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A simple adaptive high-gain regulator is designed
Jor a non-linear multivariable biogas tower reuctor.
The controller achieves asvmprotic tracking towards
a pre-specified A-neighbourhood of a constant refer-
ence signal within a pre-specified time T. The adap-
tation strategy is robust against noise-corrupted out-
put and changing svstem parameters. It is shown
by experiments that it tolerates large disturbances.
The results have been tested on an industrial pilot
reactor.

Keywords: Adaptive control; Biotechnology: Non-
linear control: Process control; Robustness; \-Track-
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1. Introduction

In this paper. we introduce an adaptive multivariable
pH controller for a biogas tower reactor. The reactor
IS a new type for anaerobic treatment of waste
water. It has been developed at the Department
of Bioprocess and Biochemical Engineering at the
Technical University of Hamburg Harburg. The
adaptive controller was successfully tested over a
period of two months at a biogas tower reactor in
pilot scale located at the Deutsche Hefewerke
(DHW) in Hamburg. The control objective is to
keep the conversion rates of organic compounds into
methane and carbon dioxide constant. This will be
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achieved by regulating the pH values in each reac-
tor module.

There are numerous applications of control theory
results to single-input single-output pH control of
stirred  tank reactors: see Goodwin et al. [5] or
Flemming and Mogens [4], to name but a few.
However, these results are not applicable to the
biogas tower reactor. since a dominating feature of
the new reactor principle is its modular reactor
structure. Therefore, the plant consists of strongly
coupled subsystems and the control problem is
multi-input multi-output. Furthermore, the pH value
has to be manipulated by the waste water influent
rates and cannot be controlled by base or acid
titration as in most pH control applications.

From the control engineering point of view, the
first investigation of this new reactor principle is
due to Pahl et al. {21] and Pahl and Lunze [20],
where an overall model of order 36 was derived
via theoretical process analysis and validated exper-
imentally. This model is too complex for the control-
ler design. It is used as a reference for reduced
models. In Lunze and Pahl [16] a reduced four-
dimensional model was used to analyse the dynamic
couplings of the reactor modules in dependence on
different operating conditions. It is also used for
design, see llchmann et al. [9], where some experi-
mental results of adaptive control of the biogas
tower reactor are shown. Although some parameters,
in particular those of the reactor rates, are uncertain,
the reduced model preserves structural properties of
the process since it obeys the mass balance equa-
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tions. It appears to us that under these circumstances
an adaptive controller is appropriate.

However, adaptive control based on system identi-
fication cannot be applied. For this reason we apply
an adaptive controller which relies on the structural
properties of the system, such as minimum phase
and relative degree one, and is moreover very simple
in its design, it invokes no internal model and is
applicable to multivariable systems of unknown state
dimension. The adaptation is in the spirit of Ilch-
mann and Ryan [10]. It achieves tracking of the pH
values within a pre-specified A-neighbourhood of
the constant reference signals and within a pre-
specified time of 12h. This is important since the
biogas tower reactor is switched off over the week-
end and at the beginning of each week the adaptive
controller has to start up again and to find, due to
changed system parameters, its appropriate gain.

The biogas tower reactor in pilot scale [17] is
shown in Fig. 1. Waste water processed from a
baker’s yeast production contains sulphuric acid and
organic compounds. This waste water is fed into
the biogas tower reactor, where via microorganisms
an anaerobic biochemical conversion of the organic
influent compounds takes place. The total organic
carbon is converted into carbon dioxide and meth-
ane. As a byproduct, hydrogen sulphide is produced
which inhibits the activity of the methane-forming
microorganisms. The overall biochemical reactions
are described in detail by Friedmann and Markl [6].

The reactor consists of four identical modules
(see Fig. 1). At the top, a settler for effective
biomass retention is integrated. For better mixing
conditions, the waste water stream with flow rate
Jeea can be split up into four influent streams with
flow rates f.,;, where the ith stream is fed into the
ith module. These inflow rates are the four manipu-
lated variables u;. To avoid gas accumulation in the
upper zones of the reactor, gas-collecting devices
are installed in each module. By these devices, the
gas can be drawn off from the system. For better
liquid—gas mass transfer, biogas is recirculated into
the bottom of the reactor. To avoid accumulation
of inhibiting hydrogen sulphide in the liquid phase,
only methane and carbon dioxide are recirculated,
whereas hydrogen sulphide is removed chemically.
A single reactor module is shown in detail in Fig. 2.

Mixing behaviour: a baffle plate divides cach
module into two parts. Since the gas concentrations
at both parts differ, a hydrostatic pressure causes a
fluid circulation along the baffles similar to those
found in airlift loop reactors [3]. The fluid circu-
lation brings about a well-mixed system within one
module. A part of the gas rises from one module
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to the next and causes an exchange mass flow in
the liquid phase between the two modules that works
in both directions. The volumetric flow rate f,, of
the exchange mass flow is controlled by the biogas
flow rate drawn off [22].

Biochemical reactions: the microbacteria convert
the educts of the influent into several products which
are given in the liquid phase. By liquid—gas mass
transfer these substances form biogas bubbles.

The global control objective is to keep the effluent
concentrations of the waste water within legal limits.
This means that the removal rates have to be stabil-
ised. They depend on the non-measurable concen-
trations of weak acids inside the reactor and on
several surrounding conditions given by certain pH
values. temperature etc. It is known that there is a
strong correlation between the concentrations of
weak acids and the pH value [2]. Hence, removal
rates are stabilised indirectly if pH values are con-
stant in all modules.

Control variables are the pH values in each mod-
ule. They are measurable on-line and are determined
by the concentrations of weak acids. such as acetic
acid and carbon dioxide. Changes in these educt and
product concentrations are caused by biochemical
reactions and liquid-gas mass transfer. The pH valuc
in the coupled ith module is also influenced by the
waste water flow rates which consist of the exchange
flow between neighbouring modules, the accumu-
lated inflow rates from the bottom modules, and the
inflow rates fed directly into the module.

Manipulated variables are the inflow rates f,.,,;
for i=1....,4. For the experiments (see Section )
we applied the adaptive controller only to three
instead of four modules. The reason is simply that
the size of the actual settler was shown to be too
small for sufficient biomass retention. This restric-
tion will be avoided in future by reshaping the
settler to an appropriate dimension.

The controller design has to obey the following
restrictions:

e The main time constants of the process are about
6 h. Time changes concerning the growth of
biomass are even more than one order of magni-
tude higher. Compared to these main time con-
stants, the reactor is available for experiments
only for a very short time. This limitation con-
cerns the kind and number of experiments made.
As the main consequence, well-known methods
for system identification and adaptive control
based on system identification cannot be applied.

e Since the process knowledge is incomplete, the
process model has uncertain parameters, such as
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Fig. 2. Single module of the reactor.

the reaction rate parameters. Upper bounds of
parameter errors are known but the uncertainty
of some parameters covers orders of magnitude.

Control objectives:

I. The pH controller has to start up the reactor
within 12h at the beginning of each week In
such a way that pH values reach the pre-specified
operation area. The reason for this is that the
reactor input is switched off over the weekend,
which changes pH values considerably.

2. The pH controller has to attenuate the disturb-
ances in order to keep all pH values within a
pre-specified operating region. The controller
should hold all pH values within an interval of
+0.05 around the setpoints. This interval has
been chosen with respect to the attainable
measurement precision of the pH sensors.

The control objective has to be satisfied under the
following plant uncertainties and disturbances:

e Plant parameters change considerably at varying
exchange flow rates between neighbouring mod-
ules and the changing biomass concentration,
which both influence the reaction rates. This leads
to strong perturbations of the static reinforcement
and the time constants of the plant.

e Stabilisation of the operating points has to be
achieved in the presence of two main kinds of
relevant disturbances. First, daily calibration of
the pH electrodes causes stepwise output disturb-
ances which have to be compensated by the con-
troller.  Furthermore,  disturbance  signals — of

unknown characteristics such as changing influent
concentrations exist.

The adaptive controller introduced in the present
paper to meet the above objectives consists of a
non-linear state feedback law and a gain adaptation.
Let k(1) denote the time-varying gain which is tuned
adaptively by the size of the error signal

e(r) = (v, (1) = 1wy yu(n) = )t

Here v{(r) denotes the pH value in the ith module
and w; the set point, /= 1,...,4. The feedback law
is designed in such a way that the strong relative
degree one property of the system (which is crucial
for the high-gain approach) is preserved after having
closed the loop in the following sense: if k(r)e(r) 18
considered as input, then the system is of relative
degree one. The second part of the adaptive control-
ler is chosen so that it exploits the fact that the
larger the gain k(7) is. the smaller the error e(r)
becomes. However, we only want a gain as large
as necessary to meet the control objectives. There-
fore, we choose the gain adaptation

i) = {Y(He(I)H -0 Jlell el =\

0. el < o

where \ > 0 is pre-specified. Note that k(1) is strictly
increasing as long as the error is outside the closed
A-ball; if the error enters the A-ball, then it is kept
constant. It will be shown that k(f) converges (o a
finite limit whilst e(r) approaches the A-ball {e € R
<A} as t tends to =

The paper is organised as follows. In Section 2

e
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we derive and analyse the four-dimensional reduced
model of the biogas tower reactor. In Section 3 the
adaptation mechanism is introduced and convergence
is shown. Some simulations which illustrate the
effect of the adaptive regulator when applied to the
model of the reactor are given in Section4. In
Section 5 we present and discuss our experimental
results of the controller when tested at the real
plant. The paper is finalised with some conclusions
in Section 6 and the proofs of the main theorems
are given in the Appendix.

2. Process Model

In this section, we derive a reduced model from the
reference model given in Pahl and Lunze [20]. The
non-linear process model consists of four subsys-
tems, where each subsystem represents one module
of the reactor (see Fig.3). This model takes into
account the biochemical reactions investigated by
Friedmann and Mirkl [6] and results in the mixing
behaviour obtained by Reinhold [22]; it was vali-
dated by experiments; see Pahl and Lunze {20] for

details. The model is based on a mass balance of

compounds in the liquid and in the gas phase. Since
within a single module the liguid phase is well

A. lchmann and M. Pahl

mixed by the circulation flow, we assume lumped
parameters. The overall model is then based on the
mass balance of strongly coupled ideally stirred
vessels. Four compounds in the liquid phase are
considered. For a single module the mass balance
of these liquid phase concentrations is given by

d 1 :
dl X (’) - ‘7” (Cin(t)fin(’) - X(t) /z}fi::,j(”)

I —r (1) |

+ ) (2)

where we use the following notation:

V, liquid phase volume of each reactor module

C,(n matrix of inflow concentrations (feed con-
centrations and concentrations between
neighbouring modules)

f, () vector of volumetric inflow rates (feed flows
and exchange flows between neighbouring
modules)

Influent Rate 1 PH,
u=[ Influent Rate 2 y= pH,
Influent Rate 3 pH,
influent Rate 4 pH,

Fig. 3. Reduced model for pH controller design from the overall model of the Biogas tower rcactor.
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S (1) volumetric inflow rate j

r.1 reaction rate of compound *

m,,..(1) liquid-gas mass transfer rate of compound *
K reaction rate parameter

and x(1) € R* denotes the vector of the concen-
trations in the liquid phase. The first summand of
the right-hand side of (2) describes the difference
between mass inflows and mass outflows. Note that
in addition to feed flows coupling mass flows exist.
As explained in the Introduction, an exchange flow
between neighbouring modules occurs in addition to
the feed flows into each module. Hence, several
mass flows have to be considered for the mass
balance of a single module. All volumetric inflow
rates and all influent concentrations are summarised
in a vector f, and a matrix C,,. Since the liquid
phase volume is constant, the volumetric outflow
rate equals the sum of all influent rates f, (1) for
j=172.3. The right summand contains the source
and sink terms. They depend non-linearly on the
concentrations x,,...,x,. For instance, for the two
inner modules (i =2,3) we have

Crecdd Xii-1 Xy

. Croed2 X201 Xo
(-’m = ?
Cloea s X3i-1 X3
Creeda Xaj-t X4
f_‘/('(’(/.i
— g v i—1
fm - .f(‘\./*l + /:l_f/'c('(/,/'
.ﬁ'\.i

where f.., denotes the exchange flow rate between
module / and the upper module i + 1.

The overall model consists of four modules, and
is therefore given by four equations of the form (2)
and some balance equations of the gas phase. The
pH values depend non-linearly on the liquid phase
concentrations X.

Since the model is of high order and contains
strong non-linearities, we were unable to use it
directly for the controller design. Hence, a model
of reduced order and complexity is derived from
the overall model and used for the design of the pH
controller. This will be described in the remainder of
this section.

The educts and products of the biochemical reac-
tions are mainly weak acids such as acetic acid,
propionic acid and carbon dioxide. Their concen-
trations influence the pH value, which is defined by

pH = —log,,{BH"}

where H' denotes the hydronium concentration and
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B the activity coefficient, which can be assumed to
be constant in our case.

Although in general the dissociation character-
istics of the aqueous solutions are strongly non-linear
and there is no one-to-one relationship between the
respective concentrations, it is shown in Pahl and
Lunze [20]} that, within the relevant interval of the
pH value {6.8, 7.5], a linear approximation describes
the process sufficiently accurately with respect to
controller design purposes:

pH(t) = pHy — n1yx (1) — maxs(1) (3)

where pH,, m,, m, are constant positive parameters
and x,, v, denote the acetic acid and the carbon
dioxide concentration, respectively. Changes in the
pH value are determined mainly by concentration
changes of these compounds, whereas small concen-
tration changes occurring in the other compounds
showed only a weak influence on the pH value. We
stress that a much more accurate model could be
given. But in this case the reduction of the model
complexity is an essential step in deriving a process
model that is suitable for the controller design.
Figure 4 depicts the pH value depending on the
main concentrations Ca¢, Cco,, where the concen-
trations of the other compounds, which vary only
slightly in the region considered, are kept constant.
This is explained and justified in Pahl and Lunze
[20]. It can be seen that the quality of a linear
approximation is sufficient in the relevant operation
range pH e [68.....75]. and x, € [0.....0.2]
[mole/l], x> € [0,...,0.3] [mole/l].

Now the reduced model is derived by combining
(2) and (3) as follows. Considering (3) in the mass
balances for x, and x, yields, for instance for i =2, 3

Fig. 4. Non-lincar dependence of pH value on ¢, and ¢, for
the relevant concentration intervals.
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d pH{1) .
Ty M X () + my Jp (1)

1
= V [f}(*(’zl.i(I)Hﬁ'wl.i - le)
1

+ foin(pHiy — pH))
+fex,i(17Hi+1 - pH})]

1roxnd

",
+ K —m) ——m
Vy

where the pH value of the inflow is calculated by
PHyoui = pHo + my Xppuy + Mo Xpun
The sum of source and sink terms

1

5
Fty =y (K —my) — V— My i (4)

N

can be interpreted as a fictitious reaction rate which
summarises pH changes caused by the biochemical
reactions and the liquid—gas mass transfer of carbon
dioxide. It can easily be shown that these rates

satisfy the crude affine linear bound
0<rdt) <po+p pHD), 1=1..4 (5)

for some positive py, p, € R, as long as the pH
value is in the relevant region. In matrix notation
we derive the following non-linear state space model

y(1) = Ay(n) + r(y() — G(y(0) u(?) (6)

where

MOESNOROANOANGIE
= (pH (1),pHA(£) pH(D) pH, ()" e R
denote the state respective output signals,

u(r) = (u,(0),ux(0),u3(0),us(1))”
1 ..
= v Freedt O reea 28 Lreea 3O Sjeea st '
/1

are the influent rates, i.e. the input signals,

—a, a, 0 0
a, —(a, + a, a 0

A - { ( 1 _) 2 (7)
0 a, —(a, + a3) as

0 0 s —d5

with a,=f,.; >0, i=1,...,3, stands for the exchange
rates between the neighbouring modules,

r(Y) = (ry (v raya)” (8)

is the vector of the source terms satisfying (5) and

A. llchimann and M. Pahl

Vi = Vyeed 0 0 0
Ya= ¥ V27 Niea 0 0
Gly) =
Ya—=Yr Yi—¥2 Y3 = Ve 0
Ya—Y¥s  MTM0M Va= ¥y Nam Ve
Yieed = 0 %)

represents the effect of the inflows on the upper
modules.

From a mathematical point of view, we observe
the following properties of the model (6):

e For any initial condition y(0)=y, € R} and any
locally integrable u(-) : [0, x) — R*, there exists
a unique solution y(-) : R, — R} of (6) as long
as y(f) remains in R}

e The non-linear system (6) is of strong relative
degree one [14] as long as yi(f) # ¥, for all
i=1,....4. In Theorem 3.1 we will prove that this
holds true for the initial conditions and setpoints
relevant in this process.

e The matrix A is singular since A (1.....1)7=0.
Since rk A =3, the spectrum of A consists of 0O
and some eigenvalues unequal 0. By Gershgorin’s
circle criterion we might easily conclude that all
other eigenvalues are lying in the open left half
complex plane; in fact they are negative since A
s symmetric.

Hence, if the reaction rates are zero, i.c.
r(-) =0, and if u(-) =0, then for every initial
condition y, € R* the solution of (6) tends to
the steady state of this compartimental model
c-(1,....,1)7, for some ceR. If r(-)#0 and
u(-) = 0, then by (5) the system becomes unstable.
This is also intuitively clear: if the input is
switched off or is relatively small compared to
r(-), then the pH values will increase until all
concentrations of weak acids are zero.

e If (6) 1is in equilibrium, ie. for some
Y=,y  and u = (uy,....u;)" € R* we have
0=Ay+r(y)~Gyu. and if 0<y,,<
v, < ... <y, then it is straightforward to show
that u e R%.

We stress that the model (6) is very simple com-
pared to the reference model by Pahl and Lunze
[20]. Process information is lost due to the accumu-
lation of several reaction rates into r(y). Thus, the
model cannot be used for prediction purposes. How-
ever, it obeys the mass balance Eq. (1) and hence
exhibits the essential structural properties. This will
be important for the design of the adaptive controller
in the following section.
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3. Adaptive Controller

In this section, we will present the adaptive regulator
which achieves, when applied to (6), tracking of the
reference signals within a pre-specified A-neighbour-
hood whilst preserving boundedness of the remain-
ing variables.

3.1. The High-Gain Approach to Adaptive
Control

The concept of high-gain stabilisation without identi-
fication was initiated by Willems and Byrnes [24]
and Morse [18]. From then on, it became a rapidly
growing field of interest for many different system
classes; see Ilchmann [7] for a bibliography. The
idea of incorporating a ‘dead-zone’ in the adaptation
was first used by Miller and Davison [19] and the
N-tracking concept as used in the present paper is
similar to that in Illchmann and Ryan [10] and to
Allgower et al. [1].

To provide the reader with an intuition of this
concept, we consider the simplest example we can
think of. Although the actual model, to which the
adaptive regulator is applied, is non-linear, we will
first study the effect of the adaptive controller on a
linear first-order system of the form

v =a vty +gu(t), y0)=y, (10)

for unknown v, « € R, g > 0. Consider the time-
varying proportional error feedback

1wty = —k(n)e(t) (1)

where v, € R denotes the setpoint to be tracked
and the monotonically non-decreasing function k(-)
. [0, ) — [0, ) is determined by the gain adap-
tation (1) with A =1.

If (11) is applied to (10) (for simplicity we may
assume that finite escape time of the nonlinear
closed-loop system (10)—(11) does not occur), then
the closed-loop system may be rewritten as (1) plus
ety=[a—k(ng] e(ty+ay,, e0)y=ey=y,—y,, and
an application of the variation-of-constants formula
together with the monotonicity of 1+~ k(¢) leads, for
all r = 1, and sufficiently large ¢, = 0, to

e(t) = ¥(1) = ¥y »

) |(1»\7”1A7 -
~la ~ k(ty)g]

Suppose, for a moment, that k() tends to « as 1
tends to %. Then (12) yields |e(r)] — 0 as 1— =.
Therefore. there exists some f, >0, such that
e(n)) =\ for all r=1. However, this contradicts
our assumption of unboundedness of k(-) and hence

€(Y)| < pla-kugli=1y)

(’(f())j + (12)
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(1) implies boundedness of k(-). Roughly speaking,
the gain increases as long as y(r) 1s outside the
interval [y,.,— N.y,.,+A]. If the gain is sufficiently
large, then |e(r)| tends towards [0, N].

A remarkable property of the gain adaptation (1)
is that it tolerates output which is corrupted by
additive noise. If an upper bound for the noise is
known in advance and X\ > 0 is chosen larger than
this bound, then the error e(z) = ¥ +n(f) — v,
where n(-) denotes the noise—signal, is forced into
the A-strip. This property is due to the ‘dead-zone’
incorporated in the gain adaptation.

3.2. Adaptive Controller

We will prove that the same idea as in Section 3.1,
i.e. high-gain to produce a stable output of the
closed-loop system and converging gain if the error
is sufficiently small, also works for our non-linear,
multivariable model (6) of the biogas tower reactor.
However, the application of the A-tracking concept
is not directly possible. This is due to the non-
negligible non-linear couplings of the modules.
However, we will introduce a feedback which
decouples this structure whilst preserving the struc-
tural properties of strong relative degree one and
minimum phase.

The control objective is to A-track a constant
reference signal

Vier = (Wpoeoow)” with ye, <w, < ..o <wy

N-Tracking means that we want the output v,(/)
to reach asymptotically a A-neighbourhood of the
reference signal w,. More precisely, we want

e([) = (yl(t) - Myh"'s,\u(l) - M‘J)T = Y(f) - yl'({/

to approach the A-ball {e € R*| |le] <A} as 7 tends
to . This will be achieved as follows.
The non-linear adaptive feedback is defined by

u(f) =u + v(r) (13)

where the components of v(t) = (v, (1), --,vu(0)T are
given by

N U
vi(t). = V() = Viewu (1) —wy)

ko
(1) = Va1) — Vyoou (val1) — wo)

Yalt) = v,(1)
- VZ([) - y/um/ ul([)
k

vi(1): = w_ (y3(D) — wy)

¥3{0) = Vyeeu
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¥a(t) = ¥a0)
- V(D) = Vyeeu L, (1) + ux(D)]

= - lf(t) — (v ([ — )
O 0 = v (all) = s

(1) — vt
DT )k + o)
Valt) = Yyoou
u e R* may be arbitrary, but a sensible choice
woulld be an approximation of the component of
an equilibrium point (y, u), i.e.

Ay +r(y)+ G(y)u=0 (14)

We stress that the u-terms in the v,s are chosen in
such a way that, if (13) is applied to (6), then
k(te{r) does only influence é(r) directly. In fact,
we will see in the Appendix (see (22)) that the
closed-loop system may be written as

&(r) = Ae(r) + f(e(r)) — k(ne(1)

where f is some affine linearly bounded function.

The gain adapration is given, for pre-specified
A >0, by (1). The design parameters k(0) =k, =0
and v >0 influence the dynamics and size of the
gain. The gain is strictly increasing as long as the
error is outside the closed A-ball; if the error enters
the A-ball, then it is kept constant.

3.3. The A-Tracker

Our main result is convergence of the simple
adaptive strategy (1),(13) if applied to the model
(6). Certainly, it has to be shown that the feedback
(13) is well defined. i.e. y(1) > ¥, for all =0,
i=1,...4

We suppose that the initial values for the pH
values within the modules are strictly increasing
from the lower to the upper modules. This is always
the case since the sum of gas compounds solved in
the liquid phase of the biogas tower reactor influ-
ences the pH value in dependence of the hydrostatic
pressure. Products such as carbon dioxide are the
more soluble the higher the hydrostatic pressure.
We also suppose that the reference signals, which
the pH wvalues should converge to (within a
neighbourhood), are ordered in size.

Theorem 3.1. Suppose
Ve Vs N >0, ko= 0, ue R:
Yo = (,\'(l)v - ~,_\'(4)) with v, < )’(I) <.

and

A. llchmann and M. Pahl

Yooy = (Wipeoowy) with vy, <w' <. <w!
(15)

are given. The A-tracker (1),(13) applied to any
system (6) with initial conditions y(0) = yq, k(0) = kq,
yields a closed-loop system which admits a unique
solution

(y(-).k()) < [0, =) — R x [0, =)
and satisfies

1. Y1) > Yjeou for all 1 =0 and i=1,...4, L.e. (13)
is well defined;
2. lim k() = k. € R exists;

[

3. |ly() = y,./l approaches [0, \] as ¢ tends to .
Proof. See Appendix. O

Remark 3.2. In Theorem 3.1 we prove that for the
adaptive feedback controller (¢) remains larger than
Vieear 1€ Y1) > vy, for i=1,.4, provided the
components of the initial condition y(0) satisfy this
condition. Moreover, it also holds true that the
ordering Yy.s < ¥y < ... <y is preserved for the
components v,(7), provided the non-linearities r{y,),
see (5), are sufficiently small in terms of y,v.., and
A. We prove

Vieea < ¥i() < ..o < ay(r) forall 1=0
(16)
it r(-)=0. It is then easy to conclude that (16)
remains valid if r(-) is small.
For equilibrium (14) it is obvious from (23), note

k=0, that u; > 0 for i=1,....4. Applying (23) once
more, we obtain

d
g 1O = y2(10) = = aslva(0) = y2(0)]

- (- .‘f/m/)ax + (vo(1) - _‘f/'m/)az
— k(D[ (1) = w —y()) +wo]  (17)

If (16) is false for the first time at r=1¢', and we
have v,(t') = y,(¢'), then (17) yields

glit () - )'2(’))‘:::' == as[y;(t") — y.(t)]

— (1) = Veedlty + u5] = K(O[w, ~w ] <0

This contradicts v,(t') —y,(t')=0. To prove the
remaining inequalities in (16) proceed in a similar
manner, this is omitted for brevity. Note that (16)
is not crucial for the application of the A-tracker
(1),(13), it is only an additional information.
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3.4. N-Tracking Within Pre-specified Time

In Theorem 3.1 we have guaranteed that the error
approaches the A-ball asymptotically; nothing is said
about the length of time it will take. By a simple
modification of the gain adaptation (1) we can
ensure that the error will enter the A-ball within a
pre-specified time 7.

Consider, for pre-specified <,,y.,A,7>0 and

k=0
KD = ko + j dy(e(s)e(s)ds
(4]
llecol
Hz{r—f”em”*) (18)
kx| 1= r*
where

dye) = W ~ 0. el = A

0. el <n’
. 3
tk = [Tlln{f € [077) “e(I)H - E )\} ’
o e(rlF
k® = T — px

Note that (18) is equivalent to (1) if y,=0. The
intuition behind this gain adaptation is as follows:
if + approaches T, then the third term on the right-
hand side of (18) becomes very large, as long as
lle(n)l| is not very close to zero. Thus, the high gain
forces the error to tend to zero until it hits X, then
the error is within the A-ball and from then on the
adaption is not different from the previous one
in (1).

Theorem 3.3. Suppose the assumptions of Theorem
3.1 and v,,y,,7 > 0. If the N-tracker (13), (18) 1s
applied to any system (6), then the closed-loop
system possesses a unique solution

(y(-), k(-)) 1 [0, =] — R* x [0, =)
and satisfies

1. ydt) > ypey for all +=0, i=1,...
well defined;
2. lim k(1) =k.. e R exists;

A, 1e. (13) 1s

3. there exists some 7+ e [0,7) such that [le(r+)|
i
4' Hy(t) _yr‘q/

approaches [0, A] as ¢ tends to =.

Proof. See Appendix. O

Remark 3.4.

1. Robustness of the adaptive controllers (1),(13)
and (18) holds with respect to the following
perturbation and disturbance by the time-varying
non-linearity & : R, x R* so that the affine lin-
ear bound

Ay + r(y) + 3. ¥ = a; + s

y € R,

yll

for all te R,

still holds for some unknown constants «,,a, > 0.
For instance, the matrix A may be perturbed by
a time-varying matrix A(r), or we have unmod-
elled non-linearities or the exchange flow rates
may change during the operation. The proof of
this 1s straightforward and omitted for brevity.
Robustness against changing exchange flow rates
is of practical importance because the exchange
flow rates may be changed during the operation
so as to control the distribution of the biomass.

As mentioned in Section 3.1, the adaptive con-
troller can cope with output-corrupted noise. This
is due to the dead-zone incorporated in the gain
adaptation.

The right-hand side of (6) might also be mod-
elled by some retarded or integrodifferential sys-
tem as considered in Ilchmann and Logemann
[8]. The proof that these perturbations can be
considered for our particular application is also
omitted for brevity.

We are also convinced that the results remain
valid in the presence of model mismatch, such
as fast actuator dynamics (provided the parasitic
poles are sufficiently large), respectively if there
are some unmodelled high-frequency parasitics
which are fast enough.

2. Input constraints were implemented in the simul-
ations and the adaptive controllers worked fine
as long as the constraints were not too tight (see
Section 4). More importantly, the real application
was installed with input constraints and worked
successfully for two months (see Section 5).
However, we were unable to prove these results
theoretically but we are hopeful that this will be
possible. In an application of a similar control
concept to anaerobic fermentation processes
(which does not have the strong non-linear coup-
ling as in (6)) we give bounds for the input
constraints so that the controller achieves A-track-
ing, see Ilchmann and Weirig [12].
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4. Simulations

The application of the adaptive regulators (1),(13)
and (18),(13) to (6) was simulated for representative
plant parameter sets and controller design para-
meters. In all simulations the given objectives were
met as stated in Theorems 3.1 and 3.3 with reason-
ably good transient performance as shown below.

As a typical example we choose the following
system parameters for (6), for i=1,...,4:

a;=01[h"], py; = 107477,

po; = 0.3 - 107°(A7"], vyeou = 4.5 (19)

where po; and p,; are the reaction rate parameters
according to (4). On the time interval [0, 1.8], the
input of the system is a constant u(:) = u and the
system is in steady state. At ¢=1.8[h], we will
apply our control mechanisms to track two reference
signals of different amplitude (Simulation 1 and
Simulation 2). The effect of input constraints will
also be demonstrated. Note that the initial time is
t=1.8[h] and not t=0 as in Theorem 3.1.

Simulation 1. Set

1 I
— ()= —
u

u = (0.05, 0.025, 0.025. 0.01)"

Max max

for all t e [0, 1.8], u,,,,, = 0.084[h™"]

In Fig. 5 it is shown that the system is at rest on
this interval with

u(tyu, .,
0,5 —

0.4 —
03
0,2 —

0.1

0o I T T T
2

ko | _

0 T T T I

-3
N
ES
-3

8
time [h]

A. Hehmann and M. Palil

y() =y =1(7.3,7.35,74,745)"
forall r € [0, 1.8]

At r=1.8[h] switch on the adaptive regulator
(1),(13) with design parameters
v=14Mh0",A=0.05, k(1.8 =0
u := (0.05, 0.025, 0.025, 0.01)" (20)

to track the reference signal
Yoo = (7.1,7.15,7.2,7.25)"

The transient behaviour is shown in Fig. 5. The
norm of the error signals reaches the desired toler-
ance band in less than 3 h and stays within this
band afterwards.

The gain settles at approximately 11. Note that
there is no overshoot for y(t) and oscillation does
not occur. These simulations have a practical back-
ground. The biogas tower reactor might have been
shut down for several days, e.g. over the weekend
when yeast production rests. During this time pH
values increase and the control objective is now to
steer them down to some appropriate operating lev-
els for high biogas production.

Simulation 2. A similar simulation as in
Simulation 1 is shown in Fig. 6, where the only
difference is that the given reference signal is further
away from y, namely

Y. = (6.9, 6.94, 6.96, 6.98)"

y(®)
7.4 ™1
7.3
module 4
7.2 module 3
. module 2
71 modute 1
T T T T
0 2 4 6 8
He(l
0.4 —
0.3 —
0.2
0.1 -
A=0.05
0.0 T T T !
2 4 8
time [h]

Fig. 5. Adaptive regulator (1),(13) with design parameters (20) applied 10 (6) with systems parameters (19).
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u(t)u
M y(t)
20 - 74
7.3 1 closed-oop with
15 closed-loop with input constraints
input constraints 72
1.0 -~ 7.4
05 7 mg
module
69 — module 1
0,0 T T T T 1 T T T T
[ 2 4 6 8 [} 2 4 6 8
k(t) i lle (Ol
36
\ 08 -
29 — closed-l0op with input constraints
06 closad-loop with
21 —~ input constraints
04
14 ~
7 0.2
A=0.05
A
0 T T T T 0.0 T T T T
0 2 4 8 .8
time [h) time [h]

Fig. 6. Adaptive regulator (1.(13) (with and without input constraints) with parameters (20) applied to (6) with parameters (19).

Reference step which causes saturation of control signals.

Qualitatively we obtain the same result. An interest-
ing difference occurs if the input signals are sub-
jected to the following saturations:

ui(r) € [03 unu/,\] I = l L ‘s4
and u,,,, = 0.084[h""]

for
(21)

In the case of input saturation (21), the time until
the norm of the error reaches the tolerance band is
longer. Consequently, also the gain settles down at
a higher value since the error |je(r)|| remains outside
the A-strip for a longer time. Note that in all three
simulations the control objectives are met without
any oscillations, which was also typical for all other
simulations made. We would also like to stress that
the term ‘high-gain’® might be misleading. Although
theoretically our approach is high-gain, in practice
the terminal gain is only slightly larger than neces-
sary for achieving the given control objectives.

5. Experiments

In this section, experimental results are given which
show that the controller (1),(13) and its modified
version (18) worked successtully in the biogas tower
reactor. Although the model was derived and ana-
lysed for four modules, the controller was tested
only at three modules. The reason is simply that
the size of the actual settler was shown to be too
small for sufficient biomass retention and module

four was also taken as a settler. This restriction will
be avoided in the future by reshaping the settler to
appropriate dimensions. It is easy to see that our
previous analysis holds true also in the general case
of i modules, where i = 2. The control law was
implemented on the process control system by a
discrete integration algorithm where a sampling time
of 6 min was used. Note that although not theoreti-
cally proved for the present non-linear application,
we proved in llchmann and Townley [11] that \-
tracking of linear systems is feasible if the output
sampling period is chosen sufficiently small.

The controller (1),(13) was tested with the para-
meters (20) but u=(0, 0, 0)" and reference signal

Yo = (6.9, 6975, 7.075)"

where waste water was not fed into the fourth
module and consequently we only have three refer-
ence signals. Note that the control loop contains the
saturation of control signals because the control
range of the valves used for feeding the waste water
into the reactor is bounded. We put

ul(’) e [O’ Ml”(l,\'] for ul”d\ = 0'084[hA1J

The experimental results are shown in Fig. 7. The
command tracking is reached without any oscil-
lation. The desired pH tolerance band is entered
after 24 h. The gain is about 57[h™'] at r=75[h]
(with respect to a dimensionless input signal in
Fig. 5). which is not too large. The stepwise disturb-
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time
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©
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[
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100 —
s0 o module 3
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time

Fig. 7. Experimental results: adaptive regulation of the pH values with controller (1).(13).

ances are caused by the calibration of the sensors
at 1="70[h].
In the second experiment the modified controller
(1),(18) with parameters
v, = 14h .y, =7140(-], T=

N =0.05. k0)=0

il

12[h]

is used. The results are depicted in Fig. 8. Note that
the reactor was shut down over the weekend, which
means that the influent rates were set almost to
zero, similar to the first experiment. As shown in
Fig. 8 the controller is started at pH values which
are at the upper level of the possible range. After
less than 6 h the pH values are inside the tolerance
band. The pH value of module 3 leaves the tolerance
band because of the saturation of the influent rate
3. The setpoint of pH;, which is chosen too large
for this experiment. cannot be realised within the
possible range of input flow rates. For such a situ-
ation we implemented the strategy to switch off the
gain adaptation as long as the input hits the input
constraints; here (1) does it at ¢ =52[h], see Fig. 8.
The other pH values reach the tolerance band and
then remain inside it. The gain settles also below
60[h~'] at +=352[h] (with respect to a dimensionless
input signal in Fig. 5), which is not too large. With
the modified controller start-up is also performed
without any oscillations.

From a practical point of view, it is sensible to
reset the gain whenever the control engineer is sure

75

module 3

pH

74 4

7.3 —

7.2

70 —

6,9 ~4X

68 T T T
56h42m

48h42m 84h4zm

time

that an increase of the gain was due to the reaction
to unusual disturbances which have vanished.

6. Conclusions

We have designed a simple adaptive regulator for
a four-dimensional non-linear model of a biogas
tower reactor. A reactor of this type has been
developed at the Department of Bioprocess and
Biochemical Engineering at the Technical University
of Hamburg Harburg. A pilot reactor of almost full
scale (20 m high. 1 m in diameter) located at the
Deutsche Hefewerke (DHW) in Hamburg was used
for testing the controller. The regulator is not based
on any identification mechanism but on a simple
high-gain principle. It is proved that it achieves
setpoint tracking within tolerance bands of pre-speci-
fied bounds. If tracking is required within a given
time, it is proved that this can be achieved with a
minor modification of the gain adaptation. The regu-
lator is very simple in its design and robust with
respect 10 parameter uncertainties. We have shown
in simulations that the controller works well if
applied to the model, the command tracking shows
no overshoots and the gain does not become much
larger than is necessary for tracking. Most
importantly, the adaptive regulator has been success-
fully applied to the real biogas tower reactor for
two months. In practice, the adaptation mechanism

500 J
—
Y g
=
= 400 -
© module 1
® module 2
o i ule
- 300 /
[t
]
& 200 —
£
100 — module 3
0 T T T T
48h42m 56h42m 64h42m

time

Fig. 8. Experimental results: start up with the modificd controlier (1).(18) after the reactor was shut down for scveral days.
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was implemented with input saturation and the
experiments were convincing. However, we could
not prove mathematically that tracking can be achi-
eved subject to input saturations. Another practically
relevant, but theoretically not yet investigated, modi-
fication is gain resetment. Each experiment has been
performed over a period of one week. The gain
adaption was applied over this period and at each
start-up (at the beginning of the week) the gain was
reset. For longer operation periods, a reset should
be done automatically if the gain reaches an upper
bound due to strong disturbances.
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Appendix
Proof of Theorem 3.1. With the notation
e(’) = Y(f) - yr(f_/'v
- A =
=M M=
0, llell < A

U,

(ot
If
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the closed-loop system (6),(13),(1) may be written as
&) =— (kN — A + U) e())
+(A -y,
+ r(e(t) + Y,
+ VeedU(L,e., DT, €(0) = y(0) — y,.,
k() = ydu(e()) lle®]] . k(0) = ko

(22)

By the classical theory of ordinary differential equa-
tions, (22) possesses a unique solution

(e(-).k(-)) : [0,) — R®

maximally extended over [0,7] for some 7 e (0, =].
We now proceed in several steps.

a. To prove 1. on [0,0), first rewrite (6),(13) in y-

coordinates as follows (for brevity we omit the

argument 1)

Vi=a(ya—yi)
+ () = O = Ve — Ky = w))
V2 =a(yy — ¥2) + axys = y2)
+ 15(y2) = (V2 = Yped) Tz — k(v2 — W)
V3= a2 — y3) + ax(ya— i)
+ r3(3) = (V3 = Yyee T3 = K(v3 = w3)
Ya = az(yz — va)
+ 1a(Va) = Vs = Yyeed s — k(yq — wy)
(23)

By assumption (13), the initial values y,(0),...,v4(0)
are greater than y,.,. Seeking a contradiction to 1.,
suppose there exist some ' e (0,f) such that

Yilt') = Ve a0d Y{I') Z Yyou
for alli e {1,2,3,4}\{iy}
If i, =1, then by (23) we have
() = a2t = Vieed) + 1i(i(1")
= k(") Yjeea = W1)

whence, by (5) and (15), we may conclude
v.(')>0. This contradicts the assumption
vi(t') = Ypea. The proof for i, =2, 3,4 is analogous
and omitted for brevity. This proves the statement
1. for all r € [0, 7).

b. We shall prove that k(:) is bounded on [0, 7).
Differentiation of the Lyapunov-like candidate

1
Vie) = 5 dy(e)?

A. llchmann and M. Pahl

along (22) yields, for all t € [0, 1)
2

Tl (e(n), &(n))

d% V(e(n)) = dy(e(1))
= —d,(e(1)) 2o (e(1), k(ne(n))
el
+ d,\(e(1) 2
lleCo)l
(€(1), (A = De(0) + ¥,
+r(e(t) +y,.,)+ VieeaU - (1,-,1))
By assumption on r(-) there exists some M >0, so

that for all ¢t € [0, 1),

d 2
a4 V(e(n) < — = k(tyydy(e()) [le)||
Y
+ Md,(e()) (1 + |le(®|)

s_%MMm+Mmmm

(‘~ 1)n u 2
)\+ e(r) (24)

[ 2 M(1 + x)} .
=|—— k() +-————"1 k@)
Y Ay

and hence, by integration and the substitution of
n=k(T),

0 = V(e(r)) = V(e(0))

&
+ — = k(1)
ol Y

M + x)].
+ —— k(T)dT
Ay
k()
:wmm+f L2H+Mﬂ+mku
ol Y Y
- Ve(oy - T HO
Y
M(1 +))
N (k(1) = k(0)) (25)
Y

If lim,_; k(¢) =c°, then the right-hand side of (25)
tends to —o as t tends to f, hence contradicting
boundedness from below. This contradiction proves
boundedness of k(-) on [0, 7).

¢. Boundedness of k(-) on [0,7) yields, by (25),
boundedness of e(-) on [0, 7). Hence, there does not
exist a finite escape time, i.e. f=2c, and therefore
1. and 2. are established.
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d. By (24) and boundedness of e(-) and k(-) on
[0, =], there exists some M, > 0 such that, for all
t=0

d ,
dr Vie(t)) = M k(1)

The derivative of the sign-indefinite Lyapunov func-
tion

W(ek) := V(e) — (M, + 1)k

along (22) satisfies, for all 1 =0

9 e an =2 v
4 WEOK®) = 1 Vie(w)

— (M, + Dk(t) = —k(1) (26)

Since e(-) and k(-) are bounded, we may apply
LaSalle’s invariance principle [15] and conclude
from (26) that (3) holds true. This completes the
proof. m]

Proof of Theorem 3.3. The closed-loop system
(6),(13),(18) may be written as, for all r € [0, T)

% e()=— ki, A+ D) e(t) + (A1) y,,

+1(e() + Y,op) + VieedU(1,,1)7
k(ty = y,dy(e()) Jle(n)]

{2 (e(t),6(1)) N
+ Y

T-1t
with initial conditions e(0) = y(0) -y, k(0)= k.

It is straightforward to check that the right-hand
side of (27) is continuous and locally Lipschitz in
(e,k) for fixed r e [0, T), and locally integrable on
t € [0,7) for fixed (e,k). Hence, see for example,
Sontag [23], there exists a unique solution (e(-),k(-))
1 [0, ) — R maximally extended over [0,7), << T.

Note that t+> k(¢) is no longer monotone as in
Theorem 3.1.

We first show that r+ <7 Differentiation of the
Lyapunov-like candidate

llecol
(T =1y

0, t = px

, t e [0, )

(27

1
Wie) = 7 [lell
along the solution component of (27) and using (5)

yields, for some M >0 and all r € [0,

d
oy WCED) = (e(n).e(n) = — [k(t) - M] [0

+ M+ M |et)|
= — [k(t) — M — 1] [le()|]
+M+M (28)

With the notation I\N'(I):k(I)AM—l and M = M +
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M?, an application of Lemma 3.2.4 in loannou and
Sun [13] to (28) yields

r

Wie(n) = e[ S W(e(0)

+ j e[ Ko 0T d (29)

4]

If k(-) is unbounded on [0,7), then (29) yields
e(r) — 0 as t— 1, and therefore either r+ <7 or k()
is bounded on {0, 7). If the latter holds true, it
follows from (27) that e(-) is bounded, which contra-
dicts that finite escape time occurs at 7. This pro-
ves rk <[,

The remainder of the proof follows from
Theorem 3.1 since for t = r*+ the ‘gain adaptation (1)
and (18) coincide. This completes the proof. g
Nomenclature
(x,» Euclidean scalar product for x,y e R”

a exchange flow rate

B activity coeftficient

vy design parameter of the controller

A size of the tolerance band

c concentration of compound in liquid phase
f volumetric liquid flow

H* hydronium concentration

i module number

K reaction weighting (without index)

m mass flow

pH pH value

r fictitious reaction rate
R set of real numbers
R, set of positive real numbers
p reaction rate parameter
t time

u input signal

1% volume

X state variable

X state vector

y output signal

y output vector

Indices

ex exchange

feed waste water inflow

A fluid

n inflow

tr transfer
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