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Abstract

The pros and cons of formal methods are the subject
of many discussions in Artificial Intelligence (AI).
Here, the authors describe a formal method that
aims at system refinement based on the results of
a test case validation technology for rule-based sys-
tems. This technique provides sufficient information
to estimate the validity of each single rule. Validity
in this context is estimated by evaluating the test
cases that used the considered rule. The objective
is to overcome the particular invalidities that are re-
vealed by the validation process. System refinement
has to be set into the context of “learning by ex-
amples”. Classical approaches are often not useful
for system refinement in practice. They often lead
to a knowledge base containing rules that are diffi-
cult to interpret by domain experts. The refinement
process presented here is characterized by (1) using
human expertise that also is a product of the vali-
dation technique and (2) keeping as much as possi-
ble of the (original) knowledge base. This is a way
to avoid the drawbacks of other approaches and to
enjoy the benefits of formal methods nevertheless.
The validation process provides “better solutions”
for test cases that have a solution which received
a bad validity assessment by the validating experts.
This knowledge is utilized by a formal reduction sys-
tem. It reconstructs the rule set in a manner that
provides the best rated solution for the entire test
case set.

Introduction

The necessity of Validation and Verification of intelli-
gent systems (V&V) is a result of the fact that today’s
information technology becomes more and more com-
plex and less controllable. Its influence on our private,
business, and public life gives a social dimension to the
issue of its reliability. Since there are more and more
safety–critical applications, invalid systems can be a
real threat. The daily news are full of messages about
the impact of non–valid systems: aircrafts that are out
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of legal control, medical devices that kill patients, alarm
systems that don’t realize an upcoming danger, . . .

As a result of this insight, the authors focused the
validation portion of V&V and developed a test case–
based methodology for validation of rule based AI sys-
tems (see figure 1 for an overview and (Knauf 2000), for
a detailed description). The developed technology cov-
ers five steps: (1) test case generation, (2) test case ex-
perimentation, (3) evaluation, (4) validity assessment,
and (5) system refinement. These steps can be per-
formed iteratively, where the process can be conducted
again after the improvements have been made.

The validity assessment step leads to different va-
lidity degrees that express validity depending on it’s
purpose: validities associated with outputs, rules, and
test data as well as a global system’s validity.

Based on these validities, the last step leads to a new,
restructured rule base that maps the test case set ex-
actly to the solution that obtained the best rating from
the expert panel in the validation session. Thus, the
more the test case set is representative of the domain,
the more the system refinement technology leads to a
correct model of reality.

System refinement based on “better knowledge” pro-
vided in practice (or by experts, here) has to be consid-
ered in the context of “learning by examples”. There
are plenty of formal learning approaches that solve
tasks like this. Usually, they aim at developing rules
that map test data with “known” solutions (exam-
ples) to their correct solution.1 They don’t claim
that all non–examples2 are mapped correctly. Unfor-
tunately, formal methods like these lead to rules that
might reflect reality fairly well, but are not “readable”
(or rather, “interpretable”) by domain experts. Even
worse, they might construct rules that reflect the ex-
amples correctly, but are wrong with respect to the
causal connection they express. For example, if all ex-
amples that are used to construct medical diagnosis

1This property is called consistency by the machine
learning community.

2Usually, the most possible cases that can occur in prac-
tice are not examples.
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Figure 1: Steps in the Proposed Validation Process

rules, consider patients that have a properties like (A)
blue eyes and (B) an increased blood pressure suffer
from (C) peptic ulcer, the rule construction technique
might produce a rule that implies from (A) and (B) to
(C): A ∧ B → C.3

To avoid this drawback, system refinement tech-
niques should be based upon two fundamental as-
sumptions (cf. (Ackermann, Fowler, and Ebenau 1984),
(Adrion, Branstadt, and Cherniavsky 1982)):
1. It is assumed that the initial rule base was written

with the intention of being correct, and if it is not
correct, then a close variant of it is.

2. It is assumed that each component of the rule base
appears there for some reason. Therefore, if a rule
is invalid, it cannot just be removed. Rather, we
have either

(a) to find out its reason for being in the rule base,
and find one (or several) alternative rule(s) that
will satisfy that reason after the incorrect rule has
been discarded or

(b) to develop ideas how to modify the rule with the
objective of improvement.

Thus, the present technique tries to change the rule
base as little as possible and to provide a substitute for
each piece of the knowledge base that will be removed.

The main idea of the refinement technique developed
here is to find rules that are “guilty” in the system’s
invalidity and to replace them by “better rules”. A
rule is “better”, if it leads to a solution that received
“better marks” from the experts (the validation panel)
than the system’s solution.

Here, we introduce the refinement strategy and dis-
cuss the developed technique in the context of the as-
sumptions above. Finally, we generalize these insights.

3As far as the authors know, at least the eye color is
probably not a reason for peptic ulcer.

The Developed Refinement Strategy

Context Conditions
The developed refinement strategy is part of the val-
idation technique described in (Knauf 2000). This is
a complete 5–step methodology that can be performed
iteratively. Each cycle begins with a knowledge base
(KB) and ends up with a (hopefully) “better” KB, i.e.
a more valid one.4

System refinement is the last of these five steps and
closes the loop of each cycle. It is the preceding step
(validity assessment) that provides different validity
statements according to their purpose: validities as-
sociated with outputs, rules, and test cases, as well as
a final, total validity of the entire system.

The main idea of the technique presented here is that
we know something about (test) cases where the sys-
tem performed these cases not adequately. And we
know much more: The experts also solved the test
cases and they even rated the solutions provided by hu-
mans within the Turing test experimentation. There-
fore, we might have “better solutions” for test cases
for which the system under examination received “bad
marks”. This knowledge is used for system refinement.

The Refinement Technique
The proposed technique consists of the following steps:

1. First, those rules that are guilty in the system’s in-
valid behavior are discovered. Since our validation
assessment (step 4 of the entire technique) provides
validity statements that are associated with (final)
system’s outputs, we look for the “guilty rules” by
considering rules that have final outputs as their

4Of course, validity is a property that can only be esti-
mated with respect to the used methodology in general and
with respect to the used test case generation method and
the involved validating expert panel in particular.
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then–parts. If such a final output revealed as in-
valid for the associated system’s input, we call this
rule “guilty”.
The main idea is to analyze, which test cases used
which rules and which validity degree has been as-
sociated to the system’s solution to the test data
of these cases. Furthermore, this step includes the
generation of an “optimal solution” for each of these
test data, which can either be the system’s solution
or a solution presented by a human expert.

2. Next, the simple situation is considered that all test
cases using a guilty rule have the same optimal solu-
tion. Here, “repair” consists in simply substituting
this invalid then–part by this optimal solution.

3. In the third step, guilty rules with various optimal
solutions for the test cases using the rule are con-
sidered. Here, a reduction system is developed that
systematically constructs one or some new rule(s)
as a substitute for the guilty rule.

4. The resulting new rules are (still) “one–shot rules”,
i.e. they infer directly from system’s inputs to sys-
tem’s outputs. To utilize the pre–compiled knowl-
edge in the knowledge base, which occurs as rules
with an intermediate hypothesis as their then–
parts, the new rule(s) are re–compiled in a fourth
step.
Furthermore, in this step the resulting knowledge
base will be inspected for rules, which can never
be used, because their then–part is an intermediate
hypothesis, which is not needed after the rule base
refinement. These rules will be removed.

The last step does not change anything in the input–
output behavior of the resulting rule base. It just makes
the rule base more compact by reducing the number
of rules. It also makes it easier to understand and to
interpret the rules by humans.5

Finding “Guilty Rules” All rules having a conclu-
sion part that is a final solution solk, are the subject of
the considerations. Based on the results of the previous
steps of the validation technique (Knauf 2000), we are
able to compute the following:

1. For each rule rl, there is a validity associated with
this rule v(rl) = 1

|Tl|
∑

[tj ,solk]∈Tl

vsys(tj). Here, Tl is

the subset of test cases that used the rule rl, vsys(tj)
is a validity degree of the system for a test case tj
as computed in a previous step.
vsys is a number that ranges between 0 (totally in-
valid) and 1 (totally valid) in the eyes of the vali-
dation panel.

2. There is a set T ∗
l containing all test cases with test

data parts occurring in Tl and all solution parts,
which came up in the experimentation, regardless

5This is an important issue to make the method reliable
and acceptable for subject matter experts.

of whether the solution is given by an expert or the
system: T ∗

l = Tl ∪ {[tj , sol(ei, tj)] : ∃[tj , solk] ∈ Tl}
3. Next, T ∗

l is split according to the different solu-
tion parts sol1, . . . , solp, . . . , solm of the test cases
in T ∗

l . This leads to m disjoint subsets T ∗
li ⊆ T ∗

l
T ∗

l1, . . . , T
∗
lp, . . . , T

∗
lm. One of the subsets contains

the test cases with the system’s solution solk.
4. Analogously to vsys(solk), a validity v(rl, solp) (1 ≤

p ≤ m) of each solution solp can be computed:
v(rl, solp) = 1

|T∗
lp
|

∑
[tj ,solp]∈T∗

lp

1
n∑

i=1

(cpt(ei,tj)·cijq)

·

n∑
i=1

(cpt(ei, tj) · cijq · rijq). Here, the ci and ri are

the certainties and ratings provided by the experts
during the experimentation session and cpt(ei, tj) is
the estimated competence of the expert ei for a test
case tj as proposed in (Knauf 2000).

5. The “optimal validity” vopt(rl) of a rule rl is the
maximum of all v(rl, solp) among the solutions
solp occurring in T ∗

l . The associated solution is
the optimal solution solopt of rl: vopt(rl, solopt) =
max({v(rl, sol1) : 1 ≤ i ≤ m}) vopt(rl) is an upper
limit of the rule-associated validity of rl.
If vopt(rl, solopt) > v(rl), there is a solution within
T ∗

l which got better marks from the experts than
the system’s solution. In this case, rl is a guilty
rule.

Simple Refinement by Conclusion Replacement
If all test cases within Tl of a guilty rule rl have the
same optimal solution solk, which was different from
the system’s solution, the conclusion-part of this rule
has to be substituted by solk.

Replacing the if–part of the Remaining Guilty
Rules is performed by the following technique:
1. Tl of the rule rl is split into subsets T s

l (1 ≤ s ≤ n)
according to the solution sols for each tj that ob-
tained the highest validity v(rl, sols). The new if–
part(s) of the new rule(s) instead of rl are expres-
sions ei ∈ E of a set of p new alternative rules
{r1

l , r2
l , . . . , rp

l } for each T s
l and will be noted as a

set of sets P s
l = {{e1

1, . . . , e
1
p1
}, . . . , {ep

1, . . . , e
p
pp
}}.

The corresponding rule set of P s
l is

r1
l :

∧p1
i=1 e1

i → sols . . . rp
l :

∧pp

i=1 ep
i → sols

2. Pos is the set of Positions (dimensions of the input
space), at which the input data tj ∈ πinp(T s

l ) of the
test cases tj ∈ T s

l are not identical. The generation
of the if-parts P s

l is managed by a Reduction Sys-
tem, which is applied to Triples [T s

l , Pos, P s
l ] until

Pos becomes the empty set ∅.
3. The starting point of the reduction is [T s

l , Pos, P s
l ]

with P s
l = {{(s1 = sident

1 ), . . . , (sq = sident
q )}}.

s1, . . . , sq are those positions where all test data
tj ∈ πinp(T s

l ) have the same (identical) value sident
i

and again, Pos is the set of the remaining positions.
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The reduction rules that are applied to these Triples
are shown in table 1. Some detailed explanation can
be found in (Knauf 2000), e.g.

Recompiling the new rules and removing the un-
used rules is performed by considering two cases:

First, if the if -part of a new rule contains a subset
of expressions that is the complete if -part of another
rule having an intermediate solution as its then-part,
this subset is replaced by the corresponding intermedi-
ate solution:
∃ri : (if -part1 → int1)
∃rj : (if -part1 ∧ if -part2 → int-or-sol) ⇒
rj : (if -part1 ∧ if -part2 → int-or-sol) ↪→

(int1 ∧ if -part2 → int-or-sol)
Second, we remove rules that having an intermedi-

ate hypothesis as its then-part, which is not used in
any if -part of any rule:
∃ri : (if -part1 → int1)
¬∃rj : (int1 ∧ if -part2 → int-or-sol) ⇒
ri : (if -part1 → int1) ↪→ ∅

The Technique in the Context of the
Assumptions

The technique introduced here tries to follow the ideas
of (Ackermann, Fowler, and Ebenau 1984) and (Adrion,
Branstadt, and Cherniavsky 1982) that are originally
developed for use in classical software validation and
mentioned here as an introduction.

Whenever a rule is indicated as “guilty” in some in-
valid system behavior, it will be changed as slightly as
it can be to map the examples consistently. The ba-
sic idea behind the approach is to keep this rule and
change it in a manner that the counter–examples, i.e.
the test cases that have been solved incorrectly by the
considered rule, will be excluded from using this rule.

To handle these counter–examples, some extra rules
will be computed, which map these test cases to their
correct solution.6 Since our only hint about the present
kind of invalidity is some better final solution to the
examined test cases, the rule reconstructing technique
focuses on rules that have final solutions as their con-
clusion parts.

In a first setting, the upcoming new rules infer di-
rectly from the system’s inputs to the system’s outputs.
On one hand, these rules secure a correct input–output
behavior of the system. On the other hand, such rules
tend to be non–readable and non–interpretable in the
context of the rest of the knowledge base. Usually, they
tend to have many expressions in their condition parts,
i.e. they are very long.

To avoid this drawback and to minimize the num-
ber of rules by utilizing existing rules as pre–compiled

6In the context of validation, we can define “correct” just
by “There is no different man–made solution that obtained
better marks by the validation panel.” More can’t be done.

knowledge, the computed rules are adapted to fit in
the context of the rest of the rule base by using their
conclusion–parts within the condition part of the up-
coming rules.

In particular, if there is at least one test case that is
performed correct by this rule, a very close variant of
the original rule remains in the system. This variant is
characterized by having the same conclusion part and a
slightly changed (usually longer) condition part. These
changes are due to the fact that the counter–examples,
i.e. the examples with a known better solution, have to
be excluded.

To summarize, the presented technique keeps as
much as it can from each rule. This is performed by
1. reconstructing the rules in a manner such that they

handle the counter–examples (and only them) dif-
ferently from the original rule base7 and

2. using as much as it can from the original rule base
by “compiling” the new rules together with the orig-
inal ones in the knowledge base.

The latter issue utilizes correlations between the for-
mer (human–made) and the upcoming (artificially com-
puted) pieces of knowledge.

The authors believe that this is the right thing to
do, because it sets the new knowledge in the context
with the original one. This way, the modified rule base
should be more easily to be interpreted by human ex-
perts (i.e. people, who expressed the original knowl-
edge) and additionally, the knowledge base will be op-
timal with respect to its size, i.e. both the number of
rules and their length.

Conclusion
The authors feel that the presented technique is a gen-
eral way to refine AI systems in particular, and techni-
cal systems that contain knowledge in general.

Engineers who develop and refine any technical sys-
tem usually say “Never change a working system.”.
Here, we extend this point of view by postulating the
following three general issues:
1. Don’t change a system that works well.
2. Do change a system that works almost well as

slightly as you can. Keep as much as you can to
avoid the risk making things worse and just change
those parts that handle the particular invalidities.

3. Do not try to refine a system that is invalid for many
cases or for extraordinary important cases (safety
critical ones, for example). Here, some thought to
rebuild either the system or even the general ap-
proach should be invested.

7Without effecting the basic message of the present pa-
per, here we should “admit”, that this is a simplified de-
scription of the truth. Especially in case of non–discrete
input data (numbers ranging quasi continuously between
some lower and upper possible value, for example) the sit-
uation occurs slightly more complicated. For details, see
(Knauf 2000).
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Table 1: Reduction rules to construct better rules systematically
Reduction rules
R1 • pos ∈ Pos, spos has a value set with no well-defined ≤ relation

• {s1
pos, . . . , s

m
pos} are the values of spos occurring in T s

l ⇒

[T s
l , Pos, {p1, . . . , pn}] ↪→

1. [T s,1
l \ {[tj , sols] ∈ T s

l : spos �= s1
pos}, Pos \ {pos},

n⋃

i=1

pi ∪ {(spos = s1
pos)}]

2. [T s,2
l \ {[tj , sols] ∈ T s

l : spos �= s2
pos}, Pos \ {pos},

n⋃

i=1

pi ∪ {(spos = s2
pos)}]

• • •

m. [T s,m
l \ {[tj , sols] ∈ T s

l : spos �= sm
pos}, Pos \ {pos},

n⋃

i=1

pi ∪ {(spos = sm
pos)}]

Continue with each T s,i
l (1 ≤ i ≤ m) separately.

R2 • pos ∈ Pos, spos has a value set with a well-defined ≤-relation
• smin

pos is the smallest value of spos within T s
l

• smax
pos is the largest value of spos within T s

l ⇒

[T s
l , Pos, {p1, . . . , pn}] ↪→ [T s

l , Pos \ {pos},
⋃n

i=1 pi ∪ {(spos ≥ smin
pos ), (spos ≤ smax

pos )} ∪ Sexcl]

Sexcl is the set of excluded values for spos, which have to mapped to a solution different from sols because
of belonging to some other T v

u with v �= s:
Sexcl = {(spos �= sj

pos) : ∃[tj , sols] ∈ T s
l ∃[tm, solv] ∈ T v

u (v �= s)
with ∀p �= pos ((sj

p = sm
p ) and (smin

pos < sm
pos < smax

pos )) }

The refinement strategy presented here falls into the
second class, i.e. it provides a formal method to “re-
pair” a working system with the aim of handling sin-
gular invalid (test) cases correct in future and to keep
the former input/output behavior for all other cases.

Since the test cases can be considered as examples,
i.e. as input/output pairs with a known correct output8,
the strategy should also be considered in the context of
“learning by examples”.

Frequently used technologies to perform tasks like
these (ID3 (Quinlan 1983), for example) aim at pro-
ducing a rule set that classifies the examples correctly.
On the one hand, they enjoy consistency with the ex-
amples, but on the other hand, they suffer from being
somehow “artificially constructed” and are not inter-
pretable by domain experts.

Moreover, the risk that such rules reflect the reality
wrong is much higher than by using techniques such
as the one presented here. This is because the “non–
examples” (i.e. all test data that can occur in practice
but are not a member of the example set respectively
the test case set, in our approach) are used to optimize
the upcoming rule set. The inputs that are not men-
tioned in any example (that are not a test case, in our
setting) are mapped to any output that is “useful” with
respect to some optimization issue (the number or the
length of the constructed rules, for example).

8Again, correctness here means validity and is nothing
more and nothing less than a behavior that obtained “good
marks” by some (human) validation panel.

Our technique, on the other hand, is based on the
assumption, that all “non–examples” are handled cor-
rectly by the former knowledge base. It doesn’t change
the behavior for cases that have not been examined as
test cases within the validation technology. Since the
historic knowledge base is a product of human thought,
the probability that these “non–examples” are handled
correctly is much higher.

To summarize, we feel that a competent knowledge
engineer assumption should be the basis to handle cases
that are not shown to be performed invalid by the AI
system.
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