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Adaptive dynami
 output feedba
k stabilisationof nonlinear systemsA. Il
hmann� and A. IsidoriyAugust 1, 2001Abstra
tAn adaptive dynami
al output feedba
k 
ontroller is introdu
ed for a 
lass of nonlinearnon-minimum phase systems. This adaptive 
ontroller a
hieves pra
ti
al stabilisation,that means the output will asymptoti
ally tend to a pre-spe
i�ed neighbourhood ofthe origin. In 
ase of linear systems, we 
an even prove adaptive stabilisation.Keywords: adaptive 
ontrol, dynami
 output feedba
k, nonlinear systems, pra
ti
aladaptive stabilisationNomen
latureLp(I; K n�m) set of p-integrable fun
tions f : I ! K n�m , I � R an interval,p � 1kfkLp(I;Kn�m ) = �RI kf(�)kpd��1=pL1(I; K n�m) set of fun
tions f : I ! K n�m whi
h are essentially bounded onthe interval I � RkfkL1(I;Kn�m ) = ess supt2I kf(t)k1 Introdu
tionIn this paper, we 
onsider polynomially bounded nonlinear systems of the form_z(t) = f�z(t); y(t)�; _y(t) = q�z(t); y(t)� + b(y(t)) u(t) ; (1.1)where it is assumed that f : Rn�1 � Rm �! Rn�1 ; q : Rn�1 � Rm �! Rm ; b : Rm �!Rm�m are lo
ally Lips
hitz, with f(0; 0) = 0, q(0; 0) = 0, b(y) is invertible for all y 2 Rm ,and there exist real numbers �f ; �q; �q0 > 0 and an integer s � 1 su
h that, for allz 2 R(n�1) , ~y; y 2 Rm , we havekf(z; ~y)� f(z; y)k � �f �1 + k~y � yks�kq(z; ~y)� q(z; y)k � �q �1 + k~y � yks�kq(z; 0)k � �q0 �1 + kzks� : (1.2)�Institut f�ur Mathematik, Te
hnis
he Universit�at Ilmenau, Weimarer Stra�e 25, 98693 Ilmenau,il
hmann�mathematik.tu-ilmenau.deyDipartimento di Infomati
a e Sistemisti
a, Universit�a di Roma \La Sapienza", 00184 Rome, Italy,isidori�labrob.ing.uniroma1.it



The 
ontrol problem that we address is the design of a dynami
 (and adaptive) outputfeedba
k law yielding global pra
ti
al stability. More pre
isely, we seek a family of dy-nami
al systems of the form _̂x = �"(x̂; y); u = p"(x̂; y) (1.3)where � > 0 is a 
onstant design parameter, su
h that, in the resulting 
losed-loop system(1.1,1.2), for every initial 
ondition z(0); y(0); x̂(0)� the solution (z(t); y(t); x̂(t)) exists for all t 2 [0;1) and is bounded,� limt!1maxf0; ky(t)k��g = 0, i.e. the distan
e between ky(t)k and [0; �℄ tends tozero as t!1.The family of 
ontrollers that we design is su
h that, in the linear 
ase we 
an 
hoose� = 0 and z(t) and y(t). In the non-linear 
ase, for any � > 0, there is a 
ontroller in thefamily (1.2) su
h that kz(t)k asymptoti
ally 
onverges to the strip [0; �℄ as time tends to1.The basi
 assumption that we make on system (1.1) in order to meet this 
ontrol obje
tiveis that the following auxiliary system asso
iated with (1.1)_z(t) = f(z(t); �u(t)); �y(t) = q(z(t); �u(t)); (1.4)regarded as a system with input �u, output �y and internal state z, is globally asymptoti
allystabilisable by a dynami
 output feedba
k of the form_�(t) = L(�(t)) +M �y(t); �u(t) = N(�(t)) ; (1.5)in whi
h M 2 Rq�m and L : Rq �! Rq is lo
ally Lips
hitz, with L(0) = 0, N : Rq �! Rmis 
ontinuously di�erentiable and there exists real numbers �L; �N > 0 and an integer r � 1su
h that, for all �; ~� 2 Rq , we havekL(~�)� L(�)k � �L �1 + k~� � �ks�kN(~�)�N(�)k � �N �1 + k~� � �kr� : (1.6)More pre
isely it is assumed that (1.5) renders the equilibrium (z; �) = (0; 0) of the 
losed-loop system _z(t) = f�z(t); N(�(t))�_�(t) = L(�(t)) + M q�z(t); N(�(t))� (1.7)globally asymptoti
ally stable, and there exist a 
ontinuously di�erentiable Lyapunovfun
tion W : Rn�1 � Rq ! R�0 and real numbers w1; w2; w3; w4 su
h that, for all � =(zT ; �T )T 2 Rn�1+q , w1 k�k � W (z; �) � w2 k�kgradW (z; �) � � f(z;N(�))L(�) +M(q(z); N(�))� � �w3 k�kkgradW (z; �)k � w4 : (1.8)2



This type of assumption was proven in [5℄ to be helpful in determining a (dynami
) outputfeedba
k law that semiglobally pra
ti
ally stabilises a nonlinear system of the form (1.1). Inthe present paper we extend the result of [5℄ by showing that, if a 
ertain \gain parameter"in
luded in the feedba
k law is 
ontinuously adapted (rather than �xed as in [5℄), then thefeedba
k law steers the state of (1.1) to an arbitrarily small neighborhood of the originregardless of the initial value (and not just for any initial value in a �xed, possibly large,
ompa
t set as in [5℄). The adaptation law used in the present paper is simple. It is atime-varying gain driven by an integration in the linear 
ase, and in the nonlinear 
asean integration 
oupled with a dead-zone. This high-gain idea goes ba
k to [10℄ and, ifa dead-zone is in
orporated, to [4℄, see also [2℄ for polynomially bounded systems. It isworth observing that (as noted in [5℄), in the 
ase of linear systems, the assumption inquestion (see (1.4), (1.5)) is not restri
tive at all: it is ful�lled by any system whi
h isstabilisable by means of dynami
 output feedba
k. We also observe (as pointed out in [6℄)that the assumption in question essentially identi�es a 
lass of nonlinear systems that aresemiglobally stabilisable by means of a feedba
k driven by fun
tions that are \uniformly
ompletely observable" in the sense of [9℄.2 Linear 
aseIn this se
tion, we 
onsider the spe
ial 
ase in whi
h system (1.1) is a linear system, namelya system of the form _z(t) = F z(t) + Gy(t)_y(t) = H z(t) + J y(t) + B u(t); (2.1)where F 2 R(n�1)�(n�1) ; G 2 R(n�1)�m ;H 2 Rm�(n�1) ; J 2 Rm�m , and B 2 Rm�m isinvertible.The 
orresponding version of the basi
 assumption introdu
ed in the previous se
tion (seealso Figure 1) is that the following subsystem of (2.1)_z(t) = F z(t) + G �u(t)�y(t) = H z(t) + J �u(t); (2.2)is uniformly asymptoti
ally stabilisable by a dynami
 output feedba
k of the form_�(t) = L�(t) +M �y(t); �u(t) = N �(t); (2.3)where L 2 Rq�q ;M 2 Rq�m ; N 2 Rm�q .The following Proposition 2.1 is an adaptive version of Lemma 3.1 in [5℄, where it wasassumed that, in the feedba
k law u(�), k(�) � k� is suÆ
iently large.Proposition 2.1 Suppose (2.3) applied to (2.2) yields a uniformly asymptoti
ally stable
losed-loop system. Then the dynami
 and adaptive output feedba
k 
ontroller_�(t) = L�(t) + M k(t) [y(t)�N�(t)℄)u(t) = B�1 hN�L� +Mk(t) [y(t) �N�(t)℄�� k(t) [y(t) �N�(t)℄i_k(t) = ky(t)�N�(t)kr; (2.4)
3



_z = Fz +G�u�y = Hz + J �u
_� = L� +M �y�u = N�

- -
�

�u �y
�u �y

Figure 1: Assumption on global asymptoti
 stabilisability: Stable 
losed-loop systemwith r � 1, applied to (2.1) yields, for arbitrary initial data (z(0); y(0); �(0); k(0)) 2Rn�1 �Rm �Rq �R, a nonlinear 
losed-loop system (2.1), (2.4) whi
h possesses a uniqueabsolutely 
ontinuous solution(z(�); y(�); �(�); k(�)) : [0; !) �! Rn�1 � Rm � Rq � R;maximally extended over [0; !), where ! 2 (0;1℄, and has the properties(i) ! =1, i.e. no �nite es
ape time,(ii) limt!1 k(t) = k1 2 R�0 , i.e. the gain adaptation 
onverges,(iii) z(�); y(�); �(�) 2 Lr(R�0 ;Rn�1)�Lr(R�0 ;Rm)�Lr(R�0 ;Rq ), andlimt!1 kz(t)k + ky(t)k+ k�(t)k = 0, i.e. stabilisation.The proof of Proposition 2.1 and of the subsequent results relies on the following lemma.Although the result might be well-known, we are not aware of a 
on
ise referen
e, andpresent a short proof.Lemma 2.2 Consider the di�erential equation_x(t) = F �t; x(t)� + '1(t) + '2(t); (2.5)where F (�; �) : R�0 � Rn ! Rn , 'i(�) : R�0 ! Rn , i = 1; 2, and suppose there exists a
ontinuously di�erentiable Lyapunov fun
tion V (�; �) : R�0 � Rn ! R�0 so that, for some�1; : : : ; �4 > 0, p � 1, and all (t; x) 2 R�0 � Rn ,�1 kxkp � V (t; x) � �2 kxkp��t V (t; x) + ��x V (t; x) � F (t; x) � ��3 kxkpkgradV (t; x)k � �4: (2.6)Then any absolutely 
ontinuous solution x(�) : R�0 ! Rn of (2.5) satis�es, for any r � 1:(i) '1(�) 2 Lr(R�0 ;Rn) ^ limt!1 '2(t) = 0 =) limt!1 x(t) = 0;(ii) '1(�) 2 Lr(R�0 ;Rn) ^ '2(�) 2 L1(R�0 ;Rn) =) x(�) 2 L1(R�0 ;Rn):4
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Figure 2: Linear 
ase: Global stabilisation by dynami
 output feedba
k and gain adaptionProof: The derivative of V (t; x(t)) along a solution of (2.5) satis�es, for almost all t � 0,ddtV (t; x(t)) � ��3�2 V (t; x(t)) + �4�k'1(t)k + k'2(t)k�;and hen
e, applying Variations-of-Constants yields, for all t � t0 � 0,V (t; x(t)) � e��3�2 (t�t0)V (t0; x(t0)) + Z tt0 e��3�2 (t�s)�4�k'1(s)k+ k'2(s)k� ds: (2.7)Note that by H�older's inequality we have, for 1=p+ 1=q = 1 and all t � t0 � 0,Z tt0 e��(t�s)k'(s)k ds� ke���kLp� t�t02 ;t�t0�k'(�)kLq�t0; t+t02 � + ke���kLp�0; t�t02 �k'(�)kLq� t+t02 ;t�� ke���kLp� t�t02 ;1�k'(�)kLq (t0;1) + ke���kLp(0;1)k'(�)kLq� t+t02 ;1� (2.8)The statements of the lemma follow from applying (2.8) to the 
onvolution in (2.7) andinvoking (2.6) again. �Proof of Proposition 2.1: It follows from standard results of ordinary di�erentialequations that the 
losed-loop system (2.1),(2.4) possesses a unique absolutely 
ontinuoussolution whi
h 
an be maximally extended over an interval [0; !), where ! 2 (0;1℄.5



The (z; y; �)-
oordinates of the 
losed-loop system satisfy, where for brevity we omit theargument t,_z = F z + GN � + G [y �N �℄_y = H z + J y + N L� + k [NM � Im℄ [y �N �℄_� = L� + M k [y �N �℄ (2.9)and the 
oordinate transformation � := y �N � leads to_z = F z + G [N � + �℄_� = L� + M k �_� = H z + J [� +N�℄ � k � (2.10)so that the further 
oordinate transformation � := � +M � yields, for � = (zT ; �T )T ,_� = Â� + B̂ �_� = Ĉ� � [k(t)Im � D̂℄ �; (2.11)where Â = � F; GNMH; [L+MJN ℄� ; B̂ = � G [Im �NM ℄MJ � [L+MJN ℄M� ;Ĉ = [H; JN ℄ ; D̂ = [J � JNM ℄ : (2.12)Note that Â is the matrix of the 
losed-loop system (2.2), (2.3), and hen
e by assumptionexponentially stable.We prove that k(�) 2 L1(0; !;R). Seeking a 
ontradi
tion, suppose k(�) is unbounded.Let P = P T 2 R(n�1+q)�(n�1+q) be the positive de�nite solution ofÂT P + P Â = �I:Then di�erentiation of the Lyapunov fun
tion 
andidateV (�; �) = �TP� + 12 k�k2; where � = (zT ; �T )T (2.13)along the solution of (2.11) yields, for almost all t 2 [0; !),ddtV (�(t); �(t)) = �k�(t)k2 + 2 �(t)TPB̂ �(t)� �(t)T �k(t)Im � D̂� �(t) + �(t)T Ĉ�(t)� �k�(t)k2 � �k(t)� kD̂k� k�(t)k2 + �2kPB̂k+ kĈk� k�(t)k k�(t)k� �12k�(t)k2 � � k(t)� kD̂k � 2[2kPB̂k+ kĈk℄2� k�(t)k2:Now monotoni
ity and unboundedness of k(�) yields exponential de
ay of (z(t); �(t); �(t))on [0; !), and by the 
oordinate transformations we may 
on
lude exponential de
ay of(z(t); y(t); �(t)) on [0; !). Thus t 7! k(t) 
onverges as t tends to !, whi
h 
ontradi
tsunboundedness of k(�).k(�) 2 L1(0; !;R) readily gives ! = 1, and hen
e (i) and (ii) are proved and it remainsto show (iii).k(�) 2 L1(0;1;R) is equivalent to �(�) 2 Lr(R�0 ;Rm) and hen
e an appli
ation ofLemma 2.2 to (2.11) yields (z(�); �(�)) 2 Lr(R�0 ;Rn�1 � Rq ) and limt!1(z(t); �(t)) = 0.6



This gives �(�) = �(�)�M�(�) 2 Lr(R�0 ;Rq ) and y(�) = �(�) +N�(�) 2 Lr(R�0 ;Rm), anda repeated appli
ation of Lemma 2.2 to_y(t) = �y(t) + �(z(t); y(t); �(t)); where �(z; y; �) := y +Hz + Jy +Bu; (2.14)gives limt!1 y(t) = 0. Finally, rewriting the lower equation in (2.9) as_� = �� + [I + L�MkN ℄� +Mky; (2.15)gives, again by Lemma 2.2, limt!1 �(t) = 0. This 
ompletes the proof of the theorem. �It is easy to see that the gain adaptation law 
an be repla
ed by _k = kykr + kN�kr or_k = kykr + k�kr.3 Nonlinear 
aseThe following theorem generalises Proposition 2.1. However, stabilisation to zero 
an nolonger be guaranteed and is repla
ed by the weaker 
ontrol obje
tive of pra
ti
al outputstabilisation. The following theorem also generalizes Theorem 4.1 in [5℄, where pra
ti
alstabilisation with arbitrary large basin of 
onvergen
e is ensured for k(�) � k� suÆ
ientlylarge. The basi
 di�eren
e in the 
ontrol law (3.1) is that the gain parameter k(t) is tunedadaptively, making it possible to obtain the desired 
onvergen
e properties for any initialdata.Theorem 3.1 Suppose (1.4) applied to (1.5) yields a globally uniformly asymptoti
allystable 
losed-loop system in the sense that there exists some W : Rn�1 � Rq ! R�0satisfying (1.5). Let r1 � 1, �1; �2 > 0 be given, and r; s � 1 as in (1.2), (1.6). Then thedynami
 and adaptive output error feedba
k 
ontroller�(t) = y(t)�N(�(t))_�(t) = L(�(t)) + M k(t) k�(t)krs�1 �(t);u(t) = b(y(t))�1 ��N�� (�(t))�L(�(t)) +M k(t) k�(t)krs�1 �(t)�� k(t) k�(t)krs�1 �(t)�_k(t) = maxf0; ky(t)k � �1gr1 + maxf0; k�(t)k � �2grs; (3.1)applied to (1.1) yields, for arbitrary initial data �z(0); y(0); �(0); k(0)� 2 Rn�1 � Rm �Rq � R, a 
losed-loop system (1.1), (3.1) whi
h possesses a unique absolutely 
ontinuoussolution (z(�); y(�); �(�); k(�)) : [0; !) �! Rn�1 � Rm � Rq � R;maximally extended over [0; !), where ! 2 (0;1℄, and has the properties(i) ! =1, i.e. no �nite es
ape time,(ii) limt!1 k(t) = k1 2 R�0 , i.e. the gain adaptation 
onverges,(iii) z(�); y(�); �(�) 2 L1(R�0 ;Rn�1)�L1(R�0 ;Rm )�L1(R�0 ;Rq ),i.e. all signals are bounded, 7



(iv) limt!1maxf0; ky(t)k � �1g = 0, and limt!1maxf0; k�(t)k � �2g = 0,i.e. ky(t)k and j�(t)k approa
h [0; �1℄ and [0; �2℄ respe
tively as t tends to 1.Moreover, for any " > 0 there is ��2 su
h that, if �2 � ��2, then(v) limt!1maxf0; kz(t)k + k�(t)k � "g = 0.Note the essential di�eren
e between statements (iv) and (v) in Theorem 3.1: For pre-spe
i�ed and arbitrary small �1; �2 > 0 it is guaranteed that eventually y(t) and �(t) stayin a �1- respe
tively �2-neighbourhood of 0. This 
annot be guaranteed a priori for thez(t) and �(t)-
omponents. Statement (v) only guarantees qualitatively that the smallereventually �(t) is the smaller the other internal states z(t) and �(t) eventually be
ome.Proof of Theorem 3.1: The (z; y; �){
oordinates of the 
losed-loop system (1.1),(3.1)may be written as _z = f�z; � +N(�)�_y = q�z; � +N(�)� + ddtN(�) � k k�krs�1 �_� = L(�) + M k k�krs�1 �; (3.2)and hen
e it follows from standard results of ordinary di�erential equations that the 
losed-loop system possesses a unique absolutely 
ontinuous solution whi
h 
an be maximallyextended over an interval [0; !), where ! 2 (0;1℄.The 
oordinate transformation � := � +M � yields_z = f�z; � +N(� �M�)�_� = L(� �M�) + M q�z; � +N(� �M�)�_� = �k k�krs�1� + q�z; � +N(� �M�)�: (3.3)In order to make use of the global uniform asymptoti
 stability of (1.7), we rewrite (3.3)as follows. _z = f(z;N(�)) + Æz(z; �; �)_� = L(�) + M q(z;N(�)) + Æ�(z; �; �)_� = �k k�krs�1� + q�z; � +N(� �M�)�; (3.4)whereÆz(z; �; �) = f�z; � +N(� �M�)� � f(z;N(�))Æ�(z; �; �) = L(� �M�)� L(�) + M hq�z; � +N(� �M�)� � q�z;N(�)�i: (3.5)For the sake of simpli
ity we rede�ne the distan
e fun
tion, for � > 0 and � 2 Rp , p beinggiven by the 
ontext, d�(�) = maxf0; k�k � �g:Using the following inequality (see, e.g. [8, Se
tion XI.4℄),[a+ b℄k � 2k�1[ak + bk℄ for all a; b � 0 and k 2 N ; (3.6)8



and (1.2), (1.6), (1.8), we 
on
lude that the derivative ofW (z(t); �(t)) along the solution of(3.3) satis�es, for ~w3 := w3=w2 and suitable 
onstants �1; �2 > 0 and almost all t 2 [0; !),ddtW (z(t); �(t)) = gradW (z; �) � ddt (zT ; �T )T� �w3k(zT ; �T )T k + w4 k(ÆTz ; ÆT� )T k (3.7)� �w3k(zT ; �T )T k + w4 n�f�1 + k� +N(� �M�)�N(�)ks�+ �L�1 + kM �ks� + kMk�q�1 + k� +N(� �M�)�N(�)ks�o� �w3k(zT ; �T )T k + �1h1 + k�ks + kN(� �M�)�N(�)ksi� �w3k(zT ; �T )T k + �2�1 + k�krs�� � ~w3W (z; �) + �2�1 + k�krs�: (3.8)Sin
e (3.8) is equivalent toddt �e ~w3tW (z(t); �(t))� � e ~w3t �2 �1 + k�(t)krs�;it follows from (1.8), the de
omposition of k�krs into d�(�)rs plus a bounded fun
tion, andelementary 
al
ulations, that for some suitable 
onstant �3 > 0 and almost all t 2 [0; !),k(z(t)T ; �(t)T )T krs � �3 + �3 ��d�(�(�))rs�(t)rs; (3.9)where � : '(�) 7! �t 7! Z t0 e� ~w3(t��) '(�) d��:Using again (3.6), (1.2), (1.6), (1.8), we 
on
lude that the derivative of d�(�)(t)2 along thesolution of (3.3) satis�es, for suitable 
onstants �4; �5; �6 > 0, 
 2 (0; �), and almost allt 2 [0; !),ddt 12 d
(�(t))2 = d
(�) k�k�1�T _�� �k d
(�) k�krs + d
(�) kq�z; � +N(� �M�)�� q(z; 0) + q(z; 0)k� �k d
(�) k�krs + d
(�) h�q[1 + k� +N(� �M�)ks℄ + �q0[1 + kzks℄i� �k d
(�) k�krs + �4 d
(�) �1 + k�ks + kN(�)ks + kzks�� �k d
(�) k�krs + �5 d
(�) �1 + k�ks + k�krs + kzkrs�� �k d
(�) k�krs + �6 d
(�) �1 + k�krs + k�krs�: (3.10)Now integration of (3.10) over [0; t) � [0; !), substituting (3.9), invoking H�older's inequal-ity for 1=p+ 1=q = 1 and p = rs+ 1, q = (rs+ 1)=rs, using d
(�) � d
(�)��rsk�krs andthe fa
t that � is a uniformly bounded operator mapping Lk-fun
tions into Lk-fun
tions,
9



we 
on
lude for suitable 
onstants �7; �8 > 0 and almost all t 2 [0; !),12 d
��(t)�2 = 12 d
��(0)�2 � Z t0 [k � �6℄ d
(�) k�krs d� + �6 Z t0 d
(�) d�+�6�3 Z t0 d
(�)h1 + ��d�(�)rs�rsi d�� 12 d
��(0)�2 � Z t0 [k � �6℄ d
(�) k�krs d� + �7kd
(�(�))kL1(0;t)+ �7 k�krs kd
(�(�))kLp(0;t) kd
(�(�))rskrsLqrs(0;t)� 12 d
��(0)�2 � Z t0 �12k � �8� d
(�) k�krs d� � Z t0 �12k � �8� d
(�)rs+1 d�:(3.11)Now we pro
eed in several steps.Step 1: We prove k(�) 2 L1(0; !;R).Seeking a 
ontradi
tion, suppose k(�) is unbounded. Then (3.11) yields �(�) 2 L1(0; !;Rm),and hen
e by (3.9) (z(�); �(�)) 2 L1(0; !;Rn�1+q ), so that (3.10) yields limt!! d
(�(t)) =0. Sin
e 
 > 0 is arbitrary, this proves limt!! �(t) = 0.Now (3.5) yields, invoking 
ontinuity of f; g;N;L and boundedness of z(�) and �(�), thatlimt!! kÆz�z(t); �(t); �(t)�k+ kÆ��z(t); �(t); �(t)�k = 0;and hen
e, by (3.7), limt!! (z(t); �(t)) = 0. Furthermore, limt!! �(t) = limt!! [�(t) �M�(t)℄ = 0, and therefore, limt!! y(t) = limt!! [N(�(t)) + �(t)℄ = 0. By 
onstru
tion ofthe gain adaptation, we 
on
lude boundedness of k(�).Step 2: We prove �z(�); y(�); �(�); �(�)�; � _z(�); _y(�); _�(�); _�(�)� 2 L1(0; !;Rn�1+m+q+m).Sin
e k(�) 2 L1(0; !;R) is equivalent to d�(�(�)) 2 Lrs(0; !;R), it is immediate from (3.9)that (z(�); �(�)) 2 L1(0; !;Rn�1+q ). To prove that �(�) 2 L1(0; !;Rm), rewrite the lowerequation in (3.4) as _�(t) = ��(t) + �(z(t); �(t); �(t)); (3.12)where, 
onfer (3.10), for suitable 
onstants �9; �10 > 0 and almost all t 2 [0; !),k�(z; �; �)k � k�k + k k�krs + kÆ�(z; �; �)k� k�k + k k�krs + �6 [1 + k�krs + k�krs℄� �9 + �9 [k�krs + d�(�)rs � d�(�)rs℄� �10 + �10 d�(�)rsand hen
e, sin
e d
(�(�)) 2 Lrs(0; !;R), it follows from an appli
ation of Lemma 2.2 to(3.12) that �(�) 2 L1(0; !;Rm ).This also proves that �(�) = �(�) � M�(�) 2 L1(0; !;Rq ), and, by 
ontinuity of N(�),y(�) = N(�(�)) + �(�) 2 L1(0; !;Rm).Finally, boundedness of the derivatives of z; y; �; � is a 
onsequen
e of 
ontinuous di�er-entiability of N(�) and of (3.2), (3.12).Step 3: By Step 1 and 2, standard results of ordinary di�erential equations yield ! =1.Therefore, (i)-(iii) are proved. 10



Step 4: We show (iv):By Step 3 we haveddtd�1(y(�)) = d�1(y(�))ky(�)k�1y(�)T _y(�) 2 L1(0;1;R);and sin
e d�1(y(�)) 2 Lr1(0;1;R), an appli
ation of Barb�alat's lemma (see, e.g., [7℄) yieldsthe �rst statement in (iv). The se
ond statement is proved analogously.Step 5: We show (v):Set �T = (zT ; �T )T and rewrite the system_z = f(z; � +N(� �M�))_� = L(� �M�) +Mq(z; � +N(� �M�)) (3.13)in the form _� = f̂(�; �) : (3.14)Sin
e f(�; �) is lo
ally Lips
hitz, there are numbers 
1; 
2;m1 > 0 su
h thatkf̂(�; �)� f̂(�; 0)k � m1k�k; for all k�k � 
1, k�k � 
2:Moreover, the equilibrium � = 0 of _� = f̂(�; 0) is by hypothesis lo
ally asymptoti
allystable, see (1.7), (1.8). Thus, regarding system (3.14) as a system of the form_� = f̂(�; 0) + g(�; t);it follows from [1, pp. 275-6℄) that given any " > 0, there exist Æ" > 0 and 
" > 0 su
hthat, if k�Æk � Æ" and k�(t)k � 
" for all t � 0, the solution �(t) of_� = f̂(�; �(t)) (3.15)satisfying �(0) = �Æ is su
h that k�(t)k � " for all t � 0.We show now that, if �2 is small enough, for any �Æ there is a time T = T (�Æ) su
h that thesolution �(t) of (3.15) satisfying �(0) = �Æ is su
h that k�(T )k � Æ" and k�(t)k � 
" for allt � T . In view of the property re
alled above, this proves that limt!1maxf0; k�(t)k�"g =0. Sin
e � = � �M� and limt!1maxf0; k�(t)k � �2g = 0 (as proven above) this suÆ
esto prove 
laim (v).Suppose �2 � 
"=2 and observe that, by 
laim (iv), there is a time T0 su
h thatk�(t)k � 2�2 � 
"; for all t � T0.Assuming, without loss of generality, 2�2 < 1 we dedu
e from (3.8) that _W (t) � � ~w3W (t)+2�2; for all t 2 [T0;1) and hen
eW (t) � e� ~w3(t�T0)W (T0) + 2�2~w3 ; for all t � T0.Substituting (1.8), we 
on
lude the existen
e of a time T1 > T0 su
h thatk�(t)k � R := 3�2w1 ~w3 for all t � T1.Set now �T1(t) = ( �(t); if t � T10; if t > T1.11



and let �T1(t) denote the integral 
urve of _� = f̂(�; �T1) satisfying �T1(0) = �Æ. Indeed,�T1(t) = �(t) for all 0 � t � T1. Moreover, for t > T1, �T1(t) is a solution of _� = f̂(�; 0) andhen
e tends to 0 as t!1. In parti
ular, using (1.8), it is seen that there exist numbersA > 0 and a > 0 (depending only on w1; w2; w3) su
h thatk�T1(t)k � Ae�a(t�T1)k�(T1)k for all t � T1.Choosing T2 so that 2Ae�aT2R � Æ" yieldsk�T1(T1 + T2)k � Æ"2 : (3.16)Sin
e f̂(�; �) is lo
ally Lips
hitz, there exists numbers ` > 0 and m2 > 0 su
h thatkf̂(�; �)� f̂(�T1 ; 0)k � `k� � �T1k+m2k�k (3.17)for all k�k � R; k�T1k � AR; k�k � 
".Let now �2 � min�
"2 ; Æ"`4m2�2(eLT2 � 1)� :We will show that, at time T = T1 + T2,k�(T )� �T1(T )k � Æ"2 ; (3.18)whi
h, in view of (3.16), proves that k�(T )k � Æ", as requested.To this end, observe that, for t � T1, �(t) and �T1(t) are integral 
urves of _� = f̂(�; �(t))and, respe
tively, of _� = f̂(�; 0) satisfying the same initial 
ondition at time T1. Thus, fort � T1, �(t) = �(T1) + Z tT1 f̂(�(s); �(s))dsand �T1(t) = �(T1) + Z tT1 f̂(�T1(s); 0)ds :Sin
e k�(s)k � R; k�T1(s)k < AR; k�(s)k � 2�2; for all s � T1;and 2�2 � 
", using (3.17), we havek�(t)� �T1(t)k � `Z tT1 k�(s)� �T1(s)kds+m2 Z tT1 k�(s)kds� `Z tT1 k�(s)� �T1(s)kds+ 2m2�2(t� T1) :Gronwall's inequality yieldsk�(t)� �T1(t)k � 2m2�2` (e`(t�T1) � 1)and, thus, for T = T1 + T2,k�(T )� �T1(T )k � 2m2�2` (e`T2 � 1) � Æ"2 :This 
ompletes the proof of 
laim (v). �12



4 Con
lusionsIn [5℄ it is shown that a 
ertain 
lass of nonlinear systems 
an be stabilised semigloballyby a dynami
 output feedba
k 
ontroller. This is a
hieved by a high-gain parameter inthe feedba
k law whi
h 
orresponds to the magnitude of the initial 
ondition. The largerthe gain parameter the larger the set of initial 
onditions so that the 
losed-loop systemstabilises the state. The idea of the present paper is to adapt the gain parameter as atime-varying s
alar fun
tion depending on the magnitude of y(t) � N�(t) where y(t) isthe output of the system and N�(t) a quantity of the dynami
 feedba
k 
ompensator (see(2.4) for the linear 
ase and (3.1) for the nonlinear 
ase). In the linear 
ase, this adaptivemodi�
ations yields global stabilisation and over
omes semiglobal stabilisation as in [5℄.In the nonlinear 
ase, we also over
ome the semiglobal stabilisation, and even pra
ti
alstabilisation a
hieved in [5℄ is improved by guaranteeing that the output y(t) and theinternal variable �(t) of the dynami
 
ompensator tends to any prespe
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