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Modelling and adaptive ontrol ofaerobi ontinuous stirred tank reatorsP. Georgieva�, A. Ilhmanny, M.-F. WeirigzFebruary 2001AbstratA biotehnologial aerobi proess is modelled as an ordinary di�erential equationwhih, under mild assumptions, ensures invariane of the positive orthant and bound-edness of the onentrations. An adaptive ontroller is designed for this general lassof proesses so that the external substrate an be regulated by the dilution rate intoa prespei�ed arbitrarily small neighbourhood of a onstant setpoint referene. Theadaptive ontroller is robust, simple in its design without invoking any identi�ationmehanisms, and is based on output data only. It is shown that the prominent ex-ample of a baker's yeast fermentation belongs to this setup, and adaptive traking isillustrated by simulations.Keywords: Adaptive ontrol, input saturation, traking, aerobi proesses, yeast fer-mentation
1 IntrodutionThe purpose of the paper is threefold. First, it is a ontribution to the general mod-elling of biotehnologial aerobi proesses inluding proofs whih show that the intuitiveassumptions ensure mathematially what is expeted from a real proess. Seondly, weintrodue a simple adaptive ontroller with saturation whih, under mild assumptions, isproved to ahieve traking of an external substrate within a prespei�ed neighbourhood ofa setpoint. Thirdly, a well known example of baker's yeast fermentation is further inves-tigated and shown to be a speial ase of the proposed general model. Finally, adaptivetraking is illustrated for this example.� Bulgarian Aademy of Sienes, Institute of Control and System Researh, P.O. Box 79, 1113 So�a,Bulgaria, pgeorgieva�hotmail.omy Institute of Mathematis, Tehnial University Ilmenau, Weimarer Stra�e 25, 98693 Ilmenau, FRG,ilhmann�mathematik.tu-ilmenau.dez Alfred Wegener Institute for Polar and Marine Researh, P.O. Box 120161, 27515 Bremerhaven, FRG,mweirig�awi-bremerhaven.de



We onsider general biotehnologial aerobi proesses modelled by ordinary di�erentialequations of the form_x(t) = K '�x(t); O(t)� � D(t)x(t) � Qx(t) + D(t)xin(t);_O(t) = KO '�x(t); O(t)� � D(t)O(t) + �La[O� �O(t)℄; (1.1)where, for n 2 N and n > m 2 N, the onstants and variables denotex(t) = �x1(t); : : : ; xn(t)�T onentrations of the n proess variables at time t,O(t) onentration of dissolved oxygen at time t,K = [k1; : : : ; km℄ 2 Rn�m stoihiometri matrix,KO = [kO1; : : : ; kOm℄ 2 R1�m stoihiometri oxygen vetor,Q = diagfq1; : : : ; qng 2 Rn�n�0 proportional gaseous outow rates,�La[O� �O(t)℄ oxygen transfer rate O(t) with equilibrium onentra-tion of dissolved oxygen O� and oxygen mass transferonstant �La > 0,' = �'1; : : : ; 'm�T reation rate vetor, where'j(�; �) : Rn+1�0 ! R�0 are loally Lipshitz ontinuous funtions,j = 1; : : : ;m,xin(�) : R�0 ! Rn�0 pieewise ontinuous and bounded funtion ofxin(t) = �xin1 (t); : : : ; xinn (t)�T n feed onentrations at time tD(�) : R�0 ! [0;Dmax℄ pieewise ontinuous funtion of dilution rate withDmax > 0.Furthermore, the following strutural assumptions of (1.1) are assumed.(A1) There exists  2 Rn>0 suh that Tkj � 0 for all olumnsk1; : : : ; km of the stoihiometri matrix K.(A2) For j = 1; : : : ;m we have:'j(x;O) = �j(x;O) � Qi2Autj[Lj xifor loally Lipshitz ontinuous funtions �j(�; �) : Rn+1�0 ! R�0 ;if 'j(x;O) = 0, then at least one of the omponents of (x;O) is 0;KO'(x; 0) = 0.Autj and Lj are the autoatalysts and the reatants of the jth reation, respetively; theyare de�ned in Setion 2. Assumptions (A1)-(A2) are disussed in detail in Setion 2.(A1) ensures that _x(t) = K '�x(t); O(t)� is dissipative. This replaes the lassial as-sumption of Conservation of Mass. We do not suppose that the matrix K ontains exatstoihiometri oeÆients. Our approah should enompass models whih ontain onlythe essential reations and essential substrates, and we also allow for unertainty of thestoihiometri oeÆients.The term D(t)xin(t) in (1.1) ensures that the inow rate is proportional to the dilution2



rate. This assumption is essential for proving that all onentrations within the reatorremain bounded.The deomposition of the reation rate 'j into a spei� reation rate �j and a produt ofautoatalysts Autj and reatants Lj in assumption (A2) is essential for proving that if theproess is initialized with positive onentrations, then they stay positive. The remainingonditions are justi�ed by the physial fat that a reation an only take plae if all itsativators are present in the reator.The ontrol objetive is to regulate an external substrate xl(t), l 2 f1; : : : ; ng, towardsa prespei�ed neighbourhood of a given onstant referene setpoint xref . This will beahieved by the so alled �-traker (and variations thereof), i.e.e(t) = xl(t)� xref ;D(t) = sat[0;Dmax℄�� k(t) e(t) +D��;_k(t) = Æ ( (je(t)j � �)r; if je(t)j > �0; if je(t)j � � (1.2)
where r � 1, �; Æ > 0, Dmax > D� � 0, k(0) � 0 are design parameters, andsat[0;Dmax℄(�) := 8<: 0; if � < 0�; if � 2 [0;Dmax℄Dmax; if � > Dmax:These design parameters inuene the transient behaviour of the losed-loop system ru-ially. Their role is disussed in detail in Remark 3.4 and illustrated in the simulations ofthe baker's yeast proess in Setion 5.The �-traker (1.2) seems in partiular suitable for biotehnologial proesses sine despitetheir non-linearity, unertainties, disturbanes, and possible unstable multiple equilibria,this ontroller is only based on strutural system data, i.e. (A1)-(A2). It onsists ofa proportional error feedbak with saturation, and the time-varying proportional gaink(�) is determined adaptively by the error measurement only. The idea is that the gaininreases as long as the error is outside the �-strip. One the gain is suÆiently large,under appropriate assumptions, the error e(t) will onverge towards the �-strip and thegain k(t) is kept onstant. That means the ontrol objetive is met. The upper bound ofthe saturation has to meet a feasibility ondition whih will be made preise below.The present paper is based on several ontributions in di�erent �elds. Modelling of thegeneral reator model has been established by Bastin and Dohain [1℄, a suÆient onditionfor dissipativity of mass in terms of the stoihiometri matrix has been developed inIlhmann and Weirig [11℄, see also the ontribution by Bogaerts et al. [3℄.Various ontrol objetives and several industrial implementations are reviewed in Chenet al. [4℄. The wide appliation of adaptive nonlinear tehniques for biologial reatorslies in the fat that the models inlude highly nonlinear and slowly time-varying kinetiparameters (see Bastin and Van Impe [2℄). Most of the ontrol strategies proposed in3



the literature use algorithms to identify the proess kinetis and/or reonstrut the non-measured state variables (see for example Pomerleau and Perrier [15℄ or Ferreira and Feyode Azevedo [7℄.The adaptive �-traker disussed in this paper is in the spirit of Ilhmann and Ryan [10℄,where it is introdued for linear systems and without any input saturations. In Ilhmann etal. [12℄ adaptive �-traking of an external substrate of a general reator model was ahievedby using the feedrate as the input variable; it also was assumed that the dilution rate isbounded away from zero. However, if aerobi ontinuous stirred tank reators are mod-elled by lumping together the reation equations in (1.1) to some ddt(x;O)T = ~K'(x;O),then in this general form one annot derive boundedness of the onentrations of the gen-eral model. This is exatly the reason why the oxygen dynamis have to be separatedas in (1.1), and a new proof for �-traking has to be developed. A �rst approah in thisdiretion an be found in Weirig [18℄.The paper is organised as follows. In Setion 2 we introdue and motivate assumptions ofthe general model (1.1) so that it is suÆiently general to enompass relevant biohemialproesses, and suÆiently strit to derive mathematially properties of the proess whihare intuitively expeted. In Setion 3 the adaptive feedbak strategy to regulate an externalsubstrate to a prespei�ed neighbourhood of the setpoint referene is introdued andproved to meet the ontrol objetive under ertain assumptions. In Setion 4 a wellknown model for baker's yeast fermentation is further investigated and shown that it fallsinto our general setup. This example is also used to illustrate the adaptive ontroller bysome simulations in Setion 5.
2 General modelling of bio-hemial aerobi proessesAerobi biotehnologial proesses onsist of a set of m reations '1; : : : ; 'm involvingn + 1 onentrations x1; : : : ; xn+1 in the liquid phase of the reator. Suh a proess isommonly spei�ed by the following reation sheme for eah jth reation:'jPi2Lj ij xi �! Pi2Rj ij xi; j = 1; : : : ;m: (2.1)Here Lj � f1; : : : ; n+ 1g; Lj 6= ;denotes the set of indies of the omponents xi whih are the reatants of the jth reation,Rj � f1; : : : ; n+ 1g; Rj 6= ;is the set of indies of the omponents xi whih are the reation produts of the jthreation. 4



The quantities of eah omponent involved in the reation are spei�ed by the nonnegativestoihiometri oeÆients ij , sometimes also alled yield oeÆients. The rate of on-sumption of the reatants, whih is equal to the rate of formation of the reation produts,is alled the reation rate and denoted by 'j . For a omprehensive list of reation ratessee for instane the Appendix in Bastin and Dohain [1℄.The reation sheme (2.1) gives rise to desribe the proess as an ordinary di�erentialequation, see (1.1). The oeÆients of the matrix K are given by �ij . Models of theform (1.1) have been used throughout the last thirty years in a more or less formal way,and the above formalism was established in the monograph by Bastin and Dohain [1℄.In the present paper, we are more spei� and divide the substrates of Lj and Rj furtheras follows (see also Figure 1 for illustration):
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Figure 1: Reation omponent setsCatj = Lj \Rj atalysts, i.e. set of the indies of those om-ponents whih are involved in the jth reationbut maintained by the reation,Subj = Lj n (Lj \Rj) 6= ; substrates, i.e. the set of those omponents thatare onsumed by the jth reation, they are as-sumed to be empty,Prodj � Rj n (Lj \Rj) produts, i.e. set of the indies of those ompo-nents that are produed by the jth reation,Autj = Rj n ((Lj \Rj) [ Prodj) autoatalysts, i.e. set of the indies of thoseomponents that are aumulated by the jthreation,Restj = f1; : : : ; n+ 1g n (Lj [Rj) set of the proess omponents that are not in-volved in the jth reation.5



Note that, for all j = 1; : : : ;m,Autj [ Prodj = Rj n (Rj \ Lj);and f1; : : : ; n+ 1g an be represented as the disjoint unionf1; : : : ; n+ 1g = Catj _[ Subj _[ Autj _[ Prodj _[ Restj: (2.2)The following haraterizations of the atalysts, substrates and produts will be useful inthe sequel: Catj = fi 2 Lj \Rj j kij = 0gSubj = fi 2 f1; : : : ; n+ 1g j kij < 0gProdj [Autj = fi 2 f1; : : : ; n+ 1g j kij > 0g : 9>>=>>; (2.3)The reation rate 'j is often assumed to be proportional to the mirobial spei� growthrate �j . The most prominent growth rates are the models of Monod or Haldane. Reationrates 'j , spei� reation rates �j, and spei� growth rate �j are in our setup related asfollows.'j(x;O) = �j(x;O) Yi2Autj[Lj xi = �j(x;O) Yi2Autj[Catj xi= �j(x;O) Yi2Subj xi Yi2Autj[Catj xi (2.4)A prominent referene on hemial reating systems is Gavalas [8℄. See in partiular Se-tion 1.1, where he introdues systems whih an be desribed by an ordinary di�erentialequation as the �rst equation in (1.1). Although Gavalas does not expliitly say so (seeSetion 1.1 and also the sentene below equation (1.8.11)), the Priniple of Mass Con-servation implies the existene of a positive vetor  2 Rn>0 so that Tkj = 0, for allj = 1; : : : ;m. In this ase, and if the dilution rate, feed rate and gaseous outow rate inthe �rst equation in (1.1) are zero, thenddtT x(t) = T K '(x(t); O(t)) = 0;and sine all oeÆients of  are positive, this means onservation of mass.However, if K does not represent the exat stoihiometri relationships between the om-ponents, then the model does not satisfy the onservation of mass, but might still berelevant sine all \essential" reations are obeyed. For this approah, whih was taken inBastin and Dohain [1℄, the onept of `non-yli proesses' has been developed in Ilh-mann and Weirig [11℄. Cyliity of (1.1) as de�ned in [11℄ means that the proess ontainsa reation loop, i.e. there exists a subset of reations S so that every substrate xi involvedin a reation j 2 S is also an autoatalyst or a produt of one of the reations j 2 S. Mostproesses in the literature are non-yli. In Ilhmann and Weirig [11℄ we give an algorithmto deide whether a matrix K is non-yli or not, and in partiular non-yli implies(A1). Note also that if the dilution rate, feed rate and gaseous outow rate in the �rst6



equation in (1.1) are zero, and (A1) is satis�ed, then ddtT x(t) = T K '(x(t); O(t)) � 0.Hene the proess is dissipative and (A1) generalises onservation of mass.We are now in a position to state and prove the main result of this setion. That is, underthe assumptions (A1)-(A2), all onentrations stay within an bounded invariant set for allt � 0.Theorem 2.1 Consider the proess (1.1) satisfying (A1)-(A2). Then for any initial on-entrations x(0) 2 Rn>0 , O(0) 2 (0; O�℄, there exists a unique solution of (1.1). Thissolution does not exhibit a �nite esape time, is bounded, and stays within the positiveorthant. More preisely,O(t) 2 (0; O�℄ and x(t) 2 nx 2 Rn>0 �� Tx � maxfTx(0); T xingo 8 t � 0; (2.5)wherexin := �xin1 ; : : : ; xinn �; and xini := sup�xini (t)�� t 2 [0;1)	 for i = 1; : : : ; n:Proof: Sine the right hand side of the di�erential equation (1.1) is loally Lipshitzontinuous in (x;O) and pieewise ontinuous in t, it follows from the lassial theory ofordinary di�erential equations that for any xin(0) 2 Rn>0 , O(0) > 0 there exists a uniquesolution �x(�); O(�)� : R�0 �! Rn�0 � R�0 of the initial value problem on a maximallyextended interval of existene [0; !), where ! 2 (0;1℄.We show that the zero-axes of the positive orthant Rn+1>0 are repelling.If O(t0) = 0 for some t0 > 0, then by (A2) yields KO'(x; 0) = 0, and thus by (1.1) itfollows that _O(t0) = �LaO� > 0, whene O(�) � 0 is repelling.To see that the axes xi(�) � 0, i = 1; : : : ; n, are also repelling, assumption (A2) is essential.For a proof see Proposition 6 in Ilhmann and Weirig [11℄.Note that if ! were �nite, then this would not be due to the fat that (x(�); O(�)) is leavingthe positive orthant through the edges, the edges are repelling. Hene a �nite ! yieldsthat some omponents of (x(�); O(�)) tend to in�nity in �nite time.We prove boundedness of �x(�); O(�)� on [0; !).If O(t) > O� + " for some t 2 [0; !) and " > 0, then the seond equation in (1.1) yields_O(t) < �" �La, and hene O(�) � O� is repelling from above.To see boundedness of x(�), suppose there exists t 2 [0; !) suh that T [x(t) � xin℄ > 0.Then there exists " > 0 suh thatT [x(�) � xin℄ > 0 for all � 2 [t; t+ ");and hene, by (A1) and (1.1),T [x(t+ ")� x(t)℄ = Z t+"t dd� T [x(�)� xin℄ d� � �Z t+"t D(�) T [x(�)� xin℄ d� � 0:Therefore, the bounds in (2.5) hold for all t 2 [0; !).Finally, sine ! was hosen to be maximal and �x(�); O(�)� is bounded, it follows from thestandard theory of di�erential equations that ! =1. This ompletes the proof. 27



Note that x(t) in (2.5) belongs to a bounded set whih depends only on x(0); xin, and . Ifestimates of them are known and of O�, then Theorem 2.1 yields immediately a boundedset ontaining any trajetory of the system for any pieewise ontinuous bounded D(�).This is summarized in the following orollary.Corollary 2.2 Consider the proess (1.1) satisfying (A1)-(A2). If bB � Rn>0 � R>0 �Rn>0 � Rn>0 is a bounded set and �x(0); O�; xin; � 2 bB, then this set determines anotherbounded set B � Rn>0 � R>0 , suh that,�x(t); O(t)� 2 B for all t � 0: (2.6)B is independent of the hoie of the pieewise ontinuous, bounded dilution rate D(�) in(1.1). 2
3 Adaptive �-setpoint ontrol of external substratesIn this setion we study the adaptive �-setpoint ontrol of an external substrate, theoutput variable to be ontrolled. A substrate xl(�) of the reator model (1.1) is deemedexternal if, and only if, l 2 m[j=1Subj n m[j=1 �Autj [ Prodj�: (3.1)We need to assume the following assumptions on the reation rates with B as given in (2.6).(A3) 'j � sup�'j�x;O���� �x;O� 2 B	 are known for all j = 1; : : : ;m.Assumption (A3) is ruial for estimating the saturation bound. The need of this onditionis not surprising, the faster the reation rates, the more exibility is needed in the input,and sine the system parameters are not estimated in our setup, at least a rough upperbound for the reation rates must be known. The set B in Corollary 2.2 might be wellknown in appliations, and an upper bound 'j an be determined.We are now in a position to prove the main result of this setion.Theorem 3.1 Consider the proess (1.1) satisfying (A1)-(A3) with bB and B as given inCorollary 2.2. Let xl(�) be an external substrate and suppose the following feasibilityondition holdsinft�0�xinl (t)	 := xinl > xref � � > 0; Dmax > Pmj=1 jklj j'j + ql[xref � �℄xinl � [xref � �℄ : (3.2)8



Then the appliation of the �-traker (1.2) to (1.1) yields, for any initial data �x(0); O(0)� 2bB, k(0) � 0, a losed-loop system with unique solution�x(�); O(�); k(�)� : R�0 �! B � R�0de�ned on the whole time axis R�0 and, moreover,(i) limt!1 k(t) = k1 2 R�0 , i.e. the gain adaptation onverges,(ii) limt!1dist�xl(t); [xref � �; xref + �℄� = 0, i.e. the external substrate xl(t) tends tothe �-neighbourhood of the referene setpoint xref as t!1. 2Proof: Sine the right hand side of the losed-loop system (1.1), (1.2) is loally Lipshitzontinuous in (x;O) and pieewise ontinuous in t, it follows from standard theory ofordinary di�erential equations that there exists a unique solution (x(�); O(�); k(�)) on amaximally extended interval of existene [0; !), ! 2 (0;1℄.By Theorem 2.1 (x(�); O(�)) is bounded, and so k(t) as the integral of a bounded funtionannot exhibit any �nite esape time. Therefore, ! =1, and applying Theorem 2.1 againyields �x(t); O(t); k(t)� 2 Rn>0 � R>0 � R�0 for all t � 0:Next we prove boundedness of k(�).In passing by note that by (3.1) and (2.3) we have klj � 0 for all j = 1; : : : ;m, and hene(1.1) gives _xl(t) = � mXj=1 jklj j'j�x(t); O(t)��D(t)xl(t)� ql xl(t) +D(t)xinl (t): (3.3)Now suppose that there exists t0 � 0 suh that k(t0) > Dmax=�. (3.4)We show that there exists a �nite time t̂ � t0 suh thatxl(t) 2 [xref � �; xref + �℄ for all t � t̂: (3.5)If xl(t) � xref + � and t � t0, then by (3.4) it follows that �k(t)[xl(t) � xref ℄ + D� ��k(t)�+D� < 0, and thus D(t) = 0, so that (3.3) yields,_xl(t) = � mXj=1 jklj j'j�x(t); O(t)� � ql xl(t):Sine by (3.1) there exists j0 suh that l 2 Subj0 , (2.3) yields klj0 < 0 and hene_xl(t) � �jklj0 j'j0�x(t); O(t)�:Now an appliation of LaSalle's Invariane Priniple (see e.g. the version in Knobloh andKappel [14℄ shows that xl(t) dereases into the �-strip.9



If xl(t) � xref � � and t � t0, then by (3.4) it follows that �k(t)[xl(t) � xref ℄ + D� �k(t)�+D� > Dmax, and hene D(t) = Dmax. Now (3.3) yields_xl(t) � � mXj=1 jklj j'j � [Dmax + ql℄ [xref � �℄ +Dmax xinl ;and by (3.2) it follows that there exists " > 0 suh that _xl(t) � ". This proves (3.5).Now we are in a position to prove boundedness of k(�). If (3.4) is satis�ed, then by (3.5),xl(t) reahes the interval [xref � �; xref + �℄ in �nite time, and stays within the intervalafter that. By the gain adaptation (1.2) this implies k(t) = k(t̂) for all t � t̂, wheneboundedness of k(�). If (3.2) is not satis�ed, then k(�) is obviously bounded.Claim (i) of the theorem is a simple onsequene of monotoniity of t 7! k(t) and bound-edness of k(�). It remains to prove (ii).Using the distane funtiond�(�) : R ! R�0 ; � 7! d�(�) := ( j�j � �; j�j � �0; j�j < �;it follows from the gain adaptation in (1.2) that (ii) is equivalent to d�(e(�)) 2 Lr(0;1;R).Sine t 7! e(t) is absolutely ontinuous, and � 7! d�(�) is absolutely ontinuous and ofbounded variation, it follows (see e.g. Hewitt and Stromberg [9℄) that t 7! d�(e(t)) isabsolutely ontinuous. Hene for almost all t � 0 we havet 7! ddt d�(e(t)) � j _e(t)j :Now boundedness of t 7! ddt d�(e(t)) together with d��e(�)� 2 Lr(0;1;R) allows to applyBarb�alat's lemma (see, e.g., Khalil [13℄) to onlude that limt!1 d�(e(t)) = 0, whene (ii).This ompletes the proof of the theorem. 2Remark 3.2 Note that the assumption of Theorem 3.1 that xl(�) is an external variableimplies that klj � 0 for all j = 1; : : : ;m and that klj0 < 0 for some j0. An immediateonsequene of this is that a smoothened version of the \bang-bang" ontrol lawD(t) = ( Dmax; if xl(t) � xref0; if xl(t) > xrefshould also meet the ontrol objetive. This might help to stress the onsequene of theassumption.Finally, we also onsider a non-adaptive version of (1.2) where the time-varying k(t) isreplaed by some onstant k0 > 0. Although this non-adaptive strategy is restritive sinek0 needs to be suÆiently large, the result is worth knowing due to its simpliity. Further-more, we give expliit lower bounds in terms of weak systems data, and it is ensured thatthe external substrate enters and stays within the �-strip around the referene setpointafter �nite time. 10



Theorem 3.3 Let D� 2 [0;Dmax) and supposek0 � Dmax=� (3.6)is known additionally to the assumptions in Theorem 2.1, then the non-adaptive feedbakontroller D(t) = sat[0;Dmax℄�k0 e(t) + D�� (3.7)applied to (1.1) yields, for any initial data �x(0); O(0)� 2 bB, k(0) � 0, a losed-loop systemwith unique solution �x(�); O(�); k(�)� : R�0 �! B � R�0de�ned on the whole time axis R�0 . Moreover, there exists t̂ � 0 suh thatxl(t) 2 [xref � �; xref + �℄ for all t � t̂:Proof: Sine (3.6) ensures that the ondition in (3.4) is satis�ed, the proof is a straight-forward simpli�ation of the proof of Theorem 3.1. It is omitted. 2Remark 3.4 The adaptive �-traker (1.2) and the non-adaptive feedbak ontroller(3.7) are simple in its design. However, they ontain design parameters whih should bearefully hosen when the feedbak ontroller is applied to a real proess. Dmax dependsnot only on the feasibility ondition (3.2) but also on the physial limitations of theatuator. When both onditions are ompatible (i.e. the atuator limit is higher thanthe bound obtained by (3.2)) one should hoose Dmax lose to the atuator upper bound.This makes the ontrol input smoother. To speify � appropriately one need to knowin advane an estimate about the upper bound for the magnitude of the measurementauray and noise. The power r in the gain adaptation in (1.2) determines the speed ofthe adaptation. If the di�erene of (je(t)j � �) is smaller 1, then the bigger r � 1 is theslower k(t) inreases; if the di�erene is bigger than 1, then the bigger r is the faster k(t)inreases. Similar e�ets, but not in suh a nonlinear way, an be ahieved by varying Æ orthe initial gain k(0). D� is an input referene, an appropriate hoie might be known fromexperiments with onstant feedbak. The role of all these design parameters is furtherillustrated in the simulations of the baker's yeast proess in Setion 5.4 Baker's yeast fermentation proessThe following kineti model for ellular produtivity of a ontinuous ulture of Saha-romyes erevisiae, more ommonly known as baker's yeast, was introdued by Sonnleitnerand K�appeli [16℄, and sine then it has been used by numerous authors, see [4, 6, 15℄, andSweere et al. [17℄, to name but a few. The dynamial model is obtained from a massbalane of the omponents, and it is assumed that the reator is well mixed, the yieldoeÆients are onstant, and the dynamis of the gas phase an be negleted. The yeast11



fermentation goes through tree pathways: sugar oxidation, ethanol oxidation and sugarfermentation with ethanol as an end produt.We do not model this as a fed-bath proess, but in ontinuous mode operation. Thusthis proess an be desribed in the form (1.1) as follows.ddt 0BB�SXCE1CCA = 2664�11 0 �1321 22 2331 32 330 �42 43 37750� �1(S;O)�2(S;O;E)�3(S;O) 1AX �D0BB�SXCE1CCA�0BB� 00�CO2 C0 1CCA+0BB�DSin000 1CCA(4.1)ddtO = ��01; �02; 0�0� �1(S;O)�2(S;O;E)�3(S;O) 1AO �DO + �La [O� �O℄;
where the state variables areS(t) gluose (substrate) onentration in the reator at time t (the output),X(t) yeast onentration in the reator at time t,C(t) dissolved arbon dioxide onentration in the reator at time t,E(t) ethanol onentration in the reator at time t,O(t) dissolved oxygen onentration in the reator at time t,and further variables and onstants areD(t) dilution rate onsidered as the input,ij > 0 stoihiometri (or yield) oeÆients, orresponding to the produtionof one unit of biomass (i.e. yeast) in eah reation,Sin gluose onentration in the feed,�La[O� �O(t)℄ gaseous oxygen transfer rate O(t) with oxygen mass transfer onstant�La and equilibrium onentration of dissolved oxygen O�,�CO2 C(t) gaseous arbon dioxide outow rate proportional to C(t).The main objetive is to keep the gluose onentration, whih is onsidered as externalsubstrate, lose to the referene value using the dilution rate as manipulating funtion.For tehnial reasons, the input must be bounded.The model is based on a limited oxidation apaity, whih is a funtion of the oxygenonentration in the liquid phase, see Sweere et al. [17℄. If the oxidation apaity issuÆiently high to oxidize all gluose onsumed, then no ethanol is produed. If in thissituation the ethanol is present in the medium as well, then o-onsumption of ethanol ispossible. If not, then all gluose an be oxidized and the surplus gluose will be onsumedaording to the redutive metabolism, resulting in ethanol formation.The proess of yeast growth on gluose with ethanol prodution is desribed by the fol-lowing three metaboli reations. All onstants involved are positive.The reation rate of the respiratory growth on gluose respetively the spei� growth rate12



is '1(S;O;X) = �1(S;O)X; �1(S;O) = 8<: �111 qs;max SS+Ks OO+K ; if qs;max SS+Ks � q;maxa�111 q;maxa OO+K ; if qs;max SS+Ks � q;maxa ;where qs;max and q;max are the maximal spei� uptake rates of gluose and oxygen, Ksand K are the saturation parameters for gluose uptake and oxygen uptake respetively,a = 01 �111 is the stoihiometri oeÆient of the oxygen.If the oxidation apaity is suÆiently high to oxidise both ethanol and gluose, thentheir o-onsumption is possible, see Sweere et al. [17℄. The reation rate of therespiratorygrowth on ethanol and the spei� growth rate is'2(S;X;E;O) = �2(S;E;O)X; �2(S;E;O) = �e;maxEKe +E KiS +Ki OO + �o ;where �e;max is the maximal spei� ethanol growth rate, Ki is the inhibition parame-ter (free gluose inhibits ethanol uptake), Ke is the saturation parameter for growth onethanol, and �o is the saturation parameter for the free respiratory apaity available.Finally, the reation rate of the fermentative growth on gluose respetively the spei�growth rate is'3(S;X;O) = �3(S;O)X; �3(S;O) = 8<: �113 qs;max SS+Ks KO+K ; if qs;max SS+Ks � q;maxa�113 h qs;max SS+Ks � q;maxa OO+K i ; if qs;max SS+Ks � q;maxa :The proess onsists of 3 reations involving 5 omponents (x;O) = (S;X;C;E;O), i.e.the onentrations in the liquid phase of the reator. Using the notation introdued inSetion 2, we see thatL1 = f1; 5g; L2 = f4; 5g; L3 = f1g; R1 = f2; 3g = R2 = f2; 3g; R3 = f2; 3; 4g;Catj = ;; Autj = f2g for j = 1; 2; 3Sub1 = f1; 5g; Sub2 = f4; 5g; Sub3 = f1g; Prod1 = Prod2 = f3g; Prod3 = f3; 4g:From (3.1) we see that possible external substrates are x1 and x5. Sine the oxygentransfer rate is not proportional to the dilution rate whih is ruial for Theorem 3.1 (see(3.3)), we hoose S(t) as external substrate and l = 1.We are now in a position to fatorise the reation rates as in (2.4). Sine Aut1 [ L1 =f1; 2; 5g, setting �1(S;O) = 8<: �111O+K qs;maxS+Ks ; if qs;max SS+Ks � q;maxa�111O+K q;maxS�a ; if qs;max SS+Ks � q;maxayields '1(S;O;X) = �1(S;O) Yi2Aut1[L1 xi = �1(S;O) � S � O �X:13



Sine Aut2 [ L2 = f2; 4; 5g, setting�2(S;O;E) = �e;maxKe +E KIS +KI 1O + �oyields '2(S;O;X;E) = �2(S;O;E) Yi2Aut2[L2 xi = �2(S;O;E) � O �E �X:Finally, sine Aut3 [ L3 = f1; 2g, setting�3(S;O) = 8<: �113 KO+K qs;maxS+Ks ; if qs;max SS+Ks � q;maxa�113 � qs;maxS+Ks � OO+K q;maxS�a �; if qs;max SS+Ks � q;maxayields '3(S;O;X) = �3(S;O) Yi2Aut3[L3 xi = �3(S;O) � S �X:We hek assumptions (A1)-(A3):(A1) is immediate from the speial form of K in (4.1).(A2) follows from the above fatorisations and sine KO = [�01; �02; 0℄.(A3) requires that for eah 'j�x;O� an upper bound is known. The three reations of theproess (4.1) are autoatalyti and therefore the reation rates are of the form 'j(x;O) =�j(x;O)X, j = 1; 2; 3. Sine the growth apaity of a population of miroorganisms isstrongly limited, the spei� growth rates are bounded. The upper bounds are�1(S;O) � ��1 := �111 q;maxa ; �2(S;E;O) � ��2 := �e;max; �3(S;O) � ��3 := �113 q;maxa :Usually, the exat values of these parameters are not available but the range of theirvariations is well known, see Sonnleitner and K�appeli [16℄. Therefore the maximal growthapaity of the yeast population in eah reation is known. Furthermore the upper boundof the biomass onentration X is usually known in appliations, see [4, 6℄. Hene,�'j � ��jX are known for j = 1; 2; 3.By the above �ndings, the model of the baker's yeast fermentation proess is a speial aseof the general model of bio-hemial aerobi proesses analysed in Setion 1 and 2, andmeets the assumptions required for the adaptive setpoint ontrol introdued in Setion3. Therefore, in the following Setion 5 we will illustrate how the �-traker works whenapplied to (4.1).
14



5 SimulationsIn this setion we simulate the appliation of the �-traker (1.2) to the baker's yeastfermentation proess (4.1). The output variable to be regulated within a neighbourhoodof a onstant onentration is the gluose onentration. The following kineti data aretaken from Sonnleitner and K�appeli [16℄.qs;max = 3:5 [gglug�1biomassh�1℄; q;max = 0:256 [gO2g�1biomassh�1℄; �e;max = 0:17 [h�1℄;Ks = 0:2 [gglu=l℄; K = 0:0001 [gO2=l℄; Ke = 0:1 [g=l℄;Ki = 0:1 [g=l℄; a = 0:4142 [gO2=gglu℄; �o = 0:003 [mg=l℄;where gglu, gO2 and gbiomass denote gram gluose, gram oxygen, and gram biomass re-spetively.The onstant yield oeÆients are hosen as in Pomerleau and Perrier [15℄, so that thestoihiometri matrix K and the vetor KO areK = 2664�2:04 0 �201 1 11:23 0:9 9:090 �1:39 10 3775 ; KO = ��0:83; �1:56; 0� :Following Feyo de Azevedo et al. (1992), the other onstant proess parameters are set�La = 100 [h�1℄; O� = 0:007 [g=l℄; Sin = 10 [g=l℄:The initial values of the state variables areS(0) = 0:95; O(0) = 0:0066; X(0) = 0:1; C(0) = 0:000325; E(0) = 0:0001 [g=l℄:The ontrol objetive is to regulate the gluose onentration S(t) into a �-neighbourhoodof the referene onentration Sref = 0:05. The tolerated error arround the refereneshould be below 5%, and hene we set � = 0:0025:Aording to Theorem 3.1 we need to determine an upper bound of the input saturationDmax. Reall that l = 1. Hene by the zero entries ofK we need to determine upper boundsof the �rst and third reation rate. Sonnleitner and K�appeli [16℄ allow the parameters tovary within the following ranges0:24 � q;max � 0:264; 0:47 � �111 � 0:5; 0:05 � �113 � 0:1:An upper bound for the biomass onentration, taken from Feyo de Azevedo et al. (1992),is X = 3 [g/l℄. Hene the reation rates are bounded by'1(S;O;X) � 0:3187; '3(S;X;O) � 0:0637:Now it is easy to see that the fration on the right hand side in (3.2) is 0.3842. Therefore,we may hoose Dmax = 0:385 satisfying (3.2).15



If the design parameters of the �-traker (1.2) are � � 1 and r = Æ = 1, then for smallerror the growth of t 7! k(t) is \slow"; it is even slower if r > 1. To fasten this up, onehas to inrease Æ. For this reason we hoose Æ = 45, r = 1.Adaptive �-traker (1.2) with di�erent o�sets applied to (4.1): The simulationsshow that the �-traker is suessful and what the e�et of di�erent design parameters is.In the �rst run of simulations, depited in Figure 2, we hoose the o�set to be D� = 0(solid line). The gain inreases rapidly until it is suÆiently large after 2 1/2 hours sothat the substrate is fored into the �-strip (dotted line) around the referene setpoint.The simulations are performed over a period of one day, and the �gures are divided intoan initial phase of 4 hours and the remaining 4-24 hours. Sine S(t) remains inside the�-strip after t = 3 hours, the gain stays onstant and also longer simulations have shownk(3) = k(200) = 49:73. Note also that S(t) as well as the ontrol ation D(t) behavesmoothly without any overshoots. Moreover, D(t) does not reah the upper saturationbound. In a seond run we hange the o�set to D� = 0:2 (dashed line). One may thinkthat this should give a better behaviour sine D� = 0:2, also depited in Figure 2, islose to the steady state value observed in the previous simulations. Although the resultsare not signi�antly di�erent, the large substrate onentration at the beginning leads toa fast derease of the dilution rate within 1/2 hour, and from then on the behaviour issimilar to the �rst simulation. This di�erent initial period has the e�et that the erroris larger, leading to a slightly larger gain k(24) = k(200) = 50:42, and this larger gainfores the substrate loser to the referene setpoint than in the �rst simulation. The samee�et ould also be ahieved by a higher initial adaptive gain k(0), but this leads to aonsiderably larger terminal gain. The dashed line in Figure 3 shows the trajetories ofk(t), S(t) and D(t) when k(0) = 25 and D� = 0. For omparison the solid line depits thease when k(0) = 0 and D� = 0:2.The e�et of varying r depends on (je(t)j � �). If this di�erene is bigger than 1, thegain k(t) inreases rapidly when r inreases and the terminal gain might beome muhlarger than atually needed for the ontrol objetive. If the di�erene is smaller than one,the inrease of k(t) is more moderate. This is a illustrated in Figure 3 where satis�es(jS(t)j � �) < 1 for all t and the output S(t) enters the �-strip at about t = 7 hours ifr = 1 and at t = 11:5 hours if r = 3.The other variables - biomass, ethanol, oxygen, arbon dioxide - reah a 5% neighbour-hood of their steady states within 17, 30, 15, 15 hours, respetively (see Figure 4).Non-adaptive traker (3.7) applied to (4.1): In Figure 5 we show the simulationsfor the non-adaptive ontroller (3.7) when applied to (4.1). Again, we hoose D� = 0 andall the other data as in Figure 2. Aording to (3.6), the onstant gain parameter is setk0 = Dmax=� = 154. This onservative bound is more than three times higher than theterminal high-gain parameter k(1) = 49:73 found adaptively. The undesirable e�et of a"large" gain is the higher frequeny (hattering) in the dilution rate, see Figure 5. Thisobservation motivates the use of the adaptive gain ontroller in preferene to the �xedgain ontroller.Adaptive �-traker (1.2) with noise orrupting the output and applied to (4.1):The �-traker (1.2) an ope with noise orrupting the output measurement, provided the16



amplitude of this noise is suÆiently small in terms of the �-strip and the feasibilityondition. In this ase the measured error beomese(t) = xl(t)� xref + n(t);where the noise n(t) : R�0 ! R�0 is a bounded ontinuous funtion. If we set �n :=supt�0 jn(t)j, then it an be shown that xl(t) tends to [xref � (�+ �n); xref + (� + �n)℄ as tgoes to in�nity. We omit the exat statement and proof of an analogous Theorem 3.1, it isvery tehnial. Instead, we illustrate robustness of the �-traker with respet to stohastinoise (normal distribution, zero mean, variane one) orrupting the output measurement.If the model and design parameters are as in Figure 2, then the �-traker is not able tofore the substrate into the �-strip, and hene k(t) grows unboundedly. The reason isthat the stohasti measurement noise is too large in amplitude and too vivid. We donot depit these simulations. However, if we allow 10% traking error, i.e. � = 0:005,then the simulation results are quite satisfatory, see Figure 6. Certainly, sine the noiseis orrupting the measurement, the ontrol ation is diretly a�eted and hene orre-spondingly vivid. The �-traker regulates, as desired, the external substrate arround thesetpoint. In this set of simulations we have also shown the e�et of slowing down the gainadaptation by dereasing Æ = 45 (solid line) to Æ = 33 (dashed line). Æ = 45 leads to ahigher k(t), and this ampli�es the noise so that the ontrol ation is more vivid as wellas temporary spikes in the gluose onentration our. These observations hold also trueover the longer period of 48 hours, what an be readily seen in Figure 7 and 8. Comparedto the simulations without noise, the gain terminates at the same order of magnitude andthe transient behaviour of the substrate, although not quite smooth, is kept in the �-strip.Note that D(t) is depited in Figures 7 and 8 over a shorter time (24-30 hours) to givea better view on the atual input trajetory. Although the ontrol e�ort is onsiderablymore vivid than in the noise free ase, whih is not surprising sine the measurement noisehas a diret inuene on the ontrol, it is still realisable as a physial atuator. The othervariables, i.e. biomass, ethanol, oxygen, arbon dioxide are depited in Figure 9.6 ConlusionsIn this paper, ontrol of a wide lass of aerobi ontinuous stirred tank reators has beenahieved by a proportional error feedbak ontroller with input saturations, where the gainis found adaptively. It is proved that regulation of external substrates to a neighborhoodof a onstant referene onentration is possible under mild onditions. We have alsoworked out strutural onditions of the general proess model whih are essential whenexploiting them mathematially. As a side result we show that proportional non-adaptiveerror feedbak subjeted to saturation is possible for the lass of systems provided thesystem data satisfy a rude estimate. However, adaptive �-traking results in a muhlower gain.�-traking requires only very limited information of the system data and it readily toler-ates noise orrupting the output measurement. The only prie to be paid is that setpointtraking is not ahieved asymptotially but in a neighbourhood of the setpoint. However,17



the neighbourhood is prespei�ed and arbitrarily small, whih suÆes for pratial pur-poses.Another advantage of the �-traker over other approahes on ontrol of biotehnologialproesses, suh as PI or PID ontrollers as for example in Dairaku et al. [5℄, or adaptivelinearising ontrol relying on system parameters or invoking estimators for the systemparameters (see for example Chen et al. [4℄), is its simpliity. However, the "loser" oneomes to reality the more tuning of the design parameters in (1.2) is required.Aknowledgements: This paper was initiated while P. Georgieva was visiting the Shoolof Mathematial Sienes, University of Exeter, and it was ompleted while A. Ilhmannand P. Georgieva were both on study leave at the Institute for Systems and Robotis,University of Porto. The hospitality is greatfully aknowledged, as well as the sup-port of A. Ilhmann by the Portuguese Siene Foundation, Praxis XXI/BCC/20279/99.P. Georgieva aknowledges the support reeived by the Portuguese Siene Foundation,Praxis XXI, the NF \Sienti� Investigations", ontrat No. TN-715/97 and Junior Projet,ontrat No. I-4/98. We are indebted to A. Georgiev (So�a) for arefully working out theillustration in Figure 1.
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Figure 2: k(t), S(t) and D(t) for (1.2) applied to (4.1), Æ = 45, r = 1, � = 0:0025, D� = 0:2(dashed line), D� = 0 (solid line)
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Figure 3: k(t), S(t) and D(t) for (1.2) applied to (4.1), Æ = 45, � = 0:0025, r = 1,D� = 0:2, k(0) = 0 (solid line), r = 1, D� = 0, k(0) = 25 (dashed line), r = 3, D� = 0:2,k(0) = 0 (dotted line) 21
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Figure 7: k(t), S(t) and D(24 � 30) for (1.2) applied to (4.1) in the presene of noise,r = 1, � = 0:005, Æ = 45; t = 48[h℄
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Figure 8: k(t), S(t) and D(24 � 30) for (1.2) applied to (4.1) in the presene of noise,r = 1, � = 0:005, Æ = 33; t = 48[h℄
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Figure 9: X(t), E(t), O(t) and C(t) for (1.2) applied to (4.1) in the presene of noise,r = 1, � = 0:005, Æ = 33; t = 48[h℄
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