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Summary. It is well known that lincar SISO systems that can be rendered
passive through constant output feedback can be adaptively stabilised through
a single gain adaptation law. We revisit the dynamical behaviour of such
systems and exhibit through a bifurcation analysis a rich varicty of potential
asymptotic dynamics, for which we provide a control theoretic interpretation.
This in turn leads us to question the actual adaptive control question and
solution approach.

1 Introduction

Adaptive output gain control for the purposes of regulation and without re-
liance on identification or probing signals constitutes about the simplest adap-
tive control objective one can consider. Research into this idea was initiated
by Mareels [3], Morse [12], and further developed by Willems and Byrnes [10].
For an overview and extensive reference list see Ilchmann [4]. The work of
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Willems and Byrnes lead to the whole topic of universal controllers see e.g.
[7] and [2, Chapter 6]. The topic of adaptive stabilisation via output feedback
is also studied in great detail by [11]. In this paper we revisit this adaptive
scheme from a dynamical systems perspective. Qur aim is to understand the
adaptive control question better and to be in a position to recast adaptive
control questions in a more appropriate context.

In order to apply adaptive output gain control one starts from the assumption
that the plant to be controlled is a finite dimensional SISO linear system that
can be stabilised by static high gain output feedback. Adaptation is required
because the amount of gain in order to achieve regulation is unknown. A
large class of linear systems that can be stabilised by output gain feedback
is characterised by: the plant’s transfer function has stable zeroes and rela-
tive degree one. Such systems can be conveniently represented as follows [2,
Section 6.4] (see also the Appendix I):

T Az + by,

: (1)
y = —cx—dy+ gu.

Here u is the input, y the output and (z,y) € R™ x R is the state of the
linear system (1). A € R**™ is a matrix whose eigenvalucs have negative real
part. The eigenvalues of the matrix A are precisely the zeroes of the transfer
function of the system (1). We assume that g > 0, g is the high frequency gain
from input to output. We assume that the original system (1) is controllable.
As a consequence, see Appendix I, the pair (A,b) is controllable. It is clear
that for all sufficiently large k > 0, the output fecdback control law u = —ky
stabiliscs the system (1), see e.g. [3, 5].

In this paper we arc interested in characterising the qualitative behaviour (the
phase portrait) when the adaptive feedback law

u = —ky-+e,

, (2)
k

—ok+y?, k(0) > 0.

is applied to (1). Here o > 0 is a small positive constant representing the so
called sigma modification [8] and e € R represents a control offset error. The
control offset error is introduced to unearth some of the robustness issues of
concern in adaptive control. One could object that a constant offset error is
not a realistic disturbance as it is casily overcome via integral control action.
As is shown in Appendix V, this is false, and the discussion we present remains
relevant even if integral action is explicitly taken into account.

For 0 = 0 and e = 0 the intuition behind the adaptation law is simple.
As long as y # 0 the feedback gain k increases, eventually rendering the
(z,y) subsystem asymptotically stable. The output will decrease to zero in
an exponential manner which limits the feedback gain. Unfortunately, any
nonzero measurement error or disturbance such as e will force the feedback
gain to grow indefinitely.
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This observation of lack of robustness lead to the so called sigma modification.
This idea was first suggested by Icannou and Kokotovic [8] in the context of
adaptive model reference control. It was adopted for systems of the form (1)
by Bar-Kana and co-workers, sce [11] for a detailed overview of this work.
Another possible modification to overcome this lack of robustness problem
whilst preserving the simplicity of the controller is the so called A-tracking
approach (first suggested in [3] and introduced by Ilchmann and Ryan [6],
see also Ilchmann [5]). In this line of work a dead-zonc in the gain adap-
tation is invoked. The dead-zone reduces the performance of regulation in
the disturbance free case in that the output converges to a prespecified, M-
neighbourhood of the reference signal. This is a small price to pay for the
added robustness with respect to small disturbances. The A-tracking modifi-
cation will not be considered in the present paper.

Compared to the above simple intuitive picture, the sigma modification alters
the phase portrait in a non trivial way. This is the topic studied in this
paper. The prime purpose of the sigma modification is to obtain robustness
with respect to measurement errors. This is indeed achieved, but at a price,
as the asymptotic dynamics are no longer as desired. We investigate this
phenomenon in some detail, suggesting some alternatives.

Despite the rather large literature on the topic it is our contention that our
understanding of the dynamics at large of these simple adaptive control sys-
tems is not complete. In this paper we collect a number of results describing
what can be expected both for the transients as well asymptotic behaviour.
Moreover describing these dynamics leads us to an understanding of relevant
adaptive control questions.

The paper is organised as follows, in the preamble following the introduction,
we gather a number of known results and introduce some notation. The next
section is devoted to the ultimate boundedness that the adaptively controlled
system dynamics enjoy. The results established here serve to underscore the
importance of the sigma modification. Then we discuss the simplest possible
scenario, when the linear system to be controlled has no zeroes. This situation
is actually simpler than what (1) suggests, but nevertheless informative. This
leads to a planar adaptive system, whose dynamics can be well understood. It
provides a good pointer for the complications we may expect. Next follows an
incomplete analysis for the case when the linear system to be controlled has a
single stable zero and two poles. Finally we conjecture what a phase portrait
in the general case may look like. The paper concludes with suggestions on
how we may have to modify the adaptive law based on the understanding of
the exposed dynamical behaviour in order to obtain a robust adaptive system.

2 Preamble

For convenience sake and without loss of generality (as far as the dynamical
system analysis is concerned) we study the closed-loop system (1), (2) for
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* g =1,if g # 1 consider the state space transformation (z,y,k) —

(x\/9,9/9,k/9),

e (A,b) in controllable canonical form.

The closed-loop adaptive system can thus be represented as:

i = Az+by, z(0) € R, be R, A€ R stable,
y = —cx—dy—ky+e, y0)eR, 'eR decR, (3)
E = —ok+ y?, E(0) >0, o>0.

We refer to the subsystem with state (z,y) as the plant. We consider the
paramecters e, d and the vector ¢ as bifurcation parameters.
We use the notation:

2(s) = det (sl — A),
sI—A —b (4)
det < c ) .

S

3
=
I

Notice that with the above notation:

det, ( st ; A S;bﬂ > = p(s) + Bz(s).

We conclude this section with some simple observations about the phase por-
trait of the system (3):

e Fact (i)
k(t) > 0 for all ¢ > 0 if k(0) > 0.

e Fact (ii)
Ife=0,(2(t),y(t), k(t)) is a solution of (3) if (~z(t), —y(t), k(t)) is one.

e Fact (iii)

Fora >0, e = 0 and (2(0),y(0)) = (0,0), it follows that k(t) = e~ 7tk(0)
and (z(t),y(t)) = (0,0) for all ¢t > 0.

e Fact (iv)
For 0 = 0 and e = 0, the trajectories converge to a point in state space
of the form (0,0, k), for some ko > 0 which depends on the initial
condition. (See [2]).

e Fact (v)
For o = 0 and e # 0, (2(t),y(t)) converge to zero and k(t) diverges.

o Fact (vi)
The transformation (z,y,k) = o(zy,y1, k1) and time scaling ot = 7,
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leads to a systcm description of the form:

T = A+ by,
y; = -1 —d]y—klyl+elv (5)
by = —k +y?

Here 0 A; = A, oby = b, 6cy = ¢, od; = d and o%e; = e. The ! denotes
derivative with respect to the new time variable 7. Clearly (5) is of the
same form as (3). Hence, when discussing the dynamics we can limit
oursclves to the case o = 1. Yet, from a control perspective, we prefer
(3), as o is a design variable and A4, b, ¢, d are not.

3 Global stability

It is clear from Fact (iv) and Fact (v) that the adaptive system with ¢ =
0 is not robust with respect to input offscts. The sigma modification has
the property that all trajectorics are ultimately bounded!, regardless of the
disturbance e. This is probably the main motivation for its introduction.
The ultimate boundedness result can be established using a Lyapunov argu-
ment.

Theorem 3.1 Consider (3) with o > 0. Let P = PT > 0 be the unique
positive definite solution of the Lyapunov equation ATP + PA = —I. For all
0 < & = 1/ Amax(P) the compact set

A={(zyk) : 2TPrty?+(k—p)? <pd+lel}, (6)

with

# = max{0, —d + % <|2£C; +0+ (Pb— YT —oP)" (Pb - cT)> PO
is globally attractive and positively invariant.
Proof Consider the comparison function
Viz,y, k) =27 Pz + 4 + (k — p)*. (8)

Its derivative along the solutions of system (3) is given by:

Viz(t),y(t), k(1) = —zTz+ 20T Pby — 227 cTy — 2dy? — 2ky? + 2ye
—20k(k — ) + 2(k ~ )y,
—zlx + 287 Pby — 227 cTy — 2dy? + 2ye — 2uy?
—20(k — )% + 2042,

1The solutions of £ = f(x) are said to be ullirnately bounded, if there exists a B > 0 such
that for all initial conditions x(0) = zg there exists a T'(zo) > 0 such that the solutions
satisfy ||z(t,zo)|| < B forall ¢t > T.
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Selecting p as indicated in (7) implies that
—zT2 + 227 Phy — 227 Ty — 2dy* + 2ye — 2uy” < —o(a¥ Pz + y?) + 20]e|,
which leads to:
V(@ (t),y(t), k(8)) < =20V (2(8),y(1), k(1)) + 204" + 20]e]

This establishes our claim. O

Remark 3.2 The theorem statement is particularly useful for the case that
o is small. It is clear from the proof that ultimate boundedness can be estab-
lished for all o > 0, but we prefer the above formulation as it provides us with
a reasonably tight estimate of the form V(z,y,k) < u? + |e| for a positively
invariant set. In case e = 0 our estimate cannot be improved as the set A has
the origin (an equilibrium in this case) on its boundary. Moreover, “small” o
is in line with practice. ]

For e = 0 we can glean from the theorem statement that for sufficiently large,
positive d the origin of the statec space is globally asymptotically stable. It
can be established that this is the case for all systems (1) that have strict
positive real transfer function, (i.e. Re{z(jw)/[p(jw) + dz(jw)]} > 0 for all
w € R).

Theorem 3.3 Consider system (8) with 0 > 0 and e = 0. Assume further-
more that the linear system (1) has a strictly positive real transfer function,
i.e. there exists a positive definite solution P = PT such that ATP + PA <
0 and d > ||cT' — Pb||2. Then the origin of the state space is globally uniformly
asymptotically stable.

Proof The result is derived using the comparison function V introduced
in equation (8) with © = 0. The conditions of the Theorem 3.3 lead to
V(x(t),y(t), k() < —20k%(t) — W(z(t),y(t)), with positive definite W (z,y).
]
The gap between the two results stated in Theorem 3.3 and 3.1 does not
appear to be large. One could wonder whether the same result as stated in
Theorem 3.3 could hold true for the larger class of stable minimum phase
systems. This is not the case, as will become clear. Here is a simulation
example to illustrate what can happen.
Consider a system of the form (3) with the parameters sclected as:

0 1 0
A:(_1 _10> b:<1> c=(-9 -10) d=-1 o=01

The linear system (1), with the above parameter values, has a transfer func-
tion with stable zcroes and stable poles. The transfer function is given by
2(s)/(p(s) + dz(s)) = (s? + s + 10)/(s® 4+ 2s®> + s + 1). This transfer func-
tion is not strictly positive real. A typical trajectory for the above system
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with initial conditions (0.1,0.1,1,0) is presented in Figure 1. Both the plant
output y and the adaptive gain k are displayed. Notice the asymptotically
periodic behaviour. A root locus plot for that root of p(s) + (d + k)z(s) =
§° + 352 + 25+ 11 + (=1 + k)(s® + s + 10) with the largest rcal and largest
imaginary part is presented in Figure 2. Observe that the adaptive gain hov-
ers asymptotically around that value of the gain above which the root locus
remains in the left half plane, clearly the plant is but marginally stabilised
through the adaptive control law. Observe that no control would have been
better in this case, as the open loop system is stable.

Transient Steady state
1.5
1
-~ 05 >
3 o E
3 3
-0.5
-1
-15
0 10 20 30 85 86 87 88 89 30
time time
Transient Steady state
7 7.05
6
= 7
s 5 Il
=] o
.02) 4 aza 6.95
a a
2
1 6.85
0
0 10 20 30 40 50 81 815 82 825 83
time time

Figure 1: Limit cycle behaviour for adaptively controlled stable minimum
phase plant

4 Planar adaptive system

Let us first consider the adaptive stabilisation through adaptive gain output
feedback of a one dimensional linear plant:

= —dy—ky+e, y(0),

/ o)
—ok + y?, k(0) > 0.

Here d is the open loop pole of the plant to be stabilised, y is the measured
output, k the adaptive feedback gain and e represents the input disturbance.
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Figure 2: Partial root locus for stable minimum phase plant

For purposes of comparison, if we had known the parameter d, then any
control gain such that & +d > 0 yields a stable system with cquilibrium y, =
e/(k +d). For control performance we would presumably require |y.| < le|,
hence k +d > 1.

4.1 Unperturbed adaptive system

For the adaptive system (9) with e = 0, we can make the following obscrva-
tions:

1. An open loop stable plant d > 0 implies that the trivial solution
is globally asymptotically stable.

Clearly the solution (y(t), k(t)) = (0,0) is uniformly asymptotically sta-
ble as seen from considering the Lyapunov function V(y, k) = y? + k2.
For the derivative of V along the solutions of (9) we obtain V(¢) =
—2dy?(t) — 20k%(t). It follows that the origin is globally asymptotically
stable. This observation is also a corollary of Theorem 3.3, as any lincar
stable first order system has a strictly positive rcal transfer function.

2. An open loop unstable plant d < 0 leads to solutions that are
ultimately bounded

Consider the Lyapunov function V(y,k) = 2 + (k +d —0)?. We ob-
tain for the derivative along the solutions of (9) that V(y(t),k(t)) =
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—20y%(t) — 20k*(t) + 20(—d + o)k(t). Considering that k(t) > 0, we
obtain the estimate V(y(t),k(t)) < =20V (y(t),k(t)) + 20(-d + o).
From which it follows that the set characterised by V(y, k) < (—=d + 0)?

is positively invariant. This obscrvation is also a corollary of Theorem
3.1.

3. For an open loop unstable plant d < 0 the solutions either
converge to (vV—od,—d) or (—v/—od, —d), unless y(0) = 0 in which

case the solutions converge to (0,0).

If y(0) = 0 it follows that y(¢) = 0 for all ¢ > 0 and furthermore that
k(t) = exp(—ot)k(0). If y(0) > 0 then obviously y(t) > 0 for all ¢ > 0.
Consider the Lyapunov function V (y, k) = y% ~20dIny + (k+d)? on the
domain D = {y > 0,k > 0}. V achieves its minimum in (v—od, —d).
For its derivative along the solutions of (9) we find V(y(t), k(t)) =
~20(k(t) + d)?. Applying LaSalle’s invariance principle, it follows that
all solutions starting in D converge to the point (v/—od, —d). This cs-
tablishes our claim, as the situation y(0) < 0 can be dealt with in an
analogous manner.

The above describes a single pitch fork bifurcation for the origin attained at
d = 0. The typical local stability picture associated with this bifurcation
has global validity in this particular case. For d > 0 the origin is globally
asymptotically stable, for d < 0 the origin becomes a saddle and two new
locally stable equilibria come into existence. In this particular situation the
stable manifold of the saddle (the origin) acts as a separatrix between the
domains of attraction for the other equilibria.

The control interpretation is as follows. In the absence of any disturbances,
the adaptive sigma modified control law adjust the feedback gain & to the
minimum feedback action required to stabilise the open loop plant. Indeed,
if the open loop plant was stable, asymptotically no feedback is applied. If
the open loop plant was unstable, the minimum feedback gain to render the
linear plant marginally stable is applied. In doing so the adaptive control law
sacrifices the control objective of achieving regulation of the output y, instcad
y| converges to v/ —od. For small values of o (meaning ¢ << 1/d) this loss of
asymptotic performance may be acceptable. It is nevertheless disappointing.
In this particular case of a first order system we know a priori that arbitrary
transient performance can be achieved for correspondingly large gains. The
adaptive law however limits the gain to the minimum gain required to just
achieve stability.

4.2 Perturbed adaptive system

It is disturbing to notice that the adaptive law leads to a marginally stabilised
linear plant in the case the latter was open loop unstable. This is the more
annoying when we realise that this is the only case in which some control is
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required and that good performance can be achieved via high feedback gain.
What happens if measurement errors are involved, i.e. e # 07

Importantly, e # 0 breaks the symmetry inherent in (9) when e = 0, hence the
pitchfork bifurcation pattern breaks as e # 0. Moreover in view of the fact we
now have a two parameter family of planar vector ficlds (e, d are the important
paramecters, o is not) we expect that we can organise the local dynamics
around a Takens-Bogdanov bifurcation point. This would lcad to the presence
of a homoclinic bifurcation and a Hopf bifurcation in the bifurcation diagram.
A bifurcation diagram is presented which describes the local dynamics. For
the transients we offer some analytic results, but mainly rely on simulation
results.

1. For d > 0, e # (0 there is a unique globally asymptotically stable
equilibrium.

The equilibrium is defined via ok, = y? and y> + ody. = ge. With

d > 0 the latter cquation implies that the equilibrium exists and is
unique. Local stability follows at once from the Jacobian:

S(EE) e

The characteristic polynomial of J at an equilibrium (y., k.) is given
by A* + (d + k. + o)\ + od + 3y2. Using the fact that y* = ok, at
equilibrium, this can be rewritten in the more informative format

det(M —J) = A+ d)(A+0) + ke (XN + 30). (11)

Global stability can be established using a Lyapunov argument. Con-
sider the case e > 0. Let V(y, k) = (y — ye)? + (k — k.)?. Obscrve that
the set D = {(y, k) : y > 0,k > 0} is attractive and positively invariant.
On D we have V(y(t), k(t)) < —a(k — k)2 — (d + k) (y — ve)?.

2. For d < 0 and |e| > esn, with esy = 2,/3(—d)*/? there is a
unique, locally stable equilibrium.

Equilibria satisfy ok, = y2 and y? + ody, = oe. With d < 0 and
le] > esn the latter equation implies that the equilibrium exists and is
unique.

Local stability follows at once from the Jacobian (10). As under the
given circumstances y> > —od or k, > —d it follows that d + k. + ¢ >
o > 0 and o(d + 3k.) > —~20d > 0, which by inspection of (11) implies
that (ye, ke) is locally asymptotically stable.

3. For d < 0 and |e| < esn, there are three equilibria, (y.;,oy%)
i=1,2,3 with —ysy <ya < —\/5F4 <ger </ <yes < yswy
where ygn is the positive root of y* + ody = gegy.
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The locus
4
2 _ -
= 27°

describes the Saddle-Node bifurcation in the bifurcation diagram.

e (—d)® (12)

The equilibrium (ye2,0y>,) is an unstable saddle. Indeed the product
of the eigenvalues of the Jacobian evaluated at this equilibrium is given
by od + 3y2, < 0. The equilibria for ¢ = 1,3 may be stable or unstable
depending on the values of d,e. If o +2d/3 > 0 they are locally stable,
regardless of the value of e. They change their stability status through
a Hopf bifurcation if ¢ + 2d/3 < 0. When e is less than but near egy
the equilibrium ¢ = 3 is locally stable, whilst the equilibrium ¢ = 1 is
unstable.

The Hopf bifurcation locus in the bifurcation diagram is described by:
e* = —o*d—o* withd < —3/20. (13)
The equilibria undergoing the Hopf bifurcation are described by:
y2 = o(d+0)?, yee <O,

14
ke = —-d-o. (14)

. Takens-Bogdanov bifurcation point

In order to organise the bifurcation diagram more clearly, we investigate
the presence of a Takens-Bogdanov bifurcation point and verify its local
dynamics. In view of the fact that we are dealing with a two-parameter
family of vector ficlds we expect to find some isolated Takens-Bogdanov
points. The calculations used to obtain the normal form for the unfold-
ing are summarized in Appendix II.

The Takens-Bogdanov points for (9) are given by:

o o 3o o?
yre = NGk krs = 5 drp = 5 erp = VL (15)
and
o o 3o o?
Ry = ——— krp = —~. dip = ——_ e =2 1
Yyrez \/§> TB 25 TB 27 CTB2 \/§ ( G)

As is easily verified, the Takens-Bogdanov points are at the extremities
of the Hopf-bifurcation locus described in equation (13) and of course on
the Saddle-Node bifurcation locus (12). In Appendix II it is shown that
the planar system undergoes a regular Takens-Bogdanov bifurcation at
either of these points. The corresponding normal form is given by:

n’l = 72,

: (17)
e = P+ Bam + 0+ mme.
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It follows from Theorem 8.4 [13] that in the bifurcation diagram of
the system (9) we encounter a line corresponding to a Hopf bifurca-
tion creating an unstable limit cycle together with a stable focus and a
homoclinic bifurcation of the saddle through which the unstable limit
cycle is annihilated. The loci in the bifurcation diagram corresponding
to the homoclinic bifurcations are obtained numerically and displayed
in Figure 3. The Hopf-bifurcation locus is described in equation (13).

. Bifurcation diagram

051 -

Open loop pole —d

DC offsete

Figure 3: Bifurcation diagram for the planar adaptive system

We can now picce together a rather complete picture of the asymptotic
dynamics as function of the bifurcation parameters d,e. The bifurca-
tion diagram is depicted in Figure 3, whilst Figures 5 to 7 represent
a number of typical phase portraits corresponding to the various pos-
sibilities suggested by the bifurcation diagram. In all simulations we
used ¢ = 1. The bifurcation diagram was generated using Dtool. The
phase portraits were simulated using Matlab, with the aid of the suite
pplaneb.m.

The line SN represents the Saddle-Node bifurcation locus, equation
(12). The cusp point C'P is the origin in the bifurcation diagram (e,d) =
(0,0) with corresponding equilibrium (y., k.) = (0,0). The points TB
identify the Takens-Bogdanov points (15) and (16), which here clearly
are the points around which the bifurcation diagram can be organised.
The lines Hom identify the homoclinic cycle bifurcation, terminating at
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a TB point. The lines Hopf identify the Hopf bifurcation, terminating
at a TB point, see (13).

Let us follow a counterclockwise direction through the bifurcation di-
agram starting in the region marked I. In region I there is a unique
locally stable equilibrium, seemingly globally attractive (only confirmed
analytically for d > 0). Figure 5 depicts a representative phase portrait.

yi=-dy-ykee

K =~k+y
T T \T
b A A2 s R
A A2 a5 IS
A2 N [N
N I - SN N
2 A A l{ x
3 A A N
AP a4 a5 A
s S RN ral s R
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=2 A2 A A e a4y W e LI i
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o Pt A a mew ror 7
-4 3 -2 -1 0 1 2 Kl 4
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Figure 4: Phase portrait for bifurcation diagram region I in Fig. 3

In the regions IT, after the saddle-node bifurcation, three equilibria coex-
ist. A saddle and unstable focus come into existing through the Saddle-
Node bifurcation. It appears from the phase portrait in Figurc 5 that
apart from the stable manifold of the saddle, all solutions converge to
the stable focus.

In the regions III, just after the Hopf bifurcation, the spiral source
equilibrium sheds through the Hopf bifurcation an unstable limit cycle
and becomes a stable focus. The interior of the limit cycle is the domain
of attraction of this focus. The other stable equilibrium attracts the
other solutions, apart from the stable manifold of the saddle. This is

shown in Figure 6, which represents a typical phase portrait for Region
111.

The limit cycle continues to grow (in size and period) as we further move
towards the line Hom. There a homoclinic bifurcation occurs, which
destroys the limit cycle. After the homoclinic bifurcation in Region IV
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y' =-dy-yk+e d=-28

K'=-k+y e=15

- ,7 s /" ‘ ' ' 8 { 4
roroz : : 1 k)
rToror . N el 1

¥t N N ~ T

[ \ N ' i

] S N X ’ T
Tt . N » 1

PO N R N N ’ T
Bl P . N » o7
oo . . » Pt

) S \ \ » 77T
T 1o N ro7

1Y S S S, S S N 7 r 1
T8 8 . 227

Tron . 727
T A 8w VA
R 8 227

osk A KRR 277 A
NN R R El r2 27
o N K R K 2 227
L. ! . .
-4 3 -2 1 0 1 2 3 4

Figure 5: Phase portrait for bifurcation diagram region II in Fig 3.

it appears from Figure 7, that the stable manifold of the saddle acts as
a separatrix for the domains of attraction of the stable foci. (On the
line e = 0 this was analytically demonstrated above.)

4.3 Control interpretation

Despite that the disturbance e complicates the phase portrait in a significant
way, its influence from a control perspective is not so important. Both tran-
sient behaviour (although we have not presented a complete proof for this) and
asymptotic dynamics appear entirely acceptable. Certainly, the asymptotic
dynamics are bounded. More importantly the output of the plant becomes
of the same order of magnitude as the disturbance e. This is in complete ac-
cordance with linear control intuition. One simply can not expect any better
from a static gain output feedback. The main difference with static output
feedback is of course that through the adaptation law there are multiple co-
existing possibilities for the asymptotic dynamics, but all of similar control
performance.

The main drawback of the adaptive law is that there is no real control over
the actually achieved control performance and that it only achieves marginal
stabilization of the plant.

It could nevertheless be argued that the o modification with adaptive gain
does work, and is robust with respect to input disturbances. This follows
because over the class of systems controlled by the adaptive system it is not
possible to estimate the achievable performance. Also no actual requirements
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Figure 6: Phase portrait for bifurcation diagram region III in Fig 3.

are incorporated in the adaptation law, apart from the fact that we would like
y to be regulated. In the presence of disturbances this becomes impossible,
and how much we want to reject the disturbances has not been specified
at all. Hence, we could not really expect any better behaviour than what is
achieved. This identifies in a sense where the suggested adaptation mechanism
falls short: the achievable control performance is to be identified in order to
realise a true adaptive control strategy.

The above picture is however too optimistic as will transpire from the next
example.

5 Three dimensional adaptive system

In this section we investigate the possible asymptotic dynamics when the plant
has a single stable zero, here fixed at —a < 0. The adaptive system (1) takes
the form:

r = -—azx+y,
y = —cx—dy—ky+e, (18)
k= —ok+y%

We treat the parameters ¢,d and e as bifurcation parameters. A complete
bifurcation diagram will not be presented.

Before we start our discussion of the bifurcation diagram, let us observe that
the phase portrait for ¢ = 0 is already known by virtue of our discussion in
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Figure 7: Phase portrait for bifurcation diagram region IV in Fig 3.

the previous section. Indeed for ¢ = 0 the z-state does not affect the (y, k)
dynamics, which coincide with the planar system discussed before, see equa-
tion (9). Hence the phase portrait will contain for the appropriate parameters

unstable limit cycles, homoclinic orbits and multiple equilibria.
5.1 Equilibria and Jacobian
The equilibria are characterised by:

aze =Ye, oke =y:, olc/a+dy. +y’ = oe.

The equilibrium is unique if

. 2
c+da>0, or ¢c+da<0 and ez>—§(d+c/a)3.

There are three distinct equilibria if:

. 2
c+da<0 and e? < 2—(;(—d—c/a)3.

At an equilibrium the Jacobian is given by:
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The characteristic polynomial of the Jacobian, evaluated at an equilibrium,
is given by;

detQM —J.) = A+ )M+ (d+a)d+c+da) + k(A +a)(A+30). (23)

5.2 Unperturbed adaptive system ¢ =0

1. An open loop stable plant d +a > 0 and ad + ¢ > 0 implies that
the trivial solution is globally asymptotically stable

This observation is a corollary to Theorem 3.3, as any stable second
order linear system with a stable zero has indeed a strictly positive real
transfer function.

2. Unstable system with unstable zero leads to unbounded re-
sponse

The condition a > 0 is necessary for stability whenever the open loop
system is unstable. Consider for example the adaptive system:

r = —az+y,
y = —dy—ky, (24)
ko= —k+y%

Obviously, for all @ < 0 we have that x grows without bound (for al-
most all initial conditions, and all d). The adaptive feedback is only
meaningful when the system has stable zeroes.

3. Pitchfork bifurcation

The pitchfork bifurcation locus in the bifurcation diagram is given by
¢+ da = 0, see equation (21) with e = 0. For ¢ + da < 0 the origin is
a saddle. The other two equilibria are described by (aye, ye,y? /o) with
y2 = —o(c/a+ d). Their local stability is determined from the location
of the roots of (23):

1
PSS a(aa +a? -\ + %(—Q(ad +¢)—c+a* )d—20(ad +¢) (25)

These cquilibria are stable when a®> — ¢ > max(ao, —2(ad + ¢)), and
(a® - ¢)(a® + ao — ¢) — 2(ad + ¢)(ac — ¢) > 0 unstable otherwise. This
means that immediately after the pitchfork bifurcation, i.e. for ad+c¢ < 0
but close to 0, the new cquilibria are locally stable if d + a > 0, and
saddles otherwise.

4. Takens-Bogdanov point: open loop system is double integrator

The origin is a Takens-Bogdanov point when d + a = 0 and ad 4+ ¢ =0.
The corresponding Jacobian has two zero eigenvalues with geometric
multiplicity one, and one eigenvalue —¢. Using the comparison function
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V = z? + y? + k* — 4k, it can be verified that the origin is globally
asymptotically stable in this situation.

The bifurcation locus for the homoclinic orbit bifurcation is contained
in the paramcter domain 0 < ¢ < a? and d < —a (see next item Hopf
bifurcation).

5. Hopf bifurcation

The origin undergoes a regular Hopf bifurcation for d + a = 0 and
ad + ¢ > 0. The origin remains the unique equilibrium, but becomes
an unstable focus as d + a becomes negative. A stable periodic orbit
comes into existence which persists for all d < —a and ¢ > a2, at
least for sufficiently small ¢. This can be demonstrated using averaging
ideas. The calculations are summarized in Appendix III and IV. In
Appendix III we establish a domain of attraction for an invariant torus,
which we demonstrate to contain a unique periodic orbit in Appendix
IV. Appendix IV provides existence, uniqueness and local stability. It
is demonstrated that the periodic orbit is for sufficiently small ¢ well
approximated by:

z(t,o) = - :25(%;(1—) sin{wt) + O(a),
y(t,o) = %Uf;—a)(—a sin(wt) +weos(wt)) + O(0),  (26)
k(t,o) = —(d+a)+0(/0),

wr = c¢-a

In Appendix IIT it is demonstrated that the domain of attraction is
virtually all of R® apart from the axis {x = y = 0} (more precisely,
any bounded domain in R*/{z = y = 0} is contained in a domain of
attraction for sufficiently small o).

The above observations complete the local bifurcation picture for the trivial
equilibrium.

Following the non-zero equilibria it can be observed that they too undergo a
Hopf bifurcation, creating locally attractive limit cycles. This takes place for
ad + ¢ < 0 and (oa + a? — ¢)(a® — ¢ — 2(ad + ¢)) = —a*(ad + ¢). The limit
cycles themselves undergo a sequence of saddle-node bifurcations, eventually
evolving into complex attractors. These limit cycles and attractors do not
scale with o as the limit cycles originating from the Hopf bifurcating origin
(26). An example is represented in the Figure 8. The aperiodic response in
Figure 8 is generated from the initial condition (zo,yo, ko) = (0,1,1) for the
system (18) with a = 1, d = —2.751, ¢ = —5.301, o = 0.001. It is reminiscent
of drift-burst behaviour observed in other direct adaptive control schemes [2].
A partial, numerically obtained bifurcation diagram is represented in Figure
9. The bifurcation parameter is «. The system (18) has parametersa = 1, d =
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Figurc 8: Aperiodic behaviour after pitch fork bifurcation followed by Hopf
bifurcations

—a, ¢ = —af4+ 3/4 and o = —0.1. The bifurcation parameter ranges from
0 to 2.5. A phase space portrait displaying some of the possible competing
asymptotic dynamics for ¢ = 0.82 is displayed in Figure 10. The numerical
bifurcation diagram reveals that the origin undergoes a pitch fork bifurcation
a = 0.6. The origin remains unstable for all & > 0.6. The new equilibria are
unstable in the interval 0.831 < a < 1.86, and locally asymptotically stable
otherwise. In the same parameter region 0.831 < a < 1.86 we identify a
strange attractor, with a structure not dissimilar from the Lorenz attractor.
The non zero equilibria undergo regular Hopf bifurcations for o« = 0.831 and
1.86. The Hopf bifurcations are supercritical. Regions of hysteresis are clearly
identifiable, indicative of saddle node bifurcations for the limit cycles.

5.3 Perturbed adaptive system

We now consider concisely the influence of the input offset e.

1. Stable plant: ¢c+ad >0 and d+a >0

Under these condition there is a unique equilibrium, see equation (19),
which is at least locally uniformly stable, see equation (23). The output
is no longer regulated, at equilibrium |y.| < |e].
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Figure 9: Partial bifurcation diagram for system (18)

. Unstable plant, real poles: ¢+ da < 0

In this situation there may be up to three equilibria, (see equation (19),
depending on the magnitude of e. The main event in this part of the
bifurcation diagram is the saddle-node bifurcation. This situation cor-
responds very much to the planar system discussed above. It suffices to
consider the local dynamics in the centre manifold after eliminating a
one dimensional stable manifold.

(a) The saddle-node bifurcation locus is given by

2_20

= 2—7(—d—c/a)3. (27)

e

For ¢® > 22(~d—c/a)?® there is but one locally stable equilibrium,
for €* < 22(—d — ¢/a)® there are three equilibria.

The control interpretation is that a larger DC offset enforces a
larger control gain, which in turn provides more stability.
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(b) Takens-Bogdanov points There is a varicty of Takens-Bogdanov

points characterised by:

(0+a—oa—-1/3a®)d+ (1+0 —a/3)c = —ga,
—4o(c+ad)® +27¢2 = 0,
_ d
kTB - _EIZ;L') (28)
y%‘B = UkTB:
arry = YTB-

(c) Organising centres

The most degenerate bifurcation points, also the most likely organ-
ising centres in the bifurcation diagram are those equilibria with
a zero eigenvalue of algebraic multiplicity three and with a single
eigenvector. One expects to find complex asymptotic attractors
in the neigbourhood of such points. These points only exist if
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o > a > 0, and are characterised by:

d = 2a% — 302,
2(oc —a)
c = a’
T a-o0)
02 = 207
T (o-a)¥ (29)
2
ke = z )
2(c —a)
2=
e 2(c —a)’
are = Ye.

These points, because they only exist when o > a, are less relevant
from a control perspective as one typically sclects ¢ to be small.
Nevertheless, this information serves to qualify what we have to
understand under small ¢, and furthermore serves to underscore
the difficulty in selecting an appropriate ¢ value. Indeed, a proper
value of o, if one wants to avoid the complex dynamics associated
with such points, does require non trivial prior knowledge about
the location of the plant transfer function zeroes.

3. Hopf bifurcations

In case ¢ + ad > 0 there is unique equilibrium, that is locally asymp-
totically stable for d + a > 0, and may undergo a Hopf bifurcation for
d+ a < 0. The Hop{ bifurcation locus corresponding to this bifurcation
situation is described by:

a’e? = ocgk(c+d+k)?,
(c+ad)+o(a+d)+(a+30)k > 0,

a((c + ad) + 3ak).
(30)

I

(oc+d+a+k)(ao +c+ (a+o0)d+ k{a+ 30))

(The elimination of k from the above expression (30)) is feasible, but
leads to a rather cumbersome and uninteresting semi-algebraic expres-
sion.) Given that the constant term in (23) is always positive, we ob-
serve that a stable focus looses stability and a locally stable limit cycle
is created at the Hopf bifurcation. In case e = 0, the origin is the only
equilibrium, and the Hopf bifurcation takes places at d = —a. The av-
eraging results established in Appendix IIT and IV can be repeated for
this situation as well.

The equilibria generated through the saddle node bifurcation also un-
dergo a Hopf bifurcation.
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5.4 Control interpretation

The adaptive control law fails to achieve regulation in all but the rather non-
interesting case of a stable open loop system. The presence of a DC offset has
two main effects, first it acts stabilising in that it enforces a larger feedback
gain than would have been the case without it, but it also induces further
complex dynamics in the behaviour depending on the actual plant parameters.
We conclude that the ¢ modification limits the adaptive gain too severely to
achieve the desired control objective. Moreover we observe that the selection
of ¢ is not trivial. A proper selection, one that avoids as much as feasible
complicated dynamics and thus assists in predicting the typical asymptotic
dynamics, requires a ¢ value which is small compared to the dominant time
constants and zeroes of the plant’s transfer function.

6 Generalisations

In higher dimensions, the system (3) with n > 1, all the above discussed
bifurcation phenomena re-occur and more complicated ones emerge.

We limit the discussion to the generic bifurcations corresponding to equilibria.
The saddle-node bifurcation phenomenon we observed in the planar system
and the Hopf bifurcation we observed in the three dimensional example are
the main events to consider.

The emphasis is on a control theoretic interpretation.

6.1 Equilibria

For the general case, see equation (3), the equilibria (z.,ye, ke) satisfy the
equations:

Te = "'A_lbyea
2

k, = y_e’ (31)
o

oe = o(—cA b+ d)y. +y°.

Provided d — cA™'b = p(0) + dz(0) > 0 there is but one equilibrium. Notice
also that in this case |y.| < |e| and y. has the same sign as e.

If d— cA~'b < 0 there are possibly three equilibria, depending on the magni-
tude of e. At least one of the equilibria is larger in magnitude than

y* =/ —o(d - cA-1b); whenever d — cA™'b < 0. (32)

For future reference we denote

k*=y*?/o =cA b —d. (33)
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There are three equilibria only if

2(cA~1b — d)3/?
3V3 '

e < e = (34)

The equation (34) represents the saddle-node bifurcation locus in the bifur-
cation diagram. When the condition (34) is satisfied, for one equilibrium
the output value is larger in magnitude than y*, this equilibrium we refer to
as Ye1- Another equilibrium has an output value contained in the interval
—y*/V3 < ey < y*/+/3. The last equilibrium is such that the output value
has the opposite sign of y.; and satisfies y*? > y.3 > y*2/3.

6.2 Local stability of equilibria

The characteristic equation of the Jacobian evaluated at the equilibria is given
by:

Al—A —b 0
J(A) = det ¢ A+d+ke v ,
0 -2y, A+o

Il

A+ o) (p(A) + (d + ke)z(N) + 2y22(N)
A+ a)(PA) +dz(A)) + ke (A + 3a)2(N).

From this it follows that for sufficiently small o the root loci of the plant
p(A) + (d + ke)z()\) as a function of k. is a good indicator for what to expect
in the phase portrait of the adaptive system. (Again sufficiently small o
means small with comparison to the dominant time constants and zeroes of
the plant’s transfer function.)

6.2.1 Case 1: Open loop stable plant

The origin is a locally asymptotically stable equilibrium in this case (see equa-
tion (35) with k, = 0. If moreover the plant has a strictly positive real trans-
fer function, then the equilibrium is globally asymptotically stable. The local
analysis conforms of course. Indeed, in this case p(A) + (d + k)z(}) is a Hur-
witz polynomial for all £ > 0. Hence p(0) + dz(0) > 0 which confirms that

the equilibrium is unique and from equation (35) we observe that it is locally
stable.

In general, for stable and minimum phase but not strictly positive real plants,
there will be multiple asymptotically stable attractors in the phase portrait,
the origin being one of them. See the example (Figure 1) at the end of Section
3 for an illustration. (It can be verified that the domain of attraction of the
origin is rather small.)
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6.2.2 Case 2: Open loop unstable plant, single positive pole

In this scenario, the open loop plant is unstable with a single positive cigen-
value; the root loci of p(A) + (d + k)z(A) with k viewed as a parameter, has a
single (rcal axis) branch cutting the imaginary axis for k = k* = —p(0)—dz(0).
In this case we have obviously p(0) + dz(0) < 0. There may be as many as
three cquilibria, see equation (34). The equilibrium corresponding to y.; for
which Jyei| > y* is also locally asymptotically stable. Indeed we can rewrite
the Jacobian (35) in this case as: J(A) = (A+0)(p(A) +(d+ke)2(N)) +2y22()).
Because p(A) + (d + k*)z(A) = Ah(A) for some Hurwitz polynomial h()). It
follows that under this scenario with ke > k*, J()) is Hurwitz.

The equilibrium with y.» is always unstable, because J(0) = a(p(0) + dz(0)) +
3yZ,2(0) <0.

The equilibrium corresponding to y.3 may be either stable or unstable.
Clearly the transition from Case 1 to Case 2 is effectuated via a saddle-
node bifurcation, c.g. associated with a variation of the parameter d. The
bifurcation value being d = d,, for which p(0) +d,z(0) = 0. This phenomenon
is completely captured by the planar cxample.

But as indicated in the three dimensional example, depending on the plant,
the global dynamics may be rather more complicated with possibly co-existing
attractors, cither multiple locally stable equilibria, but possibly also periodic
orbits and even complex attractors, see Figure 10.

6.2.3 Case 3: a single pair of complex conjugate unstable poles

When the open loop plant is unstable with a single pair of complex conjugate
cigenvalues, we have that p(0) + dz(0) > 0, and there is but one equilibrium.
The local stability now depends in a crucial manner on the magnitude of the
disturbance e. The transition from Case 1 to Case 3 corresponds to a Hopf
bifurcation.

In particular for e = 0, the equilibrium is the origin (z.,¥.,%.) = (0,0,0)
and clearly this cquilibrium is unstable, the Jacobian being equal to J(\) =
(A + 0)(p(A) + dz(})), which by assumption has a single pair of complex
conjugate roots with positive real part. In this situation the adaptive system
adjust k such that a stable limit cycle comes into existence. Using averaging
ideas as in the Appendix IV we may show that the limit cycle, for sufficiently
small o, is well approximated by:

z(t) = O(Jo),
y(t) = V20kgsin(wt + ¢) + O(0), (36)
k(t) = ko+ O(/o).

Where kg and w arc such that:

: —-A —b
det(gw[—( o d+k ))-0.
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As y. and hence the corresponding k. increases monotonically with e it follows
that under this scenario at some critical level the equilibrium undergoes a
Hopf bifurcation. For |e| > en ( such that k. = ko) the equilibrium is locally
asymptotically stable, for |e] < ey it is unstable and a stable limit cycle exists.
Again it is a direct consequence of the center manifold theorem that the three
dimensional example captures the essence of the local dynamics. There exists
an asymptotically stable periodic orbit for all |e] < ey and the equilibrium is
asymptotically stable otherwise.

6.3 Other scenarios

The transition from a stable plant to an unstable plant via a Saddle-Node or
Hopf bifurcation is but the simplest scenario. Obviously, much more compli-
cated bifurcation phenomena are possible. Nevertheless, within the class of
linear systems considered, these are the generic bifurcations. The different
asymptotic dynamics corresponding to these transitions being explored in the
above two and three dimensional examples.

Typically the least structurally stable (and hence most interesting) plants to
consider are those linear plants that have all their poles in the origin. In
the bifurcation diagram for such adaptive systems (order > 2) we expect to
encounter chaotic dynamics.

Moreover as for a typical plant, there may be multiple values of the feedback
gain k for which the plant is marginally stabilised, there will be in the phase
portrait of the adaptively controlled system a multiplicity of different and
co-existing asymptotic dynamics, each corresponding to a different level of
adaptive feedback gain.

7 Alternative adaptive gain laws

Clearly the adaptive systems we discussed may exhibit a rather rich variety
of asymptotic dynamics. One may wonder, could we design an adaptive gain
controller of the form k = f (k,y) with smooth f that achieves regulation in a
structurally stable manner, i.e. without displaying periodic behaviour and or
multiple co-existing asymptotic dynamics for all sufficiently small perturba-
tions of the vector field. (Allowing for perturbations other than the constant
input offset considered here.) Unless we are given more prior information
about the class of systems which need to be controlled, the answer appears
to be negative.

Indeed, the class of systems to be controlled, linear systems with a transfer
function characterised by stable zeroes and pole-zero excess of one, is simply
too rich. Regardless of the adaptive gain law f(k,y) we use to control the
linear system at hand, the closed loop dynamics may exhibit the richness we
discussed above.

In order to find a structurally stable adaptive gain law we nced to consider
adaptation laws of the form # = f(z,y) with k = g(z,y) or perhaps k =



Asymptotic Dynamics in Adaptive Gain Control 55

f(k,y,t). These options are presently under consideration.

Alternatively, we may want to invoke further prior information on the systems
to be controlled in order to achieve robust adaptive regulation.

Let us observe that the bifurcation analysis has provided us with a lot of
information about the behaviour of these systems, and this knowledge can
be exploited to design a supervisory adaptive control law to decide on an
appropriate feedback gain level. A supervisor could observe the asymptotic
dynamics, from a catalog decide in which regime the adaptive system is op-
erating and reset the feedback gain accordingly. An adaptive feedback law
building on this principle could take on the form:

k=—o(k—k)+y% (37)

Where both the value of o and k, > 0 are set by the supervisor. Appropriate
selection rules for these parameters are under investigation.

8 Conclusions

Through a bifurcation analysis, we explored the possible asymptotic dynamics
in adaptive high gain feedback applied to lincar almost passive systems, when
the adaptlve law has been modified with the so called o-modification, k =
—ok +y%. In the disturbance free case, when the uncontrolled plant does not
possess a strictly positive real transfer function, even when the plant is stable
and minimum phase, asymptotically periodic and complex dynamics are to
be expected. For the less interesting case of plants with strict positive real
transfer function the system is regulated.

It became apparent that even in this simple situation the design of the adap-
tive law, the selection of o is not trivial. A proper selection requiring some
information about the size of the time constants and zeroes of the plant’s
transfer function.

Despite the fact that the adaptive control law always leads to a bounded
system response regardless of the plant, the main alarming observation is that
the adaptation leads at best to a control gain which only achieves marginal
stability. Hence the adaptation law can never be switched off, or stability
may be lost. We conjecture that no smooth time-invariant adaptive gain law
of the form & = f(k,y) can be constructed which possesses the property of
regulation for the class of linear systems with stable zeroes and pole-zero
excess of one, in a structurally stable manner.

The results here should be seen as a first step in the re-exploration of the
adaptive control question with the aim of understanding the dynamics of
adaptive systems as to develop a supervisory control approach.

Finally let us observe that we have not really dealt with the issue of transient
performance in gain adaptive systems.
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I System representation

For the sake of completeness we explain here how one can arrive at the (1)
representation for systems that possess a transfer function of relative degree
one and with stable zeroes.
Let us start from the input/output description of the system:
d d
P(—=)y = Q(—)u, 38
(5= Q%) (38)
where P(£) is a monic polynomial of degree n + 1 and Q(£) is a polynomial
of degree n. We assume that the system is controllable. This corresponds to

P(£) and Q(&) being coprime. Since the degree of P(£) is exactly one larger
than the degree of Q(€), we can write P(¢) = (& — d)Q(€) + r(¢) with

an
degr(£) < deg Q(£). Equation (38) can then be rewritten as:
1. d d d
(q—n(a‘Fd)‘*"‘(a))y —Q(a)“- (39)

Using climination theory, [1, Chapter 6] it can be seen that (39) is input/output
equivalent to

d d d
-y = —dy + gnu, Q(gt-)uz =r(=)y, u=uy+us. (40)

dt dt
Notice that since deg Q(€) > degr(€), the second equation in (40) defines a
proper input/output relation between y and uz. Notice also that since P(£)
and Q(§) are coprime, so are Q(£) and r(£). Therefore the (y,uz) system is
controllable. We can therefore consider the controller canonical state space
representation of that system, which is given by

d

prid Az + by wue = ha, (41)
where the cigenvalues of A are the zerocs of Q(€) and (A,b) is controller
canonical form. Combining (41) with the first and the third equation of (40),
we obtain

%.’I) = Az +bu, .
h (42)
Ey —gnhz — dy + qnu.

Putting ¢ = ¢, h and g = ¢, yields (1).

I Normal form representation for the Takens-
Bogdanov point in (9)
Without loss of generality we start with the system description (9) with o =1,

see Fact (vi). The Takens-Bogdanov points are equilibria with a nil potent
Jacobian.
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For the system (9) (with o = 1) these are given by:

1 3 1
B=—=, krp=2=, drp=——, eypp = ——, 43
Yrn \/5 TB 5 TB 5 erB \/5 ( )
and
1 1 3 1
yre = _ﬁ’ krp = 2 drp = —5 €rB = Nk (44)

We consider the local behaviour around the latter. The former, due to symme-
try will have mutatis mutandis a completely similar normal form. Introduce
new variables (z1,z2, A1, A2) through:

) = —% + Iy,
k = % + T,
(45)
d = _% - )\17
€ = % -+ AQ + \/LE/\I
The system (9) described in the new variables takes on the form:
1 = A+ (1 + )\1):131 + L:L’z — X2y,
v (46)
Ty = —V2z; — 3y + 2.

We now transform the variables such as to reduce the first equation to a pure
integrator. (This also ensures that the lincar part for (A;,Xs) = (0,0) is in
Jordan form.) We use the transformation:

Yy = I,

(47)

Y2 /\2+(1+/\1)$1 +%£L‘2 — Xoxy.

This transformation is invertible in a neighbourhood of the origin contained
in the domain ¥, < % The inverse is given by:

I

T Y1,

Aty — 1+ M)y (48)
T .
V) A

Ty =

This leads to a system description of the form:

Iljl = Yo,

— (14 M)y — Y2 (49)

A2
; — 3.2 _ .3
Y2 = dethm At -yt V2, 1V
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Only retaining terms up to sccond order in (y1,y2) we arrive at a locally
equivalent vector field:

Z-l = 2y,

3 .
Zo = A+ ANz + ()\1 -+ \/5)\2)22 — 752’12—}- (50)

(2Xg - \/5(1 + \))ziz0 — \/ﬁzf

Following Section 8.4.1 in [13], the term linear in 2y in the zp-cquation can
be climinated by a parameter dependent shift of z;. The 23 term in the z-
equation can be eliminated through a time scaling transformation. Finally
observe that the 2122 term and the zf term have both negative sign, which
can be made positive through the linear transformation (21, z2) — (—2z1, —22).
It follows that the normal form for the Takens-Bogdanov bifurcation in the
system (9) is given by:

77-1 = N2,
e = Bi+Bom +1i +mmp.

IIT Averaging computations

Consider the system (18) and assume that o << 1. Given Fact (vi), this
is actually without much loss of generality, as we can always scale the vector
field as to satisfy this condition.

Consider the following time varying state space transformation:

R = —a 1
- —c a J’

1 T
z = ﬁexp(—Rt)<y ), (52)
( _ Ktatd

Jo

Notice that exp(Rt) is a rotation matrix. Let w = /e — a2. Let b7 = (0 1).
We have that (z, &) satisfy the following differential equation:

z = \Jolexp(—Rt)bbT exp(Rt)z, 3
£ = —0f—Ja(—a—d—zTexp(RTt)bTbexp(Rt)z). (53)

This is in standard form to apply averaging techniques ([9]), using /o as a
small parameter. The averaged system of equations is given by:

2 = JogoT2,

. : (54)
o = —gf —Jo(—a—d-zTAz%).
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For a first order averaging approximation one could neglect the term —o€°.
Nevertheless, because we arc interested in an approximation valid over the
entire time axis, and because this term provides stability, we carry it along in
the averaged equation. For a discussion of the validity of this approach see
c.g.[9] Chapter 4.

Here T" and A arc given by:

1 w+1 =2 1 c? —c e
F-ﬁ< c w2—1> A—ﬁ(—c w2+l /- (55)

Importantly observe that AT +T7A = A = AT > (.

Let us consider the following comparison function for the averaged system
(54).

al a

V("6 = %(z”TAza +d+a)- -@ log % + %ga‘z. (56)
Notice that V is positive on the domain D = {(2%,£%) : 2* # 0}, and achicves
a minimum V = 0 on the ellipse E = {(2%,£%) : €* = 0; 2°TAz* = —a —
d}. Moreover V' grows unbounded whenever its argument approaches the
boundary of the domain D.
Assuming that z*(0) # 0, we have that along the solutions of the averaged
system equations (54) V(22(t),£%(#)) = —o€2(¢)? < 0. Using LaSallc’s invari-
ance principle we deduce that all solutions starting inside D converge to a
fixed point in E. Locally this convergence is exponentially fast.
From the results in Chapter 4 [9] it follows that the original system of cqua-
tions (53) contains an attractive invariant tubular neighbourhood of radius
O(y/0) centred on the ellipse E with a domain of attraction arbitrarily large
inside the interior of D. The convergence is exponential. (Considering a larger
domain of attraction, within D, may require one to consider smaller values of
g.)
Re-interpreting the result in terms of the original coordinates (18) we obtain:

Theorem IIL.1 Consider the system (18) under the conditions e = 0, d4+a <
0 and c+ad > 0. Let £(0) # 0 and k(0) > 0. For sufficiently small o > 0,
all solutions satisfy:

limsuplk(t) +a+d| < Co,
h?ligpl (z(t) y(1)) exp(—RTt)A exp(—Rt) ( ZE:)) ) +(a+d)o| < Co¥2.
(57)

Here C' is some positive constant independent of 0. The matriz R is defined
in (52).

Remark III.2 In view of the fact we can rescale the equations such that
o =1, sce Fact (vi), it is clear that the above Theorem III.1 remains valid
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for o not necessarily small. However, obviously the theorem’s conclusions are
strongest for small values of o. O

Remark II1.3 Consider d as bifurcation parameter. In conjunction with the
observation that a regular Hopf bifurcation takes place for ¢ + ad > 0 and
d passing through —a, we conclude from the Theorem TII.1 that the Hopf
bifurcation is such that as d decreases through —a a stable limit cycle forms
whilst the cquilibrium becomes unstable. Appendix IV establishes this fact
rigorously. d

Finally lct us provide the details of the calculations for A and T'. Recall (52),
we have

cos(wt) — + sin(wt) L sin(wt)
exp(t) = . (58)
— £ sin(wt) cos(wt) + L sin(wt)
It follows that
exp(—Rt)bbY exp(Rt) =
-7 sin® (wt) — 25 sinwt) (w cos(wt + sin(wt))
— 5 (wceos(wt) — sin(wt)) sin{wt) cos?(wt) — 25 sin® (wt) 7
(59)
from which we readily deduce the expression for I'. Similarly from
exp(RY1)bbT exp(Rt) =
5722 sin?(wt) — 3 sin(wt)(w cos(wt + sin(wt))
— 5 (wcos(wt) + sin(wt)) sin(wt) (cos(wt) + = sin(wt))?
(60)

we compute A as the average over one period of the above expression.

IV Existence and uniqueness of limit cycle

Consider the adaptive system (18) with e = 0 and paramecters in the range

¢>a? and d < —a. Let w? = ¢ —a? > 0 as in Appendix IIL Introduce the
variables 21 = z, 23 = —ax +y, 23 = k —d — a. The system description
becomes:

Z'1 = 22,

Zy = —wln — 23(ze +az), (61)

Z3 = —ozz3+(z:2+axn)? +o(d+a).
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Introduce now cylinder co-ordinates, z; = /orsin(wf), 2o = /owr cos(wh)
and z3 = \/oz. Denote /o = . This leads to the system description:

,,'.

- gzr(cos(wﬁ) + asin(wh)) sin{wh),

0

-1+ ;E—Ez(cos(w()) + asin{wh)) cos(wh), (62)

3 —oz +¢ ((d+a) + r*(cos(wh) + asin(wh))?).
Utilizing Theorem 1.1 pp261 [14], we deduce that there exists e > 0 such
that for all 0 < & < £* the system (62) possesses an isolated periodic orbit

(r(0,e),z(8,¢) = ( ff:;“),()) + O(¢). The periodic orbit (r(6,¢),2(0,¢) is

continuously differentiable in e.
The conditions of Theorem 1.1 pp261 [14] are that the equations:

0 = ZoTo,

0 = (d+a)+ rg(%i),
have a solution for which

0 _ :M
det ol tad) | =—ald+a)#£0. (64)

V=2(d+a)(1 + a?) 0

The latter is ensured by assumption as a{d + a) < 0.

For the local asymptotic stability of the periodic orbit (in (r, z)-space), it
suffices to observe that the trace of the Jacobian is —o < 0. Alternatively, we
can exploit the averaging idcas of Appendix I11.

From the above we deduce that the system (18) with a +d < 0 and ¢ > a®
possesses a locally asymptotically stable periodic orbit for all sufficiently small
o:

o) = - ;21”-(;1:7‘” sin(wt) + O(0)
y(t) = ——210%(1—)(—(1 sin(wt) + w cos(wt)) + O(o) (65)
k(t) = —(d+a)+0(/0)

w = c—a’>0

V  How to remove DC offset error

As is well known, the DC offset error can be removed from the output through
integral action. It is probably well less known that the resulting dynamical



62 I. Mareels, S. Van Gils, JJW. Polderman, A. llchmann

system remains in the same class of systems studied in this paper. Hence our
analysis also applies to these systems where integral action is present.
Starting from the system description:

d d

P2l = Q(g)u,
4. _ (66)
dt'” =Y

v = —k(y+ay) +e.

Here o > 0 is the relative integral action applied in the control and y; is the
integral of y. Considering a new output n = y + ay; we can equivalently
represent the control system as:

d d d d
—P(= - (= el
7 (dt)n (dt +a)Q(dt)u,
u = —knp+e, (67)
(& vay = 4
at TV T w"

This system (67) is clearly of the same form as the system (1). We can now
proceed as in the rest of the paper, with the added flexibility of using y and/or
7 in the adaptive law that defines k. The benefit of the integral action is that
whenever the adaptive system regulates to an equilibrium that then the output
y is regulated to zero. Clearly this is important from a control perspective, but
it does not alter in any significant sense the overall dynamics of the adaptive
system. Morecover as regulation to an equilibrium is by no means guaranteed,
nor the most likely event, integral action looses its attraction.
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