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A Framework for Validation of Rule-Based Systems
Rainer Knauf, Avelino J. Gonzalez, and Thomas Abel

Abstract—This paper describes a complete methodology for the
validation of rule-based expert systems. This methodology is pre-
sented as a five-step process that has two central themes: 1) to
create a minimal set of test inputs that adequately cover the do-
main represented in the knowledge base and 2) a Turing Test-like
methodology that evaluates the system’s responses to the test in-
puts and compares them to the responses of human experts.

The development of minimal set of test inputs takes into con-
sideration various criteria, both user-defined, and domain-specific.
These criteria are used to reduce the potentially very large set of
test inputs to one that is practical, keeping in mind the nature and
purpose of the developed system.

The Turing Test-like evaluation methodology makes use of only
one panel of experts to both evaluate each set of test cases and com-
pare the results with those of the expert system, as well as with
those of the other experts. The hypothesis being presented here is
that much can be learned about the experts themselves by having
them anonymously evaluate each other’s responses to the same test
inputs. Thus, we are better able to determine the validity of an ex-
pert system.

Depending on its purpose, we introduce various ways to express
validity as well as a technique to use the validity assessment for the
refinement of the rule base.

Lastly, the paper describes a partial implementation of the test
input minimalization process on a small but nontrivial expert
system. The effectiveness of the technique was evaluated by
seeding errors into the expert system, generating the appropiate
set of test inputs and determining whether the errors could be
detected by the suggested methodology.

Index Terms—Expert system validation, rule-based systems, test
case validation.

I. INTRODUCTION

T HERE is abundant evidence of the need for an integrated
approach toward validation and verification of complex

systems (cf. [8]) ranging from mathematically well-based
formal approaches ([4]) and approaches that also use formal
approaches but that are more driven by practical considerations
[27] to high-level philosophical and psychological approaches
focusing on human factor issues [23]. Newer trends in research
are focused on technologies to accompany the system devel-
opment by an integrated validation and verification (V&V)
concept of all aspects at the different stages of development
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and implementation, starting at the high-level design and
going down to the operational details [16] and on adapting
technologies of database integrity checking to V&V of rule
bases [9]. In [25], there is an overview on various directions of
actual research in V&V of knowledge-based systems.

Boehm [5] as well as O’Keefe and O’Leary [22] developed
a very intuitive approach that characterizesverification and
validation asbuilding the system rightandbuilding the right
system, respectively. Both are considered a part of a general
evaluation strategy (see [17] or [21]). This perspective is
adapted here. Verification is basically the test of whether or not
a system follows its (formal) specification. The present paper is
focused on the validation issue and provides a methodology to
get evidence that a given system really does what it should do in
the eyes of experts and users. This methodology is constructed
for a frequently used kind of rule-based systems. The rules
are based HORN-Logic with single propositional expressions
as their then-part and conjunctions of expressions in their
if-part, which can be either single propositional expressions or
comparsion expressions with attributes and values.

In [26], the authors clearly point out that “the inability to ade-
quately evaluate systems may become the limiting factor in our
ability to employ systems that our technology and knowledge
will allow us to design.”

There has been one quite comprehensive approach to the val-
idation of knowledge-based systems described in the literature.
This is the ESPRIT-II project VALID during 1989–1992, as sur-
veyed in [20]. This project’s goal was to undertake a comprehen-
sive approach to the problem of Validation for existing knowl-
edge-based systems (KBS). In order to do so, several methods
for different validation issues were created and different expert
systems were considered. The project’s main result was a val-
idation environment in which different expert systems can be
validated. To relate this to our present endeavour, we need to
make more explicit the validation concept that underlies the
mentioned project.

Two points are important to relate our present work to the
project mentioned. First, VALID makes enormously strict as-
sumptions about the object to be validated. The high degree of
assumed formal knowledge is nicely illustrated in [18], where
a Petri net approach is invoked for validation within VALID .
Second, after the completion of VALID , it has been recognized
that there is still a flaw in testing methodologies: “It seems that
testing is a mandatory step in the KBS validation. However,
no substantiated testing methodology for KBS is available and
often knowledge engineers are guideless in the testing phase”
[20]. This paper is a contibution to bridge this gap.

The core objective of validation and verification (V&V) of an
intelligent system is actually very simple: to ensure that, when
provided with a legal set of inputs, the system will produce an
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answer, solution, or behavior that is equivalent to that provided
by the best human experts.

For a large knowledge-based system, providing this assurance
can be a daunting task that may require a significant effort on the
part of the development team. However, its importance is such
that it clearly deserves such a serious treatment, as an invalid
expert system can at best lead to loss of credibility by the users
and, at worst, to disastrous results.

We concentrate on the validation portion of the V&V
problem, as that is the one more closely related to ensuring
appropriate response to inputs. In general, the validation
process can be considered to be part of a larger process of
system improvement. So, our philosophy is that validation
should not only provide a statement of validity, but also serve
as the mechanism for finding the invalid parts of the system
and how to repair them.

The best possible means to predict the validity of a system is
to subject it to actual conditions for an arbitrary period of time.
It is hoped that during this time the system would be subjected
to all potential situations and its performance could be measured
from the correctness of its response to these. However, this begs
two questions: 1) How can it be assured that the system will in
fact see all potential sets of inputs to which it may reasonably
have to respond and 2) how can it be easily and definitively
determined that the responses are correct? Our work attempts
to answer these questions and here we present an approach to
validating intelligent systems effectively as well as efficiently.

The heart of the presented methodology is a TURING test–like
systematic interrogation of the system being validated.

Buchanan and Shortliffe [6] describe a Turing test approach
in their evaluation of MYCIN that shares some commonalities
with our technique. While comprehensive in nature, they do not
attempt to generalize it to serve for all knowledge-based sys-
tems. Our approach formalizes the technique as much as feasible
and the result is a generic, albeit conceptual, one to be usable by
many types of knowledge-based systems. The main differences
between Buchanan’s Turing test and the one suggested here are
as follows. 1) They use two separate panels of different experts,
respectively for the test case solving session and for the session
that rates the “goodness” of the solutions. Our approach uses
only one. 2) They do not formally consider the fact that the ex-
pert’s competences may vary within the different experts as well
as within the different test cases; our approach does.

Our procedure results in a near-complete automation of the
validation process. Complete automation, in our opinion, will
remain an elusive goal because of the need to employ expert
validators.

A. Steps in the Proposed Validation Process

The process of intelligent system validation can be said to be
composed of the following related steps [15].

1) Test case generation:Generate and optimize a set of test
input combinations (test data) that will simulate the inputs
to be seen by the system in actual operation. We refer to
the pairs [TestData, ExpectedOutput] as test cases. There
are two competing requirements in this step: 1)coverage

of all combinations of inputs that are possible, thus ex-
panding the number of test cases to ensure completeness
in coverage and 2)efficiencyminimizing the number of
test cases to make the process practical. A workable com-
promise between these constraints is central to our pro-
posed technique.

2) Test case experimentation:Since intelligent systems
emulate human expertise, it is clear that human opinion
needs to be considered when evaluating the correctness
of the system’s response. But human experts can vary
in their competence, their own self-image and their bias
for or against automation. Thus, it is important that an
efficient method exist to fairly evaluate the correctness
of the system’s outputs given imperfect human expertise.
This step, therefore, consists of exercising the resulting
set of test data (from step 1) by the intelligent system as
well as by the one or more validating experts in order to
obtain and document the responses to each test data by
the various sources.

3) Evaluation:This step interprets the results of the exper-
imentation step and determines errors attributed to the
system and reports it in an informal way.

4) Validity assessment:This step analyzes the results re-
ported above and reaches conclusions about the validity
of the system.

5) System refinement:In order to improve the final system,
this step provides guidance on how to correct the errors
detected in the system as a result of the previous four
steps. This, hopefully, leads to an improved system.

These steps are iterative in nature, where the process can be
conducted again after the improvements have been made. Fig. 1
illustrates the steps outlined.

The methodology to implement these steps and its application
to a frequently used kind of rule-based systems will be described
in the following sections. A detailed description of all steps as
well as the research behind this work can be found in [16].

II. GENERATION OFTEST CASES

One standard that does exist, however impractical it may be
in most cases, is the exhaustive testing of the knowledge-based
system. That is, generate a set of test cases which covers all con-
tingencies possible in the operation of the system. For systems
which have more than a few inputs, the combinations of values
of these inputs can be prohibitively large, thus making exhaus-
tive testing quite impractical [10]. Nevertheless, it is not neces-
sary in most cases to have a truly exhaustive set of test cases and
yet still be able to test the system in afunctionally exhaustive
fashion. As stated by Chandrasekaran [7], the test cases should
reflect the problems to be seen by the system.

A functionally exhaustiveset of test cases can be made con-
siderably smaller than anaively exhaustiveset by eliminating
functionally equivalent input values and combinations of input
values which subsume other values. Nevertheless, even this
functionally exhaustive set is usually too large for practical
purposes. Thus, there is a need for further reduction. Of course,
one has to pay for it with a loss of functional exhaustivity.
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Fig. 1. Steps in the proposed validation process.

A reasonable way to reduce the functional exhaustive set of
test cases is to usevalidation criteria, which can be domain-,
input-, output-, expert-, validator-, or user-related in nature.
These criteria are useful in determining atest sufficiency level
for each test case of the functional exhaustive set. This test
sufficiency level can be used as an indicator for the decision
whether or not a given test case is really needed from a practical
standpoint.

Due mainly to simplification reasons, but also because of
its practical relevance, we consider rule-based systems with an
input of an -dimensional “input space,” in which each di-
mension is “atomic,” i.e., not compound in any way and an
output of a set of possible output values.

The main test case generation idea described here is 1) to
generate a “quasi exhaustive” set of test cases ( ) [3],
[12] and 2) to define some validation criteria and to use them
for a reduction of down to a “reasonable” set of test
cases ( ) as described in [1].

A. Generation of Potential Test Cases

A frequently used kind of rule-based system, at least
for classification problems, uses HORN clauses of the kind

. is
usually a single expression of the propositional calculus and
the set of attributes forms the input space of the system.

Data Description: Formally, the rules can be described as
follows.

• is a set of variables designating
the input sensor dataand ranging between and
with a “normal value” .

•
1 is a set of singleexpressionsabout sensor

data.
• is a set of outputs (final conclu-

sions).
• is a set ofintermediate con-

clusions.
• 2

is a set ofrules in which

1) right-hand-sideright designates theif-part of a rule;
2) left-hand-sideleft designates thethen-part of a rule.

1< is the set of real numbers.
2M expressesM [ (M �M) [ (M �M �M) � � � = M

Fig. 2. Regions of influence for a two-input problem.

The input of the system is formed by a set of points of
the -dimensional input space:

. The output of the system is the set
of final conclusions, i.e., . A test case is a pair [ ]
with the test data and an associated
solution .

A region of influenceis one (or several) convex subspace(s) of
formed by the intersection of the projection of the values of the

sensors which have a direct effect on a particular final conclu-
sion ( ). Thus, values of the related sensors, which as a group
fall within this region, will be able to identify a particular final
conclusion. Fig. 2 shows the various regions of influence for a
two input problem. In fact, these regions are expressed by the
rules. Since an expert who expresses a rule does not necesarily
care for other rules, it may happen that these regions overlap
each other and/or that there are several different areas of the
input space that are mapped to the same final conclusion.

The lines demarcating the regions from other regions are
called theregion boundaries.

The “quasi-exhaustive” set of test cases has to meet
the following requirements.

1) For each there is at least one testcase in .
2) The test data should be able to reflect the boundary

conditions between different regions of influence.
3) The cardinality of should be as small as pos-

sible. does not consider the overlaps.
The fact that in case of overlaps one test case may serve for sev-
eral final conclusions is utilized in the concept of the reasonable
set of test cases (see next section).



284 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 32, NO. 3, JUNE 2002

The Approach:The process is based upon the following
ideas:

1) break down the range of an input into non–overlapping
subranges where its values are considered to be equivalent
in terms of its effects on the final conclusions;

2) compute an initial set of potential test databased upon
combinations of values within these subranges;

3) sort these data into several setsof data for each final
conclusion ;

4) filter each seperately by eliminating those test cases
within each that are subsumed by others.

This approach can be realized by the following steps.
Step 1: Computation of Dependency Sets:The first step is

to compute therule dependency sets and thesensor
dependency sets for each . only contains
rules and only contains variables on which
depends. This is easily carried out by tracing the rules backward
from the final conclusions to the sensor inputs.

Step 2: Computation of Critical- and-Values: A particular
value of variable is calledcritical, iff that value marks a dif-
ference in the effect of on one of its dependent final con-
clusions. Critical values are determined by inspection of the
rule left-hand sides, where values of are described in rela-
tion to either constants or other variables. If anis related to
another variable , then all the critical values of must be
considered also. All critical values of one variableform the
set of critical values . These critical values bound the sub-
ranges of functionally equivalent values for each variable and
they define the regions of influence. For example, for a rule

, the values 2.5 and 4 are ele-
ments of .

Next, we compute a -value for each .
These values will allow us to surround the boundaries of
the resulting regions of influence. Having all critical value
sets we establish a -value for each generated
from . This is because a small change in a sensor input
may distinguish two different final conclusions. One intuitive
approach for computing of each variable is to ensure
that is half of the smallest difference between any “pair
of critical values” that are members of . In case, for
example , the smallest difference is
0.4 and therefore . If , then is set
to the half of the smallest difference between any pairs of

.
Step 3: Computation of the Sets of Potential Test Case Values

(PTC-Values): The next step is to compute all sets
of all PTC-Valuesof which contribute

in any way to . This has to be done by searching through each
and . contains allPTC-Valuesof , which are in

any way responsible for . We have to look for each ,
whether is an element of or not and, if , whether
there is a relationship between and a fixed value or another

. There are three cases that have to be distinguished.

1)
In that case, does not contribute to and would

be empty. Because each variable of a test data has to be

assigned with a value, thePTC-Valueof is set to its
normal value: .

2) and is compared with at least one fixed value

In that case there are threePTC-Valuesfor each value
is compared with ,

and . These three values have to be
added to .3

3) and is compared with another variable
There are three possible subcases here.

a) If , then define threePTC-Valuesfor each
, namely ,

and , which have to be added to .4

b) If and there is a joint interval of and ,
namely between and , then create
a temporary set with (note that )

Those elements of that are between
and (inclusively) are added

to both and .
c) If and there is no joint interval of and

,5 then both sets and will be equal to
the set of their normal values: and

Step 4: The Set of All Potential Test Data:Having completed
the procedure to calculatePTC-Valuesfor all leads us to
sets .

will be the union of all test data that can be
created from each by computing the cross product of the
sets

Step 5: Minimizing the Set of All Potential Test Data:The
huge cardinality of 6 forces us to minimize the number of test
cases and to find the minimized set of functionally necessary

3If there are values being created which go beyond the borders ofs or s ,
then those values have to be substituted with the appropriate minimum or max-
imum value.

4Here, we do the same as above with values beyond the borders.
5In this case for each relation (<;�;=; 6=;�; >) and any value ofs ands

we are able to decide whether the expression being treated is true or false.
By the way, such cases indicate a mistake of knowledge acquisition, because
such expressions are always true or always false (not depending on the values
of the two sensor data variables). The expression can be removed in case of
always being true, resp. the whole rule can be removed in case of always being
false.

6Note that in the worst case, i.e., if allV has the same cardinalityc , the
cardinality of only oneM will be equal to themth power ofc ! Nevertheless,
if card(S ) � card(S) then the number of potential test data (card(P ))
decreases significantly.
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TABLE I
HANDLING OF SENSORDATA VARIABLES BEING IN DIFFERENTRELATIONS TO VALUES OR ANOTHER SENSORDATA VARIABLE

ones ( ). As described in more detail below, to reduce
the cardinality of we first sort into different sub-
sets and then we minimize all the subsets

separately, through which sets will be gen-
erated. is the union of each . represents the set
of negative test data for all final conclusions, i.e., those test data
that will not identify any final conclusion.

Step 5.1: Sorting Into Subsets : First we have to
sort all –tuples . Due to the necessity of keeping the
two parts of the test case (test dataand solution ) together,
we represent as an -tuple [ ], where each

contains those test data that are positive ones
for and contains all test data being negative for all

. In case a test case is positive for multiple, it belongs to
each of the associated . We have to check for each ,7

whether the system maps to a final conclusion. If any is
true, then will be an element of of positive test data for the
proof of , i.e., [ ] is a positive test case, otherwisewill be
an element of the set of negative test data.

Step 5.2: Minimizing All the Sets : The approach for min-
imizing each set individually (with the exception of ) con-
sists of the following steps.

1) Segregate the largest possible subset of –tuples
which differ in only one value (let’s say, ) from the
set . Thus, is a subset of the considered that
contains –tuples with identical values at positions
and different values at the remaining position.

7In former publications we checked only, whether a test datat 2 M maps
to the associated conclusionf . As a result of the evaluation of our technology
(see Section VI) we changed this strategy.
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Fig. 3. Generation ofQuEST .

Fig. 4. Criteria-based test case selection for XPS validation.

2) With this segregated subset , look through and
gather all expressions in which is compared to any
value or another variable . For each member of this
subset, the relations betweenand either or a con-
stant value must be one of the 12 cases shown on Table I.
The result is that all potential test data that do not match
any of the conditions described in Table I are removed
from that subset. Therefore, all potential test data that are
subsumed by other ones will be removed. The remaining
set is .

3) Let the new set be the minimized set:
.

4) Repeat this (go to step 1) with until no subset
is creatable from .

5) The minimized subset is the set computed in
step 3).

This procedure should be carried out for each of the sets.
In the end, the minimized set of test cases able to test the system
quasi exhaustively is the union of all sets, i.e.,

. To sum up and illustrate the technology of generating
; see Fig. 3.

B. Criteria-Based Strategy to Reduce a Set of Potential Test
Cases

This subsection describes a methodology to reduce the
quasiexhaustive set of test cases down to a “reason-
able” (in the sense of “manageable” by a validation technology)
set of test cases . The steps of developing out of

are illustrated in Fig. 4.
The basic concept is that certain criteria about the system or

associated factors influence the importance of each test case in
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the . After the relevant criteria have been identified,
they are ranked and rated. The ranking describes the quantitative
relations inbetween the particular criteria; the rating describes a
criterion’s influence on the investigated domain for the consid-
ered output. Based on the results of this process, a test inten-
sity level can be computed that forms the basis for reducing the
quasi–exhaustive set of test cases down to a “reason-
able” set of test cases . By removing those test cases that
are of less importance than a certain threshold, the suite of test
cases can be reduced significantly.

1) Criteria Identification: Abel developed a catalog of cri-
teria (cf. [1] and [2]), which should be considered in order to
answer the question of how important a certain test case is for
the system’s validity. This catalog contains conceptual criteria
and human criteria, which are motivated by the scenarios of de-
veloping, using and validating the system. Abel classifies the
criteria into two main groups:

a) Conceptual Criteria:

Domain Related Criteria (DRC) (criticality, complexity,
sensitivity, domain coverage, domain robustness, …),
Input Related Criteria (IRC) (criticality, sensitivity,
characteristics, …) and Output Related Criteria (ORC)
(probability, criticality, sensitivity, costs, robustness, …)

b) Human Criteria:

Expert Related Criteria (ERC) (competence, credibility,
availibility, …), Validator Related Criteria (VRC) (objec-
tivity, competence, independence, neutrality, …) and User
Related Criteria (URC) (acceptable level of performance,
maintainability, effectiveness, usability, …)

Identifying the relationships between a given criterion and
its influence on the Test Case Selection Stage is best done by
the user community, in collaboration with the development
team and the expert. The involved individuals must establish a
common ground about defining the criteria and how it should
be used in the validation of the system. We found this to be
beyond the scope of our work and leave it for future research.

2) Ranking and Rating:After indentifying the relevant cri-
teria out of this catalog, Abelet al. (cf. [1]) suggest aCriteria
Ranking as a first step toward the criteria-based reduction of
test cases. The criteria having a measurable influence on the do-
main have to be identified. For each criteria, a rank has to be
established by using a Criteria Assessment Scale. A rank ex-
presses a criterion’s importance related to the other ones.

3) Intensity Level Generation:The second step is aDomain
Assessment, which uses the ranked domain–related criteria
(DRC) as well as the output-related criteria (ORC). The result
of it is a Global Test Necessity Levelof the entire system and
a Local Test Necessity Levelfor each of the system’s outputs.
Here, all the assessible characteristics of the whole domain
and the different conclusions (outputs) have to be rated using
the ranked criteria. We propose the use of the same kind of
scale as for ranking and rating and a two–level–assessment: 1)
assess/rate the domain using the rankedDRC and determine
a Global Test Necessity Level and 2) assess/rate all
hypotheses separately using the ranked and determine a
Local Test Necessity Level for each final conclusion
(output) .

4) Test Case Selection:To answer the question of which of
the test cases have to be selected out of the quasi-exhaustive set
of test cases ( ) to become a member of the “reason-
able” set of test cases ( ), ABEL et al. suggest that aTest
Sufficiency Levelshould be determined for each of the mem-
bers of the . This can be performed by considering 1)
the input space of the system; 2) the dependency sets of the out-
puts and the critical values of each input dimension; and 3) the
regions of influence. By comparing this test sufficiency level
of each test data with the test necessity level of its solution (a
system’s output), it is determined whether or not a test case of
the should belong to the . Loosely speaking,
the more a test case 1) has relevant input data that is relevant
for other test cases as well; 2) has relevant input data that con-
tributes to outputs with high rated local test necessity level; 3)
has relevant input data within an important interval of its range;
and 4) is situated near a border of a region of influence, the more
this test case has a claim to become a member of . For
more detailed information about the quantitative considerations
of test case selection see [1].

5) Formal Description of the Steps Above:Let us define
( ) 1) assessible Domain Related
Criteria ; 2) assessible Output Related Criteria ;
3) one assessment scale having an odd quantity () of
ordered scale values ; 4) outputs (final
conclusions) , the domain “outputs;” 5) sensor variables

, is the domain’sSensor Set, the
domain “inputs;” 6) Sensor Dependency Sets, ( ,

is the set of all sensors depends on); 7) minimized
(quasi–exhaustive) sets , ( )
of positive test cases( contains well–selected test cases ([3])
implying ); 8) sets of critical values; and 9)
sets of potential test case values. The sets , ,

and were generated during the Test Case Generation
Stage as shown in Section II-A.

Assessing the Domain:Each criterion (resp. ) is
given a rank (resp. ) using the criteria assess-
ment scale . As a result of using the complete “ex-
pressivity” of the assessment scale, the highest of these ranks
should be . Since these values are normalized with respect
to their maximum value, it does not have to (but Should) be

. Having done this, there is a –tuple ofDRC—rankings
and a –tuple of

—rankings .
Global Test Necessity Level : All the rankedDRC

will be given criteria–dependent ratings . The difference
between a rating and a ranking is that the ranking describes the
proportions among the criteria, i.e., how important a criterion is
compared to the other ones, whereas the rating describes a crite-
rion’s influence on the investigated domain, i.e., how important
a criterion is with respect to the domain.

The weights of the domain criteria are
with . The Global Test Neces-

sity Level has to be normalized to the maximum weight
of all DRC, i.e., .

Local Test Necessity Levels : Having ranked all
ORC, the next step is to provide criteria–dependent ratings to all
outputs of the domain as well. A –tuple of ratings
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Fig. 5. Regions of influences with different test necessity levels.

with is generated for each
output .

These tuples can be represented as an [ ]–matrix

...
...

...
. . .

...

Each entry describes the rating of a criterion for the
output 8. The th ranked and summated row can be considered
as an output’s weight ,
which is a description of itsValidation Necessityas well. The
(normalized)Test Necessity Level of an output is

Assessing the Test Cases :The results of the preceding
“Ranking and Rating Sessions” are 1)oneGlobal Test Neces-
sity Level ( ) (2) distinctive Local Test
Necessity Levels ( ). These have to be
consulted in order to decide which test cases can be neglected
in the following test case evaluation stage, i.e., which test cases
are sufficient for system validation.

At first, a Test Sufficiency Level for each test case
has to be generated. Finally, will be fomed as

.
Computation of the Test Sufficiency Level for a Test Case

: The decision of which test cases are to remain in the
is influenced by the domain’s sensor dependency sets. Imagine
a two input problem, the outputs can be represented as areas,
regions of influence([3]), that are situated in the domain’s input
space delimited by the sensors’ value ranges (see Fig. 5).

The following obvious statements can intuitively be realized.

1) If a sensor belongs to more sensor dependency sets than
another sensor, then this one is possibly of a higher im-
portance for the validation process.

2) Sensors belonging to sensor dependency sets of higher
rated outputs are certainly more important than other sen-
sors.

8A summed row is an expression of the (local) importance of the concerned
output referring to the other ones. A summed column is an expression of the
(local) influence of the concerned criterion referring to the other ones. The
higher the sums the higher their importances (resp. influences).

3) There can be more or less important intervals of a sensor’s
value range.

4) The importance of a sensor value can be influenced by its
distance to the domain’s and/or sensor’s boundaries.

The degrees of “greyness” of the different outputs
( ) are descriptions of their importance ( ). The
regions of influences are commonly partly covered by others.
The darker distinctive areas in the input space are the more
important is the corresponding interval of the sensor’s value
range.

can be generated by 1) getting theweights of all sen-
sors using all and 2) getting theweights of all
sensor values originated during the Test Case Genera-
tion Stage using all and generating atest sufficiency level

by using and for each .
Computing is done based on first computing

with iff and
otherwise. The extreme cases of the equation above

are 1) no output depends on the value of the considered
sensor variable , i.e., and 2) all outputs de-
pend on the value of the considered sensor variable, i.e.,

. The normalized weight is, i.e.,
.

Computing can be done as9

with

iff
iff
iff
iff
iff

Here, the test necessity levels of the outputsare weighted
depending on to what degree the considered sensor datacon-
tributes to it.

1) In case it does not contribute at all, the weightis zero.
Otherwise, i.e., in case it contributes, this degree depends
on whether or not there are values ofin the (sub-)set of
potential test case values and the set of critical values

.
2) In case it has no particular value in either the potential test

case value (sub-)set or the set of critical values ,
it is set to one.

3) In case it has such a value in but not one in , it is
two.

4) In case it has such a value in but not one in , it is
three.

5) In case it has a value in both, it is four.

The normalized weight is related to the max-
imum weight of all sensor values of sensor (let
there be different values of ), i.e.,

.

9Thec andc values (1 … 4) are very intuitively chosen here based on the
authors’ experience. If the investigated application field of the expert system
allows other weights ofc (resp.c ), the factors can be adjusted.
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Fig. 6. Survey of the TURING test to estimate an AI system’s validity.

Computing : A test data is considered as an
-tuple of sensor values [3], which can be represented

as The weight of a test data is

TheTest Sufficiency Level of a test case is

Summary: A Test Necessity Levelvalue for each
output representing the necessity of a validation of output
is generated. In other words: How extensively do I have to in-
vestigate an output to get a credible validity statement?

A Test Sufficiency Levelvalue is generated for each
test data of the test cases in . This value, , ex-
presses the sufficiency offor a validation of a final conclusion.
In other words: Up to which level is a test case sufficient for a
validation of an output having a certain Test Necessity Level?10

To get a sufficient, but neverthelesscredible validity state-
ment for an output , it’s only necessary to check with test
cases having a that is lower or equal to . In other
words: During the Test Case Evaluation Stage we only need to
take into consideration test cases having a lower or equal Test
Sufficiency Level than the Test Necessity Level of a par-
ticular output, i.e., .

III. T URING TESTEXPERIMENTATION WITH TESTCASES

Here, we describe some ideas on developing a validity state-
ment based on a TURING test—like methodology with a “rea-
sonable” set of test cases .

10Note, that the Test Suficiency Level is 1—“normalized weight”, i.e., a low
level means a high sufficiency.

A. Proposed Technique—An Overview

The suggested methodology is quite similar in concept to the
TURING test. It involves the system to be validated, a panel of
experts and the set to produce 1) a test case associated
validity statement for each test dataand 2) a global validity
degree of the entire system.

The idea of the TURING test methodology, as illustrated in
Fig. 6, is divided into four steps: 1) solving of the test cases by
the panel as well as the system; 2) randomly mixing the test case
solutions and removing their authorship; 3) rating all (anony-
mous) test case solutions; and 4) evaluating the ratings.

B. Solving Test Cases

Solving test data sets by (human) experts
and the system leads to solved test cases
[ ] with the solution . is either a “real”
output or “unknown” by its provider: .
The output set is formed by all upcoming solutions:

.

C. Making the Solutions Anonymously

To ensure that the human experts not be aware of a solution’s
author (and especially which is the system’s solution and which
is their own), each one of thehuman experts gets the
upcomingsolved test caseswithout any information about the
authorship.

D. Rating the Solutions

With a rating and a certainty the ex-
perts express their opinion about the solution ( : “correct”,

: “incorrect”) and their confidence to be valid ( :
“sure,” : “unsure”). Additionally, they have the chance to
express a lack of competence by
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. Each rating is assigned to a solution of the expert
of a test data and an evalu-

ating (human) expert and has the certainty ,
i.e., the two subscripts of the considered solution are preceeded
by a subscript that indicates the rating expert.

E. Evaluating the Ratings

This procedure is done by thevalidity meter, which has
solved test casesand rated test case

solutions (each solved test case is rated byexperts). The
output of the evaluation procedure described here is a validity
degree for each test data .
The procedure is performed by calculating an average rating
of the system’s solution by the experts, each one weighted by
the considered expert’s competence foras well as by his/her
certainty. Additionally, it provides a global validity of the entire
system .

1) Estimating an Expert’s Competence:The first step to-
ward a validity statement is to estimate the competence of each
expert. We prefer to do that for each expert and for each test case
separately due to the fact that not all experts are equally com-
petent for a given test case and a certain expert’s competence
is not equal for all test cases. The competence estimation of an
expert for a test data is based on 1) his/her own evaluation
to be competent; 2) his/her certainty while rating other experts’
solutions; 3) his/her consistency in the solving and the rating
process;11 4) his/her stability;12 and 5) the other experts’ ratings
of his/her solution.

The competence estimation of an expertfor a test data
is based on …

1) …self-evaluation of competence, as indicated by giving
the solution and/or the rating

2) …his/her certainty while rating other experts’ so-
lutions, as indicated by the ratio between the
number of certain ratings and the number of ratings
altogether:

3) …his/her consistency in the solving and the rating
process, as indicated by the rating of the own solution:

;
4) …his/her stability, as indicated by the certainty of the own

solution’s rating:
5) …the other experts’ ratings of his/her solution,

as indicated by their average ratings, weighted
by their certainties:

.

There are three main sources of competence estimation: 1)
intentional reflection: self-estimation and certainty ( ,

); 2) nonintended reflection: consistency and stability

11Does he/she give his/her own solution good marks?
12Is he/she certain while rating his/her own solution?

( , ); and 3) external (foreign) competence
estimation ( ). These are taken into account equally as

2) Estimating the System’s Validity:Thus, the average
rating of the system’s solution by the experts, each one
weighted by the considered expert’s competence foras well
as by his/her certainty is

This is an estimation of the system’s validity for a test data.
The entire expert system’s validity can be estimated by

the average local validity for each test case:
. Depending on some domain- and user-related

validation criteria (see previous section) each system can be as-
sociated with a minimum validity , which is a threshold
value for the validity statement. That is, of course, the objec-
tive of this part of the research: The system is calledvalid, iff

andinvalid otherwise.

IV. EVALUATION AND VALIDITY ASSESSMENT

Depending on its purpose there are several ways to express a
system’s validity. Besides the two validity assessment that are
the result of the experimentation, there can be calculated at least
two other useful validity assessments. The four ways to express
validity that are considered useful by the authors are as follows.

1) Global (average) validity

.

2) Validities associated with outputs

3) Validities associated with rules

4) Validities associated with test data
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1) and 2) might be useful for (potential) system users and/or
managers, 3) for system developers, namely knowledge engi-
neers, and 4) is the basis of formal system refinement.

V. SYSTEM REFINEMENT

The basic idea to refine the system consists of finding the
“guilty” rules and systematically replacing them by “better
ones.” A rule is considered “guilty” if a conclusion that received
“bad marks” by the expert panel forms the conclusion-part
(then-part) of this rule. This is performed by the following
steps.

1) Finding guilty rules: Analyze which test cases used which
rules and which validity degree has been associated with
the system’s solution of these test cases. The “last” rule,
i.e., the rule which has exactly this solution in its then-
part, is called “guilty.” Generate an “optimal solution”
for each of these test cases, which is either the system’s
solution or a solution provided by a human expert.

2) Reduction of the set of guilty rules: Repair those guilty
rules that have the same optimal solution for all test cases
using this rule.

3) Replacing the if-part of the remaining guilty rules: Re-
pair the remaining guilty rules by a reduction system that
systematically constructs (one or more) new rule(s) as a
substitute for the guilty rule.

4) Recompiling the new rules and removing unused rules:
Recompile the upcoming substitutes by utilizing rules
that infer intermediate hypotheses. Remove unused rules.

Each of these steps is explained in the following subsections.

A. Finding Guilty Rules

All rules having a conclusion part which is a final solution
, are the subject of the following considerations.

1) There is a rule-associated validity for each of these rules
.

2) There is a set of test cases with test data
and all solution parts which came up in the experimenta-
tion by any

3) can be split into subsets
according to their different solution parts

.
4) Analogously to , a validity

of each solution can be com-
puted, but only based on the test cases of—can be
computed

5) The “optimal validity” of is the maximum of all
among the solutions occurring in . The

associated solution is the “optimal solution” of :
.

is an upper limit of the reachable rule-associated
validity of . If , there is a solu-
tion within which got better marks by the experts than
the system’s solution. Thus, if ,

is a guilty rule.

B. Reduction of the Set of Guilty Rules

If all test cases in that used a guilty rule have the same
optimal solution that was different from the system’s so-
lution, the conclusion-part of this rule has to be substituted by

.
is “optimal solution” to

if-part if-part

C. Replacing the If-Part of the Remaining Guilty Rules

1) of a guilty rule is split into subsets
according to the solution

for each that got the highest validity .
The new if-part(s) of the new rule(s) instead of a
remaining guilty rule are expressions of
a set of new alternative rules
for each and will be noted as a set of sets

.
The corresponding rule set of is

.
2) is the set of Positions (dimensions of the input

space), at which the arenot identical. The
generation of the if-parts is managed by aReduction
System, which is applied to Triples [ ] until

becomes the empty set.
3) The starting point of the reduction is [ ] with

.
are those positions, where all test data have
the same (identical) value and is the set of the
remaining positions:

.

Table II shows the reduction rules used to reconstruct the re-
maining guilty rules. The reduction system terminates if the sit-
uation [ ] is reached. A deeper discussion on the reduc-
tion technique can be found in [16].

D. Recompiling the New Rules and Removing the Unused
Rules

In case theif-part of a new rule contains a subset of expres-
sions that is theif-part of another rule having an intermediate
solution as thethen-part, this subset has to be replaced by the
corresponding intermediate solution

-part

-part -part - -

-part -part - -

-part - -
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TABLE II
REDUCTION RULES TO CONSTRUCTBETTER RULES SYSTEMATICALLY

Lastly, we remove those rules, which have an intermediate
hypothesis as thethen-part, which is not used in theif-part of
any rule

-part

-part - -

-part

VI. EVALUATION AND ANALYSIS OF THEMETHODOLOGY

We applied part of the above technique to a nontrivial expert
systems to determine its effectiveness as well as its usefulness.
More specifically, this exercise put into practice the concept of
the . We empirically evaluated the validity of our hy-
pothesis that the represents an equivalent, yet much
smaller, set of test cases to that of the exhaustive set (). We
studied how well the was able to identify seeded er-
rors in the knowledge base when test cases in the were

executed by the system under test and its response was judged
by experts.

For reasons of practicality, the small but robust expert
system chosen dealt with classification of bird types. Called
the Ornithologist, it represents a classification expert system.
The system is rule based and consists of 71 rules capable of
classifying 65 different types of birds, i.e., there are six rules
that infer intermediate results. The Ornithologist uses up to
14 different inputs, but it does not need all of them at all
times. Nevertheless, at least two inputs are always necessary to
identify a bird. A typical rule looks like this:

IF AND AND AND
AND

THEN American Black Duck, Anas
rubripes

Here, is an intermediate hypothesis and both
as well as are boolean inputs.
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The cardinality of the exhaustive set of test cases was theoret-
ically computed to be 35,108,736,000—a clearly unmanageable
number. This was computed as the combination of the system’s
14 inputs and their possible values. Most of the inputs were dis-
crete, each having two or three possible values, except for the
length of the bird. For this input, the continuous range was de-
composed into intervals of 0.10 inch. Alternatively, the
generated by our proposed technique resulted in 317 test cases,
a large but manageable number. Moreover, the number of test
cases in the set was determined to be an additional 1063.

Thirty-six errors were seeded in the expert system. In lieu of
having an expert, the original system was deemed to be valid
by definition and thus served as the “expert”. A seeded error
was said to be properly identified if the original (unchanged)
system provided a different answer from the modified system
when a test case that made use of the purposely modified rule
was presented to both systems. This discrepancy would cause
the knowledge engineer to investigate the rule which the test
cases tested and presumably find the error.

Of the 36 errors seeded, 26 were properly found. Ten errors
were not detected for various reasons. Nine of these ten would
have been detected if minor adjustments to the gen-
erating procedure had been made. Thus, these were considered
to be easily correctable errors in the procedure. The last unde-
tected error, however, brought to light a serious limitation that
could only be corrected by including the set of test cases
as part of the . Of course, this had the effect of in-
creasing the size of the from 317 to 1380 cases. While
significantly larger than before, it still represents a manageable
number, especially when the test for reasonableness is yet to be
done which will further reduce that number. Thus, the conclu-
sion was that with the inclusion of , we had high confidence
that the indeed represented the equivalent of the ex-
haustive set of test cases. For detailed information on the per-
formed experiments, refer to [19]; a more general analysis is
presented in [16].

A. Analysis of Technique

The problem of classification is a generalization of the
diagnosis problem, where the symptoms can be classified as
those observed when a specific type of malfunction occurs in
the system being monitored and/or diagnosed. In fact, some
of the ideas contained in this technique originally came about
from work by one of the authors in a diagnostic expert system
for large turbine generators [11].

In this section we extrapolate the results obtained and discuss
the amount of effort and cost involved in implementing this pro-
cedure in a full expert system development project. Again, the
estimates are based on the experiences of one of the authors in
the above-mentioned project.

This analysis focuses on the following issues: 1) applicability
of this technique to real-world expert systems; 2) effort involved
in applying this technique to the validation of a reasonably-sized
expert system; and 3) computational cost (complexity) of the
technique.

1) Applicability to Real World Expert Systems:We believe
that this technique could be used for most rule-based systems

employed in the real world. We define real-world expert sys-
tems as those either in use, or contemplated for use in solving
real problems. One main group of such systems and the one
on which we focus, represents those that deal with engineering
or other technical problem/opportunities. Examples of such are
diagnosis, classification, monitoring, control, design, analysis,
data filtering and others. These are systems for which rule-based
expert systems represent a viable problem-solving technique.

But there are some caveats. 1) The expert system must be
rule-based. 2) Since the test case generation technique is based
on the rule-base structure, it is necessary that the internal rule
structure of the expert system be made visible to the test per-
sonnel. 3) It is furthermore assumed that the system has already
been verified through acceptable means to ensure its consis-
tency, completeness and satisfaction of specifications. 4) The
specification must spell out the validation criteria in detail as
part of the specification. Lacking this, the may not be sig-
nificantly smaller than the , making the process much
more costly.

2) Cost of Implementing the Described Technique:Of
course, cost is an important consideration when testing any
type of system. In this section we analyze the probable costs,
making estimates based on the bird classification example
described above and our personal experiences in validating real
world diagnostic expert systems. We do not include the cost of
developing the tools that implement the techniques described.

We are assuming that the of 1380 test cases can
be further reduced by 75% to a Reasonable Set of Test cases
( ). This set would now be reduced to 345 test cases. While
still a nontrivial number, we feel that this number is quite con-
servative and based on the experience cited above, we believe
that it could even be reduced to 10% or less of the .

The costs involved would be broken down into the following.
1) The cost of each expert in responding to the test cases. 2)
The cost for a knowledge engineer to exercise the system with
the 345 cases. 3) The cost of each expert analyzing the cases/re-
sponses. 4) The cost of someone managing the test cases and
setting up the web site to facilitate testing. 5) The cost of a test
engineer compiling the results. These will be analyzed individ-
ually in the following.

The following quantitative considerations are based on the
authors’ personal experience of how long an expert needs to
solve a test case and review a given solution. For particular ap-
plications, these estimations may have to be modified to fit the
application domain.

For item 1, we estimate that each expert, if truly an expert,
will take no more than 5 min to do each test case. That implies
28.75 person-hours. Including breaks, distractions and all other
obstacles to concentration, we shall assume a person-week of
effort for each expert. Naturally, some test cases may take longer
than 5 min, but we think most of them will be answered almost
immediately, thus making this a conservative number.

Item 2: The time required for a knowledge engineer to exer-
cise the system should be minimal if the test cases are automat-
ically generated as suggested by our methodology. Continuing
our conservative trend, we shall assume one person-day of ef-
fort.
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For item 3, assuming a panel of three experts, there would
be 1380 test cases and responses to analyze by each of the ex-
perts. This number is obtained by multiplying the number of test
cases (345) by the number of responses provided for each one
(by the three experts plus the expert system). We assume that
the experts are working independently and there is no discus-
sion among them. The cases/responses could be accessed via
the web and the responses could also easily be handled in the
same manner. Given that the experts already have seen the test
cases and should be familiar with them, we assume 1 min for
each response. This equates to 23 h per expert. Once again, we
shall assume that interruptions, breaks etc. will result in a total
of one person-week for each expert.

Item 4 is fairly minimal, as this is quite mundane work done
by a technician. We assume one person-day to maintain our con-
servative philosophy.

Lastly, item 5, compilation of results would add another
person-day, assuming the availability of computerized tools
to analyze and manipulate the results. This task would also
include the knowledge engineer inspecting questionable results.

In summary, the effort spent by the panel of experts is 6
person-weeks and that of the knowledge engineer/technician is
three person-days. We assume a costing rate of $200 000 per
annum for the experts and $150 000 per annum for knowledge
engineer and technician. Assuming 250 working days per year
(50 weeks 5 days), it equates to $800 per day for each expert
($4000 per week) and $600 per day for KE/technician ($3000
per week).

The total, then, is estimated to be $25 800.
While the Ornithologist is not a large system, it is not a trivial

one. There are many systems in the real world that approximate
its size and complexity. Furthermore, the figures are quite con-
servative, from the time expended to the number of test cases
ultimately used.

3) Computational Complexity of System:A problem that
can become a limiting factor for the adoption of the proposed
methodology is its computational complexity. The most com-
plex of the components is that which generates the
and the . It turns out that the generation of
is a very complex issue, but this procedure is performed by
machines, i.e., without any human support. This it the price for
minimal work left to humans. We feel it is worth it to pay a
high machine complexity cost in order to have minimal work
left to humans.

Since the generaton of has been especially introduced
to limit the number of test cases for the experimentation, its
complexity is a function of the specified criteria and their
rating and ranking. This can be difficult to predict. However,
it can be as simple as linear if the criteria are independent
from each other, or as complex as quadratic if the criteria are
interdependent. These are considered tractable. The complexity
of , on the other hand, might be a real problem at first
sight. It depends exponentially on the number of inputs. The
exponent is determined by the type of the input. 1) Adding
a new input that has just two different values doubles the
number of test cases. 2) adding a new input that hasdifferent
(discrete) values multiplies the cardinality of by

. 3) adding an input with a continuous range of values, the

cardinality of will be muliplied by the number of its
critical values (see Section II).

On first view, there seems to be a way out of this dilemma by
dividing large knowledge bases into parts that are independent
from each other with respect to the inputs. Thus, we can com-
pute the s of these “sub-knowledge bases” separately.
By inspecting our generation procedure for , we found
out that this cannot lead to a limitation of the complexity, be-
cause this procedure already considers these dependencies und
uses them to minimize .

Nevertheless, even -complete problems can be solved in
a reasonable time if the is limited. Thus, segmentation (mod-
ularization) of the knowledge base can be used, not to reduce
the complexity of the algorithm, but rather, to reduce theof
the problem. Such a technique depends on a chunk of knowl-
edge being independent of other chunks. This technique was
also used successfully by Gonzalezet al. ([11]) to do a manual
generation of test cases.

Again, since can get very large we introduced the
concept of , which can be limited to any requested max-
imum number of test cases. Of course, the reliability of the up-
coming validity statements heavily depends on the coverage of
the domain with test cases, i.e., also on their number. Thus, one
has to find a reasonable compromise between a minimal number
of test cases and a most reliable resulting validity statement.

On one hand, generating test cases is the procedure with the
highest computational complexity, but on the other hand, it is
not the most expensive part of the methodology.

For performing the test case experimentation, it doesn’t
matter how long it takes to calculate -this is a proce-
dure that is performed automatically, i.e., without any human
support. It just needs computer ressources and we admit, this
can become a limitation. However, to hire human experts is
typically much more expensive than employing computer re-
sources. And the objective of the test case generation procedure
is to derive a test case set that is as small as possible to limit the
costs of the human resources.
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