
Towards Validation of Rule-Based Systems - The Loop is Closed *

Rainer Knauf and Ilka Philippow
Ilmenau Technical University, Faculty of Computer Science and Automation

PO Box 10 05 65, 98684 Ilmenau, Germany
rainer.knanf@theoInf.tu-ilmenau.de

Avelino J. Gonzalez Klaus P. Jantke
Dept. of Electrical and Computer Engineering German Research Center

University of Central Florida for Artificial Intelligence Ltd.
Orlando, FL 32816-2450, USA Stuhlsatzenhausweg 3, 66125 Saarbriicken, Germany

ajg~ece.engr.ucf.edu jantke@dfki.de

Abstract

A methodology for the validation of rule-based
expert systems is presented as a 5-step process
that has three central themes: (1) creation
a minimal set of test inputs that cover the do-
main, (2) a Turing Test-like methodology that
evaluates the system’s responses to the test in-
puts and compares it to the responses of human
experts, and (3) use the validation results for
system improvement.
This methodology can be performed in loops.
The starting point of each cycle is a rule base
and the loop ends up in a (hopefully) better
rule base.
The first three steps of this process have been
published as separate issues in earlier papers
by the authors. This paper gives an overview
on the entire process and describes the relation
between the steps and the system refinement
step. In this last step, the rules are modified
according to the results of evaluating the test
cases. The base of this rule base reconstructi-
on is both a "rule-associated validity" and the
existence of a "better rated~ human solution.

Introduction

There is abundant evidence of the need for an inte-
grated approach towards validation and verification of
complex systems. Actually, the lack of adequate tech-
nologies to evaluate these complex systems is a limiting
factor to employ them.

Here, we follow the approach of O’Keefe and O’Leary
(O’Keefe and O’Leary 1993) who characterize verifica-
tion and validation as building the system right, and
building the right system, respectively.

Verification provides a firm basis for the question
of whether or not a system meets its specification. In
contrast, validation asks whether or not a system is
considered to be the required one, something that so-
mehow lies in the eye of the beholder. We concentrate

*Copyright (~)2000, American Association for Artificial
Intelligence (www.aaaLorg). All rights reserved.

on the validation portion, as that is the one more clo-
sely related to ensuring appropriate response to inputs.

The heart of the presented methodology is a TURING
Test - like technology of a systematic system interroga-
tion, which is composed of the following related steps
(Knauf, Abel, Jantke, and Gonzalez 1998):

I. Test case generation Generate and optimize a set
of test input combinations (test data) that will si-
mulate the inputs to be seen by the system in actual
operation.

2. Test case experimentation Employ both the sy-
stem and human expertise to solve the test cases
and rate all upcoming solutions by the experts an-
onymously.

3. Evaluation Interpret the results of the experimen-
tation and determine validity assessments attribu-
ted to the test cases.

4. Validity assessment Analyze the results reported
above and express them according to the purpose
of the statement: (a) validities associated with out-
puts for expressing the validity to users, (b) validi-
ties associated with rules for expressing the validity
to system developers, namely knowledge engineers,
and (c) validities associated with test cases for sy-
stem refinement. Of course, the following (machine-
supported) system refinement uses (a) and (b)
well as (c).

5. System refinement Provide guidance on how to
correct the errors detected in the system as a result
of the previous 4 steps. This, hopefully, leads to an
improved system.

These steps are iterative in nature, where the process
can be conducted again after the improvements have
been made. Figure 1 illustrates these steps.

Fundamentals

The input-output behavior of a considered domain and
of the system to be validated can be formalized as an
input set I, and output set O, a target relation (the
wanted system’s behavior) 7~ C I × O, and a (real)

VERIFICATION, VALIDATION, & CERTIFICATION331

From: FLAIRS-00 Proceedings. Copyright ' 2000, AAAI (www.aaai.org). All rights reserved.

criteria [

i
kn°wledge [.....

~.
! I
L. knowledge

base

system
refinement

test case
generation

[validators [

solutions
perimentation ~) .’~

evaluation
validity

assessment report

rules

I system users

[knowledge engineers

Figure 1: Steps in the Proposed Validation Process

system’s behavior S C_ I x O. R is decomposable into
a finite number of convex subsets R° C_ I x {o}. There
is at least one 7~° for each output o E O.

In these formal settings the knowledge of a hu-
man expert ei can be expressed as Ei C_ I x O and
should meet consistency (£i C_ R) and completeness
(Tri,~p(Ci) = 7rinp(R)) with respect to 7~. Ideally, £i
meets omniscience (£i = T~). An expertise Ei is said
be competent, exactly if it is complete and consistent:

competence = consistency + completeness

Practically, because of not directly knowing R, we esti-
mate 7~ by [.Jin__l £i-

Based on these formalisms, we are now able to deve-
lop our validation scenario:

¯ There is assumed a (non-accessible) desired target
behavior 7~ C I x O.

¯ There is a team of n experts which is considered
to be omniscient as a team, although not necesarily
individually.

¯ There is a system to be validated with an in-
put/output relation S.

Our validation methodology deals with relating the sy-
stem’s behavior to the experts’ knowledge. A deeper
discussion of the fundamentals can be found in (Knanf,
Jantke, Gonzalez, and Philippow 1998).

Generation of Test Cases

The main test case generation approach is to generate
a "quasi exhaustive" set of test cases (QUEST) (Abel,
Knauf, and Gonzalez 1996), to define some validation
criteria, and to use these for a reduction of QUEST,
down to a "reasonable" set of test cases (REST)
described in (Abel and Gonzalez 1997), e.g.

Due to simplification reasons but also because of
its practical relevance, we consider rule-based systems

with an input I of an m-dimensional "input space", in
which each dimension is "atomic", i.e. not compound
in any way, and an output 0 of a set of possible output
values.

The generation procedure contains a step of analy-
zing the dependencies between the inputs and outputs
of the system. This is a basis for the reduction proce-
dure, which needs the so called dependency sets. These
sets describe which output depends on which inputs.
A set of so called critical values that describe certain
values of a single input that are considered a trigger
value for the output.

Experimentation and Evaluation

There are two gaps between the (non-formalized) real
domain knowledge, and the formalized knowledge of
the system: One is between the desired target domain
behavior and the experts’ knowledge (R ~ Ca,..., Cn
and another one is between the experts’ knowledge and
the system’s specification, which is (in case of successful
verification) equivalent to S (£1,..., £n ~ ,3).

Unfortunately, earthly creatures like humans are not
capable of bridging the first gap. A technology to
bridge the second gap is the subject of this section.

The idea of the TUmNC test methodology, as descri-
bed in (Jantke, Knanf, Abel 1997) e.g., is divided into
four steps: (1) solving of the test cases by the expert
validation panel as well as by the system, (2) randomly
mixing the test case solutions and removing their aut-
horship, (3) rating all (anonymous) test case solutions,
and (4) evaluating the ratings. In the experimentati-
on, the system is considered the "expert" en+l, i.e. its
expertise is Cn+l.

To come up with a validity assessment for the system
we consider the expert’s assessments of the system so-
lution, but each assessment is weighted with a "local
competence" of the rating expert for the considered test

332 FLAIRS-2000

case.

This "local competence" of an expert ei for a test case
tj is estimated by considering (1) the expert’s behavior
while solving the test case tj 1, (2) the expert’s behavior
while rating the test case solutions2, and (3) the other
experts’ assessment of the solution of the expert ei.

The TURING test methodology leads to a validity
v~ys(tj) (ranging between 0 and 1) for each of the test
case tj :

1=
(cpt(e,,ti)/__,

i--1

L tj) "cu(.+l)" ru¢.+l))
i----1

cpt(ei, tj) is the competence estimation of an expert ei
for a test case tj, rq(n+l) is the rating of the system’s
solution for the test case tj given by the expert i, and
cij(n+l) is the certainty of the expert ei while rating
this solution. All these variables range between 0 and
1 (inclusive).

A deeper discussion of the experimentation and eva-
luation, the competence assessment, and the test case
associated validities can be found in (Jantke, Knauf,
Abel 1997).

Expressing Validity

There are three different ways to express a system’s
validity according to the purpose of the statement:

1. A system user might be interested in knowing an
average global validity of the system, which can be
estimated by

or validities associated with the particular outputs
(system solutions), which can be estimated by the
average validity of all test cases referring to this
system solution:

1 E v,y,Ctj)v.y.(so&) ITkl

with T~ = {[tj,solk] ¯ ReST : tj ¯
~rinp(ReST), [tj, solk] £n+1}.

2. A system developer, namely a knowledge engineer,
may be interested in knowing validities associated
with rules. They can be estimated by the average

1 Did he/she admit some incompetence by giving the so-
lution "I don’t know?’?

2Did he/she give his/her own solution bad marks after
knowing the colleagues’ solutions? How often did he/she
express certainty while rating the solutions for tj ?

validity of those test cases the considered rule r: is
used for:

1
,,(,’a)

[t j,solk]eTi

with T1 = {[tj,solk] ¯ ReST : tj ¯
7qnp(ReST), [tj, solk] gn+l, r, is used fortj}

3. For formal system refinement (cf. next section) be-
sides these validity statements we use the validities
associated with test cases v,~8(tj) as described
the previous section.

System Refinement
Here, we introduce a newer part of our research: the
reconstruction of the rule base according to the results
of validation. This step closes the loop of figure 1. The
main idea is to find rules, which are "guilty" in the
system’s invalidity and to replace them by better ones.
A rule is better, if it leads to a solution which got better
marks then the system’s solution. We use the idea of a
rule-based reduction system to construct these "better
rules" systematically.

Finding "guilty rules"
All rules having a conclusion part, which is a final so-
lution solk are subject of the following considerations:
¯ There is a rule-associated validity v(rz) for each rule¯

¯ There is a set Tz* containing all test cases with test
data parts occurring in 7) and all solution parts
which came up in the experimentation, regardless
of whether the solution is given by a human expert
ei(1 < i < n) or the system en+l:

Tl" = {[tj, sol(ei,tj)]: 9[tj, solk] ¯ Tz}

¯ Tt* is splitted acoording to the different solution
parts sol1,..., solp,..., solm of its elements. This
leads to m disjunctive subsets T~],..., Tl~,,... , T~*.
One of the subsets is the one collecting the test cases
with the system’s solution solk.

¯ Analogously to the computation of the system solu-
tion’s validity v,~,, a validity v(rz, solp) (1 < p < m)
of each solution sol1,..., solp,...SOim - but only
based on the test cases of the corresponding Tl~ -
can be computed:

1 1v(r,,sot)_ ITt;,I
(tj,,o ,leT," (cpt(e , tj)cuq)

i=1

tj) ¯
i----1

Here, i indicates the rating expert, j indicates the
test data, q indicates the solver (who might be one
of the experts or the system, but doesn’t matter
here), p indicates the (common) solution solp =
sol(e~,tj) 3 of the test cases in Tzp, and l indicates

~Since sol~ = sol(ei, tj), occures intheright handside
of the equation as the combination of i and j.

VERIFICATION, VALIDATION, & CERTIFICATION333

the rule, from which Tt; is originated.

¯ There is an "optimal validity" of rule rl, which is
the maximum of all v(rl, solp) among all solutions
solp occurring in Tf. The solution, to which this
maximum is associated, is called the optimal solu-
tion solopt for rt.

SOlo t) = ma C{v(sot,,)}
Vopt(rz) can be considered an upper limit of the re-
achable rule-associated validity for rule rt.

In case Vont(rl, solop~) > v(rl) there is at least one
solution within Tf, which obtained better marks by
the experts than the system’s solution. In this case
rl is guilty and has to be modified.

Reduction of the set of "guilty rules"

First, a simple case will be considered: If all test cases
within 7) of a guilty rule rz have the same optimal solu-
tion solk, the conclusion-part of this rule is substituted
by solk. Thus, the considered rule won’t be "guilty"
any longer.

Replacing the if-part of a "guilty rule"

First, 7) of a "guilty rule" has to be splitted into subsets
T{ C 7) according to their optimal solution sol,.

The new if-part(s) of the new rule(s) instead
remaining and compiled "guilty rule" rl are expres-
sions ei E E4 of a set of p new alternative rules
(r1, r~,..., if} for each TI" and will be noted as a set
of sets

P~ = {{e~,.. 1 2 e2¯ ,epl}, {el,..., p2},- .-{e~, ...,e~,}}

here. The corresponding rule set of P[is
Pp

P "* SOls1+ sol,
"" r~l : A e,Ae,

i=1 i=1
Pos is the set of Positions (dimensions of the input

space), at which the tj 6 Tik are not identical.
The generation of the if-parts P~ is managed by a

Reduction System, which is applied in cycles to Triples
[Tz’ , Pos, P~] until Pos becomes the empty set 0. The
starting point of the reduction is [Tl’, Pos, P~] with

Pf= {{(sl = 8~den’), ... , (8q = sqidentxl’).~.~

sl, ..., Sq are those positions, where all test data tj E
Tik have the same (identical) value s~d*=t and Pos is
the set of the remaining positions

Pos = {si:--q(si = S~dent) e W}

Table 1 shows the rules used to reconstruct the remai-

ning "guiltykrules". The reduction terminates, if the
situation [TI , 0, P~] is reached.

4Formally, E C {[tl,r, tz] : tx ¯ S, t2 ¯ (SU~),r ̄
, <, =, #, >, >}} is a set of single expressions about input
data within the "input space" formed by the dimensions
S = {~1, ~,..., ~,-,,}.

334 FLAIRS-2000

Recompiling the new rules

In case the if-part of a new rule contains a subset of
expressions that is the if-part of another rule having
an intermediate solution as its then-part, this subset
has to be replaced by the corresponding intermediate
solution:

3ri : (if-part 1 ~ intl)
qrj : (if-part 1 A if-part 2 --* int-or-sol)

rj : (if-part 1 A if-part 2 --+ int-or-sol)

(intl A if-part 2 ---* int-or-sol)

Removing unused rules
Lastly, we remove rules that have an intermediate hypo-
thesis as its then-part, which is not used in any if-part:

qri : (if-partl --~ intx)
-~3rj : (intl A if-part 2 --* int-or-sol)

r i : (if-par H --* intl) ~-*

Summary

The main difficulty in validation of AI systems is that
the target domain is neither directly accessible nor the-
re is a commonly accepted formal description of it.
Thus, the only way to validate these systems is to con-
front the system with representative test cases and to
compare the system’s answers with the answers of hu-
man experts.

The heart of the methodology is a TURING test-like
technique that systematically interrogates the system
through test data. The present paper outlines ideas of

1. generating useful test cases,

2. a TURIN(] Test experimentation,

3. evaluating the experimentation results,

4. expressing validity according to its purpose, and

5. system refinement.

These ideas refer to rule-based systems, which is the
most commonly used kind of AI system in real world
applications.

Besides providing an overview on the entire metho-
dology and some hints for where to find more detailed
descriptions of the "old steps", which are published in
earlier papers by the authors, the new items here are
(1) the different ways to express a system’s validity ac-
cording to the purpose of the validity statement and (2)
the formal system refinement, which leads to a more va-
lid system after passing the "validation loop" of figure
1. Thus, we can proclaim, that the loop is closed.

References

Abel, T.; Knauf, R.; Gonzalez, A.J. 1996. Generati-
on of a minimal set of test cases that is functionally

Table 1: Reduction rules to construct "better rules" systematically
Reduction rules
R1 ¯ pos E Pos, svo, has a finite value set with no well-defined < relation

¯ there is no ordering relation < among the values of svo,
1 m¯ {spo,,... , spo,} are the values of %°, occuring in TI’ =>

[TE, Pos, {pl,..., pn}] ~-+
n

1. [~k’l\{tj e~’ :%0. # s~o.}, pos \ {pos}, U U(p, u {(+o. = S~o.)})]
j:li=l
frt n

2. [T,~,2 \ {tj e~" :s.. #G.}, P°s \ {p°s}, U U(p, u {(spo. = G.)})]
j=li=l

6°m. [Tzk’m\{tj eTrs :Spos #Spmos},Pos\{pos}, U(piU{(spos --spmos)})]
j----I i=l

R2
Contniue with each Tlk’i (1 < i < m) separately.
¯ pos E Pos, %o, has a value set with a well-defined G-relation

rain is the smallest value of %o, within TI"¯ 8pos
¯ S~oa,x is the largest value of %o, within Tt’

[T?, Cos, {p~,..., p~}]

rain ma~[~’, Cos \ {pod, U(p~ u {(s.. _> s..), (+o. <_ S~o.)} u so~c~)]
i=1

S~ez is the set of excluded values for %0,, which have to mapped to a solution different
from solk because of belonging to some other ~ with v ¢ k:

S~¢l = { (%o° ¢ ~o,): 3[tj,sol,] E T{q[tm,sol~] e T~(v ¢ s) with

Vp # pos(~ s’~) and rain m rna~= Spo, <Spo, <Spo, }

equivalent to an exhaustive set, for use in knowledge-
based system validation. In: Proc. 9th Internatio-
nal Florida Artificial Intelligence Research Symposi-
um (FLAIRS-96), Key West, FL, USA, May 1996,
pp. 280-284. Florida AI Research Society, 1996.

Abel, T.; Gonzalez, A.J. 1997. Utilizing criteria to
reduce a set of test cases for expert system validati-
on In: Proc. lOth International Florida Artificial In-
telligence Research Society Conference (FLAIRS-97),
Daytona Beach, FL, USA, May 1997, pp. 402-406.
Florida AI Research Society, 1997.

Jantke, K.P.; Abel, T.; Knauf, R. 1997. Fundamen-
tals of a turing test approach to validation. Intelligent
Meme Report MEME-IMP-1/1997. Sapporo, Japan,
Hokkaido University, 1997.
Jantke, K.P.; Knauf, R.; Abel, T. 1997. The Turing
test approach to validation. In: Proc. Workshop on
Validation, Verification 8J Refinement of AI Systems
and Subsystems (W32) of the 1at. Joint Conference
on Artificial Intelligence (IJCAI-97), Nagoya, Japan,
Aug. 1997, pp. 35-45. 1997.

Knauf, R.; Abel, T.; Jantke, K.P.; Gonzalez, A.J.
1998. A framework for validation of knowledge-based
systems. In: Proc. Int. Workshop on Aspects of In-
telligent Systems Validation, Ilmenau, Germany, Jan.
1998. Technical Report MEME-MMM-98-2, Sapporo,
Japan, 1998, pp. 1-19. Hokkaido University, 1998.
Knauf, R.; Jantke, K.P.; Gonzalez, A.J.; Philippow,
I. 1998. Fundamental considerations of competence
assessment for validation. In: Proc. 11th Internatio-
nal Florida Artificial Intelligence Society Conference
(FLAIRS-gS}, Sanibel Island, FL, USA, May 1998,
pp. 457-461. AAAI Press, 1998.

O’Keefe, R.M.; O’Leary, D.E. 1993. Expert system
verification and validation: A survey and tutorial. In:
Artificial Intelligence Review. 7(1993):3-42

VERIFICATION, VALIDATION, & CERTIFICATION 336

