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This paper introduces the concept of stability radius for time-varying linear
systems. Invariance properties of the stability radius are analysed for the group of
Bohl transformations. We also explore the relationship between the stability radius,
the norm of a certain perturbation operator, and the solvability of a nonstandard
differential Riccati equation. As an application we construct robust Lyapunov
functions and show how they can be used to analyze robustness with respect to
nonlinear perturbations. © 1989 Academic Press, Inc.

NOMENCLATURE
PC(R,,C™*P) set of all piecewise continuous complex
m x p matrix functions on R, = [0, o)
PC,(R,,C™7) the set of all bounded matrix functions

belonging to PC(R_ , C™*7)

PC([tq, ), GL,(C)) the set of piecewise continuously differen-
tiable n x » functions on [¢,, t,) which have
nonsingular values

L,(tg, 00;C") the set of functions #4:{t,, «0)— C" such
that {3 || A(s)||? ds < 0, ¢, reN
L_(ty, 0;C") the set of functions 4:[t,, c0) > C" such
that sup,. , lh(£)l < oo, reN
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220 HINRICHSEN, ILCHMANN, AND PRITCHARD
1. INTRODUCTION

After playing a minor role in the early development of the state space
approach the problem of model uncertainty has recently regained a pro-
minent position in systems theory. In this paper we propose a framework
for the robustness analysis of time-varying linear systems. Although this
subject is of interest in itself it is also important in other fields, e.g., in the
area of adaptive control, where the stability analysis of time-varying
systems plays a central role.

Most of the work on robustness of time-invariant linear systems—in-
cluding the successful H* approach [6]—is based on transform techniques.
It is not clear how to extend these techniques to the time-varying case.
Recently a state space approach to robustness has been proposed in [9, 10]
which is based on the concept of “stability radius.” The purpose of the
present paper is to extend this approach to a time-varying setting.

We consider a nominal system of the form

X(2)=A(t) x(2), 120, (1.1)

where A(-)e PC(R,,C"*").! The corresponding transition matrix is
denoted by &(z, s), ¢, s=0. We suppose that the nominal system (1.1) is
exponentially stable; i.e., there exist constants M, >0 such that

I®(, 5)| S Me=“U=9,  125>0. (1.2)

The matrix A(¢) is subjected to additive structured perturbations, so that
the perturbed system is

#(t)=[A(t)+ B(t) D(t) C(t)] x(t), >0, (1.3)

where D(-)e PCy(R,, C"*?) is an unknown bounded time-varying distur-
bance matrix and B(-)e PC(R,, C"*™), C(-)e PC(R_, C”*") are given
“scaling matrices” defining the “structure” of the perturbation, m, p > 1, see
[10].

Formally (1.3) may be interpreted as a closed loop system obtained by
applying the time-varying feedback

u(t)=D(1) y(1) (1.4)
to the time-varying linear system
X(t)=A(t) x(t)+ B(t) u(r)
y(t)=C(1) x(2).

! Most of our results can be extended to systems (1.1) with locally integrable instead of
piecewise-continuous generator A(-).

(1.5)



ROBUSTNESS OF STABILITY 221

Note, however, that B(z), C(¢) do not represent input, output matrices but
describe the structure and scale of uncertainty of the system parameters.
Hence controllability and observability assumptions cannot be justified in
this setting.

In the literature a variety of sufficient conditions have been derived
which ensure exponential stability of the perturbed system x(z)=
[A(z) + A(2)] x(¢); see [2—4, 14]. These conditions are given in terms of
bounds for || 4(-)||,_ and are conservative.

Our problem is to determine a sharp upper bound. For structured
perturbations of the form (1.3) this bound is

re(4; B, C)=inf{| D(-)l.,; D(-)€ PCy,(R ., C™*?)
and (1.3) is not exponentially stable. (1.6)

We call r(4; B, C) the (comlex)? stability radius of the nomial system (1.1)
with respect to perturbations with structure (B, C). In the unstructured
case (m=p=n, B(-)=C(-)=1,) the stability radius is simply the distance
of the system (1.1) from the set of not exponentially stable systems with
respect to the L norm. Guided by the results for time-invariant linear
systems [10] we will primarily investigate how the stability radius (1.6) is
related to the perturbation operator

L, Ly(to, 00; C™) = Ly(to, 00; C7)
, (1.7)
u(-)+—><n—>f C(1) ®(1, 5) B(s) u(s) ds)

and the existence of bounded Hermitian solutions of a parametrized
differential Riccati equation

P(t) + A*(1) P(t) + P(t) A(t) — pC*(t) C(t) — P(t) B(t) B*(¢) P(1) =0,
1246,>0 (18)

(with parameter p € R). Unfortunately these relationships are not as simple
as in the time-invariant case and we have only been able to extend some
of the results to time-varying systems. This reflects the fact that perturba-
tion theory for time-varying systems is far less developed and more
complicated than that of time-invariant systems.

We will proceed as follows. In Section 2 we list some preliminary results
on Bohl exponents and exponential stability of time-varying systems. We
also introduce the group of Bohl transformations which contains the group

2 The real stability radius is defined analogously; see [8]. However, here we concentrate on
the complex stability radius.
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of Lyapunov transformations as a subgroup. In Section 3 we discuss
invariance properties of the stability radius and in Section 4 the perturba-
tion operator is studied and its relation to the stability radius is partially
clarified. In Section 5 we establish a connection between the norm of the
perturbation operator and the solvability of the parametrized differential
Riccati equation. Finally in Section7 we show how to determine a
Lyapunov function of “maximal” robustness.

2. BOHL EXPONENT AND BOHL TRANSFORMATIONS

Consider a differential equation of the form
X(2)=A(¢) x(2), t=0, (2.1)

where 4(-)e PC(R ., C"*") generates a transition operator &(z, s), , s = 0.
Throughout the paper <-,-) is the usual inner product on C”, ||| the
associated norm, and | D] the induced norm for any bounded linear
operator De #(C”, C™). For a characterization of the stability behaviour
of (2.1) the following definition due to Bohl [2] is useful.

DErFINITION 2.1 (Bohl exponent). The (upper) Bohl exponent k4(A) of
the system (2.1) is given by

kp(A)=inf{oeR|IM,>0: 1> 1,2 0= | (1, 1,)]| < M, e~ 0},

It is possible that kz(A)= +oco0. If (2.1) is time-invariant, ie., A(-)
AeC™” then

kg(A)=max Re 1,(A4),

where 4,(4), ien are the eigenvalues of A.

The following properties of the Bohl exponent can be found in [4].

PROPOSITION 2.2. (i) The Bohl exponent of the system (2.1) is finite if
and only if

sup [ P(t )|l < 0. (2.2)

o<|r—s|<1

In particular k g(A) is finite if A(-) satisfies

t+1
sup j | A(s)| ds < 0.
teRy ¢y

(In this case we say A(-) is integrally bounded.)
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(i) If kg(A)< o0 it can be determined via

kp(A) = lim sup W. (23)

5, t—85—>®

For later use we need the following more restrictive definition.

DErFINITION 2.3. (Strict Bohl exponent). The Bohl exponent of the
system (2.1) is said to be strict if it is finite and

log | &
)= lim 81269

S, 1 — 8§ 0 t—s

The proof of the following lemma is straightforward.

LEMMA 24. Suppose a(-)e PC(R ., C) has a strict finite Bohl exponent
and A(-)e PC(R , C"*"); then

(i) kp(—a)= —kp(a)
(ii) kglal,+ A)=ky(a)+ kg(A) (shift property).
Better known in the literature is the (upper) Lyapunov exponent
ki (A)=inf{loeR|IM,>0:120= | &(z, 0)| < M e}

For time-invariant systems the Bohl and Lyapunov exponents coincide
whereas in general

ki (4)<kp(A).

EXAMPLE 2.5. Perron [14] has shown that for the scalar system
X(t)=[sin log ¢ + cos log ] x(1), t=0
the exponents are different; see also [4].

In this paper we will study the following stability concept for time-varying
linear systems.

DerFINITION 2.6.  The system (2.1) is said to be exponentially stable if
there exist M, w >0 such that
| D(t, to)l| < Me—®¢~®  forall t>1,20

(“for all 11,2 0" means “for all 7,0 and all 1> ¢,”).
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Remark 2.77. (i) It can be shown (see [16]) that (2.1) is exponentially
stable if and only if it is uniformly asymptotically stable, ie., there exists
k>0 independent of ¢, such that

| (e, 1)l <k forall t=2¢,=0
and
lim || (1, t,)l =0 uniformly in t,eR, . (2.4)
t—
(ii) The system is asymptrotically stable (i.e., the above relations hold

but k may depend on ¢, and the convergence in (2.4) need not be uniform)
if and only if k,(4)<O.

The following characterizations of exponential stability are proved in

[4].

THEOREM 2.8. Suppose kz(A)< oo and pe(0, ©); then the following
statements are equivalent:

(i) (2.1) is exponentially stable
(i1) kp(4)<O

(iii) there exists a constant c,, such that

[T1e@ rdi<e,  forall 1,30

0

If in addition A(-) is integrally bounded, then (i), (ii), (iii) are equivalent to

(iv) for every bounded f(-)e PC(R ., C"), the solution of the initial
value problem

x(2) = A(1) x(1) +f(¢), 120, x(0)=0
is bounded.

We now analyse the effect of time-varying linear coordinate trans-
formations  z(¢r)=T(r)"'x(t) on the system (2.1), where
T(-)e PC'(R,,GL,(C)). The associated similarity transformation
converts the system (2.1) into

Hn)=A@)z(1), 120, (2.5)
where

A)y=T@)"  A() T(t)—T(t) ' T().
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The transition matrix of the system (2.5) is
&(t, s)=T(t)~ " D(1, 5) T(s). (2.6)

Since these transformations will not, in general, preserve stability proper-
ties, additional assumptions have to be imposed. If one requires 7(-),
T(-)~%, 7(-) are bounded one obtains the so-called Lyapunov transforma-
tions introduced by Lyapunov in his famous memoir [13]. This group of
transformations preserves the properties of stability, instability, and
asymptotic stability. The property of exponential stability is invariant with
respect to a larger group of transformations.

DerFINITION 2.9 (Bohl transformation). T(-)e PC'(R,, GL,(C)) is said
to be a Bohl transformation if

inf{ee R|AM, >0V, s =0: | T(t)~"|| - | T(s)| < M,e° "1} =0.

In the following example scalar Bohl transformations are characterized.
ExAMPLE 2.10. Suppose 6(-)e PC'(R,,C*), and let a(-)=6(-)"" so
that
0(t)=a(r)6(t) and  (8(r) 'y =—a(t) B(r)~ .

The fundamental solutions of these differential equations are

o1, 1) =0(1) B(to) "' and  @(t, 1) =0(1)~" 0(1,).

By Definition 2.9 6(-) is a Bohl transformation if and only if for every ¢ >0
there exists M, > 0 such that

M7 le S =9<p(t, s) =t s) KM, e ™% forall r2s=0
e ® @

and this condition holds if and only if a(-) has strict Bohl exponent 0.

The following proposition implies, in particular, that Bohl transfor-
mations preserve exponential stability (but not necessarily stability and
asymptotic stability).

ProvposiTioN 2.11. (1) The Bohl transformations form a group with
respect to (pointwise) multiplication.

(i1) The Bohl exponent is invariant with respect to Bohl transfor-
mations.

Proof. (i) is an immediate consequence of Definition 2.9. To prove (ii),
let %(f)=A(r) x(¢) be similar to (2.1) via the Bohl transformation T().
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Since the transition matrix of X(¢)=A(z) x(t) is given by &(s,s5)=
T(t)"! @(t, s) T(s), one obtains

kp(A)<kp(A)

—

By (i), it follows that k(4) =kz(A4). |}
ExXAMPLE 2.12. Consider a periodic system
X(t)=A(t) x(1), 120, (2.7)

where A(-)e PC(R,,C"*") is of period u>0. By Erugin’s Theorem (see
[71) (2.7) can be transformed via Lyapunov transformations into a time-
invariant system x(¢)= Ax(t), where A4 is a diagonal real nxn matrix
whose diagonal entries are just the characteristic exponents 1,, .., 4, of
(2.7). Hence, by Proposition 2.11,

kp(A)=kg(A)y=max {4, .., 1,}.

In the scalar case (n=1) we have

kB(a)=lj“ a(r) dt.
Ko

It is noteworthy that in the scalar case not only periodic but arbitrary
time-varying systems can be reduced to a time-invariant one via Bohl
transformations.

PROPOSITION 2.13.  Every scalar system
x(t)=a(t) x(r), =0

which has strict, finite Bohl exponent can be transformed via the Bohl
transformation

0(1) = exp <f0 (a(z) —k(a)) dr)
into the time-invariant linear system
2Hty=kyla) z(2), t=0.

Proof. Use Example 2.10 and Lemma 2.4. }

Remark 2.14. Example 2.5 together with the previous proposition
implies that, in general, a Bohl transformation does not preserve the
Lyapunov exponent.
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For later use, we add some known perturbation results concerning the
Bohl exponent of the system

xX(t)=[A(2)+ 4(1)] x(2), >0, (2.8)
where 4(-)e PC(R, , C"*™).

PROPOSITION 2.15.  For any £> 0 there exists 5 >0 such that

lim sup ZL[ 1 4(2)] de <
=

implies
kg(A+A)<kg(A)+e
The proof is straightforward and can be found in [471.

Systems (2.1), (2.8) are called asymptotically equivalent (resp. integrally
equivalent) if

lim [ 4(5)] =0 <resp.f°° 1 4(1)] dt < oo).

t—

The above proposition shows that asymptotically or integrally equivalent
systems have the same Bohl exponent.

3. THE STRUCTURED STABILITY RADIUS

In this section it is assumed that the nominal system (2.1) is subjected to
perturbations of the form A(r)= B(r) D(1) C(t), so that the perturbed
system is

x(1)=[A(t) + B(t) D(1) C(1)] x(¢), 120, (3.1)

where D(-) is an unknown, bounded, time-varying disturbance matrix
(D(-)e PCy(R,,C™*?)) and B(-) and C(-) are known time-varying
scaling matrices defining the structure of the perturbation. Throughout this
section we assume the triple £ = (4, B, C) consists of matrix functions
A()e PC(R_,C"™™), B(-)e PC(R,,C" ™), C(-)e PC(R,,CP*m),
(3.2)

By Proposition 2.15 the set of exponentially stable systems is open in
PC(R,,C"*") with respect to the L_-norm.® Its complement, which is

3 This expression is used although |-}, _is only a pseudo-norm on PC(R,,C™m),
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closed, will be denoted by %,(R.,C). We will call the elements of
U, R, , C) unstable (not exponentially stable). Note, however, that with
respect to this shorthand terminology an unstable system may in fact be
asymptotically stable. The following definition extends the concept of
stability radius introduced in [9, 10] to time-varying systems.

DEerFINITION 3.1 (Stability radius). Given X = (4, B, C), the (complex)
stability radius r.(A; B, C) is defined by
re(4; B, C)=inf{|D| . ; De PC,(R,,C"*?), 4+ BDCe U, R, ,C)}.
(3.3)

The unstructured stability radius of (3.1) is defined by
re(Ay=rg(4;1,,1,).

Note that r.(4; B, C)=inf J = co if there does not exist a perturbation
matrix D e PCy(R,, C™*?) such that 4+ BDCe %, (R, , C).

Remark 3.2. (i) The unstructed stability radius r.(A4) measures the dis-
tance of A(-) from the set %, (R, C) of unstable matrices with respect to
the L -norm.

(i) In the time-invariant case it is known (see [10]) that

1
max,, g | Gliw)ll”

rC(A; B; C) =

where G(iw) = C(iwl,— A)~"' B (in particular r.(4, B, C) = o if G=0).
(ii) If 2= (4, B, C) consists of real matrix functions the real stability
radius rg(A4; B, C) is defined in an analogous fashion. re(4; B, C) is more
difficult to analyze and even in the time-invariant case computable for-
mulae are only available for the special cases m=1 or p=1; see [11].
Although the real stability radius is obviously of great importance for
applications it should be observed that the complex stability radius offers
some advantages in dealing with nonlinear perturbations. In fact it can be
seen from the results in [ 10] that, e.g., a multivariable version of the Aizerman
conjecture holds true over C whereas it is known to be false over R even
in the scalar case.
The unstructed stability radius has the following properties.

LemmAa 33. (i) ro(4)=0<A4e%,(R_,C).
(i) re(ad)=are(A4) for all 0> 0.
(iii) A r>re(A) is continuous on PC(R ., C**").



ROBUSTNESS OF STABILITY 229

(V) re(d+4)2re(4)—114() ., for any 4€ PCy(R, , C™*").
(v) O<ro(A)< —ky(A) if A(-) is exponentially stable.
(vi) If 2=(A4, B, C) and kz(A) <0, then
re(4)<| B()i4, w)ll Lo | C()irs, o)l Lo “Te(A4; B, C) Jorall 1,20
(where we define 0 - o0 = o0).

Proof. (i)-(iv) and (vi) follow directly from the definition. (1) yields the
first inequality in (v) and the second is a consequence of
A—ky(A4)1,eU(R,,C), since ky(A—kyz(A4)I)=0 by Lemma 2.4(ii). |

The following proposition summarizes some elementary invariance
properties of r-(A4; B, C).
PROPOSITION 3.4. Let = (A, B, C) be given. Then
(i) IfT(-)e PCY(R,, GL,(C)) defines a Bohl transformation then
rolT'"AT—=T'T; T~'B, CT)=r.(4; B, C).
() If0(-)e PC(R,,C) is a scalar Bohl transformation then
re(4—07'01,; B, C)=r(4; B, C).

(i) If X(¢t)=A(1)x(¢) and %(t)=A(1) x(t) are asymptotically or
integrally equivalent then

re(4; B, C)=r(4; B, C)=rq(4; B, C).
Proof. By Proposition 2.11(ii)
k(T '"AT—T~'T+ T 'BDCT) =k 4(A + BDC)

for every D(-)e PC,(R,,C™*?). Hence (i) and (ii) follow. (iii) is an
immediate consequence of the equality

k(4 + BDC) =k (A + BDC)
resulting from Proposition 2.15.

In contrast with the Bohl exponent the unstructured stability radius is
not invariant with respect to Bohl transformations. In fact any exponen-
tially stable time-invariant system X(¢)= Ax(f) can be brought arbitrary
close to an unstable system by constant similarity transformations.

The following example illustrates that there exist sequences of time-
invariant systems such that kz(A4,) - — oo, re(Az)—0as k - oo,
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ExaMPLE 3.5. Set

k k3 1 0
A, = — =k! N.
k |:0 K } D, [_1 J for ke

Then lim, , , kg(4,)= —co. However, o(A4,+D,)= {1/k, 1/k—2k)}
although lim, , || D, | - 0. Thus lim, _, ., r.(4,)=0.

Remark 3.6. Suppose that x(¢)=A(¢) x(t) is periodic. By Proposi-
tion 2.11 and Lemma 3.3(v) no Bohl-equivalent system x() = A(¢) x(¢) can
have an unstructured stability radius larger than —kz(4). Example 2.12
shows that there always is a Bohl-equivalent system with stability radius
equal to —kz(A4). On the other hand it follows from results in [10] that
for any £>0 there exists a Bohl-equivalent system X(¢)=A(¢) x(¢) with
re(A)<e. It is not clear whether analogous results hold for general
time-varying systems.

For exponentially stable scalar systems the unstructured stability radius
always coincides with the negative of the Bohl exponent. This is a direct
consequence of the previous proposition and Proposition 2.13 for the case
where the scalar system has a strict finite Bohl exponent. However the
same result holds without this assumption.

ProrosiTION 3.7. Suppose a(-)e PC(R,,C) and the scalar system
X(t)=alty x(t), t 20 is exponentially stable; then

rela)= —kyla). (3.4)

We omit the proof which is straightforward.

Note that the proof of Lemma 3.3 shows that for time-varying scalar
systems the constant disturbance d(-)=r.(4) destabilizes the nominal
system.

The following remark illustrates that there are essential differences in the
properties of the stability radius for time-invariant and time-varying
systems.

Remark 3.8. Suppose that X,(1) = 4,x,(t), i=1, 2 are two exponentially
stable time-invariant linear systems; then

re(A, @ Ay)=min{r.(4,), re(4,)}. (3.5)

This basic decomposition property of the stability radius is no longer true
for time-varying systems. In fact one can construct, for any &> 0, periodic
functions a,(r), i=1,2 of the same period such that both scalar systems
x;(t)=a;(1) x,(t) are exponentially stable with Bohl exponent —1 (so that
relay)=rela;) =1) whereas r(diag(a,, a,)) <e.
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4. THE PERTURBATION OPERATOR

In the time-invariant case (see [10]), the stability radius can be charac-
terized as the inverse of the norm of the convolution operator

Ly: Ly(0, 005 €™) = L,(0, c0; C?)
, (4.1)
u(-)»—»(tl—»f Ce’“"”Bu(s)ds).
0

In order to explore the possibility of obtaining similar results for time-varying
systems we assume, throughout this section,

A(-)e PC(R ., C™"), B(-)e PCyR,,C"*™)

(4.2)
C(-)e PC,(R,,CP*"),  ky(A)<O

With any such triple 2'= (A4, B, C) we associate a parametrized family of
perturbation operators (L7), .q, defined by
L3 Ly(to, 00; €)= Lo(to, w03 C7), tg>0

, (4.3)
u(-)H<n—>£ C(t) (1, 5) B(s) uls) ds>.

In the following proposition we will show that these maps are well-defined.
Note that in the time-invariant case | Li I =1 Lol for all £4,=0.

PROPOSITION 4.1.  Suppose (4.2) and let 2 = (A, B, C). Then
(i) L: is a bounded operator.
(ii) 19> | L2 | is monotonically decreasing on R, .
(iii) Lyl '<re(4; B, C) for all t,20.
(iv) If A, B, C are periodic with some common period, then

ILZ| =ILZ|  forallty, t,eR,.

(v) In the unstructured case, ie., B(-)=C(-)=1,,if

| B, )| <Me == forall tzs=t,andsome M, w>0

then

w . —
DILEN S lim LT < re(4) < —kg(4) (44)
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Proof. We write as shorthand notations L, instead of Li and L,(t,, r)
instead of L,(t,, o0; C"), r=m, p.
(1) Let u(-)eL,(t,, m); then by changing variables and using the
inequality

Lol <UfNe - Ioll,,  for feL,,velL,,

we obtain

£ t 2
1Lt s <UL ClL, 1B, MY | [[e*w“—”uumnub] d
4]

0

2

= 1Bl M) | [ == [ulo +1,)] do | de

< ( C”LOO ||B”L3O M)z le “iuo,n'“”( : +t0)”iz(0,m)
SLUCH L, 1Bl o MY 13 0. -

This shows that L, is bounded and the first inequality holds in (4.4).

(i1) Suppose 0<zy<t, and u(-)e Ly(t;,m), |u(-)|=1. Extending
u(-) to @(-) by u(t)=0 for te[t,,t,) yields i(-)e Ly(ty, m) with
la(-)| =1. Now

WL ull 20 = I LB 0,090
from which (ii) follows.
(ili) Let D(-)e PC,(ty, 20; C™*?) be such that
IDN L, <ULyl (4.5)
then we have to show that the perturbed system
x(t)=[A(2)+ B(t) D(t) C(t)] x(1), 121, (4.6)

is exponentially stable. By Theorem 2.8 and Proposition 2.2 it is sufficient
to prove that the solutions x(-)=x(-; #), x,) of (4.6) (with 15> t,) satisfy
for some k>0

sup [l x(-; 15, xo)|| La(ty, n) <k || xql forall x,eC” (4.7)
=1

sup [ x(2; g, xo)|l <k || x| forall x,eC” (4.8)
Osir—#l<1

Now, by variations of constants, for 1> 1)

x(1; tg, x0) = D(1, 15) x, +jt D(1, 5) B(s) D(s) C(s) x(s; ty, x,) ds (4.9)
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and hence for y(t) := C(1) x(t), yo(t) := C(1) D(t, t'y) xo € L,(1}, p),

(1) =yo(t) + (L Dy)(1).

By the contraction principle and (4.5) this equation has a unique solution
in L,(t,, p) and

ly I|L2(16,p) < ”(I_ng,D)_l 1 ol Ly(th,p)
<=L DN~ Yoll Ly,
SA=TL DN~ poll Lyugp-

So the norm is uniformly bounded in ¢, > ¢,.
Replacing C(s) x(s; 15, xo) by y(s) in (4.9) yields

(85 1, Xg) = B(t, 1) xo + f ®(1, 5) B(s) D(s) y(s) ds.

Similar estimates to those used in (i) show that the input-to-state map

Mt('): Lz(té)’ m) - LZ(IE)’ n)
, (4.10)
u(-)H<ij b(t, 5) B(s) u(s) ds)

0

is uniformly bounded in z,>1,. Hence (4.7) is satisfied and a similar
estimate to that in (i), applied to (4.9), yields (4.8).

(iv) Let u>0 be the common period of 4, B, C. The right shift
Su: LZ(t07 r) - LZ(tO +,u’ r)
o(t)—> v(t— )
is an isometry. Now @(z + u, s + u) = @(1, ), hence

(SuoLyw)(t)=[ " Clt—p) @lt—p, 5) Bls) u(s) ds

o

= Jt_” C(1) ®(t, s+ 1) B(s) u(s) ds

4]

Jl
W+ p
3

Ct)D(t, 1) Blr—p)u(t—p) dr

=j C(1) ®(1,7) B(1) S,u(t) dr

o+ i

= (LygspoS,u)(1).
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This proves [|L,| =L, ,ll and the result follows since #,+— [ Ll is
decreasing.

(v) The second and third inequalities in (4.4) follow from (ii) and
(iii) and the last is a consequence of Lemma 3.3(v). ||

Remark 4.2. From a control theoretic viewpoint L may be thought of
as the input-output operator of the system

X()=A(t) x(1)+ B()u(t)  x(£,)=0 @)
(1) =C(t) x(2), 1= 1,.

If the triple X' = (4, B, C) is such that k z(4) <0 (internal stability) then by
Proposition 4.1(i) the input-output operator L; is bounded (external
stability). Under the additional assumption that the system (4.11) is bounded
and uniformly controllable and uniformly observable the converse holds
true; i.e., boundedness of Lfo implies k z(A4) < 0. This is proved in [1].

Throughout the remainder of this paper we use the notation

{A4;B,C):= lim |LZ|~". (4.12)
g — o0

As a consequence of Proposition4.1(iii) we obtain the following
robustness result.

CorOLLARY 4.3. Suppose X =(A,B,C) and (42). If D(-)e
PC(0, co; C™*?) satisfies

Hm | D()l g, o) ll £, <U(4; B, C) (4.13)
Iy — o0

then the perturbed system (4.6) is exponentially stable.

In the unstructed case it is known that perturbations De
PCy(R ., C™**) of norm || D(-)|l ., <w/M (w, M as in Proposition 4.1(v))
do not destroy the exponential stability of the system (see [3]). In view of
(4.4), Condition (4.13) is less conservative.

In contrast with time-invariant systems the following example shows that
the inequality

I(4; B, C)<re(4; B, C) (4.14)
is in general strict.
ExampLE 4.4. Consider the scalar system

X(t)y=a(t) x(1), t=0,
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where a(t)= —1+ka(1), keR, a(-)e PC(R, , C) is periodic with period
3T, T=In 2, given by

0 te[3iT,3i+1)T)
at)=<{ 1  te[Gi+1)T,Bi+2)T), ieN,.
—1  te[Bi+2)T,3(i+1)T)

Let 2=(a, 1,1); then in view of Example2.12, Proposition 3.7, and
Proposition 4.1(iv) we have

—kgla)=rc(a)=1 and (4;1,1)y= Ly |~

We will show that | L[|~ < 1.

Let f(2) :=k [§a(t) dv and u(t) =e?”~ % A straightforward calculation
shows that

T 0
ILEulP = ul?= | e (1—2e~)dr+ [ eM0-2(1-2¢ 1) ar,
0 T
Since 1—2e >0 for > T one can choose k so that the right hand side

is positive.

Equality holds in (4.14) if the system X is asymptotically or integrally
equivalent to a time-invariant system. To prove this we need the following

PROPpSITION 4.5. Suppose that X =(A, B, C) satisfies (4.2) and let
x(t)= A(t) x(t) be asymptotically or integrally equivalent to x(t) A(t) x(t).
Then for £ = (4, B, C)

lim |LZ—LZ|=0. (4.15)

g — oo
In particular
I(4; B, C)=1(4; B, C). (4.16)
The proof is straightforward, see [8].
By Proposition 3.4(iii) and Remark 3.2(ii) we get
COROLLARY 4.6. Suppose X = (A, B, C) satisfies (4.2) and B, C are

constant matrices. If X(t)=A(t) x(t) is asymptotically or integrally
equivalent to a time-invariant x(t) = Ayx(t), then

re(4; B, C)=[A4; B, C)=r(4y; B, C) = [maé | CliwI— A4,)"* B|| ]~
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It is clear from the definition of L; that this operator is invariant with
respect to Bohl transformations if the transformation is applied not only to
A(-) but also to B(-) and C(-):

Li=Li", 1t,>0 for X,;=(T'AT—T 'T, T 'B,CT).

However, contrary to the Bohl exponent and the stability radius, /(4; B, C)
is not invariant when scalar Bohl transformations are applied to A(-)

alone. In fact, if we apply Proposition2.13 this is demonstrated by
Example 4.4.

In order to fill the gap between /(4; B, C) and r(4; B, C) one might try
to use the scalar Bohl transformation @ and consider
Zo=(4—07'01,, B,C). Then r(4; B, C)=ro(A—0'0I,; B, C) and it is
easy to see that Ly?=60""'LZ0. Unfortunately we have not been able to
prove or disprove the following

Conjecture 4.7. Suppose (4.2) and X2 = (4, B, C); then
re(A4; B, C)=sup{{(A—07'61; B, C); 0 a scalar Bohl transformation }.

By Proposition 3.7 the conjecture holds true for scalar systems.

5. THE ASSOCIATED PARAMETRIZED DIFFERENTIAL RicCATI EQUATION

In this section we examine the parametrized differential Riccati equation
(DRE),

P(t) + A*(t) P(t)+ P(t) A(1) — pC*(¢) C(t) — P(z) B(t) B*(t) P(1) =0,
12ty pelR

associated with the system

(5.1)

Throughout this section we assume (4.2).
For time-invariant X'= (4, B, C) it has been shown in [10] that the
algebraic Riccati equation (ARE),

A*P+ P4 — pC*C — PBB*P =0

admits a Hermitian solution P if and only if p <r2(4; B, C). Guided by
this result we wish to determine the maximal p for which there exist bounded
Hermitian solutions of (DRE), on [, o). Various authors (see e.g.
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[12,15]) have studied differential Riccati equations with time-varying
coefficients; however, their results cannot be applied to (DRE), if p>0.
We will proceed via the optimal control problem (OCP),

Minimize the cost functional

T,(x0, Ltan 00 u(-)) o= [ L) p ()11 ds
for wu(-)e L,(ty,t,;C™) subject to (5.1).

where 0< 44 <t; < 0, x,e C” and pe R. We begin by examining the finite
time problem, where ¢, < c0. Since the optimal control is expected to be
feedback we start with some lemmata on the cost of feedback controls
u(t)= —F(t) x(1). To describe these costs we need the following well-
known lemma about differential Lyapunov equations.

Lemma 5.1, Let A(-), R(-)e PC([ty, ©);C"™*") and &(-,-) be the
transition matrix of %(t)= A(¢) x(1).

(1) The unique solution of the differential Lyapunov equation
P(t)+ A*(t) P(t) + P(1) A(1) + R(1) =0,  te[ty, t,] (52)

with final value P(t,)=0 is given by
P(t)=f:1 B*(s, 1) R(s) B(s, ) ds, 1€ [to,1,].
(i) Ifx(1)=A(t) x(2) is exponentially stable and R(-) is bounded, then
P(1) =fl°° B*(s, 1) R(s) B(s, 1) ds
is the unique bounded solution of (5.2) on [t,, ).

LEMMA 5.2. Suppose F(-)e PC([ty,t;]; C™ "), t,< o0, Ag(t)=
A(t) — B(t) F(t) with transition matrix ® (-, -), and let

up(t)= —F(t) x(1), te[to, 1],
where x(-) satisfies

)'C(l)‘—‘AF([) X(t), te[toall:]’ x(t0)=xo.
Then

Jo(x0, Lo, 1), up(-)) = {xo, Pr(ty) X0, (3.3)
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where

Pr(0)= [ @205 OLF*(5) Fls)— pC*(5) C(5)) (s, 1) s,

is the solution of the differential Lyapunov equation (DLE),

P(1) + A¥(1) P(t)+ P(t) Ax(1)
—pC*(t) C(t)+ F*(t) F(r)=0, teft,, t,]

with final value P(1,)=0.
Proof. By (5.4) and the definition of J, we obtain

te [t()’ tl]
(5.4)

(Xo, Pp(ty) xo) = f: LI F(s) @ (s, to) x0 17— p || C(s) Pr(s, 14) XoI*] ds

1
0

= [ L) =p 1C6) @5, 10) xo17] s

=Jp(x0, [to, t1), up(-)).

That P solves (DLE), follows from Lemma 5.1(i) if we set A(f)=A,(1)

and R(t)= —pC*(t) C(t) + F*(t) F(1). |

Note the following relationship between the differential Riccati equation

(DRE), and the differential Lyapunov equation (DLE),.

Remark 5.3. P(-)is a solution of (DRE), on [1,, #,] if and only if P(-)

is a solution of (DLE), on [1,, ¢,] with F(z)= B*(¢) P(t).

Our construction procedure for solutions of (DRE), (cf. proof of

Theorem 5.7) is based on this simple observation.

LEMMA 54. Let F(-)e PC([to, 1,1, C™*"), i(-) € Ly(to, t,; C™), up(t) =

—F(t) x(2), te [y, t,], where now

X(t) = A1) x(2) + B(1)(ur (1) + u(1)),

(5.5)

= Ap(t) x(1) + B(2) (1), te [to, 1], x(to) = X,

Ifu(ty=up(ty+a(t), te[ty, t,], then
J (X0, [to, t1), u(-)) = {xq, Pr(to) X0

[ 1u(s) + B(5) Pols) x(5)1? ds

[ 1LF6) — BX(5) Po(5)] x(5))1 s,

where Pp(-) is defined by (5.4).
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Proof. Differentiation of V() := {x(t), Pr(2) x(1)), te [, ¢,], along
the solution x(-) of (5.5) gives (we leave out the argument t)
V={(A.x+ Bi, Pex>+ {x, Ppx)> + {x, P{Agx+ Bu))
= Bi, Ppx) + {x, PrBi) + {x, (pC*C — F*F) x)
—llugll®+p | Cx > +2 Re (it, B*Ppx)
= —lul>+p [ Cx|*+ | u+ B*Ppx||* — |(B*P,— F) x|
Integrating on [#,, ¢,] and using P(z,)=0 yields the result. }

If p>20and 0<ty<t,<t,< o0, then

0> inf Jp(xo’ [tO’ tl)’ u())
ue Ly(rg, 11; C™)

(5.6)

= inf Jp(xo, [t09 t2)’ u())’
ue Li(tg, 12; C™)

whereas the converse inequalities hold if p < 0. These inequalities show that

the minimal costs are finite over an arbitrary interval if they are finite over
[0, o).

LEMMA 5.5. (1) inf,c 1y, m) J,(0, 00), u(-)) =0 p< | LE|| 2
(here by definition || Ly || %= co if | LZ || =0).

.. 2 -2 ;
(i1) For every pe(— 0, | Ly | =) there exists a constant ¢, >0 such
that

inf  J,(xo, [7, 00), u(-))> —c, x> forall t>1t,, x,eR" (5.7)

ue Ly(t, m)

Proof. Statement (i) follows from the equivalence
v 17,00, Lo, 00), u()) =0 [llul>~ p | L2u|*] >0
forall wueL,(ty, m).
To prove (ii) we need only consider the case p e (0, | Li” ~2). Since
2Rea, by <alla|?+a ' ||b]]>  forall a>0,a beL,(t,, p),
we have
Jp(X0, [0, 00), u(-))
=uC)I? = p ILZu)(-) + C(-) (-, to) x, |2
= lu()I* ILZWIP = p | CC) D, 10) x, |12
—2p Re{((L3u)(-), C(-) D(-, 1) X0
2 u()I? = p(1+ )L w) ()1 = p(L+ 2" ) C(-) D(-, t0) x, |2
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For sufficiently small a
Jo(xo, [1g, 00), u(-)) = = p(1 +a =N C(-) D(-, 1) x, |
Since x(¢) = A(r) x(¢) is exponentially stable, there exists ¢ >0 such that
ICC) P(-5 to) xoI°<c x> forall 1,>0.
So we may take ¢, =p(1 +a~!) ¢ to ensure (5.7) for ty. The result follows

for any ¢ > 1, since the left hand side of (5. 7) is increasing in 1. |

LEMMA 5.6. Suppose A,(-)e PC(t,,t,;C"*"), keN, t, < o0 converges
pointwise to A(-)e PC(t,, t;C" ™ on [ty, 1], ik,

Jim A= AWDI=0  forall te[to,1,]

and | A (¢)| <c for all te[ty,t,], keN. If A,(-) generates @, -) and
A(-) generates &(-, -), then for every £>0, there exists koe N, such that

| Di(t, s)— B(2, 5)|| <& Jorall kzky to<s<t<1t,. (5.8)
The proof is straightforward; see [8].
We are now in a position to solve the optimal control problem (OCP),
on finite intervals, a main result of this section.
THEOREM 5.7. Suppose p<| Ly | 0<ty<t <oo. Then

(i) There exists a (unique) Hermitian solution Ph()e
PC'(ty, t,;C**™) of (DRE), with P"(t,)=0.

(1) If p=0(p<0) then P"(t) is nonpositive (nonnegative) Sfor all
te[ty, ]
(i)  The minimal cost of (OCP),, is

inf J,(x0, [to, 11), u(-)) = x5 P(15) X ). (5.9)

ue Ly(tg, 11; C")
(iv)  The optimal control is given by
u*(t)= —B*(z) P"(t) x(2).

Proof. Starting with Py(-)=0 we recursively define a sequence P, (-)e
PC'(1g, t;; C**"), ke N by the sequence of differential Lyapunov equations

Pr(t)+ AF_ (1) Po(t) + Plt) Ay 1(1) — pC*(1) C(2)
+ P (1) B(2) BX(t) P, _(2) =0, te[ty,1,],
P,(t,)=0, (5.10)
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where
Ay 1(t) = A(1) — B(t) B*(t) P,._ (1), tet, 1], k=1
We will show:

(@) P"(t)=lim, _, ., P.(¢) exists for all te[t,,1,]

(b) P"(-) is the unique Hermitian solution of (DRF), on [, ,t,]
with P(¢,)=0.

After establishing (a), (b) we have, by Lemma 5.2 and Remark 5.3,
Jo(xo, [to, 1), = B*(+) P(-) x(-)) = {xq, P"(20) X0,
and applying Lemma 5.4 with F(¢) = B*(t) P"(t) yields

Jo(xo0, Ltos 1), u(-)) = {xo, P"(to) X0 +£tl | u(s) — u*(s)|> ds.

This shows (iii) and (iv) so it remains to prove (a), (b), and (ii). Note that
by (5.10), Py(t)= P.(t), where F(t)= B*(t) P, _,(t). Set

u(t)= —B*(t) P(t) x, (1), (1) =u(£) —up_(2), tefty, 1], k=1,

where x,(-) solves X,(f)=A,(r) x,(t), xi(to)=x, and t,e [t9,12,] is
arbitrary. By Lemma 5.2 and Lemma 5.4

Xos Py 1(80) X0 ) — (x40, Pil2}) X0

=J,(x0, [0, t1), up(-)) — {x0, Pr(t5) X0

= _J.:,l ILB*(s) Py_ 1(s)— B*(s) Pu(s)] x(s)|? ds <O

forall k=1, tye [1,, ¢,]. But by Lemma 5.5(ii)

<X0, Pk(tz)) X0> 2 inf Jp(xo, [t67 tl)’ u()) = —cp ” Xo ”2
ue Ly(tg, 115 C™)

So (Pi(t6))k>1 1s a decreasing sequence uniformly bounded from below
and the limit

klingo P (15) = P"(ty) = (P1(1p))*

exists for every tye [, t;]. This proves (a). Moreover

lim 4,(1)=A()—B(r) B¥(1) P'(1)  forall re[1,,1,] (5.11)
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and since Py(t), k > 1 is monotonically decreasing and bounded from below
we see that | 4.(¢)|| is uniformly bounded on [1,, 7,]. Thus by Lemma 5.6
®,(-, -) converges uniformly on [¢,, ¢,] to @' -, -) the evolution operator
generated by A(-) — B(-) B*(-) P"(-). Next we apply Lebesgue’s dominated
convergence theorem to the sequence

Pu(t)= = [ BF_i(5, 0[pC*(5) Cl) = Py_1(5) Bls) B*(5) P, ,(5)]

XD, _ (s, t)ds
to obtain

Pi(t)= —J.tl D1*(s, t)[pC*(s) C(s) — P"(s) B(s) B*(s) P(s)] D'(s, t) ds

Thus P“(-) satisfies (DRE), on [t,, ;] and P"(¢;)=0. The uniqueness of
the solution P“(-) of (DRE) , with P"(t,)=0 follows from general
theorems. This proves (a), (b), and (ii) for p<0.

Applying Lemma 5.2 and Remark 5.3 to the above equation yields

Pi(t)= — F P*(s, 1)[pC*(s) C(s) + P'(s) B(s) B*(s) P"(s)] &(s, 1) ds,

which proves (ii) for p > 0. (Note that P}, ()= P¢t) holds for k> 1 and
not for k=0 if p <0.) This shows (ii) and completes the proof. ||

Using (5.6) we have

COROLLARY 5.8. Suppose p<| L3l =% 0<ty<t,<t,< 0. Then
PH)K Pty  forall te[t,,1t,] if p=0
PYt)z P™t)  forall te[ty,t,] if p<O.

We now proceed to examine solutions of (DRE), on infinite intervals
and relate them to the infinite time optimal control problem (OCP),,
1, = c0. The following lemma plays a key role.

LEMMA 59. Suppose 1,20, peR, u(-)eL,(t,, m), and Q(-)e
PC'(ty, 00; C"*"Y is a bounded Hermitian solution of (DRE),. If x(-) solves

X(t)=A(t) x(2) + B(1) u(?), 12 tg, x(15) = X, (5.12)
then

Tp(xas Lt o), ()= [ 1)+ B*(5) Q) x(6)I s + Cxo, Qo) x0).
(5.13)
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In particular,

(X0, Qlto) Xo> < il J (X, [t9, 0), u(+)),  x,€C". (5.14)

ue La(1g, m)

Proof. Since kyz(A)<0 we have x(-)e L,(ty,n) and thus x(2)—0 as
t - 0. Now

d
71 X0 2 x(0))

=p [CQ@) x(DII* + | B*(1) Q(2) x(1)]1> + 2 Re< B(r) (1), Q(t) x(1))
=p 1 C@) X1 + llue) + B*(2) Q(2) x(1)]|> — [[u()]|
Integrating over [#y, ;] and taking limits as 7, - co yields (5.13). Since
(5.13) holds for all u(-)e L,(t,, m), (5.14) follows. |

The above lemma yields immediately the following necessary condition

for the existence of bounded Hermitian solutions of (DRE) o

PROPOSITION 5.10.  Suppose (4.2) and 1,2 0. If Q(-)e PCY(1y, c0; C**")
is a bounded Hermitian solution of (DRE), on [¢,, o) then

p<ILEl2 (5.15)
Proof. By (5.14), 0<J,(0, [y, ), u(-)) for all ue Ly(ty, m). This

implies (5.15) by Lemma 5.5(1). |
The following converse result is the main theorem of this section.

THEOREM 5.11. Suppose (4.2), X'=(4, B, C), and p<||Li| 7% 1,>0.
Then we have

(i) There exists a unique stabilizing (i.e., A— BB*P™ is exponen-
tially stable) bounded Hermitian solution P*(-)e PC\(t,, co; C"*") of
(DRE), on [t,, ).

(i) P* is maximal in the sense that, for any bounded Hermitian
solution
Q(-)e PC(t5, 00; C"*") on [ff, o0), 14> t,,

Q)P (r) forall t=1).
(ili) The minimal cost is

iIlf Jp(XO’ [t()’ OO)’ u())= <x0> P+(t0) X0> (516)

ue Ly(tg, m)
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and the optimal control is given by

u(t)= —B*(1t) P*(¢) x(1), 1=t (5.17)

where x(-) solves
X(t)=[A(t)— B(¢) B*(t) P*(£)] x(2), t=ty, x(ty)=x,. (5.18)

Proof. First, let p=0. By Lemma 5.5 and Theorem 5.7 there exists
¢, >0 such that for all ¢z, > ¢,, € [¢,, £;]

—¢, I xolI>< inf T (x, [£, 00), u(-))
ue Ly(t, m)

< inf J(x0, [t £1), u(-)) (5.19)

ue Ly(t, 11; C™)
= {xo, P(1) xo>.

Thus P"(z) is bounded below and since by Corollary 5.8 it is monotonically
decreasing we have that

P*(t)= lim P"(z) (5.20)

ty —~> o

exists for all 7€ [1,, o). In an analogous way, existence of the limit (5.20)
can be proved for the case p <O0.
In both cases, P"(-) satisfies

P(1)= P'{1o)= [ [A*(s) P(5)+ P"(5) A4(s) = pC¥(s) C(s)
— P'!(s) B(s) B*(s) P"(s)] ds.
Taking limits (as t; — c0) yields
PH(0)=P* (1) = [ [4¥(5) P*(s)+ P*(5) A(5)— pC¥(s) Cls)

— P*(s) B(s) B*(s) P*(s)] ds

and differentiation shows that P*(.)e PC!(ty, cv; C"*") is a bounded
Hermitian solution of (DRE), on [#,, ).

Before showing that P*(-) is stabilizing we prove (iii).

If O(-)e PC'(ty, 0; C"*") is a bounded Hermitian solution of (DRE)
and A(-)— B(-) B*(-) Q(-) is the generator of D,(-, -), then

P

d
s LDE(s, 16) Q(s) Po(s, 10)]

= B5(s, 1o)[pC*(s) Cls) — Q(s) B(s) B*(s) Q(s)] Py(s, 1)



ROBUSTNESS OF STABILITY 245

Hence

{xo, Q(to) X0
= (Polt, 1) X0, Q1) Dot 10) %) + [ (Pols, o) %o,

[Q(s) B(s) B*(s) Q(s) — pC*(s) C(s)] Pols, to) Xxo>ds  (5.21)

First we consider the case p <0 for which P*(¢)>0, t>1,. The above
equality with Q(-)= P*(-) yields

Cxos PH(t0) X002, (Xo, [1g, 00),— B*(:) P () D pu(-, 1) Xo)-

In particular d(-):= —B*(-) P*(-) D p+(-, ty) Xo€ Ly(t,, m) and applying
(5.14) with @(-)=P*(-) we find

inf Jp(xo’ [to, OO), u('))=Jp(x09 [t05 00)7 ’2())= <x07 P+(t0) X0>.

ue Ly(tg, m)

The case p >0 is more difficult. To do this we extend the finite time
optimal control by 0 to [¢,, o) and define u,(-)e Ly(ty, m) by

—B*(1) P"x,(t) for t,<r<y,
utl(t) =
0 for 1 <t

where x,(-) solves
X)=A@) x()+ B()u, (1), 1> tg, X(tg) = xo.
Then by Theorem 5.7

Jp(x(h [t0> CD)’ utl('))

=le [“un(S)HZ—P [ C(s) x”(s)”z] dS__[too p IIC(s) xtl(s)”Z ds

= Cxo, P1o) %) = p | 11€(8) x,(5)17 d.
By applying (5.14) to P*(-) we ébtain
J(x0, [tg, ), u(+)) = (xq, PT(t,) X0 forall weL,(t,,m) (5.23)
and so

lim [ Cs) x, (5))12 ds =0,
7 — 00 Yy

(5.24)
hm Jp(x()s [[0> 00)5 url(')) = <x0’ P+(t0) )C0>.

11— ©
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Now from (5.22) we have for every o >0
02 {(xo, P(tp) Xo)

>Jp(xoa [IO’ OO), utl('))
. (5.25)
=] D6 =p 1 C) (s, 10) 3o+ (L3 u, )(5)17] dis

2 (L=p(L+ O LEN) - N4 1200, my = 2L+ 27D CC) B, 20) Xo 13506,

by the same estimate as that used in establishing Lemma 5.5. Choosing

a>0 small enough we see there exists a constant K independent of ¢,, so
that for all ¢,=0

(E7 iz(zo, m < K| xo II2. (5.26)

Hence {u,,t, >1,} is bounded in L,(ty, m), so there exists a sequence
(Uy)ken> te— 0 which converges weakly to some #(-)e L,(ty, m). By
(5.23) and (5.24), (u,) is a minimizing sequence. It is easy to see that J,
is strictly convex. Moreover it follows from the last inequality in
(5.25)—which holds for arbitrary we L,(t,, m) instead of u,—that
ur>J,(xo, [tg, ), u(-)) is coercive. Hence, by [5, p.35], (-) is the
unique optimal control and the minimum cost is

Jp(xoa [tO, OO), ﬁ()): <x07 P+(t0) x0>'

Lemma 5.9, implies that for Q(-)=P™*(-)

T(xos tos ), ()= [ 1d(5) + BH(5) P*(5) x()| > ds + Cxor P (1) X0

o

and so
u(t)y= —B*(t) P*(t) x(1), 1=1t,. (5.27)

To prove uniqueness and maximality, assume that Q(-) is a bounded
Hermitian solution of (DRE), on [, c). Using Lemma 5.9 and (5.16) we
obtain

(X0, Q(t) xop < inf ,Jolxo, [t 00), u(-)) = Cxo, P (1) X0

uelLy(t, m

for all 1= t; and all x,e C". Hence the maximality of P*(-). Now assume
that Q(-) is stabilizing; then for every r>1¢, the feedback control
u(s)= —B*(s) O(s) x(s), s =1 is in L,(¢, cv; C™), and so by Lemma 5.9

Jp(XO’ [ta Oo)a u())= <x0’ Q(t) X0>< <x09 P+(t) x0>'

Hence by (5.16) uniqueness holds.
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To prove that the feedback system (5.18) is exponentially stable we note
that by (5.16) and (5.21)

180 0,y < K N X011

for some constant K independent of t,>0. Hence the solution x(-) of
(5.18) satisfies || x(-)II7,,,. . <K llxol% with K independent of f,. The
exponential stabilization then follows by Theorem 2.8. |

Remark 5.12. 1If the system X is uniformly observable and p > 0 (p<0),
then .

PH(ty< —vI, (P (t)>~I,) (5.28)
for some y>0 and all 1>1¢,; see [8].

Proposition 5.10 and Theorem 5.11, together, imply the following
characterization of || Lz | in terms of the solvability of (DRE),: e

IL: | ~*=sup{peR; (DRE), has a bounded Hermitian solution on [ ¢, o0 )}.
(5.29)

More precisely, if p<|LZ| 7% then (DRE), possesses a bounded
Hermitian solution on [¢,, oo) whereas for p> || L | ~? there does not
exist such a solution. However, there may exist solutlons on some smaller
interval [, c0), #5> t,.

COROLLARY 5.13.  Suppose (4.2); then l(4; B, C)* is the supremum of all
peR for which there exists a bounded Hermitian solution of (DRE), on
some interval [y, ), t,>0.

Remark 5.14. The above results are not apphcable to the limiting
parameter value p —||LE | 2 (resp. p*=1I(A; B, C)?). In the time-invariant
case it is known that (ARE) has a Hermitian solution for p* = || L,| ~2
but the corresponding closed loop system is no longer exponentially stable
and there may not be a solution of the corresponding optimal control
problem (OCP),.; see [10]. So the differential Riccati equation (DRE),
and the optlmal control problem (OCP), are decoupled at the parameter
value p* = | L, || ~2

Remark 5.15. In [8] we have shown that if X is uniformly controllable
and the conditions of Theorem 5.11 are satisfied, then there exists a solu-
tion P~(-) of (DRE), on [#,+ 0, c0) for some ¢ > 0 such that the closed
loop system x(t)=[A(t)— B(t) B*(¢) P~(¢)] x(t) is completely unstable
(ie., the adjoint system x(1)= —[4(z)— B(t) B*(t) P~ (£)]1* =x(1) is
exponentially stable). However, in contrast to the time-invariant case,
P (-) will not in general be a minimal solution of (DRE), on [ty + 0, ).
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Remark 5.16. If the assumptions of Theorem 5.11 are fulfilied then for
each > 1, the map
@(t,-): (=0, | L, 72) > C*"
pr>Pr(t)
is differentiable with respect to p and monotonically decreasing in p.

Moreover, if X, denotes the closed loop system obtained by applying the
optimal feedback (5.17)} then

WLyl =1Lyl 2=p,  p<ILil ™2

This is proved in [8].

6. NONLINEAR PERTURBATIONS AND ROBUST LYAPUNOV FUNCTIONS

In this section we briefly outline some consequences of the previous
results for nonlinear perturbations of the form A(¢) = B(t) N(C(t) x(¢), t) so
that the perturbed system is

Y k(1) = A(t) x(¢) + B(t) N(C(¢) x(¢), 1), t2ty, x(1g)=x,, (6.1)
N
where (4, B, C) satisfies (4.2) and N:R?xR, - R™ is continuously
differentiable. We assume that N(0, £)=0 so that 0 is an equilibrium state
of (6.1). Our aim is to determine conditions on the “norm” of the nonlinear
perturbation such that exponential stability of (6.1) is preserved.
For this, we have to consider the e-modification of (DRE),

P(t)+ [A(t) + eI, 1* P(t) + P(1)[A(1) + el,]
— pC*(1) C(t)— P(1) B(t) B*(1) P(t)=0. (6.2)

THEOREM 6.1. Suppose (4.2), t,=0, and

[Ny I <yllyll forall t>1,,yeC” (63)

where y < || L% | =", Z=(A, B, C). Then the origin is globally exponentially
stable for the perturbed system (6.1).

Proof. Chose pe(y%, || Ly ]I ~?). One can show that for &> 0 sufficiently
small there exists a maximal bounded Hermitian solution of the differential
Riccati equation (6.2) associated with 2*= (4 +¢l,, B, C). Consider the
functional

V(t, x)= —<x, Pi(1) x5, t=21t,, xeC”
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By Assumption (6.3), the solutions of (6.1) exist on [¢,, o0). The derivative
of V along any solution x(-) of (6.1) is

V(e x(1) = =2e¥(t, x(1)) — p || C(t) x(2){1 — || B¥(r) P5(r) x(1)]?
— 2 Red Pi(t) x(t), B(t) N(C(1) x(1), 1))

= —2eV(1, x(2)) — [ B*(1) P(1) x(1) + N(C(2) x(2), 1)||?
— Lol C(1) x()I* = | N(C(2) x(2), 1)]|7].

Hence
V(t, x(1) < =26V (6, x(1) =8 | C(t) x(D)]Z, t=1,,

where 6 = p —y2. Integrating yields
3t
Vs, x(21)) ¥ — V(to, x(10)) €*° < —5J e* || C(2) x(1)|1* dt
4]
for all ¢, > 1, and since V(z,, x(¢,)) =0,

[T e e oI dr < =5 Cro Polto) o). (64)

f

Now if A(-) generates ®(-, -),
t
[ X() < [ D(t, t6) x| +J. Il ®(z, 5) B(s) N(C(s) x(s), 5)|| ds.
L}
But there exist M, w >0 such that || (¢, 5)|| < Me ““~%) t>5 Hence
e | x(1)[ S Me™ @ 0) | x|

t
+ | MBI, e~ @909 =00 | C(s) x(s)] ds
1

SMe™ @700 x| +9M || B,

X |:Jt efz(w—e)(rfs) ds:ll/z l:f’ 628(s~10) ” C(S) x(S)IIZ ds]l/z‘

4]
So, by (6.4), there exists a constant K> 0 such that

[ x(0)] < Ke 2= || x(t,)]| forall t>¢,>0.

This concludes the proof. ||
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The proof shows that V(z, x)= —{x, Pi(¢t)x) is a joint Lyapunov

function for all systems (6.1) satisfying (6.2) with y < || L || ~'. In the linear
case one can choose ¢=0, ie, V(t, x)= —{x, P,(t) x).

A Lyapunov function could be called of maximal robustness with respect

to perturbations of the structure A(¢)= B(z) D(¢) C(¢) if it guarantees the
exponential stability of all the perturbed systems Y, with D, <
rc(4; B, C). In the time-invariant case a Lyapunov function of maximal
robustness can in fact be constructed using the maximal solution of the
(ARE), with p=rZ (4; B, C); see [10]. The time-varying case is more
complicated since || L || ~' does not necessarily equal r.(4; B, C).
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