
 

  
 

 

Ilchmann, Achim; Mareels, Iven M. Y.; Van Gils, S.;  
Poldermann, J.W. : 

Asymptotic Dynamics in Adaptive Gain Control 

Aus: 
Advances in Control, Highlights of ECC '99, Ed.: P.M. Frank 
[European Control Conference ; 5 (Karlsruhe) : 1999.08.31-09.03], 
London : Springer-Verlag, 1999. - ISBN 1-85233-122-4, S. 29-63 



2

Asymptotic Dynamics in Adaptive
Gain Control

I. Mareels, S. Van Gils, J. W. Polderman and A. Ilchmann

Dcpartrrrcnt, of Electrical and Elcctronic Enginccring, Thc Univcrsity of N{ci-
bourne,  Vic  3052,  Austra l ia ,  i  .  mareefs@uninelb.  edu.  au
Faculty of Mathcrriatical Scicnccs, Thc Univcrsity of Trvcnte, Etrschcdc, Thc
Nether lands,  s .  a.  vangi ls@math.utwente.nf
Faculty of N{atirernatical Scicnccs, The University of Twcnt,c, Enscircdc, Thc
Ncthcrlands, j . w. polderman@math. utwente . nL
School of N{athernatical Scicnccs, Uriivcrsilv of Exctcr, Exctcr trX4 4QE, UK,
i.Ichmann@maths . exeter. uk

Surnrnary. It is u'cll knowrr that lincar SISO systcms t,hat can bc rcrrdcrcri
passlve through constant output fccdback can be iiclaptivcly st,altiliscd throul;li
a single gain adaptation lau,.. \\'c rcvisit, t,hc dynatnical itchaviotrr of such
systems and cxhibit througli a bifurcation analysis a rich varicty of potcnt,ial
asymptot,lc dynarnics, for which wc providc a control theorctir: intcrprctation.
This in turn lcads us to question the actual adaptivc cont,rol qucstiorr arid
solution approach.

1 Introduction

Adaptive outprrt gain control for the purposcs of regulation ancl without rc-
liancc on iclentification or probing signals constittrtcs about thc simplcst, aclap-
tive control objectivc one can considcr. Research into thls iclca wa^s initiatccl
by l\{areels [3], Morse [12], ancl furthcr clcvcloped by Willcrns and Byrncs [i0].
For an ovcrvicw ancl cxtcnsivc rcfcrcncc list see Ilchrnann [4] . The work of
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Willcms ancl Byrnes lcad to the whole topic of univcrsal controllers see e.g.

[7] and [2, Chapter 6]. Thc topic of adaptive stabil isation via output feedback
is also studied in grcat detail by [11]. In this paper we revisit this aclaptive
schcme from a dynamical systems pcrspcctivc. Our aim is to understand the
adaptivc control qucstion better and to bc in a position to rccast aclaptive
control questions in a more appropriatc contcxt.
In orcler to apply adaptive outplrt gain control one starts from the a^ssumption
that thc plant to be controllcd is a finite dirncnsional SiSO linear systcm that
can bc stabil ised by static high gain output fccdback. Adaptation is rcquircd
because t,hc amount of gain in ordcr to achieve rcgulation is unknoivn. A
large class of linear systems that ca.n be stabiliscd by output gain feedback
is charactcrisecl by: tlic plant's transfer function has stable zerocs and rcla-
tivc degree one. Such svstems can be convcniently reprcscntcd a^s follows [2,
Scction 6.41 (scc aiso the Appendix I):

n  -  A n * b ! t ,  
( 1 )

A  
-  - c r - d y + g t t .

Here u is the input, g thc otrtput and (r,y) e R" x IR is the state of the
linear systcm (1). A € IRnxn is a matrix whosc eigenvalucs have negative real
part. The eigenvalucs of the rnatrix ,4 are precisely the zeroes of the transfer
function of thc systern (1). Wc assume that .g ) 0, g is thc high frequency gain
frorn input to output. We a^ssume that the original system (1) is controllablc.
As a consequencc, see Appendix I, the pair (Ä, b) is controllable. It is clear
that for all sufficicntly large k > 0, the output fecdback control law u : -ky
stabi l iscs thc systcrn (1) ,  scc c.g.  [3 ,  5] .
In this papcr wc arc inlerested in characterising thc qualitativc behaviour (thc
phasc port,rait) whcn the adaptivc fcedback laiv

' t . L  :  - ky te ,
( 2 \

h = -ok + y2,  k(o)  > o.

is applied to (1). Here o > 0 is a small positive constant representing the so
called sigma rnoclification [8] and e e IR rcpresents a control offset crror. The
control offset error is introduccd to unearth some of the robustness issucs of
conccrn in adaptive control. Onc could object that a constant offset error is
not a rcalistic disturbance as it is casily ovcrcomc via intcgral control action.
As is shown in Appcndix V, this is false, and the cliscussion wc present rcmains
relcvant even if integral action is explicitly taken into account.
For o = 0 a.nd e : 0 the intuition bchind the adaptation law is simple.
As long as y + 0 the feedback gain ,k increases, cventually rendering the
(r, g) subsystem a^syrnptotically stable. The oulput will decrease to zero in
an exponential manner which limits the feedback gain. Unfortunately, any
nonzero measurement crror or disturbance such as e will force the feedback
gain to grow indcfinitely.
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This observation of lack of robustness lead to the so called sigma rnodification.
This idea was first suggested by Ioannou and Kokotovic [8] in the contcxt of
adaptive model refercnce controi. It was adopted for systems of the form (1)
by Bar-Kana and co-workcrs, sce [11] for a detailed overview of this work.
Another possible rnoclification to overcomc this lack of robustness problem
whilst preserving the simplicity of the controllcr is the so called ,\-l,racking
approach (first suggested in [f] ana introduccd by Ilchmann and Ryan [6],
see also Ilchmann [5]). In lhis line of work a dead-zonc in the gain adap-
tation is invoked. The dead-zone reduces the performance of regulation in
the disturbance free case in that thc output converges to a prcspccified, )-
neighbourhood of the rcfcrcnce signal. This is a small pricc to pay for the
addcd robrrstncss with respect to small disturbances. Thc .\-tracking modifi-
cation will not be considered in the present paper.

Compared to the above simple intuitive picture, the sigma modification alters
the phase portrait in a non trivial way. This is the topic studied in this
papcr. Thc prirnc purposc of thc sigma modification is to obtain robustness
with respect, to measurcmcnt errors. This is indeed achieved, but at a price,
as the a^syrnptot,ic dynamics arc no Iongcr as desired. We invcst,igatc this
phcnomcnon in some detail, suggesting some altcrnatives.

Despite the rather large l iterature on the topic it is our contention that our
understanding of the dynamics at large of these simple adaptive control sys-
tems is not complete. In this papcr we collect a number of results describing
what can be cxpccted both for the transients as wcll asymptotic behaviour.
Moreover describing these dynamics leads us to an understanding of relevant
adaptive cont.rol quost.ions.

The paper is organised as follows, in the preamblc following the introduction,
we galher a numbcr of known results and introduce some notalion. The next
section is devoted to the ultimate boundedness that the adaptively controlled
systcm dynamics enjoy. The restrlts cstablished here serve to underscore the
importancc of the sigma modification. Then we discuss the simplest possible
scenario, when the linear system to bc controlled has no zerocs. This situation
is actually simpler tha.n what (1) suggests, but neverthclcss informative. This
leads to a planar adaptive system, whose dynamics can bc well understood. It
provides a good pointer for the complications we may cxpect. Next follows an
incomplete analysis for the case when the linear system to be controlled has a
single stabie zero and two poles. Finally we conjecture what a phase portrait
in the general case may look likc. Thc paper concludes with suggcstions on
how we may have to rnodify the adaptive law based on thc understanding of
the exposed dynamical behaviour in ordcr to obtain a robust adaptive systcm.

2 Preamble

For convenience sake and withoul Ioss of generality (as far as the dynamical
system analysis is concerned) we study the closed-loop systcm (1), (2) for
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. g : I, i f g f l considcr thc statc space transformation (r,y,k) -+
(rr/s,yr/s,kl g),

o (Ä, b) in controllable canonical form.

Thc closed-loop adaptivc systcm can thus be reprcsentc<i as:

i - ,4.r -lby, r(0) e R.", b € IR", Ä € R'," stable,

y  -  - c r - d y - k y l e ,  y ( 0 )  e  R ,  c T € l R . ' , d , e e  l R ,  ( 3 )

k  =  - o k + y 2 ,  k ( o )  > 0 ,  o ) 0 .

wc refcr to thc subsvstem ivith statc (r,E) as the plant. wc consiclcr the
paramcters e,d anrl thc vector c as bifurcation parameters.
We usc thc notation:

z(s)  :  det  (s /  -  Ä)  ,

.  l s I - A  - b \  ( 4 )
p ( s )  :  o e r \  

c  s  )

Noticc that with the above notation:

a " t (  
' I - A  - b ^  

)  = p ( s )  + t J z ( s ) .
\  c  s + l l )

wc conclude this scct,ion with sorne sinrple obscrvations aboub thc pha^se por-
I  ra i r  o f  Lho sysrcrn (3) :

e Fact (i)
k(r) > 0 for all t > 0 if k(0) > 0.

o Fact (i i)
I f  e  =  0 ,  ( r ( t ) , y ( t ) , i ; ( t ) )  i s  a  so lu t i on  o f  ( 3 )  i f  ( - " ( r ) ,  - a ( t ) , k ( r ) )  i s  one .

o Fact (i i i)
Foro )  0,  e :  0and ( r (0) ,y(0))  :  (0,0) ,  i t  fo l lows that  k( t )  :  e  "Lk(O)
and ( r ( r ) ,  y( t ) )  :  (0 ,0)  for  a l t  r  > 0.

e Fact (iv)
For o : 0 and e = 0, thc trajectories converge to a point in state spacc
of the form (0,0,k-), for some k- ) 0 which depends on the init ial
condirion. (See [2]).

o Fact (v)
For  o = 0 and e 10,  ( r ( t ) ,y( t ) )  converge to zero and,k( t )  d iverges.

o Fact (vi)
Thc t ransformat ion (" ,A,k)  = o(r , r ,g t ,kr )  and t imc scal ing ot  :  r ,
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leads to a systcm dcscription of the form:

r " r  :  A t r t * b t g r ,

A l  =  - � c r r r  -  d t y  -  k r ! ) t  I  e1 ,  ( 5 )

k ' t  :  -h+a?.

Herc o,41 = A,  obt  = b,  ocr  = c,  od1 :  d  and o2ey:  e.  Thc /  {cnotes
dcrivativc wit,h respcct to thc new time variable r. clearly (5) is of the
sarnc forrn as (3). I-Icnce, rviren discrrssing the dynarnics wc can limit
oursclves to the casc.r: 1. Yet, from a cont,rol pcrspcctivc, we prcfer
(3) ,  as o is  a c les ign var iablc  and,4,b,c,d are not .

3 Global stability

It is clear frorn Fact (iv) and Fact (v) that the adaptive syst,em with a =
0 is not robust wilh respccl to input offscts. Thc sigma modification lias
the property that all trajectorics are ult imately boundcdl , regarclless of the
disturbancc e . This is probablv the main motivation for its introcluction.
Thc ultimatc boundcdness rcsult, can bc established using a Lyapurrov argu-
mcnt.

Theorem 3.t Consid,er (3) wi,th o ) 0. Lct P = P7' > 0 lte tlx: u,n,iqu,t:
Ttositiue deJinitr: solutiorr, of t lrc. Lyapu,nou cquatio,n ATP * p,4: -1. For all
o 1 o = 1/Ä-""(P) tlrc compact set

A :  { ( r , y , k )  :  r r P r + y z  + & -  p ) 2  <  p '  + l r , l } ,  ( 6 )

utitlt,

1  / l e l  \
;r = max{0, -a+ i ( # * o + (pb - " 'r1t'e - op)-'(pU - c't '11y e)

is slohally att,actiue. tr,,)ii,rr,,,r,r1 inuatiart. 

/ 
-

Proof Consiclcr t,he contparison function

I r ( r ,y , l r )  =  * r 'p ,  +  y ,  +  (k  _  p ) t .  (g )

Its clerivative along thc solutions of systcnt (3) is given bv:

V 1r1t1,y(t),k(t)) = -rTn * 2rI' Pby * 2r'Ir:7'y - 2r1y, - 2ky2 + 2ye
- 2 o k ( k - p , ) + 2 ( k - p ) a ' ,

: -r1'r I zrl' Pby - 2rT c7' .ry - 2rhl, * 2.t1e - 21ry2
- 2 o ( k - p ) 2 + 2 o 1 F .

'T l re sol t t t ions of  i  -  , f  ( r )  are sair l  t ,obe ul t i rnately boundet l ,  i f  t i rere exists a B > 0 sur;h
l ,hat  for  a l l  in i t ia l  conr l i t ions r(0)  = 2o there exists a T(ro)  )  0 sur;h that  the solr r t ions
sat is fy l lc( t ,  ro) l l  S B for  a l l  |  )  ?.
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Selecting p as indicatcd in (7) irnplies that

- rT r  *2 rTPby  -2 r r cTy  -2 ,1y '1 -2 ,11e  -2py '  1 -o ( r ' I 'P r  +yz )  +zo le l ,

which leacls to:

V ( r ( t ) , y ( t ) , k ( t ) )  <  - 2 o V ( r ( t ) , a ( t ) , k ( r ) )  +  2 o p 2  + z o l e l

This cstablishcs our claim. n

Remark 3.2 Thc thcorern statenlent is particularly uscful for thc ca^se that
o is small. It is clcar from lhe proof that ultimate boundcdncss can bc cstab-
lishcd for ail o ) 0, but wc prcfcr t,he above formulation as it provides us with
a reasonably tight cstimatc of the forrn V(r, y,k) < ft2 + lel for a positivcly
invariant sct. In case e = 0 our estirnate cannot be improved as the set A iras
the origin (an cquil ibrium in this case) on its boundary. Moreover, "small" o
is in l ine with practicc. I

For e : 0 we can glean from thc thcorem statement that for sufficiently large,
positive d the origin of the statc space is globally asyrnptotically stable. It
can be establishcd that this is the case for ali systcms (1) that have strict
positive real transfcr function, (i.e. Re{z(jr)l lpj") + dz(ja))} > 0 for all
c,r € R.).

Theorern 3.3 Consider system (3) 'with o ) 0 and e : 0. Assurne furtlter-
rnore that the linear systern (1) has a strictly positiue real transfer Jtmction,
i,.e. th,ere erists a pos'iti,'ue defi,nite soh,tion P = P'1' su,ch that ArP + PA <
0 and d > ll"t - Pbll2. Tlten tlte origin of the state space is globally unifortn\1
asymptotically stable.

Proof The result is dcrivcd using the comparison function V introduccd
in eqrration (8) with p, : 0. The conditions of the Theorcm 3.3 lead to
V( r ( t ) , y ( t ) , k ( t ) )  <  -2ok2 ( t )  -W( r ( t ) , y ( t ) ) ,  w i rh  pos i t i v c  dc f i n i t e  W( r , y ) .

Thc gap bctween the two results statcd in Theorem 3.3 ancl 3.1 does not
appcar to bc large. One could wonder whcthcr the same rcsult as stated in
Theorern 3.3 could hold true for the larger class of stable minimum pha^sc
systems. This is not the case, a^s wil l become clcar. Here is a simulation
examplc to illustrate what can happen.
Considcr a system of thc form (3) with thc parameters sclccted as:

- 1 0 )  r l , = - I  o : 0 . 1

Tlic linear syslcm (1), with thc above paramcter values, has a transfer func-
tion with stablc zcroes and stablc poles. Thc transfer function is given by
z ( s ) l @ $ )  + d z ( s ) )  :  ( s 2 + s + 1 0 ) / ( s 3  + 2 s 2  +  s * 1 ) .  T h i s  r r a n s f e r  f u n c -
tion is not strictly positivc real. A typical trajectory for thc above system

, : ( _ 1  _ i , )  , = ( ? )  " = , - n
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with in i t ia l  concl i t ions (0.1,0.1,1,0) is presentcd in Figurc 1.  Both the plant
output y and the aciaptive gain k are displayed. Notice thc asyrnptoticallv
per iodic behaviour.  A root locus plot  for  that  root of  p(s)  + (d + k)z(s)  -
s3  +  3s2  *2s  *  11  +  ( -1  +  k ) ( r '+  s  +  10)  w i th  the  la rges t  rca l  anc l  la rgcs t
imaginary part is prcsented in Figure 2. Obscrve that the aclaptivc gain hov-
ers asymptotically around that value of thc gain atrovc which tl ie root locus
rcmains in thc left half plane, clearly the plant is but marginally stabil ised
through the adaptive control law. Observe that no control woulcl have been
better in this case. as the oDen loop svstem is stable.
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Figure 1: Limit cycle behaviour for adaptively controllcd stable minimum
phase plant

4 Planar adaptive system

Lct us first consider the adaptive stabilisation through adaptive gain output
feedback of a one dimensional linear plant:

-dy  -  ky  *  e ,  y (0 ) ,

-ok  +  a2,  k (0)  >  0 .

Here d is the open loop pole of the plant to be stabil ised,
output, ,h the adaptive feedback gain and e represents the

t t
v -

i ^ _
fv

(e)

y is the measured
input clisturbancc.

Steady state
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open loop zero

k=0 1 459

open loop pole

- 0 3 o 2 -0  1
Real

0 1 o 2 0 3

Figurc 2: Partial root locus for stable rninimum phasc plant

For purposcs of comparison, if w.e had known thc pararnctcr d, then any
control gain such that, k + d > 0 yiclcls a stablc systerri with cquilibriurn 17, :
el(k + d). For control performancc we would prcsumably rcquire ly. l < l. l ,
h e r r c e f t + - c l > 1 .

4.I IJnperturbed adaptive system

For thc aclaprtivc system (9) with c:0, wc catr make thc following obscrva-
tions:

1. An open loop stable plant d ) 0 irnplies that the trivial solution
is globally asymptotically stable.

Clcarly the solution (y(t),k(t)) = (0,0) is uniforrnly asymptotically sta-
blc as seen from considering the Lyapunov function V(y,k) = u2 + k2.
For thc dcrivative of V along the solutions of (9) rvc obtain y(t) =
-2rly2(t) -2ok2(t).It follows that, the origin is globallv asymptotically
stable. This obscrvation is also a corollary of Theorcm 3.3, as any l incar
st,abie first orcler system has a strictly positive rcal transfer function.

2. An open loop unstable plant d ( 0 leads to solutions that are
ultirnately bounded

Consider the Lyapunov function V(y,k) : y2 + (k + d - o)2. Wc ob-
t,ain for the clerivative along the solutions of (9) thar l/(y(t),fr(t)) =

0 5 L
0 5 o 4
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-2oy2( t )  -  2ok2( t )  +.2o(-d + o)k( t ) .  Consi< ler ing that  ,b( t )  )  0 ,  we
ob ta in  rhc  cs t i r na t c  V (y ( t ) , k ( r ) )  <  -2oV(y ( t ) , k ( r ) )  +  2o ( -d  +  o )2 .
Frorn which it follows that the set characterisccl by V(y,k) < (-d+42
is positivclv invariant. This ollscrvation is also a coroll i lry of Thcorcm
, 1
r ) .  l .

3. For an open loop unstable plant d < 0 the solutions either
convergc Lo ( t / -n4.  - r l )  or  ( - / - " ( t  , -d) ,  unless y({ ) )  :  ( )  in  which
case the solutions converge to (0,0).

If y(0) = 0 it follows that 9(l) = 0 for all I ) 0 and furthcrrnore that
k( t )  = cxp(-ot ) f t (0) .  I f  y(0)  )  0  thcn obviously  a( t )  >0 for  a l i  f  )  0 .
Consider  the Lyapunov funct ion V(y,k)  = !J2 -2odlny+(k+d)2 on the
clornain D :  { l l  >  0,k  > 0}  y  achicvcs i ts  min imum in ( / * "4, -Or.
For its derivative along thc solutions of (9) we find V(y(t), k(t)) :
*Zo(k(t) + d)2. Applying LaSallc's invariancc principlc, it follows that
all solutions starting in D convcrgc to the point (l/-oü -d) . This cs-
tablishes our claim, as the situat,ion y(0) < 0 can ltc clealt with in an
analogous rnatrner.

Tire above clcscribcs a single pitch fork bifurcation for thc origin attained at
d = 0. The typical local stability picture associated with this bifurcation
has giobal validity in this particular case. For d > 0 the origin is globally
asyrnptotically stalile, for d < 0 the origin bccornes a sadcllc and two ncw
Iocally stablc cquil ibria comc into existetrcc. In this particular sitrralion thc
slairle manifold of the saddlc (the origin) acts a-s a scparatrix bct,wccn thc
clomains of attraclion for the othcr equilibria.
Thc control interprctation is as follows. In the absence of any disturbanccs,
thc adaptive sigrna modificd control iaw adjust the feedback gain k to the
minimurn fccdback action requircd to stabilisc the opcn loop plant. Incleed,
if the opcn loop plant was stablc, asyrnptotically no fccdback is appliccl. If
lhc open loop plant was unst,able, thc minirnum fccdback gain to rendcr thc
lincar plant rnarginally stablc is applied. In doing so thc adaptivc control iaw
sacrificcs thc control oirjective of achieving regulation of thc orrtput y, instcad

lyl convergcs to t/-od. For small values of o (mcaning o (( 1/d) this loss of
asyrnptobic performancc may be acceptablc. It is nevcrtheless disappointing.
In this particular case of a first order systcm wc know a priori that arbit,rar.y
transient performance can be achieved for corrcsponclingly large gains. The
adaptive law howcvcr lirnits the gain to thc minimum gain rcquirecl to just
achicvc stability.

4.2 Perturbed adaptive system

It is disturbing to notice that the adaptive larv leads to a marginally stabiliscd
linear plant in the case the lat,ter was opcn loop unstable. This is thc more
annoying whcn wc realise that this is the only case in which some control is



38 I.  I \{arcels, S. Vün Gils. J.W. Polderman, A. I lchmann

rcquircd and that good perforrnance can be achieved via high feecltrack gain.
What happens if measurement errors are involved, i.e. e I 0?
Importantly, e * 0 breaks the syrnrnetry inherent in (9) when e = 0, hence the
pitchfork t-rifurcation patbern breaks as e + 0. I\{orcovcr in vicw of the fact we
now havc a two paramctcr family of planar vcctor ficlds (e, d are the important
paramctcrs, o is not) we expect that wc can organisc thc local dynarnics
around a Takens-Bogclanov bifurcation point. This would lcad to thc presence
of a homoclinic bifurcation and a Ilopf bifurcation in thc bifurcation diagram.
A bifirrcation cliagrarn is presented which dcscribcs thc locai dynamics. For
the transients we offcr somc analytic rcsults, but mainly rely on sirnulation
rcsults.

1. For d> 0, e l0 there is a unique globally asymptotically stable
equilibriurn.

Tlre equilibrium is defined via ok" = y! ard A! + ody" : o". With
d > 0 thc lattcr cquation implics that thc equil ibrium exists and is
uniqrrc. Local stability follows at oncc from the Jacobian:

Thc  cha rac l , e r i s t i c  po l y r rom ia l  o t , l  a t  an  eq r r i l i b r i u -  ( y " , k . )  i s  g i vcn
by .\2 + (d + k" + o)Ä + od + 3y!. Using the fact that a? : ok" at
equilibrium, this can be rewrilten in the more inforrnativc format

de r ( ) I  -  J )  =  ( I  +  d ) (Ä  *  o )  +  k , ( )  +  3o ) .  ( 11 )

Global stability can lic cstablished ushg a Lyapunov argument. Con-
s i r ler  the casc € > 0.  Lct  V(a,k)  = (y  -y")2 *  (k  -  k") ' .  Obscrve that
thc sct D : {(yz k) , y > 0,4 > 0i is attractive and positively invariant.
On ID we have V(e( t ) ,  k( t ) )  < -o(k -  k") '  -  (d + k") (y  -  ! t " )2.

2.  For  d < 0 and le l  )  esN: wi th e51, ,  :  ?JTeO3l2 there is  a
unique, locally stable equil ibriurn.

Equilibria satisfy ok" = y! anrl '!1! I ody" - o". Wirh d ( 0 and

l"l > "sr lhe latter cquation implies that the equil ibrium exists and is
uniquc.

Local stabil ity follows at oncc from the.Jacobian (10) . As rrndcr the
given circumstances U? , -"d or ,k" > -d it follows that d I k" + o >
o > 0 and o(d+3k")  > -2od > 0,  which by inspect ion of  (11)  impl ies
that (9",,k") is localiy asymptotically stable.

3. For rl < 0 and lel ( esry', there are three equil ibria, (aa,oy?i)

i : r,2,3 with -9sry ( ,", < - r[# I y"z 1 ,l-- ( y,g ( ys,.r,
where 3/sry is the positive root of y3 * odtl - oesN,

(10)/ :  (  
- o r r r  

- ' " )
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The locus
A

e2 :  1o(-d)3 (L2)

describes the Saddlc-Node bifurcation in the bifurcation diagram.

Tlre equil ibrium (37"2, oy'!r) is an unstable saddle. Indecd the product
of the eigenvalucs of the Jacobian evaluated at this equilibrium is given
by od+3A?, S 0. The equil ibria for rl : 1,3 may be stable or unstable
depending on the values of d,e. If o +2d13 ) 0 they are locally stable,
regardless of the value of e. They change their stabiiity status through
a Hopf bifurcation lf o + 2dl3 ( 0. When e is lcss than but noar e.sN
the equil ibriurn f : 3 is locally stable, whilst the equil ibrirtrn i : 1 is
unstable.

The Hopf bifirrcation iocus in tirc bifurcation diagram is dcscribecl by:

e2 :  -o3d -  oa wi th d < -312o.  (13)

The equilibria undergoing thc Hopf bifurcation are descritrcd by:

y?  =  o (d  +  o )2  ,  y "e  K .0 ,  
(  14 )

k "  :  * d - o '

4. Takens-Bogdanov bifurcation point

In orcler to organise the bifurcation diagrarn morc clcarly, we invcstigate
the prcsence of a Takcns-Bogdanov bifurcation point and verify its local
dynamics. In view of the fact that we are dealing with a two-pararneter
family of vector ficlds we expcct to find somc isolated Takcns-Bogclanov
points. The calculations used to obtain the normal form for thc unfold-
ing are summarized in Appcndix II.

The Takcns-Bogdanov points for (9) arc given by:

ut'at : ft, 
krs =

u'r'", : -ft, k'ra :7,, ar.u : -T, e,rB2 =

o , 3 o

t ,  
a T B  =  - T ,

^z
e T t s t = -  G ,  ( I ö )

v z

and

As is easily vcrificd, the Takcns-Bogdanov points arc at the extrcmitics
of the Hopf-bifurcation Iocus describcd in equation (13) and of course on
the Saddlc-Node bifurcation locus (12). In Appendix II i t is shown thar
the pianar systern undergocs a regular Takens-Bogdanov bifurcation at
either of these points. The corrcsponcling normal form is given by:

o2
_ .  ( 1 6 )

l lt : Il2t

i z : f l t * 1zh * ql + r11r12.
(  1 7 \
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It, follows frorn Thcorcm 8.4 [13] that in thc bifurcation cliagrarn of
the systcm (9) we encounler a line corrcsponding to a Hopf bifurca-
tion crcating an unstable limit cyclc together with a stable focus and a
homoclinic bifurcation of thc saddle through which the unstable limit
cyclc is annihilatcd. The loci in thc bifurcation diagrarn corresponding
to the hornoclinic bifurcations arc obtaineci numcrically and displaved
in Figruc 3. Thc Hopf-bifurcation locris is dcscribcd in equation (13).

5. Bifurcation diagrarn

- 1  0  1  2  3

Figurc 3: Bifurcation cliagranr for the planar aclaptivc system

Wc can now picce together a rather complcte picturc of the asvrnptotic
dynamics a^s function of thc bifurcation pararnetcrs d,e. Thc bifurca-
tion diagrarn is dcpicted in Figurc 3, whilst Figures 5 to 7 represent
a numbcr of typical phase portraits corresponding to the variorrs pos-
sibilities suggcstecl by the bifurcation diagram. In all simulations we
rrsed o = 1. The bifurcation diagrarn was generatcd rrsing Dtool. The
phasc portraits were simulated using Matlab, with the aid of the suite
pplane5.m.

The line SN rcprescnts the Saddle-Node bifurcation locus, cquation
(12). The cusp point CP is thc origin in thc bifurcation cliagram (e,d) =
(0,0)  wi th corresponding equi l ibr ium ( !1" ,k") :  (0,0) .  Thc points TB
iclentify the Takens-Bogdanov points (15) and (16), which hcrc clearly
are thc points around which the bifurcaticln diagram can be organised.
The lines Horn identify the homoclinic cyclc llifurcation, terminating at

ö
a

,9

o
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a TB point. Thc lincs Hopf identify lhe Hopf bifurcation, terminaling
at  a TB point ,  sce (13) .

Let rrs follow a countcrclockwise direction through the bifrrrcation di-
agram slarting in the region marked I. In region I lhere is a uniqrrc
locally stablc cquilibrium, seemingly globallv attractive (only confirrned
analytically for d > 0) . Figure 5 depict s a rcprcsentative pha^sc portrait.

Figure 4: Phase portrait for bifurcation cliagrarn region I in Fig. 3

In thc rcgions II, aftcr the sacldle-nocle bifurcation, three equilibria coex-
ist. A saddle and unstablc focus comc into cxisting through the Saddle-
Nocle bifurcation. It appears frorn the phase portrait in Figurc 5 that
apart frorn thc stablc manifold of the saddle, all solutions converge to
the stable focus.

In the regions III, just after the Hopf bifurcation, thc spiral source
equilibrium sheds through the Hopf bifurcation an unstable limit cycle
and bccomes a stable focus. The interior of thc limit cycle is the domain
of attraction of this focus. The other stabie equilibrium attracts the
other solutions, apart from thc stablc manifold of the saddlc. This is
shown in Figurc 6, which rcprcsent,s a typical phase portrait for Rcgion
I I I .

The lirnit cycle continues to grow (in size and periocl) as we further move
towards the line IIom. There a homoclinic bifurcation occurs, which
destroys the limit cycle. After the hornoclinic bifurcation in R,egion IV

/ c ( ( (

\
1
t
. t
t \
I
I
I
I
I



I .  Mareels, S. Van Gils, J.W. Polderman, A. I lchmann

Figure 5: Phase portrait for bifurcation diagram region II in Fig 3.

it appears from Figure 7, that the stable manifold of the sadclle acts as
a separatrix for the domains of attraction of the stable foci. (On the
line e - 0 this was anaiytically demonstratecl above.)

4.3 Control interpretation

Despite that the disturba^nce € complicates the phase portrait in a significant
way, its influence from a control perspective is not so important. Both tran-
sient behaviour (although we have not presentecl a complete proof for this) and
asymptotic dynamics appear entirely acceptable. Certainly, the asymptotic
dynamics are bounded. More importantly the output of the plant becomes
of thc same order of rnagnitude as the disturbance e. This is in complete ac-
cordance with l inear control intuit ion. One simply can not expect any better

lrom a static gain output feedback. The main difference with static output
feedback is of course that through the adaptation law there are multiple co-
existing possibil i t ies for the asymptotic dynamics, but all of similar control
performance.
The main drawback of the adaptive law is that there is no real control over
the actually achieved control performance and that it only achieves marginal
stabil ization of the plant.
It could nevertheless be argued that the a modification with adaptive gain
does work, and is robust with respect to input disturbances. This follows
because over the cla^ss of systems controlled by the adaptive system it is not
possible to estimate the achievable performance. Also no actual requirements
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Figure 6: Phase portrait for bifurcation diagram region III in Fig 3.

are incorporated in the adaptation law, apart from the fact that we would like
y to be regulated. In the presence of disturbances this becomes impossible,
and ]row much wc want to reject the disturbances has not been specified
at all. Hcnce, wc could not really expect any better behaviour than what is
achieved. This identifies in a sense where the suggested adaptation mechanism
falls short: thc achicvable control performancc is to be identified in order to
rcalise a truc adaptive control strategy.
Thc abovc picturc is howcvcr too optimistic as will transpire from the ncxt
example.

5 Three dimensional adaptive system

In this section we investigate the possibie asymptotic dynamics when the plant
has a single slable zero, here fixed at -a ( 0. The adaptive system (1) takcs
the form:

t  -  - a r * A ,

ü  
-  - c r - d y - k y ) - e ,

K  =  - o K + A - .

(  18)

Wc treat the parameters c, d and e as bifurcation parameters. A complete
bifurcation diagram will not be presented.
Before wc start our discussion of the bifurcation diagram, Iet us observe that
thc phase portrait for c : 0 is already known by virtue of our discussion in

I
I
I
1-t-

1
1
1
1

/
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Figurc 7: Phasc portrait for bifurcation diagrarn rcgion IV in Fig 3.

thc previotrs section. Indced for c - 0 the r-state clocs not affect the (g, k)
dynamics, which coincide with the planar system discussecl beforc, see cqua-
tion (9). Hence the pha^se portrait wil l contain for the appropriatc paramerers
unstablc l imit cycles, homociinic orbits and rnultiple cquil ibria.

5.1 Equil ibria and Jacobian

The equil ibria are characterised by:

rhe cquir,*,,,,,1o;:,;,. 

":" - "' o(cla * d)tt" * vl - o"'

There

c * d a ) 0 ,  o r  c * d a 1 0  a n c l  e 2 > - ' # r O + c l a ) 3 .

are three distinct equilibria if:

c *  d ,a  1  o  anc l  " ,  .Ted  -  r l o ) t .

equilibriurn the Jacobian is given by:

/ - o  1  0  \
I , :  (  _ .  

- d - k ,  - U e  
I

\  0  2 A "  - o /

(1e )

(20 )

(2r)

At an

(22)
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The characteristic polynomial of the Jacobian, cvalrratecl at an equilibriurn,
is givcn by;

d e t Q , I  - , 1 " ) :  ( ) + o ; 1 . 1 2  +  ( d + a ) ) r c  + d a )  +  k " ( I + o ) ( I + 3 o ) .  ( 2 3 )

5 .2  l Jnpe r tu rbed  adap t i ve  sys tem e :0

1. An open loop stable plant d*n ) 0 and, ad *c > 0 irnplies that
the trivial solution is globally asyrnptotically stable

This obscrvation is a corollary to Theorern 3.3, as any stable sccond
order linear system with a stable zero has indeed a strictly positive real
transfer function.

2. Unstable systern with unstable zero leads to unbounded re-
sponse

The condition o ) 0 is necessary for stability whenever the open loop
system is unstable. Consider for cxample the adaptive system:

i  -  - a r l ! t ,

ü  -  - d v - k u ,

K  =  - K + A ' .

Obviously, for all o ( 0 we havc that r grows without bound (for a1-
rnost all initial conditions, and all d). Thc adaplive feedback is only
rneaningful when the system has stablc zcroes.

3 Pitchfork bifurcation

The pitchfork bifurcation locus in the bifurcation diagram is given by
clda = 0,  see equat ion (21)  wi th e = 0.  For  c*  da <0 the or ig in is
a saddlc. Thc othcr two cquil ibria are described by (oy",!1",y'! lo) wtth

lt?: -o(claf d) . Thcir local stabil ity is determined from the location
of t.]rc roots of (23):

1

Ä t +  1 ( a o + a 2  - c ) ^ 2  a 2 ; z @ d * c )  - c + n 2 ) )  - � 2 o ( a d " + c )  ( 2 b )
a '  a '

Thcse cquil ibria are stable when a2 - c ) rnax(ao, -2(ad * c)), and
(a2  -  c ) (az  t ao  - c ) -2 (ad*c ) (ao  - c )  >  0  uns tab le  o the rw isc .  Th i s
mcans that immcdiately after the pitchfork bifurcation, i.e. for ad+c < 0
but close to 0, thc new cquil ibria are locally stable tf d + a ) 0, and
saddles otherwise.

4. Takens-Bogdanov point: open loop systern is double integrator

The origin is a Takens-Bogdanov point when d+ a= 0 ancl o.d*c = 0.
The corresponding Jacobian has two zero eigenvalues with geomctric
multiplicity one, and one eigenvalue -o. Using the comparison function

(21)
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V : 12 + y' + k2 - 4k, it can be verified that thc origin is globally
asymptotically stable in this situation.

The biftucation locus for the homoclinic orbit bifurcation is contained
in thc paramcter domain 0 < c < a2 and d < -a (see next itern Hopf
bifurcation).

5. Hopf bifurcation

The origin undergoes a regular Hopf bifurcation for d + a : 0 and
ad + c > 0. The origin remains the unique equil ibrium, but becomcs
an unstable focus as d + a becomes negative. A stable periodic orbit
comes into existence which persists for all d < -a and c > a2, at
ieast for sufficiently small o. This can be demonstrated using averaging
idcas. Thc calculations are summarizcd in Appcridix III and IV. In
Appendix III we establish a domain of attraction for an invariant torus,
which wc demonstrate to contain a unique periodic orbit in Appendix
IV. Appendix IV provides existence, uniqueness and local stability. It
is demonstrated that the periodic orbit is for sufficientlv small o well
approximated by:

x(t,o) = -rl=ffisin(r,,r) +o(o),

(26)

k ( t , o )  =  - ( d + a ) + o ( n ,

a 2  =  c -  a 2 .

In Appendix III it is demonstrated tirat tire dornain of attraction is
virtually all of IR3 apart from the axis {, = y : 0} (more prccisely,
a.ny bounded domain in R3/{r = y:0} is contained in a domain of
attraction for sufficiently srnall o).

The above observations complctc the Iocal bifurcation pictrtre for the trivial
equil ibrium.
Following the non-zero equilibria it can be observed that they too undergo a
Hopf bifurcation, creating locally attractive limit cycles. This takes place for
a d + c  <  0  a n d  ( o a * a 2  - c ) ( a ' - c - 2 ( a d * c ) )  =  - a 2 ( a d * c ) .  T h c  l i m i t
cycles themselves undergo a sequence of saddle-node bifurcations, cvcnlually
evolving into complex attractors. These limit cycles and attractors do not
scale with o as the limit cycles originating from the Hopf bifurcating origin
(26). An example is represented in the Figure 8. The aperiodic rcsponse in
Figure 8 is generated from the init ial condition (*o,Ao,kg) : (0,1,1) for the
system (18)  wi th a = I ,  d :  -2.75I ,  c  = -5.301,  o = 0.001.  I t  is  reminisccnt
of drift-burst behaviour observed in other direct adaptive control schcmcs [2].
A partial, numerically obtained bifurcation diagram is reprcsented in Figrrre
9. The bifurcation parameter is a. The system (18) has parameters a : I, d =
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ve garn k

Figurc 8: Aperiodic
bifurcations

6200 6400 6600 6800 7000 7204 7400
Time ax is

behaviour after pitch fork bifurcation followed by Hopf

-(r1 c = -al4+314 and o = -0.1. The bifurcation parameter ranges from
0 to 2.5. A phasc space portrait displaying some of the possiblc competing
asymptotic dynamics for o = 0.82 is displayed in Figure 10. The numerical
bifurcation diagram reveals that the origin undergoes a pitch fork bifurcalion
a : 0.6. The origin remains unstablc for all o ) 0.6. The new equil ibria are
unstablc in the interval 0.831 < o < 1.86, and locally asymptoticaily stable
otherwise. In the same pararneter region 0.831 < o < 1.86 we identify a
strange attractor, with a structure not dissimilar from thc Lorenz attractor.
The non zero equilibria undergo regular Hopf bifurcations for c : 0.831 and
1.86. Thc Hopf bifurcations are supercrit ical. Rcgions of hysteresis arc clcarly
identifiable, indicativc of saddle node bifurcations for the limit cycles.

5.3 Perturbed adaptive system

We now considcr concisely the influence of lhe input offset e.

1 .  S tab le  p lan t :  c l  ad )  0  and  d+o  >  0

Under these condition thcrc is a unique equil ibrium, sce cquation (19),
which is at lcast locally uniforrnly stable, see equalion (23). Thc output
is no longer regulated, at cquil ibrirrm ly"l < le l.

2

o  1 5

E
1

0 . 5
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Figure 9: Partial bifurcation diagram for system (1g)

2. Unstable plant, real poles: c * da K 0

In this situation there may be up to three equil ibria, (see equation (1g),
depending on the magnitude of e. The main event in this part of the
bifurcation diagram is the saddle-nodc bifurcation. This situation cor-
responds very much to the planar system discussed above. It suffices to
consider the local dynamics in the centre manifolcl after eliminating a
one dimensional stable manifold.

(a) The saddle-node bifurcation Iocus is given by

" '  -  ' ;  
ed -  , lo) ' (27)

For { , ^#(-d 
- "ldl thcre is but one locally stable equilibrium,

for e2 < Hed - " lo)3 there are three equil ibr ia.

The control interpretation is that a larger DC offset enforces a
larger control gain, which in turn provides more stabilitv.

r 2
c'(!

o
>

d - -  l (ü
o

2
E '1

. o

ä
E

,!  0 .5



o

c

Asyrnptotic Dyrramics in Adaptivc Gain Control 49

Figure 10: Co-existing asymptotically stable dynamics for (1g)

(b) Täkens-Bogdanov points There is a variety of Takens-Bogdanov

points characteriscd by:

(o - t  a -  oe -  l l3a2)d+ (1 + o -  al3)c =

-4o(c t ad)3 t 27e2 =

krn :

" 1 2
Y ' I 'B

ar7B :

-oa ,

0,

_  c *o , l  ( r g , \
1  t  \ - v l

okTn,

Y  IB .

(c) Organising centres

Thc most degenerate bifurcation points, also the most likely organ-
ising ce.tres in the bifurcation diagram are thosc equilibria with
a zeto eigenvaluc of algebraic multiplicity three and with a single
eigenvector. One expects to find complex asymptotic attractors
in the neigbourhood of such points. These points only exist if

z
7

Mull iple stable periodic orbi ts

co-exrstrng with complex attractor

0 4
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o > a > 0, and are characterised by:

(2e)

These points, because they only exist whcn o ) a, are less relevant
from a control perspective as one typicallv sclects o to be srnall.
Nevertheless, this information serves to qualify what we have to
understand under small o, and furthermore serves to underscorc
the difficulty in selecting an appropriate o value. Indeed, a proper
value of o, if one wants to avoid the complex dynamics associatcd
with such points, does require non trivial prior knowledge about
the location of the plant tra.nsfer function zcrocs.

3. Hopf bifurcations

In case c I ad ) 0 there is unique equilibrium, that is locally asymp-
totically stable for d + a > 0, and may undergo a Hopf bifurcation for
d + a 10. The Hopf bifurcation locus corresponding to this bifurcation
situation is described bv:

a 2 e 2  =  o k ( c * d + k ) 2 ,

(c + ad) -t o(a -r d) + (a -t 3o)k

( o  +  d ) -  a +  k ) ( a o  *  c *  ( a +  o ) d + , k ( o  +  3 o ) )  :  a ( ( c +  a d )  + 3 a k ) .
(30 )

(The elimination of k from the above expression (30)) is fca^sible, but
Ieads to a rather cumbersome and uninteresting serni-algebraic expres-
sion.) Givcn that the constant tcrm in (23) is always positive, we ob-
scrve that a stable focus looses stability and a locally stable limit cycle
is created at the llopf bifurcation. In case e : 0, the origin is the only
equilibrium, and the Hopf bifurcation takes places at d: -a. The av-
eraging results established in Appendix III and IV can be repeated for
this situation as well.

The equilibria generated through the saddle node bifurcation also un-
dergo a Hopf bifurcation.

c

k"

')
t e

2a2 - 3o2=  - .
2 ( o - a ) '

a o

\ t
a - o )

2oT:
( o  *  a ) t '

t
o -

\ 'z \ o  -  a )
I

z \o  -  a )

y e '
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5.4 Control interpretation

The adaptive controi law fails to achieve regulation in all but thc rathcr non-
interesting ca^se of a stable open loop system. The presence of a DC offset has
two main effects, first it acts stabilising in that it enforces a larger feedback
gain than would have been the case without it, but it also induces further
complex dynamics in the behaviour dcpending on the actual plant parameters.
We conclude that the o modification limits the adaptive gain too scverely to
achieve the desired control objective. Moreover we observe that the selection
of o is not trivial. A proper selection, one that avoids as much as feasible
complicated dynamics and thus assists in predicting thc typical asymptotic
dynamics, requires a o value which is small compared to the dominant time
constants and zerocs of thc plant's transfer function.

6 Generalisations

In higher dimensions, the system (3) with n
bifurcation phenomena re-occur and more complicated ones emerge.
We limit the discussion to the generic bifurcations corresponding to equil ibria.
The saddle-nodc bifurcation phenomenon we observed in the pianar system
and the Hopf bifurcation we observed in the three dimensional example are
the main events to consider.
The ernphasis is on a control theorctic interpretation.

6.1 Equi l ibr ia

For the general  case, see equat ion (3),  thc equi l ibr ia (r" , !Jr ,kr)  sat isfy the
equations:

t r e :  - . 4 - ' b y " ,

, Y 7
K e  :  - ,

oe  :  J r - "o -Lb+d )y "+y? .

( 3 1 )

(32)

Provided d - cA-i| - p(0) + dz(O) ) 0 there is but one equil ibrium. Notice
also that in this case lg, I S lrl *d g, has the same sign as e.
It d - cA-r b < 0 there are possibly three equil ibria, depending on the magni-
tude of e. At least one of the equilibria is larger in magnitucle than

a* :  @1 whenever  d. -  cA-rb < o.

For future reference we denote

k *  - u * 2  l o  - c A - r b - d . (33)
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Thcrc are three equil ibria only if

l e l  ( e - = 2(cA  rb  -  d ) s / z
(34)

3'/3

Tire equation (3a) represents the saddle-node bifurcation locus in thc bifur-
cation diagram. When the condition (34) is satisficd, for onc cquil ibrium
thc output vaiuc is larger in rnagnitude than y*, this cquilibrium rvc rcfcr to
&s grr. Another equilibrium ha^s an outprrt value contained in the interval
-A- l r /5  1y"z 1y- lJ5.The last  equi l i l r r ium is  such that  the output  va luc
has thc opposi tc  s ign of  f "1 änd sal is f ies y*2 )  g" t> U-2 13.

6.2 Local stabil i ty of equil ibria

Thc characteristic equation of the .Jacobian evaluated at thc equilibria is givcn
by:

/ ( ) )  :

=
(35)

:  ( , \  +  o ) (p ( I )  +  dz ( \ ) )  +  k " (Ä  +  3o )z ( ) ) .

From this it follows that for sufficicntly small o thc root loci of thc plant
p(Ä) + (d + k")z(\) as a function of k, is a good indicator for what to cxpect
in thc phase portrait of thc adaptivc systcm. (Again srrfllciently srnall o
means small with comparison to thc dominant timc const,ant,s ancl zerocs of
the plant's transfcr function.)

6.2.7 Case 1:  Open loop stable p lant

Thc origin is a 1ocally asyrnptotically stablc cquilibriurn in this case (see equa-
tion (35) with ,h" : 0. If rnoreover the plant has a strictly positive real trans-
fcr function, then the equilibrium is globaily asvmptoticaliy stable. The local
analysis conforms of coursc. Indccd, in this case p()) + (d + k)z(I) is a Hur-
witz polynomial for all k > 0. Hcncc p(0) + dz(0) > 0 which confirms that
thc crluilibrium is unique and from equation (35) we observc that it, is locally
stable.

In gcncral, for stablc and minimum phase but not strictly positivc real plants,
therc will be multiple asymptotically stable attractors in the phase portrait,
thc origin bcing one of thcm. Scc thc cxamplc (Figure 1) at the end of Section
3 for an illustration. (It can bc vcrificd that thc domain of attraction of the
origin is rather small.)

*,( ̂'t'  ̂*jo;"*" ^+" ) ,
(^ + d)fu,(^) + (d +,b.)z())) + 2y'!z(x)
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6.2.2 Case 2: Open loop unstable plant, single positive pole

In this scenario, the opcn loop plant is unstall lc with a singlc positivc cigen-
valrrc; the root loci of p(I) + (d+ k)z(A) with k vieived as a parametcr, ha^s a
single (rcal axis) branch cutting thc imaginary axis for k : k* : -p(0) -rJz(O).
In this case wc have obviousiy p(0) + dz(0) ( 0. Therc may trc ir^s many as
three cquil ibria, sce equation (34). The c<jri l ibrium corrcsponding to g€r for
which ly"l l ) y- is also locally asynlprotically stable. Indeed wc can rcwrite
t l re Jacol r iar r  (35)  in  th is  ca^se as:  - r ( ) )  :  (Ä+o)(p() )+(d+k")z( \ ) )+Zy!z( \ ) .
Bccausc p()) + (d + k.)z()) = )h(Ä) for somc Hurwitz poiynornial h(,\). It
follows that undcr this sccnario with k. > A-, J(^) is Hunvitz.
Thc cquil ibriurn with qe2 is always unstable, bccause .f (0) : o(p(0)+r/z(0))+
3y'!rz(tl ! 0.
Thc cquil ibrium corrcsponcling to !/"3 rnäy tlc eithcr stablc or unstablc.
clearly the transit,ion from Ca^sc 1 to case 2 is effcct,uatcd via a saclcllc-
noclc bifurcation, c.g. associated wit,h a variation of thc paramctcr d. Thc
lrifurcat,ion valuc l icing d = dp for which p(0) + drz(l)): 0. Tiris phcnomcnon
is completcly calrturccl by thc planar cxamplc.
But as indicatcd in thc threer dirnensional example, dcpending rxr thc plant,
thc global dynamics rnay bc rathcr ntore conrplicatcd with possibly co-cxisting
attractors, cither rnultiplc localiy stable cquil ibria, but possiblv also pcrioclic
orbits and cven complex attractors, see Figure 10.

6.2.3 Case 3: a singlc pair of cornplex conjugate unstable poles

whcn t,he opcn loop plant is unstablc with a single pair of cornplex conjugatc
cigcnvalues, wc ]rave that, p(0) + dz(0) ) 0, and therc is but onc equil ibriurn.
Thc local stability now dcpcncls in a crucial rnanncr on thc rnagnituclc of the
clistrrrtlancc e. Thc t,ransition from Case I t,o Casc 3 corrcsponds to a Hopf
bifurcation.
In par t icu lar  for  c  = 0,  the equi l ibr iurn is  thc or ig in ( r " , !J" ,kr )  = (0,0,0)
and clearly this cqrri l ibrium is unstable, t irc Jacobian bcing cqual to J()) =
(I + o)(p(^) + az1,l;;, which by a^ssumprion has a single pair of complex
conjtlgate roots with positive rcal part. In this situation thc adaptive systern
adjust ,b such that a stable l imit cyclc comcs into cxistence. Using averaging
ideas as in thc Appendix IV wc may show that, thc limit cycle, for sufüciently
small o, is wcll approxirnated llv:

r( t )  :  O( ' /") ,

u ( t )  : , /2og  s i r , (a t  +  g )  +  O(o) ,

k ( t )  :  ko+O(rß) '

Whcrc Ae and c..r arc such that:

act (r.,r - ( 
-. '  

o*buo )) 
: t

(36)
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As y" and hence the corresponding k" increases monotonically with e it follows
that under this scenario at some critical level the equilibriurn undergoes a
Hopf bifurcation. For lel > "n ( such that k" : ko) the equiiibrium is locally
asymptotically stable, for lel < err it is unstable and a stable l imit cycle exists.
Again it is a direct consequence of the center rnanifold theorern that the three
dimensional examplc captures the essence of the local dynamics. Therc cxisls
an asymptotically stablc periodic orbit for all lel < csr and thc cqrrilibrium is
asymptotically stable otherwise.

6.3 Other scenarios

The transition from a stablc plant to an unstablc plant via a Saddlc-Node or
Hopf bifurcation is but the sirnplest scenario. Obviouslv, much morc compli-
cated bifurcation phenomena are possible. Nevertheless, within the class of
linear systems considered, these are the generic bifurcations. The different
asymptotic dynamics corresponding to these transitions being explored in the
above two and thrcc dimensionai examplcs.
Typically the least structurally stable (and hence most interesting) plants to
considcr are those linear plants that have all their poles in the origin. In
the bifurcation diagram for such adaptive systems (order > 2) we expect lo
encounlcr chaotic dynamics.
Moreovcr as for a typical plant, there may be multiple values of the feedback
gain ,h for which the plant is marginally stabilised, there will be in thc pha^sc
portrait of the adaptively controlled system a multiplicity of different and
co-cxisting asymptotic dynamics, each corresponding to a different level of
adaptive feedback gain.

7 Alternative adaptive gain laws

Clearly the adaptive systems we discussed may exhibit a rather rich variety
of asymptotic dynamics. One may wonder, could we design an adaptive gain
controller of the form k: f (k,g) wilh smooth / that achieves regulation in a
stmcturally stable manner, i.e. without displaying periodic behaviour and or
multiplc co-existing asymptotic dynamics for all sufficiently small perturba-
tions of the vector field. (Allowing for pcrturbations other than the constant
input offset considercd hcre.) Uniess we are given more prior information
about the class of systems which need to be controllcd, the answcr appears
to be negativc.
Indecd, the class of systems to be controlled, linear systems witir a transfcr
function characterised by stable zeroes and pole-zero exccss of one, is simply
too rich. Regardless of the adaptive gain law /(,k, y) we use to control the
Iinear system at hand, the closed loop dynamics may exhibit the richness we
discussed abovc.
In order to find a structurally stable adaptivc gain law we nced to considcr
adaptation laws of the form 2 : f (z,g) with k = g(r,9) or perhaps Ä :
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f (k,y,t). These options are presently under consideration.
Alternatively, we may want to invoke further prior information on the systems
to be controlled in order to achieve robust adaptive regulation.
Let us observe that the bifurcation analysis has provided us with a iot of
inforrnation about the behaviour of these systems, and this knowledge can
be exploited to design a supervisory adaptive control law to decide on an
appropriate feedback gain level. A supervisor could observe the asymptotic
dynamics, from a catalog decide in which regime the adaptive system is op-
erating and reset the feedback gain accordingly. An adaptive feedback law
building on this principle could take on the form:

k = - o ( k - k , ) + y 2 (37)

Where both the vaiue of o and k, ) 0 are set by the supervisor. Appropriate
selection rules for these parameters are under investigation.

8 Conclusions

Through a bifurcation analysis, we explored the possiblc asymptotic dynamics
in adaptive high gain feedback applied to linear a^lmost passive systems, when
the adaptive law has been modified with the so called o-moclification, Ä =
-ok tA2. I\ the disturbance free case, when the uncontrolled plant does not
possess a strictly positive real transfer function, even when the plant is stable
and minimum phase, asymptotically periodic and complex dynamics are to
be expected. For the less interesting case of plants with strict positive real
transfer function the system is regulated.
It became apparcnt that even in this simple situation the design of the adap-
tive law, the selection of o is not trivial. A proper selection requiring some
information about the size of the time constants and zeroes of the olant's
transfer function.

Despite the fact that the adaptive controi law always leads to a bounded
system response regardless of the plant, the main alarming observation is that
the adaptation leads at best to a control gain which only achieves marginal
stability. Hence lhe adaptation law can never be switched off, or stability
may be lost..we conjecture that no smooth time-invariant adaptive gain law
of the form k : f(k,g) can be constructed which possesses the property of
regulation for the ciass of linear systems with stable zeroes and pole-zero
excess of one, in a structurallv stable manner.
The rcsults here should be seen as a firsl step in the re-exploration of the
adaptive control question with the aim of understanding the dynamics of
adaptive systems as to develop a supervisory control approach.
Finally let us observe that we have not really dealt with the issue of transient
performance in gain adaptive systems.
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I System representation

For thc sake of completeness we explain here how one can arrive at the (1)
representation for systcms that possess a transfer function of rclativc dcgrce
one and with stable zcrocs.
Let us start from the input/output description of the system:

p t l n  : 0 r  ! ) u ,  ( 3 8 )' \ d t r v - o r d l

where P({) is a monic polynomial of degree n * 1 and 8(€) is a polynomial
of degree n. We assumc that thc systcm is controllablc. This corrcsponds to
P(0 and Q({) being coprime. Since the degree of P({) is exactly one larger
than the dcgrcc of 8(€), we can wrire P(() : 

#(€ 
- d)QG) + r({) wirh

degr(O < deeS(0. Equation (38) can then be rewritten as:

,*r*+ d) + ,tfrito : o(fri"

A., 
: ,4r 1- by 'tL2 = l1a,

! . ,  = Ar thu,
dt

* ,  
:  - Q n h r - d 4 1 t q n u .

Put t ing c:  Qnh and.g -  q,  y ie lds (1) .

II Normal form representation for the Takens-
Bogdanov point in (9)

Without loss of gcnerality we start with thc system description (9) with o : L,
see Fact (vi). The Takens-Bogdanov points are eqrrilibria with a nil potent
Jacobian.

(3e)

Using climination lheory, [1, Chapter 6] it can be sccn that (39) is inpirt/output
equivalent to

d  - . d  , d ,
* , u  

=  -da  I  qnu r ,  Q (  * , ) " ,  
:  , (  

* ) y ,  
u  :  u r  I  uz .  ( 40 )

Nolice that since degQ(€) > degr({), the second equation in (a0) defines a
proper input/output relation between y and u2. Nolice also that since P({)
and Q({) are coprime, so are Q({) and r({). Therefore the (9,u2) system is
controllable. We can therefore consider the controller canonical state soacc
representation of that systcm, which is given by

whcre the cigenvalues of Ä are the zerocs of 8({) and (4, b) is controller
canonical form. Combining (41) with the first and the third equation of (40),
we obtain

(41)

(42)



For the systcm (9) (with o = 1) these are givcn by:

1 1 3 1
a r a :  

6 ,  
k T e  =  

2 ,  
d r B :  - i ,  e ' r ' B  =  -  

6 ,  ( 4 3 )

and

1 , 1
AT'I t  = -  

Jt  
KrB: 

, ,  
dz'B =

We considcr the local behaviour around thc latter. The forrncr, duc lo symrnc-
try will havc mutatis mutandis a completely similar normal form. Introdricc
ncw var iablcs ( ry ,12,  Är ,  )z)  through:

a  *  - i * r ' r ,

i r  -  *+ r . , , ,
( I  -  - i  -  1 , ,  

( 45 )

e  :  # * x r * # ^ , .
The systern (9) dcscribed in the new variables takcs on thc form:

i1 = Äz + (1 *  ) r ) r r  *  i r r ,  
-  r2r t ,  

(46)
x : 2  :  - t f i " _ � r 2 + r l '

Wc now transform the variablcs such as to rccluce thc first equation to a purc
intcgrator. (This also ensures that the l incar part for (Ä1,Äz) : (0,0) is in
Jordan form.) Wc usc the transformation:

a t  :  r r t

u z  =  ) z  +  ( 1 *  Ä 1 ) r 1  *  i r ,  
-  t z r t .  

G 7 )

This lransformation is invertible in a neighbourhoocl of thc origin containecl
in the domain 91 ( $. fne invcrse is given by:
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x 1  =  ! J r ,

- ) 2 t y z - ( 1  + ) 1 ) y l
,L ' �2

J ' � - v l

This lcads to a system description of thc form:

ür  =  Uz,

I t
J 1

e r t :  n .  u 4 )
L  V Z

(48)

t jz  :  Ä2*. \1y1 *Äßz+$u?-y?+Arr \a#-.  
(49)
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Only rctaining terms up to sccond order ir (gr, .112) we arrive at a locally
equivalr.nt vcctor f ield:

i t  =  2 2 ,

i 2  :  \ z  *  \ t z r *  (Ä r  +  f i ^ r ) r ,  -  L^ r \ *  ( 50 )
\/2 

,

(2Äz - ' / tQ + \1))zyz2 - f ir : i .

Following Section 8.4.1 in [13], the term linear in z2 in thc z2-cquation can
bc climinated by a paramcter dependcnt shift of 21. The z| terminthe z2-
equation can bc climinated through a time scaling tra.nsformation. Finaily
obscrve that the zrzz term and the zf term have both negative sign, which
can be rnade positive throrrgh the l inear transformation (21 ,zz) ) (-rr,-rr).
It follows that the normal form for the Takens-Bogdanov bifurcation in the
systcm (9)  is  g iven by:

rh : \2.

iz  = h-r  0zry-r  n? + ntnz.

III Averaging computations

Consider thc systern (18) and assunle that o << 1. Givcn Fact (vi), this
is actually without much loss of gencrality, as we can always scale the vector
ficld as to satisfy this condition.
Consider the following time varying state space transformation:

I  ' / r \z  =  - e x p ( - Ä t )  ( :  l ,  ( 5 2 )
v o  "  I  r  / '

.  k - t a * d
a :' 6

Notice that exp(rRf) is a rotation matrix. Lct r,.r: t/;-A Let bT: (0 1).
We have that (2, {) satisfy the following differential equation:

2 - 
/o{cxp(-,Rt)bbr cxp(Rt)2,

i : -ot - ' /o(-o - rl, * z'1' exp(l?1 t)ö? b exp(Af)z). 
(53)

This is in standard form to apply averaging techniques ([9]), using /ä as a
small parameter. The averaged system of equations is given by:

ia : .,/oq"l z" ,

p  :  - o € o - J o ( - o - d - z o ' t ' L z a ) .  
( 5 4 )

R :  ( - a  t ) .

\ - c  0 /
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For a first order avcraging approximation one could ncgiect thc tcrm -o{4.

Neverthclcss, because we arc interested in an approximation valicl ovcr thc
ent,ire time axis, ancl because this tcrm provides stability, we carry it along in
thc averaged equation. For a cliscussion of bhe validity of this approach see
c.g.[9] Chapter 4.
Here f ancl A arc givcn bv:

Importantlv observe that Al + f?'A = A : A?' > 0.
Let us consicler the following cornparison function for thc averagcd system
(54 ) .

v (,o, (o) = f,.Qu'' t," + d + a) - * ^, *4!: * i3" (56)

Notice that lz i, pn.it lr ' . on thc clornain D = I(zo ,1o) , ,ol 0), ancl achicvcs
a  m in i rnum V  :0  on  the  e l l i psc  E  =  { (2 " ,€ " )  , { o  =  0 ;  2 "7 'Lzo  =  -a -

dj. N{oreovcr l/ grows unbounded whencvcr its argumcnt approachcs t}re
boundary of thc domain D.
Assuming that za(O) f 0, wc ]rave that along the solutions of the avcragecl
system equat ions (54)  V(2"( t ) , { " ( t ) )  :  -o€"( t )2 < 0.  Using LaSal lc 's  invar i -
ance principlc we cleducc that all solutions starting inside D convcrge to a
fixed point in E. Locally this convergencc is exponentially fast.
Frorn the rcsults in Chapter 4 [9] it follows that the original system of cqua-
tions (53) contains an attractive invariant tubular ncighbourhood of radius
O(t/") centred on the ellipse .E with a dornain of attraction arbitrarily large
inside the interior of D. The convergcnce is cxponential. (Considcring a largcr
dornain of attraclion, within D, may requirc onc to considcr smaller valucs of
o . )
Re-interprcting the result in tcrms of the original coordinatcs (18) wc obtain:

Theorern IlI. l  Consid,er the.s.rlstcrn (18) u,ndcr th,r: conditions c : 0, d+a <
0 artd ct ad > 0. Let r(0) + 0 and k(0) ) 0. For .su,ff ir: iently srnall o > 0,
all solu,tion.s .satisfy :

l i m s u p l k ( t )  + a * d l

r = # ( " : ' , 1  , )  o = # ( ! " , i , )  ( s 5 )

l imsup l ( r ( f )
, + m

u(i))  exp(-1?t ' i1 l  "*p1-nt;  (

Here C is sorne posit'iue consta,nt irr,dependertt of o. Th,e rnatrir R is dr:finetl
in (52).

Rernark rrl.2 In vicw of tirc fact we can rcscale thc cquations such that
o = I, scc Fact (vi), it is clear that the abovc Theorcrn III.I rcmains valid
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for o trot ncccssari ly srnal l .  I Ioiru'cvcr, obviously thc thcorcm's conclusions are
strongest for small  values of o. !

Rernark III.3 Consi<ier d as bifurcation paranrct,er. In cotrjunction with thc
olrscrvation that a rcgular Hopf bifurcation takcs placc for c I ad ) 0 and
d pa^ssing through -a) we concludc frorl thc Theorerri III.1 that thc Hopf
bifurcation is such that as d clccreases through -a a stable l irnit cyclc forms
whilst t l ic cquil ibrium becomcs unstable. Appcndix I\, '  cstablishes t,his fact
rigorouslv. tr

Finallv lct, us prrovidc thc clctails of thc calculations for A and f. R.ccall (52),
wc have

It, folloivs t,hat,

exp(  -  1?/  )bü7'cxp(1?/)  =

( - "' sin2 1"-'l ';
t *
\ 

- 
# (, cos(r,,,1) - sin(c,, ' t)) sin(r,.,f )

/  cos (a t )  -  j s i n ( , . ' 1 )  : s i n ( - . ; / )  
)  ( 58 )cxp (1? t )  :  

[  - :  s i n ( - , / )  cos ( -u r )  +  j  s i r r ( , . , / )  /

- {  s i r r ( . ' / ) ( " , , 'cos( , - r l  +  s i r r (1, , ' / ) )  
\

cos21 , , , l )  -  
*1 ,  s i n2 ( * , f  1  ) '

(5e)

frorn which we rearlily dcduce the cxprcssion for l. Sirnilarly frorn

cxp(  l l l  /  )üü7'  cx l r ( I l l )  :

( * sin2(r..,t) -$ sin(o,l)(cu cos(c,rl + sin(c,, 'r)) 
\ .

\  -#("cos(o/)  + s in(of ) )s in(c" , r )  (cos(c, , ' f )  + j  s in(c. . , t ) ) '  )  
'

(60)

wc computc A as the avcragc over onc pcriod of thc allovc cxpression.

IV Existence and uniqueness of limit cycle

Considcr the aclaptive systcm (18) with e = 0 ancl paramctcrs in the rangc
c>  r f  and  d  <  -a .  Lc t , , , ) 2 : c -a2  >  0  as in  Appcnd i x I I I .  I n t roc luce  the
varialrlcs zt : It 22 : -atr l,t l , zs - k - d - a. Thc system description
becomcs:

:  7 1

= -a2z . t  -  zs (z 'z  *  az1) ,

:  -ozs  - l  ( r ,  +  o t t )2  +  o (d  +  a) .

it

i2

i3

(61)
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Infrodttce now cvlincler co-orclinatcs, ,z1 = Jorsit(uL?), 22: r/ iarcos(a?)
and z3 - ,/oz. Dcnote ,G =t. This leads to thc system dcscription:

F

i  -  -1zr ' (< 'os(- ,d)  + as in(" , . ,d) )s in(cd) ,

e :  - l  +  lz(cos(c, ,d)  + as in(u. ,d))cos(a- 'd) ,  (62)
a "

z -  -oz I  e  ( (d + o)  + 12 (cos(c, , ,d)  + os in(od))2)  .

Uti l izing Thcorcni 1.1 pp261 [14], rvc clecluce that thcre exists e* > 0 such
that for all 0 < € < e* the systcm (62) possesscs an isolatecl pcrioclic orbit

( r ( 0 , e ) , 2 ( 0 , e ) :  ( / - S 4 , 0 )  +  O ( a ) .  T h c  p c r i o r l i r :  o r b i t  ( r ( 0 , e ) , 2 ( 0 , e )  i s
continuously differcntiablc in e.
The conditions of Theorem l.l pp261 [14] are that thc equations:

0 -  zoro,

o  =  ( c I + a ) + 4 ! J ! ) .
2 '

havc a solution for which

(63)

=  - n ( r l  -  o )  1 0 .  ( 6 1 )

The latter is cnsurccl by assurnption as o(d * tz) < 0.
For the local asyrnptotic stabil ity of the pcrioclic orbit (in (r,z)-spacc), it
sufficcs to observe that thc trace of the Jacoll ian is -o ( 0. Altcrnativcly, wc
can cxploit thc averaging idca^s of Appendix III.
From thc above we declucc that thc system (18) with a + d < 0 and r: > a2
posscsscs a Iocally a^syrnptotically stablc pcriodic ortrit for all sufficicntly srnall

n",r o -"8#Ä
\  / - 2 ( d  +  c ) ( I  r  n 2 )  0

,(t) : , l=#.],3sin(c,,r) +o(o)

/

(65)v \ t )

Ä;( l )

a2

-2o (d  +  a \-T;A- t  ( -o s in(u. ' / )  - ,^ , . ,cos(- ' l ) )  + O(o)

- ( d + a ) + o ( \ c )

c - a 2  > o

V How to remove DC offset error

As is well known, thc DC offset crror can be removcd from. thc outptrt through
intcgral action. It is probably well icss known that thc rcsulting clynamical
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systcm rcrnitirrs in the samc class of systcms strrdicd in this papcr. Hcncc our
analysis also applies to thcse systcms whcrc intcgral action is prcscnt.

Starting frorn thc syst,em clcscription:

d d
P(  - : ) v  :  Q ( i ) " ,a t  a t

d
--!) r : A,

A L
' t t r  :  - k ( a + a y 1 ) + e .

Here rr ) 0 is tirc rclativc intcgral action appliecl in t,hc control ancl 91 is the
intcgral of |y. Consicicring a new output Il : .11 * a37r we can equivalently
represent the cont,rol systcm a^s:

*rr*,, = tft*oa1ft1",
' tL  :  -kr1 *e,

d
+  d )y  :  ; t l .o.t

(66)

(67)

1 !' d,t

This systern (67) is clcarly of the same form a^s thc systcm (1) We can now
proccccl a^s in the rest of thc paper, with the adcled flcxitiility of using y andf or

4 in thc adaptivc law that dcfincs k. Thc bencfit of the integral action is that
whcncvcr thc adaptivc systcm rcgulatcs to an cquilibriurn that then the output
g is regulated to zero. Clearly this is import,ant from a control pcrspcctivc, but
it does not altcr in any significant sense the overall dynarnics of the adaptive
systcm. Morcovcr as rcgulation to an equilibrium is by no means guaranleecl,
nor thc most l ikcly cvcnt, intcgral action looses its attraction.
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