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1. Introduction

This thesis is about the nonlinear propagation of light in waveguides and homogeneous

transparent media, namely the atmosphere. In both systems light is spatially trapped,

although the underlying physics is a completely different issue. In the waveguide this

trapping is a linear effect resulting in localized beam shapes (modes) which do not

diffract. In homogeneous media trapping is the result of a nonlinear effect, since in

the linear regime any localized beam shape broadens due to diffraction. Nonlinear

trapping is usually called self-trapping, because the beam generates its own trap.

Moreover, both trapping effects can simultaneously appear in a nonlinear waveguide.

With nonlinear waveguide we mean a linear guiding structure made from a nonlinear

material. Nevertheless, even though nonlinear light propagation in waveguides and in

homogeneous media are different issues, they have a very important feature in common:

Both problems can be modeled by an extended nonlinear Schrödinger equation.

The nonlinear Schrödinger equation (NLS) is among the most prominent equa-

tions in nonlinear physics, especially in nonlinear optics. It has been studied for more

than 40 years, and it is employed in numerous fields well beyond plasma physics and

nonlinear optics, where it originally appeared. Gravity waves on deep water follow a

NLS equation, a modified NLS equation appears in the theory of superconductivity

as Ginzburg-Landau equation, and under certain approximation it can describe the

propagation of the so-called Davydov solitons on an a-helix protein (see [1] for de-

tails). In the mean-field approximation, the dynamics of Bose-Einstein condensates

is described by the Gross-Pitaevskii equation, which is nothing but an extended NLS

equation [2]. Moreover, the NLS equation with one transverse dimension is integrable

by means of the inverse scattering transform. Other nonlinear propagation equations

(e.g., the Korteweg-de-Vries equation), may be reduced to the NLS through multi-scale

expansions [3].

As far as the NLS equation is concerned, one of the major issues is its dimension-

ality n, which crucially determines its features. Here, we use the common terminology

”(nD+1)-dimensional NLS equation”, where n is the number of transverse dimensions,

and the ”1” represents the propagation direction. In the first pioneering works con-
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1. Introduction

cerning self-trapping of optical beams [4, 5] and hydromagnetic waves in plasmas [6],

already one (slab shaped beam) and two (cylindrical beam) transverse dimensions

were considered. The fundamental difference between the (1D+1)-dimensional and

the (2D+1)-dimensional NLS equation lies in the self-trapping itself. For the inte-

grable (1D+1)-dimensional equation, self-trapping leads to stable soliton solutions.

The prime example for this system are optical (temporal) solitons in fibers [7, 8]. In

contrast to that, for the (2D+1)-dimensional NLS equation (and also for higher dimen-

sions) self-trapping may lead to catastrophic self-focusing and collapse [9]. However,

collapse is a mathematical phenomenon which does not take place in the real physical

world. The most apparent mechanism to stop the collapse is the modification of the

medium by the self-focusing field itself, e.g. ionization, like in the case of high intense

light propagation in transparent media [10–12]. Another possibility is to ”tame” the

self-focusing process by coupling the field to an appropriate potential [13–16].

This thesis is organized in two major parts. First we consider beams in a non-

linear optical waveguide, namely a weakly-guiding structure with a Kerr nonlinearity

(Chapters 2.1 and 3). Here a (2D+1)-dimensional NLS equation governs the evolution

of the slowly-varying envelope of the electric field. The waveguide can be considered

as an additional linear trapping potential. The linear modes of the waveguide have an

analog in the nonlinear regime, the nonlinear bound states or spatial ”solitons”. In

fact, the linear modes of the waveguide can be considered as the zero power limit of

nonlinear bound states. Because nonlinear bound states are not necessarily stable, we

discuss the stability of these solitons. We make use of the fact that in the low power

limit the linear modes of the refractive index profile also appear as eigenstates of the

operator, which determines the stability of the nonlinear bound states. We show that

the knowledge of the spectrum of linear modes is sufficient to determine the stability

of the nonlinear solutions in the limit of small powers [S1]. Moreover, an estimate

of the growth rate versus power is established [S2]. The stability of similar trapped

structures was also investigated, e.g., [13–15]. In particular, it was observed that single

(unit) vortices with sufficiently small power could be stable in a parabolic trap and

preserve their radial shape, apart from an azimuthal rotation [14,15]. If the power in

the waveguide is increased, linear trapping is progressively replaced by nonlinear trap-

ping. Because of the two transverse dimensions catastrophic self-focusing becomes a

main obstacle [17]. We provide analytical evidence that the collapse can be suppressed

by the waveguide structure. The threshold power for catastrophic self-focusing can be

significantly increased [S3].

The second major part of this thesis concerns the propagation of high-intense

femtosecond pulsed beams in the atmosphere (Chapters 2.2 and 4). In the mid-1990s,

2



1. Introduction

first experiments on the meter-range propagation of femtosecond (fs) laser pulsed

beams were performed [10, 18–20]. In these experiments, infrared laser pulses with a

duration of about 100 fs produced narrow filaments of several meters. More than 10

% of the energy was observed to be localized in the near-axis area. This phenomenon

is attributed to the initial self-focusing of laser radiation, which originates from the

Kerr response of air and leads to an increase of the light intensity. This growth is then

saturated by the defocusing action of the electron plasma created by photoionization

of air molecules. As a result, the maximum light intensity in the filament does not

exceed 1014 W/cm2 for infrared pulses [S4, S5]. If the pulse power is less than a few

critical powers for self-focusing in air (Pcr ∼ 3 GW @ 800 nm), only a single filament

is created [10, 18, 19]. At higher powers, two or more filaments can be produced and

the propagation range may be increased [20–23] [S6]. First experimental observations

of kilometer-range propagation were reported in [24]. As novel optical sources access

the terawatt (TW) range, it is thus mandatory to understand the dynamics of fs light

pulsed beams. Especially important is the understanding of their decay into multiple

small-scale structures in view of improving various applications, such as atmospheric

remote sensing techniques [24].

Filaments originate from modulational instability (MI) of pulsed beams triggered

by the nonlinear response of air. Applied to an optical background, MI breaks

up high-power beams into small-scale cells. Each of them convey a power close to

Pfil ' π2Pcr/4 [25–27]. These cells are then amplified through the collapse dynamics

and relax their inner power to the critical one, until they reach the ionization threshold

near which they give rise to various transverse patterns and undergo strong temporal

distortions [27] [S7,S8]. At relatively low powers (≤ 25 Pcr), a beam may disintegrate

into a couple of small spots that fuse as they attain the full ionization regime [22]. This

fusion mechanism reduces the ultimate number of output filaments along the prop-

agation axis. For broader beams conveying much higher energies, another scenario

was reported [11]. Elaborated from 3D numerical simulations of a central portion of

the pulse over a dozen of meters, a propagation sustained by random nucleation of

small-scale filaments was proposed: Collapsing cells resulting from MI are regularized

via plasma defocusing with very small losses from multiphoton absorption (MPA).

Recurrent collapse events, which are fed by the energy reservoir created from ante-

rior defocused filaments, then form an ”optically turbulent light guide”, which drives

the pulsed beam dynamics. This latter scenario contrasts with the simple picture of

light guides that stay robust over long distances. We clarify this apparent contro-

versy by showing that beam propagation is driven by the interplay between random

nucleation of small-scale cells and relaxation to long waveguides. After a transient

3



1. Introduction

stage along which they vary in location and amplitude, filaments triggered by an

isotropic noise are confined within distinct clusters, called ”optical pillars”, whose

evolution can be approximated by an averaged-in-time two-dimensional (2D) model

derived from the standard propagation equations for ultrashort pulses. Results from

this model are compared with space- and time-resolved numerical simulations and ex-

perimental observations. Qualitative features in the evolution of the filament patterns

are reproduced by the time-averaged model [S9,S10].

Because of their remarkable robustness, femtosecond filaments constitute reliable

”tracks” for transmitting laser beams through fog and clouds, which is a key issue for

Lidar (Light Detection And Ranging) detection of atmospheric pollutants [24,28,29].

In polluted media, e.g., turbid media or aerosols, it is unavoidable that the beam

interacts with obscurants. From the experimental point of view, it was demonstrated

in [30] that filaments with a mean diameter of 150 µm (2.7 mJ in energy) survived

after hitting water or ink droplets as large as 95 µm. Triggered with 7 mJ, 120 fs pulses

at infrared wavelength, a ”photon bath” of about 2 mm in diameter surrounded the

central part of the beam and was suggested to act as an energy reservoir replenishing

the filament. Our simulations confirm this spectacular phenomenon and show that

the filament is rapidly rebuilt with a minimal loss of energy over a few cm after the

interaction region. However, we propose a different explanation for the robustness of

the filaments than the ”photon bath”. Inspired by our 2D time-averaged model [S11],

we identify the filament core with a spatial soliton. Direct comparison between fully

time resolved and time-averaged simulations reveal that the self-healing process is

indeed determined by soliton dynamics [S12]. The replenishment of the beam after

the interaction is shown to be too fast to involve the ”photon bath” [S13].

From the physical point of view, we deal with nonlinear light propagation in waveg-

uides and homogeneous transparent media. From the mathematical point of view, we

deal with generalized nonlinear Schrödinger equations in two and three transverse di-

mensions. And from the numerical point of view, we deal with massively parallel beam

propagation algorithms. Whichever line of sight the reader prefers, all of them have

their entitlement. Without a physical motivation, solving complicated partial differen-

tial equations as ”end in itself” is rather academic. Moreover, direct comparison with

physical experimental results offers comprehensive synergy effects. Without adequate

mathematical analysis and modeling, we can only describe the phenomena but lack a

deeper understanding. Furthermore, completely different physical systems can share

a similar mathematical background. Results found in one system can be applied to

another. Last but not least, without numerics many problems have to remain unre-

solved, and there is no use in a sound model without solution. However, this work
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1. Introduction

is written from the physical point of view because it is supposed to be a PhD thesis

in physics and the author considers himself to be a physicist. The mathematics and

especially numerics involved are therefore explained only so far as physics is concerned.

Although we have to keep in mind that to achieve the results presented here a lot of

heavy numerical work was necessary.

The experiments shown in this thesis were performed at the Laboratoire de Spec-

trométrie Ionique et Moléculaire, Université Cl. Bernard Lyon 1, France by the group

of Prof. J. P. Wolf. They were performed in the framework of the Teramobile project,

funded jointly by the Centre national de la recherche scientifique (CNRS), the Deutsche

Forschungsgemeinschaft (DFG), and the French and German ministries of Foreign af-

fairs. The Teramobile web site is www.teramobile.org. Simulations were realized

on the COMPAQ alpha cluster (TERA) at the Commissariat à l’Énergie Atomique,

Direction des Applications Militaires (CEA/DAM) in Bruyères-le-Châtel, France and

on the IBM p690 cluster (JUMP) at the Forschungszentrum Jülich, Germany.
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2. Modeling the propagation of trapped

beams

In this chapter we provide the model equations for the following work, where we treat

two different physical setups. First, in Section 2.1 the propagation equation for a

beam in an optical waveguide with a Kerr nonlinearity is derived [31]. It is used to

motivate the more general Nonlinear Schrödinger Equation (NLS) with an additional

potential. This type of equation is treated in Chapter 3. Second, in Section 2.2 we

recapitulate the model equations describing the propagation of ultrashort pulses in

air [11, 22, 32–34] [S6, S7]. Because the optical field is also governed by an NLS type

equation, general techniques in the derivation are similar to those used in Section 2.1.

The model latter is used in Chapter 4.

Maxwell’s equations

∇ · ~E(~r, t) =
ρ(~r, t)−∇ · ~P (~r, t)

ε0

(2.1a)

∇ · ~B(~r, t) = 0 (2.1b)

∇× ~E(~r, t) = − ∂

∂t
~B(~r, t) (2.1c)

∇× ~H(~r, t) = ~J(~r, t) + ε0
∂

∂t
~E(~r, t) +

∂

∂t
~P (~r, t) (2.1d)

are our starting point, where all fields involved, namely the electric field ~E, the polar-

ization vector ~P , the magnetic field ~H, the magnetic induction vector ~B, the carrier

density ρ and the current density ~J , are real valued.

We consider isotropic, non magnetizable media with a nonlinear polarization vec-

tor. Moreover, the spectral range of any fields should be far from any material reso-

nances. Then we can use the conventional description of nonlinear optics, and express

6



2. Modeling the propagation of trapped beams

~P as a power series in ~E:

~̂P (~r, ω) = ~̂P (1)(~r, ω) + ~̂P (3)(~r, ω) + ~̂P (5)(~r, ω) + ~̂P (7)(~r, ω) + . . . (2.2a)

P̂ (j)
µ (~r, ω) = ε0

∑
α1...αj

∫
· · ·

∫
χ(j)

µα1...αj
(~r,−ωσ; ω1, . . . , ωj) (2.2b)

×Êα1(~r, ω1) . . . Êαj
(~r, ωj)δ(ω − ωσ)dω1 . . . dωj

ωσ = ω1 + . . . + ωj. (2.2c)

For the magnetic induction we have

~̂B(~r, ω) = µ0
~̂H(~r, ω). (2.3)

For technical convenience, we express these relations in Fourier space, and the accord-

ing transformations are defined as

~̂F (~r, ω) =
1

2π

∫
~F (~r, t)eiωtdt (2.4)

~F (~r, t) =

∫
~̂F (~r, ω)e−iωtdω. (2.5)

In Equation (2.2a) we take into account the fact that in isotropic media all susceptibil-

ity tensors
↔
χ(j), j even, vanish due to spatial symmetry relations [35]. The subscripts

µ, α1, . . ., αj in Equation (2.2b) indicate the respective field vector component in

Cartesian coordinates. As indicated by the summation sign, α1, . . ., αj are to be

summed over x, y, and z. In the following, we specify Equation (2.2a) for the media

under consideration. We shall see later that for the field intensities under considera-

tion |~P (3)| ¿ |~P (1)| is already justified, thus in the expansion (2.2a) we neglect terms

of higher order than three.

The linear polarization ~̂P (1) can be further simplified. In isotropic media the tensor
↔
χ(1) is diagonal and only a single independent element remains: χ(1)

µα = χ(1)
xx δµα. Hence,

with the convention χ(1)(~r, ω) = χ(1)
xx (~r,−ω; ω), we have

~̂P (1)(~r, ω) = ε0χ
(1)(~r, ω) ~̂E(~r, ω), (2.6)

and we define the scalar dielectric function

ε(~r, ω) = 1 + χ(1)(~r, ω). (2.7)

The third order nonlinear polarization ~̂P (3) is determined by the 81 components of the
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2. Modeling the propagation of trapped beams

general fourth-rank tensor
↔
χ(3). Again we benefit from the isotropy of the medium

and from spatial symmetry relations [35] it is possible to show

χ(3)
µα1α2α3

= χ(3)
xxyyδµα1δα2α3 + χ(3)

xyyxδµα3δα1α2 + χ(3)
xyxyδµα2δα1α3 . (2.8)

Moreover, we consider media with homogeneous nonlinearity and quasi linearly po-

larized electric fields ~E = Ex~ex only. Therefore, only one relevant component of the

tensor remains and with the definition χ(3) = χ(3)
xxxx = χ(3)

xxyy + χ(3)
xyyx + χ(3)

xyxy we have

~̂P (3)(~r, ω) = ~exε0

∫∫
χ(3)(ω; ω1, ω2, ω − ω1 − ω2) (2.9)

×Êx(~r, ω1)Êx(~r, ω2)Êx(~r, ω − ω1 − ω2)dω1dω2.

As expected, in an isotropic medium the nonlinear polarization vector is parallel to

the electric field.

2.1. Beam propagation in a weak-guiding nonlinear

optical waveguide

Our aim is a simple but accurate propagation equation for monochromatic beams in a

nonlinear waveguide. A small linear index contrast and small nonlinear induced index

changes allow us to derive a scalar first order equation without loosing generality. The

techniques applied are carefully discussed, also in order to have them ready to hand

in the more involved Section 2.2.

For our waveguide, ε(~r, ω) is assumed real and positive, and we define the linear

refractive index n(~r, ω) =
√

ε(~r, ω). Moreover, the index is invariant along propagation

direction (z), and we can define a background index as limx,y→∞ n(x, y, ω) = nb(ω). We

consider a weakly-guiding waveguide, because we are interested in spatial dynamics.

Hence, the relative index change (n − nb)/nb ¿ 1 should be small, and nonlinear

effects can influence the guiding properties. Note that this is a different setup to a

strong-guiding waveguide, where the spatial behavior is completely determined by the

waveguide modes.

Because we are interested in beam propagation only, we consider a quasi linear

polarized incident electric field ~E = Ex~ex oscillating with the operating frequency ω0.

The complex slowly varying envelope function ~E of the electric field ~E is defined by

~E(~r, t) =

√
ω0µ0

2k0

~E(x, y, z)ei(k0z−ω0t) + c.c., (2.10)

8



2. Modeling the propagation of trapped beams

where k0 = ω0nb(ω0)/c is the wavenumber of a plane wave ∼ exp(ik0z − iω0t) propa-

gating in the background medium. The x-component of the optical field is dominant

|Ex| À |Ey,z| , (2.11)

and we write E = Ex. For technical convenience, the scalar optical field is normal-

ized such that the intensity is I = |E|2. The field envelope E is assumed to change

slowly in the variables x, y and z, which is called the paraxial slowly varying envelope

approximation (SVEA). More precisely, the envelope has to obey the condition

∣∣∣∣
∂

∂α
E
∣∣∣∣ ¿ k0 |E| , (2.12)

where α is x, y, or z. Physically, Equation (2.12) means that the field envelope E does

not change on length scales comparable to the wavelength λ = 2π/k0 in the medium.

The Ansatz (2.10) allows us to simplify the expression for the nonlinear polariza-

tion. With Equation (2.9) we see

~P (3)(~r, t) = ε0

(
ω0µ0

2k0

) 3
2 [

3χ(3)(−ω0; ω0,−ω0, ω0) |E|2 ~Eei(k0z−ω0t) + c.c.
]

(2.13)

+ε0

(
ω0µ0

2k0

) 3
2 [

χ(3)(−3ω0; ω0, ω0, ω0)
(

~E · ~E
)

~Eei(3k0z−3ω0t) + c.c.
]
.

It is obvious that the terms in the second line are oscillating with a different frequency,

namely the third harmonic 3ω0. If these terms were taken into account, we should

also introduce an electric field running at 3ω0. In general these fields remain weak

because a plane wave at 3ω0 has a different wave number than 3k0. The so-called

phase mismatch ∆k = 3k0 − 3ω0nb(3ω0)/c leads to destructive interference after a

propagation length ∆z ∼ π/∆k. This phase mismatch justifies the disregard of third

harmonic generation (THG). Hence, with the definition of the nonlinear refractive

index

n2(ω0) =
3

4

χ(3)(−ω0; ω0,−ω0, ω0)

ε0cn2
b(ω0)

, (2.14)

the final expression for the nonlinear polarization vector ~P (3) in our waveguide is

~P (3)(~r, t) = ε0

√
ω0µ0

2k0

[
2nbn2 |E|2 ~Eei(k0z−ω0t) + c.c.

]
. (2.15)

For n2 real, this is a so called Kerr nonlinearity. Because we have only one frequency

ω0, frequency arguments will be omitted in what follows.
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2. Modeling the propagation of trapped beams

To sum up, we are looking for a solution of the Equations (2.1) in the nonlinear

waveguide, which is close to a linear polarized plane wave propagating in z direction

as suggested by the ansatz (2.10). Because there are no free charge carriers in the

medium, we have ~J = 0 and ρ = 0. Equation (2.1a) then reads

∇ · ~E = −ε0
~E · ∇ε +∇ · ~P (3)

ε0ε
= −2n~E · ∇n + 2nbn2I∇ · ~E + 2nbn2

~E · ∇I

n2
. (2.16)

Later, when the wave equation will be derived, ∇· ~E will be neglected because it turns

out to be small compared to ∂xEx, the three derivatives balance and make ∇ · ~E close

to zero. To show this crucial relation, we need that |n − nb| ¿ nb and |n2I| ¿ nb,

which will be verified when we specify the values for the physical parameters. It is

obvious that we have to estimate two terms, ~E · ∇n and n2
~E · ∇I. Because of the

assumed quasi linear polarization [Equation (2.11)], it is sufficient to deal with Ex∂xn

and n2Ex∂x|E|2. For the second term, it is easy to see that

∣∣∣n2
~E · ∇I

∣∣∣ =

∣∣∣∣n2Ex
∂

∂x
|E|2

∣∣∣∣ ≤ 4 |n2I|
∣∣∣∣

∂

∂x
Ex

∣∣∣∣ ¿ nb

∣∣∣∣
∂

∂x
Ex

∣∣∣∣ . (2.17)

For the first term, we use that the relative index changes (¿ 1) are small compared

to the relative changes of the field (∼ 1), and therefore

∣∣∣ ~E · ∇n
∣∣∣ =

∣∣∣∣Ex
∂

∂x
n

∣∣∣∣ ¿ n

∣∣∣∣
∂

∂x
Ex

∣∣∣∣ . (2.18)

Of course, this relation may not be strictly valid in certain domains, especially for

extremal values of Ex. But these violations are not due to a large left hand side,

rather than to a abnormal small right hand side of Equation (2.18). In particular,

∇ · ~E is not especially large in these domains. Therefore, it is justified to assume

∇ · ~E = 0 (2.19)

in the following. Before we continue deriving the wave equation, it might be helpful

to reflect the link between SVEA and the vanishing of ∇ · ~E, which reads

∇ · ~E =

√
ω0µ0

2k0

ei(k0z−ω0t)

(
∂

∂x
E +

∂

∂y
Ey +

∂

∂z
Ez + ik0Ez

)
+ c.c.. (2.20)

Because of the assumed quasi linear polarization [Equation (2.11)] we can neglect

∂yEy and ∂zEz, and Equation (2.19) implies that Ez ≈ i∂xE/k0. We see that SVEA

(|∂xE| ¿ k0|E|) is crucial here to raise k0Ez in the same order of magnitude as ∂xE .
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2. Modeling the propagation of trapped beams

With Equations (2.3), (2.19) and ~J = 0 Maxwell’s equations lead to the wave

equation

∆ ~E − 1

c2

∂2

∂t2
~E = µ0

∂2

∂t2
~P . (2.21)

Using Equations (2.6), (2.7), (2.10) and (2.15) the wave equation reads

∂

∂z

(
2ik0E +

∂

∂z
E
)

+ ∆⊥E +
ω2

0

c2
(n + nb)(n− nb)E + 2k0

ω0

c
n2 |E|2 E = 0, (2.22)

where ∆⊥ = ∂2
x +∂2

y . The SVEA condition (2.12) and |n−nb| ¿ nb allow us to derive

the final propagation equation

i
∂

∂z
E(~r) +

1

2k0

4⊥ E(~r) +
ω0

c
n2 |E(~r)|2 E(~r) +

ω0

c
(n(x, y)− nb) E(~r) = 0. (2.23)

Equation (2.23) describes the propagation of the field envelope E in a weak-guiding

optical waveguide with a Kerr nonlinearity in the scalar, slowly varying envelope ap-

proximation. Typical values for the parameters in a silica bulk medium are nb = 1.4,

|n−nb| ≤ 5×10−3, n2 = 3×10−16 cm2/W at a vacuum wavelength λ0 = 600 nm. The

damage threshold for silica is about 10 J/cm2 for nanosecond pulses [36] corresponding

to ∼ 1010 W/cm2, up to which the model should be valid. For shorter, femtosecond

pulses this damage threshold is 1000 times higher, but since we treat cw beams the

lower value for nanosecond pulses is relevant. Mathematically, Equation (2.23) is a

(2D+1)-dimensional nonlinear Schrödinger equation with additional potential.

2.2. Femtosecond pulsed beam propagation in air

In contrast to the previous section, where we consider spatial dynamics in an inho-

mogeneous medium, we here treat a spatio-temporal problem, but in a homogeneous

medium. Hence, we will have a third ”transverse” dimension in our final propagation

equation, namely the time. Moreover, intensities exceeding the ionization threshold of

the medium (air) lead to the generation of free carriers and therefore a current density
~J 6= 0. Thus, a second equation, describing the evolution of the carrier density, will be

derived. However, even though more complicated physics than in the previous section

is involved, we will follow the same procedure and derive a scalar first order NLS-type

propagation equation for the optical field.

In air, ε(ω) is real and positive for wavelengths ranging from the infrared to the ul-

traviolet. The linear refractive index is defined by n(ω) =
√

ε(ω) and the wavenumber

by k(ω) = ωn(ω)/c. We are interested in the propagation of a quasi linear polarized

11



2. Modeling the propagation of trapped beams

pulsed beam, whose spectrum is centered around the operating frequency ω0. Assum-

ing a sufficiently small spectral bandwidth ∆ω, we can expand k(ω) in a Taylor series

around ω0

k(ω) = k0 + k′ω +
1

2
k′′ω2 +

1

6
k′′′ω3 + . . . (2.24a)

k2(ω) = k2
0 + 2k0k

′ω + k′2ω2 + k0k
′′ω2 + k′k′′ω3 +

1

3
k0k

′′′ω3 + . . . , (2.24b)

where ω = ω − ω0. The complex slowly varying envelope function ~E of the electric

field ~E is defined by

~E(~r, t) =

√
ω0µ0

2k0

~E(x, y, z, t)ei(k0z−ω0t) + c.c., (2.25)

analogous to Equation (2.10), but here the envelope is time dependent. As for the

waveguide, the x-component of the optical field is assumed to be the dominant one,

|Ex| À |Ey,z|, and we write E = Ex. The field envelope E is assumed to change slowly

in α = x, y, z and t

∣∣∣∣
∂

∂α
E
∣∣∣∣ ¿ k0 |E| (2.26a)

∣∣∣∣
∂

∂t
E
∣∣∣∣ ¿ ω0 |E| . (2.26b)

This is justified if the field envelope E does not change on length scales comparable

to the wavelength λ = 2π/k0 and time scales comparable to the optical cycle Tcyc =

2π/ω0.

Strictly speaking, the computation of the third order nonlinear polarization vector
~P (3) for pulses requires the knowledge of the frequency dependencies of the nonlinear

susceptibility over the relevant part of the spectrum [see Equation (2.9)]. However,

this is far beyond the scope of this work, since we are interested in a simpler model

for understanding the physical basics. Here, we will use a common approximation to

describe the propagation of infrared femtosecond pulses in air [34,37], reading

~P (3)(~r, t) = ε0

√
ω0µ0

2k0

[
2nbn2

∫
R(t− t′) |E(t′)|2 dt′~Eei(k0z−ω0t) + c.c.

]
(2.27a)

R(t) = (1− xdK) δ(t) + xdK
1 + Ω2τ 2

K

Ωτ 2
K

Θ(t)e
− t

τK sin(Ωt), (2.27b)

where δ denotes the δ-distribution and Θ the Heavyside function (the unit of δ(t)

is s−1, for definitions see Appendix C). The above intensity dependent nonlinear

12



2. Modeling the propagation of trapped beams

polarization accounts for non-resonant and incoherent nonlinear effects. As in the

previous section, we neglect third harmonic generation due to the large phase mismatch

∆k = 3k0 − k(3ω0) (e.g. ∆k = −5 cm−1 @ 800 nm). The Kerr response of air

R(t) possesses both retarded and instantaneous components at the ratio of xdK . The

instantaneous part ∼ δ(t) describes the response from the bound electrons. Electronic

response times are about a few femtosecond or less, and therefore considerably smaller

than the duration of the pulse envelopes under consideration. The retarded part ∼
exp(−t/τK) accounts for nuclear response, namely the rotational Raman contribution.

The delay time τK and the inverse resonance frequency 1/Ω lie in the same range as

the accounted pulse lengths ∼ 100 fs.

As mentioned before, high intensities require the modeling of both ionization of

air molecules and feedback of the generated charge carriers to the laser field. Of all

molecular species in the atmosphere the oxygen molecule has the lowest ionization

potential Ui = 12.1 eV. Oxygen, contributing ∼ 20% to the neutral molecule density,

is already the key-player of the infrared ionization processes in air. Other possible

scenarios, e.g. the ionization of nitrogen, can be neglected [33]. From simple energy

considerations we can deduce the number of photons K = mod(Ui/~ω0) + 1 that are

necessary for this multiphoton ionization (MPI) process. Here we assume a single

photon energy ∼ ~ω0 for all photons involved, because around the center frequency ω0

we have the highest spectral intensity. The Keldysh theory delivers a MPI ionization

rate

WMPI = σKIK = σK |E|2K , (2.28)

which is valid up to intensities of ∼ 1013 W/cm2. For higher intensities, tunnel ion-

ization starts to contribute [38, 39]. Femtosecond pulsed beams in air reach peak

intensities of about ∼ 1014 W/cm2, which is beyond the validity of the MPI limit.

However, considerable ionization takes place in the range 1013 − 1014 W/cm2 only.

In this range it is possible to infer a MPI-like formulation from the more general

Perelomov-Popov-Terent’ev theory [40] by adjusting σK properly.

Later we will see that we have to take into account a second ionization mechanism

for oxygen, the avalanche ionization by free electrons accelerated by the laser field.

This mechanism is much weaker than MPI, and is only included for consistency. The

equation for the evolution of the electron density ρe reads

∂

∂t
ρe(~r, t) = (WMPI +WAI) ρnt, (2.29)

where WAI is the avalanche ionization rate, and ρnt is the neutral molecule density of

oxygen. Here we neglect both diffusion and recombination of carriers, because these

13



2. Modeling the propagation of trapped beams

processes are acting on time scales ≥ 10 ps. Hence, they are too slow to influence

femtosecond pulses. Moreover, expected electron densities ρe ≤ 1016 cm−3 justify

the assumption of a constant neutral density ρnt = 5.4 × 1018 cm−3 at atmospheric

pressure. It is worth noticing that the electron density ρe is also a slowly varying

entity, like E . It does not take into account the fast small-scale motion (∼ 1 nm) of

the electrons.

Such fast small-scale motions, namely oscillations of the free electrons driven by

the electric field, are included by a Drude model. We assume a free electron gas on a

positive background. This background are the ions, which provide the shielding of the

electron charges. Because the mass of the ions is ∼ 30000 times the electron mass, we

neglect ion motions and therefore their contribution to the current density. Then the

free electron current density ~Je(~r, t) is governed by

∂

∂t
~Je +

1

τ0

~Je =
q2
e

me

ρe
~E, (2.30)

where we neglect diffusion. Here qe = 1.6× 10−19 C accounts for the electron charge,

τ0 = 3.5× 10−13 s is the electron collision time and me = 9.1× 10−31 kg the electron

mass. The motion of the free electrons is dominated by the fast oscillations of the

linear polarized optical field at ω0, and it is justified to introduce a complex slowly

varying envelope ~Je,

~Je(~r, t) =

√
ω0µ0

2k0

~Je(x, y, z, t)ei(k0z−ω0t) + c.c., (2.31)

analogous to Equation (2.25). We can solve Equation (2.30) formally as

~Je =
q2
e

meω0

(
−iT̂ +

1

τ0ω0

)−1

ρe
~E , (2.32)

where T̂ = 1+ i∂t/ω0. A SVEA condition like (2.26b) can be formulated for ρe as well

as for ~Je and reads |∂tρe
~E|/ω0 ¿ |ρe

~E|. Thus, together with 1/τ0ω0 ¿ 1 it is justified

to simplify Equation (2.32) to

~Je =
q2
e

meω0

(
1

τ0ω0

+ iT̂−1

)
ρe

~E , (2.33)

which is much more convenient in the following derivation.

As in the case of the ionization rates, we have to consider a second contribution

to the current density: The generation of free carriers by MPI. Because this term will

14



2. Modeling the propagation of trapped beams

lead to the expression for the multiphoton absorption (MPA) in our final equations,

we call it ~JMPA and
~J(~r, t) = ~Je(~r, t) + ~JMPA(~r, t). (2.34)

The corresponding complex slowly varying envelopes ~J and ~JMPA are defined as the

analogues of ~Je [Equation (2.31)].

Via the energy conservation law it is possible to derive self-consistent expressions

for WAI and ~JMPA. The temporal evolution of the local energy density w in the

medium is determined by

d

dt
w(~r, t) = ~J(~r, t) · ~E(~r, t). (2.35)

Hence, we can compute the energy transferred to the medium by the pulse at the

position ~r in a small volume ∆V = λ3
0 by

W∆V (~r) =

∫ λ0

0

∫ λ0

0

∫ λ0

0

∫ ∞

−∞
~J(~r + ~r′, t) · ~E(~r + ~r′, t)dtd3r′ (2.36)

= λ3
0

∫
µ0q

2
e

meτ0ω0k0

ρe(~r, t) |E(~r, t)|2 +
ω0µ0

2k0

[
~JMPA(~r, t) · ~E∗(~r, t) + c.c.

]
dt.

Note that terms containing iT−1 cancel via integration by parts, and that fast os-

cillating terms proportional to exp[±i2(k0z − ω0t)] do not contribute to the integral.

Moreover, the choice of ∆V is arbitrary, its dimensions just have to be large against

the scales of the electron movement and small compared to length scales of the slowly

varying envelopes.

On the other hand, we know that energy transferred to the medium by the optical

field causes ionization of neutral oxygen molecules. Here we assume that all energy

losses due to electron-ion collision [term ∼ 1/τ0 in Equation (2.30)] contribute to the

avalanche ionization. This is justified by the fact that the kinetic energy of the free

electrons can reach up to ∼ 20 eV, which is sufficient for a ballistic ionization process.

Hence we have

W∆V (~r) = λ3
0

∫ [
σK |E(~r, t)|2K ρnt(~r, t)K~ω0 +WAI(~r, t)ρnt(~r, t)Ui

]
dt. (2.37)

The first term on the right-hand-side gives the energy consumption of MPI (one pro-

cess needs K~ω0 in energy), the second term the energy consumption of avalanche

ionization (consumes Ui). In terms of SVEA, the energy transfer is local and instan-

taneous. Both ionization processes act on time scales comparable to the oscillation of

the carrier wave or less, and the motion of the free electrons takes place on nanome-
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2. Modeling the propagation of trapped beams

ter scales. Therefore, it is justified to omit the time integral when we equate the

expressions of Equations (2.36) and (2.37):

µ0q
2
e

meτ0ω0k0

ρe |E|2 +
ω0µ0

k0

<
(

~JMPA · ~E∗
)

= σK |E|2K ρntK~ω0 +WAIρntUi. (2.38)

We claimed above that we can derive WAI and ~JMPA self-consistently. Indeed,

Equation (2.38) links both WAI and ~JMPA to known quantities. However, additional

arguments are necessary to make them unique. First, we assume that ~JMPA causes

energy losses only, e.g., |=( ~JMPA · ~E∗)| = 0. This is a rather formal constraint, because

there is no physical argument that MPA should influence the optical field other than

by losses. Second, we assume that the current density ~JMPA is caused by MPI only,

and that ~JMPA is parallel to ~E. On these assumptions Equation (2.38) leads to

~JMPA =
k0β

(K)

ω0µ0

|E|2(K−1) ~E , (2.39)

where β(K) = σKK~ω0ρnt, and

WAI =
σ

Uiρnt

ρe |E|2 , (2.40)

where σ = µ0q
2
e/meτ0ω0k0. Thus, we have derived self-consistent expressions for WAI

and ~JMPA.

We proceed as in the previous section and justify that we can neglect ∇ · ~E in the

derivation of the wave equation. In particular, Equation (2.1a) reads

∇ · ~E =
ρ−∇ · ~P (3)

ε0ε
, (2.41)

and we want to show that |∇ · ~E| ¿ |∂xEx|. Despite of the more complicated expres-

sion, the magnitude of the nonlinear polarization is still ∼ |n2I|, and we will see later

that |n2I| ¿ nb = n(ω0). Therefore we have |∇ · ~P (3)|/ε0ε ¿ |∂xEx| analogous to the

previous case. What is new here is the term ρ/ε0ε. The carrier density ρ = qe(ρion−ρe)

contains both the contributions from the free electrons and the ions. In the current

density ~J it is justified to neglect the contribution of the ions because of their huge

mass compared to the electrons. The continuity equation

∂

∂t
ρ +∇ · ~J = 0, (2.42)

can be derived straight forward from Maxwell’s equations. We use it to substitute ρ
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2. Modeling the propagation of trapped beams

in Equation (2.41) and get

(
∂

∂t
− iω0

)
∇ ·

[
~Eeik0z

]
= −

∇ ·
[

~J eik0z
]

ε0ε
(2.43)

for the complex envelopes. Now we plug in the expressions for ~Je and ~JMPA and get

∇ ·
[
~Eeik0z

]
= T̂−1∇ ·

(
T̂−1 ρe

n2
bρc

~Eeik0z − i
σρe

k0

~Eeik0z − i
β(K) |E|2(K−1)

k0

~Eeik0z

)
, (2.44)

where ρc = meε0ω
2
0/ q2

e is the critical plasma density. First of all, we can drop the

operator T̂ , since the SVEA condition (2.26b) guarantees T̂ = 1 + i∂t/ω0 ∼ Î. More-

over, it turns out that ρe/ρc ¿ n2
b , σρe ¿ k0 and β(K)|E|2(K−1) ¿ k0 (see end of

this section). Therefore, we are left with the tasks to show |E∂xρe| ∼ ρe|∂xE| and

|E∂x|E|2(K−1)| ∼ |E|2(K−1)|∂xE|. For the first task, we can conclude using Equations

(2.28) and (2.29) that ∣∣∣∣E
∂

∂x
ρe

∣∣∣∣ ∼ 2K

∣∣∣∣ρe
∂

∂x
E
∣∣∣∣ , (2.45)

where we neglect avalanche ionization. For the second task, it is easy to see that

∣∣∣∣E
∂

∂x
|E|2(K−1)

∣∣∣∣ ≤ 2 (K − 1) |E|2(K−1)

∣∣∣∣
∂

∂x
E
∣∣∣∣ . (2.46)

Hence, as in the previous section, ∇ · ~E = 0 is justified and we are able to derive the

wave equation

∆ ~E − 1

c2

∂2

∂t2
~E = µ0

(
∂2

∂t2
~P +

∂

∂t
~J

)
. (2.47)

If we plug in the SVEA ansatz and the expressions for polarization [Equations (2.2a),

(2.6), and (2.27)] and current density [Equations (2.33), (2.34), and (2.39)] derived

above we get

(
∂

∂z
+ ik0

)2

E + ∆⊥E +

∫
k2(ω0 + ω)Ê(~r, ω)e−iωtdω (2.48)

= −2k2
0n2

nb

T̂ 2

∫
R(t− t′) |E(t′)|2 dt′E +

k2
0

n2
bρc

ρeE − ik0T̂
(
σρeE + β(K) |E|2(K−1) E

)
,

where Ê denotes the Fourier transform of E .

Our goal is to model the evolution of short laser pulses propagating in air. These

pulses are traveling at a certain velocity in z-direction. In the linear regime, they travel

at the group velocity vg(ω0) = 1/k′, and it is a good assumption that the nonlinear

17



2. Modeling the propagation of trapped beams

effects under consideration will not change this too much. Hence, the derivation of

the field envelope E with respect to z is dominated by the motion of the pulse, and

we have ∣∣∣∣
∂

∂z
E + k′

∂

∂t
E
∣∣∣∣ ¿

∣∣∣∣
∂

∂z
E
∣∣∣∣ . (2.49)

Hence, with the transformation into coordinates moving with the pulse, t̃ = t − k′z

and z̃ = z, it is possible to achieve an even weaker dependency of the field envelope

on the propagation variable: With Equations (2.26) and (2.49) we see

∣∣∣∣
∂

∂z̃
E
∣∣∣∣ = |∂zE + k′∂tE| ¿

∣∣∣∣
∂

∂z
E
∣∣∣∣ ¿ k0 |E| . (2.50)

For simplicity, we will remove the tilde ∼ after applying the transformation and with

Equation (2.24b) we get

∂

∂z

(
1 + i

k′

k0

∂

∂t
− i

2k0

∂

∂z

)
E − i∆⊥E

2k0

+
ik′′

2

(
1 + i

k′

k0

∂

∂t
+

i

3

k′′′

k′′
∂

∂t

)
∂2E
∂t2

(2.51)

=
ik0n2

nb

T̂ 2

∫
R(t− t′) |E(t′)|2 dt′E − ik0

2n2
bρc

ρeE − 1

2
T̂

(
σρeE + β(K) |E|2(K−1) E

)
.

In air, it is justified to assume k′ = 1/c, nb = 1 and therefore 1 + ik′∂t/k0 = T̂ .

With Relation (2.50) we neglect the second derivative with respect to z, and after

multiplying with the inverse operator T̂−1 the ultimate propagation equation reads

∂

∂z
E − i

2k0

T̂−1∆⊥E + i
k′′

2

∂2

∂t2
E − k′′′

6

∂3

∂t3
E (2.52)

= ik0n2T̂

∫
R(t− t′) |E(t′)|2 dt′E − i

k0

2ρc

T̂−1ρeE − σ

2
ρeE − β(K)

2
|E|2K−2E ,

where we consequently neglect derivations with respect to t of order higher than three.

It is interesting to note that Equation (2.52) takes into account all deviations from

unity of the order |∂tE| /ω0 and therefore goes beyond ordinary SVEA [41].

In this work, emphasis is laid on the spatial dynamics of the pulsed beams. Hence,

for sake of simplicity, we assume k′′′ = 0 and T̂ = Î. These assumptions are justified

by the SVEA condition (2.26b) and k′′′/k′′ ∼ 1/ω0. Moreover, we neglect the sin(Ωt)

dependency in the Raman response function [Equation (2.27)]. The resulting simplified

nonlinear response provides a reasonable and numerically tractable description of the

nonlinear polarization of air. This step is motivated from the numerical point of view,

in order to save computational efforts. The influence of the oscillation in the response

function on the solution is weak [33], but requires to solve a second order differential
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2. Modeling the propagation of trapped beams

equation in time in each step instead of a first order one. The resulting equations form

the standard model for femtosecond pulse propagation in air [11,22,32–34] [S6,S7]

∂

∂z
E = i

1

2k0

∆⊥E − i
k′′

2

∂2

∂t2
E + ik0n2

∫
R(t− t′) |E(t′)|2 dt′E (2.53a)

−i
k0

2ρc

ρeE − σ

2
ρeE − β(K)

2
|E|2K−2E ,

R(t) = (1− xdK) δ(t) +
xdK

τK

Θ(t)e
− t

τK , (2.53b)

∂

∂t
ρe = σKρnt|E|2K +

σ

Ui

ρe|E|2. (2.53c)

For an operating wavelength λ0 = 2π/k0 = 800 nm the pertinent parameters are given

in Table 2.1. The peak intensity |E|2 never exceeds 1014 W/cm2, and ρe ≤ 1017 cm−3.

The resulting nonlinear induced index changes ∼ n2I and ∼ ρe/ρc are in the order of

10−4.

k0 = 79× 103 cm−1 k′′ = 0.2 fs2/cm n2 = 3× 10−19 cm2/W
ρc = 1.8× 1021 cm−3 σ = 5.4× 10−20 cm2 K = 8

β(K=8) = 3.1× 10−98 cm13/W7 xdK = 0.5 τK = 70 fs
σK=8 = 2.9× 10−99 s−1 cm16/W8 ρnt = 5.4× 1018 cm−3 Ui = 12.1 eV

Table 2.1.: Values of the parameters in Equations (2.53) for λ0 = 800 nm.
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3. Beams in a nonlinear optical waveguide

The two sections of this chapter deal with the same physical system, namely a weakly-

guiding waveguide with a Kerr nonlinearity, but in opposite regimes in terms of the

trapping mechanism. In Section 3.1, the trapping is linear due to the waveguide.

Nonlinear effects slightly modify the linear modes of the waveguide, which we then

call nonlinear bound states. The main focus lies on the analysis of the stability of

these nonlinear bound states. Analytical arguments are double-checked by rigorous

numerical simulations. Special regard is paid to the decay mechanism of unstable

nonlinear bound states. Here we always operate in the low-power regime close to the

linear one.

In contrast to that, in Section 3.2 we address highly nonlinear collapsing solutions.

In this high-power regime, the beam undergoes nonlinear self-trapping which leads

to catastrophic self-focusing and collapse. The linear waveguide acts perturbatively

on this nonlinear self-focusing dynamics. We compare this system to the well-known

(2D+1)-dimensional NLS equation. By doing so, we are able to transfer classical

results to our system, and point out important differences. Finally, we check our

analytical arguments by numerical simulations.

For technical convenience, we rescale Equation (2.23) to dimensionless quantities.

Moreover, the essential part of the literature on NLS collapse uses this formulation

(see e.g. [9, 42]). The transverse coordinates x and y are scaled to the extension

of the waveguide r0. In the case of an optical fiber r0 is simply the core diame-

ter. For more complicated index distributions, one may choose a typical transverse

dimension. Moreover, we normalize the coefficients in front of both the diffraction

term and the nonlinearity to unity. With X = x/r0, Y = y/r0, Z = z/2k0r
2
0, and

σ = sign(n2) the modified (2D+1)-dimensional NLS equation for the wave function

Ψ = k0r0

√
2 |n2| /nbE reads

i
∂

∂Z
Ψ +

(
∂2

∂X2
+

∂2

∂Y 2

)
Ψ + σ |Ψ|2 Ψ− V Ψ = 0, (3.1)

with an bounded potential V = 2k2
0r

2
0(nb − n)/nb, satisfying limR→∞ V = 0.
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3. Beams in a nonlinear optical waveguide

Another reason for using the dimensionless formulation of Equation (3.1) is the

generality of the NLS equation. In particular, it is also known as Gross-Pitaevskii

equation, which governs the macroscopic Bose-Einstein condensate (BEC) wave func-

tion in the mean-field approximation. Here, the potential models the magnetic trap

confining bosons into a condensate. For atoms with attractive interactions, BECs

can undergo sequences of collapses [43–45], similar to the self-focusing phenomenon in

optics. However, for suitable numbers of particles and/or different interactions, long-

living stationary-wave structures as ground states (single-humped) or vortices (with

angular momentum; see, e.g., [46]) can form in condensates.

3.1. Stability of weakly nonlinear linearly guided

beams

In this section, we present an easy-to-use sufficient stability criterion for low-power

nonlinear bound states of NLS systems with an “attractive” potential, in optical terms,

linearly guided beams undergoing weak nonlinearities. The knowledge of the spectrum

of this potential (the linear waveguide modes) is sufficient to determine the stability of

the nonlinear bound states in the limit of small powers. Moreover, the theory can be

applied in principle to conservative, Hamiltonian systems of arbitrary dimensionality

and an arbitrary shaped, but “attractive” potential. However, for the sake of concise-

ness, we mainly concentrate on the case of a circularly symmetric fiber with focusing

or defocusing cubic nonlinearity.

In Section 3.1.1, we determine the linear modes of the potential and their contin-

uation towards nonlinear bound states (“solitons”) for higher power levels. In Section

3.1.2, we discuss the stability of these “solitons” for low powers. Here we use the

key-property that the linear modes of the potential are related to the eigenfunctions

of the linearized NLS operator, which determines the stability of weakly nonlinear

waves. More precisely, each of the linear modes appears twice as an eigenfunction, but

with shifted eigenvalue. Whereas it is known that the resonance of two linear localized

eigenfunctions can produce instabilities (see, e.g., Refs [47–49]), the present theory,

instead, deals with resonances between localized eigenfunctions (discrete eigenvalues)

and delocalized eigenfunctions (continuous eigenvalues). In Section 3.1.3, we propose

a stability criterion for low-power nonlinear bound states, deduced from the existence

of the previous resonances. By analyzing the dependency of the perturbation ampli-

tudes on the growth rate, it is shown that the criterion is indeed sufficient for stability.

Finally, in Section 3.1.4 our analytical arguments are double-checked by means of a
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3. Beams in a nonlinear optical waveguide

numerical stability analysis and by direct numerical simulations.

Our results can be applied directly to the step-index optical fiber with a focusing

Kerr nonlinearity. Guiding high power optical fields through fibers is still a challeng-

ing task. Large mode areas have to be used to limit nonlinear effects and to avoid

permanent damage. However, this usually implies multi-mode behavior and therefore

contradicts the requirement of a well-defined transverse field structure. Our results

show that strict single mode behavior is not required and that by tailoring the linear

index profile, e.g., an effective potential, a nonlinear destabilization of higher order

modes can be achieved. In a numerical example a vortex mode, although linearly

guided, decays into the ground state due to the action of the nonlinearity.

3.1.1. Linear modes and nonlinear bound states

In the subsequent analysis, we switch from Cartesian coordinates (X, Y, Z) to cylin-

drical ones (R, Φ, Z), because we restrict ourselves to radially symmetric waveguides

for sake of simplicity. The potential V is assumed to support several localized linear

modes Θj,M(R) exp (iMΦ + iγj,MZ), M = . . . ,−1, 0, 1, . . ., j = 1, 2, . . ., with discrete

eigenvalues γj,M ordered as γj1,M > γj2,M ⇔ j1 < j2. The eigenfunctions Θ ≡ Θj,M

obey

γΘ = D̂MΘ (3.2a)

D̂M =
1

R

∂

∂R

(
R

∂

∂R

)
− M2

R2
− V, (3.2b)

where |min V | > γj,M > 0. For γ = γc ≤ 0 in Equation (3.2a) we have a continuum of

delocalized (radiative) modes Θγc,M . Further on, we consider a class of potentials V ,

for which the discrete spectrum is not degenerated, apart from the trivial degeneration

that follows from the elementary symmetry M → −M .

In the following, we use a radially symmetric step-potential [V (R ≤ 1) = −V0,

V (R > 1) = 0] as an illustrative example, which models the most common case of an

optical fiber. The depth of the potential V0 determines the number and magnitude

of the discrete eigenvalues γj,M and the domain of the continuum. Figure 3.1 shows

an example for the discrete (localized modes) and continuous (delocalized modes)

eigenvalues of Equation (3.2a). The assumption of a step potential obviously violates

the conditions to achieve Equation (2.19): The gradient of the refractive index is

infinite at the borders of the fiber core. Nevertheless, it is common to use a step

profile as an idealized model of a fiber. The differences compared to more realistic

refractive index distributions are small and beyond the scope of this work.

22



3. Beams in a nonlinear optical waveguide

� �
�

�

�

�
��
�

� �
�

�

�

�
��
�
�

� �
�

�

�

�
��
�
�

� �
�

�

�

�
��
�

���

��

�
��	
�	��


�����	���
	�	��
�

�����	���
��

����

�����

�����
����
�

Figure 3.1.: Discrete eigenvalues γj,M of Equation (3.2a) and radial shapes of the cor-
responding localized linear modes Θj,M . The given step-potential supports
four localized modes.

From each of the localized linear modes Θj,M of Equation (3.2a) a branch of non-

linear bound states ψ(R, Φ, Z) = Uj,M(R) exp(iMΦ + iβj,MZ) of Equation (3.1) em-

anates [14,15,50,51]. One can interpret the localized linear modes Θj,M as “solitons”

with zero power P = 2π
∫ |Uj,M |2 RdR, or equivalently corresponding to σ = 0 (see

Figure 3.2). Because both U and Θ are solutions of real-valued differential equations,

we consider each of them as being real.

By means of functional relations (see, e.g., [14, 15]), nonlinear bound states U ≡
Uj,M of Equation (3.1) can easily be proven to satisfy

β =
σ

∫
U4RdR− ∫

(∇U)2 RdR− ∫
U2V RdR∫

U2RdR
, (3.3)

where (∇U)2 = (∂RU)2 +M2U2/R2 and β ≡ βj,M . Therefore, for σ > 0 we can expect

β > γj,M and σ < 0 indicates β < γj,M .

3.1.2. Stability analysis of nonlinear bound states

According to the standard procedure for linear stability analysis we introduce a small

perturbation δU on the nonlinear bound state U . We plug

Ψ = (U + δU) exp (iMΦ + iβZ) (3.4)
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Figure 3.2.: “Soliton” power P versus parameter β (σ = +1 solid lines, σ = −1 dashed
lines): The four discrete linear modes Θj,M can be seen as “solitons” with
zero power.

into Equation (3.1) and linearize with respect to the perturbation. The resulting

evolution equation for the perturbation δU is given by

i
∂

∂Z
δU − βδU − V δU + 2σU2δU + σU2δU∗ (3.5)

+
1

R

∂

∂R

(
R

∂

∂R

)
δU +

1

R2

(
∂

∂Φ
+ iM

)2

δU = 0.

With the ansatz

δU(R, Φ, Z) = δU1(R) eimΦ+iλZ + δU∗
2 (R) e−imΦ−iλ∗Z (3.6)

we then derive the eigenvalue problem

L̂

(
δU1

δU2

)
= λ

(
δU1

δU2

)
, (3.7a)

where δU1 and δU2 are independent complex functions and

L̂ =

(
D̂M+m − β + 2σU2 σU2

−σU2 −D̂M−m + β − 2σU2

)
. (3.7b)

Since the resulting linear operator L̂ is real, we expect pairs of eigenvalues (λ, λ∗). If

for a given bound state U all eigenvalues λ of Equation (3.7a) are real numbers, we

call U orbitally stable, otherwise we call it linearly unstable. Table 3.1 summarizes

the nomenclature used in this section.
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3. Beams in a nonlinear optical waveguide

Θ: linear mode of the potential V
γ: related eigenvalue
M : vorticity of the linear mode Θ

γΘ = D̂MΘ

Θj,M : localized mode
γj,M : related discrete eigenvalue

Θγc,M : delocalized radiative mode
γγc,M : related continuous eigenvalue

U : nonlinear bound state (soliton)
β: related soliton parameter
M : vorticity of the soliton U

βU = D̂MU + σU3

Uj,M : lim
P→0

Uj,M = Θj,M βj,M : lim
P→0

βj,M = γj,M

δU : perturbation to the soliton U
δU = δU1 exp(imΦ + iλZ)
+δU∗

2 exp(−imΦ− iλ∗Z)
λ: related eigenvalue
m: vorticity of perturbation δU

L̂

(
δU1

δU2

)
= λ

(
δU1

δU2

)

Table 3.1.: Overview on the nomenclature.

Here we address the stability of the nonlinear bound states U for low powers P . For

σ > 0, this is the only regime where we can expect stability, because for high enough

powers the linear potential in Equation (3.1) becomes negligible, and all bound states

of the resulting two-dimensional NLS equation are unstable, by either spreading or

collapsing to a singularity [52]. So the question we want to answer is: does a linear

mode Θj,M become always unstable if we increase the power, or can it be continued

into a nonlinear state Uj,M remaining stable up to a certain threshold power? In order

to shed light onto this issue, we split the linear operator of the eigenvalue problem

Equation (3.7a) into two operators L̂ = Ĥ + σN̂ , where

Ĥ =

(
D̂M+m − β 0

0 −D̂M−m + β

)
(3.8)

is self-adjoint and

N̂ =

(
2U2 U2

−U2 −2U2

)
(3.9)

contains the dependency on the nonlinear bound state U . So, for small powers N̂ acts

as a perturbation on Ĥ. For P = 0 (or σ = 0) we have L̂ = Ĥ, β = γj,M and each

row of Equation (3.7a) is equivalent to Equation (3.2a). Hence, in the spectrum of

operator Ĥ, all the linear modes of the waveguide structure are reproduced twice. The
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3. Beams in a nonlinear optical waveguide

solutions of the eigenvalue problem

Ĥ

(
δU1

δU2

)
= λ

(
δU1

δU2

)
(3.10)

are the localized eigenfunctions (modes of the discrete spectrum of Ĥ) defined as

(
Θk,M ′

0

)
, λ = γk,M ′ − β, m = M ′ −M, and

(
0

Θk,M ′

)
, λ = −γk,M ′ + β, m = M −M ′,

and the delocalized eigenfunctions (radiative modes of the continuous spectrum of Ĥ)

defined as (
Θγc,M ′

0

)
, λ = γc − β, m = M ′ −M, and

(
0

Θγc,M ′

)
, λ = −γc + β, m = M −M ′,

where still β = γj,M . Note that the angular momentum M ′ consists of the amount of

both momenta M (soliton) and m (perturbation) fixed by our ansatz [Equations (3.4,

3.6)].

If λ ≤ −β or λ ≥ β we always find a delocalized eigenfunction of Equation (3.10),

either

(
Θγc,M ′

0

)
or

(
0

Θγc,M ′

)
. Besides, for a certain range of potential depths,

some of the discrete eigenvalues γk,M ′ of Equation (3.2a) lie in the domain 2β−γk,M ′ <

0, so that the discrete eigenvalues λ = ± (γk,M ′ − β) of the localized eigenfunctions(
0

Θk,M ′

)
and

(
Θk,M ′

0

)
are embedded in the continuous parts of the spectrum.

In such a configuration, there exists degeneration between a continuous and a discrete

eigenvalue. This type of degeneration will be crucial throughout our analysis.

Before we go on and look at the effects of the perturbation N̂ , it might be helpful

to illustrate these considerations with the example of Figure 3.1. As mentioned above,

with the knowledge of the eigenvalues of Equation (3.2a) it is easy to construct the

spectrum of the operator Ĥ: each eigenvalue γ in Equation (3.2a) creates a pair of

eigenvalues λ = γ − β and λ = β − γ in the spectrum of Ĥ. Figure 3.3 shows the

construction of the spectrum for two different choices of β. For the vortex state with
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Figure 3.3.: Eigenvalues of Equation (3.10) for two different choices of β. Two spectra
of Figure 3.1 are superimposed. One spectrum is shifted by an amount of
β downwards (left axis), the other one is mirrored (λ → −λ) and shifted
by an amount of β upwards (right axis). In (a) the discrete and the
continuous eigenvalues stay separated, in (b) we observe some discrete
eigenvalues embedded in the continuum (dashed lines).

β = γ1,±1 [see Figure 3.3 (a)], the discrete eigenvalues and the two continua are clearly

separated. The eigenvalues attached to the left axis belong to the first row of operator

Ĥ, while those appendant to the right axis belong to the second one. On the contrary,

for the multi-humped state with β = γ2,0 [see Figure 3.3(b)], some of the discrete

eigenvalues are now embedded in the continuum. So, formally we have a degeneration

between continuous and discrete eigenvalues. This degeneration is due to the fact

that Equation (3.10) is composed of two decoupled equations. When we introduce the

perturbation N̂ , the latter property does no longer hold.

If we start with the spectrum of the operator Ĥ and switch on the perturbation

N̂ , we expect that eigenvalues of Ĥ will shift. In particular, any degeneration between

discrete eigenvalues and continuous eigenvalues, as described above, should be lifted.

Note that trivially degenerated eigenvalues (M ′ → −M ′) will not split, since the

generic symmetry is not changed by the nonlinearity. In contrast to Ĥ, the operator L̂

is not self adjoint, so eigenvalues can become complex. But since L̂ is real, this can only

happen in pairs (λ, λ∗). This property, therefore, implies that two eigenvalues have to

be degenerated first, before the pair can move to the complex plane and destabilize the

nonlinear bound state under consideration. So, on the one hand, degeneration of two

eigenvalues is necessary for destabilization. On the other hand, we know about any

possible degeneration just from looking at the spectrum of the operator Ĥ.

The same conclusion applies to more general nonlinearities and arbitrary dimen-
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3. Beams in a nonlinear optical waveguide

sionality in Equation (3.1), provided the equation features an “attractive” potential

supporting localized linear modes. The key-point is that eigenvalues of the perturba-

tion operator L̂ only appear in pairs (λ, λ∗). An operator splitting L̂ = Ĥ + σN̂ as

above is always possible, where Ĥ is independent of the nonlinear bound state and

self-adjoint. Then, our arguments using discrete eigenvalues of operator Ĥ embedded

in the continuum hold, because two eigenvalues of operator L̂ have to be degenerated

first, before the pair can move to the complex plane.

In our whole reasoning we have taken for granted that discrete eigenvalues of oper-

ator L̂ do not vanish or emerge, apart from moving to or coming from the continuum.

It is easy to see that this is true for the discretized problem in a finite box [0, Rmax].

Here, the operator L̂ is a finite-dimensional square matrix. Because for a sufficiently

fine grid and a sufficiently large box in particular the discrete eigenvalues of the contin-

uous, unbounded problem are very well described by the discrete one, our assumption

is justified.

3.1.3. Stability criterion for low-power bound states

The above arguments allow us to formulate a stability criterion for low-power nonlinear

bound states of Equation (3.1): If a certain localized linear mode Θj0,M0 of Equation

(3.2a) with eigenvalue γj0,M0 fulfills

1

2
γj,M < γj0,M0 for all j, M , (3.11)

the corresponding nonlinear bound state Uj0,M0 is linearly stable for small powers.

On the contrary, if the criterion (3.11) is not fulfilled, it is likely that an arbitrary

small nonlinearity lifts the degeneracy in the spectrum of operator L̂ by shifting the

two eigenvalues to the complex plane and leading thereby to the instability of the

nonlinear bound state. As a direct consequence of this criterion, the ground state

with β emanating from γ1,0 is always stable. Figure 3.4 shows an illustrative example

of this destabilization mechanism for σ = +1. Note that the criterion (3.11) applies

to both focusing (σ > 0) and defocusing (σ < 0) nonlinearities.

Before proceeding further, it might be helpful to illustrate the criterion (3.11) in

the picture of four-wave-mixing. Here, we consider partially degenerate four-wave-

mixing: A strong “pump-wave” with wave-number k1 creates two side bands located

symmetrically at the wave-numbers k3 and k4, obeying k1 − k3 = k4 − k1, where

we assume for definiteness k3 < k4 (see, e.g., Ref [53]). Of course, the creation of

side bands requires the existence of such waves in the medium. Brought forward to
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Figure 3.4.: The degeneracy of the embedded discrete eigenvalues is lifted by the cubic
nonlinearity (σ = +1); the eigenvalues move to the complex λ-plane. The
nonlinear bound state under consideration in this example is the multi-
humped state emanating from γ2,0 (β ≥ γ2,0).

our system, the “pump-wave” corresponds to the low-power nonlinear bound state

Uj0,M0 ≈ Θj0,M0 with k1 = β ≈ γj0,M0 . Another mode of the potential Θj,M can only

be excited as a “third wave” (k3 = γj,M) if there is a matching ”fourth wave”, namely

Θγc,M with wave-number k4 = γc = 2γj0,M0 − γj,M . If the stability criterion (3.11) is

fulfilled, no matching ”fourth wave” exists. Hence, the ”third wave” cannot grow and

cause instability of the nonlinear bound state Uj0,M0 . On the contrary, if the criterion

is not fulfilled, we always find a matching ”fourth wave” in the continuum.

To clear up the effects of the nonlinearity, we consider the asymptotics of unstable

eigenmodes (eigenfunctions of operator L̂ with complex eigenvalue λ, =λ < 0) with

limP→0<λ → λ0 > γj0,M0 and 0 < |=λ| ¿ λ0, =λ < 0 (the case λ0 < −γj0,M0 can be

treated in a similar way). Since in the linear limit [Equation (3.10)] all eigenmodes are

stable, we have limP→0=λ → 0. By solving Equation (3.7a) in the asymptotic regime

R →∞ and linearizing the exponential arguments with respect to =λ we find

δU1 ∼ 1√
R

exp

[(
−

√
<λ + β − i

=λ

2
√<λ + β

)
R

]
(3.12a)

δU2 ∼ 1√
R

exp

[(
−i

√
<λ− β +

=λ

2
√<λ− β

)
R

]
, (3.12b)

where both components δU1 and δU2 are localized (finite power integral). This is

worth noticing, since in contrast to δU1, the component δU2 is delocalized in the linear

limit =λ = 0 (P = 0 or σ = 0). Due to the non-diagonal elements of the operator

N̂ we can conclude that both δU1 and δU2 have nonzero norm. More precisely, it is
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3. Beams in a nonlinear optical waveguide

possible to show that

=λ

∫ (|δU1|2 − |δU2|2
)
RdR = 0 (3.13)

(see Appendix A.1 for details) and therefore

∫
|δU1|2 RdR =

∫
|δU2|2 RdR

!
= 1. (3.14)

Henceforth the symbol
!
= signifies that the power integrals of δU1 and δU2 can be set

equal to unity without loss of generality, by virtue of the linear nature of the equations

which these perturbations satisfy. By doing so, Equation (3.14) provides useful infor-

mation on the maximum of their amplitude in the transverse plane. Together with

the asymptotics [Equations (3.12)], we are now able to evaluate the dependency of

max |δU1|2 and max |δU2|2 on |=λ| ¿ λ0, which will allow us to deduce further results.

3.1.3.1. Dependency of max |δU1|2 on |=λ|

Let us have a look at Equation (3.12a). Since the real part of the exponent in the

asymptotic regime −√<λ + βR is independent of =λ, we can conclude that δU1(R) ≈
0 at large distances R À 1/

√<λ + β. Hence, the entire “mass” of δU1 is concentrated

at finite distances, where U 6= 0 and V 6= 0. Since
∫ |δU1|2 RdR

!
= 1, we have thus

lim
P→0

(
max |δU1|2

)
= C (3.15)

where C is non-zero.

Equation (3.15) implies that the criterion (3.11) is indeed sufficient for small pow-

ers: For a vanishing nonlinearity, we have =λ = 0. For continuity reasons, these

unstable eigenmodes must converge to a localized eigenfunction of the operator Ĥ

with discrete eigenvalue embedded in the continuum. Otherwise, max |δU1|2 would

jump from C 6= 0 to zero for power P = 0, because delocalized eigenfunctions cannot

keep a finite power integral while having nonzero amplitude. Conversely, since the

perturbations become localized in one component (δU1) and delocalized in the other

one (δU2) in the limit P → 0, instability at low powers necessarily starts from discrete

eigenvalues ”embedded” in the continuum of the operator Ĥ. Furthermore, with this

knowledge, we can specify the above constants λ0 = γj,M−γj0,M0 and C = max |Θj,M |2
with

∫ |Θj,M |2 RdR
!
= 1.
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3. Beams in a nonlinear optical waveguide

3.1.3.2. Dependency of max |δU2|2 on |=λ|

For |=λ| ¿ λ0 all the mass of δU2 lies at large distances R → ∞, and with Equa-

tion (3.12b) we are able to compute
∫ |δU2|2 RdR ∼ 1/ |=λ|. Since we have fixed∫ |δU2|2 RdR

!
= 1, the previous estimate implies that

max |δU2|2 ∼ |=λ| . (3.16)

Besides, if we remember that Equation (3.7a) is a linear differential equation, it is

obvious that there exists a Green’s function G(R,R′) with

δU2(R) =

∫
G(R, R′) σU(R′)2

δU1(R
′) R′dR′, (3.17)

which means max |δU2| ∼ σ max U2. Hence, we obtain

√
|=λ| ∼ σ max U2, (3.18)

so the growth rate |=λ| of the unstable eigenmode is proportional to the squared

nonlinearity.

In order to express this dependency in terms of the “soliton parameter” β, we may

perform a perturbative analysis in the limit |σ| ¿ 1, similarly to Refs. [49, 54]. We

expand the nonlinear bound state U as

U = Θ + σU (1) +O(
σ2

)
(3.19)

and

β = γ + σβ(1) +O(
σ2

)
, (3.20)

where Θ ≡ Θj0,M0 and γ ≡ γj0,M0 satisfy Equation (3.2a). Plugging the ansatz ψ =

U exp(iM0Φ + iβZ) into Equation (3.1), it is readily found that

β(1) =

∫
Θ4RdR∫
Θ2RdR

∼ max Θ2. (3.21)

Hence, with Equation (3.20) we have β− γ ∼ σ max Θ2. For small |σ|, thus max Θ2 ∼
max U2 [see Equation (3.19)], the nonlinearity depends on the “soliton parameter” as

σ max U2 ∼ β − γ. Together with Equation (3.18) we get

|=λ| ∼ (β − γ)2 . (3.22)

31



3. Beams in a nonlinear optical waveguide

� �� �� �� ��

��

�

��

��

��

��

�

�

��

��

��

��

��
�
�

����
��	
����
�
����



��	
	���
�
�
����

����

Figure 3.5.: Eigenvalue γ versus the depth of the step-potential V for the linear modes
Θ1,0, Θ1,1 and Θ2,0. Solid lines indicate a free-of-degeneration spectrum of

operator Ĥ; domains with discrete eigenvalues embedded in the continuum
are specified in dotted lines. The dashed lines show the absolute values of
the embedded eigenvalues λ of Equation (3.10).

Thus, the growth rate of the unstable eigenmode is proportional to the square of the

deviation of the soliton parameter β from the zero power limit γ.

The need that eigenvalues of operator L̂ have to be degenerated first before moving

to the complex plane yields a sufficient condition for stability of low-power nonlinear

bound states in the present framework. However, determining compellable analytical

arguments showing that the embedded discrete eigenvalues of the operator Ĥ always

lead to complex eigenvalues for the operator L̂ (unstable eigenmodes) is still an open

issue. Nevertheless, in the numerical examples discussed below we always observe this

destabilization mechanism.

3.1.4. Numerical results

Let us return to our example, the radial step-potential, and check the above analytical

predictions. We will concentrate on the “solitons” emanating from γ1,1 (vortex state)

and from γ2,0 (multi-humped state) (see Figure 3.2). Figure 3.5 shows the regions of

degenerated λ of Equation (3.10) for the three linear modes Θ1,0, Θ1,1 and Θ2,0. Up to

a certain depth of the confining potential V , the stability criterion (3.11) is not fulfilled

for the higher order modes. At this depth, the last ”embedded eigenvalue” leaves the

continuum. In this context it is important to point out that the above destabilization

process is not due to weak linear guiding of the respective ”soliton”. If this was the

case, we would observe a certain non-zero critical power, below which the “soliton”

would be stable. In contrast to this scenario, the destabilization appears for arbitrary
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small power.

Since the degeneration of the eigenvalues of Equation (3.10) involves the contin-

uum, the related unstable eigenmodes are stretched over a large area, especially for

very small powers. Therefore, conventional solver for Equation (3.7a), like, e.g., the

NAG-routine F02ECF [55], failed due to the necessity of a very large computational

window. We worked around this problem in solving Equation (3.5) directly with a

Beam-Propagation-Method (Crank-Nicholson) and transparent boundary conditions.

To confirm the results of our stability analysis, we present full 2D simulations

illustrating the decay of unstable low power vortex and multi-humped “solitons”. It

turns out that, at least for the examples presented here, the final state is correlated

with the dominant unstable eigenmode.

3.1.4.1. The vortex state

We first discuss the vortex state. If 6 < V0 < 13.6 (boundaries correspond to the

lower/upper bounds in Figure 3.5 for eigenvalue degeneracy), we find γ1,0/2 > γ1,1.

Hence, the degenerated eigenvalues of Equation (3.10) are ± (γ1,0 − γ1,1). So, we can

guess that the low-power nonlinear vortex state in this range of V0 has an unsta-

ble eigenmode with m = ±1, so that either limP→0 δU1 = Θ1,0 (M + m = 0) or

limP→0 δU2 = Θ1,0 (M −m = 0). The real part of this complex eigenvalue is approxi-

mately |<λ| ≈ γ1,0−γ1,1. With a deeper potential than the critical value V0 = 13.6, this

instability is expected to disappear. In order to check these predictions, a numerical

stability analysis of the vortex state was performed for V0 = 8 and V0 = 20. As ex-

pected, for V0 = 20 we observed a stable region of the vortex branch for small powers,

whereas for V0 = 8 the branch becomes immediately unstable when the nonlinearity

comes into play (see Figure 3.6). We successfully checked numerically the ”instability

onset value” for the depth of the potential V0 = 13.6. The ”instability onset value”

and the value at which the first discrete eigenvalue just touches the continuum were

observed to coincide.

As far as direct simulations are concerned, the first row in Figure 3.6(c) shows the

decay of the vortex “soliton” with β = 2.3 from the potential depth selected in Figure

3.6(a). Perturbed with 1% random amplitude noise at Z = 0, the growing unstable

eigenmode (m = 1) destroys the “doughnut-shape” of the vortex. We see the phase-

singularity drifting away at Z = 17.5. At Z = 77.5 and Z = 78.3, respectively, we show

two snapshots of the asymptotic behavior, which consists in a spinning single hump

solution with a period ∆Z ≈ 1.7. This single hump is nothing else but the nonlinear

ground state U1,0, where additional rotation is induced by a stable eigenmode with
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Figure 3.6.: Soliton power P versus soliton parameter β for the vortex state M = 1
(solid line). The dashed line shows the computed growth-rate |=λ| of the
unstable eigenmode. If (a) γ1,0/2 − γ1,1 ≥ 0 the vortex nonlinear bound
state is unstable, whereas with (b) γ1,0/2 − γ1,1 ≤ 0 it is stable for small
powers. The evolution of the vortex nonlinear bound state M = 1, σ = 1:
(c) instability for β = 2.3 and V0 = 8; (d) stability for β = 10.966 (very
close to the border of the domain of stability) and V0 = 20.

m = 1 and λ = 2π/∆Z ≈ 3.7. Because we are in the low power regime, we can identify

the connection of this eigenmode with Θ1,1, the linear vortex state in Equation (3.2a).

Indeed, for V0 = 8 we find λ ≈ 3.7 ≈ γ1,0 − γ1,1 (see also Figure 3.5). Figure 3.6(d)

displays the numerical verification of the stability predicted for the vortex state with

V0 = 20.

3.1.4.2. The multi-humped state

In the case of the multi-humped state, Figure 3.5 shows that, for 16 < V0 < 31.2,

Equation (3.10) features four degenerated eigenvalues, ± (γ1,0 − γ2,0) related to the

ground state Θ1,0, and ± (γ1,1 − γ2,0) related to the vortex state Θ1,1. For potentials

deeper than V0 = 31.2 the degeneration of the vortex state first vanishes, and with

V0 > 39.2 the stability criterion (3.11) becomes fulfilled. Again, we can confirm these
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3. Beams in a nonlinear optical waveguide

behaviors with a numerical stability analysis (see Figure 3.7). For V0 = 20 the multi-

humped branch is unstable for arbitrary small powers due to two unstable eigenmodes.

The eigenmode linked to the ground state (m = 0) possesses a substantially larger

growth rate, so we can expect this one to play the crucial role in the decay of the

multi-humped nonlinear bound state (see full 2D simulations in Figure 3.7). The

unstable eigenmode associated with the vortex state disappears for a deeper potential

(V0 = 36), and choosing V0 = 44 we observe stability for a quite large range of soliton

power.

The decay of the multi-humped “solitons” produced by the potentials used in

Figure 3.7(a) and (b) with β = 4.3 and β = 16 is shown in Figure 3.7(d) and (e),

respectively. Again we end up with the stable ground state breathing due to stable

eigenmodes with m = 0. The periods of oscillation ∆Z ≈ 0.45 and ∆Z ≈ 0.35 between

the two extremal beam shapes shown in the respective last two pictures is compatible

with the eigenvalues λ = 14 and λ = 18: we retrieve these values as the difference

γ1,0 − γ2,0 computable from Figure 3.5. As expected, a sufficient depth (V0 = 44) of

the potential stabilizes the higher-order nonlinear bound state with M = 0 [Figure

3.7(f)]. The fact that unstable ”solitons” decay to the stable ground state seems to be

generic in this low-power regime. At least, we observed this behavior in all numerical

examples. However, for higher powers we have to expect instabilities leading to the

collapse of the beam.

To sum up, we presented a sufficient stability criterion for weakly nonlinear bound

states (weakly nonlinear guided waves). The simple knowledge of the eigenvalues

associated with the linear modes of the potential V (refractive index distribution)

allows us to predict the stability of the nonlinear bound states of the extended NLS

equation (3.1). In spite of the fact that the criterion is valid for low power solitons

only, the example of a step-potential shows that the present results may hold for wider

ranges of power, both for focusing and defocusing nonlinearities.

3.2. Influence of the waveguide on highly nonlinear

collapsing beams

Now we leave the low-power regime of Equation (3.1) and turn to high-power beams.

We look at solutions of the (2D+1)-dimensional NLS equation and consider a small

perturbation by an additional ”attractive” (waveguide) or ”repelling” potential V . In

this high power limit, we expect beam-collapse and study the influence of the potential

on these self-trapped solutions analytically. First, in Section 3.2.1, we briefly review
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Figure 3.7.: Soliton power P versus parameter β for the multi-humped state M = 0
(solid line). The dashed lines show the computed growth-rates |=λ| of
the unstable eigenmodes. If (a) γ2,0/2 − γ1,1 ≥ 0 and γ2,0/2 − γ1,0 ≥ 0,
the nonlinear bound state has two unstable eigenmodes, whether with (b)
γ2,0/2 − γ1,1 ≤ 0 and γ2,0/2 − γ1,0 ≥ 0, it has one unstable eigenmode
(m = 0). In the case of (c) γ2,0/2 − γ1,1 ≤ 0 and γ2,0/2 − γ1,0 ≤ 0,
the multi-humped state is stable for small powers. The multi-humped
nonlinear bound state M = 0, σ = 1: (d) instability for β = 4.3 and
V0 = 20; (e) instability for β = 16 and V0 = 36; (f) stability for β = 24
and V0 = 44.
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Figure 3.8.: (a) Numerical example for a collapsing solution of the NLS equation. (b)
Townes profile T , ground state of the NLS equation [4]; in dashed line a
Gaussian with same amplitude and power integral.

some selected features of the NLS equation (for a detailed review see [9]). It is possible

to compute upper and lower bounds P 0
lcr < P 0

thr < P 0
ucr for the (unknown) threshold

power P 0
thr for catastrophic self-focusing. Second, in Section 3.2.2, we show that a

similar analysis is possible for Equation (3.1). Surprisingly, the additional potential V

can significantly increase the upper bound P V
ucr > P 0

ucr, even if it is ”attractive” like for

a waveguide. On the other hand, it turns out that the lower bound P V
lcr = P 0

lcr holds

for any profile V . Finally, in Section 3.2.3, we verify numerically that indeed even for

powers above the upper bound P 0
ucr of the homogeneous case a stable propagation is

possible (for more detailed numerical investigations, see [56, 57]).

3.2.1. Collapse in the two dimensional Nonlinear Schrödinger

Equation

Let us first briefly review selected features of the pure two dimensional NLS equation

i
∂

∂Z
Ψ +

(
∂2

∂X2
+

∂2

∂Y 2

)
Ψ + |Ψ|2 Ψ = 0. (3.23)

For technical convenience, in this section we use Cartesian transversal coordinates X,

Y instead of R and Φ. Also, we fix the antecedent parameter σ to unity, because here

we treat only focusing nonlinearities.

It is known that for certain initial field distributions Ψ(X, Y, Z = 0) the solution

collapses after a finite propagation distance Z = Zcoll [see Figure 3.8(a)]. Collapse

means in this context that there is at least one pair (Xcoll, Ycoll) with

lim
Z→Zcoll

Ψ(Xcoll, Ycoll, Z) = ∞.
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3. Beams in a nonlinear optical waveguide

In spite of the fact that for many initial field distributions, at least up to now, only

numerics can decide whether the solution collapses or not, there are two quite powerful

criteria available. It is possible to derive an universal lower bound P 0
lcr = 11.7 and a

beam shape dependent upper bound P 0
ucr for the actual threshold power P 0

thr.

In the following analysis we will use two conserved quantities (see Appendix A.2

for details) of the NLS equation, namely the power integral

P =

∫
|Ψ|2 dXdY (3.24)

and the Hamiltonian

H0 =

∫ (∣∣∣∣
∂

∂X
Ψ

∣∣∣∣
2

+

∣∣∣∣
∂

∂Y
Ψ

∣∣∣∣
2

− 1

2
|Ψ|4

)
dXdY. (3.25)

3.2.1.1. Lower bound for collapse threshold power for NLS

Weinstein [58] proved that solutions of the NLS do not collapse if their power P is

below the critical power

P < P 0
lcr = PTownes = 2π

∫
T (R)2RdR ≈ 11.7. (3.26)

Here T (R =
√

X2 + Y 2) is the Townes profile [see Figure 3.8(b)], which is the positive,

monotonically decreasing solution of

(
∂2

∂R2
+

1

R

∂

∂R

)
T − T + T 3 = 0,

∂T

∂R
(0) = 0, T (∞) = 0. (3.27)

So Weinstein’s criterion provides a lower bound for the threshold power P 0
thr. If the

power P is smaller than P 0
lcr, no catastrophic self-focusing is possible for any initial

shape.

The starting idea in Weinstein’s proof is that a finite Sobolev norm is sufficient for

non collapsing solutions. Let us consider

G(Z) =

∫ (∣∣∣∣
∂

∂X
Ψ

∣∣∣∣
2

+

∣∣∣∣
∂

∂Y
Ψ

∣∣∣∣
2
)

dXdY = H0 +
1

2

∫
|Ψ|4 dXdY. (3.28)

If G(Z) is bounded for all Z no blowup will occur. It can be shown [58] that the
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3. Beams in a nonlinear optical waveguide

Townes profile T minimizes the functional

J(f) =

∫ (∣∣ ∂
∂X

f
∣∣2 +

∣∣ ∂
∂Y

f
∣∣2

)
dXdY

∫ |f |2 dXdY
∫ |f |4 dXdY

. (3.29)

Hence we have J(T ) ≤ J(Ψ) for all solutions Ψ. It will turn out later that for the

Townes profile the Hamiltonian H0
Townes = 0 vanishes, and we get

PTownes

2
≤ G(Z)P∫ |Ψ|4 dXdY

. (3.30)

Therefore it is [G(Z)−H0] PTownes ≤ G(Z)P and finally we have

H0 ≥ G(Z)

(
1− P

PTownes

)
. (3.31)

Since H0 is independent of Z, G(Z) is bounded from above for P < PTownes and the

proof is done. No collapse occurs if P < PTownes. On the other hand, if P > PTownes,

G(Z) is unbounded and can go to infinity. Hence, P > PTownes is a necessary condition

for collapse.

3.2.1.2. Upper bound for collapse threshold power for NLS

The second criterion provides an upper bound for the threshold power P 0
thr in the NLS

equation [42]. Blow up occurs for sure if the Hamiltonian H0, which is a constant of

motion, is negative. It is easy to see that for any input beam shape

B (X, Y ) ,

∫
BdXdY = 1, Ψ =

√
PB

the Hamiltonian as a function of P is a parabola which extends to minus infinity.

So in terms of the input power this criterion means that catastrophic self-focusing is

inevitable if

P > P 0
ucr = 2

∫ (∣∣ ∂
∂X

B
∣∣2 +

∣∣ ∂
∂Y

B
∣∣2

)
dXdY

∫ |B|4 dXdY
. (3.32)

In contrast to Weinstein’s criterion P 0
ucr is strongly dependent on the initial beam

shape B.

The key idea for a sufficient collapse criterion is to show that the mean-square

radius

S(Z) =

∫ (
X2 + Y 2

) |Ψ|2 dXdY (3.33)
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3. Beams in a nonlinear optical waveguide

vanishes for a certain propagation distance Z. For the NLS equation, the second

derivation of S(Z) with respect to Z is a constant of motion (see Appendix A.3),

namely
∂2

∂Z2
S = 8H0. (3.34)

Hence, if H0 < 0, S(Z) is a parabola which extends to minus infinity, and there-

fore becomes zero at finite Z. In particular, we see that for the Townes profile T

as a stationary solution S is a constant and the Hamiltonian H0
Townes = 0. It is

important to note that P 0
ucr depends, as the actual power threshold P 0

thr, strongly

depends on the input beam shape. For example, for a Gaussian input beam B =√
2/πW 2

0 exp−(X2 + Y 2)/W 2
0 with waist W0 one finds P 0

ucr = 4π and for a N = 2

super-Gaussian input beam P 0
ucr = 4

√
2π. The numerically determined actual thresh-

old powers are P 0
thr = 11.9 for the Gaussian and P 0

thr = 12.7 for the super-Gaussian

beam [59]. However, it is common in some contexts to use the general term ”critical

power” for P 0
cr = 4π, regardless of the actual beam shape (see Section 4).

3.2.2. Collapse behavior in the presence of a waveguide

The above criteria for collapsing solutions can be modified to match the NLS equation

with additional potential V (X,Y )

i
∂

∂Z
Ψ +

(
∂2

∂X2
+

∂2

∂Y 2

)
Ψ + |Ψ|2 Ψ− V Ψ = 0. (3.35)

Here the conserved Hamiltonian (see Appendix A.2 for details) is

HV =

∫ (∣∣∣∣
∂

∂X
Ψ

∣∣∣∣
2

+

∣∣∣∣
∂

∂Y
Ψ

∣∣∣∣
2

− 1

2
|Ψ|4 + V |Ψ|2

)
dXdY. (3.36)

3.2.2.1. Lower bound for collapse threshold power for NLS with potential

We find that Weinstein’s lower bound holds. If P < P V
lcr = P 0

lcr = P V
lcr no collapse

occurs for any initial beam shape. To see this, we express

G(Z) = HV +

∫ (
1

2
|Ψ|4 − V |Ψ|2

)
dXdY (3.37)
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3. Beams in a nonlinear optical waveguide

in terms of the Hamiltonian, and show that G(Z) stays finite for all Z. With Equation

(3.30) we have

PTownes

(
G(Z)−HV +

∫
V |Ψ|2 dXdY

)
≤ G(Z)P. (3.38)

With

CV
1 = −min

X,Y
[V (X, Y )] (3.39)

we get
[
G(Z)−HV − CV

1 P
]
PTownes ≤ G(Z)P and finally we have

HV + CV
1 P ≥ G(Z)

(
1− P

PTownes

)
. (3.40)

Like in Equation (3.31), the right-hand side is independent of Z and G(Z) is bounded

from above if P < PTownes, no collapse occurs. On the other hand, P > PTownes is a

necessary condition for collapse.

3.2.2.2. Upper bound for collapse threshold power for NLS with potential

It is more difficult to give a sufficient collapse criterion for the NLS equation with

potential. The reason for this is that the second derivations of the mean-square radius

S(Z) [Equation (3.33)] with respect to Z is not constant anymore (see Appendix A.3),

but

∂2

∂Z2
S = 8HV − 4

∫
|Ψ|2

[
2V (X, Y ) +

(
X

∂

∂X
+ Y

∂

∂Y

)
V (X, Y )

]
dXdY. (3.41)

In order to find an upper bound for this expression we define

CV
2 = −min

X,Y

[
V (X, Y ) +

1

2

(
X

∂

∂X
+ Y

∂

∂Y

)
V (X,Y )

]
(3.42)

and get
∂2

∂Z2
S ≤ 8HV + 8CV

2 P. (3.43)

If HV + CV
2 P < 0, it is obvious that S(Z) will become zero at finite propagation

distance. In an analogous manner to the previous section [Equation (3.32)] we can

compute an upper bound for the threshold power P V
thr

P V
ucr = 2

∫ (∣∣ ∂
∂X

B
∣∣2 +

∣∣ ∂
∂Y

B
∣∣2

)
dXdY + CV

2 +
∫

V |B|2 dXdY
∫ |B|4 dXdY

. (3.44)
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Figure 3.9.: Upper and lower bounds of the threshold power P V
thr versus beam-width

W0 for a Gaussian beam and a potential V = −1.3 exp (−X2 − Y 2).

It is important to remember that P V
ucr is an upper bound for P V

thr only, and may be

far from the real threshold power. Moreover, the constant CV
2 contains spatial deriva-

tives of the potential, so, e.g., we run into trouble with a step potential. Nevertheless,

P V
ucr can be useful to see some general trends. Figure 3.9 shows an illustrative exam-

ple. If we choose a Gaussian input beam with a width W0 and a Gaussian potential

V = V0 exp (−X2 − Y 2) (the width of the potential is scaled to unity), the expression

for the upper bound reads

P V
ucr = 4π − 2πV0W

2
0

(
1− 2

2 + W 2
0

)
V0 < 0 (3.45a)

P V
ucr = 4π + 2πV0W

2
0

(
1

e
+

2

2 + W 2
0

)
V0 > 0. (3.45b)

Hence we expect the threshold power for collapse P V
thr increase if the width of the

potential is small compared to the beam-width. Also, it would be interesting to see if

we can have non collapsing solutions with P > P 0
thr. In the following section we will

check this numerically.

3.2.3. Numerical results

In this section we present numerical solutions of Equations (3.23) and (3.35). Accord-

ing to the previous results, we expect the additional potential to increase the threshold

power for collapse for wider beams. Figures 3.10(a) and 3.10(b) show the peak inten-

sity over the propagation length for different Gaussian input beams. For growing input

width W0 the beam focuses less [Figure 3.10(a)], and we get non collapsing solutions
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Figure 3.10.: (a) Wider beams focus less, P = P 0
ucr, V = −1.3 exp (−X2 − Y 2); (b)

Collapse suppression by an ”attractive” potential, P = 1.1P 0
ucr, W0 =

3.16, V = V0 exp (−X2 − Y 2).

for powers greater than P 0
ucr [Figure 3.10(b)]. An explanation for the increase of the

threshold power is the following. For V ≡ 0 it is known that in the initial stage of self-

focusing, the beam profile changes to a modulated Townes soliton, whereupon power

is shed away from the inner part of the beam. The greater the overlap of the initial

profile with the Townes profile, the lower is the threshold power P 0
thr. The additional

interaction of the field with the potential V disturbs this initial stage of self-focusing,

and therefore more power is shed away and lost for the self-focusing mechanism than in

the homogeneous case. In other words, the beam avoids collapse by splitting between

radiation and nonlinear core. This scenario is quite straight forward for ”repelling”

potentials. At first glance, for ”attractive” potentials this effect is astonishing. The

explanation is the following. Parts of the beam are focused very fast by the linear

effect of the potential and ”separated” from the rest of the beam. If this separated

quantum of power is too small to collapse by itself, the collapse is suppressed. This

mechanism was also observed in [57].

We mentioned in the previous Section that it is not possible to compute P V
ucr

[Equations 3.45] for a step potential V (R ≤ 1) = V0, V (R > 1) = 0. Nevertheless, this

type of potential is able to suppress the collapse, too. Figure 3.11 shows an example

for collapse suppression by an ”attractive” step potential. The choice of parameters

corresponds to an optical fiber with nb = 1.4, n − nb = 5 × 10−3, λ0 = 600 nm

and ∅core = 7.2 µm. As mentioned in the antecedent section, the NLS equation with

”attractive” potential supports a stable ground state soliton solution (see Figure 3.2).

The power of this soliton is below the power of the Townes soliton [14]. When the

collapse is suppressed by the potential, the solution relaxes to the ground state soliton

and superfluous power is shed away. Oscillatory internal modes of the soliton can lead
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Figure 3.11.: The additional step potential expedites the initial focusing, but the col-
lapse is suppressed and the solution relaxes to the ground state soliton.
P = 1.5P 0

ucr, W0 = 2.22, V (R < 1) = −20. The inset shows the evolu-
tion of the total power in the computing window. The solution relaxes
to the ground state soliton, Psoliton < P V

lcr = PTownes.

to a breathing solution (see Figure 3.11). Finally, the inset in Figure 3.11 shows the

evolution of the power remaining in the numerical box for the same run. We clearly

observe the convergence to a power value smaller then that of the Townes soliton. The

”attractive” potential is able to suppress collapse for powers higher than the critical

one for the bulk material, but it is not able to guide these powers.

We evidenced that in the high power regime the waveguide can significantly increase

the threshold power for catastrophic self-focusing. Even for powers above the upper

bound of the homogeneous case a stable propagation is possible. The explanation for

the increase of the threshold power is that the additional interaction of the field with

the waveguide disturbs the initial stage of self-focusing, and power is shed away and

lost for the self-focusing mechanism. The ”nonlinear core” remains in the waveguide

and converges to a soliton state with power below critical.
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4. High-intense femtosecond pulsed beams in

air

This last chapter is devoted to the propagation of high-intense femtosecond pulsed

beams in air. In contrast to the previous chapter, a single tangible physical system

is under consideration. The more applied and less theoretical nature of this part of

the work allows for direct comparison with experimental data. Although temporal

dynamics are involved, we focus on the spatial ones of such pulsed beams.

Femtosecond laser pulses are known to form intense channels of light in the at-

mosphere [10, 18, 20]. These channels result from the interplay between the Kerr

self-focusing of the beam and defocusing induced by multiphoton ionization of air

molecules. For input powers much larger than the critical value for self-focusing,

Pcr = λ2
0/2πnbn2, the beam breaks up into several spots producing long waveguides

in the medium [21, 22] [S9]. One elementary channel of light stabilized by ionization

consists of a femtosecond filament, whose characteristics seem to be generic, i.e., its

energy, (FWHM) diameter and intensity are about ∼ 1 mJ, ∼ 150 µm, 1013 − 1014

W/cm2, respectively, and the electron density in the plasma channel reaches 1017 cm−3.

As common in the literature of femtosecond filaments, what we call the ”critical power

for self-focusing” Pcr is strictly speaking the upper bound for the collapse threshold

computed for a Gaussian input beam in the (2D+1)-dimensional NLS equation (see

Section 3.2.1.2), rescaled to physical quantities.

After a brief introduction into single filament solutions in Section 4.1, we ad-

dress multiple filamentation for high input powers (10 < Pin/Pcr < 1000) (Section

4.2). Because the numerical integration of these equations over long distances in full

(3D+1)-dimensional geometry is mostly limited by the available computer capacities,

we propose a (2D+1)-dimensional model derived by averaging the time dependency

in the laser envelope and the plasma response. This time-averaged model [S6] ad-

mits soliton-like states that describe short-range ”randomly-nucleated” filaments. We

show that these structures confine themselves into a limited number of long-range

coherent objects, termed as ”optical pillars”. Besides transient stages where turbu-

lent cells recur, these new structures around which filaments self-organize drive the
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4. High-intense femtosecond pulsed beams in air

pulse dynamics. This property is confirmed by the direct solving of the (3D+1)-

dimensional Equations (2.53) applied to millimeter-waisted ultrashort pulsed beams.

Second, we compare experiments with numerical simulations, in order to understand

how filaments are produced and how they impact on the long-distance propagation

of TW pulses with peak powers as high as one thousand times Pcr. To do so, three

series of experiments involving the Teramobile facility [29, 60] are performed in par-

allel geometry, with beam powers varying between 120 Pcr and 1000 Pcr. Each series

of experiments is numerically simulated by means of the averaged-in-time approach.

This model is found to reproduce the qualitative features of the experimental patterns.

High-intensity defects in the spatial distribution of the input beam generate ”optical

pillars” persisting over several tens of meters through the propagation. By ”optical

pillars” we mean discrete light spots capable of amalgamating short-living soliton-like

cells that self-attract around specific points in the diffraction plane. The resulting

structure then sustains a long-range propagation, while it can still continue to excite

short-range cells in its vicinity. Optical pillars indeed evacuate power as they collapse,

so that randomly-nucleated filaments may recur more and more along the optical path,

in accordance with the scenario described in [11].

The major difference between the concepts of ”optical pillars” and both the ”op-

tically-turbulent light guide” [11] and ”self-waveguiding” [10, 18] models lies in the

following: The possibility of guiding the beam through a small number of quasi-

continuous long-range clusters created from its most intense regions. In contrast to

the ”optically-turbulent light guide”, ”optical pillars” are robust long-range structures.

In contrast to the ’self-waveguiding” picture, an ”optical pillar” consists of several

filaments. An experiment realized in focused geometry validates this concept: A

focused beam is observed to decay into several tens of small-scale cells before the focal

point of the beam. The linear lensing shrinks all filaments at the focal point, after

which only three quasi-continuous channels of light keeping the same average direction

propagate over almost ten meters.

In the final Section 4.3, the interaction of ultrashort laser pulses with opaque

droplets in the atmosphere is examined numerically. Intense filaments resulting from

the balance between self-focusing and ionization of air molecules are shown to be robust

against obscurants sized up to 2/3 of the filament diameter. Our goal is to understand

the inner mechanisms that rebuild femtosecond filaments after their collision with

obscurants similar to those used in the experiments in [30]. By means of (3D+1)-

dimensional numerical simulations, we confirm this spectacular phenomenon and show

that it takes place over a few cm after the interaction zone, for droplet sizes up to

2/3 of the filament diameter. Because in reality obstacles do not exactly interact
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4. High-intense femtosecond pulsed beams in air

at the filament centroid, emphasis is also given to decentered obscurants. To better

understand the rebuilding process, we compare fluence patterns of noisy Gaussian

beams with results from our time-reduced model that simulates the propagation of pure

solitons resulting from the balance between Kerr self-focusing and plasma defocusing

in the presence of an obscurant. The excellent agreement between time-averaged and

3D computations pleads in favor of identifying 3D femtosecond filaments with time-

averaged 2D solitons, as suggested in Section 4.2.

All experimental results shown in this Chapter are taken from [S11], if not stated

differently.

4.1. Dynamics of a single filaments

Before studying the multiple filamentation of high-intense femtosecond pulsed beams

in air, it is worth to have a closer look at the spatio-temporal dynamics of a single

filament (Section 4.1.1). In particular the dynamic spatial replenishment mechanism

[34] is important for the subsequent sections, because it is used in the derivation of

the time-averaged model in 4.2.1. Moreover, the analysis of azimuthal instabilities of

the rotationally symmetric filament in Section 4.1.2 allows us to predict that multiple

filamentation has its origin in the self-focusing dynamics. A single filament, once

formed, is a robust spatial structure which survives over several Rayleigh lengths.

4.1.1. Rotationally symmetric solution

Let us assume that a single filament is rotationally symmetric in x and y. We solve

Equations (2.53) in order to get ER(r, z, t), where r =
√

x2 + y2. Here we use a parallel

split-step algorithm for the propagation in z. The computing window in r and t moves

with the group-velocity of the pulsed beam along the z-axis. In time direction we use

a spectral method, whereas the radial coordinate is treated by the Crank-Nicholson

scheme. A more detailed description of the code is given in Appendix B.1.2.

Because we are interested in a single filament solution, we choose a Gaussian initial

field distribution. It is known that a Gaussian beam tends to form a single self-focusing

attractor, whereas a broader super-Gaussian triggers the formation of several indepen-

dent filaments [27]. We will use that later, when we treat multiple filamentation in

Section 4.2. We write

ER(r, z = 0, t) =

√
2Pin

πw2
0

e
−
�

r2

w2
0
+ t2

t2p

�
, (4.1)
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Figure 4.1.: Rotationally symmetric solution [Pin = 20 GW, w0 = 0.7 mm, tp = 85 fs,
see Equation (4.1)]. (a) Evolution of the maximal intensity maxr,t |ER|2
(solid line, left-hand axis) and the maximal electron density maxr,t ρe (dot-
ted line, right-hand axis). (b) Energy of the pulsed beam 2π

∫ |ER|2rdrdt
in the computing window (solid line) and in the core region with radius
150 µm (dotted line) versus propagation distance. The size of the com-
puting window was 5 cm × 700 fs. (c) Evolution of the on-axis temporal
intensity distribution |ER(r = 0)|2. (d) Fluence

∫ |ER|2dt of the beam.

where Pin is the peak input power, w0 the spot size, and tp the pulse length. Optionally

a focusing lens in the waist of the beam is considered, which is described by its transfer

function exp(−ik0r
2/2f), where f is the respective focal length. It is useful to express

the input power Pin in units of Pcr = λ2
0/2πnbn2 (∼ 3 GW @ 800 nm), which is the

critical input power for a two dimensional Gaussian beam to collapse in the (2D+1)-

dimensional nonlinear Schrödinger equation [42].

In the following we will show a typical rotationally symmetric single filament so-

lution. We choose Pin = 20 GW ∼ 6Pcr, w0 = 0.7 mm, and tp = 85 fs. Figure 4.1 (a)

shows the evolution of the maximal intensity of the optical field versus propagation

distance z. We can distinguish three propagation stages. First, up to ∼ 0.5 m, we

have the Kerr stage. Here the electron density ρe is below 1015 cm−3 and therefore its

influence in the field evolution is negligible. The beam is self-focused by the optical

Kerr effect. Individual time-slices evolve almost independently, since the temporal

coupling due to dispersion (LD = t2p/k
′′ > 100 m) and the Raman delayed Kerr re-
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sponse is weak. In the self-channeling regime (∼ 0.5 m to ∼ 2.5 m), self-focusing is

arrested by the defocusing plasma channel. The maximal optical intensity is clamped

between 40 and 80 TW cm−2, and the electron density ρe can reach 1016 to 1017 cm−3.

In the diffraction stage (here > 2.5 m), the beam diffracts slowly, the intensities are

too low for multiphoton ionization. Although diffraction dominates the optical Kerr

effect, the nonlinearity is still considerably high and the beam broadens much slower

than in pure linear regime.

It is worth noticing that for pulsed beams with input power close to critical a

different mechanism exists, which arrests self-focusing. In this power regime, GVD

symmetrically splits pulses in time and may dominate over MPI defocusing [61]. How-

ever, in this work we deal with much higher input powers and GVD plays a minor role.

Its (weak) influence is mainly that it shortens the self-channeling range by decreasing

the peak power of focused time-slices [62].

Let us have a closer look on the self-channeling regime. In spite of the strong

influence of the generated plasma on the optical field, the overall losses are relatively

small [see Figure 4.1(b)]. Hence, the beam can focus several times until the optical

power falls below the threshold for self-focusing. In our example we observe two

focusing cycles, each maintaining the filament over ∼ 1 m. They are clearly visible

in Figure 4.1(c) as two ”U”-shapes. Here each cycle starts in the center of the pulse

(t ≈ 0). After focusing the pulse splits, and both leading and trailing edge move

away from center. The trailing edge is weaker, because it is defocused by the plasma

generated in the leading edge. It may happen (not observed in this case) that the

trailing edge lives longer than the leading part and become the most prominent spike

before the next focusing cycle starts. The crux of the propagation mechanism is

that different time slices take turns in maintaining the same filament, which is called

dynamic spatial replenishment [34]. It explains the spreading of the plasma channel

over several Rayleigh lengths zfil
0 = πw2

fil/λ0 ∼ 3 cm, where wfil ∼ 85 µm is the

typical waist of the fluence in self-channeling regime [see Figure 4.1(d)].

The snapshots of the intensity distributions versus the coordinates r and t at cer-

tain z distances reveal the focusing cycles mentioned above even more clearly [Figure

4.2(a)]. Qualitatively, both cycles are very similar: focusing at t ≈ 0, pulse splitting

and motion to the positive (respectively negative) times. In the case of the second

cycle (z = 1.6 m and z = 1.8 m) low intensity remnants of the first cycle are still

visible. The electron density distributions ρe shown in Figure 4.2(c) reveal that the

generated plasma channel has a width of ∼ 50µm. Moreover, we observe that only

the dominant temporal spike is responsible for plasma generation.

Another interesting observation is the formation of spatial rings in certain time-
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Figure 4.2.: Rotationally symmetric solution [input parameters see Figure 4.1]. (a)
Intensity distribution |ER|2 at 0.6 m and 0.8 m (first focusing cycle) and
at 1.6 m and 1.8 m (second focusing cycle). (b) Corresponding on-axis
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sponds to the notch in Figure 4.1(a). (c) Plasma distribution ρe at the
same propagation distances. (d) On-axis electron density ρe(r = 0). The
dominant spike alone is responsible for plasma generation.
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slices. Nearly all peaks behind (at greater t) the dominant spike have a ring shape.

They are caused by a contraction of the field around the defocusing plasma channel,

which is generated in the leading part of the pulse. The formation of these rings

motivates an azimuthal perturbation analysis of rotationally symmetric single filament

solutions.

4.1.2. Azimuthal perturbation analysis

To investigate the influence of azimuthal perturbations which break the rotational

symmetry we introduce a small perturbation E = ER + δEm with

δEm(r, ϕ, z, t) = vm(r, z, t) cos mϕ + wm(r, z, t) sin mϕ, m > 0 (4.2)

into Equations (2.53) (simplified by xdK = 0 and σ = 0) and linearize with respect to

δEm. This leads to an equation describing the onset of azimuthal instabilities around

ER:

∂

∂z
vm =

i

2k0

(
∂2

∂r2
+

1

r

∂

∂r
− m2

r2

)
vm − i

k′′

2

∂2

∂t2
vm + ik0n2

(
2 |ER|2 vm + E2

Rv∗m
)

−i
k0σKρnt

2ρc

[
vm

∫ t

−∞
|ER|2K dt′ + KER

∫ t

−∞
|ER|2K−2 (E∗Rvm + ERv∗m) dt′

]

−Kβ(K)

2
|ER|2K−2 vm − (K − 1) β(K)

2
|ER|2K−4 E2

Rv∗m. (4.3)

The same equation is obtained for wm, thus it is sufficient to solve Equation (4.3).

Because we consider instabilities which break the rotational symmetry we restrict

ourselves to m > 0 (see [S14] for details).

Simultaneously with ER(r, z, t) all vm(r, z, t) are determined solving Equation (4.3)

with the initial condition vm(r, z = 0, t) ∼ r3ER(r, z = 0, τ). Obviously this ansatz

does not account for every possible perturbation. However, possible distortions of a

field distribution are usually correlated with the original shape. Figure 4.3 shows the

evolution of the energies contained in each azimuthal component of the perturbation

vm for different input pulses. It is obvious that the crucial parameter which determines

the growth rate is the input power Pin. Although we increase the pulse duration and

add a focusing lens, the prevailing m is invariant [see Figure 4.3(b), (d), (e)]. But if

we change the input power, the prevailing m increases with growing Pin [see Figure

4.3(a), (b), (c)].

The simplification xdK = 0 and σ = 0 are of minor influence. xdK = 0 leads

to stronger self-focusing, and therefore the onset of plasma generation is shifted to
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Figure 4.3.: Evolution of the energies contained in azimuthal perturbations vm of dif-
ferent order for different initial field distributions. All energies are scaled
to the initial ones. For sake of clarity, the (non increasing) curves of some
perturbations are omitted.

slightly shorter propagation distances. The qualitative evolution of the solution is the

same compared to the full model [see Figure 4.4(b)]. Since the aim of our perturbation

analysis was only to show that radial solutions become azimuthally unstable, the above

simplifications are justified.

Apart from showing the existence of such azimuthal instabilities, it is possible to

draw some conclusions on their origin. As mentioned before, we can roughly distin-

guish three propagation stages of the femtosecond pulsed beam. First, we have the

Kerr stage, then the plasma regime and finally diffraction. Since we treat the az-

imuthal perturbations with linearized equations, it does not make sense to propagate

far beyond the point where we observe any perturbation growing: Equation (4.3) is

valid for |vm| ¿ |ER| only. Figure 4.3 shows that perturbations grow already in the

Kerr stage, where we have no plasma at all. This rises the question if only the optical

Kerr effect is responsible for the observed instabilities, or if the generated plasma has

additional influence.

In contrast to experiments we can simply switch off the plasma generation in our
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Figure 4.4.: (a) Evolution of the energies contained in azimuthal perturbations vm of
different order for different nonlinearities (Pin = 10Pcr, w0 = 0.7 mm,
tp = 85 fs); all energies are scaled to the initial ones. (b) Intensity distri-
bution of the rotationally symmetric solution at 32 cm, shortly after the
onset of plasma generation. (c) Intensity distributions for the azimuthal
perturbations at the same propagation distance.

numerics. Hence, we can compare our results to those obtained with a system where

ρe ≡ 0. Unfortunately, then we find collapsing solutions for input powers above Pcr,

since the defocusing effect of the generated plasma is missing. In order to work around

this, we consider a saturable Kerr nonlinearity as |E|2 /
(
1 + |E|2 /Is

)
instead of |E|2 in

Equation (2.53a), but still neglect any plasma generation. Here we choose a saturation

intensity Is = 4 × 1013 W cm−2 which is a typical value for the intensity inside the

filament we observed in simulations using the full model.

If we compare Figures 4.4(a) and 4.5(a), the growth rates achieved with the model

including plasma generation and those obtained from the one with saturable Kerr

nonlinearity are almost the same. Hence, we can conclude that the optical Kerr

effect is the origin of these azimuthal instabilities. Indeed, beam break-up in Kerr

media is a well known phenomenon initiated by such instabilities [63–65]. For a pure

Gaussian beam shape, the Kerr effect favors the whole-beam collapse to the detriment

of modulational instability (MI). When saturation is added – whatever it may be –

filaments are in contrast easily generated even with Gaussian beams. However, for

a beam yielding a ring-like (diffraction) pattern (e.g., super-Gaussian), MI is able to
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Figure 4.5.: Same as Figure 4.4, but without plasma generation and saturable Kerr
nonlinearity |E|2 /

(
1 + |E|2 /Is

)
.

form genuine filaments well before the saturation stage (see, e.g., [27]).

So what is the influence of the generated plasma? First of all, it produces a strong

asymmetry in time in the rotationally symmetric solution [Figure 4.4(b)], which is

absent in the saturable Kerr case [Figure 4.5(b)]. Apart from that, if we have a

closer look at the actual field distributions of the perturbations and compare the

model including plasma [Figure 4.4(c)] and the saturable Kerr case [Figure 4.5(c)],

we see that the generated plasma affects the perturbations via the evolution of the

rotationally symmetric solution ER. Especially for small m’s the plasma redistributes

the perturbations. In small areas we get a faster growing perturbation than in the

case of a pure saturable Kerr nonlinearity (e.g. for m = 2 at the trailing edge of the

pulse in Figure 4.5).

Another interesting result of the stability analysis is the following: Both Figures

4.4(c) and 4.5(c) show that the higher the vorticity m of the perturbation the lesser is

the influence on the core region of the filament (∼ 150 µm). On the other hand it is

obvious that these perturbations are the ones responsible for multiple filamentation.

Hence we can conjecture that multiple filamentation has its origin already in the Kerr

stage, where the beam diameter is large. In contrast, a single filament, once formed,

should be relatively robust and not easily split into several spots.
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4.2. Multiple filamentation of femtosecond pulsed

beams

In contrast to the previous section, we here treat pulsed beams which decompose into

several ”hot spots” in the self-channeling regime. As mentioned before, we introduce a

time-averaged (2D+1)-dimensional model. Section 4.2.1 is devoted to the derivation of

the reduced (2D+1)-dimensional model and to the analysis of its soliton-like solutions.

Emphasis is put on soliton interactions in conservative regime and on the action of

multi-photon absorption (MPA) which damps the soliton profiles and decreases their

power over a generic distance. In spite of natural limitations owing to the averaging in

time, the spatial dynamics described by this model is found to be qualitatively close to

that provided by the original (3D+1)-dimensional equations. Direct comparisons be-

tween both models are commented in Section 4.2.2, where the limits of applicability for

the 2D reduction are thoroughly discussed. Differences between an averaged-in-time

filament compared with its (3D+1) counterpart developing a two-peaked temporal

profile [32, 34] are discussed. Section 4.2.3 concerns experimental observations of fil-

aments evolving from TW pulses delivered by the Teramobile facility. By means of

classical CCD imaging, the filamentation figures are collected over regular distances

upon the propagation axis. They emphasize the early amplification of the initial beam

defects. These defects then serve as central ”hot” spots around which short-scale light

cells arise and rapidly recur over one meter-range distances. The local zones formed

by a central spot surrounded by short-living cells are able to propagate much farther

and meet the definition of an ”optical pillar” given above. The qualitative events de-

veloped in the experimental patterns are shown to agree with numerical computations

realized from the 2D reduced model, using a digitized file of the experimental input

beam profile. Different input powers comprised between 100 and 1000 times Pcr are

investigated for collimated beams. A special experiment involving a focused beam

achieves to confirm both the validity of the 2D model and the existence of ”optical

pillars”.

4.2.1. The time-averaged model

Current limitations of even the most modern, massively-parallel computer machines

still prevent us from accessing a complete description of a km-range propagation of

broad, cm-waisted beams as a whole, in reasonable CPU times. For, e.g., a beam

waist of about 2.5 cm only and a pulse duration ∼ 100 fs, the appropriate resolu-

tion would require at least 237 mesh points for numerical box lengths in (x, y, t) of
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15 × 15 cm2 and 600 fs, respectively. In addition, it is often necessary to employ an

adaptively-refined step along z able to resolve correctly the sharp peaks coupled to

narrow plasma channels with a size ∼ 50µm, emerging along the filamentation process

(see also Appendix B). Numerical simulations fulfilling these needs consume several

Terabytes in memory for a single run, which we have to avoid. For this reason, we

may alternatively derive a reduced model from the original (3D+1)-dimensional equa-

tions. This model amounts to reducing the number of effective dimensions by freezing

suitably the temporal dependencies of the wave-field. Even though this reduction is

primarily motivated by technical constraints, it also allows us to gain a deeper insight

into the transverse dynamics of the filamentation phenomenon.

4.2.1.1. Derivation

To establish the time-averaged model, we first apply some preliminary approxima-

tions. Considering sub picosecond durations, avalanche ionization and related plasma

absorption have a weak influence on the pulse dynamics for the parameters examined

below and we thus ignore them (σ = 0). We can also omit group-velocity dispersion,

whose physical coefficient k′′ = 0.2 fs2/cm makes it too weak for being a key-player

competing with ionization of air molecules over filamentation distances limited to 100

m. Moreover, our main focus is not temporal but spatial dynamics. The numerical

results from Section 4.1 show that femtosecond filaments result from the competition

between Kerr self-focusing and multi-photon ionization (MPI). We thus assume that

MPI mainly balances Kerr self-focusing at a time slice t ' tc(z) where a dominant

spike with temporal extent T emerges in the pulse temporal profile. This duration T

is conjectured to keep the same order of magnitude along propagation. Therefore, we

decompose E as follows:

E(x, y, z, t) = ψ(x, y, z)× χ[t, tc(z)], (4.4)

where the temporal distribution for the highest-intensity peak is modeled by the Gaus-

sian

χ[t, tc(z)] = e−
[t−tc(z)]2

T2 . (4.5)

Under the previous assumptions, we can plug the above expression of E into Equations

(2.53). Immediately we can solve Equation (2.53c) and get for the electron density

ρe =

√
π

8K
TσKρnt|ψ|2K

{
Erf

[√
2K[t− tc(z)]

T

]
+ 1

}
. (4.6)
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Here Erf denotes the usual error function Erf(x) = 2
∫ x

0
exp(−t2)dt/

√
π. For the

averaging in time, we integrate Equation (2.53a) over the entire time domain after

multiplying it by χ. The resulting equation for ψ reads:

∂ψ

∂z
=

i

2k0

∆⊥ψ + iαk0n2|ψ|2ψ − iγ|ψ|2Kψ − β(K)

2
√

K
|ψ|2K−2ψ, (4.7)

where α = (1− θ + θD/
√

2τK)/
√

2, γ =
√

π/8KTk0σKρnt/2ρc and

D =

∫ +∞

−∞
e

T2

8τ2
K

− u
τK
− 2u2

T2

[
Erf

(√
2u

T
− T√

8τK

)
+ 1

]
du.

The integral D follows from averaging in time the delayed Kerr component. Equation

(4.7) describes the transverse dynamics of fs beams, with appropriate coefficients α, γ

keeping the trace of averaged variations in time of the pulse. It is worth noticing that

this model does not depend on the longitudinal location of the time slice t = tc(z).

This is a pleasant property since we know that the dominant spike moves due to the

dynamic spatial replenishment mechanism [see Section 4.1.1]. The only arbitrariness is

the choice of the peak duration T . On one hand, a natural assumption would be to opt

for T equal to the characteristic pulse length tp, i.e., an ionization front raises from a

wave structure with mean duration comparable to that of the input pulse. For example,

for a pulse length tp = 85 fs and a nonlinear delay time τK = 70 fs, this choice leads

to D ' 0.707tp and α ' 0.57. On the other hand, there exists evidence [34, 66] that

MPI can shorten pulses to mean duration reaching 1/10 of their initial values. Setting

T = 0.1tp with tp = 85 fs then provides the coefficients D = 0.117tp, so that α = 0.39.

Note from these estimates that the global effect of the delayed Kerr component is to

increase the effective power for self-focusing to some extent. This property may explain

former experimental observations [10, 18], following which powers above three times

Pcr are often necessary to create one localized filament. Because we wish to describe

filamentation patterns in full ionization regime, we henceforth assume T = tp/10. This

value was found to provide the best approximations of fluence patterns developed by

(3D+1)-dimensional fs pulses.

Let us now discuss inherent properties to Equation (4.7), before proceeding on

comparisons of this 2D approach with direct simulations of Equation (2.53).

4.2.1.2. Soliton-like Dynamics

For technical convenience, we transform Equation (4.7) into a dimensionless system

of units, which is employed in this subsection only. By introducing the rescaled prop-
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agation variable Z = z
[
(αk0n2)

K/γ
]1/(K−1)

, the rescaled transverse coordinatesX =

x
√

2k0

[
(αk0n2)

K/γ
]1/(2K−2)

and Y = y
√

2k0

[
(αk0n2)

K/γ
]1/(2K−2)

, the rescaled field

envelope A = ψ (γ/αk0n2)
1/(2K−2) and the parameter in front of the losses ν =

(β(K)/2
√

K)
(
αk0n2γ

K−2
)1/(1−K)

, it is straightforward to rewrite Equation (4.7) in

the form
∂A

∂Z
= i∆⊥A + i|A|2A− i|A|2KA− ν|A|2K−2A, (4.8)

where ∆⊥ = ∂2
X + ∂2

Y and the parameter ν takes the value ν = 0.154 with the above

choices of α = 0.39, tp = 85 fs and T = tp/10. This change of variables and fields

fixes the saturation intensity [Imax = |ψ|2max = (αk0n2/γ)1/(1−K)] to unity [|A|2max = 1].

This saturation intensity realizes an equilibrium between Kerr and MPI nonlinearities.

Conservative case ν = 0: In the non-dissipative regime (ν = 0), Equation (4.8)

admits soliton solutions in the form A = φ(X, Y ) exp(iΛZ), where the soliton shape

φ is real-valued and satisfies

−Λφ + ∆⊥φ + φ3 − φ2K+1 = 0. (4.9)

Here, we restrict ourselves to the single-hump, node-less ground state soliton solution.

Figures 4.6(a-c) show the basic properties of this soliton family characterized by its

power Ps, i.e., the power P =
∫ |A|2d~R computed using the shape φ, its maximum

amplitude φmax and full width at half-maximum (FWHM) over the soliton parameter

Λ. Low-power solitons are close to the Townes mode of the cubic NLS equation

[corresponding to |A|2 À |A|2K in Equation (4.8)], with power PTownes = 11.7 and a

spatial shape close to a Gaussian beam [4] (see Section 3.2.1). High-power ones exhibit

a shape resembling high-order super-Gaussian beam. Their respective intensity φ2
max

is always below (although close to) the saturation threshold Imax = 1.

An important feature is the monotonous increase of Ps versus Λ, which indicates

linear stability of these nonlinear objects, in accordance with the so-called Vakhitov-

Kolokolov criterion dPs/dΛ > 0 [67, 68] (see also Refs. [9, 69, 70]). Figure 4.6(d)

confirms the stability of such stationary-wave structures from a numerical computa-

tion of azimuthal perturbations δφ ∼ exp(imθ + iλZ) acting on the ground state φ,

with angular number m and eigenvalue λ (see details on the related spectral problem

in Appendix A.4). First, we observe that all eigenvalues λ are real-valued, so this

family of solitons is linearly stable. Second, in the parameter range 0.16 < λ < 0.29

(1.05 < Ps/PTownes < 3.2 resp.) there are no internal modes, i.e., breather modes

characterized by periodic oscillations in their amplitude. Therefore, in this regime

we expect the solitons to be particularly robust due to the lack of internal oscilla-
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Figure 4.6.: (a) Soliton power versus Λ, (b) soliton amplitude versus Λ, (c) soliton
width versus Λ, (d) eigenvalues of the internal modes δφ versus Λ. The
dashed line marks the maximum value of λ for which discrete (localized)
perturbative modes exist, i.e., λ ≤ Λ.

tions. The corresponding FWHM and intensity maxima expressed in physical units

are 150 − 200 µm and 4 − 8× 1013 W/cm2, which is in excellent agreement with the

usual diameter and intensities reached by femtosecond filaments in air [30,32,33].

Solitons are strong nonlinear attractors. Starting with any low intensity field dis-

tribution containing sufficient power, self focusing always leads to the formation of

one or more solitons. Another consequence of this dynamics is that these objects at-

tract each other and may fuse. Figure 4.7 shows iso-intensity plots of the merging of

two identical solitons with individual power Ps, soliton parameter Λ and separation

distance ∆.

From the above analysis, we expect solitons with powers 1.05 < Ps/PTownes <

3.2 to be specifically robust (absence of internal modes). Indeed, for fixed ∆ = 15,

solitons without internal modes [Figure 4.7(b)] merge at larger distances Zfus than

those capable of internal oscillations [Figures 4.7(a,c)]. Moreover, if we look at the

final states after the fusion processes, only in Figure 4.7(a) a robust, new fused static

waveguide emerges, starting from 2Ps/PTownes ' 2 < 3.2. In Figures 4.7(b,c), the

opposite condition 2Ps/PTownes > 3.2 leads to “breathing” solutions due to the internal
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Figure 4.7.: Iso-intensity plots [Iiso = 0.5] of the fusion of conservative solitons (ν = 0)
with individual power Ps and separation distance ∆. The insets show the
radial shape of the respective soliton. (a) Ps = 1.02PTownes (Λ = 0.137)
and ∆ = 15, Zfus = 45. (b) Ps = 1.92PTownes (Λ = 0.254) and ∆ = 15,
Zfus = 55. (c) Ps = 3.84PTownes (Λ = 0.302) and ∆ = 15, Zfus = 35. (d)
Same parameters as in (b), but with ∆ = 20, Zfus = 250.

mode with m = 2. For an increased separation, ∆ = 20, the point of fusion shifts

to significant higher values of Z [Figure 4.7(d)]. Reexpressed in physical units, two

filaments separated from each other by a distance ∼ 0.6 mm can propagate over more

than 3 m before merging.

Dissipative case ν 6= 0: When multiphoton absorption (MPA) is introduced, Equa-

tion (4.8) no longer admits stationary solutions. Nevertheless, especially for ν ¿ 1,

the system still holds certain features, deducible from the conservative case. First, for

intensities far below the threshold ∼ 1, the dissipative term is irrelevant anyway. So,

in the self-focusing regime, formation of “solitons” can proceed as without losses. Af-

ter reaching a “quasi-soliton” state with an intensity ∼ 1, dissipation comes into play.

Since there exists a conservative ground state for all Ps ≥ PTownes, the “quasi-soliton”

slides “adiabatically” down the curve in Figure 4.6(a) until reaching the effective col-

lapse threshold PTownes of the cubic Schrödinger equation. Figure 4.8(a) shows this

property for different powers of the initial soliton. Due to their “flat top” shape, high-

power ground states undergo higher losses. As a consequence, starting with high power
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Figure 4.8.: (a) Decrease of soliton power Ps versus Z, ν = 0.154, for solitons with
Ps = 1.92PTownes (Λ = 0.254), Ps = 3.84PTownes (Λ = 3.02) and Ps =
7.56PTownes (Λ = 3.32). (b) Same as in Figure 4.7(d), but with ν = 0.154,
Zfus = 150. In the region 100 < z < 150 preceding the fusion event, beam
components slightly diffract with an intensity going below the selected iso-
intensity level [Iiso = 0.5].

does not significantly enlarge the dissipation range, which was found numerically less

or equal 70 for input powers up to 20PTownes. Reexpressed in physical units using the

above parameters α, tp and T , this value predicts a maximum filament length < 1 m

per pulse. This value agrees with the length of a single focusing cycle of the dynamic

spatial replenishment mechanism recalled in Section 4.1.1.

Modeling the solitons φ close to the saturation threshold as φ = exp[−(R/Wfil)
2N ]

with an arbitrary N ≥ 1, it is possible to solve approximately the power relation dzPs '
−2ν

∫
φ2Kd~R. By using

∫
φ2Kd~R = K−1/N

∫
φ2d~R = K−1/NPs, we can evaluate the

dissipation range ∆ZMPA, along which the beam power persists above PTownes, as

∆ZMPA =
K1/N

2ν
log

Pin

PTownes

, (4.10)

where Pin is the initial soliton power. This estimate takes the value ∆ZMPA ≈ 75

when Pin = 20PTownes, which is reasonable upper limit for the power contained in a

single filament, and N → 1. In physical units, ∆zMPA predicts a maximum filament

length of ∼ 1 m, which is in the same order of magnitude as our numerical result.

Last but not least, dissipation has a significant influence on the fusion dynamics. By

comparing Figure 4.8(b) to Figure 4.7(d), we see that the presence of MPA promotes

the mutual coalescence of filaments. The point of fusion shifts to significantly smaller

propagation distances. This behavior is understandable in the sense that MPA shifts

the “quasi-solitons” to the low power regime Ps < 1.05PTownes, where we expect an

easier merging. Another interesting point is that the dissipation range can be enlarged

with the help of the fusion mechanism. The central beam, visible in Figure 4.8(b) at
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Z ≈ 150, indeed clearly exceeds the predicted dissipation range of a single filament.

In summary, Equation (4.8) points out that spatial solitons are the natural objects

modeling self-guided femtosecond filaments in the transverse plane. Although their

individual range of propagation may be limited to short distances < 1 m by MPA,

their capability of merging at relatively low powers enables them to propagate over

more extended ranges.

4.2.2. Time-averaged versus fully space-time-resolved

simulations

We return to physical units and compare results obtained using the time averaged

(2D+1)-dimensional model [Equation (4.7)] with corresponding space-time resolved

3D simulations [Equations (2.53)].

4.2.2.1. (2D+1)-dimensional simulations

Figure 4.9 illustrates filamentation patterns in the 2D approximation. For visualiza-

tion, we employ iso-intensity surfaces |ψ|2 =const. By comparison with antecedent ex-

perimental data [22,23], we choose as input an anisotropic Nth-order super-Gaussian

beam in the form ψ0 =
√

I0 exp
[−(x2 + 2y2)N/w2N

0

]
, perturbed at z = 0 m by an

isotropic 10% random noise in amplitude and multiplied by a 10% noisy Gaussian

temporal profile (tp = 85 fs). The fluence distribution [F =
∫ +∞
−∞ |E(t)|2dt] of the

resulting beam, divided by the integral over the squared temporal profile, is then

employed as the input condition for the 2D model.

Figure 4.9(a) shows the iso-intensity plots for a perturbed beam with N = 3/2,

a waist w0 = 1 mm and Pin = 20.5Pcr. The beam first forms a ring giving rise to

two filaments. These merge and reform during a transient stage, before they refocus

into a robust lobe at center. Intermittence in filament nucleation occurs in the early

propagation stage over short ranges, which can be compared with the scenario of

optically turbulent light guide proposed in [11]. However, at larger distances, the

filaments relax to a single one in the (x, y) plane. This waveform does not change

until it reaches the Rayleigh length (z → 4 m), beyond which it diffracts slowly.

Filaments reach the maximum intensity Imax ∼ 7 × 1013 W/cm2 over distances ∼
∆zMPA < 1 m, but they asymptotically remain captured in longer envelopes that

locate ”optical pillars” in the medium. By ”optical pillars” we mean discrete light spots

amalgamating short-living soliton-like cells that self-attract around specific points in

the diffraction plane. Similar patterns of two main filaments fusing into one were

observed to generically occur with different beam shapes and peak powers comprised
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Figure 4.9.: Iso-intensity patterns (Iiso ≈ 1013 W/cm2) of filamentary structures de-
scribed by Equation (4.7) and created from a super-Gaussian beam with
(a) N = 3/2, Pin = 20.5 Pcr and w0 = 1 mm, (b) N = 2, Pin = 88 Pcr and
w0 = 2 mm.

between 15 Pcr and 40 Pcr. This dynamics fully agrees with previous experimental

observations [22]. For higher powers, Figure 4.9(b) shows a broader (N = 2) super-

Gaussian beam with 88 Pcr and wider waist w0 = 2 mm. Filamentary structures with

the largest separation distances create strong individual attractors, which organize

the beams into long-range pillars composed of soliton-like filaments. An early stage

of ”random nucleation” precedes the formation of three filamentary channels, which

may move in the (x, y) plane while they attempt to attain an equilibrium position.

Like the soliton pattern shown in Figure 4.8(b), these two simulations confirm that

the mutual interaction between optical cells helps in maintaining the robustness of the

beam envelope over several meters.
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Figure 4.10.: (a) Plasma strings [maxtρ(x, y, z, t) ≥ 1015 cm−3] of the 20.5Pcr super-
Gaussian beam used in Figure 4.9(a). (b) Plasma strings from the 88Pcr

super-Gaussian beam of Figure 4.9(b).

4.2.2.2. (3D+1)-dimensional simulations

For comparison, Equations (2.53) are now solved by means of a spectral code using

fast Fourier transforms in the (x, y, t) variables (see Appendix B.1.3). Simulations

were realized on the massively-parallel machine (TERA) of the CEA, where we used

up to 128 processors per run. Details on further numerical aspects and limitations in

(3D+1)-dimensional computing are given in Appendix B.2.

Figure 4.10 shows the filamentation of pulses with the same input distributions

as used in Figure 4.9. In Figure 4.10(a), we display the plasma strings produced

by the beam with 20.5Pcr. Figure 4.11 shows their associated intensity profiles in

the plane (x, y = 0, t) at different z positions, along the y axis crossing the two

primary spots that will merge. In the case of (3D+1)-dimensional simulations, we

take into account the temporal dynamics. Filamentary structures are determined by

contributions of all time-slices. Therefore, it is straightforward to use the generated
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Figure 4.11.: Intensity |E|2 versus (x, 0, t) for the beam of Figure 4.10(a).

plasma strings for identifying the filaments. The temporal pulse profile, even subject

to strong distortions, does not prevent the transverse dynamics of the pulse from

developing as in Figure 4.9, up to second-order discrepancies in the focus point linked

to the choice of the peak duration T (see Section 4.2.2.3). Although different temporal

slices come into play, all of them support the propagation of cells first nucleated at

different locations, then remaining localized around the same place in the (x, y) plane.

Plasma strings associated with pulse components of maximum intensity and duration

nearby 1/10 of the input pulse dominate, which makes our previous assumption for

averaging the (3D+1)-dimensional equations valid. Finally, Figure 4.10(b) depicts the

plasma strings created by the super-Gaussian pulse with 88 critical powers, N = 2

and w0 = 2 mm. Three distinct channels clearly emerge in the (x, y) plane. They

do not interact significantly but remain almost robust at their transverse position, in

agreement with the filamentation pattern of Figure 4.9(b).

4.2.2.3. Limitations of the time-averaged model

Major advantages in employing the (2D+1)-dimensional model concern, of course,

the reduction of the computation time when we only focus on the spatial dynamics

of the pulse (see Appendix B.2). Moreover, it will be employed for clearing up an

alternative problem, the interaction of an ultrashort filament with an opaque droplet

in Section 4.3. Experiments on this topic [30] revealed the remarkable robustness of

femtosecond filaments with typical diameter ∼ 150 µm, when they hit a micrometric

droplet of diameter as large as 2/3 the filament size. The collision results in a minimal

loss of energy and the filament self-heals over very short distances. The interaction

pattern, simulated using the full (3D+1)-dimensional system (2.53), displays evidence

of the complete rebuilding of the pulse over 2 cm only. The same filament modeled by

solitons of Equation (4.7) restores an identical pattern within the same interval.
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Besides such convenient aspects, a time-averaging of the propagation equations

cannot avoid certain weaknesses. Identifying a 3D, time-resolved filament with a 2D

“soliton” means that we only focus on the core of the filament and discard its different

time slices [34]. Indeed, Equation (4.7) accounts for the time slice with maximum

intensity only. For describing, e.g., the self-healing of a fs filament with a micrometric

droplet, this simplification has almost no effect, because the interaction length of the

beam with the obstacle is short along the z axis. However, when we simulate long-range

propagation, certain constrictions concerning the agreement with fully time-resolved

computations have to be made:

(i) The arbitrary choice of the temporal extent T = 0.1tp prevents us from restoring

quantitatively the early self-focusing distances of a beam at relatively low powers

(≤ 100Pcr), as can be seen by comparing Figure 4.9 and Figure 4.10. Indeed, this

choice determines the value of the parameter α [Equation (4.7)] that fixes the effective

critical power in the pulse time slice under consideration. Setting T = 0.1tp suits

for describing filamentation patterns evolving in ionization regimes, but this choice

can lead to visible discrepancies in the location of the first focus point, for which the

value T = tp yielding a higher α would be more adapted. Remembering Marburger’s

formula [26] that evaluates the collapse point, zc, of collimated Gaussian beams in

self-focusing regime:

zc =
0.367z0√

(
√

αPin/Pcr − 0.852)2 − 0.0219
, (4.11)

it is seen right away that the differences in the location of the self-focus point indeed

become more pronounced at low ratios Pin/Pcr and for low values of α. Here z0 =

πw2
0/λ0 is the Rayleigh length of the input beam.

(ii) Experimental setups for femtosecond pulse propagation are currently based on

Chirped-Pulse Amplification (CPA) Ti:sapphire laser sources. CPA techniques allow

us to modify the effective initial pulse duration by varying the distance between the

gratings of the pulse compression system. These variations also entail a chirp onto the

input pulse phase (E → E exp(−iCt2/t2p), C = const), which can lead to noticeable

changes in the early self-focusing distances by GVD-compensation [53, 71]. Indeed,

a displacement of the first focus due to chirped pulses was observed in [S15]. Pulse

chirping is used to monitor the onset of filamentation [29, 60, 72]. Since Equation

(4.7) ignores the temporal dynamics, applying this model to pulses with initially-large

chirped phase may then enhance the differences with the experimental observations.
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(iii) Because the averaging procedure involves a single time slice only, the (2D+1)-

dimensional model cannot describe a second focusing of pulses (see Section 4.1.1),

which characterizes femtosecond filaments and enables the latter to pursue their prop-

agation over about 1 m. This process allows to maintain a femtosecond filament over

larger distances than those accessible by the reduced model. In connection with this

point, the time-averaged model also overestimates the losses due to MPA. In fully

time-resolved simulations, defocused time slices with lower intensities can maintain

a nearly constant power upon propagation until they may focus again. Hence, these

parts of the pulse can propagate nearly without losses. The reliability of the time-

averaged model may thus be limited in, e.g., examining the post-ionization regime.

The above discrepancies should not, however, devaluate the major advantage of

the time-averaged model, which can describe the qualitative dynamics of ultrashort,

high-power pulses with broad waists over considerable distances of propagation.

Keeping these limitations in mind, but using the information conveyed by the 2D

model, we can outline, on the basis of the previous 2D and 3D numerical results, a

generic scenario for the filamentation of TW fs pulses as follows: (i) Beam modulations

give rise to short-range filaments that grow in intensity until reaching the ionization

threshold Imax. In this limit, near-soliton filaments, searching for an equilibrium po-

sition, recur in the diffraction plane within an optically-turbulent regime during the

early stage of propagation [11]. (ii) As they attain a quasi-stable configuration with

respect to their neighbors, short-range filaments either amalgamate or self-attract

without merging, depending on their inner power and separation distances, in order

to form a limited number of clusters, named as ”optical pillars”. These optical pillars

then continue the propagation over longer distances.

Note that this scenario applies to input beams where an isotropic random noise first

creates short-scale cells, that next relax to quasi-coherent structures. For experimental

beams exhibiting salient defects, it is not excluded that optical pillars are fixed by the

most intense defects of the input beam profile, which further excite turbulent cells in

their vicinity, as evidenced below (see also [S6]).

4.2.3. Time-averaged simulations versus long-range experiments

To figure out how TW laser pulses decompose into multiple filaments over long dis-

tances, we investigate some evolution stages in the filamentation patterns produced

by the Teramobile laser [29, 60]. This laser system delivers at 10-Hz rate pulses with

energy up to 0.5 J, transverse diameter equal to 5 cm (w0 ' 2.5 cm), and FWHM du-
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(a)

(b)

Figure 4.12.: Shot-to-shot fluctuations in the filamentation pattern of the 10-Hz rated
Teramobile laser delivering 230-mJ pulses with (a) 600 fs duration (Pin '
120Pcr) at z = 40 m (b) 100 fs duration (Pin ' 700Pcr) at z = 35 m.
The scale of the images is about 4 cm × 3 cm.

ration tunable from 100 fs (minimal chirp) to 600 fs (large negative chirp) by detuning

the compressor with a chirp opposite to air dispersion. The collected experimental

data consist of photos taken from a white screen positioned in the plane orthogonal to

the beam path. In the first two series of experiments [Figures (4.12-4.14)], a filter with

narrow bandwidth around λ0 = 800 nm was put in front of the camera. Two pho-

tos with exposure time of 1/8th second were taken at each distance, so that pictures

mostly show single-shot beam patterns. Pictures featuring double-pulse images did

not present qualitative change from shot to shot, up to slightly more visible filaments

or more pronounced ones at certain distances (see Figure 4.12). Although the number

of ”visible” filaments may vary to some extent, the zones at which distinct clusters of

filaments develop remain identical and only the relative intensity of certain spots ex-

hibit differences. We consider these fluctuations as being of second-order importance

in the global evolution of the filamentation pattern.

Concerning this point, let us emphasize that the resemblance between the exper-

imental and numerical patterns in the forthcoming analysis will not lie in the exact

position and number of the filaments, which may undergo similar fluctuations and

are subject to atmospheric turbulence or local diffusive processes as they propagate.

Instead, qualitative similarities occur in the following sense: Starting with a coarse

input profile, the beam amplifies its initial inhomogeneities and, through modulational

instability, it produces bright spots connected by lower-intensity bridges. A ”global”
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pattern then emerges from the zones of highest concentration of light, which create

characteristic figures (ring/trident/cross). These aspects are actually well restored by

the time-averaged simulations, using the digitized fluence of the experimental input

beam.

4.2.3.1. ”Low”-power filamentation regime

To start with, we examine the filamentation dynamics of TW beams with about 100

critical powers only. Figure 4.13(a) shows the evolution of light filaments over 55 m

of propagation from the Teramobile beam with 230 mJ energy and pulse duration

of 600 fs. Modulations induced by caustics distributed in the spatial beam profile

develop as follows: In the early propagation stage, the broad (super-Gaussian-like)

beam tends to develop a ring-shaped zone by diffraction. At the edge of the beam

where fluctuations are the most intense, filaments emerge from local defects. Next,

several cells occur along a flattened ring inside the focal spot. More filaments are

then generated around this ring. They finally self-organize into a three-pronged fork

shape. For comparison, we integrated the (2D+1)-dimensional Equation (4.7) from a

data file of the experimental input beam measured at the distance d = 1 m after the

laser exit. With a pulse duration of 600 fs (tp ' 510 fs), the coefficient α in Equation

(4.7) takes the value α = 0.51. With a beam waist of 2.5 cm, a very high spatial

resolution [namely, 81922 in the (x, y) plane for a box length of 6w0] was required,

in order to resolve narrow optical structures reaching 1000 times the input beam

intensity I0. Figure 4.13(b) illustrates the results of numerical simulations. The beam

containing ∼ 120 critical powers begins to form local clots in the highest intensity

regions. Then, others emerge along a ring inside the focal spot. The final pattern,

involving several small-scale spots, results in a trident-shaped figure, comparable with

the experimental one. For such beams with a few tens of critical powers only, Equation

(4.7) describes the filamentation of a disordered optical distribution having an effective

ratio of input power over critical of about ∼ αPin/Pcr ' 60, which limits at the

very most to Pin/Pfil ' 24 the number of genuine filaments reaching the ionization

threshold. Filaments develop as asymptotic states and become decoupled from the

initial amplitude and phase of the wave-field. The discrepancy existing in the distance

where the first filaments occur, zc ' 50 m, and the experimental measurement, zc ' 30

m, is attributed to the pulse chirping, which Equation (4.7) ignores, and to our former

choice T = 0.1 tp. As underlined in Section 4.2.2.3, this value suits the experimental

development of filaments in ionization regime, but it cannot restore the early self-

focusing distances of the beam requiring rather T = tp. Keeping T ¿ tp is, however,
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(a)

(b)

Figure 4.13.: Filamentation patterns (a) produced experimentally for the 120 Pcr beam
at z = 1, 30, 40 and 55 m. (b) Numerical computations of the same beam
from Equation (4.7). Maximum intensity is limited to twice the input
intensity. The scale of the images is about 4 cm × 3 cm.

necessary to approach a suitable averaged power ratio in ionization regime, where

filaments mostly evolve. From the numerical as well as experimental patterns, we can

observe that some filamentary channels persist from the first focus point over several

meters, whereas others are randomly nucleated over shorter longitudinal scales.

4.2.3.2. ”Moderate”-power filamentation regimes

Reducing the pulse duration to 100 fs (tp = 85 fs) makes it possible to investigate

filamentary patterns promoted by fs beams with powers as high as 700 Pcr, i.e., 2.3
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(a)

(b)

Figure 4.14.: Filamentation patterns (a) produced experimentally for the 700 Pcr beam
at z = 30 and 50 m. (b) Numerical computations of the same beam from
Equation (4.7). Labels (1)-(3) indicate beam zones discussed in the text.
The scale of the images is about 4 cm × 3 cm.

TW. In this case displayed in Figure 4.14(a), the beam breaks up into more cells than in

the previous lower-power case. Following the estimate recalled in the introduction, up

to αPin/Pfil ∼ 110 light cells may form in principle with Pfil ' π2Pcr/4. Figure 4.14(b)

reproduces these experimental patterns from a numerical integration of Equation (4.7)

performed with the parameter α = 0.39 fixed by tp = 85 fs. Note that the discrepancies

in the early self-focusing distances signaled in the previous case almost completely

disappear at higher powers. Here, a minimal pulse chirping was used. The agreement

between the experimental and numerical results is thus quite satisfactory. The labels

(1-3) locate active zones in the beam, which can clearly be identified in both the

experimental and numerical patterns: (1) points out to a couple of bright, robust

filaments, (2) restores an arch of the diffraction ring pattern supporting primary hot

spots while (3) indicates a crosswise configuration of filaments. By comparing the four

snapshots with those displayed in Figure 4.13, these patterns reveal that, although

some filaments are able to survive over several meters at the most powerful regions of

the pulse, random nucleation of filaments in the entire focal spot seems more privileged,

compared with the break-up of the former 120 Pcr beam. We explain this property by

the high power density. “Optical pillars” cannot propagate independently due to their

smaller separation distance. The primary filamentary cells experience more substantial

power transfers through the overall surface of the beam.
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(a)

(b)

Figure 4.15.: Filamentation patterns of the 1000-Pcr beam delivered by the Teramobile
at different propagation distances: (a) Experimental transverse distribu-
tions. (b) Image plots from numerical computations performed with
Equation (4.7). The scale of the images is about 4 cm × 3 cm.

4.2.3.3. ”High”-power filamentation regimes

Concerning now higher power levels, Figure 4.15(a) displays filamentation stages for

pulses delivered by the Teramobile system, with a FWHM duration of 100 fs (tp = 85

fs) and 330 mJ energy. The power range thus accesses 3-4 TW, i.e., about 1000

critical powers. No filter was used in this series of experiments. Although a non-trivial

level of overexposure cannot be avoided from the most intense regions of the beam,

removing the 800 nm filter makes it possible to exhibit true-colored filaments and to

emphasize major optical pillars through the white-light conical emission which signals
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the presence of nonlinear self-focusing and subsequent plasma generation [29, 60, 72].

The filamentation scenario follows the former one: A ring-shaped zone supports a

few big spots initiated by the highest-intense defects of the input beam. These ”hot”

spots self-focus more and more over several tens of meters, while white light occurs

on the detection screen. The evacuation of power excess due to the collapse dynamics

undergone by the primary filaments allows to transfer power to the central zone of the

beam, which serves as an energy reservoir for exciting secondary filaments. Equation

(4.7) computed with α = 0.39 (tp = 85 fs) restores these features with almost no

discrepancy in the first focus point [zc ' 10 m], as the beam contains very higher

power. Figure 4.15(b) reproduces the experimental images in the same longitudinal

interval.

From the numerical computation, the bright spots observed in the experiments

appear to be first excited by an intense primary filament, which afterwards give rise

to a bunch of secondary ones emerging as smaller-scale cells located near the central

spot. We can observe how the local defects rapidly generate intense spots along a ring.

In the upper arch of this ring, the most intense filaments, either as individual entities

or gathered in clusters of few cells, produce ∼ 4 distinct active zones, in agreement

with Figure 4.15(a). These zones actually consist of robust optical pillars, following

the definition given above. They persist over several tens of meters, whereas secondary

filaments rapidly recur first around them, next in the central part of the beam.

Figure 4.16 details the spatial distortions undergone by the lowest (120 Pcr, top

row) and highest (1000 Pcr, bottom row) power beams, computed with the 2D reduced

model. It displays evidence in both cases of the early amplification of the initial beam

defects, which serve as central spots around which short-living filaments develop into

an optical pillar. Note the growth of intense spikes that remain in self-focused state

over several tens of meters, while secondary peaks attain similar intensities at later

distances.

4.2.3.4. ”Moderate”-power beams in focused geometry

While the previous observations on screens provided detailed information about the

beam structure at a given distance, they were, however, limited to semi-qualitative

observations. Fluctuations in the initial beam as well as from the atmosphere let

the profile vary from shot to shot (see Figure 4.12), so that successive images at

different distances cannot be taken as quantitative information providing a complete

propagation sequence over long distances. Moreover, the continuity and length of the

individual filaments could not be assessed with accuracy.
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Figure 4.16.: Intensity versus (x, y) for the beams shown in Figure 4.13(b) (top row)
and Figure 4.15(b) (bottom row).

In order to circumvent this limitation, we used a spatially extended, single shot

characterization of the beam profile. The Teramobile laser was slightly focused (f = 40

m) from a larger beam waist (w0 ' 5 cm) and emitted an energy of 250 mJ in 100

fs pulses (2.5 TW, 760 Pcr). It was installed outdoors on a flat humid ground and

shot against the wind direction into an aerosol generator producing a thin haze at a

distance of 48 m from the laser exit. With a soft regular wind, this setup produced

a pretty homogeneous light haze along a distance of up to 10 m towards the laser

beam. The haze density was adjusted so that beam scattering was efficient enough

to detect the filaments, with limited perturbation on the beam propagation itself.

In those conditions, image blurring by multiple scattering was negligible [30]. The

beam was imaged with a CCD camera in true colors, from a near-forward direction.

More precisely, the CCD camera was placed over the aerosol generator, about 25 cm

above the center of the laser beam, and directed to the laser output of the Teramobile

system. This setup allowed for the first time to acquire single shot (exposure time 1/8

s) pictures of a long section (up to 10 m) of the beam (Figure 4.17). Triangulation,

calibrated with reference points along the laser path, enabled us to retrieve the distance

calibration indicated in Figure 4.17. Note that the beam was imaged with a very

strong parallax, since the camera was placed at only 25 cm above it. Hence, the

triangulation yielding the distance scale is not linear and explains the apparent short
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Figure 4.17.: Three ”robust” filamentary structures propagating over ∼ 8 m from the
focal point (f ' 40 m) of a converging beam with 760 Pcr delivered by
the Teramobile laser system.

distance between the laser exit and the first marked distance (42 m).

Figure 4.17 exhibits a quasi-continuous three-pillar structure that emerges from

z > 40 m and was reproducible from image to image. In this Figure, the fluctuating

intensity along the beam path is due to inhomogeneities in the haze, as was checked

by visual inspection. Here, the observation of seemingly continuous structures along

several meters on a single-shot image is an evidence for the occurrence of optical pillars

within femtosecond laser beams. In the present configuration, the beam self-organizes

into three major, distinct clusters of light after passing through the focal point of the

long-range focusing lens.

Figure 4.18 shows a 3D plot issued from a direct numerical integration of Equation

(4.7), using the same input intensity distribution multiplied by the parabolic phase

exp(−ik0r
2/2f) that accounts for the lens curvature (f = 40 m). As seen from this

Figure, many filaments arise as the beam approaches the focal length z ' f = 40

m, where its minimum waist is attained. Remarkably, few filamentary structures

emerge after this point: Only three of them propagate over ∼ 10 m, under the form

of sequences of quasi-continuous channels having the same direction and capable of

covering more than 2 m as a whole. We attribute the transverse deflection of the most

external filaments to the natural divergence of the beam envelope after the focus.

This result again confirms the validity of the (2D+1)-dimensional model, together

with the concept of ”optical pillars”: Long-range filaments can develop as individual

entities located in the same region of the transverse plane, where a few intense cells
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Figure 4.18.: Propagation of the same beam as in Figure 4.17, numerically computed
from Equation (4.7) with a digitized data file of the input beam intensity
profile affected by a spatially-parabolic phase. Three filaments, identified
by the labels 1, 2 and 3, can develop long sequences (≥ 2 m) after the
focus. Although partly disconnected over ∼ 10 m, their strong directivity
yields the appearance of quasi-continuous strings of light. The numerous
filaments occurring at z < 40 m are not visible in Figure 4.17, due to the
strong parallax in the beam imaging.

are recurrently emitted as they propagate in a quasi-continuous way.

To sum up, we have investigated the multiple filamentation of infrared femtosec-

ond pulses in air, engaging high powers, both in nonfocused and focused geometries.

Although intermittence of filaments affects the pulse dynamics, turbulent cells can

converge towards long-range envelopes. These sustain the propagation over long dis-

tances while keeping an intensity close to the ionization threshold. To understand this

behavior, we elaborated on a time-averaged 2D model [Equation (4.7)] describing the

spatial dynamics of fs pulsed beams, even when they undergo a delayed Kerr response.

First, we thoroughly discussed the major properties of this reduced model by specifying

both conservative and dissipative fundamental soliton-like solutions and their mutual

interaction regimes. Second, we tested this model over a few meters for ultrashort

mm-waisted pulses. By fixing the effective pulse temporal extent T to 1/10 of the

input duration in ionization regimes, results from this simplified model were observed

to reasonably agree with the transverse patterns of (3D+1)-dimensional pulses. Next,

we experimentally investigated the multiple filamentation of collimated beams deliv-

ered by the Teramobile laser, for powers up to 3-4 TW. Experimental patterns were

then simulated by means of the previous 2D reduced equation, using a digitized file of

the input beam fluence as initial data. Along distances limited to 100 m, long-range
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filaments were observed to be initiated by the most intense fluctuations of the input

beam and those may persist over several tens of meters. From these ”optical pillars”,

small-scale spots arise and recur rapidly at other locations in the diffraction pattern,

in agreement with the scenario of ”optically-turbulent light guides” proposed in [11].

The long-living primary filaments, as well as unstable randomly-nucleated ones, can be

described by the 2D model, which reproduces the qualitative and quantitative behav-

iors in the filamentation patterns. Further on, focused beams were investigated over

several tens of meters along a complete propagation sequence. By optical coalescence,

reduction of the beam waist in linearly focused geometry allowed to form very long

light channels over almost 10 meters, by gathering all filamentary components into a

limited number of light strings. These strings, although longer than one elementary

filament and keeping the same direction, were numerically revealed to still develop

from intermittent cells remaining localized in the same region of the diffraction plane.

This observation thereby confirms the concept of ”optical pillars” supporting the long

propagation of quasi-continuous light tubes.

4.3. Interaction of light filaments with obscurants in

aerosols

In this last section we investigate the collision of femtosecond filaments with obscu-

rants, namely water droplets. By means of (3D+1)-dimensional numerical simulations,

we first compute the full space and time resolved dynamics of the interaction process.

We show that the filament rebuilds over a few cm after the interaction zone, for droplet

sizes up to 2/3 of the filament diameter, in agreement with recent experimental ob-

servations [30]. Because in reality obstacles do not exactly interact at the filament

centroid, emphasis is also given to decentered obscurants. To understand better the

rebuilding process, we compare fluence patterns of noisy Gaussian beams with results

from the time-averaged model (see Section 4.2.1) in the presence of an obscurant.

Second, we investigate the influence of atmospheric humidity on the filamentation

patterns created by TW laser beams over 10 m propagation scales. The dense fog

dissipates quasi-linearly the energy in the beam envelope and diminishes the number

of filaments in proportion. This number is strongly dependent on the power content

of the beam. Power per unit filament is evaluated to about 5 critical powers for

self-focusing in air. Numerical computations confirm that a dense fog composed of

micrometric droplets acts like a linear dissipator of the wave envelope.
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4.3.1. Single filament-droplet interaction

To start with, we perform several numerical simulations integrating Equations (2.53)

with and without the interaction of the pulsed beam with a droplet. The input pulse

is Gaussian, both in space and time, and perturbed by an 1 % amplitude random

noise. Its initial waist w0, half-width duration tp and energy Ein are 0.5 mm, 100

fs (FWHM duration = 120 fs) and 4.2 mJ, respectively. So, the input beam power

is equal to 10 Pcr with Pcr = λ2
0/2πnbn2 ' 3 GW at λ0 = 800 nm. The droplet

is modelled by a circular amplitude mask, M ≡ 1 −
√

1− (r′/rd)2, where rd and r′

are the droplet radius and relative coordinate in the transverse plane. Opacity is

maximum (zero transmission) at the center (x0, y0) of the obstacle. Its microscopic

thickness ≤ 100µm keeps the wave-field unchanged over comparable distances along z.

We assume that photons scattered at large angles (e.g., backscattered) by the droplet

are of negligible influence in the replenishment process.

Preliminary computations using the above parameters showed that the filament

fully forms in free-propagation regime with a diameter (FWHM of the fluence dis-

tribution) of ∼ 160 µm at z = 0.39 m. It carries ∼ 38 % of the input energy (this

agrees with observations reported in [30]), while the remaining amount of energy is

situated outwards the filament core. The round droplet (M) is then introduced on the

filament path at z ∼ 0.4 m. Figure 4.19 shows snapshots of the fluence F ≡ ∫ |E|2dt

for different droplet sizes (50 µm ≤ diameter ≤ 95 µm) placed at various locations in

the (x, y) plane. From top to bottom, Row I illustrates the interaction of the beam

with a centered droplet (x0 = y0 = 0) of 50 µm diameter. The filament core hits

the droplet, refocuses at center and completely reforms within 2 cm only. In Row

II, the filament robustness is tested with a larger droplet having 95 µm in diameter

and shifted in space by 25 µm (x0 = +25 µm, y0 = 0). No significant difference with

the previous case appears, apart from an asymmetric refilling of the hole formed by

the droplet. Figure 4.20 Row I details the corresponding intensity distributions in the

(x, t) plane (y = 0). The ”scar” introduced out of center by the droplet mainly affects

the most intense time slices of the pulse. However, power is rapidly re-injected by the

untouched parts of these slices to the ”empty” regions of the filament. After an inter-

mediate motion of back and forth, the symmetry around the axis x = 0 is restored at

z = 0.42 m, i.e., the filament has been refilled. This refilling concerns temporal peaks

located near x = 0, inside a contour ≤ 200 µm in diameter only. A symmetric refilling

was also observed at the same distance for a centered 95 µm diameter droplet. Figure

4.20 Row II specifies the temporal profiles at z ' 0.42 m for various configurations. At

this distance, the spatio-temporal structure of the filament is recovered, which signals
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Figure 4.19.: Row I: Fluence distribution in the (x, y) plane of a fs filament hitting a
50 µm diameter centered droplet at z = 0.393 m; Row II: Fluence of the
same filament hitting a decentered 95 µm large droplet.

its complete replenishment.

To get a deeper insight into the key-process involved in the pulse reshaping, we

describe the same interactions through our time-averaged (2D+1)-dimensional model,

achieved by a straightforward averaging in time of Equations (2.53) (see Section 4.2.1).

We have seen that in the absence of MPA (ν = 0), Equation (4.7) admits stable soliton

solutions, ψ = φ(x, y) exp(iΛz) with power Ps(Λ) =
∫

φ2d~r, resulting from the balance

between the Kerr (cubic) nonlinearity and the nonlinear saturation related to the MPI

defocusing source. Once MPA is introduced (ν 6= 0), the soliton power decreases very

fast during the early stages of ionization, but it slowly relaxes to ∼ Pcr at a maximal

distance (zMPA ≤ 0.5 m). In the light of these features, we model the filament at

z = 0.39 m by a soliton profile with an effective power Ps ' 7 Pcr, which is close to the

power engaged in the focused time slice at the filament front (see Figure 4.20), and let

it propagate in the presence of centered 50 µm and decentered 95 µm large droplets.

Figure 4.21 illustrates the resulting interactions: The pulse reshaping follows the same

transversal dynamics as in Figure 4.19 and the replenishment process takes place over

analogous longitudinal intervals. The initial soliton hits the obscurant, which removes

part of its power. The remaining ring has a power above critical and simply self-

reshapes into another soliton with lower power at center. Spatial solitons preserve their

initial centroid, so that the nonlinear attractor gathers the ring structure at x = y = 0

into a new solitary wave. Since this modeling reproduces the collision dynamics, we
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Figure 4.20.: Row I: Spatio-temporal distributions corresponding to Figure 4.19 Row
II; Row II: Pulse intensity versus (x, t) at the distance z = 0.422 m for
a centered 95 µm large droplet, a centered 50 µm large droplet and a
free-of-obscurant filament (from left to right).

may evaluate the maximum radius of the droplet, rdmax, above which the rebuilding of

the filament ceases. By assuming Gaussian solitons with power Pfil and waist wfil, the

power integral remaining below critical in the radial domain rd ≤ r < +∞ provides

the estimate rdmax = wfil

√
0.5 ln (Pfil/Pcr). We verified numerically with Pfil = 7Pcr

that a replenishment generating stable solitons ceased for droplet sizes larger than

150− 180µm, which agrees with this estimate.

In the pioneering experimental work [30], the authors attribute the robustness of

the femtosecond filaments to a surrounding ”photon bath”. By ”photon bath”, they

mean low-intensity components outside the core region which serve as an energy reser-

voir and compensate for the losses due to the interaction with the obscurant. It is

important to observe that, by using pure solitons in the time averaged model, there is

neither a ”photon bath”, nor a radiative component propagating with the filament in

a collimated way and thus interacting with it. So, our previous result indicates that a

”photon bath” is not needed to rebuild the beam. On the other hand, experiments per-

formed in [32] show that a filament vanishes within ∼ 10 cm after propagating through

an aperture, which cuts the surrounding low-intensity components. This shows that

the low-intensity components are important for the long-range propagation. So how

to clear up this contradiction? Both processes, self-healing of the scar introduced by

the droplet and stalling of the filament by an aperture act on different z-scales. The
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Figure 4.21.: Row I: Intensity distribution versus (x, y) of a soliton solution of Equation
(3) conveying 7 critical powers and hitting a 50 µm diameter centered
droplet; Row II: Same soliton hitting a decentered 95 µm large obscurant.

latter one is a direct consequence of the spatial replenishment mechanism: defocused

time-slices are cut by the aperture, they can not (re-)focus and maintain the plasma

channel at distant z-positions. The effect is visible on z-scales of the spatial replenish-

ment mechanism ∼ 10 cm. The first process, the self-healing of the filament, acts on

z-scales ∼ 1 cm. It is much faster than the spatial replenishment mechanism, because

energy is redistributed in the core-region ∼ 300 µm only.

To confirm this property, we plotted the variations of energy along z for several

configurations, both in the entire simulation box [Figure 4.22(a)] and inside a circular

contour of 300 µm enclosing the filament core [Figure 4.22(b)]. In Figure 4.22(a), an

energy drop of ∆E/Ein < 7% occurs after the impact for the 95 µm large spatially-

shifted droplet. This small energy loss also characterizes the interaction with a centered

95 µm large droplet, even though the major part of the filament is blocked by the

obscurant. Figure 4.22(a) supports the comparison with experimental decreases of

energy (see Figure 4.22(c)), measured upon one meter after the impact point. One

can identify a first slow energy loss over ∼ 20 cm. This stage is then followed by

a sharper decrease and ends by the final dissipation of the filament. Figure 4.22(b)

details inner energy losses. Just after the interaction point, the energy in the filament

continues to be evacuated outwards from the core region over more than 10 cm of

propagation. If the surrounding ”photon bath” was involved in the refilling process,

we should instead observe a flux of energy inwards to the core region. The hump caused

by a sudden energy growth at z ∼ 0.65 m differs from the pulse re-filling and can be

81



4. High-intense femtosecond pulsed beams in air

Figure 4.22.: (a) Energy versus z integrated throughout the entire simulation box for
a 95 µm large spatially-shifted droplet (solid curve), for a 95 µm large
centered droplet (dash-dotted curve) and for free propagation (dashed
curve). (b) Energy variations computed over a disk of 300 µm in diam-
eter enclosing the filament core. Arrow indicates the impact point. (c)
Experimental results taken from [30]. The filament survives the interac-
tion with a droplet (at z = 1 m) as large as 95 mm (2), even when the
droplets are stained with black ink (3).

explained by the dynamic spatial replenishment mechanism (see previous paragraph).

In free-propagation regime, when the back of the pulse takes over its front part, some

intense pulse components are shifted outside the axis x = y = 0 [34, 73] [S7]. Energy

is later reinjected into the filament core when these time slices refocus at center (see

Figure 4.23). These ”convected” components belong to the filament itself (see also [32]).

With an obscurant, the same phenomenon affects the pulse in identical proportions,

far behind the impact point.

Finally, we find it instructive to comment on the plasma channels excited by ioniza-

tion of air molecules. These are illustrated in Figure 4.24 for an electron density level

of 5×1015 cm−3, in regimes of free propagation [Figure 4.24(a)] and for the interaction

with the 95 µm large, decentered droplet [Figure 4.24(b)]. When the pulse propagates

freely, a first channel emerges over ∆z ' 0.5 m from the primary defocusing of the

back of the pulse, which produces a short leading peak. At z = 0.6 − 0.7 m, plasma

generation partly turns off and a trailing peak increases to the detriment of the front

pulse. This prolongates the plasma channel after a transient stage where azimuthal

instabilities develop [S7] and induce ”snake-like” motions along the optical path. In

Figure 4.24(b), the plasma channel is cut at the interaction point z ' 0.4 m, but it

rapidly restarts from the short-scale refilling of the pulse. Up to residual modulations,

it follows the same dynamics as in Figure 4.24(a) and covers an almost identical range.

In this section, we have numerically analyzed the interaction between femtosecond

filaments with obscurants exhibiting different sizes and locations in the diffraction

plane. For opacities up to 2/3 of the filament diameter, the energy loss caused by
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Figure 4.23.: Temporal profiles showing the displacement and re-focusing at center of
the filament trail at z ' 0.65 m for free propagation.

the interaction was limited to 10 % of the input energy, and the replenishment of the

filament is accomplished over a few cm along the propagation axis. This replenishment

process is mainly driven by the dynamics of spatial solitons in saturable, dissipative

media and takes place upon short longitudinal scales. The ”self-healing” of the fila-

ment follows from the relaxation of a high-power focused state to a lower-power one

undergoing Kerr re-compression. The surrounding energy reservoir formed outside the

filament core was proven to play a minor role in this mechanism.

4.3.2. Multifilamentation transmission through fog

In this last section we will present some recent results on the transmission of multiple

filaments through a water cloud, which will be detailed in [S16]. The experiments

were conducted with the Teramobile laser system, allowing for outdoor experiments

under any weather condition. The Teramobile beam was propagated horizontally at

the sea level (Lyon, 170 m altitude). After 40 m of free propagation, it hit a synthetic

fog of water droplets produced in an open cloud chamber, depicted in [74]. The initial

laser chirp was adjusted, so that filamentation began shortly before the beam enters

the cloud. This corresponds to an initial pulse duration of 600 fs. Then, the filaments

propagated over 10 meters through a quasi homogeneous cloud. The cloud density

was estimated by measuring the elastic transmission of a low-power He:Ne laser. Its

droplet size distribution was centered at 1 µm radius (i.e., much smaller than the

filament size), as monitored by using an optical sizer (Grimm model G 1-108).

In a series of experiments, the beam profiles at the exit of the cloud chamber

were recorded, both in the free propagation regime and with the synthetic cloud.

Two different input laser energies, 220 mJ and 90 mJ, were used, the beam waist was

about 2 cm. Filaments were clearly transmitted through the 10 m long cloud with 50%
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Figure 4.24.: Plasma strings created by ionization and computed from Equations
(2.53) in the cases of (a) free propagation and (b) impact with a 95
µm diameter decentered droplet.

transmission. This transmission corresponds to an extinction coefficient ε = 0.07 m−1,

i.e., to a droplet density of N = 2.2× 104 cm−3. Thus, filamentation can survive the

propagation in a fog. However, since much larger droplets are not sufficient to block

the filaments (see previous section), the filaments are not destroyed by the cloud. The

cloud’s influence on the beam propagation can be expected to occur through the energy

losses escaping from the overall beam envelope only. The transmitted beam power Ptr

strongly influences the spatial distribution of filaments, and especially their number.

The number of filaments decreases accordingly with the power left at the output of

the cloud chamber. This shows that the cloud globally acts like a power attenuator

on the beam as a whole: It promotes elastic extinction of the ”photon bath” and its
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4. High-intense femtosecond pulsed beams in air

Pin/Pcr 120 60 50
Propagation Free Fog Free Free Fog

Ptr/Pcr (exp) 120 60 - 50 25
# of Filaments (exp) 24 13 - 11 6

Ptr/Pcr (num) 120 60 60 50 25
# of Filaments (num) 25 12-15 13 12 6

Table 4.1.: Filament number versus input beam power after 50 m of propagation,
thereof 10 m in free or foggy atmospheres.

embedded filaments.

Another argument which supports the identification of droplet induced losses with

linear dissipation is the following: Assuming that droplets are completely opaque, the

rate of losses caused by the obstacles along one small z-step ∆z can be evaluated

by NπR2∆z, where N is the droplet density and R the droplet radius. Besides, the

equivalent loss rate induced by the extinction coefficient ε is ε∆z, since exp (−ε∆z) '
1 − ε∆z. Identifying both contributions leads to ε = NπR2. This result agrees with

the experimental estimates for ε, N and R given above.

The power dependency of the number of filaments was investigated both experi-

mentally and numerically. As far as numerics are concerned, we used the time-averaged

model [Equation (4.7)]. The linear dissipation was introduced by an additional term

−(ε/2)ψ on the right hand side. As input condition, we used a digitized file of the

experimental input beam fluence with centrimetric waist. Results have been summa-

rized in Table 4.3.2. Assuming weak absorption caused by plasma generation [S6], the

beam power transmitted over 50 m of free propagation is almost constant, whereas that

crossing the cloud chamber upon the same propagation distance can be estimated by

Ptr ' Pin/2. A linear fit shows a ratio of one filament cell for every 15 GW of transmit-

ted power. With Pcr ' 3 GW, this curve clearly indicates that about 5 critical powers

are engaged in each filament, regardless of whether the beam propagates through a

cloud or not. This estimate is in reasonably good agreement with previous theoretical

expectations: It lies between the theoretical expectations applying to purely Kerr me-

dia (Pfil ∼ 3Pcr) [27] and (3D+1)-dimensional simulations of femtosecond filaments

self-channeling in air (Pfil ∼ 7Pcr) [S12].
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5. Conclusion and further prospects

In this thesis we have discussed nonlinear light propagation in waveguides and homo-

geneous transparent media, namely the atmosphere. As far as the propagation in a

waveguide is concerned, we worked in two different regimes. First we considered the

low power limit, where nonlinear effects are small and the trapping is linear (Section

3.1). Here we presented a sufficient stability criterion for weakly nonlinear bound

states (weakly nonlinear guided waves). The simple knowledge of the eigenvalues as-

sociated with the linear modes of the potential V (refractive index distribution) allows

us to predict the stability of the nonlinear bound states of the extended NLS equation

(3.1). In spite of the fact that the criterion is valid for low power solitons only, the

example of a step-potential shows that the present results may hold for wider ranges

of power, both for focusing and defocusing nonlinearities.

Second, in the high power regime we showed that the waveguide can significantly

increase the threshold power for catastrophic self-focusing (Section 3.2). Even for

powers above the upper bound of the homogeneous case a stable propagation was

observed. The explanation for the increase of the threshold power is that the additional

interaction of the field with the waveguide disturbs the initial stage of self-focusing,

and power is shed away and lost for the self-focusing mechanism.

The universality of the system under consideration, NLS equation with additional

potential, offers a good perspective for further investigations and applications. As

pointed out before, besides nonlinear optics the model also applies to Bose-Einstein

condensates (BECs). The most apparent question is whether our sufficient stability

criterion is a necessary one, too. At least our numerical results support this assump-

tion. A further step would be to examine the decay dynamics of higher order solitons

in non-rotationally symmetric potentials. It is still an open issue if they decay always

into the ground state solution (as observed in our numerical examples), or if a decay

into radiative modes only is possible. Moreover, allowing for a third transverse di-

mension (time) the wide field of ”light bullets” is encountered. Here first interesting

results dealing with stable 3D solitons in optical lattices are reported [75,76].

In Chapter 4 we have investigated the multiple filamentation of infrared femtosec-
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ond pulses in air, engaging high powers, both in nonfocused and focused geometries.

Although intermittence of filaments affects the pulse dynamics, turbulent cells can

converge towards long-range envelopes. These sustain the propagation over long dis-

tances while keeping an intensity close to the ionization threshold. To understand

this behavior, we elaborated on a time-averaged 2D model [Equation (4.7)] describ-

ing the spatial dynamics of fs pulsed beams, even when they undergo a delayed Kerr

response. First, we thoroughly discussed the major properties of this reduced model

by specifying both conservative and dissipative fundamental soliton-like solutions and

their mutual interaction regimes. A noticeable enhancement of the propagation range

through fusion processes combined with MPA was evidenced. Second, we tested this

model over a few meters for ultrashort mm-waisted pulses. By fixing the effective pulse

temporal extent T to 1/10 of the input duration in ionization regimes, results from

this simplified model were observed to reasonably agree with the transverse patterns

of (3D+1)-dimensional pulses. For narrow beams (w0 = 1 mm) and weak powers

(≤ 40 Pcr), two filaments form and merge into one central lobe. For broader beams

(w0 = 2 mm) up to 90 Pcr, several filaments propagate almost independently of their

neighbors. The physical length of each asymptotic filament is of the same order (≤ 1

m) in both configurations. This result is important, since Equation (4.7) provides

an easy model to be integrated, which can be useful for estimating the number and

position of filamentary channels created by high-power fs pulses.

Next, we experimentally investigated multifilamentation of collimated beams de-

livered by the Teramobile laser, for powers up to 3-4 TW. Experimental patterns were

then simulated by means of the previous 2D reduced equation, using a digitized file of

the input beam fluence as initial data. Along distances limited to 100 m, long-range

filaments were observed to be initiated by the most intense fluctuations of the input

beam and those may persist over several tens of meters. From these ”optical pillars”,

small-scale spots arise and recur rapidly at other locations in the diffraction pattern,

in agreement with the scenario of ”optically-turbulent light guides” proposed in [11].

The long-living primary filaments, as well as unstable randomly-nucleated ones, can

be described by the 2D model, which reproduces the qualitative and quantitative be-

haviors in the filamentation patterns. Direct confrontations of experimental results

and numerical simulations revealed the existence of active optical zones keeping the

beam collimated over considerable distances.

Further on, focused beams were investigated over several tens of meters along a

complete propagation sequence. By optical coalescence, reduction of the beam waist

in linearly focused geometry allowed to form very long light channels over almost 10

meters, by gathering all filamentary components into a limited number of light strings.
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These strings, although longer than one elementary filament and keeping the same

direction, were numerically revealed to still develop from intermittent cells remaining

localized in the same region of the diffraction plane. This observation thereby confirms

the concept of ”optical pillars” supporting the long propagation of quasi-continuous

light tubes.

Finally, we have numerically analyzed the interaction between femtosecond fila-

ments with obscurants exhibiting different sizes and locations in the diffraction plane.

For opacities up to 2/3 of the filament diameter, the energy loss caused by the interac-

tion was limited to 10 % of the input energy, and the replenishment of the filament is

accomplished over a few cm along the propagation axis. This replenishment process is

mainly driven by the dynamics of spatial solitons in saturable, dissipative media and

takes place upon short longitudinal scales. The ”self-healing” of the filament follows

from the relaxation of a high-power focused state to a lower-power one undergoing

Kerr re-compression. The surrounding energy reservoir formed outside the filament

core was proven to play a minor role in this mechanism.

Due to the overall subject of this thesis, namely nonlinear dynamics of trapped

beams, we concentrated on the spatial dynamics of the femtosecond pulsed beams.

However, temporal dynamics are important and far from being trivial. One important

question is the influence of an initial chirp on femtosecond pulsed beam propagating

in air. Pulse chirping introduces a quadratic temporal dependence in the pulsed beam

phase at the laser exit. Combined with the group-velocity dispersion (GVD) in air,

negatively chirped pulses with a duration tp and phase in the form exp(−iCt2/t2p)

C < 0 undergo a compression in time. In linear regime, the minimum temporal extent

tmin
p = tp/

√
1 + C2 is achieved at the propagation distance zmin = |C|t2p/2k′′(1 +

C2) [53]. This property, combined with plasma defocusing, can be used to trigger

filamentation at different foci. Hence, negative chirps can be used for enhancement of

the self-channeling length. Applying this property to Lidar experimental setups [72],

chirping the pulse from 100 to 600 fs (C ∼ −5.92) can re-trigger filamentation at zmin

reaching the kilometer range. Combining pulse chirping with plasma defocusing also

results in a tunable pulse shortening, whose characteristic distances could easily be

accessed in further experiments [S15].

Another issue disregarded in this thesis is the supercontinuum generation by fem-

tosecond filaments. Temporal variations experienced by the pulse produce a very

broad spectral continuum, spanning from UV to IR wavelengths. Coherence is pre-

served between the different spectral components, so that the broadened pulse is often

referred to as a ”white light laser” [77]. Part of this supercontinuum leaks out from

the beam as a narrow cone in the forward direction, called ”conical emission” [18,78],
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with typical half-angle of ∼ 0.12◦ at 500 nm. Most experimental and theoretical inves-

tigations using femtosecond Ti:Sa laser sources (800 nm) reported spectral broadening

extending from 4.5 µm to an UV cut-off around 350 nm [79]. However, it was demon-

strated that another emission peak around 265 nm arises from an additional process:

Third Harmonic Generation [80–82]. Coupling between the pump field and the third

harmonics develops an important spectral broadening in the wavelength domain 200

nm ≤ λ ≤ 500 nm, which favors supercontinuum generation (two-colored filament).

This spectral dynamics is identical over meter-range scales as well as over ∼ 100 m

and beyond [S17]. The fact that long-range Lidar propagation (Teramobile laser) and

laboratory-scaled experiments exhibit comparable supercontinuum generation can be

explained by generic dynamics of a single filament. A broad beam undergoing mul-

tiple filamentation consists of many independent filaments with a typical length of

∼ 1 m [83]. In a way, the Lidar experiment is the incoherent superposition of ∼ 100

laboratory single filament experiments [S18]. Moreover, the two-colored filament is

stabilized by third harmonic generation, whose principal effect on the IR pulse dynam-

ics is to introduce a quintic, defocusing nonlinearity at large wave-vector mismatch

values. This extra defocusing contribution arises as a saturating nonlinearity, which

lowers the maximum intensity threshold reached by the fundamental component and,

thereby, enhances the self-guiding range by an efficient decrease of the MPA damping

of the filament [S19]. The question of knowing whether χ(5) saturation is important

or not was raised in several recent papers (see, e.g., [84–86], where quintic saturation

were suggested to influence the propagation dynamics. However, no precise evalua-

tion of the quintic coefficient was given, as no specific measurement of higher-order

nonlinearities for oxygen molecules at 800 nm was realized up to now.

When it comes to temporal dynamics, especially supercontinuum generation and

pulse shortening, higher order terms with respect to the temporal dynamics become

important [Equation (2.52) should replace Equation (2.53a)]. The inclusion of the op-

erators T̂ and T̂−1 accounts for self steepening and space-time focusing [41]. Moreover,

higher order dispersion terms may become no longer negligible. Additional efforts in

the modeling are necessary, which may go far beyond the slowly varying envelope

approximation [87].

To end with, nonlinear light propagation in homogeneous material is not restricted

to the atmosphere. Similar effects like self-guided filamentation, plasma generation

etc. were observed in fused silica [12, 88]. These processes usually originate from

the early self-focusing of the beam, which causes an important growth of the laser

intensity. Depending on the respective weights of dispersion versus the input peak

power, the beam collapse can be halted by either chromatic dispersion [89, 90] or by
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plasma generation [66]. Whereas attention was mostly paid on femtosecond pulses

undergoing normal GVD, much fewer studies were devoted to the influence of anoma-

lous GVD. From the mathematical point of view, the possibility of creating ”light

bullets” in (2D+1)-dimensional media, stabilized by higher-order dispersion without

plasma generation, was reported in [91]. For a cubic nonlinearity, fourth-order disper-

sion is able to regularize the wave blow-up for 1D spatial diffraction and anomalous

GVD. This property, however, does not hold in (3D+1) dimensions, for which collapse

still occurs [91]. From the experimental point of view, only one paper recently dealt

with this fascinating dynamics [88]. Here, 50-fs pulses were focused into a BK7 glass

sample at different laser wavelengths leading to normal or anomalous GVD. With nor-

mal GVD, the pulse developed short, multiple self-focusing events, guiding the beam

within one Rayleigh length only. In contrast, with anomalous GVD, collapse events

appeared over many Rayleigh lengths, giving rise to a long ”segment” of light fol-

lowed by shorter focusing/defocusing cycles at high enough powers. Anomalous GVD

maintains the self-channeling of ultrashort pulses by continuously reinjecting energy

into the self-focusing region, owing to the temporal compression that characterizes a

3D collapse. This dynamics, proposed in [88], has been confirmed by recent numer-

ical simulations [S20]. It is possible to determine analytically the zones in the plane

(2z0/LD, Pin/Pcr), where the collapse is strictly forbidden and where it triggers plasma

generation. Moreover, the beam is clamped upon long distances at its peak saturation

intensity, because the pulse temporal components are continuously compressed and

shifted to the back of the pulse through self-steepening and third-order dispersion.

This evolution favors the quasi-periodic formation of narrow, self-compressed cells of

light, which typical duration can reach the optical cycle limit [S21]. This property

could open new trends to produce few-cycle laser pulses.
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A. Mathematical details

A.1. Components of unstable modes have equal norm

We prove the relation =λ
∫ (|δU1|2 − |δU2|2

)
RdR = 0 [Equation (3.13)].

=λ

∫ (|δU1|2 − |δU2|2
)
RdR (A.1)

=
1

2i

∫
{[δU∗

1 i(=λ)δU1 − c.c.]− [δU∗
2 i(=λ)δU2 − c.c.]}RdR

=
1

2i

∫ {[
δU∗

1

(
D̂M+m − β −<λ + 2σU2

)
δU1 + δU∗

1 σU2δU2 − c.c.
]

−
[
δU∗

2

(
−D̂M−m + β −<λ− 2σU2

)
δU2 − δU∗

2 σU2δU1 − c.c.
]}

RdR

=
1

2i

∫ {[
δU∗

1

1

R

∂

∂R

(
R

∂

∂R

)
δU1 + δU∗

1 σU2δU2 − c.c.

]

+

[
δU∗

2

1

R

∂

∂R

(
R

∂

∂R

)
δU2 + δU∗

2 σU2δU1 − c.c.

]}
RdR

where we used Equation (3.7a) and the fact that the quantities <λ, β, V , σU2 and

M2/R2 are real-valued. In the above equation, it is easy to see that

[
δU∗

1 σU2δU2 − c.c.
]
+

[
δU∗

2 σU2δU1 − c.c.
]

= 0, (A.2)

which leaves us with the task to show that

∫ [
f ∗

∂

∂R

(
R

∂

∂R

)
f − f

∂

∂R

(
R

∂

∂R

)
f ∗

]
dR = 0, (A.3)

where either f = δU1 or f = δU2. Since limR→∞ f, ∂Rf = 0, integration by parts in

both terms immediately shows the desired result.

Similar integral relations were previously established in [47], in order to prove that

a resonance of two localized eigenmodes produce soliton instability in the context of

the parametrically driven NLS equation.
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A. Mathematical details

A.2. Power integral and Hamiltonian are constants of

motion

We show that Power integral [Equation (3.24)] and Hamiltonian [Equation (3.36)] are

conserved for solutions of Equation (3.35). In the case V ≡ 0 the same follows for the

pure NLS equation [Equation 3.23]. With Equation (3.35) and integration by parts

we see

∂

∂Z
P =

∫ (
Ψ∗ ∂

∂Z
Ψ + c.c.

)
dXdY (A.4)

=

∫ [
iΨ∗

(
∂2

∂X2
+

∂2

∂Y 2

)
Ψ + i |Ψ|4 − iV |Ψ|2 + c.c.

]
dXdY

= −
∫ (

i

∣∣∣∣
∂Ψ

∂X

∣∣∣∣
2

+ i

∣∣∣∣
∂Ψ

∂Y

∣∣∣∣
2

+ c.c.

)
dXdY = 0

and

∂

∂Z
HV =

∫ {[
∂Ψ∗

∂X

∂

∂X
+

∂Ψ∗

∂Y

∂

∂Y
+

(
V − |Ψ|2) Ψ∗

]
∂

∂Z
Ψ + c.c.

}
dXdY (A.5)

=

∫ {
i
∂Ψ∗

∂X

(
∂2

∂X2
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∂2

∂Y 2

)
∂Ψ

∂X
+ i
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2
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}
= 0.

A.3. Computing the virial

We show that Equation (3.41) is valid. In the case V ≡ 0 Equation (3.34) follows for

the pure NLS equation [Equation 3.23]. With Equations (3.35), (3.36) and integration

ii



A. Mathematical details

by parts we see

∂2S

∂Z2
=

∂

∂Z

∫ [(
X2 + Y 2

)
Ψ∗ ∂

∂Z
Ψ + c.c.

]
dXdY (A.6)

=
∂

∂Z

∫ [
i
(
X2 + Y 2

)
Ψ∗

(
∂2

∂X2
+
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∂Y 2
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Ψ + c.c.

]
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=
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i
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∂X
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= 2

∫ [
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2
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2
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1

2
|Ψ|2

(
X

∂

∂X
+ Y

∂
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) (|Ψ|2 − 2V
)

−1

2
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(
2 + X

∂
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+ Y

∂

∂Y

)
|Ψ|2 + c.c.
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= 8HV − 4

∫
|Ψ|2
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2V +
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∂
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∂

∂Y
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V
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dXdY.

A.4. Spectral problem for soliton stability against

non-isotropic perturbations

We briefly sketch the spectral equations for the ground state stability versus non-

isotropic perturbations with azimuthal number m. According to the standard pro-

cedure for linear stability analysis we introduce a small perturbation δφ on the real

valued soliton shape φ. We plug A = (φ + δφ) exp (iΛZ) into Equation (4.8) and

linearize it with respect to the perturbation. The resulting evolution equation for the

perturbative mode δφ is then given by

∂

∂Z
δφ = i∆⊥δφ− iΛδφ + i2φ2δφ + iφ2δφ∗ − i(K + 1)φ2Kδφ− iKφ2Kδφ∗. (A.7)

In order to separate azimuthal eigenfunctions of the transverse Laplacian, we transform

Equation (A.7) from Cartesian (X,Y ) to polar (R, Θ) coordinates. With the ansatz

δφ(R, Θ, Z) = δφ1(R) exp (imΘ + iλZ) + δφ∗2(R) exp (−imΘ− iλ∗Z), the eigenvalue
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problem is then derived under the form:

(
L̂11 L̂12

L̂21 L̂22

)(
δφ1

δφ2

)
= λ

(
δφ1

δφ2

)
, (A.8)

where δφ1 and δφ2 are independent complex functions, L̂11 = −L̂22 = ∆⊥−Λ+2φ2−
(K + 1)φ2K and L̂12 = −L̂21 = φ2 −Kφ2K .

Figure 4.6(d) in Section 4.2.1.2 shows the eigenvalues λ of the discrete (localized)

perturbation modes (δφ1, δφ2) of Equation (A.8), numerically identified for different

values of m. All modes have zero growth rate (Imλ = 0), which implies linear stability.
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B. Numerical details

In this Appendix we shortly discuss some specifications related to our numerical codes.

Here we restrict ourselves to the codes used in Chapter 4, solving Equations (2.53)

[respectively (4.7)]. The codes used in Chapter 3 are either using library routines, or

can be seen as a simple modification of the (2D+1)-dimensional time-averaged code

(Section B.1.1). Moreover, the numerical problems of Chapter 3 can be solved straight

forward with sequential algorithms.

In contrast, the simulation of pulsed-beam propagation in air is very challenging

from the technical point of view, and requires massively parallel computations. Sim-

ulations were realized on the COMPAQ alpha cluster (TERA) at the Commissariat à

l’Énergie Atomique, Direction des Applications Militaires (CEA/DAM) in Bruyères-

le-Châtel, France and on the IBM p690 cluster (JUMP) at the Forschungszentrum

Jülich, Germany. Up to 128 processors were employed for runs consuming several ten

thousands of CPU hours. In spite of these substantial capacities, (3D+1)-dimensional

simulations of broad (cm-waisted) pulsed beams over several tens of meters could not

be properly achieved in reasonable times yet.

All codes are written in Fortran90 and parallelized for distributed memory archi-

tecture by using the MPI (Message Passing Interface) library. Fast Fourier Transfor-

mations (FFTs) are performed by routines of the FFTW library, version 3.

B.1. Numerical schemes for pulsed-beam propagation

in air

A split-step scheme was employed for solving Equations (2.53) in radial symmetry

(B.1.2), fully transversely resolved (B.1.3), and Equation (4.7) (B.1.1). The basic idea

of the split-step (or operator splitting) scheme is the following: We have an initial

value problem
∂

∂z
ψ = L̂ψ, (B.1)
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B. Numerical details

where L̂ is some operator. Our aim is an updating scheme to advance ψ from z to

z + ∆z, which we can formally write as

ψ(z + ∆z) = e
RL̂dzψ(z), (B.2)

where
∫

denotes
∫ z+∆z

z
. We suppose that L̂ can be written as a sum of m pieces

L̂ = L̂1 + L̂2 + · · ·+ L̂m, (B.3)

and we know an updating scheme for ψ from z to z + ∆z for each piece, valid if that

piece of the operator were the only one. Then, the straight forward split-step scheme

is

ψ(z + ∆z) = e
RL̂1dze

RL̂2dz . . . e
RL̂mdzψ(z), (B.4)

and again
∫

denotes
∫ z+∆z

z
. Since in general the pieces

∫L̂idz do not commute, there

is much to say about advancing the scheme by changing the order of the updating

schemes exp(
∫L̂idz) [31, 92]. However, in this short overview we restrict ourselves to

the basic concepts and do not go into details.

A crucial thing for all codes is controlling the increment along the z axis ∆z

adaptively. Both in Equation (2.53a) and in Equation (4.7) we split the operator

L̂ into the linear part L̂lin, containing diffraction resp. dispersion terms, and the

nonlinear part L̂nl containing all other terms. We see that L̂lin is independent of z.

Thus, here a constant step-size, determined by the transverse discretization, should

be sufficient. In contrast, the nonlinear operator L̂nl is strongly dependent on z, and

therefore decisive for the adaptive step-size control. Let us show the principles by

means of the simple example

∂

∂z
ψ = i

∂2

∂t2
ψ + i |ψ|2 ψ. (B.5)

Then we have L̂lin = i∂2
t and L̂nl = i |ψ|2. We have three constraints for ∆z: The

two advancing schemes exp(
∫L̂lindz) and exp(

∫L̂nldz) have to work, and ∆z has to

be small enough for our split-step scheme. The linear step can be achieved exact in

Fourier space exp(
∫L̂lindz) = FFT−1 exp(−iω2∆z)FFT. Thus, no limitation for ∆z

from this scheme. For the nonlinear step we have to compute
∫|ψ|2dz ≈ |ψ|2∆z, the

relative error of this approximation is ∼ |ψ|4∆z2. In order to control this relative

error, we opt for c2 < |ψ|2∆z < c1. The constant c1 guarantees a small enough error,

and c2 < c1 a preferably large step-size. The split-step scheme requires to control the

size of ‖Î−exp(
∫L̂lindz)‖ ∼ ∆z/∆t2 and ‖Î−exp(

∫L̂nldz)‖ ∼ |ψ|2∆z, where ∆t is the
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B. Numerical details

increment of the transverse coordinate t. Hence, we have to introduce a third constant

c3 > ∆z/∆t2. Because ∆t is constant during the whole run, c3 determines a second

upper limit for ∆z independent from |ψ|2. It turned out that c1 = 0.01, c2 = c1/2.5 and

c3 = 1 give reasonable results, provided that the transverse discretization is sufficient.

B.1.1. (2D+1)-dimensional time-averaged code

The code integrating the (2D+1)-dimensional time-averaged [Equation (4.7)] model is

the most simple one. The operator L̂ is split into

L̂lin =
i

2k0

(
∂2

∂x2
+

∂2

∂y2

)
,

L̂nl = iαk0n2|ψ|2 − iγ|ψ|2K − β(K)

2
√

K
|ψ|2K−2.

L̂lin is treated in Fourier space and L̂nl by multiplying with exp(
∫L̂nldz). The integral

is solved approximatively, in the easiest case we can take
∫ z+∆z

z
L̂nldz ≈ L̂nl(z)∆z.

Since the FFT’s require periodic boundary conditions, a transparent box is not possi-

ble. Nevertheless, a few (∼ 16) absorbing layers give reasonable results, provided that

the intensities of the fields leaving the box are small.

The parallelization of the scheme is straightforward. We split the nx × ny array,

which contains the discretized complex field ψ(x, y), in stripes along y. If we use p

processors (both nx and ny should be multiples of p), proc number 0 stores ψ(xi, yj),

i = 1, . . . , nx, j = 1, . . . , ny/p, proc number 1 stores ψ(xi, yj), i = 1, . . . , nx, j =

ny/p+1, . . . , 2ny/p and so on. The multiplication with exp(
∫L̂nldz) can be performed

on each proc independently. Also the multiplication with exp(−i(k2
x + k2

y)∆z) in

Fourier space is local. The crucial thing is the parallel two dimensional FFT, which

is composed of nx + ny one dimensional ones. In order to perform a one dimensional

FFT effectively, all relevant data should rest on a single proc. Hence, we first perform

ny FFT’s with respect to x, i.e., ny/p transformations on each proc. After that, we

transpose the array, in order to split the array in stripes along x and to perform

the FFT’s with respect to y. Then proc number 0 stores ψ̂(kyj, kxi), j = 1, . . . , ny,

i = 1, . . . , nx/p, proc number 1 stores ψ̂(kyj, kxi), j = 1, . . . , ny, i = nx/p+1, . . . , 2nx/p

and so on.

Let us have a closer look at the necessary transposition of the array aij. For two

processors (p = 2) this is very easy. In a first step, both procs transpose the sub-array,

which will remain on the same proc. For proc number 0 it is aij, i = 1, . . . , nx/2, j =

1, . . . , ny/2, and for proc number 1 it is aij, i = nx/2+1, . . . , nx, j = ny/2+1, . . . , ny.
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Figure B.1.: Effective send-receive scheme for transposing a 2D array for two, four and
eight processors. Each column represents the memory of one proc. The
figures in the caskets represent the number of the exchange step.

In a second step, both procs exchange the two remaining fourths and transpose them.

The first subfigure in Figure B.1 shows this procedure schematically. For even numbers

of processors p it should always be possible to find a transposing scheme, where all

procs do exactly the same amount of work and are busy all the time. E.g., for p = 4

four steps are necessary. First, the sub-arrays along the diagonal are transposed.

Second, proc 0 and 1 (resp. 2 and 3) exchange and transpose sub-arrays. Third, proc

0 and 2 (resp. 1 and 3) perform the exchange and last but not least proc 0 and 3

(resp. 1 and 2). Figure B.1 shows this scheme diagrammatically, as well as one for

p = 8.

B.1.2. Radial code

The radial code solves Equations (2.53) in radial symmetry, that means the transverse

coordinates x and y are replaced by r =
√

x2 + y2. We split the operator of Equation

(2.53a) into

L̂lin1 =
i

2k0r

∂

∂r

(
r

∂

∂r

)
, L̂lin2 = −ik′′

∂2

∂t2
,

L̂nl = ik0n2

∫
R(t− t′) |E(t′)|2 dt′ − i

k0

2ρc

ρe − σ

2
ρe − β(K)

2
|E|2K−2,

where we treat L̂lin1 with a Crank-Nicholson scheme (see Ref. [92]), L̂lin2 in Fourier

space and L̂nl by multiplying with exp(
∫L̂nldz). The integral is solved approximatively,

as in the (2D+1)-dimensional time-averaged code. To perform the time integration

for the delayed Kerr response and the electron density [Equation (2.53c)] a simple
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B. Numerical details

Euler scheme (see Ref. [92]) works, provided that the time resolution is sufficiently

fine. The boundaries of the numerical box are absorbing ones in t, and transparent

ones in r [93]. The parallelization scheme of the (2D+1)-dimensional time-averaged

code can be adopted straight forward, but more effective schemes are possible.

B.1.3. (3D+1)-dimensional code

The (3D+1)-dimensional code solves Equations (2.53) as they are. We split the oper-

ator into

L̂lin =
i

2k0

(
∂2

∂x2
+

∂2

∂y2

)
− ik′′

∂2

∂t2
,

L̂nl = ik0n2

∫
R(t− t′) |E(t′)|2 dt′ − i

k0

2ρc

ρe − σ

2
ρe − β(K)

2
|E|2K−2,

where we treat L̂lin in Fourier space and L̂nl by multiplying with exp(
∫L̂nldz). The

integral is solved as in the radial code. The boundaries of the numerical box are

absorbing ones in x, y and t. The parallelization scheme is the same than that of the

(2D+1)-dimensional time-averaged code. We simply have to substitute one element of

the two dimensional array by a vector with nt elements. The one dimensional FFT’s

with respect to t can be performed before the transposition.

B.2. Complementary numerical aspects

One of the sharpest constraints met in 3D numerical computing is to solve accurately

individual plasma channels, whose typical size reaches a few tens of microns only. In

this regard, we find it instructive to show plots of under-resolved filamentary patterns

corresponding to Figure 4.10(b) and Figure 4.14 (see Figures B.2 and B.3). In this

latter case, the input beam amplitude has been multiplied by a perturbed temporal

Gaussian profile. The (3D+1)-dimensional simulations were performed with spatial

steps limited to ∼ 100µm along the x and y directions. Under-resolution leads to

an artificial increase of the number of small-scale cells, caused by the coarse plasma

response that cannot hold a robust channel. Energy is dissipated outwards, which

contributes to increase wrongly the number of light cells. The filaments finally spread

out too early, compared with the experimental data and with the results yielded by

the 2D model [Equation (4.7)], integrated with much higher spatial resolution.
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Figure B.2.: Under-resolved (3D+1) numerical results with spatial step-size ∆x =
∆y ' 100µm for the multiple filamentation patterns shown in Figure
4.10(b)

Figure B.3.: Under-resolved (3D+1) numerical results with spatial step-size ∆x =
∆y ' 100µm for the multiple filamentation patterns shown in Figure
4.14
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C. Symbols and conventions

Î unity operator

=A imaginary part of A

<A real part of A

∂x partial differentiation with respect to x

∇ Nabla operator ∇ = ∂x~ex + ∂y~ey + ∂z~ez

~ex unit vector in x direction

~r position vector ~r = x~ex + y~ey + z~ez

∆ Laplace operator ∆ = ∂2
x + ∂2

y + ∂2
z

∆⊥ transverse Laplace operator ∆⊥ = ∂2
x + ∂2

y

δij Kronecker δij =

{
1, if i = j

0, if i 6= j

δ(x) δ-distribution δ(x) =

{
∞, if x = 0

0, if x 6= 0
,
∫

δ(x)dx = 1

ε0 vacuum susceptibility ε0 = 8.854187817× 10−12 As/Vm

ε(ω) relative susceptibility

λ0 vacuum wavelength λ0 = 2πc/ω0

µ0 vacuum permeability µ0 = 4π × 10−7 Vs/Am

Θ(x) Heavyside function Θ(x) =

{
1, if x ≥ 0

0, if x < 0

ω frequency

ω0 center frequency

BEC Bose-Einstein condensate

c velocity of light in vacuum c = 299792458 m/s

FFT Fast Fourier Transformation

FWHM Full Width Half Maximum

GVD Group Velocity Dispersion

k0 wavenumber in the material k0 = ω0n(ω0)/c

k′ reciprocal group velocity k′ = 1/vg = ∂ωk(ω)|ω0

k′′ group velocity dispersion coefficient k′′ = ∂2
ωk(ω)|ω0
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C. Symbols and conventions

k(ω) dispersion relation k(ω) = ωn(ω)/c

LD dispersion length for a Gaussian pulse LD = t2p/|k′′|
MPI Multi Photon Ionization

MPA Multi Photon Absorption

Lidar Light detection and ranging

n linear refractive index n(ω) =
√
<ε(ω)

nb refractive index of the background material at ω0

n2 Kerr coefficient

NLS Nonlinear Schrödinger Equation

Pcr critical power for collapse Pcr = λ2
0/2πnbn2

SVEA Slowly Varying Envelope Approximation

tp pulse duration

vg group velocity

w0 beam waist

z0 Rayleigh length z0 = nbπw2
0/λ0
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Zusammenfassung

Die vorliegende Arbeit befasst sich mit der nichtlinearen Propagation von Licht in

schwach führenden Wellenleitern und in der Atmosphäre. Dabei steht die räumliche

Dynamik der zu untersuchenden nichtlinearen Objekte im Vordergrund. Bei der Lich-

tausbreitung im Wellenleiter werden zwei unterschiedliche Regime betrachtet. Im

Bereich kleiner Leistungen sind die zu erwartenden nichtlinearen Effekte klein, die

Lichtführung ist rein linear. Wir leiten ein hinreichendes Kriterium für die Stabilität

schwach nichtlinearer Wellenleitermoden ab. Hier ermöglicht bereits die Kenntnis der

Propagationskonstanten der einzelnen linearen Wellenleitermoden eine Vorraussage.

Obwohl das Kriterium nur für sehr kleine Leistungen gültig ist, zeigt das numerische

Beispiel einer Standardfaser gute Übereinstimmung auch für höhere Leistungen. Im

Bereich hoher Leistungen zeigen wir, dass der Wellenleiter die kritische Leistung für

Kollaps signifikant erhöhen kann. Für Eingangsleistungen deutlich über der kritischen

Leistung des homogenen Mediums kann eine stabile Propagation beobachtet werden.

Die Erklärung für die Erhöhung der kritischen Leistung ist, dass die Wechselwirkung

zwischen Feld und Wellenleiter die Selbstfokussierungsdynamik derart stört, das mehr

Leistung abgestrahlt wird und für den Selbstfokussierungsmechanismus nicht mehr zur

Verfügung steht.

Der zweite Teil der Arbeit beschäftigt sich mit der Ausbreitung hochintensiver ul-

trakurzer Laserpulse in der Atmosphäre, insbesondere mit multipler Filamentierung.

Wir zeigen, dass mehrere Filamente langreichweitige Cluster ausbilden können. Zum

besseren Verständnis der zugrundeliegenden transversalen Dynamik wird eine zeitlich

gemitteltes Modell abgeleitet. In diesem Modell ist es möglich, die Filamente mit

solitären Lösungen zu identifizieren. Simulationen des zeitlich gemittelten Modells

werden mit voll zeitaufgelösten Simulationen und experimentellen Resultaten erfol-

greich verglichen. Schlussendlich wird die Interaktion von Filamenten mit Partikeln,

z. B. Wassertröpfchen, betrachtet. Es zeigt sich, dass Tröpfchen bis zu 2/3 des Fi-

lamentdurchmessers kein Hindernis darstellen. Wir erklären diese bemerkenswerte

Selbstheilung im zuvor entwickelten Solitonenbild.
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