CB)'"P — PCBK, < 2ad, forall le{l, ..., N}. (24)

It then follows from proposition 1 that for all [ € IN and for some M > 0, we have

-1 .
SO < M+ MTy - Ty — 3, [ e, PCBKGy)
-1
1 (J+1)N
=M Iy — T, M- ——F PCBK(
+ Ty — Tp) — Z[ (y(r), PCBK()y(r))dr

(25)

Without restriction of generality, one may assume that i = N; otherwise, start at a different
time # with initial condition x(;). Equations (23) and (24), together with the fact that K(z)
is constant on [ty, th41), yield
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_f’(,/HW (y(r), PCBK(1)y(7))dr

4N
< alijriyw 1T ov-1 — Ty — T w(Taony — Tiepn-1)
T2 -1 — Tiivowv T T s v
— T(2j+l)N I:a (J+DHN~1 5 (J+DN—-14jN + (j+DON-1 _ 1:| . (26)
TGN TN

Since equation (26) tends to —T'7; for j — oo, there exists a M; > 0 such that
q G+DN J

-2
-, f"*”” (y(r), PCBK(t)y(r))dr = M, forall [¢IN. 27
j=0 TN

Equation (26) also yields

-1

yN 2 2 — T .
f "y, PCBRryy(ry)dr < — T [ Tvoy ~ Ty iTiwy Tven 4
Tiy = To* fii-nw Tiv—To Tiy Tiy

(28)

and the right-hand side of equation (28) tends to —Tjy as [ — oo,

Therefore, by inserting equations (27) and (28) into equation (25), the right-hand side
of equation (25) tends to —oo as [ = oo. This contradicts the positivity of the left-hand
side of equation (25), and it is proved that s(-) € L,(0, t"'). ’

(c) It follows from (b) that t’ = oo, and part (ii) of theorem 2 is proved.
To prove part (i), let t* > 0 such that

K(t) = TyKymoany  for all t = rx
By lemma 1, the terminal system
x(t) = [A — TyBKpmoonCIx(),  x(0) = x(ty—y),

can be expressed as

y(t) = (A — TyKpmoanCBYY (1) + Apz(t)
(1) = Asy(t) + Agz(r).

Since y(*) € L,(0, ) and A, is stable, it follows that z(-) € L,(0, o). Furthermore, y(*),
2(*) € Ly(0, o). Therefore (see, e.g., lichmann and Owens [17]), im, .,y (?) = lim,_, ,,z(¢)
= 0. Since the system becomes constant after finite time, asymptotic decay of x(¢) implies
exponential decay, which proves part (i). This completes the proof of the theorem. [J
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Remark 5. If additional information on the spectrum of CB is available, then the output
feedback and assumption (20) on the growth of the thresholds can be considerably simplified
as follows:

(1) If it is assumed in theorem 2 that ¢(CB) € C,, then the output feedback can be
simplified to

u@® = —K@y@), K©)=T ,if s@)€ll_,T),i=1,2,..., (29
where the sequence of thresholds has to satisfy

To<T, < ... and lim[T, — T,_,] = oo. (30)

i—oo

To prove statements (i) and (ii) of theorem 2 for this case, only part (b) in the proof
needs a change. By using the same argument, we can derive the inequality

1 li+ . :
T bl s Mo [ M = KOs = M+ 33 =TT - T,
=

where the right-hand side becomes negative for i sufficiently large. This contradiction
proves s(*) € L, (0, ¢"), and hence parts (i) and (ii) of theorem 2 follow as in the proof
of theorem 2.

(ii) If it is assumed in theorem 2 that 6(CB) C C, or ¢(CB) C C_ (but which half plane
actually contains the spectrum is unknown), then the output feedback can be simplified

to
u(t)y = ~K@y@), K@) = (-DT; if s@) €[, T),i=1,2, ..., (3D
where T, < T, < ... is requierd to satisfy the following discrete version of a

Nussbaum switching function (for the concept of Nussbaum switching functions, see
Nussbaum [28] and Willems and Byrnes [1]):

[o ]

DL (-)TUT - T L (=DT(T;, — T
inf i=1 AN -1 _ , u i=1 A -1 _ +
e T, - Ty peid T, - Tp

o (32)

Equation (32) is weaker than inequality (20). For example, it can be easily seen that
T, := i? satisfies equation (32) but does not satisfy inequality (20).
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To prove theorem 2 in this case, only part (b) in the proof needs a change. By using
the same argument, we can derive the inequality

IA

)
M+ (T - Ty — D) (=TT, — T_))

1 2
=y,
21|y(1)||1= 2

D= DT(T, - T, )
M+(T,—TO)[M T =T, )

Now equation (31) yields that the right-hand side of the above inequality takes arbitrary
large negative values, thus contradicting the positivity of the left-hand side. This proves

5() € L(0, t'), and statements (i) and (ii} of theorem 2 follow as in the proof of
theorem 2.

5. Topological aspects of the terminal system

In theorem 2 it is proved that x(¢) decays exponentially to zero. This does not imply that
the terminal system

(1) = [A = (= )Ty BKpmoan C1 (1)
is exponentially stable, where

M :=inf{i € N | lim s(t) < T}.

[~

In this section, we will consider, for fixed initial condition x,, controllable single-input,
single-output, minimum-phase systems of relative degree 1, that are systems of the form

x(t)
y(®)

Ax(t) + bu(t), x(0) = x, (33)

cx(1),

with (4, b, ¢) € IR"" x IR* X R™ and cb # O.

We will show that the set of sequences of thresholds that lead to an exponentially stable
terminal system is dense and that, at each time #; where the gain T; switches, the new
trajectory

A=V T bl gy

is not exponentially decaying with probability 1 whenever [A — (—1)'"'T},;bc] is not ex-
ponentially stable. To make this more precise, let
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= {T = {T}ien € RN | T satisfies  (30)},
and define a subspace of J that is relevant for the switching strategy (31) as
={Ted| T satisfies (32)}.
For ¢ > 0, we define the open ball with center T = {T;};cv € IR™ to be
®(T) := {8 = {S}en E RN IS, — T;] < e forall ieIN}.

Using this terminology we have the following.

Consider a controllable, minimum-phase system of the form (33), with fixed x, € IR”,
xo # 0. Then the set of the sequences of thresholds J, (respectively, js), i.e., all sequences
T € 3 (respectively, T € 3) so that T'in combination with equation (29) (respectively, equa-
tion (31)) leads to an exponentially stable terminal system, is dense in J (respectively, 5).

Theorem 3. Suppose system (33) is a controllable, minimum-phase system with cb # 0
and fixed xy € R", xo # 0. If T € 3 and equation (29) (respectively, T € 3 and equation
(1)) is applied to system (33), then for every ¢ > QO there exists Te® T) such that T
instead of T, leads to an exponentially stable terminal system and T and Tdtjfer in only
finitely many points.

Progf. We consider the switching strategy (31) only; (29) is simpler. Suppose the switching
algorithm using the nominal sequence 3 leads to a terminal system [4 — (—1)"T)bc],
which is not exponentially stable. Then, in particular, s(f) € [Ty, , Ty) for all t = ¢, ,,
the last switch occurs at time ty,_;, and

e[A—(—l)MTMbc](t—tM,l)x(tM*l) -0 as { = 0o,

By theorem 1 (i), the set of k¥ € IR so that

oA —kbe) N €, # 0 and  Lim eM-CD"Tubcdt— vy, 1y = 0

— oo
is discrete. Thus we can choose ¢’ € (0, €¢) and S, instead of T, so that
Ty 1 < Ty —€¢ < Sy < Ty+e < Ty
and
e[A’(’”MSMb“](”’M-l)x(tMA1) + 0 as t > oo,

Since (A, b, ¢) is detectable (see remark 1), s(¢) will leave the interval [Ty, Sy). Pro-
ceeding in this way, and changing the nominal switching sequence at each switch, so that
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the projection of the state on the unstable subspace is nonzero, the switching strategy will,
according to theorem 2, stop after finitely many switches. Therefore, the terminal system
must be exponentially stable. This completes the proof. ]
An immediate consequence of theorem 1 (i) is the following observation.
Remark 6. Suppose T € 3, and equation (29) (respectively, T € 3 and equation (31)) is
applied to a controllable minimum phase system (33) with x, # 0 and cb > 0 (respec-
tively, cb # 0). Then at each time
ti=inf{t = 6 |s() = T}, 1,:=0
when a new gain is chosen, the new trajectory
x(t; 1)) = AT TinbAN Ty y
(respectively, ’
Bt 1) = e DT Tabele— gy
satisfies
x(t; ;) - O (respectively, x(¢; ;) + 0)
as t = oo, with probability 1 with respect to T;,; € R if
oA — Tiybe) N C, = 0

respectively,

oA — (=)*'T 1 b0) N C, # 0).

6. Universal adaptive exponential tracking

In this section, we will show how to apply theorem 2 in order to obtain an adaptive track-
ing controller for the class of reference signals defined by

I
o

(yref = yref(') : IR = IR™ a C®-function IOI [%j yref(t) =

where a(s) € IR[s] is a known monic polynomial with zeros in (T?+ only.
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The objective is to construct an adaptive control law, such that for any linear system
belonging to class (4) and any reference signal y,¢(*) € Y., the closed-loop output re-
sponse y(f) generates an error e(t) y(f) — y.(t) that decays exponentially to zero.

The main idea, which, for single-input, single-output systems, goes back to Mareels [6]
and Helmke et al. [11], is to use the knowledge of «(+) to construct an internal model (that
is a duplicated model of the dynamic reference signals) as part of a precompensator in
the feedback loop. More precisely, let 3(*) € IR[s] be a monic Hurwitz polynom1al of degree
p = deg «(), and choose a minimal realization of 3(s)/a(s) denoted by (4, B C e
R”*P x TIR? X IR x IR. Then we will apply the precompensator

Er) = A'E(t) + B™v(1),  u() = C'E@) + L,v(r),  £(0) € R™ (34)
where

A* = diag{d, ..., A} ¢ R"*™  B* = diag{B, ..., B} € R™*™,

C* = diag{C, ..., C} e R™",

The internal model (34) is connected in series with previous adaptive stabilizers to obtain
the following adaptive tracking result.

Theorem 4. Suppose (A, B, C) is a member of system (4) and {K,, ..., Ky} C GL,(IR)
is a spectrum unmixing set. Let {T;};»o € RN be a sequence of thresholds satisfying

T, < Ty lim = =0

i—oo Ti+l

and (A%, A*, C*) be defined as in precompensator (34). If £(0) € IR™, an initial condi-
tion, and y,.(*) € Y., a reference signal, are arbitrary, then the error feedback controller

et) = Y(t) = Yrer(D) h

s = ||y , 5(0) =

v(t) = —K(t)e(r) . | 9 35)
KO) = T, " Kimoan - if s € [Ty, T)), i = 1,2, ...

Er) = AW + B™w(r) |, £(0) € R™

u(t) = C*t(t) + L,v(t) )

applied to any system belonging to class (4), with arbitrary initial condition x(0) € IR",
vields a unique solution

(x(), £C), 5C) 2 [0, 1) — R

with the following properties:
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(i) t' = oo,
(ii) e(t) decays expoanentially as t tends to .
(iii) There exists iy € IN such that s(t) < T,-0 Jorallt = 0, i.e., the switching mechanism
stops after finitely many switches.
(iv) There exists a ¢ > 0 such that for all t = 0,

IET@, xT@)TIl = el + maxyeg {1 Veet)I}).

Proof. The input-output behavior v(-) — y(-) of the series interconnection formed by pre-
compensator (34) and (4, B, C) is described by

x(ty = AX(1) + Bv(t), y@) = C¥(), £(0) € R"*" (36)

where

- A BC* . B ~ _ x
A=|:0 A‘*}, B:[B‘*:l, C=[C,O], X=|i$:|.

It is easy to see that (4, B, C) is minimum phase. The essential ingredient of the present
proof is the following lemma due to Miller and Davison [29] (see also Townley and Owens
[30D):

Lemma. For every y, (") € Yy, there exists an X, € IR"™™ such that

Yet(t) = CX(1),  X(t) = AR(), %(0) = %y, (37)
lx@®) | < ¢ [l + max{||yref(s)||}] forall r = 0. (38)
s€[0,7]

By equations (37) and (38), x,(r) := x(z) — x(r) satisfies ’
X (1) = A%(0) + BV,  £(0) = X0) — i(0)
e(t) = Cx,(b).
The problem has hence been converted into a standard stabilization problem for the error
e(r). By the Miller-Davison lemma above, and since CB = CB, theorem 2 can be applied.
This proves (i)-(iii), (vi) is a consequence of inequality (38), and lim,, ., x,(f) = 0. This

completes the proof. (I

Remark 7. The topological properties of the terminal system are valid in a similar manner
for tracking of single-input, single-output systems. For brevity, the proof is omitted.
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7. Concluding remarks

We have introduced a simple universal adaptive stabilizer for the class of multivariable
minimum phase systems (4, B, C) with det(CB) # 0. The switching strategy is piecewise
constant between discrete points of time and is tuned by the function [ || y(s)||?ds and
a given sequence of thresholds. The feedback controller u(t) = —T;K,,,,.qv ¥(t) increases
the gain 7; with each switch, and travels through a finite-spectrum unmixing set in order
to find a stabilizing feedback matrix K;. The minimum-phase assumption guarantees that,
if necessary, finally the matrix A — BT;K,,4vC is exponentially stabie. Therefore, the
switching algorithm stops after finitely many times, and the state of the terminal system
x(t) = [A — TyBK,y,anClx(r) decays exponentially. For single-input, single-output sys-
tems, the root loci of minimum-phase systems yield that the set of thresholds that produce
an exponentially stable terminal system lies densely in the set of thresholds. Moreover,
each time a new gain is implemented and the overall system is unstable, the probability
is 1 that the new trajectory is unstable. In combination with an appropriate internal model,
the previous results are applied to solve the adaptive tracking problem for a class of refer-
ence signals that are solutions of a known differential equation.
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