-

View metadata, citation and similar papers at core.ac.uk brought to you byﬁ CORE

provided by Digitale Bibliothek Thuringen

ilmedia (B

ILMENAU

llchmann, Achim; Isidori, A. :

Adaptive dynamic output feedback stabilisation of nonlinear
systems

Zuerst erschienen in:
Asian Journal of Control 4 (2002), S. 1-9


https://core.ac.uk/display/224764655?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Adaptive dynamic output feedback stabilisation
of nonlinear systems

A. Ilchmann* and A. Isidorif

August 1, 2001

Abstract

An adaptive dynamical output feedback controller is introduced for a class of nonlinear
non-minimum phase systems. This adaptive controller achieves practical stabilisation,
that means the output will asymptotically tend to a pre-specified neighbourhood of
the origin. In case of linear systems, we can even prove adaptive stabilisation.
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Nomenclature
LP(; K<™ set of p-integrable functions f : I — K™ [ C R an interval,
p=>1
1
Il esenmy = (f; IF(D)Pdr)"?
L0 Knxm) set of functions f : I — K"*™ which are essentially bounded on
the interval I C R
[ fllzoo(rymnxmy = ess supeq || f ()]l

1 Introduction

In this paper, we consider polynomially bounded nonlinear systems of the form

2(t) = f(2(1),y(®),  9() = a(=(t),y(1) + bly(?)) u(t), (1.1)
where it is assumed that f: R ! xR” — R* !, ¢:R*" ! xR®™ — R™, b: R" —
R™*™ are locally Lipschitz, with f(0,0) = 0, ¢(0,0) =0, b(y) is invertible for all y € R™,
and there exist real numbers s, pig, ptg0 > 0 and an integer s > 1 such that, for all
ze R §.y € R™, we have

1£(2,9) = fz9)ll < py[L+17—yl’]
la(z,9) —a(z )l < pg[L+ 115 —yl°] (1.2)
lg(z, 0)[l < g0 [1+1l2]°] -

*Institut fiir Mathematik, Technische Universitdt Ilmenau, Weimarer Strafle 25, 98693 Ilmenau,
ilchmann@mathematik.tu-ilmenau.de

"Dipartimento di Infomatica e Sistemistica, Universitdh di Roma “La Sapienza”, 00184 Rome, Italy,
isidori@labrob.ing.uniromal.it




The control problem that we address is the design of a dynamic (and adaptive) output
feedback law yielding global practical stability. More precisely, we seek a family of dy-
namical systems of the form
i:XE(iay)a u:pé(iay) (13)
where A > 0 is a constant design parameter, such that, in the resulting closed-loop system
(1.1,1.2), for every initial condition z(0), y(0), Z(0)
e the solution (z(t),y(t),2(t)) exists for all ¢ € [0,00) and is bounded,

o lim; ,, max{0, ||y(¢)|| — A} =0, i.e. the distance between |ly(¢)| and [0, A] tends to
zero as t — oo.

The family of controllers that we design is such that, in the linear case we can choose
A =0 and 2(t) and y(¢). In the non-linear case, for any A > 0, there is a controller in the
family (1.2) such that ||z(¢)| asymptotically converges to the strip [0, A] as time tends to
0.

The basic assumption that we make on system (1.1) in order to meet this control objective
is that the following auziliary system associated with (1.1)

(t) = f(z(t),a(®),  §(t) = q(z(8), a(t)), (1.4)

regarded as a system with input %, output 4 and internal state z, is globally asymptotically
stabilisable by a dynamic output feedback of the form

(t) = L(n(t)) + M y(t), a(t) = N(n(t)), (1.5)

in which M € R?*™ and L :R? — R? is locally Lipschitz, with L(0) =0, N : R? — R™
is continuously differentiable and there exists real numbers py,, uny > 0 and an integer r > 1
such that, for all 5, € R?, we have

IZ@) = L)l < pr [1+ 7 —nl°]
IN@) =Nl < gy [L+7-nl"]

More precisely it is assumed that (1.5) renders the equilibrium (z, ) = (0,0) of the closed-
loop system

(1.6)

z(t) = f(z(t),N(ﬂ(t))) (1.7)
n(t) = Ln(t)) + Mq(z(t), N(n(t)))
globally asymptotically stable, and there exist a continuously differentiable Lyapunov

function W : R*~! x R? — R>¢ and real numbers wq,wo, w3, w4 such that, for all { =

wi el < Wzm) < e
Flz. N () .

g W) 1) M(gta), M) S 7 14 .
larad W (z.n)| < wi .
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This type of assumption was proven in [5] to be helpful in determining a (dynamic) output
feedback law that semiglobally practically stabilises a nonlinear system of the form (1.1). In
the present paper we extend the result of [5] by showing that, if a certain “gain parameter”
included in the feedback law is continuously adapted (rather than fixed as in [5]), then the
feedback law steers the state of (1.1) to an arbitrarily small neighborhood of the origin
regardless of the initial value (and not just for any initial value in a fixed, possibly large,
compact set as in [5]). The adaptation law used in the present paper is simple. It is a
time-varying gain driven by an integration in the linear case, and in the nonlinear case
an integration coupled with a dead-zone. This high-gain idea goes back to [10] and, if
a dead-zone is incorporated, to [4], see also [2] for polynomially bounded systems. It is
worth observing that (as noted in [5]), in the case of linear systems, the assumption in
question (see (1.4), (1.5)) is not restrictive at all: it is fulfilled by any system which is
stabilisable by means of dynamic output feedback. We also observe (as pointed out in [6])
that the assumption in question essentially identifies a class of nonlinear systems that are
semiglobally stabilisable by means of a feedback driven by functions that are “uniformly
completely observable” in the sense of [9].

2 Linear case

In this section, we consider the special case in which system (1.1) is a linear system, namely
a system of the form

) = Fz(t) + Gy(t)

g(t) = Hz(t) + Jy(t) + Bu(?), (2.1)

where F € Rv-=Ux(n-1) G ¢ R-Uxm [ ¢ gmx(n=1) J ¢ Rm*m and B € R™*™ jg
invertible.

The corresponding version of the basic assumption introduced in the previous section (see
also Figure 1) is that the following subsystem of (2.1)

G u(t)
Ti (2.2)
is uniformly asymptotically stabilisable by a dynamic output feedback of the form

n(t) = Ln() + My(t),  a(t) = Nn(t), (2.3)

where L € RI¥9, M € RI*™ N € Rm*4,

The following Proposition 2.1 is an adaptive version of Lemma 3.1 in [5], where it was
assumed that, in the feedback law u(-), k() = k* is sufficiently large.

Proposition 2.1 Suppose (2.3) applied to (2.2) yields a uniformly asymptotically stable
closed-loop system. Then the dynamic and adaptive output feedback controller

() = Ln(t) + ME(#)[y(t) — Nn(t)])
ut) = B~ [N[LnJer(t) [y(t) = Na()]] — k() [y(t) — Nn(t)] (2.4)
k() = lly(t) = Nn@)]".




U z2=Fz+ Gu )

y=Hz+ Ju
0 n=_Ln+ My y
u=Nn

Figure 1: Assumption on global asymptotic stabilisability: Stable closed-loop system

with » > 1, applied to (2.1) yields, for arbitrary initial data (z(0),y(0),7n(0),k(0)) €
R x R™ x R? x R, a nonlinear closed-loop system (2.1), (2.4) which possesses a unique
absolutely continuous solution

(2(),y()sn(). k() = [0,w) — R xR™ xR xR,

maximally extended over [0,w), where w € (0, 00], and has the properties

(i) w = oc, i.e. no finite escape time,
(ii) 1tlim k(t) = koo € Rsg, i.e. the gain adaptation converges,
— 00 -

(i) 2(-),y(-),n(-) € L™ (Ro0; R* 1) x LT (Rx0; R™) x L7 (R>0;RY), and
lim [|z(¢)]| + |ly(¢)|| + [|n(¢)]| =0, i.e. stabilisation.
t—o0

The proof of Proposition 2.1 and of the subsequent results relies on the following lemma.
Although the result might be well-known, we are not aware of a concise reference, and
present a short proof.

Lemma 2.2 Consider the differential equation

#(t) = F(t,z(1) +¢i1(t) +pa(t), (2.5)

where F'(-,-) : Ryg x R" = R?, ¢;(-) : Rsg = R", ¢ = 1,2, and suppose there exists a

continuously differentiable Lyapunov function V'(-,-) : R>¢g x R" — R>¢ so that, for some
ai,...,oq >0,p>1,and all (t,2) € Ryg x R",

ar ||zl < V(¢ x)

2V(ta)+ L V(tz) Ft,z) < —asz||z|? (2.6)

lgrad V (¢, z)|| < oy.

IN

ay [lz]|P

Then any absolutely continuous solution z(-) : R>g — R of (2.5) satisfies, for any r > 1:
() @) € L"(R>0; R") A limy 00 02 (2) = 0 = limo0 2(t) = 0,
() @1() €L BB A o) €L¥RogiBY) = a() € LX(Rogi BY).



U 2=Fz+ Gy Y
y=Hz+ Jy+ Bu

n = Ln+ Mkly — Nn

w=B"'[N[Ly+ Mkly — Nu]] - kly - Nv] -

k=|y—Nn|"

Figure 2: Linear case: Global stabilisation by dynamic output feedback and gain adaption

Proof: The derivative of V (¢, z(t)) along a solution of (2.5) satisfies, for almost all ¢ > 0,

GV (te) < -2 V(tz®) + alllor@l + [e20)]],

and hence, applying Variations-of-Constants yields, for all ¢ > ¢tq > 0,

%3 (t—tg b ez
Vit,z(t) < e ="V, 2(t0) + / e 2 ayflloi(s)] + lpa(s)] ds.  (2.7)

Note that by Hélder’s inequality we have, for 1/p +1/g =1 and all £ > ¢, > 0,

t
/ & 9| ()| ds

to
o e
< e HLP(%J%O)H<P(-)||Lq(t0’%)+H€ HLP(U’%)Hw(-)HLq(#J)
< He_alﬂm(%,oo) 1o( I 2 (t,00) + ||€_0"||Lp(o,oo)||<P(')HLq(#m) (2.8)

The statements of the lemma follow from applying (2.8) to the convolution in (2.7) and
invoking (2.6) again. O

Proof of Proposition 2.1: It follows from standard results of ordinary differential
equations that the closed-loop system (2.1),(2.4) possesses a unique absolutely continuous
solution which can be maximally extended over an interval [0,w), where w € (0, oc].



The (z,y,n)-coordinates of the closed-loop system satisfy, where for brevity we omit the
argument 7,

2 = Fz + GNn + Gly— Nn
y = Hz + Jy + NLn + K[NM — 1]y — Nn] (2.9)
o= Ln + MEk[y—N

and the coordinate transformation 6 :=y — N7 leads to

z = Fz + G[Nn+1#6]
n = Ly + Mko (2.10)
0§ = Hz + J[O@+Nn — k6

so that the further coordinate transformation ¢ :=n+ M@ yields, for ¢ = (27,¢T)T,

¢ = A¢ + B

_ ) A (2.11)
0 = C¢ — [k(t)In — D],
where
i- [~ GN B - G I, — NM]
~ |MH, [L+MJN]|’ - [ MJ-[L+MINIM]’ (2.12)
C = [H, JN], D = [J-JNM].

Note that A is the matrix of the closed-loop system (2.2), (2.3), and hence by assumption
exponentially stable.

We prove that k(-) € £L2(0,w;R). Seeking a contradiction, suppose k(-) is unbounded.
Let P = PT e R(—1+0)x(n=1+4) he the positive definite solution of

A"P + PA = -1
Then differentiation of the Lyapunov function candidate
V(e =TPe+ IO where €= (T,¢T)T (213)
along the solution of (2.11) yields, for almost all ¢ € [0, w),

GVEDR.00) = —lE@I® +26@)"PBO) — 6(t)" [k(t)Im — D] 0(t) +6(1)" C&(t)
< =€ = [k@) = IDI 1617 + [21PB] + [CIT IE@I 18]
< =3IE®I” = [k(t) = ID] - 22PBI| + ICIT] 6]

Now monotonicity and unboundedness of k(-) yields exponential decay of (z(t),((t),0(t))
on [0,w), and by the coordinate transformations we may conclude exponential decay of
(z(t),y(t),n(t)) on [0,w). Thus ¢t — k(t) converges as t tends to w, which contradicts
unboundedness of k().

k() € L(0,w; R) readily gives w = oo, and hence (i) and (ii) are proved and it remains
to show (iii).

k(-) € L£2(0,00;R) is equivalent to 6(-) € L"(R>o;R™) and hence an application of
Lemma 2.2 to (2.11) yields (z(+),((+)) € L™ (R>o; R"™! x R?) and limy_,o (2(t), ((t)) = 0.
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This gives 7(-) = ((-) — MO(-) € LT (R>p;R?) and y(-) = 0(-)+ Nn(-) € LT (R>0; R™), and
a repeated application of Lemma 2.2 to

y(t) = —y(8) + n(z(),y(#),n(t)),  where u(z,y,n):=y+Hz+Jy+ Bu, (2.14)
gives lim; ,~ y(¢) = 0. Finally, rewriting the lower equation in (2.9) as
n=-n+[I+L— MEkN]n+ Mky, (2.15)

gives, again by Lemma 2.2, lim;_, o, 7(¢) = 0. This completes the proof of the theorem. O

It is easy to see that the gain adaptation law can be replaced by k= ly|" + [[INg|" or
k= llyll" + llnl"

3 Nonlinear case

The following theorem generalises Proposition 2.1. However, stabilisation to zero can no
longer be guaranteed and is replaced by the weaker control objective of practical output
stabilisation. The following theorem also generalizes Theorem 4.1 in [5], where practical
stabilisation with arbitrary large basin of convergence is ensured for k() = k* sufficiently
large. The basic difference in the control law (3.1) is that the gain parameter k(%) is tuned
adaptively, making it possible to obtain the desired convergence properties for any initial
data.

Theorem 3.1 Suppose (1.4) applied to (1.5) yields a globally uniformly asymptotically
stable closed-loop system in the sense that there exists some W : R*™! x R — R>g
satisfying (1.5). Let 71 > 1, A1, A9 > 0 be given, and r,s > 1 as in (1.2), (1.6). Then the
dynamic and adaptive output error feedback controller

0(t) = y(t) — N(n(t))
(t) = Ln(t) + M) [0~ 0(),

u(t) = bly(t)™ %—]x(n(t))[L(n(t))wLMk(t) [ 7~ 0(8)] — k(&) 10(£)]I"*~" 0(2)

k() = max{0, [ly(t)] = A} + max{0, [0(2)]] - A2}"*,

(3.1)
applied to (1.1) yields, for arbitrary initial data (2(0),y(0),7(0),k(0)) € R*"1 x R™ x
R? x R, a closed-loop system (1.1), (3.1) which possesses a unique absolutely continuous
solution

(2():y()n(). k() ¢ [0,w) — R'"IxR™ xR xR
maximally extended over [0,w), where w € (0, 00], and has the properties
(i) w = oo, i.e. no finite escape time,
(ii) ltlim k(t) = ks € R>p, i.e. the gain adaptation converges,
—00 -
(iii) 2(-),y(-)sn() € L2(Rx; R"1) x LX(Ro0; R™) x L2(Rx0; RY),

i.e. all signals are bounded,



(iv) limy_y oo max{0, |ly(t)|| — M1} =0, and limy_, o max{0, [|0(t)|| — A2} =0,
i.e. |ly(t)|| and |6(t)|| approach [0, A1] and [0, A2] respectively as ¢ tends to occ.

Moreover, for any € > 0 there is A3 such that, if Ao < A3, then

(v) 1imy00 max{0, [|z(¢)[| + [[n()[| — £} = 0.

Note the essential difference between statements (iv) and (v) in Theorem 3.1: For pre-
specified and arbitrary small A1, Ay > 0 it is guaranteed that eventually y(¢) and 6(t) stay
in a Aj- respectively Ag-neighbourhood of 0. This cannot be guaranteed a priori for the
z(t) and n(t)-components. Statement (v) only guarantees qualitatively that the smaller
eventually 0(t) is the smaller the other internal states z(¢) and 7(t) eventually become.

Proof of Theorem 3.1: The (z,y,n)—coordinates of the closed-loop system (1.1),(3.1)
may be written as

z = f(z,9+N(n))
g = q(z,0+N(n)
n = L(n)

and hence it follows from standard results of ordinary differential equations that the closed-

loop system possesses a unique absolutely continuous solution which can be maximally
extended over an interval [0, w), where w € (0, o0].

&N — ko)1 o (3.2)

+
+ ME|6|™~to,

The coordinate transformation ( :=n+ M 0 yields

¢ = f(z.0+N(— M)

= L((—M0) + Mq(z.0+ N(¢— M9)) (3.3)
0 = —k[0]"'0 + q(2,0 + N — Mb)).
In order to make use of the global uniform asymptotic stability of (1.7), we rewrite (3.3)
as follows. .
z = f(ZaN(C)) + 5Z(nga9)
= _ngHrsflg + q(230+N(<_M9))3
where

0:(2,¢,0) = f(z,0+ N = M) — f(z N())

3.5
0(¢,0) = L(C—MO)~ L) + M |g(2,0+ N(C — MB)) — q(=N())]. 9

For the sake of simplicity we redefine the distance function, for A > 0 and 6 € RP, p being

given by the context,
dx(0) = max{0, [|0]| — A}.

Using the following inequality (see, e.g. [8, Section XI1.4]),

[a + b]F < 281k 4 bF] for all a,b> 0 and k € N, (3.6)



and (1.2), (1.6), (1.8), we conclude that the derivative of W (z(t), ((¢)) along the solution of
(3.3) satisfies, for w3 := w3/wy and suitable constants pq, ue > 0 and almost all ¢ € [0, w),

W (=(t),C(2)

grad W (z,¢) - (27, ¢M)T

< —u| (T + w67, 6F)T) (3.7)
< =gl (¢TI + wa {pg [L+10+ N(C = MO) = N(Q]

+ un[U+ IMO] + M) g [1+ 10+ N(C = M) = N(Q)]}
< w7 CDTI + |1+ 181 + INC = MO) = N(Q)I]
< —wgll2T T+ g1+ )7
< —wW(z0) + L+ 0], (3.8)

Since (3.8) is equivalent to
L [estW (2(2),C(1)] < et pg [1+]|0()]7],

it follows from (1.8), the decomposition of ||#]"® into dy(6)"® plus a bounded function, and
elementary calculations, that for some suitable constant ps > 0 and almost all ¢ € [0, w),

1), ¢TI < ps + usA(dr(0(-)") (1), (3.9)
where

Aop(h) = (tr—> /Ote_w‘*(t_ﬂ(p(T) d’T).

Using again (3.6), (1.2), (1.6), (1.8), we conclude that the derivative of dy(6)(t)? along the
solution of (3.3) satisfies, for suitable constants pug4, s, ug > 0, v € (0, A), and almost all
te0,w),

L34, (01)7 = d,(0)]6]7"6" 6
< —kdy(0) 161" + dy(0) llg(z.0 + N(C — M0)) — q(2,0) + q(z,0)|
< —kdy(O) 1017 + dy(6) [mglt + 16+ N(C = MO)T + pagolt + 2]
< —kdy(0) 161" + pacy(0) [L+ 017 + IN()* + [|21]°]
< —kdy(0) 01" + s dy(0) [L+[10]° + In]™* + [|2]]"]
< —kdy(O) 01" + o dy(0) [+ 0] + 1€]™]. (3.10)

Now integration of (3.10) over [0,¢) C [0, w), substituting (3.9), invoking Holder’s inequal-
ity for 1/p+1/¢g=1andp=rs+1,qg= (rs+1)/rs, using dy(0) < d,(0)A""*||0|"* and
the fact that A is a uniformly bounded operator mapping £*-functions into £*-functions,



we conclude for suitable constants u7, ug > 0 and almost all ¢ € [0, w),

t

600 = 54000 — [E-wld O o1 dr +p [ a0

+pep3 /Ot d,(0) [1 + A(d,\(@)rs)m} dr

1 ! rs
< GB0)° = [l d,0) 161 7+l OCleroo
£ e AT 1 (OO lLeoon) IO Wzinego
1 2 ! 1 rs ! 1 rs+1
< 2y (00— [ |5k s| dy(@) 101 dr— [ |2k~ s (07 dr
0 0

(3.11)

Now we proceed in several steps.

STEP 1: We prove k() € L2(0, w; R).

Seeking a contradiction, suppose k(+) is unbounded. Then (3.11) yields §(-) € £L2°(0, w; R™),
and hence by (3.9) (2(-),¢(-)) € £L2(0,w; R*~!19), so that (3.10) yields limy_,,, d,(0(t)) =
0. Since y > 0 is arbitrary, this proves limy_,,, 6(¢) = 0.

Now (3.5) yields, invoking continuity of f, g, N, L and boundedness of z(-) and ((-), that

T . (=(4), £(5) 61) | + 13 (2(), <(6),6(1) | = O,

and hence, by (3.7), limy_,,, (2(¢),((¢)) = 0. Furthermore, lim;_,,, n(t) = lim;_, [{(t) —
M6(t)] = 0, and therefore, limy;_,,, y(t) = limy_,,, [N(n(t)) + 0(¢)] = 0. By construction of
the gain adaptation, we conclude boundedness of k().

STEP 2: We prove (z()v y()a 77(')7 9()) 3 (2(-), y()a n()a 0()) € L:oo(o’ w3 Rn—l—l—m—l—q-l—m)‘
Since k(-) € L°(0,w;R) is equivalent to d)(6(-)) € L"*(0,w; R), it is immediate from (3.9)
that (z(+),¢(+)) € L2(0,w; R"~1*2). To prove that 0(-) € L>(0,w; R™), rewrite the lower
equation in (3.4) as

0(t) = —0(t) + B(=(1),<(1),0(1)), (3.12)

where, confer (3.10), for suitable constants g, p19 > 0 and almost all ¢ € [0,w),

1Bz Ol < N0l + KN61™ + [1do(2, ¢, O)

< 0l + k01 + pe [L+ 0] + [I<N™°]
< pg + pe [[10]7 4+ da(0) — dr(0)"]
< pio + pioda(0)"

and hence, since d,(6(-)) € L7*(0,w;R), it follows from an application of Lemma 2.2 to
(3.12) that 0(-) € L(0,w; R™).

This also proves that n(-) = ((-) — MO(-) € L>®(0,w;R?), and, by continuity of N(-),
y(-) = N(n()) +0() € L2(0, w; R™).

Finally, boundedness of the derivatives of z,y,7,0 is a consequence of continuous differ-
entiability of N(-) and of (3.2), (3.12).

STEP 3: By Step 1 and 2, standard results of ordinary differential equations yield w = oo.
Therefore, (i)-(iii) are proved.
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STEP 4: We show (iv):
By Step 3 we have

$ida W) = dr Oyl y () 9() € L£2(0,00; R),

and since dy, (y(+)) € L (0, oc0; R), an application of Barbalat’s lemma (see, e.g., [7]) yields
the first statement in (iv). The second statement is proved analogously.

STEP 5: We show (v):
Set ¢ = (27,¢")T and rewrite the system

i = f(z.0+N( - Mb))

¢ = L(C—M6)+ Mq(z,0 + N(C — M§)) (3.13)

in the form _ )
= f(£0). (3.14)

Since f(&,0) is locally Lipschitz, there are numbers ¢y, co, m; > 0 such that
1£(€,0) = F(&0)| <m0,  forall  [l€]] < e, 6] < co

Moreover, the equilibrium ¢ = 0 of £ = f (£,0) is by hypothesis locally asymptotically
stable, see (1.7), (1.8). Thus, regarding system (3.14) as a system of the form

é = f(gao) +g(£7t)a

it follows from [1, pp. 275-6]) that given any ¢ > 0, there exist . > 0 and 7. > 0 such
that, if ||£°|| < 0. and ||@(¢)|| < 7. for all ¢ > 0, the solution £(¢) of

&= f(&,0(t)) (3.15)

satisfying £(0) = £° is such that ||£(¢)|| < e for all ¢ > 0.

We show now that, if A9 is small enough, for any £° there is a time T' = T'(£°) such that the
solution £(t) of (3.15) satisfying £(0) = £° is such that ||£(T)|| < d. and ||0(t)]| < 7. for all
t > T. In view of the property recalled above, this proves that lim;_,, max{0, ||£(¢)||—¢} =
0. Since n = ¢ — M6 and lim;_, o, max{0, ||#(¢)|| — A2} = 0 (as proven above) this suffices
to prove claim (v).

Suppose A < 7./2 and observe that, by claim (iv), there is a time Ty such that
10(8)] < 2X2 < 7e, for all t > Ty.

Assuming, without loss of generality, 2Xs < 1 we deduce from (3.8) that W (¢) < —wsW (£)+
2ug, for all ¢t € [Ty, 00) and hence

. 2
W (t) < e~ a(t-To)yy (1) + 2E2. for all t>Tp.
w3

Substituting (1.8), we conclude the existence of a time Ty > Ty such that

D < Ri= 22 forall >
wi1ws
Set now
o), ift<T
Or (1) =
i (%) {0, ift> T
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and let &7, (¢) denote the integral curve of € = f(¢,07,) satisfying &7, (0) = £°. Indeed,
Er,(t) = £(t) for all 0 < t < T. Moreover, for t > Ty, &7, (t) is a solution of £ = f(¢,0) and
hence tends to 0 as t — oco. In particular, using (1.8), it is seen that there exist numbers
A >0 and a > 0 (depending only on wy, ws,w3) such that

l&r, (0] < Ae™®TI|g(Ty)|| for all £ > T
Choosing Ty so that 24e~*"2 R < 6, yields

)
Jen (T + 1) < % (3.16)
Since f(f, 0) is locally Lipschitz, there exists numbers £ > 0 and mgy > 0 such that
1£(€,0) = £ (&1, 0) | < £]1€ = &y ]| + mal 6] (3.17)
for all [[§] <R, [|6n,]] < AR, (0] < 7e.
Let now 5.0
Ve
<
Az mm{ 2 dmaha (el — 1)}
We will show that, at time T'= Ty + T5,
Oe
I1E(T) = &n (D))l < 5, (3.18)

which, in view of (3.16), proves that ||{(T)| < 0., as requested.

To this end, observe that, for ¢ > T, £(t) and &p, () are integral curves of & = f(¢,0(t))
and, respectively, of £ = f(§ 0) satisfying the same initial condition at time T;. Thus, for

tZTla
t

A

§t) =&(M) + | f(&(s),0(s))ds

T
and

¢y (t) = &(Th) + . f (€71 (s), 0)ds

Since

1€ <R, [lén ()l < AR, [|0(s)[| <2X2,  forall s > T,
and 29 < 7, using (3.17), we have

IE(t) — e (¢ / 1€(s) — én, (s) s + m / 16(s) 1 ds

< K/ H§ le )HdS + 2m2>\2(t —Tl) .
Gronwall’s inequality yields

2mo B
1€(2) — ) ) < %(el(t Ti) _ 1)
and, thus, for T' = Ty + T,

() — &, (7)) < 2222 (6T 1) <

This completes the proof of claim (v). O
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4 Conclusions

In [5] it is shown that a certain class of nonlinear systems can be stabilised semiglobally
by a dynamic output feedback controller. This is achieved by a high-gain parameter in
the feedback law which corresponds to the magnitude of the initial condition. The larger
the gain parameter the larger the set of initial conditions so that the closed-loop system
stabilises the state. The idea of the present paper is to adapt the gain parameter as a
time-varying scalar function depending on the magnitude of y(t) — Nn(t) where y(t) is
the output of the system and Nn(t) a quantity of the dynamic feedback compensator (see
(2.4) for the linear case and (3.1) for the nonlinear case). In the linear case, this adaptive
modifications yields global stabilisation and overcomes semiglobal stabilisation as in [5].
In the nonlinear case, we also overcome the semiglobal stabilisation, and even practical
stabilisation achieved in [5] is improved by guaranteeing that the output y(¢) and the
internal variable 6(t) of the dynamic compensator tends to any prespecified strip [0, A],
A>0.
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