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Adaptive dynami output feedbak stabilisationof nonlinear systemsA. Ilhmann� and A. IsidoriyAugust 1, 2001AbstratAn adaptive dynamial output feedbak ontroller is introdued for a lass of nonlinearnon-minimum phase systems. This adaptive ontroller ahieves pratial stabilisation,that means the output will asymptotially tend to a pre-spei�ed neighbourhood ofthe origin. In ase of linear systems, we an even prove adaptive stabilisation.Keywords: adaptive ontrol, dynami output feedbak, nonlinear systems, pratialadaptive stabilisationNomenlatureLp(I; K n�m) set of p-integrable funtions f : I ! K n�m , I � R an interval,p � 1kfkLp(I;Kn�m ) = �RI kf(�)kpd��1=pL1(I; K n�m) set of funtions f : I ! K n�m whih are essentially bounded onthe interval I � RkfkL1(I;Kn�m ) = ess supt2I kf(t)k1 IntrodutionIn this paper, we onsider polynomially bounded nonlinear systems of the form_z(t) = f�z(t); y(t)�; _y(t) = q�z(t); y(t)� + b(y(t)) u(t) ; (1.1)where it is assumed that f : Rn�1 � Rm �! Rn�1 ; q : Rn�1 � Rm �! Rm ; b : Rm �!Rm�m are loally Lipshitz, with f(0; 0) = 0, q(0; 0) = 0, b(y) is invertible for all y 2 Rm ,and there exist real numbers �f ; �q; �q0 > 0 and an integer s � 1 suh that, for allz 2 R(n�1) , ~y; y 2 Rm , we havekf(z; ~y)� f(z; y)k � �f �1 + k~y � yks�kq(z; ~y)� q(z; y)k � �q �1 + k~y � yks�kq(z; 0)k � �q0 �1 + kzks� : (1.2)�Institut f�ur Mathematik, Tehnishe Universit�at Ilmenau, Weimarer Stra�e 25, 98693 Ilmenau,ilhmann�mathematik.tu-ilmenau.deyDipartimento di Infomatia e Sistemistia, Universit�a di Roma \La Sapienza", 00184 Rome, Italy,isidori�labrob.ing.uniroma1.it



The ontrol problem that we address is the design of a dynami (and adaptive) outputfeedbak law yielding global pratial stability. More preisely, we seek a family of dy-namial systems of the form _̂x = �"(x̂; y); u = p"(x̂; y) (1.3)where � > 0 is a onstant design parameter, suh that, in the resulting losed-loop system(1.1,1.2), for every initial ondition z(0); y(0); x̂(0)� the solution (z(t); y(t); x̂(t)) exists for all t 2 [0;1) and is bounded,� limt!1maxf0; ky(t)k��g = 0, i.e. the distane between ky(t)k and [0; �℄ tends tozero as t!1.The family of ontrollers that we design is suh that, in the linear ase we an hoose� = 0 and z(t) and y(t). In the non-linear ase, for any � > 0, there is a ontroller in thefamily (1.2) suh that kz(t)k asymptotially onverges to the strip [0; �℄ as time tends to1.The basi assumption that we make on system (1.1) in order to meet this ontrol objetiveis that the following auxiliary system assoiated with (1.1)_z(t) = f(z(t); �u(t)); �y(t) = q(z(t); �u(t)); (1.4)regarded as a system with input �u, output �y and internal state z, is globally asymptotiallystabilisable by a dynami output feedbak of the form_�(t) = L(�(t)) +M �y(t); �u(t) = N(�(t)) ; (1.5)in whih M 2 Rq�m and L : Rq �! Rq is loally Lipshitz, with L(0) = 0, N : Rq �! Rmis ontinuously di�erentiable and there exists real numbers �L; �N > 0 and an integer r � 1suh that, for all �; ~� 2 Rq , we havekL(~�)� L(�)k � �L �1 + k~� � �ks�kN(~�)�N(�)k � �N �1 + k~� � �kr� : (1.6)More preisely it is assumed that (1.5) renders the equilibrium (z; �) = (0; 0) of the losed-loop system _z(t) = f�z(t); N(�(t))�_�(t) = L(�(t)) + M q�z(t); N(�(t))� (1.7)globally asymptotially stable, and there exist a ontinuously di�erentiable Lyapunovfuntion W : Rn�1 � Rq ! R�0 and real numbers w1; w2; w3; w4 suh that, for all � =(zT ; �T )T 2 Rn�1+q , w1 k�k � W (z; �) � w2 k�kgradW (z; �) � � f(z;N(�))L(�) +M(q(z); N(�))� � �w3 k�kkgradW (z; �)k � w4 : (1.8)2



This type of assumption was proven in [5℄ to be helpful in determining a (dynami) outputfeedbak law that semiglobally pratially stabilises a nonlinear system of the form (1.1). Inthe present paper we extend the result of [5℄ by showing that, if a ertain \gain parameter"inluded in the feedbak law is ontinuously adapted (rather than �xed as in [5℄), then thefeedbak law steers the state of (1.1) to an arbitrarily small neighborhood of the originregardless of the initial value (and not just for any initial value in a �xed, possibly large,ompat set as in [5℄). The adaptation law used in the present paper is simple. It is atime-varying gain driven by an integration in the linear ase, and in the nonlinear asean integration oupled with a dead-zone. This high-gain idea goes bak to [10℄ and, ifa dead-zone is inorporated, to [4℄, see also [2℄ for polynomially bounded systems. It isworth observing that (as noted in [5℄), in the ase of linear systems, the assumption inquestion (see (1.4), (1.5)) is not restritive at all: it is ful�lled by any system whih isstabilisable by means of dynami output feedbak. We also observe (as pointed out in [6℄)that the assumption in question essentially identi�es a lass of nonlinear systems that aresemiglobally stabilisable by means of a feedbak driven by funtions that are \uniformlyompletely observable" in the sense of [9℄.2 Linear aseIn this setion, we onsider the speial ase in whih system (1.1) is a linear system, namelya system of the form _z(t) = F z(t) + Gy(t)_y(t) = H z(t) + J y(t) + B u(t); (2.1)where F 2 R(n�1)�(n�1) ; G 2 R(n�1)�m ;H 2 Rm�(n�1) ; J 2 Rm�m , and B 2 Rm�m isinvertible.The orresponding version of the basi assumption introdued in the previous setion (seealso Figure 1) is that the following subsystem of (2.1)_z(t) = F z(t) + G �u(t)�y(t) = H z(t) + J �u(t); (2.2)is uniformly asymptotially stabilisable by a dynami output feedbak of the form_�(t) = L�(t) +M �y(t); �u(t) = N �(t); (2.3)where L 2 Rq�q ;M 2 Rq�m ; N 2 Rm�q .The following Proposition 2.1 is an adaptive version of Lemma 3.1 in [5℄, where it wasassumed that, in the feedbak law u(�), k(�) � k� is suÆiently large.Proposition 2.1 Suppose (2.3) applied to (2.2) yields a uniformly asymptotially stablelosed-loop system. Then the dynami and adaptive output feedbak ontroller_�(t) = L�(t) + M k(t) [y(t)�N�(t)℄)u(t) = B�1 hN�L� +Mk(t) [y(t) �N�(t)℄�� k(t) [y(t) �N�(t)℄i_k(t) = ky(t)�N�(t)kr; (2.4)
3



_z = Fz +G�u�y = Hz + J �u
_� = L� +M �y�u = N�

- -
�

�u �y
�u �y

Figure 1: Assumption on global asymptoti stabilisability: Stable losed-loop systemwith r � 1, applied to (2.1) yields, for arbitrary initial data (z(0); y(0); �(0); k(0)) 2Rn�1 �Rm �Rq �R, a nonlinear losed-loop system (2.1), (2.4) whih possesses a uniqueabsolutely ontinuous solution(z(�); y(�); �(�); k(�)) : [0; !) �! Rn�1 � Rm � Rq � R;maximally extended over [0; !), where ! 2 (0;1℄, and has the properties(i) ! =1, i.e. no �nite esape time,(ii) limt!1 k(t) = k1 2 R�0 , i.e. the gain adaptation onverges,(iii) z(�); y(�); �(�) 2 Lr(R�0 ;Rn�1)�Lr(R�0 ;Rm)�Lr(R�0 ;Rq ), andlimt!1 kz(t)k + ky(t)k+ k�(t)k = 0, i.e. stabilisation.The proof of Proposition 2.1 and of the subsequent results relies on the following lemma.Although the result might be well-known, we are not aware of a onise referene, andpresent a short proof.Lemma 2.2 Consider the di�erential equation_x(t) = F �t; x(t)� + '1(t) + '2(t); (2.5)where F (�; �) : R�0 � Rn ! Rn , 'i(�) : R�0 ! Rn , i = 1; 2, and suppose there exists aontinuously di�erentiable Lyapunov funtion V (�; �) : R�0 � Rn ! R�0 so that, for some�1; : : : ; �4 > 0, p � 1, and all (t; x) 2 R�0 � Rn ,�1 kxkp � V (t; x) � �2 kxkp��t V (t; x) + ��x V (t; x) � F (t; x) � ��3 kxkpkgradV (t; x)k � �4: (2.6)Then any absolutely ontinuous solution x(�) : R�0 ! Rn of (2.5) satis�es, for any r � 1:(i) '1(�) 2 Lr(R�0 ;Rn) ^ limt!1 '2(t) = 0 =) limt!1 x(t) = 0;(ii) '1(�) 2 Lr(R�0 ;Rn) ^ '2(�) 2 L1(R�0 ;Rn) =) x(�) 2 L1(R�0 ;Rn):4
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Figure 2: Linear ase: Global stabilisation by dynami output feedbak and gain adaptionProof: The derivative of V (t; x(t)) along a solution of (2.5) satis�es, for almost all t � 0,ddtV (t; x(t)) � ��3�2 V (t; x(t)) + �4�k'1(t)k + k'2(t)k�;and hene, applying Variations-of-Constants yields, for all t � t0 � 0,V (t; x(t)) � e��3�2 (t�t0)V (t0; x(t0)) + Z tt0 e��3�2 (t�s)�4�k'1(s)k+ k'2(s)k� ds: (2.7)Note that by H�older's inequality we have, for 1=p+ 1=q = 1 and all t � t0 � 0,Z tt0 e��(t�s)k'(s)k ds� ke���kLp� t�t02 ;t�t0�k'(�)kLq�t0; t+t02 � + ke���kLp�0; t�t02 �k'(�)kLq� t+t02 ;t�� ke���kLp� t�t02 ;1�k'(�)kLq (t0;1) + ke���kLp(0;1)k'(�)kLq� t+t02 ;1� (2.8)The statements of the lemma follow from applying (2.8) to the onvolution in (2.7) andinvoking (2.6) again. �Proof of Proposition 2.1: It follows from standard results of ordinary di�erentialequations that the losed-loop system (2.1),(2.4) possesses a unique absolutely ontinuoussolution whih an be maximally extended over an interval [0; !), where ! 2 (0;1℄.5



The (z; y; �)-oordinates of the losed-loop system satisfy, where for brevity we omit theargument t,_z = F z + GN � + G [y �N �℄_y = H z + J y + N L� + k [NM � Im℄ [y �N �℄_� = L� + M k [y �N �℄ (2.9)and the oordinate transformation � := y �N � leads to_z = F z + G [N � + �℄_� = L� + M k �_� = H z + J [� +N�℄ � k � (2.10)so that the further oordinate transformation � := � +M � yields, for � = (zT ; �T )T ,_� = Â� + B̂ �_� = Ĉ� � [k(t)Im � D̂℄ �; (2.11)where Â = � F; GNMH; [L+MJN ℄� ; B̂ = � G [Im �NM ℄MJ � [L+MJN ℄M� ;Ĉ = [H; JN ℄ ; D̂ = [J � JNM ℄ : (2.12)Note that Â is the matrix of the losed-loop system (2.2), (2.3), and hene by assumptionexponentially stable.We prove that k(�) 2 L1(0; !;R). Seeking a ontradition, suppose k(�) is unbounded.Let P = P T 2 R(n�1+q)�(n�1+q) be the positive de�nite solution ofÂT P + P Â = �I:Then di�erentiation of the Lyapunov funtion andidateV (�; �) = �TP� + 12 k�k2; where � = (zT ; �T )T (2.13)along the solution of (2.11) yields, for almost all t 2 [0; !),ddtV (�(t); �(t)) = �k�(t)k2 + 2 �(t)TPB̂ �(t)� �(t)T �k(t)Im � D̂� �(t) + �(t)T Ĉ�(t)� �k�(t)k2 � �k(t)� kD̂k� k�(t)k2 + �2kPB̂k+ kĈk� k�(t)k k�(t)k� �12k�(t)k2 � � k(t)� kD̂k � 2[2kPB̂k+ kĈk℄2� k�(t)k2:Now monotoniity and unboundedness of k(�) yields exponential deay of (z(t); �(t); �(t))on [0; !), and by the oordinate transformations we may onlude exponential deay of(z(t); y(t); �(t)) on [0; !). Thus t 7! k(t) onverges as t tends to !, whih ontraditsunboundedness of k(�).k(�) 2 L1(0; !;R) readily gives ! = 1, and hene (i) and (ii) are proved and it remainsto show (iii).k(�) 2 L1(0;1;R) is equivalent to �(�) 2 Lr(R�0 ;Rm) and hene an appliation ofLemma 2.2 to (2.11) yields (z(�); �(�)) 2 Lr(R�0 ;Rn�1 � Rq ) and limt!1(z(t); �(t)) = 0.6



This gives �(�) = �(�)�M�(�) 2 Lr(R�0 ;Rq ) and y(�) = �(�) +N�(�) 2 Lr(R�0 ;Rm), anda repeated appliation of Lemma 2.2 to_y(t) = �y(t) + �(z(t); y(t); �(t)); where �(z; y; �) := y +Hz + Jy +Bu; (2.14)gives limt!1 y(t) = 0. Finally, rewriting the lower equation in (2.9) as_� = �� + [I + L�MkN ℄� +Mky; (2.15)gives, again by Lemma 2.2, limt!1 �(t) = 0. This ompletes the proof of the theorem. �It is easy to see that the gain adaptation law an be replaed by _k = kykr + kN�kr or_k = kykr + k�kr.3 Nonlinear aseThe following theorem generalises Proposition 2.1. However, stabilisation to zero an nolonger be guaranteed and is replaed by the weaker ontrol objetive of pratial outputstabilisation. The following theorem also generalizes Theorem 4.1 in [5℄, where pratialstabilisation with arbitrary large basin of onvergene is ensured for k(�) � k� suÆientlylarge. The basi di�erene in the ontrol law (3.1) is that the gain parameter k(t) is tunedadaptively, making it possible to obtain the desired onvergene properties for any initialdata.Theorem 3.1 Suppose (1.4) applied to (1.5) yields a globally uniformly asymptotiallystable losed-loop system in the sense that there exists some W : Rn�1 � Rq ! R�0satisfying (1.5). Let r1 � 1, �1; �2 > 0 be given, and r; s � 1 as in (1.2), (1.6). Then thedynami and adaptive output error feedbak ontroller�(t) = y(t)�N(�(t))_�(t) = L(�(t)) + M k(t) k�(t)krs�1 �(t);u(t) = b(y(t))�1 ��N�� (�(t))�L(�(t)) +M k(t) k�(t)krs�1 �(t)�� k(t) k�(t)krs�1 �(t)�_k(t) = maxf0; ky(t)k � �1gr1 + maxf0; k�(t)k � �2grs; (3.1)applied to (1.1) yields, for arbitrary initial data �z(0); y(0); �(0); k(0)� 2 Rn�1 � Rm �Rq � R, a losed-loop system (1.1), (3.1) whih possesses a unique absolutely ontinuoussolution (z(�); y(�); �(�); k(�)) : [0; !) �! Rn�1 � Rm � Rq � R;maximally extended over [0; !), where ! 2 (0;1℄, and has the properties(i) ! =1, i.e. no �nite esape time,(ii) limt!1 k(t) = k1 2 R�0 , i.e. the gain adaptation onverges,(iii) z(�); y(�); �(�) 2 L1(R�0 ;Rn�1)�L1(R�0 ;Rm )�L1(R�0 ;Rq ),i.e. all signals are bounded, 7



(iv) limt!1maxf0; ky(t)k � �1g = 0, and limt!1maxf0; k�(t)k � �2g = 0,i.e. ky(t)k and j�(t)k approah [0; �1℄ and [0; �2℄ respetively as t tends to 1.Moreover, for any " > 0 there is ��2 suh that, if �2 � ��2, then(v) limt!1maxf0; kz(t)k + k�(t)k � "g = 0.Note the essential di�erene between statements (iv) and (v) in Theorem 3.1: For pre-spei�ed and arbitrary small �1; �2 > 0 it is guaranteed that eventually y(t) and �(t) stayin a �1- respetively �2-neighbourhood of 0. This annot be guaranteed a priori for thez(t) and �(t)-omponents. Statement (v) only guarantees qualitatively that the smallereventually �(t) is the smaller the other internal states z(t) and �(t) eventually beome.Proof of Theorem 3.1: The (z; y; �){oordinates of the losed-loop system (1.1),(3.1)may be written as _z = f�z; � +N(�)�_y = q�z; � +N(�)� + ddtN(�) � k k�krs�1 �_� = L(�) + M k k�krs�1 �; (3.2)and hene it follows from standard results of ordinary di�erential equations that the losed-loop system possesses a unique absolutely ontinuous solution whih an be maximallyextended over an interval [0; !), where ! 2 (0;1℄.The oordinate transformation � := � +M � yields_z = f�z; � +N(� �M�)�_� = L(� �M�) + M q�z; � +N(� �M�)�_� = �k k�krs�1� + q�z; � +N(� �M�)�: (3.3)In order to make use of the global uniform asymptoti stability of (1.7), we rewrite (3.3)as follows. _z = f(z;N(�)) + Æz(z; �; �)_� = L(�) + M q(z;N(�)) + Æ�(z; �; �)_� = �k k�krs�1� + q�z; � +N(� �M�)�; (3.4)whereÆz(z; �; �) = f�z; � +N(� �M�)� � f(z;N(�))Æ�(z; �; �) = L(� �M�)� L(�) + M hq�z; � +N(� �M�)� � q�z;N(�)�i: (3.5)For the sake of simpliity we rede�ne the distane funtion, for � > 0 and � 2 Rp , p beinggiven by the ontext, d�(�) = maxf0; k�k � �g:Using the following inequality (see, e.g. [8, Setion XI.4℄),[a+ b℄k � 2k�1[ak + bk℄ for all a; b � 0 and k 2 N ; (3.6)8



and (1.2), (1.6), (1.8), we onlude that the derivative ofW (z(t); �(t)) along the solution of(3.3) satis�es, for ~w3 := w3=w2 and suitable onstants �1; �2 > 0 and almost all t 2 [0; !),ddtW (z(t); �(t)) = gradW (z; �) � ddt (zT ; �T )T� �w3k(zT ; �T )T k + w4 k(ÆTz ; ÆT� )T k (3.7)� �w3k(zT ; �T )T k + w4 n�f�1 + k� +N(� �M�)�N(�)ks�+ �L�1 + kM �ks� + kMk�q�1 + k� +N(� �M�)�N(�)ks�o� �w3k(zT ; �T )T k + �1h1 + k�ks + kN(� �M�)�N(�)ksi� �w3k(zT ; �T )T k + �2�1 + k�krs�� � ~w3W (z; �) + �2�1 + k�krs�: (3.8)Sine (3.8) is equivalent toddt �e ~w3tW (z(t); �(t))� � e ~w3t �2 �1 + k�(t)krs�;it follows from (1.8), the deomposition of k�krs into d�(�)rs plus a bounded funtion, andelementary alulations, that for some suitable onstant �3 > 0 and almost all t 2 [0; !),k(z(t)T ; �(t)T )T krs � �3 + �3 ��d�(�(�))rs�(t)rs; (3.9)where � : '(�) 7! �t 7! Z t0 e� ~w3(t��) '(�) d��:Using again (3.6), (1.2), (1.6), (1.8), we onlude that the derivative of d�(�)(t)2 along thesolution of (3.3) satis�es, for suitable onstants �4; �5; �6 > 0,  2 (0; �), and almost allt 2 [0; !),ddt 12 d(�(t))2 = d(�) k�k�1�T _�� �k d(�) k�krs + d(�) kq�z; � +N(� �M�)�� q(z; 0) + q(z; 0)k� �k d(�) k�krs + d(�) h�q[1 + k� +N(� �M�)ks℄ + �q0[1 + kzks℄i� �k d(�) k�krs + �4 d(�) �1 + k�ks + kN(�)ks + kzks�� �k d(�) k�krs + �5 d(�) �1 + k�ks + k�krs + kzkrs�� �k d(�) k�krs + �6 d(�) �1 + k�krs + k�krs�: (3.10)Now integration of (3.10) over [0; t) � [0; !), substituting (3.9), invoking H�older's inequal-ity for 1=p+ 1=q = 1 and p = rs+ 1, q = (rs+ 1)=rs, using d(�) � d(�)��rsk�krs andthe fat that � is a uniformly bounded operator mapping Lk-funtions into Lk-funtions,
9



we onlude for suitable onstants �7; �8 > 0 and almost all t 2 [0; !),12 d��(t)�2 = 12 d��(0)�2 � Z t0 [k � �6℄ d(�) k�krs d� + �6 Z t0 d(�) d�+�6�3 Z t0 d(�)h1 + ��d�(�)rs�rsi d�� 12 d��(0)�2 � Z t0 [k � �6℄ d(�) k�krs d� + �7kd(�(�))kL1(0;t)+ �7 k�krs kd(�(�))kLp(0;t) kd(�(�))rskrsLqrs(0;t)� 12 d��(0)�2 � Z t0 �12k � �8� d(�) k�krs d� � Z t0 �12k � �8� d(�)rs+1 d�:(3.11)Now we proeed in several steps.Step 1: We prove k(�) 2 L1(0; !;R).Seeking a ontradition, suppose k(�) is unbounded. Then (3.11) yields �(�) 2 L1(0; !;Rm),and hene by (3.9) (z(�); �(�)) 2 L1(0; !;Rn�1+q ), so that (3.10) yields limt!! d(�(t)) =0. Sine  > 0 is arbitrary, this proves limt!! �(t) = 0.Now (3.5) yields, invoking ontinuity of f; g;N;L and boundedness of z(�) and �(�), thatlimt!! kÆz�z(t); �(t); �(t)�k+ kÆ��z(t); �(t); �(t)�k = 0;and hene, by (3.7), limt!! (z(t); �(t)) = 0. Furthermore, limt!! �(t) = limt!! [�(t) �M�(t)℄ = 0, and therefore, limt!! y(t) = limt!! [N(�(t)) + �(t)℄ = 0. By onstrution ofthe gain adaptation, we onlude boundedness of k(�).Step 2: We prove �z(�); y(�); �(�); �(�)�; � _z(�); _y(�); _�(�); _�(�)� 2 L1(0; !;Rn�1+m+q+m).Sine k(�) 2 L1(0; !;R) is equivalent to d�(�(�)) 2 Lrs(0; !;R), it is immediate from (3.9)that (z(�); �(�)) 2 L1(0; !;Rn�1+q ). To prove that �(�) 2 L1(0; !;Rm), rewrite the lowerequation in (3.4) as _�(t) = ��(t) + �(z(t); �(t); �(t)); (3.12)where, onfer (3.10), for suitable onstants �9; �10 > 0 and almost all t 2 [0; !),k�(z; �; �)k � k�k + k k�krs + kÆ�(z; �; �)k� k�k + k k�krs + �6 [1 + k�krs + k�krs℄� �9 + �9 [k�krs + d�(�)rs � d�(�)rs℄� �10 + �10 d�(�)rsand hene, sine d(�(�)) 2 Lrs(0; !;R), it follows from an appliation of Lemma 2.2 to(3.12) that �(�) 2 L1(0; !;Rm ).This also proves that �(�) = �(�) � M�(�) 2 L1(0; !;Rq ), and, by ontinuity of N(�),y(�) = N(�(�)) + �(�) 2 L1(0; !;Rm).Finally, boundedness of the derivatives of z; y; �; � is a onsequene of ontinuous di�er-entiability of N(�) and of (3.2), (3.12).Step 3: By Step 1 and 2, standard results of ordinary di�erential equations yield ! =1.Therefore, (i)-(iii) are proved. 10



Step 4: We show (iv):By Step 3 we haveddtd�1(y(�)) = d�1(y(�))ky(�)k�1y(�)T _y(�) 2 L1(0;1;R);and sine d�1(y(�)) 2 Lr1(0;1;R), an appliation of Barb�alat's lemma (see, e.g., [7℄) yieldsthe �rst statement in (iv). The seond statement is proved analogously.Step 5: We show (v):Set �T = (zT ; �T )T and rewrite the system_z = f(z; � +N(� �M�))_� = L(� �M�) +Mq(z; � +N(� �M�)) (3.13)in the form _� = f̂(�; �) : (3.14)Sine f(�; �) is loally Lipshitz, there are numbers 1; 2;m1 > 0 suh thatkf̂(�; �)� f̂(�; 0)k � m1k�k; for all k�k � 1, k�k � 2:Moreover, the equilibrium � = 0 of _� = f̂(�; 0) is by hypothesis loally asymptotiallystable, see (1.7), (1.8). Thus, regarding system (3.14) as a system of the form_� = f̂(�; 0) + g(�; t);it follows from [1, pp. 275-6℄) that given any " > 0, there exist Æ" > 0 and " > 0 suhthat, if k�Æk � Æ" and k�(t)k � " for all t � 0, the solution �(t) of_� = f̂(�; �(t)) (3.15)satisfying �(0) = �Æ is suh that k�(t)k � " for all t � 0.We show now that, if �2 is small enough, for any �Æ there is a time T = T (�Æ) suh that thesolution �(t) of (3.15) satisfying �(0) = �Æ is suh that k�(T )k � Æ" and k�(t)k � " for allt � T . In view of the property realled above, this proves that limt!1maxf0; k�(t)k�"g =0. Sine � = � �M� and limt!1maxf0; k�(t)k � �2g = 0 (as proven above) this suÆesto prove laim (v).Suppose �2 � "=2 and observe that, by laim (iv), there is a time T0 suh thatk�(t)k � 2�2 � "; for all t � T0.Assuming, without loss of generality, 2�2 < 1 we dedue from (3.8) that _W (t) � � ~w3W (t)+2�2; for all t 2 [T0;1) and heneW (t) � e� ~w3(t�T0)W (T0) + 2�2~w3 ; for all t � T0.Substituting (1.8), we onlude the existene of a time T1 > T0 suh thatk�(t)k � R := 3�2w1 ~w3 for all t � T1.Set now �T1(t) = ( �(t); if t � T10; if t > T1.11



and let �T1(t) denote the integral urve of _� = f̂(�; �T1) satisfying �T1(0) = �Æ. Indeed,�T1(t) = �(t) for all 0 � t � T1. Moreover, for t > T1, �T1(t) is a solution of _� = f̂(�; 0) andhene tends to 0 as t!1. In partiular, using (1.8), it is seen that there exist numbersA > 0 and a > 0 (depending only on w1; w2; w3) suh thatk�T1(t)k � Ae�a(t�T1)k�(T1)k for all t � T1.Choosing T2 so that 2Ae�aT2R � Æ" yieldsk�T1(T1 + T2)k � Æ"2 : (3.16)Sine f̂(�; �) is loally Lipshitz, there exists numbers ` > 0 and m2 > 0 suh thatkf̂(�; �)� f̂(�T1 ; 0)k � `k� � �T1k+m2k�k (3.17)for all k�k � R; k�T1k � AR; k�k � ".Let now �2 � min�"2 ; Æ"`4m2�2(eLT2 � 1)� :We will show that, at time T = T1 + T2,k�(T )� �T1(T )k � Æ"2 ; (3.18)whih, in view of (3.16), proves that k�(T )k � Æ", as requested.To this end, observe that, for t � T1, �(t) and �T1(t) are integral urves of _� = f̂(�; �(t))and, respetively, of _� = f̂(�; 0) satisfying the same initial ondition at time T1. Thus, fort � T1, �(t) = �(T1) + Z tT1 f̂(�(s); �(s))dsand �T1(t) = �(T1) + Z tT1 f̂(�T1(s); 0)ds :Sine k�(s)k � R; k�T1(s)k < AR; k�(s)k � 2�2; for all s � T1;and 2�2 � ", using (3.17), we havek�(t)� �T1(t)k � `Z tT1 k�(s)� �T1(s)kds+m2 Z tT1 k�(s)kds� `Z tT1 k�(s)� �T1(s)kds+ 2m2�2(t� T1) :Gronwall's inequality yieldsk�(t)� �T1(t)k � 2m2�2` (e`(t�T1) � 1)and, thus, for T = T1 + T2,k�(T )� �T1(T )k � 2m2�2` (e`T2 � 1) � Æ"2 :This ompletes the proof of laim (v). �12



4 ConlusionsIn [5℄ it is shown that a ertain lass of nonlinear systems an be stabilised semigloballyby a dynami output feedbak ontroller. This is ahieved by a high-gain parameter inthe feedbak law whih orresponds to the magnitude of the initial ondition. The largerthe gain parameter the larger the set of initial onditions so that the losed-loop systemstabilises the state. The idea of the present paper is to adapt the gain parameter as atime-varying salar funtion depending on the magnitude of y(t) � N�(t) where y(t) isthe output of the system and N�(t) a quantity of the dynami feedbak ompensator (see(2.4) for the linear ase and (3.1) for the nonlinear ase). In the linear ase, this adaptivemodi�ations yields global stabilisation and overomes semiglobal stabilisation as in [5℄.In the nonlinear ase, we also overome the semiglobal stabilisation, and even pratialstabilisation ahieved in [5℄ is improved by guaranteeing that the output y(t) and theinternal variable �(t) of the dynami ompensator tends to any prespei�ed strip [0; �℄,� > 0.Referenes[1℄ Hahn W. (1967): Stability of Motion, Springer-Verlag, Berlin, Heidelberg[2℄ Ilhmann A. (1993): Non-Identi�er-Based High-Gain Adaptive Control, Springer Ver-lag, London.[3℄ Ilhmann A. (1998): Adaptive �-traking for polynomial minimum phase systems;Dynamis and Stability of Systems 13, 341{371.[4℄ Ilhmann A. and Ryan E.P. (1994): Universal �-traking for nonlinearly perturbedsystems in the presene of noise, Automatia 30, 337{346.[5℄ Isidori A. (1999): Stabilization of nonlinear systems using output feedbak, pp. 111{133 in: Dynamial Systems, Control, Coding, Computer Vision: new trends, inter-faes and interplay , G. Pii, David S. Gilliam (eds.), Birkh�auser, Basel[6℄ Isidori A., Teel A. and Praly L. (2000): A note on the problem of semiglobal pratialstabilization of unertain nonlinear systems via dynami output feedbak, Systemsand Control Lett., 39, 165{171.[7℄ Khalil H.K. (1996): Nonlinear Systems, seond ed., Prentie Hall, Upper SaddleRiver, NJ[8℄ Lang S. (1969): Real Analysis, Addison-Wesley, Reading, Massahusetts[9℄ Teel A.R. and Praly L. (1995): Tools for semiglobal stabilization by partial state andoutput feedbak. SIAM J. Control Optim. 33, 1443{1485.[10℄ Willems J.C. and Byrnes C.I. (1984): Global adaptive stabilization in the abseneof information on the sign of the high frequeny gain, pp. 49{57 in Let. Notes inControl and Inf. Sienes 62, Springer-Verlag, Berlin
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